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Abstract

Automatic text classification is the process of automatically classifying text documents into
pre-defined document classes. Traditionally, documents are represented in the so called
bag-of-words model. In this model documents are simply represented as vectors, in which
dimensions correspond to words. In this project a representation called bag-of-concepts
has been evaluated. This representation is based on models for representing the meanings
of words in a vector space. Documents are then represented as linear combinations of
the words’ meaning vectors. The resulting vectors are high-dimensional and very dense.
The author have investigated two different methods for reducing the dimensionality of the
document vectors: feature selection based on gain ratio and random mapping.

Two domains of text have been used: abstracts of medical articles in english and texts
from Internet newsgroups. The former has been of primary interest, while the latter has
been used for comparison. The classification has been performed by use of three differ-
ent machine learning methods: Support Vector Machine, AdaBoost and Decision Stump.
Results of the evaluation are difficult to interpret, but suggest that the new representation
give significantly better results on document classes for which the classical method fails.
The representations seem to give equal results on document classes for which the classical
method works fine. Both dimensionality reduction methods are robust. Random mapping
shows greater variance, but is much less computationally expensive.

En utvärdering av bag-of-concepts för
representation av dokument vid automatisk

textklassificering
Sammanfattning

Automatisk textklassificering innebär att med datorns hjälp klassificera textdokument från
en textmängd i fördefinierade dokumentklasser. Traditionellt representeras dokument i den
så kallade bag-of-words-modellen. I denna modell representeras ett dokument av en vektor,
i vilken ord utgör dimensioner. I detta examensarbete har en representation kallad bag-of-
concepts undersökts. Denna bygger på modeller för att representera ords betydelser i en
vektorrumsmodell. Ett dokument representeras därefter som en linjärkombination av ords
meningsvektorer. De resulterande vektorerna är högdimensionella och väldigt täta. Författa-
ren har undersökt två metoder för att reducera dimensionaliteten hos dokumentvektorerna:
särdragsselektion baserat på informationsvinstskvot samt slumpavbildning.

Två textdomäner har använts: engelskspråkiga sammanfattningar till medicinska artik-
lar samt texter från nyhetsgrupper på Internet. Fokus har lagts på den förra, medan den
senare har använts i jämförande syfte. Själva klassificeringen har utförts med hjälp av tre
olika metoder från maskininlärningsområdet: supportvektormaskin, boosting och besluts-
trädsstump. Resultatet av utvärderingen är svårtolkat, men pekar på att den nya represen-
tationen ger signifikant bättre resultat på dokumentklasser för vilka den klassiska metoden
inte alls fungerar, medan representationerna verkar ge likvärdiga resultat på dokument-
klasser för vilka den klassiska fungerar bra. Båda dimensionsreduceringmetoderna visar sig
vara robusta. Random mapping ger större varians, men kräver samtidigt väsentligt mindre
beräkningsresurser.
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Chapter 1

Introduction

The amount of textual data in the world increase every day. Be it web documents on the
World Wide Web or documents in the medical domain, if the texts are to be useful to the
users some form of structure is needed. On the Internet one often rely on the users to find
what they need by using search engines. In the medical domain, which is characterized
by disparate language use and an extraordinary amount of highly specialized sub-domains,
good search engines are more difficult to implement. Instead one has devoted much time
and resources to develop hierarchical structures of the domain and its sub-domains. One
such structure is the Medical Subjects Headings, MeSH, briefly described in section 6.2.

In this thesis we study the problem of document representation in the context of auto-
matic text classification. Text classification, TC, described in the next sections, is the
process of assigning free text documents to predefined classes. Traditionally documents
are represented in the bag-of-words, BoW, model, in which the semantics or content of a
document is viewed simply as the set of words it contains. We investigate a novel rep-
resentational model called bag-of-concepts, BoC, which instead relies on the intuition that
the semantics of a document may be viewed as the union of the meanings of the words it
contains. This model was proposed by Sahlgren and Cöster in [26].

With the increasing performance of search engines and other information retrieval, IR,
tools, one might question the need for text classification. Why should we impose a static
structure on such a dynamic thing as a document domain? This is not at all a simple issue,
but we believe that information retrieval and search engines are good when the user knows
what she wants and knows which words to use to find it. Text classification can aid in this
too, but it is really good when the user does not know exactly what she wants or knows what
she wants but not how to find it. This is especially the case when the classification scheme
is in the form of a hierarchy of classes, since it permits browsing the document domain in
a structured fashion. We also believe that text classification can be an effective tool for
imposing a standardized structure on such a disparate domain as the medical domain, which
in turn can aid in the adoption of a standardized conceptual framework and a standardized
language.

Text classification can be used in many applications. One example is document organiz-
ation, i.e. the organization of documents into different categories. Another is text filtering,
i.e. the on-line classification of a stream of incoming documents, e.g. e-mail, into relevant
and irrelevant documents. Authorship attribution and genre classification, i.e. the classi-
fication of a document into its genre or its author, is yet another application [32]. In this
thesis we are interested in document organization. Hopefully the results gained here are
applicable in other applications as well.
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CHAPTER 1. INTRODUCTION

Much research have been devoted to the field of automatic text classification and there
is an extensive amount of literature. Two excellent surveys which have formed the starting
point for our work are [31] and [32]. The following two sections are to a large extent based
on [31].

1.1 Text Classification

To automate the process of text classification, a process traditionally carried out by humans,
we must somehow mimic the knowledge used by human classifiers. Throughout the years
many different methods for carrying out this task have been proposed. Of these, the most
successful ones have originally been developed in the machine learning, ML, community.
Document classes are mostly defined by use of ostensive definitions. We thus have a prob-
lem of inducing an internal representation of document classes based only on pre-classified
documents. This is exactly the general problem studied in the field of machine learning.

The machine learning approach can be contrasted with the knowledge engineering ap-
proach which was prevailing in the first half of the 1980’s. Here human experts built de-
ductive systems, often in some form of if <DNF-formula>, then <Category>1 rules [31]. In
this approach the knowledge of human classifiers is directly used in the construction of the
classifier, while in the machine learning approach this knowledge has to be used indirectly.

The problem of text classification can be contrasted with the related problem of clus-
tering in which one wants to find a partitioning of a set of documents into clusters, such
that documents in the same cluster are more similar than documents in different clusters.
An important and interesting problem in itself, clustering has been used as a pre-processing
step in some TC systems. This thesis deals exclusively with the problem of text classifica-
tion, however the insights gained on the issue of document representation may be useful in
areas such as clustering as well.

Before continuing with the definition of TC, we make a note on language use: the
terms text categorization and text classification are both used in the literature, with a small
preference towards the former. In this thesis we exclusively use the term text classification.
Our rationale for this is the extensive use of the term classifier in the machine learning
community.

1.2 Definition

Following [31], hard TC is defined as a problem of approximating the function Φ̌ : D×C 7→
{T, F}, where D is the document domain, C = {c1, c2, . . . , c|C|} is a finite set of pre-defined
classes and T, F denotes True and False. With Ω ⊂ D we denote the set of pre-classified
documents. Φ̌(dj , ci) = T if document dj belongs to class ci otherwise Φ̌(dj , ci) = F . In the
case of soft TC one instead wants to approximate the function CSV : D × C 7→ [0, 1], with
CSV (dj , ci) expressing the certainty with which document dj belongs to class ci. CSV here
stands for classification status value. The approximation of Φ̌ is denoted Φ. This function
forms a classifier which can be used to classify documents from D.

With soft TC it is possible to rank documents with respect to approprietness to classes
and vice versa giving what [39] call category ranking TC and document ranking TC. This
can be useful to humans for information searching and retrieval purposes. It can also be
used to support human indexers in their work since they can pay more attention to classes
or documents with high expected appropriateness [32]. Soft TC can easily be transformed

1DNF stands for disjunctive normal form
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1.3. HYPOTHESIS, MOTIVATION AND DELIMITATION

into hard TC by assigning a threshold τi to each class ci. This is sometimes necessary since
some function approximation methods work with real-valued output only. In this thesis we
consider only the problem of hard TC.

