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Abstract

Iterated local search (ILS) is a general and powerful metaheuristic which provides an easily im-

plementable way of improving the performance of local search algorithms. In this article we consider

the application of ILS to the permutation flow shop problem (FSP), a strongly studied problem in ma-

chine scheduling. We experimentally investigate the effect of specific implementation choices in our

ILS algorithm and analyze its performance. Computational results show that our ILS approach com-

pares very favorably to other approaches proposed for the FSP and is, despite its simplicity, even able

to find new best solutions for some benchmark instances which have already been attacked by many

other algorithms.
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1 Introduction

In the flow shop problem, each of � jobs
����������� � has to be processed on � machines

����������� � in this

order. The processing time of job 	 on machine 
 is ���� where the ����� are fixed and nonnegative. At any

time, each job can be processed on at most one machine, and each machine can process at most one job.

The jobs are available for processing at time 0 and the processing of a job may not be interrupted. Here,

we concentrate on the permutation flow shop problem (FSP), where the job order is the same on every
�
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machine. The objective is to find a job sequence � that minimizes the completion time (called makespan)

of the last job.

As the problem is
���

-hard in general [5], one has to rely on approximation methods to tackle large

instances. Therefore, many algorithms have been proposed to find near optimal schedules in reasonable

time. These algorithms can be classified as either constructive or based on local search. Constructive

methods generate job sequences from scratch without allowing decisions to be reversed. Several con-

structive heuristics are described in [2, 4, 18, 11]. Local search for the FSP starts from some initial

sequence and repeatedly try to improve the current sequence by local changes. If in the neighborhood of

the current sequence � a better sequence ��� is found, it replaces � and the local search is continued. The

simplest local search algorithm, iterated descent, repeatedly applies these steps until no better sequence

can be found in the neighborhood and therefore stops at the first local minimum encountered. To increase

the performance of local search algorithms, the application of metaheuristics like simulated annealing

[21, 20, 9], tabu search [19, 22, 26, 30], genetic algorithms [1, 23, 24], and ant colony optimization [25]

has been considered for the FSP.

In this article we focus on the application of iterated local search (ILS) [16, 15, 17] to the FSP. Iterated

local search (ILS) is a very simple and powerful metaheuristic which consists in repeatedly applying

a local search algorithm to solutions obtained by small modifications to one of the previously visited

locally optimal solutions. The simplicity of ILS stems from the fact that typically only a few lines of

code have to be added to an already existing local search algorithm; the power of ILS is witnessed by

the fact that ILS is among the best performing approximation algorithms for the well known traveling

salesman problem [15, 10] and has been shown to be very competitive on other problems like graph

partitioning [14], job-shop scheduling [12, 13], and the total weighted tardiness problem [3].

Our ILS algorithm for the FSP is based on a straightforward local search implementation. In our

experimental analysis of the proposed ILS approach we focus on two particularly important aspects:

from which locally optimal solution should the search be continued and how strong should be the solution

modifications. We use the results of this analysis to design our final ILS algorithm and computational

results obtained on a large set of widely used benchmark problems show that, despite the simplicity of

the approach, competitive results to the best known algorithms for the FSP can be obtained.

The paper is structured as follows. First, we give a general algorithmic outline of ILS and discuss other

algorithmic approaches falling into this category. In Section 3 we present the application of ILS to the

FSP and discuss aspects of the generic choices of the operators as applied to the FSP. The experimental
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results are presented in Section 4 and we give some final conclusions in Section 5.

2 Iterated Local Search

Iterated local search [16, 15, 17] is a simple and generally applicable metaheuristic that iteratively ap-

plies local search to modifications of the current search point. To apply an ILS algorithm to a given

problem, four components have to be specified. These are mechanism to generate an initial solution, a

procedure Modify, that modifies the current solution � leading to some intermediate solution � � , a pro-

cedure LocalSearch that takes � � to a local minimum � � � , and an AcceptanceCriterion that decides to

which solution the next time Modify is applied. An algorithmic scheme for ILS is given in Figure 1. ILS

differs from other methods like simulated annealing and tabu search in the fact that it does not follow one

trajectory in the search space but solution modifications which correspond to jumps in the search space

are applied to allow to leave local minima.

