
International Journal of Computer Applications (0975 – 8887)

Volume 8– No.7, October 2010

30

Text Compression Methods Based on Dictionaries
Umesh S. Bhadade

G.H. Raisoni Institute of Engineering & Management
Gat No. 57, Shirsoli Road

Jalgaon (MS) India - 425001

Prof. A.I. Trivedi
Faculty of Technology & Engineering

M.S. University
Vadodara (GJ) India

ABSTRACT
Compression is used just about everywhere. Reduction of both
compression ratio and retrieval of data from large collection is
important in today‟s era. We propose a pre-compression
technique that can be applied to text files. The output of our
technique can be further applied to standard compression

techniques available, such as arithmetic coding and BZIP2,
which yields in better compression ratio. The algorithm
suggested here uses the dynamic dictionary created at run-time
and is also suitable for searching the phrases from the
compressed file.

General Terms
Compression, Searching

Keywords
Text Compression, Dynamic dictionary

1. INTRODUCTION
The task of compression consists of two components, an
encoding algorithm that takes a message and generates a
“compressed” representation and a decoding algorithm that
reconstructs the original message or some approximation of it
from the compressed representation. These two components are
typically intricately tied together since they both have to

understand the shared compressed representation.
The compression algorithms can be classified broadly in two
categories viz. lossless algorithms, which can reconstruct the
original message exactly from the compressed message, and
lossy algorithms, which can only reconstruct an approximation
of the original message. Lossless algorithms are typically used
for text, and lossy for images and sound where a little bit of loss
in resolution is often undetectable, or at least acceptable. Lossy

is used in an abstract sense, however, and does not mean random
lost pixels, but instead means loss of a quantity such as a
frequency component, or perhaps loss of noise.
It is not possible to compress everything, all compression
algorithms must assume that there is some bias on the input
messages so that some inputs are more likely than others, i.e.
there is some unbalanced probability distribution over the
possible messages. Most compression algorithms base this

“bias” on the structure of the messages – i.e., an assumption that
repeated characters are more likely than random characters, or
that large white patches occur in “typical” images. Compression
is therefore all about probability.
When discussing compression algorithms it is important to make
a distinction between two components: the model and the coder.
The model component somehow captures the probability
distribution of the messages by knowing or discovering

something about the structure of the input. The coder component
then takes advantage of the probability biases generated in the
model to generate codes. It does this by effectively lengthening

low probability messages and shortening high-probability

messages. The models in most of the current real-world
compression algorithms, however, are not so sophisticated, and
use more mundane measures such as repeated patterns in text.
Although there are many different ways to design the
component of compression algorithms and a huge range of
levels of sophistication, the coder components tend to be quite
generic. Current algorithms are almost exclusively based on
either Huffman or arithmetic codes.

Another question about compression algorithms is how to judge
the quality of one versus another. In the case of lossless
compression there are several criteria such as, the time to
compress, the time to reconstruct, the size of the compressed
messages, memory requirements and the generality. In the case
of lossy compression the judgment is further complicated since
we also have to worry about how good the lossy approximation
is. There are typically tradeoffs between the amount of
compression, the runtime, and the quality of the reconstruction.

Depending on application one might be more important than
another and one would want to pick algorithm appropriately.
For most applications, a compression scheme must allow
random access to data within the large data files, so that selected
documents or records can be retrieved and presented to a user.
Only a small class of compression schemes permits such random
access and decompression. Moreover, these' schemes only work
on collections where symbols - such as words - can be extracted

from the data to be compressed. Hence, effective methods are to
be developed which allows random access on text from large
data files, with better compression ratio and improved
decompression time.
There are several methods existing in the area of lossless data
compression.
Some of the basic methods are:

- Huffman coding and its variants.

- Arithmetic coding and its variants.
- Dictionary based methods such as Lempel Ziv Welch

(LZW)
- Run Length Encoding (RLE).
- Move-to-Front coding (MTF).
- Burrows Wheeler Transform Method (BWT).

The paper is organized in the following way. Section 2 gives an

overview of few existing compression techniques. Section 3
gives brief overview of searching pattern in compressed file.
Section 4 gives detailed description of the proposed new
compression techniques, including dictionary creation,
compression and decompression algorithms, searching
algorithms. In Section 5 the quick searching algorithm used for
searching the text in the compressed file is explained. Section 6
discusses the implementation details of the proposed
compression techniques. Section 7 gives the comparison and

evaluation of the results of the proposed compression techniques

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.7, October 2010

31

v/s existing compression techniques, followed by, conclusion in
section 8.