The problem of text classification can be further divided into single-label TC and multi-
label TC. [31] The former is a special case of what we could call k-label TC with k = 1.
This means that exactly one category is assigned to every document dj . Multi-label TC on
the other hand means that any number, between 0 and |C|, of categories can be assigned to
each document dj . Binary TC is a special case of single-label TC, in which each document
dj is assigned either to class ci or to its complement c̄i.

According to [31] binary TC is the most theoretically interesting case since multi-label
TC can be achieved by combining |C| binary classification problems under {ci, c̄i} to solve
the problem of classification under {c1, c2, . . . , c|C|}. With no knowledge of the interde-
pendence among classes, the instances of binary TC are usually assumed to be statistically
independent. However, this is not a settled issue and there are several methods that make
use of inter-class dependence, e.g. regression based models. When topological information
is available about the relationships between classes, such as with a hierarchical class struc-
ture, a more or less strong assumption of dependence between the binary instances can also
be fruitful.

This general setting of the problem does not mention anything about the representation
of documents, the intrinsic properties of the functions Φ̌ and Φ, how Φ is built or how the
“goodness” of Φ is measured. This is beneficial since it allows us to study the problem in
a modular fashion.

In [32] the construction of a TC system is divided into three separate phases: document
indexing, classifier learning and classifier evaluation. This division is motivated by the fact
that historically these phases have been studied in isolation to each other. However, it is not
the case that these phases are independent of each other. The performance of most machine
learning methods, for example, depend quite strongly on the representation of documents,
which is built during the document indexing phase.

Bearing this in mind, we make the same division but instead of using the term document
indexing, we use the term document representation. This use is not optimal since the term
representation does not indicate a phase in a process in the same way as the other two.
However the term document indexing is potentially confusing due to its strong connotation
with the practice performed by human indexers.

1.3 Hypothesis, Motivation and Delimitation

The main hypothesis underlying this thesis is that more elaborate bag-of-concepts repres-
entations of documents may be beneficial in automatic text classification. Although much
research has been directed at the problem of document representation over the years, the
majority of the research has been concerned with improving the classification algorithms.
When representational issues have been studied the interest have mainly been directed
towards details of the prevailing bag-of-words model.

The idea is that since text classification is stated as a task concerning semantics or con-
tent, it should be possible to improve results by using representations which better capture
the semantics of documents. A second hypothesis is thus that bag-of-concepts representa-
tions actually do capture semantics better than the standard bag-of-words representation.
This hypothesis is not particularly well developed. For example we have not defined what
content or semantics really mean. However interesting these questions are from a more
philosophical or cognitive viewpoint, we are forced to take a strictly instrumental stance,

3



CHAPTER 1. INTRODUCTION

i.e. we are only interested in whether the representations lead to improved results or not.
We are primarily interested in the relative merits of the different representations and we

have not designed our experimental setups etc. in order to be comparable with experiments
in the literature. This would of course be preferable, but since there are so many parameters
involved, such comparisons would be very hard to conduct. Therefore the results of this
thesis should not be seen as automatically valid in other document domains, with other
algorithms and parameter choices.

Due to time constraints we have not been able to fine-tune parameter settings or other
implementational details. If this had been our first priority, we would have been forced to
keep the evaluation much more narrow in scope. Of course such an approach has its merits,
but we opt for a broader view of the area.

Unfortunately, we have only been able to work with documents in English. Hopefully
some of the insights gained in this thesis will be applicable for other languages as well.

1.4 Thesis Outline

The rest of this thesis is organized as follows: In chapter 2 different ways of representing
documents and weighting the dimensions of these representations are described together
with some common preprocessing steps. Chapter 3 contains a survey of different dimen-
sionality reduction methods for use with the created document representations. In chapter
4 we move on to describe the different machine learning techniques employed. In chapter
5 the problem of evaluating the resulting classifier is discussed. The specific methods, data
sets and parameter settings used is described in chapter 6. Chapter 7 contains the results
and a discussion. Finally, the main conclusions are summarized in chapter 8, which also
contains some suggestions for further research.

4



Chapter 2

Representation

In this chapter we give an account of different models for representing documents in text
classification and information retrieval tasks. We start with a brief description of the general
vector space model used by all representations. We then discuss different ways of defining
the feature space. More specifically we describe the classical bag-of-words model which
is contrasted with the novel bag-of-concepts model. Following this is a description of the
weighting scheme used for weighting the dimensions of the feature space. Finally we discuss
some commonly used preprocessing techniques.

2.1 The Vector Space Model

The representation of documents significantly influences the performance of the resulting
classification system. All representations of interest to us in this thesis are variations of
a general vector space model in which each document dj ∈ D is represented as a vector
d̄j = (x1j , x2j , . . . , x|F|j) of feature weights, where F is the set of features. Most often
words are used as features. A document is then represented as a vector of weighted word
occurrence counts. The assumption underlying all instances of this representational scheme
is that the value of xij can be interpreted as a measure of the contribution of feature fi

to the semantics of document dj [31]. In almost all representations the feature weights
are calculated by passing the frequencies of the features in the documents to a weighting
function, see section 2.3.

The documents in D are collected in a |F| × |D| features-by-document matrix. Despite
the fact that some features in F probably are more important than others and most linear
combinations of feature or document vectors does not have any meaningful interpretation,
the documents are often seen as points in a |F|-dimensional space. By imposing some
distance measure, e.g. Euclidean distance or angles between vectors, we can explore this
space geometrically, e.g. compute the degree of similarity between documents [2].

2.2 Defining the Feature Space

Theoretically, there are infinitely many ways of defining F . In practice, however, we gen-
erally want the features to correspond to as meaningful, general and unambiguous entities
as possible. Here meaningfulness means that features should have significantly high de-
grees of semantic content, generality means that we prefer having one feature capture small
variations in semantic content over having many features capture the “same” semantic con-
tent and unambiguousness means that we prefer having each feature capture one semantic

5



CHAPTER 2. REPRESENTATION

concept over many. Note that these constraints are not thoroughly defined and serve merely
as an intuitive base when we discuss different representations.

Related to these intuitions are the linguistic notions of synonymy and polysemy. Syn-
onymy denotes “the semantic relation that holds between two words that can (in a given
context) express the same meaning”.1 This is exemplified by the words car and motor
which in some contexts have the same meaning. Synonymy is not necessarily an equival-
ence relation, i.e. two synonymous words need not express the exact same meaning and
they probably never do. The prevalence of synonymy in natural language is shown in exper-
iments conducted by Deerwester et al. [5], in which two people choose different key words
to describe a well-known object over 80% of the time.

Polysemy, on the other hand, denotes “the ambiguity of an individual word or phrase
that can be used (in different contexts) to express two or more different meanings”. An
example of a polysemous word is bank which can refer to a financial institution as well as
the land slope near water. Synonymy and polysemy are problematic when we are creating
representations for use with IR or TC systems. In both domains synonymy often lead to a
decrease in recall, while polysemy often lead to a decrease in precision, see section 5.

2.2.1 Bag-of-Words and Related Surface Forms

As mentioned above, features are mostly identified directly with surface forms2, such as
words or word-stems, giving what is known as the bag-of-words, BoW, representation. Some-
times larger units of text are used. This include n-grams, i.e. sequences of n words, often
with n = 2 or n = 3, and phrases (most commonly noun phrases). The rationale underlying
this is the fact that TC is cast as a problem concerning semantics and larger units of text
are assumed to contain more semantic information. These larger units, however, have not
proven significantly better for TC than words or word-stems [31]. The reason for this is
unclear: either the increase in semantic information is not useful for TC or the sampling
noise introduced when using these larger language units is prohibitive.

In addition to these feature definitions which Joachims [10] call the word level and multi-
word level, he additionally mentions the sub-word level at which features are identified with
for example bigrams or trigrams of characters. This can be useful for languages which
contain many composite forms. In the following we refer to the features defined on these
different levels as terms.

We note that the word level constitutes a middle way in terms of the constraints men-
tioned above. Features at the sub-word level are general at the cost of ambiguity and a low
degree of semantic content. Features at the multi-word level on the other hand are more
specific and have a higher degree of semantic content at the cost of generality.

Some ML techniques depend explicitly on these constraints, e.g. the Naive Bayes classi-
fier which is based on the assumption that features are statistically independent, or in other
words that all features are optimally general. Ambiguousness on the other hand introduce
noise. Highly specific features such as phrases are problematic primarily since we need a
vast amount of data to get statistically reliable estimates of feature weights.