procedure Iterated Local Search

generate initial solution ���
��� LocalSearch

� �����
repeat

��	
� Modify
� ��� history �

��	 	� LocalSearch
� ��	��

��� AcceptanceCriterion
� ������	 	�� history �

until termination condition met

end

Figure 1: Pseudocode of an iterated local search procedure (ILS)

In principle, any local search algorithm can be used, but the performance of the ILS algorithm with

respect to solution quality and computation speed depends strongly on the one chosen. Like in our ILS

approach to the FSP, very often an iterated descent algorithm is taken. Yet, it is also possible to apply

more sophisticated local search algorithms like tabu search algorithms.

The modification mechanism (we will also refer to it as kick-move in the following) should be chosen

strong enough to allow to leave the current local minimum and to enable the local search to find new,
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possibly better local minima. At the same time, the modification should be weak enough to keep enough

characteristics of the current local minimum. Small modifications allow the local search algorithm to run

fast, because it will require only few steps to reach the next local optimum. If the modification of the

current local optimum is too large, the effect would be similar to starting from a new, randomly generated

solution.

The acceptance criterion is used to decide from which solution the search is continued by applying the

next kick-move. One important aspect of the acceptance criterion is to introduce a bias between inten-

sification and diversification of the search. Intensification of the search around the best found solution

is achieved, for example, by applying the kick-move always to the best found solution. Diversification

may be achieved, in the extreme case, by accepting every new local optimum � � � , this would be similar

to a random walk over the local optima as the objective function value is not taken into account. We

will show that the particular choice of the acceptance criterion is critical for the performance of the ILS

algorithm.

3 Application of Iterated Local Search to the FSP

To apply ILS to the FSP the three generic operators Modify, LocalSearch, and AcceptanceCriterion

have to be defined and an initial solution has to be generated. In the following we detail the choices for

the three operators used for the ILS application to the FSP.

3.1 Initial Solution

We use the NEH heuristic [18] to construct an initial solution. The NEH heuristic appears to be the best

performing construction heuristic for the permutation Flow Shop Problem on a wide variety of problem

instances [28, 11]. For the NEH we use the efficient implementation due to Taillard [26] such that NEH

can be run in ��� ��� ��� . Obviously, the ILS algorithm could be started from randomly chosen one. Yet, for

short run times on large instances we observed that by using the solution generated by the NEH-heuristic

a better solution quality could be obtained.
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3.2 Choice of LocalSearch

For the FSP we considered local search algorithms based on the following neighborhood definitions

which are proposed in literature. � 	 � swaps of two neighboring jobs at position 	 and 	 � �
(swap-moves),

(ii) interchanges of jobs at 	 th and 
 th position (interchange-moves), (iii) remove job at 	 th position and

insert it in the 
 th position (insertion-moves).

Local search based on swap-moves is very fast, yet the solution quality is very low and therefore we did

not consider it further. In [26, 21] it was shown that the neighborhood based on insertion-moves can be

evaluated more efficiently than the one based on interchange-moves and gives at least the same solution

quality. Therefore we use a local search procedure based on the insertion neighborhood. The moves are

defined as follows: Let � 	 � 
 � be a pair of positions. The new permutation � � is obtained by removing the

job � � 	 � at position 	 and inserting it at position 
 . If 	�� 
 we obtain � ��� � � � � � ������� � � 	�� � � � � � 	 �
� � ��������� � � 
 � � � � 	 � � � � 
 � � � ������� � � � � � � and if 		� 
 we get � �
� � � � � � ������� � � 
�� � � � � � 	 � � � � 
 � ������� � � 	��
� � � � � 	 � � � ������� � � � � � � . The size of the neighborhood is � � � � � � ; using the fast neighborhood evaluation

of [26], the set of possible moves can be examined in  � � � ��� .
For large FSP instances the computation time for the local search still grows fast and therefore we

use a modified first-improvement strategy which resulted in smaller run-times. For a randomly chosen

position 	 we examine all possibilities for inserting job � � 	 � and if an improved schedule is found, we

perform the best insertion-move found during the neighborhood scan for job � � 	 � .