2. BASIC COMPRESSION TECHNIQUES

2.1 Huffman Coding
Huffman codes[1] work by replacing each alphabet symbol by a
variable-length code string. ASCII uses eight bits per symbol in
English text, which is wasteful, since certain characters (such as
`e') occur far more often than others (such as `q'). Huffman

codes compress text by assigning `e' a short code word and `q' a
longer one.
Optimal Huffman codes can be constructed using an efficient
greedy algorithm. Sort the symbols in increasing order by
frequency. We will merge the two least frequently used symbols
x and y into a new symbol m, whose frequency is the sum of the
frequencies of its two child symbols. By replacing x and y by m,
we now have a smaller set of symbols, and we can repeat this

operation n-1 times until all symbols have been merged. Each
merging operation defines a node in a binary tree, and the left or
right choices on the path from root-to-leaf define the bit of the
binary code word for each symbol. Although they are widely
used, Huffman codes have three primary disadvantages. Two
passes are required over the document on encoding, the first to
gather statistics and build the coding table and the second to
actually encode the document. The coding table is than stored

along with the document order to reconstruct it, which eats into
your space savings on short documents. Finally, Huffman codes
exploit only no uniformity in symbol distribution, while
adaptive algorithms can recognize the higher-order redundancy
in strings such as 0101010101....

2.2. Arithmetic Coding Method
For few years the arithmetic coding[5, 6] had replaced Huffman
coding. It completely bypasses the idea of replacing an input
symbol with a specific code. Instead, it takes a stream of input
symbols and replaces it with a single floating-point output
number. Longer the message, the more bits are needed in the
output number.
Arithmetic coding is especially useful when dealing with
alphabets with high probabilities. It is also very useful that

output from an arithmetic coding process is a single number less
than 1 and greater than or equal to 0. This single number can be
uniquely decoded to create the exact stream of symbols that
went into its construction. In order to construct the output
number, the symbols being encoded have to have a set of
probabilities assigned to them.
Once the character probabilities are known, the individual
symbols need to be assigned a range along a "probability line",

which is nominally 0 to 1. It doesn't matter which characters are
assigned to which segment of the range, as long as it is done in
the same manner by both the encoder and the decoder.
Each character is assigned the portion of the 0-1 range that
corresponds to its probability of appearance. Note also that the
character "owns" everything up to, but not including the higher
number. So the last letter has the range 0.90 - 0.9999.... and not
1.

The most significant portion of an arithmetic coded message
belongs to the first symbol to be encoded. In order for the first
character to be decoded properly, the final coded message has to
be a number greater than or equal to the range of the first

character of the actual stream. To encode this number, keep
track of the range that this number could fall in. So after the first
character is encoded the algorithm must continue with the next
character in actual stream.
After the first character is encoded, the low and the high of the
first character now bound the range for the output number. What

happens during the rest of the encoding process is that each new
symbol to be encoded will further restrict the possible range of
the output number. If it was the first number in the message,
then low and high ranges values are set directly to those values.

2.3 Lempel-Ziv algorithms (LZ)
Lempel-Ziv algorithms [2, 3] including the popular LZW variant
[4], compress text by building the coding table on the fly as the
document is read. The coding table available for compression
changes at each position in the text. A clever protocol between
the encoding program and the decoding program ensures that
both sides of the channel are always working with the exact
same code table, so no information is lost.
Lempel-Ziv algorithms build coding tables of recently-used text

strings, which can get arbitrarily long. Thus it can exploit
frequently-used syllables, words, and even phrases to build
better encodings. Further, since the coding table alters with
position, it adapts to local changes in the text distribution, which
is important because most documents exhibit significant locality
of reference.
The truly amazing thing about the Lempel-Ziv algorithm is how
robust it is on different types of files. Even when you know that

the text you are compressing comes from a special restricted
vocabulary or is all lowercase, it is very difficult to beat Lempel-
Ziv by using an application-specific algorithm.

2.4 Bzip2
Bzip2 compresses files using the Burrows-Wheeler block
sorting text compression algorithm, and Huffman coding.

Compression is generally considerably better than that achieved
by more conventional LZ77/LZ78-based compressors, and
approaches the performance of the PPM family of statistical
compressors.

2.4.1. Borrows Wheeler Transform (BWT)
Michael Burrows and David Wheeler released the details of a
transformation function that opens the door to some
revolutionary new data compression techniques. The Burrows-
Wheeler Transform, or BWT [7], transforms a block of data into
a format that is extremely well suited for compression.
Michael Burrows and David Wheeler released a research report

in 1994 discussing work they had been doing at the Digital
Systems Research Center in Palo Alto, California. Their paper,
"A Block-sorting Lossless Data Compression Algorithm"
presented a data compression algorithm based on a previously
unpublished transformation discovered by Wheeler in 1983.
The BWT is an algorithm that takes a block of data and
rearranges it using a sorting algorithm. The resulting output
block contains exactly the same data elements that it started

with, differing only in their ordering. The transformation is
reversible i.e. the original ordering of the data elements can be
restored with no loss of fidelity.
The BWT is performed on an entire block of data at once. Most
of today's familiar lossless compression algorithms operate in
streaming mode, reading a single byte or a few bytes at a time.