The assumption that the semantic content of a document can be modeled simply as the
bag of words it contains have shown to be justified in many applications. It is for example
the model underlying practically all search engines. However, since the model does not take

1These definitions of synonymy and polysemy are cited from WordNet, an online lexical reference system
containing information on amongst other things synonymy relations and polysemy. WordNet can be found
at http://wordnet.princeton.edu/.

2By surface form we mean language units accessible without performing any deep parsing or other more
advanced processing.
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2.2. DEFINING THE FEATURE SPACE

any semantic relationships between words into consideration, it has problems especially
with synonymous and polysemous words.

The problem of synonymy can be somewhat alleviated by using some preprocessing
to map words with similar morphological roots to the same term, see section 2.4. Such
preprocessing may map words with very similar meanng, e.g. bicycle and bicycles, to the
same term. But the simple BoW approach can never fully utilize the fact that e.g. the
words car and motor may denote the same entity. The model may then perform well in
text classification insofar as all the words related to a certain document class appear with
sufficiently high frequency in training examples belonging to that class. The problem of
polysemy can be reduced by using some form of PoS -tagging3 to separate e.g. the noun
form and verb form of the same word.

2.2.2 Representing Term Meaning

The semantics or meanings of terms can also be represented in a vector space model.
Following Sahlgren and Cöster [26], we use the term concept vector for the resulting vectors.
Next we survey two different schemes for creating the concept vectors. This overview is
based on [16].

There are two different ways of representing term meanings in a vector space: the docu-
ment occurrence representation, DOR, and the term co-occurrence representation, TCOR.
Both representations are based on the distributional hypothesis which states that words that
frequently occur in the same contexts are semantically similar [13].

In the DOR term tj is represented as a vector t̄j = (c1j , c2j , . . . , c|C|j) of context weights,
where cij is the weighted frequency of term tj occurring in context ci. In this representation
the meaning of a term is viewed simply as the bag-of-contexts in which it occurs. This
representation is thus the dual of the bag-of-words representation, if we identify contexts
with documents.

In the TCOR, on the other hand, term tj is represented as a vector t̄j = (t1j , t2j , . . . , t|T |j)
of term weights. The meaning of a term is viewed as the bag-of-terms with which it co-occurs
in some context.

What should constitute a context in these representations is an open question. In the
Hyperspace Analogue to Language, HAL, model which is a TCOR-based model, a fixed
sized sliding window is passed over the document, ignoring sentence boundaries, and term
co-occurrences within this sliding window are counted [19]. The Latent Semantic Indexing,
LSI, model, a DOR-based model, on the other hand uses whole documents as contexts
[5]. Other possible context definitions include sentences, subsections and even document
domains. Note that the TCOR model always yield a square co-occurrence matrix of size
|T | × |T | while the DOR model yield an occurrence matrix of size |T | × |C|.

Sahlgren [25] argue that a narrow context, i.e. a sentence or a narrow sliding window,
captures what a word means as opposed to a larger context, i.e. a document or a large
sliding window, which captures what a word is about. In this they do not make any difference
between the DOR and the TCOR.

However as Lavelli et al. [16] point out, there is a fundamental difference between the
DOR and the TCOR and they show that the TCOR significantly outperforms the DOR
in some term classification tasks, when using documents as contexts. This is specifically
the case for words that are perfect synonyms. While some authors use two terms with
“identical” meaning interchangeably, others tend to use only one of the terms throughout
a document. In this case the DOR model will not capture the fact that these words are

3Part-of-speech tagging.
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semantically similar, while the TCOR model will, since the two synonymous terms will
probably co-occur with similar terms [16]. When short documents such as abstracts of
articles are used, the problem will probably be aggravated since there is no room to use
both terms in the same document.

2.2.3 Bag-of-Concepts

Rather than identifying features directly with some surface form, Sahlgren and Cöster [26]
introduce a representation which they call bag-of-concepts, BoC. This representation is based
on the intuition that the meaning of a document can be approximated by the union of the
meanings of the terms in the document. To accomplish this a document is represented
as the weighted vector sum of the concept vectors corresponding to the terms occuring in
the document. This heuristic has to our knowledge not been used in the context of text
classication. It is, however, used with the LSI method mentioned above, for creating query
vectors in an IR system [5].

The assumption that the meaning of a document is simply the union, or weighted sum,
of the meanings of the terms it contains have proven to work quite well in IR systems,
despite its simplicity. As we will see later in chapter 7 it seems to work quite well in TC
applications as well. However it has its limitations and it is not cognitively justified. The
main weakness of the heuristic is that it makes no difference between different semantical
categories of words and that it makes no use of contextual relations in the weighting of
the term meanings. This is illustrated by Song and Bruza in [35] who propose a heuristic
based on a general theory of conceptual spaces for combining term meanings. If and how
this heuristic could be used in creating representations for text classification tasks is an
interesting question which we due to time constraints are forced to leave open. Another
interesting possibility is to use some form of recurrent artificial neural network, RANN, to
model the contextual nature of meaning.

An interesting possibility, which may be beneficial for text classification, is that the
concept vectors can be collected in an unsupervised4 fashion. If the idea that the concept
vector associated with a term adequately represents the meaning of that term, we should
in principle be able to gain “knowledge” of the domain by collecting occurrence or co-
occurrence statistics on any text from the domain. Hence, by pre-building the DOR or
the TCOR on unclassified documents, we might be able to improve the performance of
the system. This approach has to our knowledge not been used in the context of text
classification.

2.2.4 Computational Considerations

The bag-of-words representations are often very sparse, since each document often contains
only a small fraction of all terms in the lexicon. Constructing the vectors is also very compu-
tationally efficient (linear in the number of term occurrences per document). Constructing
the bag-of-concepts representations, on the other hand, is highly computationally expens-
ive. This is especially the case when using the TCOR with a wide sliding window or a large
context, such as the whole document. Constructing the concept vectors with TCOR and
document context has time complexity quadratic in the number of word occurrences per
documents. The complexity of summing these concept vectors depends on the denseness of
the vectors, which will vary across different terms. However, the resulting document vectors
will be very dense.

4In the context of machine learning, the term unsupervised means that the learner works with data
which is not pre-classified, see chapter 4.
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With the DOR, or TCOR with a narrow sliding window, the situation is better. Since
the concept vectors in the DOR is the dual of the document vectors in BoW, constructing
and summing these vectors has time complexity linear in the number of term occurrences
per document. The resulting document vectors will, however, be very dense in this repres-
entation as well.

2.3 Weighting

In this section we discuss how to weight the importance of terms. Importance in this
context should measure how much the term contributes to the semantics of a particular
document. In the case of BoW this weight is applied to the term frequncies. Whereas,
in BoC representations we weight the importance of terms as in BoW, but we then apply
the weighting to the whole concept vector representing the semantics of the term. The
term weights in the TCOR representation are thus plain counts of co-occurrence frequency,
and in DOR plain counts of document occurrences. This is not a particularly well founded
heuristic, see [16] for a proposal of how to weight the individual dimensions of context
vectors.

Over the years a great number of different term weighting schemes have been proposed
in the IR community. Most of these consist of three independent parts, each based on a
different assumption. The general formula for weighting of term ti in document dj takes
the following form:

wij = tfij × idfi × normj , (2.1)

where the parts are based on the following assumptions:

• A term which appears multiple times in a document is more important5 than a term
which appears a single time. This gives the term frequency weight tfij .

• Rare terms are as important as common terms. This gives the inverse document
frequency weight idfi.

• Short documents are as important as long documents. This gives the normalization
weight normj .

Zobel and Moffat [43] has performed the most extensive evaluation of the proposed weighting
schemes. They estimate that the number of unique combinations of (2.1) in conjunction
with BoW is of the order of 100.000.6 Unfortunately they reach the conclusion that this
“weight space” can not be evaluated analytically and of the experimentally tested versions
no particular wij performed consistently better than the others.

