
Notes on the OpenSURF Library

Christopher Evans

January 18, 2009

1 SURF: Speeded Up Robust Features

In this document, the SURF detector-descriptor scheme used in the OpenSURF library

is discussed in detail. First the algorithm is analysed from a theoretical standpoint to

provide a detailed overview of how and why it works. Next the design and development

choices for the implementation of the library are discussed and justified. During the

implementation of the library, it was found that some of the finer details of the algorithm

had been omitted or overlooked, so Section 1.5 serves to make clear the concepts which

are not explicitly defined in the SURF paper [1].

1.1 Integral Images

Much of the performance increase in SURF can be attributed to the use of an intermediate

image representation known as the “Integral Image” [7]. The integral image is computed

rapidly from an input image and is used to speed up the calculation of any upright

rectangular area. Given an input image I and a point (x, y) the integral image I∑ is

calculated by the sum of the values between the point and the origin. Formally this can

be defined by the formula:

I∑(x, y) =

i≤x∑
i=0

j≤y∑
j=0

I(x, y) (1)

Using the integral image, the task of calculating the area of an upright rectangular

region is reduced four operations. If we consider a rectangle bounded by vertices A, B,

C and D as in Figure 1, the sum of pixel intensities is calculated by:

∑
= A+D − (C +B) (2)

1

Figure 1: Area computation using integral images

Since computation time is invariant to change in size this approach is particularly useful

when large areas are required. SURF makes good use of this property to perform fast

convolutions of varying size box filters at near constant time.

1.2 Fast-Hessian Detector

1.2.1 The Hessian

The SURF detector is based on the determinant of the Hessian matrix. In order to

motivate the use of the Hessian, we consider a continuous function of two variables such

that the value of the function at (x, y) is given by f(x, y). The Hessian matrix, H, is the

matrix of partial derivates of the function f .

H(f(x, y)) =

[
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂y

∂2f
∂y2

]
(3)

The determinant of this matrix, known as the discriminant, is calculated by:

det(H) =
∂2f

∂x2

∂2f

∂y2
−
(
∂2f

∂x∂y

)2

(4)

The value of the discriminant is used to classify the maxima and minima of the

function by the second order derivative test. Since the determinant is the product of

eigenvalues of the Hessian we can classify the points based on the sign of the result. If

the determinant is negative then the eigenvalues have different signs and hence the point

is not a local extremum; if it is positive then either both eigenvalues are positive or both

are negative and in either case the point is classified as an extremum.

Translating this theory to work with images rather than a continuous function is a

fairly trivial task. First we replace the function values f(x, y) by the image pixel intensi-

ties I(x, y). Next we require a method to calculate the second order partial derivatives of

the image. We can calculate the derivatives by convolution with an appropriate kernel.

In the case of SURF the second order scale normalised Gaussian is the chosen filter as

it allows for analysis over scales as well as space (scale-space theory is discussed further

later in this section). We can construct kernels for the Gaussian derivatives in x, y and

combined xy direction such that we calculate the four entries of the Hessian matrix. Use

of the Gaussian allows us to vary the amount of smoothing during the convolution stage

so that the determinant is calculated at different scales. Furthermore, since the Gaussian

is an isotropic (i.e. circularly symmetric) function, convolution with the kernel allows for

rotation invariance. We can now calculate the Hessian matrix, H, as function of both

space x = (x, y) and scale σ.

H(x, σ) =

[
Lxx(x, σ) Lxy(x, σ)

Lxy(x, σ) Lyy(x, σ)

]
, (5)

Here Lxx(x, σ) refers to the convolution of the second order Gaussian derivative ∂2g(σ)
∂x2

with the image at point x = (x, y) and similarly for Lyy and Lxy. These derivatives are

known as Laplacian of Gaussians.

Working from this we can calculate the determinant of the Hessian for each pixel in

the image and use the value to find interest points. This variation of the Hessian detector

is similar to that proposed by Beaudet [2].