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.7, October 2010

32

But with this new transform, operation on the largest blocks of
data is possible. Since the BWT operates on data in memory, the
files may be too big to process in one fell swoop. In these cases,
the file must be split up and processes one block at a time.
The idea is to apply a reversible transformation to a block of text
to form a new block that contains the same characters, but is

easier to compress by simple compression algorithms. The
transformation tends to group characters together so that the
probability of finding a character lose to another instance of the
same character is increased substantially. Text of this kind can
easily be compressed with fast locally-adaptive algorithms, such
as move-to-front coding in combination with Huffman or
arithmetic coding.
This algorithm transforms a string S of N characters by forming

the N rotations (cyclic shifts) of S, sorting them
lexicographically, and extracting the last character of each of the
rotations. A string L is formed from these characters, where the
ith character of L is the last character of the ith sorted rotation. In
addition to L, the algorithm computes the index I of the original
string S in the sorted list of rotations. Surprisingly, there is an
efficient algorithm to compute the original string S given only L
and I.

The sorting operation brings together rotations with the same
initial characters. Since the initial characters of the rotations are
adjacent to the final characters, consecutive characters in L are
adjacent to similar strings in S. If the context of a character is a
good predictor for the character, L will be easy to compress with
a simple locally-adaptive compression algorithm.
To see why this might lead to effective compression, consider
the effect on a single letter in a common word in a block of

English text. We will use the example of the letter „t‟ in the
word „the‟, and assume an input string containing many
instances of „the‟.
When the list of rotations of the input is sorted, all the rotations
starting with „he ‟ will sort together; a large proportion of them
are likely to end in „t‟. One region of the string L will therefore
contain a disproportionately large number of „t‟ characters,
intermingled with other characters that can proceed „he ‟ in
English, such as space, „s‟, „T‟, and „S‟.

The same argument can be applied to all characters in all words,
so any localized region of the string L is likely to contain a large
number of a few distinct characters. The overall effect is that the
probability that given character ch will occur at a given point in
L is very high if ch occurs near that point in L, and is low
otherwise. This property is exactly the one needed for effective
compression by a move-to-front coder, which encodes an
instance of character ch by the count of distinct characters seen

since the next previous occurrence of ch. When applied to the
string L, the output of a move-to-front coder will be dominated
by low numbers, which can be efficiently encoded with a
Huffman or arithmetic coder.
To achieve good compression, input blocks of several thousand
characters are needed. The effectiveness of the algorithm
continues to improve with increasing block size at least up to
blocks of several million characters.

 2.5 Move to Front Technique
Another simple coding schemes that takes advantage of the
context is Move-To-Front coding [8]. This is used as a sub-step
in several other algorithms including the Burrows-Wheeler
algorithm. The idea of Move-To-Front coding is to preprocess

the message sequence by converting it into a sequence of
integers, which hopefully biases toward integers with low
values. The algorithm then uses some form of probability coding
to code these values. In practice the conversion and coding are
interleaved, but we will describe them as separate passes. The
algorithm assumes that each message comes from the same

alphabet, and starts with a total order on the alphabet. For each
message, the first pass of the algorithm outputs the position of
the character in the current order of the alphabet, and then
updates the order so that the character is at the head. This is
repeated for the full message sequence. The second pass
converts the sequence of integers into a bit sequence using
Huffman or Arithmetic coding. The hope is that equal characters
often appear close to each other in the message sequence so that

the integers will be biased to have low values. This will give a
skewed probability distribution and good compression

 3. SEARCHING IN COMPRESSED FILES
With compressed files becoming more commonplace, the
problem of how to search them is becoming increasingly
important. There are two options to consider when deciding how
to approach compressed pattern matching. The first is a
`decompress-then-search' approach, where the compressed file is
first decompressed, and then a traditional pattern-matching
algorithm applied. This approach has the advantage of
simplicity, but brings with it tremendous overheads, in terms of
both computation time and storage requirements. Firstly, the

entire file must be decompressed often a lengthy process,
especially when considering files several megabytes in size.
Additionally, the decompressed file must be stored somewhere
once decompressed, so that pattern matching may occur.
The second alternative is to search the compressed file without
decompressing it, or at least only partially decompress it. This
approach is known as compressed-domain pattern matching, and
offers several enticing advantages. The file is smaller, so a

pattern matching algorithm should take less time to search the
full text. It also avoids the work that would be needed to
completely decompress the file.
The main difficulty in compressed-domain pattern matching[9]
is that the compression process may have removed a great deal
of the structure of the file. Greater the structure removed, better
the compression likely to be achieved. There is therefore a
subtly-balanced tension between obtaining good compression

and leaving enough `hints' to allow pattern-matching to proceed.
It would appear that these two goals are in constant opposition,
but in fact compression is very closely related to pattern
matching, in that many compression systems use some sort of
pattern matching technique to find repetitions in the input, which
can be exploited to give better compression. The effect of this is
that these patterns are coded in a special manner, which, if
suitably represented, may actually aid in pattern matching.