It should be noted that while the weighting assumptions described above may be valid in
the field of IR, they are not automatically justified for use in TC. For example, Sebastiani
and Debole [33] show that replacing idfi with a measure based on term ti:s distribution
among classes in training data may give better performance. Yang and Pedersen [41] fur-
thermore show that these class based measures are highly correlated with the document
frequency dfi of term ti. Thus it may be the case that the assumptions from the field of IR
are not valid, or that they are even counterproductive, in the context of TC. If this is the case
a better characterization of the term weighting function would be: wij = lij × gi × normj ,
where lij denotes the local weighting of tij and gi denotes the global weighting of ti [2].

5Importance in this context denotes the differential quality of terms, i.e. how useful the term is as a
feature in the task at hand.

6The formula used by Zobel and Moffat has a slightly more complex form than (2.1). However, their
general result should apply to the form presented here as well.
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Since we are not interested in the weighting scheme per se in this thesis work, we leave
open the problem of weighting and use a commonly used and simple weighting scheme which
has given quite satisfactory results in IR as well as TC applications [33]:

tfij =
{

1 + log #(ti, dj) if #(ti, dj) ≥ 1
0 otherwise , (2.2)

where #(ti, dj) denotes the frequency of ti in dj .

idfi = log
|Ω|

#Ω(ti)
, (2.3)

where #Ω(ti) denotes the number of documents in Ω in which #(ti, dj) ≥ 1.

normj =
1√∑|T |

k=1(tfkj · idfk)2
, (2.4)

where the denominator equals the Euclidean norm ‖~dj‖2 of document vector ~dj before
normalization. Equation (2.4) gives all document vectors unit length, i.e. all documents
are represented as points on the |F|-dimensional unit sphere.

2.4 Preprocessing

Any language contains words that bear no semantic content by themselves. In English words
like for example “the”, “it” and “or” are of no use for text classification, since they probably
occur evenly over all classes. Therefore one often removes these stop words before creating
the document representation. Another common preprocessing step is to remove all terms
with less than k occurrences, usually with 1 ≤ k ≤ 5, and to remove all documents with
fewer than n words, usually with 5 ≤ n ≤ 20. This is done to reduce noise stemming from
the bad statistical estimates gained by these low frequency terms and too short documents.

In addition to these greedy preprocessing methods, to perform some form of morpholo-
gical normalization has shown often to improve results in information retrieval. This helps
to reduce problems with synonymy since words which share morphological root may be seen
as semantically equal for most purposes. Morphological normalization can thus be seen as
a way of creating more general features, see section 2.2.1. Two methods for performing the
normalization is stemming and lemmatization.

Stemming uses simple transformation rules to remove common inflexional affixes. The
transformation rules does not use any lexical information and so is not particularly accurate,
for example the word witness will be transformed to the word wit using the Porter stemmer
[23], which is the most common stemming algorithm for working with English text. This
means that while stemming in many cases reduce problems with synonymy it sometimes
make things worse by introducing polysemy. In order to alleviate this problem, the stemmer
is often customized for the specific application.

Lemmatization is a less greedy approach in which words are transformed from their
inflexional form into their root by use of more advanced language analysis (usually only
on the word level). This can be implemented in the form of morphological transformation
rules in conjunction with a lexicon. Another possibility is to use a lexicon which contain
mappings of inflectional forms to morphological roots for all words. This will, however,
be difficult in practice since there for many languages exist a large magnitude of different
inflectional forms. Lemmatization is probably more useful with more inflectional languages
than English for which stemming has proven sufficient in many applications.
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Chapter 3

Dimensionality Reduction

In this chapter we discuss the need for dimensionality reduction and describe different
methods for performing this reduction. The chapter is divided into three parts. In the
first part we discuss why dimensionality reduction is useful. In the second part we describe
variations of the feature selection approach which is divided into the general methods of
filtering and wrapping. In the third part we describe the feature extraction approach with
a focus on the random mapping technique. We end with a discussion of the incremental
random indexing implementation of random mapping.

3.1 The Need for Dimensionality Reduction

The pre-processing described in the previous section somewhat reduces the dimensionality
|F| of the document vectors. However, in most real world TC applications |F| is still of the
order of 10.000 or even 100.000 terms. This is prohibitive for several reasons. Many learning
algorithms are of quadratic or higher time and memory complexity in the dimensionality
of data. Thus, high dimensionality may be intractable for strictly computational reasons.
Furthermore, the classification quality of many learning algorithms scale poorly with the
dimensionality of data [31]. However according to Joachims [10] this is not the case with
the Support Vector Machine classifier, see section 4.3.

There are also problems concerning the data itself. Since a high-dimensional term space
will inherently contain a high amount of low frequency terms, the data will probably contain
a high degree of noise due to sampling errors. The problem is further aggravated in applic-
ations dealing with textual data. This is primarily due to the synonymous and polysemous
nature of language.

Sampling noise is a problem in many machine learning classification methods where it
leads to what is known as overfitting. This means that the automatically generated classifier
captures aspects of the training data that are contingent with respect to classes, see section
4. According to Sebastiani [31], to completely avoid overfitting requires that the number of
training documents is proportional to |F|.

These problems can be alleviated by performing a reduction of the dimensionality of the
data. This can be done by means of feature selection or feature extraction discussed in the
following sections. We denote the new reduced set of features F ′ and define the reduction
factor ξ, i.e. the relative reduction of dimensionality as [33]:

ξ =
|F| − |F ′|
|F|

. (3.1)
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Joachims [10] state that feature selection is not necessary and that it “merely covers up
deficiencies of the learning algorithm” [10, p.18]. This statement is based on the fact that the
ML algorithm used in [10], the Support Vector Machine, see section 4.3, is computationally
efficient when dealing with sparse document vectors as those generated by the surface
form models. This is generally the case for all ML methods working on inner-product
spaces. When dealing with dense document vectors as those generated by the BoC model
we believe that this statement does not hold regardless of which distance measure is being
used. However, Joachims correctly points out that all the feature selection measures that
fall within the filtering approach, described in the next section, rely on some independence
assumption which in general is not sound.

When implementing multi-label classification as |C| binary classifiers we make a differ-
ence between local dimension reduction, i.e. a unique set F ′i is used by each classifier ci,
and global dimension reduction, i.e. the same set F ′ is used by all classifiers. When the
classifiers are considered independent we prefer local reduction over global reduction, since
the former can be adapted to each specific classification problem.

3.2 Feature Selection

The most straightforward way to achieve dimensionality reduction is to simply select a
subset F ′ ⊂ F of features and use only these for classification. This is known as feature
selection and is equivalent to setting the dimensions that doesn’t belong to F ′ to zero,
an operation which is known as pruning. There are two different ways to perform feature
selection: the filtering approach and the wrapper approach.

3.2.1 Filtering

In the filtering approach, F ′ is selected by the use of a value function which is independent
of the classification algorithm. This value function is called term evaluation function, TEF,
in the context of BoW [33]. Since different representations give different feature definitions
we use the term feature evaluation function, FEF, instead. Usually a FEF which measures
the correlation of each feature with each class is used. The most important are two functions
from information theory, Information Gain, IG [41] and Gain Ratio, GR [33]. There are
several ways to define these functions, the following definitions cover the case of binary
classification.

Information Gain measures the number of bits of information for the binary classification
under cj that are gained by knowing the presence or absence of feature fi:

IG(fi, cj) =
∑

x∈{fi,f̄i}

∑
y∈{cj ,c̄j}

Pr(x, y) log2

Pr(x, y)
Pr(x) Pr(y)

, (3.2)

where Pr(fi, cj) denotes the probability that a document randomly drawn from C contain
feature fi and belongs to class cj ; f̄i and c̄j denotes the fact that fi is not present in the
document and the fact that the document does not belong to class cj , respectively.

Gain Ratio is a normalized form of Information Gain, where the latter is normalized
with respect to the entropy of class cj .

GR(fi, cj) =
IG(fi, cj)

H(y)
, (3.3)
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where the denominator denotes the entropy H(y) of y = {cj , c̄j}:

H(y) = −
∑

y∈{cj ,c̄j}

Pr(y) log2 Pr(y). (3.4)

The definitions above all treat features as boolean-valued. This has shown to work well
with sparse representations as BoW in which features roughly can be estimated as having
two values corresponding to zero and non-zero. However when we use dense representations
in the form of BoC, features do not show this “on-off” behaviour. The solution to this is
to apply some form of discretization to the continuous feature values and then apply the
FEF. Thus we find an optimal split-point and calculate the FEF using this split-point.