Lowe [4] found performance increase in approximating the Laplacian of Gaussians by

a difference of Gaussians. In a similiar manner, Bay [1] proposed an approximation to

the Laplacian of Gaussians by using box filter representations of the respective kernels.

Figure 2 illustrates the similarity between the discretised and cropped kernels and their

box filter counterparts. Considerable performance increase is found when these filters

are used in conjunction with the integral image described in Section 1.1. To qauntify

the difference we can consider the number of array accesses and operations required in

the convolution. For a 9× 9 filter we would require 81 array accesses and operations for

the original real valued filter and only 8 for the box filter representation. As the filter is

increased in size, the computation cost increases significantly for the original Laplacian

while the cost for the box filters is independent of size.

In Figure 2 the weights applied to each of the filter sections is kept simple. For the

Dxy filter the black regions are weighted with a value of 1, the white regions with a value

of -1 and the remaining areas not weighted at all. The Dxx and Dyy filters are weighted

similarly but with the white regions have a value of -1 and the black with a value of

2. Simple weighting allows for rapid calculation of areas but in using these weights we

need to address the difference in response values between the original and approximated

kernels. Bay [1] proposes the following formula as an accurate approximation for the

Figure 2: Laplacian of Gaussian Approximation. Top Row: The discretised and cropped second
order Gaussian derivatives in the x, y and xy-directions. We refer to these as Lxx, Lyy, Lxy.
Bottom Row: Weighted Box filter approximations in the x, y and xy-directions. We refer to
these as Dxx, Dyy, Dxy

Hessian determinant using the approximated Gaussians:

det(Happrox) = DxxDyy − (0.9Dxy)
2 (6)

In [1] the two filters are compared in detail and the results conclude that the box

representation’s negligible loss in accuracy is far outweighed by the considerable increase

in efficiency and speed. The determinant here is referred to as the blob response at

location x = (x, y, σ). The search for local maxima of this function over both space and

scale yields the interest points for an image. The exact method for extracting interest

points is explained in the following section.

1.2.2 Constructing the Scale-Space

In order to detect interest points using the determinant of Hessian it is first necessary to

introduce the notion of a scale-space. A scale-space is a continuous function which can be

used to find extrema across all possible scales [8]. In computer vision the scale-space is

typically implemented as an image pyramid where the input image is iteratively convolved

with Gaussian kernel and repeatedly sub-sampled (reduced in size). This method is used

to great effect in SIFT [4] but since each layer relies on the previous, and images need

to be resized it is not computationally efficient. As the processing time of the kernels

used in SURF is size invariant, the scale-space can be created by applying kernels of

increasing size to the original image. This allows for multiple layers of the scale-space

pyramid to be processed simultaneously and negates the need to subsample the image

hence providing performance increase. Figure 3 illustrates the difference between the

traditional scale-space structure and the SURF counterpart.

Figure 3: Filter Pyramid. The traditional approach to constructing a scale-space (left).
The image size is varied and the Guassian filter is repeatedly applied to smooth subse-
quent layers. The SURF approach (right) leaves the original image unchanged and varies
only the filter size.

The scale-space is divided into a number of octaves, where an octave refers to a series

of response maps of covering a doubling of scale. In SURF the lowest level of the scale-

space is obtained from the output of the 9× 9 filters shown in 2. These filters correspond

to a real valued Gaussian with σ = 1.2. Subsequent layers are obtained by upscaling

the filters whilst maintaining the same filter layout ratio. As the filter size increases so

too does the value of the associated Gaussian scale, and since ratios of the layout remain

constant we can calculate this scale by the formula:

σapprox = Current Filter Size · Base Filter Scale

Base Filter Size

= Current Filter Size · 1.2

9

When constructing larger filters, there are a number of factors which must be take into

consideration. The increase in size is restricted by the length of the positive and negative

lobes of the underlying second order Gaussian derivatives. In the approximated filters

the lobe size is set at one third the side length of the filter and refers to the shorter side

length of the weighted black and white regions. Since we require the presence of a central

pixel, the dimensions must be increased equally around this location and hence the lobe

size can increase by a minimum of 2. Since there are three lobes in each filter which must

be the same size, the smallest step size between consecutive filters is 6. For the Dxx and

Dyy filters the longer side length of the weighted regions increases by 2 on each side to

preserve structure. Figure 4 illustrates the structure of the filters as they increase in size.