4. PROPOSED NEW COMPRESSION

TECHNIQUES
 Word Based Text Compression Technique using

Dynamic Dictionary (Method – A)

 Character Based Text Compression Technique

using Dynamic Dictionary

 Word Based Text Compression Technique using

Dynamic Dictionary (Method – B)

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.7, October 2010

33

The first method gives better compression ratio, but is not useful
for direct searching. The second method proposed here works as
pre-compression stage to arithmetic coding, yields better
compression ratio than arithmetic coding when used alone, and
is also useful for direct searching. The third method proposed
here works as pre-compression stage to Bzip2, yields better

compression ratio than Bzip2 when used alone, and is also
useful for direct searching.
In the next section new compression techniques developed by
authors are discussed, which are based on static and dynamic
dictionaries.
Static Dictionary: The static dictionary of the ASCII characters
is first created from the set of the corpus. The ASCII characters
frequency is calculated and the characters are arranged in the

descending order. The characters are stored in the dictionary in
two-dimensional matrix form. To reduce the length of the code
of the character, in one row, number of characters stored must
be less than 256. If the length of the code is to keep of 5-bits,
then 32 characters will be stored in one row. The novel approach
used here in the dictionary is to repeat the 16 characters of
highest frequency in each row, and the other characters will fill
up remaining 16 characters in the row.

Dynamic Dictionary: The dynamic dictionary is created
separately for each file to be compressed. The dynamic
dictionary is created for both the words and 2-3-4 character
pairs.
In this dictionary also the above novel approach is used to create
the dictionary in two-dimensional matrix form, and some of the
words or 2-3-4 characters pair will be repeated in each row and
the remaining portion of the row is filled by remaining words or

2-3-4 character pairs.

 4.1 Word Based Text Compression Technique

using Dynamic Dictionary (Method – A).
In this method three different dictionaries are created for words
and sub-words (prefix and suffix part of the word). In word
dictionary the words, which appear twice or more are included
and in sub-word dictionary the prefix or suffix part of the words,

which occur only once, but in them the prefix or suffix part
occur twice or more are included. For e.g. if word „coming’ and
„going’ is appearing only once. In these words the suffix string
‘ing’ is appearing, therefore the sub-word ‘ing’ will be added to
the suffix sub-word dictionary. In the similar way the prefix
words are added to the prefix sub-word dictionary.
Also the dictionary of non-words is also created, which includes
words of non-alphabets. For e.g. say after the word „going‟ there
is full stop and carriage return, then both the symbols full stop

and carriage return will be considered as one non-word and will
be added to dictionary of non-words. All the words in the
dictionary are arranged in the descending order, so that the most
probable words are at the starting of the dictionary. Here the
most frequent 128 words will be treated in each row, so that
probability of occurrence of words in the same row increase i.e.
out of 256 words, first 128 words will be the most frequent
words of the dictionary.

4.1.1 Compression
In first pass Word Based Dictionary is created for words, sub-
words and non-words. In Second pass, the words are scanned

from the source file and is searched first in the word dictionary
and if found the index value of the corresponding word is stored

in the compressed file, else the sub-word dictionary is searched
for finding the presence of the prefix or suffix part of the word
read from the source file, if found then the index value will be
stored in the compressed file, else the word is stored as it is in
the compressed file. Similar process is adopted for non-words.
The searching of the words and non-words is done alternatively,

as in any file after word there will be a non-word and after every
non-word, there will be word.

4.1.2 Making of the index value
Whenever the word is found in the dictionary, the index value is
converted into two-dimensional value viz. row and column.
Here we are considering the two-dimensional matrix of N rows
by 256 Columns. For example, if the index value of word is say
356, then the row = 2 and column = 100. If the current index
value points to the same row as that of previous, then only the
column value i.e. 100 is written in the compressed file,
otherwise row value 2 preceding with change in row will be

written in the compressed file.

Example of Prefix Searching
Assume the current word to be compressed is „singing‟. Prefix
sub-word dictionary will be used to find the occurrence of first
few characters of „singing‟. In the prefix sub-word dictionary,
the word „sing‟ is added because of another word „singer‟. „sing‟
of „singing‟ will be replaced by the index value of „sing‟

Example of Suffix Searching
Assume the current word to be compressed is „welcome‟ Suffix

sub-word dictionary will be used to find the occurrence of last
few characters of „welcome‟. In the suffix sub-word dictionary,
the word „come‟ is added because of another word „become‟.
„come‟ of „welcome‟ will be replaced by the index value of
„come‟

4.2 Character Based Text Compression

Technique using Dynamic Dictionary
This method is similar to the above mentioned character based
method, the only difference is that instead of writing 5-bit code,
the codes written are in multiples of 8-bits, and instead of

limited number of 4-Char, 3-Char, here all possible 4-Char pair
and 3-Char pair are considered.
The frequency of all possible 4-Char pair, 3-Char pair and 2-
Char pair is computed.
After counting the frequency of all possible pairs, all the pairs
are sorted in descending order so that most probable pairs will
have index values in the lower range.

4.2.1 Dictionary Creation

Create the dictionary of character pair in the following way:
2-Char Dictionary: Store only first 32 double character pair in
the dictionary. As it is well known that normally it requires two
byte to store the 2-Characters, so if 16-bit index value is used

then compression is not achieved. Hence in this method only 32
most frequent 2-Char pairs are considered and they will be
coded as 8-bit.
3-Char Dictionary: For achieving compression, it is wise to
store all triple character pair except those whose frequency
count > 3. In this dictionary the maximum triple char pair,
which can be stored, is 8192 and it will be coded as 16-bit.
4-Char Dictionary: For achieving compression, it is wise to

store all quad character pair except those whose frequency count

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.7, October 2010

34

> 2. In this dictionary the maximum quad char pair, which can
be stored is 16384 and it will be coded as 16-bit.

4.2.2 Compression
Scan the entire file (read at least 4-Char at a time). Search 4Char
pair in the dictionary, If found construct code value and store it
in compressed file, else search 3-Char pair in the dictionary, if
found construct code value and store it in compressed file, else
search 2-Char pair in the dictionary, If found construct code
value and store it in compressed file, else store the character as it

is in the compressed file.

4.2.3 Construction of code value
2-Char pair
The code is of 8-bit only, because if we use 16-bit code, then we

won‟t get compression as normally it requires 16-bit to store 2-
Char. MSB bit of 8-bit code is set to „1‟, to distinguish it from
normal character. Next two bits are kept to ‟00‟, to indicate 2-
Char pair code. Remaining 5bits are used to store index value of
2-Char pair.

1 0 0 5-bit index value of 2Char pair

3-Char pair
Code is constructed in this way: MSB set to „1‟ next two bits to
‟01‟ for 3Char pair. The range of the code value varies from
40960 to 49151.

1 0 1 13-bit index value of 3Char pair

4-Char pair
Code is constructed in this way: MSB set to „1‟ next bit is set to
„1‟ for 4Char pair. The range of the code value varies from
49152 to 65535.
As the frequency of 4Char pair is large the index value is of 14-
bit i.e. total pairs will be 16384.

1 1 14-bit index value of 4Char pair

 4.2.4 Decompression Technique
Read dictionaries of 4-Char pair, 3-Char pair and 2-Char pair.

Read 1 byte from compressed file. Check MSB bit, if 0 then
store that byte as it is in the decompressed file. If 1 then check
next two bits are 00 or not, if yes the next five bits will be the
index value of the double pair dictionary. Store two characters
from the double pair dictionary in the decompressed file stored
at that index value in the dictionary.
If next two bits are 01 then read another byte to form an index
value for triple character pair, and store the triple character in

the decompressed file. Else if next bit is 1 then also read another
byte to form an index value for quad character pair, and store the
quad character in the decompressed file. Repeat the process till
all the bytes are read from the compressed file.
1.1.1.1.1.1.1.1 Example
If the byte read is say „01000101‟ i.e. 65, then in this case the
MSB is „0‟ so store value 65 directly in the compressed file.
If the byte read is say „10000010‟ i.e.130, then in this case the

MSB is „1‟, check another two bits, i.e. ‟00‟, hence the next five
bits („00010‟) will indicate the index value in the 2-char
dictionary.
If the byte read is say „10100000‟ i.e. 160, then in this case the
MSB is „1‟, another two bits are ‟01‟, so read another byte say

„00000100‟ combine both bytes to form 16-bit data „10100000
00000100‟ the lower 13-bit value is 4, indicating the index value
of the 3-char dictionary.
If the byte read is say „11000000‟ i.e. 1192, then in this case the
MSB is „1‟, another bit is „1‟, so read another byte say
„00001111‟ combine both bytes to form 16-bit data „11000000

00001111‟ the lower 14-bit value is 15, indicating the index
value of the 4-char dictionary.
This method is used as a preprocessing compression stage to
arithmetic coding, which yields a better compression ratio as
compared to arithmetic coding when used as alone. As the
codes stored in this file are byte boundary, this method is useful
for direct searching in the compressed form.