When using global feature selection the “goodness” of feature fi is evaluated either by
computing the weighted average over classes:

FEFavg(fi) =
∑
cj∈C

Pr(cj)FEF (fi, cj), (3.5)

or the maximum over classes:

FEFmax(fi) = max
cj∈C

FEF (fi, cj), (3.6)

where the FEF is one of the functions in equations (3.2) and (3.3).
All three feature evaluation functions are supervised, i.e. they use information on the

distributions of features over classes to assess the relevance of features. Interestingly, as
noted in section 2.3, Yang and Pedersen [41] show that when using BoW the document
frequency dfi of term ti seems to be highly correlated with the IGavg and χ2

max and that
it allows a reduction factor of 80–90% without a loss in effectiveness. This is probably
the case for GR as well since it is a normalized form of IG. This, however, have not been
experimentally verified. Neither has it been verified if it is correlated with IGmax. Yang
and Pedersen further show that TEFmax seems to be the best globalization measure, at
least for a χ2-test. Sebastiani and Debole [33] reach the conclusion that this is the case for
all three functions.

3.2.2 Wrapping

In the wrapper approach the actual classifier algorithm is taken into account.1 This ap-
proach is motivated by the fact that different classifier learning algorithms are affected in
different ways by feature selection. To capture this fact the optimal feature subset [15] is
defined as the subset of features F ′ ⊆ F such that the performance of the given classification
algorithm is optimal with respect to a given measure of effectiveness.

The feature evaluation functions used in the filtering approach are defined to capture
some notion of relevance. Kohavi and John [15] formulate two very general definitions of
what they call strong relevance and weak relevance with respect to an optimal Bayes clas-
sifier which is a theoretically optimal classifier given complete knowledge of the underlying
data distribution. Next they show that even the most theoretically justified definition of
relevance does not entail an optimal feature subset and that an optimal feature subset does
not entail relevance. This means that even the most relevant features can give suboptimal
performance and that an optimal feature subset may include irrelevant features.

1This subsection is based on [15].

13



CHAPTER 3. DIMENSIONALITY REDUCTION

The only way to solve this problem in general is by using the classification algorithm
itself (or in some cases knowledge about the algorithms performance under feature selec-
tion) in the selection of features. After evaluating every possible subset of features against
the classifier, the optimal feature subset can be picked and used for classification. Unfor-
tunately, since there are 2|F| different subsets this is computationally intractable in most
practical applications. The subset space can be partially searched by using for example for-
ward selection or backward elimination based on hill climbing or more advanced heuristics.
The approximative solutions given by these algorithms, however, only match the filtering
methods described above and this at a much higher computational cost.

3.3 Feature Extraction

The intuition underlying all feature extraction methods is that instead of selecting some
dimensions of the feature space and just throwing away the others we can project, or map,
the feature space into a new feature space of lower dimensionality. This new feature space
should represent most of the information in the original space and the amount of noise
introduced by this operation should be kept to a minimum. With some methods one even
hopes to reduce noise.

3.3.1 Latent Semantic Indexing

The most famous feature extraction technique is probably Latent Semantic Indexing, LSI,
which was introduced by Dumais et al. in the context of query expansion [6]. The method
is also known under the name Latent Semantic Analysis. In LSI the original feature vectors
(most commonly in the form of a terms-by-documents matrix) is mapped into a space of
lower dimensionality using singular value decomposition, SVD. By keeping only the k largest
singular values and its corresponding singular vectors, the best rank-k approximation (as
measured by the Frobenius-norm) of the original feature vectors is gained [2]. It has been
experimentally verified that LSI with an appropriate choice of k, usually 50 ≤ k ≤ 200, not
only reduces the dimensionality of the feature space, but that it also partially solves the
problem of synonymy. A commonly used explanation for this is that semantically similar
features and documents are mapped to closer regions in the new space. See [22] for a more
rigorous analysis based on a primitive probabilistic corpus model.

LSI can be used in TC applications by first performing the SVD on the training set and
then applying the mapping on the training set and the test set. According to Sebastiani
[31] one benefit of this mapping is that a set of features which together give strong support
for a certain document class can be mapped to the same feature in the new space, while a
potential drawback is that a feature which in the original space gave strong support for a
certain class can be weakened.

The main drawback of LSI is its computational complexity. Performing the SVD takes
time O(|D||F|c), where c is the average number of non-zero entries per column in the
features-by-documents matrix, i.e. the average number of features per document. Using
random mapping, described in the next section, as a pre-processing step Papadimitriou et
al. [22] show that the computational complexity can be reduced substantially with only a
marginal amount of added noise.

3.3.2 Random Mapping

A much more computationally efficient method for performing the dimensionality reduction
is Random Mapping, RM, also known as Random Projection. In this method the original
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space is mapped onto a lower dimensional subspace. This is done by multiplying the original
s×d matrix A, consisting of s d-dimensional samples, by a random d×k matrix R, resulting
in the reduced-dimensional s×k matrix B:

Bs×k = As×dRd×k. (3.7)

The method can be seen as an implementation of the following lemma by Johnson and
Lindenstrauss (cited from [1]): Given γ > 0 and an integer n, if we let integer k ≥
O(γ2 log n), then for every set P of n points in <d there exists a map f : <d 7→ <k such
that for all u, v ∈ P

(1− γ)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + γ)‖u− v‖2.

Note that the lemma only guarantees that a map with this property exists. It tells nothing
about how to construct the actual map. However, there are constructive versions of the
lemma as well. In most of these lemmas f is a linear map in the form of a random matrix
with elements independently N(0, 1)-distributed, i.e. distributed as the Normal random
variable with mean 0 and variance 1. Such dense real valued matrices are unfortunately not
optimally useful in practice for computational reasons.

However, alternatives exist and Achlioptas [1] has shown that any given matrix R with
elements rij being independent random variables from either one of the following prob-
ability distributions satisfies a version of the lemma which tighter bounds the degree of
perturbation:

rij =
1√
k
·
{

+1 with probability 1/2
−1 .. 1/2 , (3.8)

rij =
3√
k
·

 +1 with probability 1/6
0 .. 2/3
−1 .. 1/6

. (3.9)

Note that in practice the scaling factors are taken into account after the random mapping
is performed. Thus R only contains 0:s and ±1:s.

The distributions above can be generalized by varying the dimensionality k and the
denseness e of the random matrix [27]:

rij =
1
e
·


+1 with probability e/2

k

0 .. k−e
k

−1 .. e/2
k

. (3.10)

Since the number of +1’s and −1’s must be equal according to this scheme, the value of e
must be an even integer. In the following we use e ≈ a, where a is some real number, to
refer to the smallest even integer ≥ a.

The merit of the lemma by Johnson and Lindenstrauss, and hence the constructions of
Achlioptas, is that they give theoretical bounds on the perturbation of the Euclidean length
of arbitrary vectors. This means that we also have bounds on the amount of distortion of
relative document similarities as measured with the Euclidean distance. The lemma does,
however, not say anything about how inner products are distorted and we can not a priori
assume that the distortion is of the same magnitude in this case. On the contrary results
reported by Bingham and Manilla [3] indicate that distance measures based on the inner
product is more sensitive to distortion under random mapping.

We instead turn to Kaski [14] who provide an analysis of the distortion of inner products
caused by the random mapping. The downside is that he assumes that the elements of R

15



CHAPTER 3. DIMENSIONALITY REDUCTION

are N(0, 1) distributed. The following derivation have been slightly reformulated from the
one in [14].

Let R be a d×k random matrix with rows normalized to Euclidean unit length. Further-
more, let ~m and ~n be two arbitrary vectors in the original space. After a random mapping
according to (3.7) the inner product of the resulting vectors ~x and ~y can be written as:

~x · ~y> = ~mRR>~n>. (3.11)

The inner product of the vectors in the reduced-dimensional space is thus distorted by the
matrix RR>. If this matrix was equal to the identity matrix I, then the distortion would
be zero. Let ε be the deviation matrix of RR> from the identity matrix:

ε = RR> − I. (3.12)

Since the rows of R have been normalized to unit length, ~ri · ~rj
> = 1 = Iij for i = j. Hence:

εij =
{

~ri · ~rj
>, for i 6= j

0, otherwise
. (3.13)

Distributivity together with (3.11) – (3.13) gives:

~x · ~y> = ~m · ~n> + ~mε~n> = ~m · ~n> +
∑
i 6=j

εijminj . (3.14)

From (3.14) we see that the distortion on inner products imposed by random mapping
depend on the distribution of εij as well as on the distribution of minj .