3.3 Choice of Modify

For Modify we consider simple modifications that cannot be reversed directly by the local search algorith-

m. We proceed by applying a number of swap-moves or at least one interchange-move. In a swap-move

��� � � � � � ������� � � � 	 � � � � 	 � � � ������� � � � � � � is modified to � ��� � � � � � ��������� � � 	 � � � � � 	 � ��������� � � � � � ; in

an interchange-move ��� � � � � � ��������� � � 	 � ��������� � � 
 � ��������� � � � � � is modified to � � � � � � � � ������� �
� � 
 � �

����� �
� � 	 � � ����� � � � � � � . Initially, we tried also moves by simultaneously exchanging jobs at three or four

randomly chosen positions, but these moves did not improve the results. Experimentally, we found

that rather small modifications are sufficient to yield very good performance. Yet, the appropriate kick-

strength seems to be instance dependent (see the study of an appropriate kick-move strength in Sec-

tion 4.1.2). For the experimental results in Section 4 the kick-move is composed of two swap-moves at

randomly chosen positions 	�� ��������� � � � �
and one interchange-move with � 	�� 
������������ ��� � �"! #�$ .
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The restriction on the distance of two jobs in an interchange-move is imposed to avoid a strong disruption

of an already good solution.

3.4 Choice of AcceptanceCriterion

While in most ILS applications [7, 10, 15] only better local minima are accepted, the importance of the

choice of the acceptance criterion has largely been neglected. An exception is the study of ILS for the Job

Shop scheduling problem in [12] and the fact that in [16] it is mentioned that for one traveling salesman

problem instance, using a Simulated Annealing type acceptance criterion improves the computational

results.

We considered several choices for the acceptance criterion. As the standard one we use Better � � � � � � � ,
which returns the better of both solutions. Using this acceptance criterion the kick-move will be only

applied to the best found solution during the algorithms run. Yet, with this choice the algorithm may

get trapped in certain regions of the search space. Therefore, acceptance criteria which allow moves

to worse solutions may be preferable to avoid such situations. In the extreme case, one could accept

every new local optimum irrespective of its solution quality. This choice will be denoted as RW � � � � � � �
(for Random Walk). Between these two extreme choices for the acceptance criterion are those accepting

worse solutions with a certain probability or making use of the search history. In a Simulated Annealing

type acceptance criterion, denoted as LSMC � � � � � � � (for Large-Step Markov Chains [16]), � � � is accepted

with a probability of � ��� � �������
	 � � � �������
	 � � � � � � �� $
if � � � is worse than � ; if � � � is better than � it is

always chosen.  is a parameter called temperature and it is lowered during the run of the algorithm.

In fact, the temperature schedule we use is a non-monotonic temperature schedule like proposed in [8]

for Simulated Annealing or for Tabu thresholding [6]. We increase the temperature to an intermediate

level if the minimal temperature is reached. A disadvantage of using LSMC � � � � � � � is that a schedule for

reducing the parameter  must be given. A simpler idea is to use a constant temperature �� ; we refer

to this criterion as ConstTemp � � � � � � � . Similar to non-monotonic temperature schedules is an acceptance

criterion Reheating � � � � � � � . In Reheating � � � � � � � only better solutions are accepted until no improved

solution is found for a number of iterations, here ��� � . Then, the probability of accepting worse solutions

is increased for a number of iterations (done by using a simulated annealing type acceptance criterion

with high temperature  ) to diversify the search. After such a diversification phase again only better

quality solutions are accepted.

6



4 Experimental Results

In this section we first investigate the appropriate choice of the acceptance criterion and an appropriate

kick-move strength for the ILS algorithm. Based on the results of this analysis we derive our final ILS

algorithm which is then compared to the best local search algorithms known for the FSP. The experiments

use a large set of benchmark instances, originally proposed by Taillard in [27]. All instances are available

from ORLIB at http://mscmga.ms.ic.ac.uk/info.html. There are in total 120 instances

which differ in the number � (chosen from the set � � # � � # � � # # � � # # � � # #
$ ) of jobs and the number �
(chosen from � � � � # � � #�$ ) of machines. For each problem size ten instances are available; they are

generated by choosing the duration of every operation randomly according to a uniform distribution

from the integer numbers between 0 and 99. Of these instances, those with 20 machines are the hardest

to solve to optimality. In fact, from the 20 machines instances only those with 20 jobs have been solved

to optimality, while for all 5 or 10 machine instances the exact optimum is known. Therefore, we focus

in most experiments on the instances with 20 machines. Note that the best known solutions for the larger

instances with � � � # improved considerably over the solutions presented in [27]; therefore, if one wants

to compare the computational results with those of other articles, one has to adjust for this fact.

4.1 Analysis of the ILS algorithm

To reduce the computation burden of the experimental analysis of the ILS algorithm, we first study the

influence of the different acceptance criteria proposed in Section 3.4 and then the effect of different

kick-move strengths using the best performing acceptance criterion. The study on the acceptance criteria

was done using a kick-move consisting of two swap-moves and one interchange-move as specified in

Section 3.3. We have run the experiments extensively on four instances with 20 machines and 20, 50,

100, 200 jobs, respectively. Similar experiments on other instances have shown similar behavior.

4.1.1 Experimental comparison of Acceptance Criteria

Here we show that the choice of the acceptance criterion may be crucial to reach peak performance for

long runs of an ILS algorithm. To illustrate this point, we present in Figure 2 plots of the tradeoff between

CPU-time and solution quality (given as percentage deviation from the best known solutions) for FSP

instances ta021 ( � #�� � # ), ta053 ( � #�� � # ), ta087 (
� # #�� � # ), and ta105 ( � # #�� � # ) when using d-

ifferent acceptance criteria in the ILS algorithm. The plots are given for acceptance criteria Better � � � � � � � ,
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RW � � � � � � � , LSMC � � � � � � � and ConstTemp � � � � � � � , and Reheating � � � � � � � . Except for Better � � � � � � � , all the

other acceptance criteria allow moves to worse local minima.

From the solution quality versus CPS-time tradeoff given in Figure 2 on instances ta021 and ta053

it can be oberved that the use of acceptance criterion RW � � � � � � � performs worst and that a bias towards

better local minima is necessary to yield best ILS performance. (We did not apply the ILS algorithm using

RW � � � � � � � to the 100 and 200 job instances.) Yet, on all the instances the best performance is obtained

if sometimes worse solutions are accepted. In particular, on all instances except ta105, Better � � � � � � �
performs worse than accetpance criteria ConstTemp � � � � � � � , LSMC � � � � � � � , and Reheating � � � � � � � . Of these

latter three acceptance criteria none is better than any of the others on all instances, yet for the following

experiments we decided to use ConstTemp � � � � � � � because it needs only one single parameter to be set

and overall appears to be preferable to Reheating � � � � � � � .

4.1.2 Experimental comparison of kick-move strength

In this section we investigate the appropriate kick-move strength for the ILS algorithm using acceptance

criterion ConstTemp � � � � � � � . The kick-moves we apply are composed of a number of swap-moves at

random positions and a number of interchange-moves; the more moves of a particular type are applied,

the larger is the disruption of the solution and, hence, the strength of the kick-move. Also, the solution

disruption incurred by an interchange-move is stronger that the disruption of the swap-moves, because

the latter only affects a pair of adjacent jobs. In Figure 3 we give the CPU-time versus solution quality

tradeoff measured on the instances used in the previous section.

As can be observed, there is no single kick-move strength which gives best performance. Surprisingly,

with increasing instance size the appropriate kick-move strength does not increase; rather it decreases

with incresing instance size. Except for the smallest instance ta021 the kick-move introducing the

largest solution modification (it consists of 2 swap-moves and 2 interchange-moves and is denoted by

”S2-I2” in Figure 3), gives worst performance. Additionally, the experimental results suggest that it

suffices to use kick-moves which are only composed of a number of swap-moves (applying only two

swap-moves gives very good performance) to achieve best performance. Hence, we can conclude that

surprisingly small and simple kick-moves suffice to achieve a very good performance of the ILS algo-

rithm.
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4.1.3 Synopsis

The experimental analysis of the proposed ILS algorithm has shown that (i) best performance is achieved

if the acceptance criterion allows moves to worse solutions and in this way allows a stronger exploration

of the search space and that (ii) an appropriate kick-move strength depends on the particular instance

and the instance size. In the ILS algorithm used for the following comparison to the best performing

algorithms proposed for the FSP, we take into account these two observations. We use the acceptance

criterion ConstTemp � � � � � � � and vary the kick-move strength during the run of the algorithm, similar as

proposed in the simple variable neighborhood search [7]. In particular, we vary the kick-move strength �

between some minimal and maximal limits � ����� and � ���
	 . Let � be the current number of swap-moves

to be applied. (We do not use interchange-moves in our final algorithm.) Then, if after the application

of Modify and the subsequent local search not a better solution than the previous one is found, we set

����� � �
; if a better solution is found, we set � ��� ����� . If we reach the upper limit � ���
	 without having

found an improved solution, we set � to � ����� and repeat the same cycle.

4.2 Comparisons to other algorithms

The FSP has been attacked by several metaheuristics like simulated annealing [21, 20, 9], tabu search

[19, 22, 26, 30], and genetic algorithms [1, 23, 24]. Among the simulated annealing approaches, the

SAOP algorithm by Osman and Potts [21] appears to be the best performing one and at the same time is

easily implementable. We first compare ILS to SAOP since both SAOP and ILS are general algorithms

that do not make use of special characteristics of the FSP. Furthermore, the first ILS algorithms were

proposed with the idea of embedding local search into a Simulated Annealing type algorithm [16], further

motivating this comparison. Currently, the tabu search algorithm by Nowicki and Smutnicki (Tabu-NS)

[19] and the sophisticated genetic algorithm (which includes elements of path relinking) by Reeves and

Yamada (GA-RY) [24] are the best performing algorithms for the FSP. We additionally compare the

performance of the proposed ILS algorithm to these two algorithms as well as to an earlier tabu search

algorithm due to Taillard (Tabu-T) [26]. (Note that our ILS algorithm uses a local search implementation

analogous to the one of Tabu-T and the much better performance of ILS when compared to Tabu-T

(see Section 4.2.2) shows the power of out proposed ILS approach.) For this comparison we allow for

ILS the same number of local search iterations as for the Tabu-NS algorithm. Note that the Tabu-NS

algorithm is a sophisticated implementation which strongly exploits problem specific characteristics to

speed-up the local search. Yet, here we are not trying to set new records in computational speed to solve
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the permutation FSP, but we are more interested in showing that ILS is an easily implementable way of

strongly improving local search performance for the FSP.

In the following experiments we use the following parameter settings. � ����� is set to 2 and � ���
	 is set

to 7. The temperature  � is set to � � � ! � ���� � � # , where �� is the average processing time and �� � � # is the

initial temperature used in the SAOP algorithm.

4.2.1 Experimental comparison – SAOP

In this section we compare the performance of the ILS approach to the NEH heuristic [18], to the NEH

heuristic followed by local search (NEH+ls), to SAOP, and to a multiple iterated descent algorithm

starting from randomly generated solutions (MD). SAOP gives a good indication of the performance

of SA on the FSP because it is still the best performing Simulated Annealing algorithms for the FSP;

a modified Simulated Annealing algorithm proposed in [9] yields only minor improvements on small

instances and is slightly worse on the larger ones. For SAOP the maximal number of iterations is given

as ������� ! ! # # ����� � ��� � # # �	� � � ��
 � # # � � # # #�$ [21] and therefore we allow for ILS and MD the same

computation time as needed by SAOP.

The computational results are given in Table 1. As expected, ILS performs significantly better than

MD and significantly improves over the solution quality achieved by NEH or NEH with additional local

search or SAOP. Surprisingly, even the MD approach gives slightly better solutions than the Simulated

Annealing algorithm, contradicting computational results presented in [21]. We could verify that this

fact is due to the local search implementation with the improvements suggested in [26] and the first-

improvement pivoting rule used in our local search algorithm. On average, the first-improvement and

the best-improvement version of the local search yield similar solution quality, but the first-improvement

local search is much faster and allows to apply more often a local search.

Our (general purpose) ILS approach also performs well compared to other algorithms proposed specif-

ically for the FSP. The path algorithm proposed by Werner [29] has been applied to the instances above,

of size � � � # � � � � #
, � � � # � � � � # , � � � # � � � � #

, � � � # � � � � # averaging 1.46%, 1.30%,

1.97%, and 2.76% above the best known upper bound at that time. Adjusting our results to the then best

known solutions, ILS averages 0.39%, 0.27%, 0.77%, and 1.57% above those. Yet, ILS needs signifi-

cantly longer times (adjusting for the differences in computer speeds in [29] and here) on the instances

with 20 jobs. On the instances with 50 jobs the path algorithm takes roughly 70% of the time needed by

ILS.
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Table 1: Results for short runs of ILS in benchmark instances. Given is the average percentage excess over the

best known solution averaged over 10 instances of each size. The maximal CPU-time for SAOP, ILS, and MD is

given in seconds on a Sun Sparc 5 Workstation; the computation time for NEH and NEH+ls are significantly lower.

instances NEH NEH + ls SAOP ILS MD CPU-time

ta001 - ta010
��������� � 3.300 1.687 1.061 0.419 0.765 0.3

ta011 - ta020
�������	�
� � 4.601 2.451 1.462 0.332 0.955 1.3

ta021 - ta030
����������� � 3.731 2418 1.116 0.287 0.628 3.3

ta031 - ta040
��������� � 0.727 0.261 0.597 0.149 0.255 0.9

ta041 - ta050
�������	�
� � 6.453 3.456 3.012 1.470 2.873 3.3

ta051 - ta060
����������� � 5.971 4.658 3.533 2.131 3.524 9.0

ta061 - ta070
���
������� � 0.527 0.324 0.509 0.203 0.219 1.9

ta071 - ta080
���
�����	�
� � 2.215 1.250 1.720 0.769 1.287 7.0

ta081 - ta090
���
��������� � 5.106 4.089 4.076 2.269 3.822 20.50

ta091 - ta100
���������	�
� � 1.257 0.917 1.478 0.738 0.978 16.0

ta101 - ta110
������������� � 4.245 3.152 4.078 2.258 3.536 46.0

Comparing the ILS results with Tabu Search algorithms [30, 26, 22, 19], ILS appears to outperform

than the approaches of [30, 26] (see next section), similar to that of Reeves [22] and worse with respect

to computation time than Tabu-NS [19]. (Recall that we use the simplest form of local search in our

ILS.) For the instances solved, ILS gives better solution quality on instances with up to 100 jobs than the

Tabu Search of [22] and slightly worse results for the larger benchmark instances with 200 and 500 jobs

(adjusting our results to the then best known solutions for the benchmark instances in [27]). For the same

computation time, Tabu-NS, the best performing local search algorithm for the FSP, gives significantly

better results than ILS because their local search is very fine-tuned and therefore much faster than ours.

Yet, as shown in the next section, if the comparison is made using the same number of local search

iterations, our ILS approach performs similarly to Tabu-NS. Nevertheless, our point here is that given

any local search algorithm, ILS is easy to implement, and will cheaply do better than the corresponding

local search.

4.2.2 Experimental comparison – tabu search

Here we compare the solution quality obtained by our ILS algorithm to published results of two Tabu

Search algorithms, namely Tabu-NS and Tabu-T, and to the genetic algorithm GA-RY. The ILS algorithm
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Table 2: Results for long runs of ILS on instances with � � � � ��� � � �
. 30000 Local search iterations for

Tabu-NS and each of 10 runs for ILS, for Tabu-T the best result of 3 runs with 50000 local search iterations each

is given. For GA-RY we give the average solution quality, averages for GA-RY are taken over 30 runs (taken from

Table 1 in [24]). See the text for more details.

Instance best-known
ILS

best avg. worst
Tabu-NS Tabu-T GA-RY

ta051 3855 3866 3883.5 3893 3875 3886 3880

ta052 3707 3714 3715.2 3720 3715 3733 3716

ta053 3643 3656 3665.8 3678 3668 3673 3668

ta054 3731 3736 3742.6 3756 3752 3755 3744

ta055 3614 3614 3622.8 3633 3635 3648 3636

ta056 3686 3689 3699.2 3708 3698 3719 3701

ta057 3706 3711 3720.9 3729 3716 3730 3723

ta058 3700 3714 3721.2 3739 3709 3737 3721

ta059 3743 3757 3763.5 3773 3765 3772 3769

ta060 3767 3767 3769.6 3777 3777 3791 3772

is allowed the same number of local search iterations as Tabu-NS, for Tabu-T the number of local search

iterations is at least twice as much as for Tabu-NS and ILS. In [24], Reeves and Yamada also compare

their genetic algorithm to Tabu-NS using the same results as we do here; therefore, we can compare their

results directly to our ILS algorithm.

We run ILS 10 times on each instance with � � � # and � � � # #
, and 5 times on the instances with

200 jobs. Given are the best, the average and the worst makespan obtained for each instance. For Tabu-T

only the best results over several runs are given in [27]; for GA-RY we use the average solution quality

given in Table 1 in [24]. We only present results for instances with � � � # as the smaller instances

were solved to optimality in almost every run. Furthermore, we only report the results for instances with

� � � # ; they are the hardest instances to solve and the only ones for which the exact optimum is still

unknown.

The results in Tables 2 to 4 show that ILS gives for most instances a better solution quality – even in the

worst of the runs – than Tabu-T, although for Tabu-T at least twice as many local search iterations were

allowed. Therefore, we can conclude that ILS is significantly more effective on the FSP instances used

for comparison than Tabu-T. When comparing ILS to Tabu-NS, both seem to give rather similar solution
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quality on the 50 job instances (the average performance of ILS is better on 5 instances), while for the

larger instances with 100 and 200 jobs the advantage of ILS appears to increase (it gives better average

performance on 8 out of 10 instances). Additionally, the best solutions found by ILS are in all except

of two cases better than the solutions returned by Tabu-NS. Compared to GA-RY, ILS performs roughly

similar on the 50 and 100 job instances (on the 50 job instances it achieves on 8 out of 10 instances a

slightly better average performance, in the case of 100 job instances on 3 out of 10), but it seems to be

preferable on the 200 job instances reaching on 9 out of 10 instances better average solution quality (on

many of these instances even the worst solution obtained by the ILS algorithm is better than the average

solution found by GA-RY). Hence, we can conclude that the proposed ILS approach achieves very high

quality solutions, comparable or better than the best local search algorithms known for the FSP.

Concerning the run-time, an important point is that a single iteration of Tabu-NS can be performed in

significantly less time than a single iteration of ILS. One complete scan of the neighborhood for ILS takes

��� � � ��� , the same as for Tabu-T. But for Tabu-NS it is reported that the neighborhood, empirically, can

be scanned in ��� ����������� � ����� � . Therefore the computation times of Tabu-NS are significantly smaller than

for ILS by a factor of roughly 10 to 30. The smaller complexity of the local search in Tabu-NS is due to

the use of speed-up techniques based on block properties of the FSP and a largely reduced neighborhood

by restricting the possible positions for job insertions. This neighborhood reduction gives considerable

speed-up for instances having many jobs and relatively few machines. The techniques to obtain the speed

improvements for the local search iterations reported in [19] are quite general and could also be used for

the local search employed in our ILS approach. Yet, we did not implement these speed-up techniques, as

our main aim is to show that the ILS algorithms may give a high solution quality for the FSP. One might

argue that the local search algorithm used in our ILS approach searches a larger neighborhood than the

Tabu-NS and therefore for some instances better solutions are found. Yet, Tabu-NS finds much better

solutions than Tabu-T which uses the same neighborhood size as our local search implementation in a

significantly lower number of local search iterations (see Table 3 in [19]). Therefore, the reason for the

good performance of our ILS is not simply the larger neighborhood scanned, but is based on the structure

of the algorithm itself.

5 Conclusion

In this article we have presented a new application of iterated local search to the permutation flow shop

problem. We have shown that ILS increases significantly the performance of a basic local search al-
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Table 3: Results for long runs of ILS on instances with � � �
��� � � � � �
. 15000 Local search iterations for

Tabu-NS and each of 5 runs for ILS, for Tabu-T the best result of 3 runs with 10000 local search iterations each is

given. For GA-RY we give the average solution quality, averages for GA-RY are taken over 30 runs (taken from

Table 1 in [24]). See the text for more details.

Instance best-known
ILS

best avg. worst
Tabu-NS Tabu-T GA-RY

ta081 6228 6237 6260.8 6273 6286 6330 6259

ta082 6210 6217 6235.6 6257 6241 6320 6234

ta083 6271 6300 6311.1 6323 6329 6364 6312

ta084 6269 6303 6319.8 6366 6306 6331 6303

ta085 6319 6349 6372.3 6398 6377 6405 6354

ta086 6380 6403 6417.6 6437 6437 6487 6417

ta087 6292 6298 6312.8 6330 6346 6379 6319

ta088 6423 6436 6457.5 6500 6481 6514 6466

ta089 6275 6312 6323.4 6338 6358 6386 6323

ta090 6434 6471 6480.1 6483 6465 6534 6471

gorithm for the permutation flow shop problem with only very small additional implementation effort.

Despite the simplicity of the approach, the experimental results show that very high solution quality can

be obtained, similar to the best known local search algorithms fine-tuned to the FSP. We expect that still

better performance is achievable by using a more fine-tuned local search. The ILS approach the provides

a very cheap and effective way to improve upon state of the art local search methods.

Concerning the implementation of ILS algorithms, we have shown that the choice of acceptance cri-

terion is crucial to obtain very high solution quality; on the other side our experiments have shown that

the appropriate kick-move strength may be instance dependent. While the choice of an appropriate kick-

move strength is in mainly the target of the recently introduced simple variable neighborhood search, the

choice of the acceptance criterion seems not to have been addressed sufficiently in earlier ILS applica-

tions. Therefore, our results also suggest that the appropriate choice of the acceptance criterion should

receive more attention in future ILS applications.
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Table 4: Results for long runs of ILS on instances with � � ����� � � � � �
. 10000 Local search iterations for

Tabu-NS and each of 5 runs for ILS, for Tabu-T the best result of 10 runs with 4000 local search iterations is given.

For GA-RY we give the average solution quality, averages for GA-RY are taken over 30 runs (taken from Table 1

in [24]). See the text for more details.

Instance best-known
ILS

best avg. worst
Tabu-NS Tabu-T GA-RY

ta101 11195 11244 11266.8 11292 11294 11393 11316

ta102 11223 11276 11290.8 11303 11420 11445 11346

ta103 11337 11402 11411.0 11424 11446 11522 11458

ta104 11299 11341 11354.4 11373 11347 11461 11400

ta105 11260 11297 11310.0 11327 11311 11427 11320

ta106 11189 11237 11262.6 11277 11282 11368 11288

ta107 11386 11431 11443.3 11451 11456 11536 11455

ta108 11334 11401 11441.6 11484 11415 11544 11426

ta109 11192 11247 11266.4 11294 11343 11424 11306

ta110 11313 11385 11407.2 11435 11422 11548 11409
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Figure 2: Comparison of acceptance criteria for the ILS algorithm. Given is the trade-off between CPU-time

(given on the � -axis) and solution quality (given on the � -axis as the percentage deviation from the best-known

solution or the optimum in the case of ta021). Plots are for ta021 (upper left), ta053 (upper right), ta087

(lower left), and ta105 (lower right).
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Figure 3: Investigation of the appropriate kick-move strength for the ILS algorithm using acceptance criterion

ConstTemp
� ������	 	�� . Given is the trade-off between CPU-time (given on the � -axis) and solution quality (given on

the � -axis as the percentage deviation from the best-known solution or the optimum in the case of ta021). Plots

are for ta021 (upper left), ta053 (upper right), ta087 (lower left), and ta105 (lower right). � ����� � indicates

that one kick-move is composed of � swap-moves and � interchange-moves.
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