4.3. Word Based Text Compression

Technique using Dynamic Dictionary

(Method – B).
4.3.1 Dictionary Creation
In this method, instead of character pairs, the whole word is
stored in the dictionary of one dimension. The length of the
word is not stored; instead separator character „#‟ is stored in
between the words to distinguish it. The word scanned is first
searched in the single array, if not found the word is added to the
dictionary. The length of the word is checked, if greater than
two, then only it is added to the dictionary. If the size of the
dictionary goes beyond the limit of 64K, then the dictionary is

converted into two-dimensional matrix and the index value is
created in the same manner as it was created in the section 4.1.2,
explained above for two-dimensional matrix.

4.3.2 Compression
The entire file is scanned word by word. The scanned word is
searched in the dictionary. The separator character „#‟ helps in
identifying the boundaries of the words. The searching process
goes on counting the number of „#‟ it encounters till it finds the
word to be searched. If found then the index value of that word
is stored, else that word is stored in the compressed file as it is.
The algorithm of searching the word in the dictionary is given

below:

Search(char *string) {
 hash = dtrack = 0
 while(dtrack < track) {
 if(dictionary[dtrack++] == '#') {
 hash++;
 for(i=0;i<len;i++) {
 if(dictionary[dtrack] != string[i])

 break;
 dtrack++;
 }
 if(i==len) {
 if(dictionary[dtrack] == '#')
 return hash;
 }
 }

 return 0;
}

4.3.3 Decompression Technique
Read the first byte, if it is normal character then store as it is in
the decompressed file. If it is index value of word from the

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.7, October 2010

35

dictionary, then the word is fetched from the dictionary and
written to the decompressed file. The algorithm of retrieving the
word from the dictionary of an index value and writing the word
to the decompressed file is given below:

hash = 0;

for(i=0;i<sizeofdict;i++){
 if(dictionary[i]=='#')
 hash++;
 if(hash == read) {
 while(1){
 i++;
 ch = dictionary[i];
 if(ch == '#') break;

 fprintf(ptr,"%c",ch);
 }
 break;
 } }

5. PATTERN MATCHING IN

COMPRESSED FORM
For searching the pattern of the text directly in the compressed
form, we are compressing the pattern with the same compression
technique, by which the text is compressed and then the
compressed pattern can be searched directly in compressed file

in a conventional way by using any String-matching algorithm.
The different string-matching algorithms are Karp-Rabin
Algorithm, Brute Force Algorithm, Knuth-Morris-Pratt
Algorithm, Boyer-Moore Algorithm, Quick Search Algorithm
Here the QS algorithm is implemented, as it is better than other
algorithms for English text [10].
The QS algorithm is given below which searches the pattern X
from the text Y.

int qs(char *x,char *y,int m,long int n) {
 int i,j, bc[ASIZE];
 for(j=0;j<ASIZE;j++)
 bc[j] = m; // Preprocessing
 for(j=0;j< m ;j++)
 bc[x[j]] = m-j-1;
 i=0; // Searching
 while (i <= n-m) {

 j=0;
 while(j < m && x[j] == y[i+j])
 j++;
 if(j>=m)
 return i;
 i+=bc[y[i+m]]+1;
 }
 return 0; }

Algorithm 5.1 Quick Search Algorithm

6. IMPLEMENTATION OF PROPOSED

TECHNIQUES

6.1 Word Based Text Compression

Technique using Dynamic Dictionary

(Method – A)

The method is implemented using VC++6.0 language and the
input is tested mainly on the sample files in the corpus. The
performance of the algorithm is shown in table 2. A large text
file gives better compression than the files with smaller size.
During compression process, the words are scanned from the
source file and are searched in the dictionaries of words and sub-

words and if found the appropriate index values of them are
stored in the compressed file. The algorithms for creating
dictionaries, compression, and decompression are given below.

1. Read words and non-words from source file
2. Search the word in the word-dictionary, if not exist, then

add it to the dictionary of the words
3. Search the non-word in the .non-word dictionary, if not

exist then add it to the dictionary of the non-words.
4. Sort the words and non-words in the descending order in

words and non-words dictionary.
5. If the word is occurring only once in the source file, then it

is removed from the dictionary.
6. The words which are removed are then further scanned and

two more dictionaries of prefix and suffix sub-words is
created. (see 4.1)

Algorithm 6.1 Creating dictionaries of words, non-words

and sub-words

1. Read word and non-word alternatively from the source file.
2. Search the word from the word dictionary.
3. If found then create the index value of the word and store it

in the compressed file.
4. If not found then, further search the sub-word of the same

word in the prefix and suffix dictionary, if found then store
the index value of that sub-word in the compressed file,
else store the character of the words as it is in the
compressed file.

5. Similar process is adopted for the non-words also.

Algorithm 6.2 Compression process

1. Read the compressed file byte by byte.
2. Check if the read byte is the normal character or an index

value.
3. If normal character, then store it in the decompressed file.
4. If index value, then decode the index value and retrieve the

word, non-word or sub-word from the appropriate
dictionaries and read those words character by character
and store it in the decompressed file.

Algorithm 6.3 Decompression process

6.2 Character Based Text Compression

Technique using Dynamic Dictionary
The method is implemented using VC++6.0 language and the

input is tested mainly on the sample files in the corpus. The
performance of the algorithm is shown in table 3. A large text
file gives better compression than the files with smaller size.
During compression process, the characters are scanned from
the source file and the pair of 4-character, 3-character and 2-
characters is stored in the dictionary. The algorithms for creating
dictionaries, compression, and decompression are given below.

1. Read 4-characters from the source file at a time.

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.7, October 2010

36

2. Update the dictionary of 4-character pair, 3-character pair
and 2-character pair.

3. Arrange the dictionary of character pairs in descending
order.

4. Remove the 4-character pairs whose frequency is less than
three.

5. Remove the 3-character pairs whose frequency is less than
four.

6. Remove all 2-characters pairs except first 32.

Algorithm 6.4 Creating dictionaries of character pairs.
1. Read 4-characters from the source file.
2. Search those 4-characters from the 4-character pair

dictionary, if found store the index value of it in the
compressed file.

3. Else search 3-characters from the 3-character pair
dictionary, if found store the index value of it the
compressed file.

4. Else search 2-characters from the 2-character pair
dictionary, if found store the index value of it in the
compressed file.

5. Else store the characters as it is in the compressed file.

Algorithm 6.5 Compression process

1. Read the compressed file byte by byte
2. If the byte read is normal character then store as it is in the

decompressed file.
3. Else if the index value is read, then check whether the

index value belongs to which character pair dictionary.
4. If it belongs to 2-character pair dictionary then read two

characters from the dictionary pointed by the index value

and store it in the decompressed file.
5. If the index value belongs to 3-character or 4-character

pair, then read one more byte from the compressed file, so
as to create the appropriate offset in the dictionary. Read
the characters from the dictionary and store it in the
decompressed file.

Algorithm 6.6 Decompression process

6.3 Word Based Text Compression

Technique using Dynamic Dictionary

(Method – B)
The method is implemented using VC++ 6.0 language and the
input is tested mainly on the sample files in the corpus. The
performance of the algorithm is shown in table 3. A large text
file gives better compression than the files with smaller size.
The words are scanned from the source file and are added to the
dictionary in single dimension with „#‟ as a separator in

between. The algorithms for compression and decompression
are given below.

1. Read the words from the source file
2. Search the word in the dictionary (explained in section 4.3)

if not found add the word in the dictionary with a separator
in between.

3. Else store the index value of the word in the compressed

file.
4. Store the non-words as it is in the compressed file.

Algorithm 6.7 Compression process

1. Read the compressed file byte by byte

2. If the byte read is normal character then store as it is in the
decompressed file.

3. Else construct index value by reading one more byte from
the compressed file and retrieve the word from the word
dictionary (explained in section 4.3) and write that word
character by character in the decompressed file.

Algorithm 6.8 Decompression process

7. RESULTS AND EVALUATION OF

PROPOSED TECHNIQUES

7.1 Word Based Text Compression

Technique using Dynamic Dictionary

(Method – A)
Table 1: Statistics of text files and their evaluated

compression ratios.

FileName Size Bzip2 WinRar

Only

WinZip

bible.txt 4,047,392 845,635 979,584 1,223,507

world192
.txt 2,473,400 489,583 531,597 731,808

book1 768,771 232,651 278,873 321,707

book2 610,856 157,443 181,093 209,336

news 377,109 118,600 126,011 145,456

harry.txt 5,216,411 1,367,284 1,550,125 1,960,193

crist.txt 183,007 57,667 67,524 72,470

devid.txt 1,987,593 543,564 631,605 767,131

great.txt 1,062,030 284,518 338,179 401,469

hunted.txt 48,115 16,447 19,223 19,747

oliver.txt 917,293 252,135 306,558 362,125

seldon.txt 2,506,369 669,947 763,866 936,514

Total : 12 20,198,346 5,035,474 5,774,238 7,151,463

FileName

Preprocessed

Size

Pre +

Bzip2

Pre+

WinRar

Pre +

WinZip

bible.txt 3,156,598 787,504 949,806 1,144,065

world192.txt 1,671,599 440,005 527,803 694,637

book1 626,145 224,062 286,956 312,534

book2 457,887 152,091 182,496 204,220

news 310,989 110,995 129,658 146,151

harry.txt 4,009,803 1,294,385 1,520,311 1,833,721

crist.txt 148,848 54,162 68,086 72,748

devid.txt 1,565,867 510,216 625,153 723,827

great.txt 833,834 267,119 336,164 382,510

hunted.txt 40,147 15,527 19,424 20,144

oliver.txt 725,100 240,632 302,945 344,329

seldon.txt 1,987,675 631,746 762,876 894,725

Total : 12 15,534,492 4,728,444 5,711,678 6,773,611

Table 1 shows that the better compression can be achieved if

this method is used as a preprocessing stage to Bzip2, WinRar
and WinZip.
From the table 2 and table 3, it is seen that we get better
compression ratio for large file size greater than 1 MB.
From table 4 it is seen that the time required to search in the
compressed file is less than the time required to search in the
normal file.