Turning first to εij , it is simple to show that if the elements rij of the random matrix R
are distributed with mean 0, then εij is distributed with mean 0 as well. Furthermore, Kaski
[14] and also Bingham and Manilla [3] show that if the elements of R are independently
N(0, 1)-distributed, then the variance of εij is 1/k, where k is the number of columns of R.
For the distributions above we know of no bounds on the variance of εij . For an illustration
of how the distribution of εij behave for different values of k and e, where e is the number
of non-zero entries per row in R as defined in (3.10), see figure 3.1.

Turning to minj , the situation is the same and there are to our knowledge no theoretical
analysis of its distribution in the context of textual data, although Kaski, again, notes that
the probability of minj being non-zero is proportional to the sparseness of the original data
vectors, i.e. to the ratio of non-zero elements and zero elements. Unfortunately, random
mapping is most useful when the original data is dense. The reason for this is that it is often
possible to optimize vector similarity calculations for sparse data and to store sparse data
requires memory proportional to the number of non-zero elements per vector. In general
when we use machine learning methods which can be highly optimized for sparse data we
would only consider random mapping as a feature reduction technique if the mean number
of non-zero features per sample is larger than k.

3.3.3 Random Indexing

Sahlgren and Cöster [26] propose that, in the context of document representations based on
DOR or TCOR, the random mapping should be implemented in an incremental fashion. In
conventional random mapping one would first build the original s × d matrix by counting
document occurrences (DOR) or term co-occurrences (TCOR) and then this matrix would
be mapped to the lower dimensional subspace by multiplication with the d× k-dimensional
random matrix.
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Figure 3.1. Distribution of εij for k = 30 and k = 150 together with e ≈ k/100, e ≈ k/10 and
e ≈ k/3. The cumulative Gaussian with mean 0 and variance 1/k is plotted for reference. It is
clear that the cumulative distribution for e ≈ k/3 approaches a cumulative normal distribution
with mean 0 and variance 1/k faster than the other values of e. From the graphs one can also
see that it is possible to make a trade-off between the size of the distortion and the frequency
of distortion.

Random Indexing, RI, instead works incrementally and assigns a k-dimensional sparse ran-
dom label, i.e. a sparse random vector, to each unique document (DOR) or unique term
(TCOR). In the case of DOR, every time a term occurs in a document its random label is
added to the context vector associated with the term. In the case of TCOR, every time
a term co-occurs with another term their respective random labels are added to the oth-
ers term vector. Since matrix multiplication is distributive, the matrix consisting of all
these index vectors2 after indexing t terms will be equivalent to the matrix gained if we
had stopped building the s × d matrix after the same t-th term and then performed the
random mapping. The method has been used for analyzing term semantics [12] as well as
for BoC-representations [26].

When working with dense representations the benefit of RI is clear in terms of memory
consumption, since we only have to store the d e-dense k-dimensional random labels together
with the s approximately k-dense k-dimensional index vectors. However, the computational
complexity is worse than for standard random projection, as the following simple analysis
shows.

Beginning with Random Indexing with DOR it is easily seen from algorithm 1 that the

2In papers on random indexing, the term index vector is usually used instead of term vector and context
vector.

17



CHAPTER 3. DIMENSIONALITY REDUCTION

total time complexity is O(DTe), where D is the number of documents, T is the average
number of term occurrences in each document and e is the number of non-zero elements
per random label.

Random Mapping with DOR, see algorithm 2, on the other hand, has time complexity
as follows. Building the matrix takes time O(DT ). If we use sparse representations for A
and R the matrix multiplication then takes time O(DT ′e), where T ′ is the average number
of unique terms per document. This gives a total time of O(DT + DT ′e), ignoring the
creation of the random labels which takes time O(De) with both methods. When T ′ < T ,
RI will be significantly slower for sufficiently large values of e. Due to its simplicity we leave
out an analysis for the case of TCOR, which shows a similar result.

Algorithm 1 Random Indexing – DOR
procedure RandomIndexing.DOR(D,k,e)

for all documents d ∈ D do
~ld ← CreateDocLabel(k,e) . Creates a k-dimensional e-dense random vector
for all term occurrences t′ ∈ d of term t ∈ T do

~Bt ← ~Bt + ~ld . Add random label to row t of resulting matrix B
end for

end for
return B

end procedure

Algorithm 2 Random Mapping – DOR
procedure RandomMapping.DOR(D,k,e)

for all documents d ∈ D do
for all term occurrences t′ ∈ d of term t ∈ T do

At,d ← At,d + 1 . Update occurrence count of (t, d)
end for

end for
B ←RandomMap(A,k,e)
return B

end procedure

procedure RandomMap(A,k,e)
for i← 1, rows(A) do

Ri ←CreateDocLabel(k,e) . Creates a k-dimensional e-dense random vector
end for
B ← A ·R
return B

end procedure

RM should thus be faster than RI, but requires more memory. If memory constraints are
moderate, we propose that the random mapping is implemented in a batch-wise fashion,
thus striking a balance between speed and memory consumption. Batch-wise RM works
as follows: The set of documents is partitioned into batches and the matrix of frequency
counts is collected for each batch. After each batch is collected it is multiplied by the
random matrix and the resulting matrix is added to the matrix from the previous batch.
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Chapter 4

Classifier Learning

In this chapter we give a brief background to, and an account of the different machine
learning methods used in the thesis. We begin by defining the learning situation. Then we
describe the concept of separating hyperplanes and a simple training rule for learning such
hyperplanes. We go on to describe the concept of structural risk minimization and how
to implement it in the form of a Support Vector Machine. Finally we briefly describe the
AdaBoost and Decision Stump algorithms which are used for reference and as a baseline
classifier respectively.

4.1 The Learning Situation

We face the following learning situation: given a set of labeled documents, how should we
label new unseen documents? In most cases this is a knowledge free problem which means
that no formalized meta-data or extrinsic knowledge are available [31]. Since we only have
ostensive definitions of classes available we need to perform some form of inductive learning.
This kind of learning situation have been studied by the machine learning, ML, community
for some decades now. See [21] for a good overview of general machine learning techniques.

With some exceptions e.g. [40], almost all ML approaches to multi-label text classi-
fication treat the classification problem as consisting of |C| binary classification problems.
When a class hierarchy is available the dependence of classes can be exploited to gain effi-
ciency [42] and also effectiveness [4], i.e. better as well as faster classification. Unfortunately
due to time constraints we have not been able to implement this approach and so in the
following we make the assumption that classes are independent.

Recall from section 1.2 that we want to approximate the function Φ̌ : D × C → {T, F}.
Formalizing the multi-label binary classification problem we seek the functions Φb

i : D →
{T, F} for all i ∈ {1, . . . , |C|}. The machine learning algorithms we will use do not work
directly with text documents and they presuppose that each binary classification problem
is under the set {±1}. We therefore use a map D×C 7→ X ×{±1}|C|, where X is the feature
space, i.e. a |F|-dimensional vector space.

When using this representation, instead of seeking the functions Φb
i we seek the functions

hi : X → {±1} for all i ∈ {1, . . . , |C|}. Since we work in a vector space model the only
principal constraint on the functions hi is that they are able to separate the feature space
into regions.
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CHAPTER 4. CLASSIFIER LEARNING

To ease notation and exposition we will drop references to the |C| independent classification
problems and concentrate on the case of a single binary problem. This is possible, since
by the independence assumption all conclusions reached in the following sections transfer
directly to the multi-label case.

Before we continue to describe the different learning algorithms a note on notation is
in place. We refer to the vector representations ~xi ∈ X of documents di ∈ D as instances.
By yi ∈ {±1} we denote the label of instance ~xi. The combination (~xi, yi) of instances and
labels are referred to as examples. By Ω we denote the set of all pre-classified examples. The
functions h are referred to as hypotheses. The general inductive process which are to infer
the hypothesis h from Ω is called the learner. The set H of hypotheses which the learner is
allowed to work with given a certain feature space X is called the hypothesis space.

Since manual text classification is a subjective practice, i.e. classes are not formally
defined, the learner is forced to learn only from examples. This implies the use of supervised
or semi-supervised a.k.a. bootstrapping machine learning methods. The latter may be the
preferable choice when examples are scarce. We are only interested in supervised methods
in this thesis.

Over the years a wide range of supervised machine learning approaches to text classi-
fication has been proposed, see e.g. [31], [32] or [39] which are great surveys of the area.
Notable ML-methods used are amongst others Naive Bayes, k-Nearest Neighbour, Artifi-
cial Neural Networks, Decision Trees, Support Vector Machines and meta-methods such as
Bagging and Boosting.

In this thesis we concentrate on the Support Vector Machine and Boosting, see sections
4.3 and 4.4. The reason for this is threefold. First of all they have proven to be the most
effective algorithms in many cases. Secondly, they have also proven to be among the most
efficient algorithms. Thirdly, they are the most motivated according to computational learn-
ing theory, i.e. the formal study of learning algorithms [32]. Thirdly, the algorithms work
quite differently to achieve similar goals. While SVM uses all the features for classification,
Boosting of Decision Stumps use only a handful. This allows us to assess the quality of
individual features by comparing the results for the two algorithms.

4.2 Separating Hyperplanes

Before we go on to explain the Support Vector Machine learning method we need to under-
stand the concept of separating hyperplanes. It is also instructive to look at a very simple
algorithm for finding these hyperplanes.

Suppose we have a set of examples (X, Y ), where x ∈ <2 and y ∈ {±1}, i.e. the examples
are labeled points in the plane. Under a certain labeling a separating hyperplane is a line
which divides the plane into two regions, each containing only points labeled +1 or only
points labeled −1, see the left of figure 4.1. The situation is analogous for the case of <N , in
which we have an N−1 dimensional hyperplane. Note that not all labelings of the examples
can be separated by a hyperplane, see the right of figure 4.1. If, under a certain labeling,
there exist a hyperplane which separates all the examples we say that the examples are
linearly separable under that labeling.

If X is an inner product space, then the following function implicitly define a separating
hyperplane [10]:

h(~x) = sign(~w>~x + b) =
{

+1, if ~w>~x + b > 0
−1, otherwise , (4.1)

where ~x ∈ X is an instance, ~w ∈ X is the weight vector perpendicular to the hyperplane
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Figure 4.1. Left: Three different hyperplanes separating positive examples + from negative
examples −. Right: The famous XOR-problem in two dimensions. There exist no hyperplane
which separates all the positive examples from the negative.

and b ∈ < is the bias. For the case b = 0, (4.1) define a separating hyperplane through the
origin. For the case b 6= 0 the situation is more complicated. The direction of ~w still defines
the direction of the hyperplane, while the length ‖~w‖ together with b defines the distance
of the hyperplane from the origin.

4.2.1 The Perceptron

We now turn to a simple algorithm for finding a separating hyperplane. The perceptron
algorithm was introduced by Rosenblatt in 1957 and Minsky and Papert in 1969 proved it
to converge to a separating hyperplane, given that one exists for the current labeling. In
the case of b = 0 it works as follows [21]:

The weight vector ~w is initialized to a random vector in X . Then iterating through the
training examples (xi, yi) ∈ Ω, at each step the weight vector is updated according to the
perceptron training rule:

~wi+1 ← ~wi + η(yi − fi(~xi))~xi, (4.2)

where ~wi is the weight vector at iteration i, η is the learning rate, typically a small number,
e.g. 0.1, and fi(~xi) is the output of (4.1) at iteration i. At each iteration, if the current
weight vector makes fi misclassify instance ~xi, then the weight vector is either pushed
towards or away from ~xi depending on how the instance was misclassified, i.e. depending
on the sign of yi − fi(~xi).

The perceptron algorithm works remarkably well in many cases when examples are lin-
early separable. One downside is that examples are not always linearly separable. Another
downside is that it generalizes poorly, i.e. even though training examples may be classified
correctly performance on unseen instances from the same distribution may be bad. Why
this is the case and how it can be handled is explained in section 4.3.
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Figure 4.2. A set of 3 instances in <2, shattered by hyperplanes.

4.2.2 Vapnik-Chervonenkis Dimension

We have mentioned that a given set of instances may not be linearly separable under a
certain labeling. A natural question then is: can we be certain whether a set of instances
are linearly separable irrespective of their labeling? Fortunately this question is answered
in a very general way by Vapnik-Chervonenkis theory, VC-theory. See e.g. [21] or [30] for
comprehensive overviews, or [38] for a complete account.

A fundamental notion in VC-theory is the VC-dimension of a hypothesis space. This is
based on the concept of shattering. If for a set of instances a certain hypothesis space H,
e.g. separating hyperplanes, can separate the instances irrespective of their labeling we say
that the hypothesis space shatters the set of instances. Now the VC-dimension, V C(H) of
hypothesis space H defined over feature space X is defined as the cardinality of the largest
finite subset of X shattered by H [21].

We are now able to answer the question posed above. If the hypothesis space H consists
of separating hyperplanes defined over X = <n, then it can be proved that V C(H) = n+1,
i.e. arbitrary subsets of n + 1 instances in <n are linearly separable. This is illustrated for
the case n = 2 in figure 4.2.

4.3 Support Vector Machines

The relationship between the dimensionality of the feature space and the VC-dimension
of the corresponding hypothesis space implies that given a sufficiently high dimensional
feature space X , subsets of X will be linearly separable. Another way to look at this is
that the expressiveness of separating hyperplanes is proportional to the VC-dimension of
the hypothesis space.

To see why this is important we have to look at a result from statistical learning theory,
but first we need to define two forms of risk which arises with inductive learning of classifiers.

4.3.1 Structural Risk Minimization

The first form of risk of interest to us is the empirical risk which measures the average loss,
i.e. the performance according to some measure, over training examples [30]:
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Remp(h) =
1
m

m∑
i=1

L(h(~xi), yi), (4.3)

where L(h(~x), y) is some loss function. In this thesis we use the zero-one loss function,
which only measures if the classification was correct or not [10]:

L0/1(h(~x), y) =
1
2
|h(~x)− y| =

{
0 if h(~x) = y
1 otherwise . (4.4)

As we will see in chapter 5, this loss function is not optimal for use in text classification
tasks. The reason we use it in this thesis is that there were no SVM implementations
available which could handle other loss functions. However, recently Joachims have shown
how to construct SVM:s which handles practically arbitrary loss functions [11].

The second form of risk is referred to as the expected risk or the generalization error. This
is defined as the expected loss averaged over unseen examples drawn from the underlying
distribution Pr(~x, y) [30]:

R(h) =
∫

L(h(~x), y) dPr(~x, y). (4.5)

In practice this risk is estimated by sampling the underlying distribution and counting the
loss as measured with the loss function L, i.e. the integral in 4.5 is replaced by the weighted
sum of loss on a set of samples.

The fundamental problem in inductive learning is that a good performance as measured
by (4.3) does not imply a good performance as measured by (4.5). This is a problem with for
example the perceptron which generalizes poorly, i.e. the actual risk is much higher than the
empirical risk. This happens with the perceptron because it converges to a hyperplane which
is not necessarily the best one. More generally the problem is that when the hypothesis
space has a too high capacity, i.e. the hypotheses can capture too complex relationships
in the feature space, then a hypothesis may have zero loss over training examples and still
perform very bad on all other instances. Thus by decreasing the capacity of the hypothesis
space we should be able to improve generalization. As noted above V C(H) can be seen as
a measure of the expressiveness of the hypotheses in H, i.e. the capacity of H.

This fundamental relationship is captured by the following result from statistical learning
theory which bounds the risk by the sum of the empirical risk and a capacity term [10]:

R(h) ≤ Remp(h) + O

(
V C(H) ln( n

V C(H) )− ln(η)

n

)
, (4.6)

where n is the number of training examples over which Remp(h) is measured and the in-
equality holds with probability at least 1 − η. The theorem in effect states that in order
to gain a low risk we must find a VC-dimension that is sufficiently high to capture the
complexity of the feature space and at the same time keep it as low as possible to get good
generalization. This strategy is referred to as structural risk minimization.