1.2.3 Accurate Interest Point Localisation

The task of localising the scale and rotation invariant interest points in the image can be

divided into three steps. First the responses are thresholded such that all values below

Figure 4: Filter Structure. Subsequent filters sizes must differ by a minimum of 6 to
preserve filter structure.

the predetermined threshold are removed. Increasing the threshold lowers the number

of detected interest points, leaving only the strongest while decreasing allows for many

more to detected. Therefore the threshold can be adapted to tailor the detection to the

application.

After thresholding, a non-maximal suppression is performed to find a set of candidate

points. To do this each pixel in the scale-space is compared to its 26 neighbours, comprised

of the 8 points in the native scale and the 9 in each of the scales above and below. Figure

5 illustrates the non-maximal suppression step. At this stage we have a set of interest

points with minimum strength determined by the threshold value and which are also local

maxima/minima in the scale-space.

Figure 5: Non-Maximal Suppression. The pixel marked ’X’ is selected as a maxima if it
greater than the surrounding pixels on its interval and intervals above and below.

The final step in localising the points involves interpolating the nearby data to find

the location in both space and scale to sub-pixel accuracy. This is done by fitting a 3D

quadratic as proposed by Brown [3]. In order to do this we express the determinant of

the Hessian function, H(x, y, σ), as a Taylor expansion up to quadratic terms centered

at detected location. This is expressed as:

H(x) = H +
∂H

∂x

T

x +
1

2
xT
∂2H

∂x2
x (7)

The interpolated location of the extremum, x̂ = (x, y, σ), is found by taking the

derivative of this function and setting it to zero such that:

x̂ = −∂
2H

∂x2

−1
∂H

∂x
(8)

The derivatives here are approximated by finite differences of neighbouring pixels. If x̂

is greater than 0.5 in the x, y or σ directions we adjust the location and perform the

interpolation again. This procedure is repeated until x̂ is less than 0.5 in all directions

or the the number of predetermined interpolation steps has been exceeded. Those points

which do not converge are dropped from the set of interest points leaving only the most

stable and repeatable.

1.3 Interest Point Descriptor

The SURF descriptor describes how the pixel intensities are distributed within a scale

dependent neighbourhood of each interest point detected by the Fast-Hessian. This ap-

proach is similar to that of SIFT [4] but integral images used in conjunction with filters

known as Haar wavelets are used in order to increase robustness and decrease computa-

tion time. Haar wavelets are simple filters which can be used to find gradients in the x

and y directions.

Figure 6: Haar Wavelets. The left filter computes the response in the x-direction and the right
the y-direction. Weights are 1 for black regions and -1 for the white. When used with integral
images each wavelet requires just six operations to compute.

Extraction of the descriptor can be divided into two distinct tasks. First each in-

terest point is assigned a reproducible orientation before a scale dependent window is

constructed in which a 64-dimensional vector is extracted. It is important that all cal-

culations for the descriptor are based on measurements relative to the detected scale in

order to achieve scale invariant results. The procedure for extracing the descriptor is

explained further in the following.

1.3.1 Orientation Assignment

In order to achieve invariance to image rotation each detected interest point is assigned a

reproducible orientation. Extraction of the descriptor components is performed relative

to this direction so it is important that this direction is found to be repeatable under

varying conditions. To determine the orientation, Haar wavelet responses of size 4σ are

calculated for a set pixels within a radius of 6σ of the detected point, where σ refers to

the scale at which the point was detected. The specific set of pixels is determined by

sampling those from within the circle using a step size of σ.

The responses are weighted with a Gaussian centered at the interest point. In keeping

with the rest the Gaussian is dependent on the scale of the point and chosen to have

standard deviation 2.5σ. Once weighted the responses are represented as points in vector

space, with the x-responses along the abscissa and the y-responses along the ordinate.

The domimant orientation is selected by rotating a circle segment covering an angle of
π
3

around the origin. At each position, the x and y-responses within the segment are

summed and used to form a new vector. The longest vector lends its orientation the

interest point. This process is illustrated in Figure 7.

Figure 7: Orientation Assignment: As the window slides around the origin the components
of the responses are summed to yield the vectors shown here in blue. The largest such vector
determines the dominant orientation.

In some applications, rotation invariance in not required so this step can be omitted,

hence providing further performance increase. In [1] this version of the descriptor is

reffered to as Upright SURF (or U-SURF) and has been shown to maintain robustness

for image rotations of up to +/− 15 deg.

1.3.2 Descriptor Components

The first step in extracting the SURF descriptor is to construct a square window around

the interest point. This window contains the pixels which will form entries in the descrip-

tor vector and is of size 20σ, again where σ refers to the detected scale. Furthermore the

window is oriented along the direction found in Section 1.3.1 such that all subsequent

calculations are relative to this direction.

Figure 8: Descriptor Windows. The window size is 20 times the scale of the detected point
and is oriented along the dominant direction shown in green.

The descriptor window is divided into 4× 4 regular subregions. Within each of these

subregions Haar wavelets of size 2σ are calculated for 25 regularly distributed sample

points. If we refer to the x and y wavelet responses by dx and dy respectively then for

these 25 sample points (i.e. each subregion) we collect,

vsubregion =
[∑

dx,
∑

dy,
∑
|dx|,

∑
|dy|
]
. (9)

Therefore each subregion contributes four values to the descriptor vector leading to

an overall vector of length 4× 4× 4 = 64. The resulting SURF descriptor is invariant to

rotation, scale, brightness and, after reduction to unit length, contrast.

Figure 9: Descriptor Components. The green square bounds one of the 16 subregions and blue
circles represent the sample points at which we compute the wavelet responses. As illustrated
the x and y responses are calculated relative to the dominant orientation.

1.4 Design

This section outlines the design choices which have been made to implement the SURF

point correspondence library.

1.4.1 Language and Environment

C++ has been chosen as the programming language to develop the SURF library for the

following reasons:

1. Speed: Low level image processing needs to be fast and C++ will facilitate the

implementation of a highly efficient library of functions.

2. Usability: In my research, almost all image processing appears to be carried out

in C++, C and Matlab. Once complete the library is to be fully documented and

freely available, so C++ seems the obvious choice in making a useful contribution

to the field.

3. Portability: While C++ may not be entirely portable across platforms it is possible,

by following strict standards, to write code which is portable across many platforms

and compilers.

4. Image Processing Libraries: OpenCV1 is a library of C++ functions which lends

itself well to real time computer vision. It provides functionality for reading data

from image files, video files as well as live video feeds direct from a webcam or other

vision device. The library is well supported and works on both Linux and Windows.

The chosen development environment for the implementation of the library is Mi-

crosoft Visual C++ Express 20082. VC++ is a powerful IDE (Integrated Development

Environment) allowing for easy code creation and visual project organisation. OpenCV

also integrates well with the compiler and is fully supported. As both OpenCV and Vi-

sual C++ are free, this will allow the finished SURF library to be distributed without

licensing restrictions.

1.4.2 Architecture Design

The architecture design provides a top-down decomposition of the library into modules

and classes.

1Open Source Computer Vision Library. Provides a simple API for working with images and videos
in C++. Available from: http://opencvlibrary.sourceforge.net/

2Free C++ IDE for Windows. Available from: www.microsoft.com/express/

Integral Image

Overview: Module creates and handles Integral Images

Inputs: An Image

Processes: Creates the integral image representation of supplied input image. Calcu-

lates pixel sums over upright rectangular areas.

Outputs: The integral image representation.

Fast-Hessian

Overview: Finds hessian based interest points/regions in a given integral image.

Inputs: An integral image representation of an image.

Processes: Builds determinant of Hessian response map. Performs a non maximal

suppresion to localise interest points in a scale-space. Interpolates detected points to

sub-pixel accuracy.

Outputs: A vector of accurately localised interest points.

SURF Descriptor:

Overview: Extracts descriptor components for a given set of detected interest points.

Inputs: An integral image representation of an image, vector of interest points.

Processes: Calculates Haar wavelet responses. Calculates dominant orientation of an

interest point. Extracts 64-dimensional descriptor vector based on sums of wavelet

responses.

Outputs: A vector of ‘SURF described’ interest points.

Interest Point:

Overview: Stores data associated with each individual interest point.

Inputs: Interest Point data.

Processes: Accessor/Mutator Methods for data.

Outputs: None

Utilities:

Overview: Module contains all non SURF specific functions.

1.4.3 Data Structures

There are two important non-standard data structures which will be included in the

implementation of the SURF library. These are the IplImage which is used by OpenCV

to store image data, and the user defined Ipoint which will store data about interest

points. As the IplImage is supplied by an external library, it is not included in the design

of this work. The Ipoint data type and its interface is detailed in Section 1.4.4.

1.4.4 Interface Design

The class/function interfaces are described for each of the components listed in Section

1.4.2, where the interface refers to the public components which can be called from

external modules.

Listing 1: Integral Image Interface

// ! Returns i n t e g r a l image r ep r e s en t a t i on o f s upp l i e d image
IplImage ∗ I n t e g r a l (IplImage ∗ img) ;

// ! Ca l cu l a t e s sum of p i x e l i n t e n s i t i e s in the area
f loat Area (IplImage ∗ img , int x , int y , int width , int he ight) ;

Listing 2: Fast-Hessian Interface

FastHess ian {

// ! Constructor
FastHess ian (IplImage ∗ img ,

vector<Ipo int> &ipt s , // Vector to s t o r e I p o i n t s
int octaves , // Number o f Octaves to ana lyse
int i n t e r v a l s , // Number o f I n t e r v a l s per Octave
int sample , // Sampling s t ep in the image
f loat th r e s) ; // Hessian response t h r e s h o l d

// ! Find the image f e a t u r e s and wr i t e in t o vec t o r o f f e a t u r e s
void g e t I p o i n t s () ;

} ;

Listing 3: SURF Descriptor Interface

Sur f {

// ! Constructor
Sur f (IplImage ∗ i n t e g r a l i m g) ;

// ! Set the I po in t o f i n t e r e s t
void s e t I p o i n t (Ipo in t ∗ i p t) ;

// ! Assign the supp l i e d I po in t an o r i e n t a t i on
void ge tOr i en ta t i on () ;

// ! Get the d e s c r i p t o r vec t o r o f the prov ided I po in t
void ge tDes c r i p to r () ;

} ;

Listing 4: Interest Point Interface

Ipo in t {

// ! Coordinates o f the d e t e c t e d i n t e r e s t po in t
f loat x , y ;

// ! Detected s c a l e
f loat s c a l e ;

// ! Or ien ta t ion measured ant i−c l o c kw i s e from +ve x−ax i s
f loat o r i e n t a t i o n ;

// ! Vector o f d e s c r i p t o r components
f loat d e s c r i p t o r [6 4] ;

} ;

1.5 Implementation

Based on the theoretical analysis of Sections 1.2 and 1.3, and the design in Section 1.4,

the resulting implementation of the SURF algorithm is presented. This section serves

to provide further insight into SURF whilst simultaneously making clear the concepts

which are not explicitly defined in [1]. For each component the methods which have been

used are demonstrated from algorithmic approach with excerpts of code provided where

necessary.

1.5.1 Integral Images

Computation of the Integral is a very simple process. We iterate over all rows and columns

such that the value in the integral image at each point is the sum of pixels above and to

the left. To implement this in an efficient manner we calculate a cumulative row sum as

we move along each row. For the first row this sum forms the value at each location in the

resulting integral image. For each subsequent row the resulting value is the cumulative

row sum plus the value in the cell above in the integral image. In simplified C++ code

this is written as:

Listing 5: Integral Image Computation

// Loop over rows and c o l s o f input image
for (int row=0; row<he ight ; row++) {

row sum = 0 ;
for (int c o l =0; co l<width ; c o l++) {

// Ca l cu l a t e cumula t ive row sum

row sum = row sum + source data [i] [j] ;

// Set va lue in i n t e g r a l image
i f (row > 0)

i n t e g r a l d a t a [i] [j] = i n t e g r a l d a t a [i −1] [j] + row sum ;
else

i n t e g r a l d a t a [i] [j] = row sum ;
}

}

1.5.2 Fast-Hessian

The first step in the Fast-Hessian process is to construct the blob-response map for the

desired number of octaves and intervals. This is implemented as a 2-dimensional array of

image structures of size octaves×intervals. Therefore if we wish to analyse a scale-space

comprised of three octaves and four intervals, as is the default setting, we create an array

of twelve image structures. The values for each octave-interval pair dictate the size of

the filter which will be convolved at that layer in the scale-space. The filter size is given

by the formula,

Filter Size = 3
(

2octave × interval + 1
)
. (10)

The expected filter size for the first interval in the first octave is the base 9× 9 filter

as detailed in Section 1.2.2. Using the formula with the the values octave = interval = 1

yields,

Filter Size = 3
(
21 × 1 + 1

)
= 9.

Using this formula we can both construct and convolve the filters at each level in

the scale-space automatically. In order to avoid edge effects in the convolution, we set a

border for each octave such that the largest filter in the octave remains entirely over the

image. This is important as edge effects can yield anomolous results which reduce the

reliability of the detector. Once the responses are calculated for each layer of the scale-

space, it is important that they are scale-normalised. Scale-normalisation is an important

step which ensures there is no reduction in the filter responses as the underlying Gaussian

scale increases. For the approximated filters, scale-normalisation is achieved by dividing

the response by the area. This yields near perfect scale invariance. The code listing below

demonstrates a stripped down approach to creating the response map.

Listing 6: Constructing the Scale Space

for (int o=0; o<octaves ; o++) {

// Ca l cu l a t e f i l t e r border f o r t h i s oc tave
border = (3 ∗ pow(2 , o+1)∗(i n t e r v a l s)+1) + 1) / 2 ;

for (int i =0; i<i n t e r v a l s ; i++) {

// Ca l cu l a t e l o b e l e n g t h (f i l t e r s i d e l en g t h /3)
l obe = pow(2 , o+1)∗(i +1)+1;

// Ca l cu l a t e area f o r sca l e−norma l i sa t ion
area = pow((3∗ l obe) , 2) ;

// Ca l cu l a t e response at each p i x e l in the image
for (int r=border ; r<height−border ; r++) {

for (int c=border ; c<width−border ; c++) {

// Cac lu l a t e sca l e−normal ised f i l t e r responses
Dyy = [F i l t e r Response] / area ;
Dxx = [F i l t e r Response] / area ;
Dxy = [F i l t e r Response] / area ;

// Ca l cu l a t e approximated determinant o f hes s ian va lue
detHess = (Dxx∗Dyy − 0 .9 f ∗0 .9 f ∗Dxy∗Dxy) ;

}
}

}
}

The search for extrema in the response map is conducted by a non-maximal suppres-

sion. The implementation of this is very straightforward. Each pixel is compared to it’s

neighbours and only those which are greater than all those surrounding it are classified

as interest points. This cost of checking neighbouring values is relatively low as many

pixels will be determined non-maximal after only a few checks.

The interpolated position and scale of the detected interest points is found by the

formula proposed by Brown [3]. This can be computed by a few simple matrix multipli-

cations. To find the interpolated location, x̂ = (x, y, σ), in scale and space we need to

calculate the result of,

x̂ = −∂
2H

∂x2

−1
∂H

∂x
.

To do this we need to first compute the entries in the 3× 3 matrix ∂2H
∂x2 and the 3× 1

vector ∂H
∂x

. These entries are computed by finite differences of pixel intensities and the

specific values are given by,

∂2H

∂x2
=

 dxx dyx dsx

dxy dyy dsy

dxs dys dss


and,

∂H

∂x
=

 dx

dy

ds

 .
Here dx refers to ∂I

∂x
, dxx refers to ∂2I

∂x2 and likewise for the other entries. Using these two

matrices a simple inversion and matrix multiplication yields the interpolated location.

Each interpolated interest point is added to a vector which is the final output of the

Fast-Hessian class.

1.5.3 Descriptor

As detailed in the technical summary of SURF, the first step in describing the interest

points found by the detector is to extract the dominant orientation. In the implementation

this is broken into two stages with the first calculating Haar wavelet responses around

the point and the second iterating over the region to compute the responses which fall

within a sliding circle segment.

Computing the responses is a trivial task. By considering a square region of size

12σ centered on the interest point, we calculate only those responses whose distance is

less than 6σ from the center. These responses are weighted by the Gaussian function

and added to a vector. The code listing below demonstrates the approach used in the

implementation of this step.

Listing 7: Calculating Haar Responses

for (int x = −6∗s ; x <= 6∗ s ; x+=s) {
for (int y = −6∗s ; y <= 6∗ s ; y+=s) {

// Check whether current sample po in t i s w i th in c i r c l e
i f (x∗x + y∗y < 36∗ s ∗ s) {

// Ca l cu l a t e Gaussian weigh t
gauss = gauss ian (x , y , 2∗ s) ;

// Add response to v e c t o r s
resX . push back (gauss ∗ haarX (x , y , 4∗ s)) ;
resY . push back (gauss ∗ haarY (x , y , 4∗ s)) ;

}
}

}

To calculate the responses within the sliding window, we step through a discrete set

of angles between 0 and 2π and compute the sum of the responses which form an angle

inside the window. This procedure is clear when looking at a simplified version the code.

Listing 8: Sliding Window Sums

// Loop s l i d e s p i /3 window around f e a t u r e po in t
for (ang1 = 0 ; ang1 < 2∗ pi ; ang1+=0.1) {

sumX = sumY = 0 ;

// Loop i t e r a t e s over a l l Haar responses
for (unsigned int i = 0 ; i < resX . s i z e () ; i++) {

// Get ang l e from the x−ax i s o f the response
ang = getAngle (resX . at (i) , resY . at (i)) ;

// Determine whether the po in t i s w i th in the window
i f (ang1 < ang && ang < ang1+pi /3) {

sumX+=resX . at (k) ;
sumY+=resY . at (k) ;

}
}

// I f the v ec t o r produced from t h i s window i s l onger than a l l
// prev ious v e c t o r s then t h i s forms the new dominant d i r e c t i o n
i f (sumX∗sumX + sumY∗sumY > max) {

max = sumX∗sumX + sumY∗sumY;
o r i e n t a t i o n = getAngle (sumX, sumY) ;

}
}

Extraction of the descriptor is implemented in a very similar manner to the response

calculation for orientation assignment. Instead of a circular regions, the descriptor ex-

tracts responses from a square window. In the code, one loop iterates over each of the

sixteen subregions while another calculates the 25 wavelet responses within each. Since

the windows are oriented along the dominant direction, and the Integral image only

retrieves upright rectangular areas, Bay [1] proposes interpolating the responses to re-

main invariant to rotation. In this work, rather than interpolating the responses, the

descriptor windows are first rotated so that the dominant orientation aligned with the

positive y-axis. There is a small sacrifice in computation time but the results have proved

more robust (See Results Section). Both versions of the descriptor are included in the

library. The code listing below demonstrates the method for extracting the four vector

components ([
∑
dx,
∑
dy,
∑
|dx|,

∑
|dy|]) from each subregion.

Listing 9: Extracting Descriptor Components

// Outer l oops s e l e c t top l e f t corners o f each subreg ion
for (int i = 0 ; i < 20∗ s ; i+=5∗s)

for (int j = 0 ; j < 20∗ s ; j+=5∗s) {

// These va l u e s s t o r e response sums f o r the subreg ion
dx=dy=mdx=mdy=0;

// Inner l oops s e l e c t 25 sample po in t s from subreg ion
for (int k = i ; k < i + 5∗ s ; k+=s) {

for (int l = j ; l < j + 5∗ s ; l+=s) {

// Compute Gaussian weigh ted responses
gauss = gauss ian (k−10∗s , l −10∗s , 3 . 3 f ∗ s) ;
rx = gauss ∗ haarX (k , l , 2∗ s) ;
ry = gauss ∗ haarY (k , l , 2∗ s) ;

// Sum the responses and the t h e i r a b s o l u t e va l u e s
dx += rx ;
dy += ry ;
mdx += fabs (rx) ;
mdy += fabs (ry) ;

}
}

}

2 Results

In this section we test the SURF library using an image dataset provided by Kristian

Mikolajczyk3. This dataset contains sequences of images which exhibit real geometric and

photometric transformations, such as scaling, rotation, illumination and JPEG compres-

sion. Comparing the results of various detector-descriptors is a complex task and a full

body of work in itself. Mikolajczyk [5, 6] compared the most widely used detectors and

descriptors and Bay [1] used the same testing strategy to show how SURF outperforms

its predecessors. The following sections therefore detail the results of this SURF library

in isolation.

Figure 10: Test Dataset. Columns left to right: Graffiti with viewpoint rotation, Bikes with
blur, Boats with optical axis rotation, Leuven with brightness and UBC with JPEG compression.

3Dataset acquired from http://www.robots.ox.ac.uk/∼vgg/research/affine/

2.1 Detector Results

The criteria used to evaluate the performance of the detector is the repeatability. This

is an important measure of a detector’s performance as it refers the likeliness of interest

points being detected under varying image transformations. More specifically it measures

the percentage of geometrically correct correspondences as found in images of the same

scene or object under different viewing conditions. Geometrical correctness refers to the

point being localised on the same image structure or region and can be measured in a

number of ways. A simple approach is to evaluate the correspondences by eye, but this

is laborious and lacks robustness. A better method, and the one used in these tests, is to

relate the points by a homography.

x̂ = H · x. (11)

Here H is the 3×3 homography matrix which maps x-points in one image to x̂-points

in another. Using this function we can determine whether a point has a correspondence

by performing the mapping operation and checking for detected points within a neigh-

bourhood of the target location. For the purpose of the tests carried out in this work

the neighbourhood is set at 1.5 pixels. Furthermore, the image dataset (as shown in

Figure 10) is supplied with accurate homography matrices which relate the points to a

high degree of accuracy.

The following graphs illustrate the repeatability rate under the various transforma-

tions. The detector performs well in these tests, with the exception of the Graffiti scene

where the viewpoint change introduces an out of plane transformation. This is an ex-

pected result as SURF is not designed to be affine invariant.

Figure 11: Repeatability under viewpoint change.

Figure 12: Repeatability under image blurring.

Figure 13: Repeatability under rotation about the optical axis with scale change.

Figure 14: Repeatability under decreasing image brightness.

Figure 15: Repeatability under JPEG compression.

References

[1] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. European

Conference on Computer Vision, 1:404–417, 2006.

[2] P.R. Beaudet. Rotationally invariant image operators. International Joint Conference

on Pattern Recognition, 579:583, 1978.

[3] M. Brown and D.G. Lowe. Invariant features from interest point groups. British

Machine Vision Conference, Cardiff, Wales, pages 656–665, 2002.

[4] D.G. Lowe. Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision, 60(2):91–110, 2004.

[5] K. Mikolajczyk and C. Schmid. An affine invariant interest point detector. Proc.

ECCV, 1:128–142, 2002.

[6] K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. IEEE

Trans. Pattern Anal. Mach. Intell., 27(10):1615–1630, 2005.

[7] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of

simple features. cvpr, 1:511, 2001.

[8] A. Witkin. Scale-space filtering, int. joint conf. Artif. Intell, 2:1019–1021, 1983.