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.7, October 2010

37

7.2 Character Based Text Compression

Technique using Dynamic Dictionary

Table 2: Statistics of some sample text files and their

evaluated compression ratios.

 File
Name

Size Only
Arithmetic

Coding

Character
Based
Method with
Arithmetic
Coding
method

Saving

%

Bible 4077775 2233937 1959613 12.28

World192 2473400 2233937 1415228 36.65

Oliver 917293 526967 485087 7.95

Crist 183007 105769 104800 0.92

Devid 1987593 1130623 1024177 9.41

Harry 5216411 2989652 2679334 10.38

Hunted 48115 27499 28812 -4.77

Paper1 53161 33120 33411 -0.87

7.3 Word Based Text Compression

Technique using Dynamic Dictionary

(Method – B)
Table 3: Statistics of some sample text files and their

evaluated compression ratios.

File
Name

Org size Only
Bzip

Word
Based
Method
with

Bzip

Saving

%

Bible 4077775 846235 804162 4.97

Devid 1987593 543564 538105 1.00

Harry 5216411 1367284 1311426 4.09

World192 2473400 489583 475588 2.86

white-
history-
554

1602075 436973 435486 0.34

Pge0112 8441343 2498170 2395251 4.12

fielding-
history-
243

1942195 520215 509729 2.02

kjv10 4432803 992968 960833 3.24

oliver.txt 917293 252135 267062 -5.92

crist.txt 183007 57667 62078 -7.65

great.txt 1062030 284506 290754 -2.20

Hunted 48115 16447 18578 -12.96

book1 768771 232598 252096 -8.38

book2 610856 157443 164774 -4.66

twain-
tramp-41

857812 258099 276010 -6.94

 8. CONCLUSION
Paper proposes and confirms by verification, three compression
techniques (based on dynamic dictionaries), and giving better
compression ratio, if used as a pre-compression stage to the
Arithmetic Coding and Bzip2 for large collections

Proposed Compression techniques are useful for direct searching
in the compressed form.

7.4 Pattern Searching (Quick Searching)
Table 5: Searching Time of phrase in normal and

compressed files

File Name String
Search

Time
Req.
From
Original

file

Time Req.
From
Compressed
file

Saving
in Time

Bible Abundant 0.078 s 0.047 s 0.031 s

Creature 0.078 s 0.047 s 0.031 s

punishment 0.078 s 0.047 s 0.031 s

Establish 0.093 s 0.047 s 0.046 s

Harry Remember 0.093 s 0.062 s 0.031 s

amazement 0.094 s 0.079 s 0.015 s

Parchment 0.093 s 0.078 s 0.015 s

compartment 0.094 s 0.063 s 0.031 s

9. REFERENCES
[1] Huffman D. A., „A method for the construction of minimum-

redundancy codes,’ Proc. Inst. Radio Eng., 40(9):1098–1101,

1952.

[2] Ziv J. and Lempel A., ‘A universal algorithm for sequential

data compression,’ IEEE Transactions on Information Theory,

23(3):337–343, 1977.

[3] Ziv J. and Lempel A., ‘Compression of individual

sequences via variable-rate coding,’ IEEE Transactions on

Information Theory, 24(5):530–536, 1978.

[4] Welch, T.A. “A Technique for High-Performance Data

Compression.” IEEE Computer 17, 6(June 1984), pp. 8-19.

 [5] Rissanen J. J. and Langdon G. G., Jr., “Arithmetic Coding,”
IBM J. Res. Develop. 23, 149-162 (1979).

[6]J.Rissanen J. J., “Arithmetic Coding as Number

Representations,” Acta Polyt. Scandinavica Math. 34, 44-51
(December 1979).

[7] Burrows, M. & Wheeler, D. „A block-sorting lossless data

compression algorithm‟, Technical report, Digital Equipment
Corporation, 1994.

[8] Bentley J.L., Sleator D.D., Tarjan R.E., and Wei V.K.. A

locally adaptive data compression algorithm. Communications
of the ACM, Vol. 29, No. 4, April 1986, pp. 320–330.

[9]Amis A. and Benson G., Efficient two-dimensional

compressed matching. In J. Storer and M. Cohn, editors,
Proceedings of the IEEE Data Compression Conference, pages
279-288, Los Alamitos, CA, Mar. 1992. IEEE Computer Society
Press.

[10] Tucker An B. Jr.‟The Computer Science and Engineering
Handbook‟ Second Edition, Chapman & Hall/CRC, 2004