To achieve structural risk minimization we must find a way to control the VC-dimension
of the hypothesis space. Fortunately there is a straightforward way to do this in the case of
separating hyperplanes: just change the margin, see figure 4.3, between the hyperplane and
the training examples. Formally the margin δ is defined as the distance from the separating
hyperplane to the closest examples. Thus if we impose a higher to lower ordering on the
hypothesis spaces δ(H1) ≥ . . . ≥ δ(Hi) ≥ . . . of separating hyperplanes according to their
margin, then this ordering corresponds to a lower to higher ordering of the VC-dimensions
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Figure 4.3. Left: Even though the margin constraints the placement of the separating
hyperplanes there still exists more than one separating hyperplane. Right: When the margin
is maximized there exists only one separating hyperplane. The training examples lying on
the margin, here marked with circles, are called support vectors, and they uniquely define the
separating hyperplane.

V C(H1) ≤ . . . ≤ V C(Hi) ≤ . . .. This fundamental fact was discovered by Vapnik who also
proved a bound of the VC-dimension in terms of the margin, see for example [38].

4.3.2 Hard Margin SVM

The definition of separating hyperplanes in section 4.2 did not include any reference to the
margin. However, for an algorithm to implement structural risk minimization in the form
sketched out above this is needed. The following constraints define what is referred to as
the canonical separating hyperplane:

~w>~x + b ≥ 1 when y = 1,
~w>~x + b ≤ −1 when y = −1,

(4.7)

where the equalities hold for the positive and negative support vectors respectively, i.e. the
examples lying on the margin, see right of figure 4.3. The inequalities state that all examples
should lie on the correct side of the separating hyperplane, see right of figure 4.3. When
these constraints are fulfilled for all examples (~x, y) it can be shown that

δ =
2

~w> ~w
=

2
‖~w‖2

, (4.8)

where δ is the margin as defined above.
Combining (4.7) and (4.8) give rise to the following optimization problem:

minimize 1
2 ‖~w‖

2,
subject to yi(~w> ~xi + b) ≥ 1,∀l

i=1,
(4.9)

where l is the cardinality of the training set.
Since the vector norm is a convex function and the constraints are linear and thus convex

the optimization problem is convex. This means that solving the optimization problem gives
the unique optimal separating hyperplane [30]. In practice (4.9) is solved by using Lagrange
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multipliers to rewrite the optimization problem into a form solvable by standard Quadratic
Programming methods, see [10] or [30] for details.

The solution of (4.9) is expressed as a linear combination of the Lagrange multipliers αi

and the examples (~xi, yi):

~w =
l∑

i=1

αiyi ~xi, (4.10)

where αi ≥ 0, with αi > 0 iff ~xi is a support vector.
Combining 4.10 and the linear threshold function of 4.1 give rise to the Support Vector

Machine classification function:

h(~x) = sign(~w>~x + b) = sign(
l∑

i=1

αiyi ~xi
>~x + y′ − ~w>~x′), (4.11)

where (~x′, y′) is an arbitrary example with ~x′ being a support vector. The expression for b
follows directly from (4.7).

4.3.3 Soft Margin SVM

The derivation of the Support Vector Machine given above is only valid when the examples
are linearly separable. This can be seen in the definition of the canonical separating hy-
perplane (4.7), where the constraints impose a strict separation of positive and negative
examples. However, as was noted in the discussion of the perceptron, it is not always
the case that examples are linearly separable. Fortunately this can be taken care of by
introducing slack variables ξi and rewriting (4.7) into

∀l
i=1: yi(~w> ~xi + b) ≥ 1− ξi, (4.12)

with ξi ≥ 0 and ξi > 0 if (~xi, yi) lie inside the margin and ξi > 1 if (~xi, yi) lie on the wrong
side of the separating hyperplane.

Using (4.12) instead of (4.7) the Soft Margin SVM is constructed by solving the following
optimization problem:

minimize 1
2 ‖~w‖

2 + C
∑l

i=1 ξi,
subject to yi(~w> ~xi + b) ≥ 1− ξi,∀l

i=1,
(4.13)

where C is a parameter controlling the trade off between the margin size and the sum of
errors. Hence, this optimization problem make implicit use of the L0/1 loss function as
discussed above.

The upshot of this formulation is that the method works when examples are not linearly
separable, which is often the case in real world situations, either due to the complexity of
the problem or due to noise. The downside is that we have turned a parameter free method
into one that is quite sensitive to parameter choice, see chapter 7.

4.3.4 Kernels for Non-linear Mappings

Soft margin SVM is one way of handling the case when data are non-separable. Another
method, which can be combined with the former, is to non-linearly map the feature space
into another feature space of higher dimensionality, i.e. instead of working in X we work in
φ(X ), where φ is a non-linear map.
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Another motivation for using such non-linear maps is that even though a sufficiently high
dimensionality of the feature space often implies that examples are linearly separable, it is
not always the case that a linear function in the feature space best capture the relationships
between instances and labels. It might thus be possible to find a non-linear function that
better matches the complexity of the problem at hand.

Since the computational complexity of SVM depend on the dimensionality of the in-
stances we would like to be able to perform the calculations in the low dimensional space,
while implicitly working in the high dimensional space. This means that instead of cal-
culating the inner product of φ(~xi)>φ( ~xj) in the high dimensional feature space φ(X ) we
want to calculate the inner product in X . This is exactly what is done by a certain class
of functions called kernels. These are functions which when used with the optimization
problems defined above in place of the ordinary inner product, allows us to find an optimal
separating hyperplane in φ(X ) which corresponds to a non-linear decision function in X .
No changes to the optimization problems are needed, we only substitute all inner products
~xi
> ~xj with κ(~xi, ~xj), where κ is a kernel.

The most popular kernels for use with SVM are [30]:

Linear : κ(~xi, ~xj) = ~xi
> ~xj ,

Polynomial : κ(~xi, ~xj) = (~xi
> ~xj + 1)d,

Radial Basis : κ(~xi, ~xj) = e
1

2σ2 ‖ ~xi− ~xj‖,

(4.14)

where d is the degree of the polynomial and σ2 is the variance of the Gaussian. The linear
kernel of course is no non-linear map but is included for completeness.

4.4 Boosting of Decision Stumps

Even though the Support Vector Machine is the algorithm of primary concern in this thesis,
we use two other classification methods for comparison. In the following section we briefly
describe a meta-algorithm called AdaBoost, which make use of Decision Stump, a very
simple learning algorithm described in section 4.4.2.

4.4.1 AdaBoost

The intuition underlying ensemble methods is that the combination of several classifiers
might perform better than a single classifier on its own. This has shown to be a good
intuition and has been implemented successfully in the methods of bagging and boosting.
In this thesis we choose boosting over bagging, since even though the methods are quite
similar, boosting has a stronger theoretical foundation in computational learning theory and
has shown to outperform bagging in most applications, even if at a slightly higher variance
[24].

The boosting method is a general method based on the fact that so called weak learners,
i.e. learners which perform just better than random guessing, can be combined to form a
strong learner, i.e. a learner which performs arbitrarily good, given sufficient time and
data. This has a formal interpretation in the PAC model of computational learning theory.
Since this is a brief overview of the method we ignore these theoretical aspects and refer
the reader to for example [20] for an introduction to these issues.

There are several different versions of the general boosting method e.g AdaBoost and
LogitBoost [20]. We use the former in the form of AdaBoost.M1 since it is the classical boost-
ing method which means that it is well documented and works quite straightforwardly. The
main idea underlying AdaBoost, short for adaptive boosting, is that by training a set of weak
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learners sequentially and weighting training examples based on how difficult they are for the
previous weak learners, the current weak learner can concentrate on classifying these difficult
examples correctly. The weights can thus be seen as imposing a non-uniform distribution
on the examples in Ω. After all the weak learners are trained on the weighted examples, a
combined learner is created as a weighted linear combination of the weak learners. Here a
weak learner is weighted higher if it performed well on the training examples.

Formalizing the idea above, let t = 1, . . . , T denote the rounds that are performed
sequentially and let Dt

i be the distribution on training example i at round t. Furthermore,
let ht : X → {±1} denote the hypothesis output by the weak learner L : X ×{±1}×D → H
trained at round t under distribution Dt and let αt be the weight of ht(~x) in the final
combined hypothesis. