A Statistical Evaluation of the Impact of Parameter Selection on
Storage System Benchmarks*

Nohhyun Park, Weijun Xiao! Kyubaik Choi and David J. Lilja
Department of Electrical and Computer Engineering
University of Minnesota, Minneapolis, MN 55455

Abstract

The performance evaluation of storage systems is a dif-
ficult task due to lack of representative workloads. Storage
benchmark tools test a single aspect such as random read
performance at a time. While this approach does allow us
to gain useful insights to the system behavior, current prac-
tices are largely inadequate due to large benchmark input
parameter space. For example, a benchmark with 10 pa-
rameters require at least 1024 experiments if conducted ex-
haustively even if we only test extreme values of each pa-
rameter. Furthermore, there is no way to tell if the bench-
mark being used is enough to test all realistic scenarios. As
a result, researchers and developers rely on multiple bench-
marks with ad hoc input parameters.

We propose a method to quickly identify input param-
eters that have high effect on the performance metric of
interest. We also show that using multiple benchmarks is
unnecessary at times and a good benchmark can cover all
operational space by providing a control over key parame-
ters that affect the performance metric being measured.

1 introduction

Storage system performance is one of the most critical
factors in meeting overall system performance expectations.
The performance variances of typical storage systems today
can vary by several orders of magnitude [1]. It is very easy
to get misled by performance numbers without understand-
ing the relationship between the storage workload and its
performance variances.

Characterizing the workload for storage systems is typi-
cally much more complex than it is for processor. In a sim-

*This work was supported in part by National Science Foundation grant
no. CCF-0621462, the Center for Research in Intelligent Storage (CRIS),
which is supported by National Science Foundation grant no. IIP-0934396
and member companies.

T1t is also sponsored in part by NSF/CRA Computing Innovation Fel-
lows Project under Grant CNS-0937060(subaward:CIF-187).

ple uniprocessor case, it is possible to calculate metrics such
as instruction per cycle based on the various cache misses,
mis-predictions and number of instructions. However, stor-
age systems typically have a much more state-dependent re-
sponse. For example, a cache miss does not always result
in same penalty, and the service time for a given request de-
pends not only on the current request but also on all requests
in the queue as well as the layout of the data. Therefore, two
very similar workloads may perform very differently since
the small differences could force the state transition path
into completely different directions. For example, current
layout of the data could force a sequential write to become
fragmented. This then cause the sequential read of the same
data to be slow. This in turn has effect on any requests that
are scheduled after it within the request buffer.

1.1 Current Approaches and Limitations

The best method for benchmarking a storage system
would be to deploy the system under test in the real envi-
ronment and look at the execution time of the processes that
will be run. Obviously this approach is too costly to evalu-
ate various feature and performance enhancements. There-
fore, system architects and designers resort to either a set
of traces collected from a real system or a set of synthetic
benchmarks.

The problem with using a real trace is that there is no way
to determine the coverage of the workload space. For exam-
ple, a given Exchange server trace may perform very well
on system A. However, it is difficult to determine if system
A will perform as well for all Exchange servers. Further-
more, it is impossible even to provide any range of poten-
tial performances with a single trace. As mentioned above,
a small change in the trace could result in a very different
performance results.

Numerous synthetic benchmarks have been proposed
over last few decades. The major benefit of these bench-
marks is that they allow you to change the characteristics
of the workload in a quantitative manner. However, cur-
rent benchmarks either provide numerous parameters to set

without providing any insights to the importance of each pa-
rameter [2—7] or they provide a representative set of param-
eters that claim to represent a wide range of applications.
When there are numerous parameters to set, users typically
test a few set of ad hoc settings based on their experience
which does not always result in an accurate representation
of real workloads.

1.2 Owur Contributions

In this paper, we evaluate current storage benchmarking
tools and analyze the effects of different parameter settings
on various performance metrics. Based on the experiments,
we quantify the effects of various parameters for two bench-
marks. In addition, we also evaluate which parameters are
needed to effectively cover the entire storage system perfor-
mance space and we propose a new benchmark tool based
on our evaluation.

1.3 Outline

The next section describes two techniques we use to
measure the effect of different benchmark parameters on
performance. Section 3 presents our methodology as well
as the benchmarking tools we used and their use cases. The
numerical results are discussed in Section 4. We conclude
the paper in Section 5.

2 Background

Typical storage benchmarking tools have ten or more in-
put parameters. If we let number of input parameters be n,
to test all possible combinations would require II(L;) ex-
periments, where L; is number of values ith input parame-
ters can take. For a benchmark with 20 parameters each tak-
ing one of two extreme values, the number of experiments
would be 1,048,576. If each experiment takes 10 minutes,
it would take roughly 20 years to complete all the experi-
ments. Clearly, this is a problem.

We present two statistical tools we deploy in order to
minimize the number of experiments while providing quan-
tifiable insights to how the input parameters affect the result
of the experiment.

2.1 Plackett-Burman designs

The Plackett-Burman design (PB design) [8] minimizes
the number of experiments required to estimate the effect of
independent variables on the dependent variable. Basically,
it estimates the effect of single input parameter on an out-
put in such a way that variance of this effect due to other
inputs is minimized. The effect is an approximation of the
full factorial design but with linear complexity. Required

assumption is that higher order interaction effects are negli-
gible. PB design has been widely used to evaluate effect of
benchmark input parameters on processor performance [9]
and database query processing performance [10], for exam-
ple.

Formally, the main effect /m of input variable z; on out-
put y is defined to be

[Z f(mllﬂ L2y -y xn) _ Z f(flv L2, -y l’n)]

my = o (1)

where x| represents some extreme value of 21 and Z7 rep-
resents the mean of x1. f is an unknown function which
maps all x; to y. The summation is carried out for all possi-
ble combination of x5 through z,,. Hence, the effect of z; is
simply maximum deviation of y given maximum deviation
of x;.

The goal of PB design is to estimate all m;s such that

S = Z(:&\j — M —ajimy —ajoma... — ajpmy, +)’ (2)
J

is minimized. ¢; is simply the sampled value of y at time j
and M is mean value of all y;s. aj; takes value &1 based
on whether the x; had positive or negative effect on ;. « is
the higher order effects which are ignored based on the ob-
servations made by Fisher [11]. Since there are n values to
be estimated, the minimum number of experiments required
to derive a unique set of m; is n + 1. Plackett and Burman
proved that S can indeed be minimized using [(n+1)/4]*4
experiments assuming o = 0 [8].

2.2 Independent Component Analysis

While the PB method quantifies effect of each input pa-
rameters to output of interest, it does have one major draw-
back. Because the effect estimation assumes any higher or-
der effects to be zero, the estimated effects of any main fac-
tor is partially aliased with any interactions not including
that particular main factor.

In contrast, Principal Component Analysis (PCA) and
Independent Component Analysis (ICA) estimate the effect
of uncorrelated components of original factors [12]. These
components may not reflect any intuitively meaningful pa-
rameter. However, they do provide a uncorrelated set of
factors that can be derived from the original ones. The lim-
itation of the PCA is that it requires the original factors to
be normally distributed. ICA is a more generic approach
in that such assumption is not required [13]. It has been
observed that ICA performs better than PCA in capturing
processor workload space [14].

In essence, ICA tries to identify statistically independent
components from given factors.

Formally, ICA estimates a matrix W such that given x =
(1,2, ..., T,) With joint probability density function (pdf)

Table 1. Description of system under test.

CPU 2*2cores*2SMT Xeon 3GHz
Memory 10GB

oS Lucid Server

Kernel 2.6.32

FileSystem EXT4, noatime

Storage Conf. RAIDS

Controller PERC3

Disks SAS Cheetah 15K

Pz (X1, T2, ..., Tp,) such that y = W x x has joint pdf p, (y
with following property.

Bl y52, oybr] = ElyM | Elyy?] Elybr] - (3)

for every integer value of p; and m < n. Equation 3 is the
definition of independence.

3 Methodology

We use PB design to determine a set of experiments re-
quired to evaluate the effect of two different benchmarking
tools. ICA is used to evaluate the coverage of storage sys-
tem operational space by each benchmark.

Many of the parameters provided by the benchmarks are
dependent on each other. For example, one parameter might
be percentage of seeks that occur while another parameter
determines whether 10 should be random or sequential. We
did our best to separate out the dependent parameters into
independent ones based on common sense. We believe a
more mathematically provable approach is possible but it is
beyond the scope of this paper.

We also classify the parameters as the following.

o System Parameter: Parameters that control the way the
storage system behaves. (eg. use of filesystem buffer
cache)

e Workload Parameter: Parameters that changes the
characteristics of workload. (eg. access pattern)

e Benchmark Parameter: Settings that manages how the
benchmark is ran and result is collected. (eg. Duration
of run)

This classification allows easier management of benchmark
runs. Technically, a benchmark should focus only on the
workload and benchmark parameters. However, because
many aspects of storage system is controlled through the
same interface, it is convenient for microbenchmark de-
signer to provide these capabilities as well. In this paper, we

do not evaluate benchmark parameters. While they could
have effect on the correctness of the benchmark result, they
should have no effect on the performance if correctly mea-
sured. For example, as long as the duration of the run is suf-
ficiently long, the average performance of the system should
not change much for the same workload parameters.

Another difficulty was deciding what should be the two
extreme values for each parameter. Again we resorted to
common sense and experience to decide its range. We do
not believe that there exist a systematic method to do this.
It will continue to change as the systems and workloads
evolve with time. We believe this to be more of a philosoph-
ical problem in nature and did our best so that the ranges
accurately reflect corner cases of systems used today.

One thing to note is that PB design assumes that the in-
put parameters have monotonic relationship with the output.
When input parameters represent things like algorithm and
API choices, the problem is simplified since you can always
order them in such a way that the resulting performance val-
ues are monotonic. In this case, it is simply choosing two
cases where the resulting performance is either maximized
or minimized. The problem is slightly more complex for the
quantifiable values. If the relationship between the param-
eter and the performance is not monotonic, we can choose
to relax the constraint by bounding the parameter within the
range where the relationship is monotonic. For example, if
we know that the larger request sizes typically yield in bet-
ter throughput within some range, we choose the maxima
and minima values for the request size in that range. The
effect estimation of the parameter will than become effect
estimation of parameter within that range. As long as the
range covers most of realistic usage of the parameter, the
estimated effect is still useful. Another approach is to divide
the parameter into multiple ranges where within each range
the relationship is monotonic. While this approach can pro-
vide a more generic estimation over wider range of values,
the number of experiments doubles with every additional
range. This is because the you are essentially doubling the
degree of freedom by introducing a mutually exclusive pa-
rameters.

Another challenge is that some of the parameters are ob-
viously correlated. While the methodology described in
this paper works as long as the high order effects are much
smaller than that of the main effects, it is still worth while
to transform the parameters into less correlated parameters.
For example, file open flag used in FIO can be converted
into two separate parameters, [sync, async] and [buffered,
unbuffered].

Every experiment was conducted on freshly formatted
partition and each of the experiments were repeated five
times. Repetition was necessary to provide statistical signif-
icance of the effects estimated as well as the results. Table
1 outlines the system under test.

Table 2. PostMark input parameters and input
levels assigned to each parameter.

Name Level Level
Low High
min_file_size 512B 4KiB
max_file_size 4KiB 16MiB
init_file_count 1000 10000
transaction_count || 10000 100000
read_size 512B 32KiB
write_size 512B 32KiB
file_system_buffer false true
read_append_ratio 1:9 9:1
create_delete_ratio 5:5 9:1
directory_count 1 1000

3.1 Benchmark Tools

In this preliminary work, we evaluate two different
benchmarks tools, PostMark [4] and FIO [2].

Typically, the evaluated systems are only tested on sin-
gle configuration of a given benchmark. This is problem-
atic since system A may perform better than system B for
one configuration of the benchmark but not the others. It is
critical to either define when the system A performs better
or show that system A performs better B in wide range of
workloads by testing with multiple configurations that pro-
vide wide coverage.

3.1.1 PostMark

PostMark was designed for filesystem benchmarking with
specific interest to performance of handling small file ac-
cesses in Internet software [4]. It provides 10 different pa-
rameter settings shown in table 2 together with their level
settings. Most of level decisions were straight forward ex-
cept the create_delete_ratio. Initially, we set the low bound
to be 1:9 where 10% of the operations are create and 90%
deletion. However, we soon realized that the bound is too
unrealistic. If the deletion of file happens more than the cre-
ation, the system will soon become empty of files. There-
fore, we set the low bound to be 50% where the creation
and deletion is equally like to occur.

Aside from these, it also provide two more benchmark-
ing parameter for setting the random variable seed and con-
trolling result format. The transaction_count only controls
the duration of the run and not the arrival rate or the 10
depth. Therefore, it is also a a benchmark parameter. The

Table 3. FIO input parameters and input lev-

els assigned to each parameter.

Name Level Level
Low High
operation read write
access_pattern sequential random
files_used 1 100
min_file_size 512B IMiB
max_file_size 1MiB 1GiB
min_block_size 512 4KiB
max_block_size 4KiB 64KiB
io_depth 1 100
overwrite false true
fsync false true
thinktime 0 1000
write_buffer_sync false true
file_service roundrobin random
thread_count 1 8
threads_similarity false true
posix_fadvise false true
async_io_engine false true
io_engine_queue false true
directio false true
buffer_alloc malloc mmap

file_system_buffer parameter is a system parameter which is
forces all writes to bypass the filesystem buffer.

PostMark lacks control over arrival pattern and does not
support sequential access pattern. Since these two charac-
teristics play a major role in how the storage system per-
forms, we can guess that the coverage of PostMark will
not be great. Also, Postmark does not perform any over-
writes which suggest that Postmark is unsuitable for evalu-
ating storage systems where overwrites are expensive such
as SSDs.

Postmark reports seven performance metrics, transac-
tion per second (tps), create tps, read tps, append tps, delete
tps, read throughput and write throughput.

3.1.2 Flexible IO Tester (FIO)

FIO was designed for benchmarking as well as
stress/hardware verification [2]. It works directly on
block devices as well as files. In this experiment, we tested

it on files for the sake of consistency with PostMark.

FIO has over 30 different input parameters. However,
some of those parameters are completely dependent on
other parameters and was discarded. Also, some of the pa-
rameters, when set, caused bus errors on the system we
tested. As a result, we extracted 20 input parameters as
shown in table 3. Every experiment was run for 10 min-
utes., which was sufficient to ensure that the system reached
a steady state.

FIO can generate multiple independent streams of re-
quests. In this study, we evaluate the effect of multi-
ple streams as function of two parameters, thread_count
and threads_similarity. The thread_count parameter is self-
explanatory. When the thread_similarity is true, we generate
either set of very similar streams with only difference being
the random seed. When it is false, we generate threads that
are at maximum distances from each other in the parameter
space. This can be achieved by choosing different experi-
ments within PB design.

FIO also allows you to control number of outstanding
requests controlled by io_depth. The posix_fadvise option
allows to you enable file advisory information to the oper-
ating system [15]. FIO provides 13 different types of 10
engines. Some of them did not work on our system but we
use 4 based on the two characteristics of the IO engines,
synchronous/asynchronous and multiple/single buffer.

FIO provides a detailed distribution of performance mea-
surements as well as aggregated numbers. In our study, we
use 4 metrics, read throughput, write throughput, average
read latency and average write latency. These metrics were
chosen not only because they are important performance
metrics but also so that the results can be compared against
PostMark for out coverage analysis. For the experiments
with more than 1 thread, the throughputs are simply added
and the latency is averaged.

3.2 Experiment Flow

The experiment is designed to evaluate the effect of var-
ious parameters of different benchmarks and coverage of
each benchmark. We first use PB design to evaluate the
effect of each parameter with minimum number of exper-
iments. Once the effect has been calculated, we perform
ICA on the performance results from each benchmark to
estimate equal number of independent components. These
components are clustered to generate a view of coverage of
each benchmark.

This lets us analyze what are the key parameters and
whether both benchmarks are needed for a through evalu-
ation of storage systems.

Benchmark Manual Parame.ter
Extraction
PB / Parameter
Experiment Level
Generation Decision
Benchmark
Run Input
Benchmarks Parameter
Generation

2

- Effect
Estimation

Figure 1. Experiment flow for estimating the
parameter effects on performance

3.2.1 Evaluation of Benchmark Parameter Effect

First, we use PB method to determine the effect of each pa-
rameters on each benchmarks seperately. The experiment
flow for effect estimation is shown in Figurel. Parame-
ter Extraction phase tries to extract parameters from bench-
mark documentation in such a way that each parameter can
be varied independently of others. This is not always easy
as shown in the description of the benchmarks.

For every parameter extracted, a two extreme level val-
ues are designated as shown in table 2 and table 3. Also,
once the number of parameter is known, the size of PB de-
sign is also known which is required to generate PB design
table. Since the number of parameters for Postmark is 10
and FIO is 22, PB table of size 12 and 24 are used respec-
tively. While any Hardamard matrix [16] can be used, we
use the matrices shown in equation 4 for 11 factor experi-
ment. PB table for 23 factors can be found in Plackett and
Burman’s original paper [8] and we omit it due to the space

constraint.
[1 1-1 1 1 1-1-1—-1 1-1]
-1 1 1-1 1 1 1-1-1-1 1
1-1 1 1-1 1 1 1-1-1-1
-1 1-1 1 1-1 1 1 1-1-1
-1-1 1-1 1 1-1 1 1 1-1
-1-1-1 1-1 1 1-1 1 1 1
PB(12) = 1-1-1-1 1-1 1 1-1 1 1
1 1-1-1-1 1-1 1 1-1 1
11 1-1-1-1 1-1 1 1-1
-1 11 1-1-1-1 1-1 1 1
1-1 11 1-1-1-1 1-1 1
| -1-1-1-1-1-1-1-1-1-1-1 |
4

Each row of the PB table represents an experiment and
columns represent parameters. —1 value represents a low
level while 1 represents a high level. It should be noted that
not every column can be assigned a parameter. You can
leave any of the columns out for actual run of the experi-
ments. However, it is important to ignore the effect of the
unused column later.

The number of experiment required in equivalent to the
number of row of the matrix. Every experiment is repeated
three times and mean is used to calculate the effect. Given n
experiment result y, the effect, e, of a parameter represented
by column ¢ of PB matrix is simply calculated by

PB; -y
= — 5
‘=SB, -y) ©)

2

Here the denominator is a simple normalization factor to
ensure that sum of all effects is 1.

3.2.2 Evaluations of Benchmark Coverage

We use R JADE package [17] to generate 2, 4, 8 indepen-
dent components from the input parameters and the read
and the write throughput measured from each benchmark.
Since the read and the write throughputs are the only com-
mon metrics reported from the two benchmarks, only they
can be directly compared.

Once components are estimated, we evaluate the Eu-
clidean distances between all components which corre-
sponds to a single performance metric are calculated. Based
on the distance, the components are clustered. The num-
ber of clusters to be used were estimated using dendro-
grams [18].

We evaluate the best number of components for clean
clustering and determine the coverage of each benchmark
on two performance metrics.

4 Results
4.1 Effects

Figure2 shows effect of each parameter on each perfor-
mance metrics reported by Postmark. The maximum _file_
size and buffering are the clearly two most important factor
in deciding the overall tps. The buffering parameter con-
trols whether file system buffer should be bypassed using
direct 10 and the importance of the parameter is obvious.
However, the effect of the maximum_file_ size is less obvi-
ous. Potentially, the high effect is due to the fact that larger
file sizes allow a room for longer sequential accesses while
the small file sizes force overall access pattern to behave in
a more random fashion.

You can also see that different performance metrics are
effected differently. The create_delete_ratio is clearly and
obviously important for create tps and delete tps while for
append tps, file sizes are more important. Another interest-
ing to note is that while read throughput is affected the most
by the read_append_ratio, the write throughput is much
more impacted by the file size.

Table 4 shows list of parameters with the most effect
on each performance metric such that sum of the effects
exceed 50%of overall effects. It is shown that roughly
50% of the all performance variances can be captured using
just 2-4 parameters. For example, three parameters, max-
imum_file_size, number_of_initial_files and buffering, con-
tribute to 61% of overall tps variation observed. This equate
to 4 to 16 experiments for exhaustive evaluation. This is
a huge improvements over 2048 experiments required for
original 12 parameters. Furthermore, it is clear that differ-
ent input combinations must be tested for each performance
metric which must be taken into consideration when bench-
marking storage systems.

Figure3 shows the effect of each parameter on four per-
formance metrics measured and table 5 shows list of pa-
rameters with the most effect on each performance met-
ric such that sum of the effects exceed 50%of overall ef-
fects. It is interesting to note that the most important pa-
rameters for read and write latencies are the same. We can
assume that read and write operations themselves do not
affect the latency in our system. This can expected, since
on HDD, read and write operations do not result in signifi-
cantly different response time. Furthermore, we see that the
threads_same parameter is important for all metrics. This
indicates that the interference between the threads can se-
riously affect the performance. While the thread_count pa-
rameter is also important, the effect on the read throughput
is shown to be negligible. Both throughputs are sensitive
to the access_pattern which is expected but surprisingly the
latency is not. Instead, they are much more sensitive to the
posix_fadvise setting. This suggests that latency is not de-

normalized effect
0.00 0.05 0.10 0.15 0.20 0.25 0.30

L}

tps create tps read tps append_tps

-

delete tps

minimum_file_size
maximum _file size
number _of initial_files
read_size

write_size

buffering
read_append_ratio
create delete ratio
number_of subdirectories

read_thru

EEREOECON

write_thru

dependent variables

Figure 2. PostMark parameter effects.

normalized effect

0.00 0.02 0.04 006 0.08 010 0.12

read_latency read_throughput

w

write_latency

dependent variables

operation
access_pattern
files_used
min_file_size
max_file_size
min_block_size
max_block_size
io_depth
overwrite

fsync

thinktime
write_buffer_sync
file_service
posix_fadvise
io_engine_async
io_engine_buffer
fs_buffer
io_buffer_malloc
thread_count
threads_same

SEEIEEENEECOCDONEOCOCOEDN

write_throughput

Figure 3. FIO parameter effects.

termined by the seek time but rather cache miss penalties.

4.1.1 Coverage of Benchmarks

The distance between the independent components as well
as their clustering is shown in Figure4 and Figure5. In these
graphs, each leaf node represents an independent compo-

nent. Since the independent components have no physi-
cal meaning associated with them, we number them from
1 to 8 per benchmark. We only show the results of 8 com-
ponents for the brevity. The closer the leaves are on the
tree, more similar effect they have on the result. The height
represents the difference between the subtrees. therefore,
evenly spread out components of both benchmark on x-axis

Table 4. PostMark input parameters required
to cover at least 50% of overall effect for each
performance metrics reported.

Table 5. FIO input parameters required to
cover at least 50% of overall effect of each
performance metrics reported.

Performance Parameters Total
Metric Effect
tps maximum_file_size 0.6164
number_of_initial files
filesystem_buffer
create_tps maximum_file_size 0.5469
create_delete_ratio
read_tps maximum_file_size 0.5229
number_of_initial _files
read_append_ratio
append_tps minimum_file_size 0.5418
maximum_file_size
read_size, read_append_ratio
delete_tps maximum_file_size 0.5369
create_delete_ratio
read_thru number_of _initial files 0.5722
write_size
read_append_ratio
write_thru maximum_file_size 0.5137
read_append_ratio
create_delete_ratio

suggest similar coverage, while the height of the tree sug-
gest the granularity of the coverage. For example, the FIO
component 4 and PostMark component 3 have the similar
effect on the read throughput based on the Figure4. At the
same time, FIO component 8 and PostMark component 7
also have similar effect. However, there is a large gap be-
tween the two sets of components which are not covered
by any of the components as suggested by the height of the
edges connecting the two subtrees.

An interesting observation is that for read throughput,
FIO and Postmark have roughly the same coverage. This
is interesting since PostMark have far fewer parameters. It
can be concluded if the metric of interest is read throughput,
than it does not matter which benchmark you use as long as
you can test the key parameters thoroughly.

For the write throughput, FIO does provide wider cov-
erage to the left with component 3, while PostMark pro-
vide wider coverage on the right with component 3 and 7.
We can safely conclude that each benchmark provide one of

Performance Parameters Total
Metric Effect
read files_used, file_service 0.5406
latency thread_count, threads_same
posix_fadvise
read access_pattern 0.5462
throughput threads_same
write_buffer_sync
write files_used, file_service 0.5060
latency thread_count, threads_same
posix_fadvise
write thread_count 0.5170
throughput threads_same
access_pattern
Cluster Dendrogram
~ 4
o 4
£ " d
g .| o
E
Al e 73
r-DI I‘--\-I - .
F e N

components_read
helust (*, “ward™)

Figure 4. Read throughput performance cov-
erage of PostMark and FIO

more input parameters that affect the write throughput that
is not provided by the other benchmark.

The input parameters that affect the read and write

Cluster Dendrogram

Height

fio_5
pm_§

]
pm_2 1

fio_B

components_write
helust (*, “ward")

Figure 5. Write throughput performance cov-
erage of PostMark and FIO

throughput performance shows some difference. They all
depend on the size of the files, number of files and mix of
operations. However, write throughput is also dependent on
file creation and deletion which are not taken into account
in FIO. Conversely, PostMark does not consider the num-
ber of threads which is another important factor provided
by FIO.

We believe that a good benchmark should have all those
components as inputs to provide a wider coverage.

5 Conclusion

Clearly, any storage performance evaluation should con-
sider the effect of critical input parameters that has been de-
scribed in this paper. We recommend that at least the critical
parameters shown in table 4 and 5 should be tested thor-
oughly to gain an approximate sense of the system’s perfor-
mance variation.

The methodology presented in this paper can be applied
to any benchmarking tool with set of input parameters that
can be adjusted. The key challenge is deciding the range of
each parameter. Once this is done, the entire process can be
automated.

Even if the system is designed for a specific workload,
it is still beneficial to follow the methodology described in
this paper. Since the characteristics of the actual workload
is known, a tighter level bounds can be assigned to each pa-
rameter. The resulting effect of the parameters can describe

how the system reacts to different parameters and can pro-
vide valuable insights to workload-system interactions.

We also show that different benchmarks can still cover
roughly the same performance space if the input parame-
ters are chosen appropriately. We suggest that performing a
set of through experiments on a single benchmark provides
more accurate description of system performance than run-
ning a single experiment on the multiple benchmarks.

However, it is clear that there are specific performance
space that can only be explored with a specific benchmark.
Since it is difficult to determine what benchmarks cover
how much of the performance space, we propose a new
benchmark with following properties.

e 10 benchmark tool should provide maximum coverage
of storage system’s operational space with minimum
parameter settings.

e The parameters of benchmarking tools should be as in-
dependent as possible.

e The parameters should be exclusively defined as either
the system parameter, the workload parameter or the
benchmark parameter.

e The target interface which the benchmark is testing
needs to be clearly defined.

e A minimum validation of results should be handled.
(eg. Results that suggest under-utilization of target
system such that the performance result does reflect its
capability.)

With this kind of benchmarking tool, most of the systems
can be evaluated with a single benchmark with multiple pa-
rameter settings. This tool would allow different researcher
and developers to report their performance in a more coher-
ent manner which in turn makes performance comparison
and reproducing the result easier.

As a future work, we plan to conduct a comprehensive
analysis of more benchmarks and design a new benchmark
that provides a wide coverage with few independent param-
eters.

References

[1] P. Chen and D. Patterson, “Storage performance-
metrics and benchmarks,” Proceedings of the IEEE,
vol. 81, no. 8, pp. 1151-1165, 2002.

[2] J. Axboe. fio - flexible io tester. [Online]. Available:
http://freshmeat.net/projects/fio/

[3] H. Vandenbergh, Vdbench Users Guide, 5th ed., Sun
Microsystems, 2008.

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

(14]

[15]

[16]

J. Katcher, “Postmark: A new file system benchmark,”
Network Appliance, Inc, Tech. Rep., 1997.

B. Wolman and T. M. Olson, “lobench: a system in-
dependent io benchmark,” SIGARCH Comput. Archit.
News, vol. 17, pp. 55-70, September 1989.

W. D. Norcott and D. Capps. lozone filesystem bench-
mark. [Online]. Available: http://www.iozone.org/

R. Coker. Bonnie++. [Online]. Available:

http://www.coker.com.au/bonnie++/

R. Plackett and J. Burman, “The design of opti-
mum multifactorial experiments,” Biometrika, vol. 33,
no. 4, pp. 305-325, 1946.

J. Yi, D. Lilja, and D. Hawkins, “A statistically rigor-
ous approach for improving simulation methodology,”
in High-Performance Computer Architecture, 2003.
HPCA-9 2003. Proceedings. The Ninth International
Symposium on. 1EEE, 2003, pp. 281-291.

B. Debnath, D. Lilja, and M. Mokbel, “Sard: A sta-
tistical approach for ranking database tuning param-
eters,” in Data Engineering Workshop, 2008. ICDEW
2008. IEEE 24th International Conference on. 1EEE,
2008, pp. 11-18.

R. Fisher, “Design of experiments,” British Medical
Journal, vol. 1, no. 3923, p. 554, 1936.

J. Stone, “Independent component analysis: an intro-
duction,” Trends in cognitive sciences, vol. 6, no. 2,
pp. 59-64, 2002.

V. Christopoulos, D. Lilja, P. Schrater, and A. Geor-
gopoulos, “Independent component analysis and
evolutionary algorithms for building representative
benchmark subsets,” in Performance Analysis of Sys-
tems and software, 2008. ISPASS 2008. IEEE Interna-
tional Symposium on. 1EEE, 2008, pp. 169-178.

L. Eeckhout, R. Sundareswara, J. Yi, D. Lilja, and
P. Schrater, “Accurate statistical approaches for gener-
ating representative workload compositions,” in Work-
load Characterization Symposium, 2005. Proceedings
of the IEEFE International. 1EEE, 2005, pp. 56—66.

D. Plonka, A. Gupta, and D. Carder, “Application
buffer-cache management for performance: running
the world’s largest mrtg,” in Proceedings of the 21st
conference on Large Installation System Administra-
tion Conference. =~ USENIX Association, 2007, pp.
1-16.

J. Hadamard, An essay on the psychology of invention
in the mathematical field. Dover Pubns, 1954.

10

[17]

P. Ilmonen, K. Nordhausen, H. Oja, and E. Ollila, “A
new performance index for ica: Properties, computa-
tion and asymptotic analysis,” Latent Variable Analy-
sis and Signal Separation, pp. 229-236, 2010.

G. Szekely and M. Rizzo, “Hierarchical clustering
via joint between-within distances: extending ward’s
minimum variance method,” Journal of classification,
vol. 22, no. 2, pp. 151-183, 2005.

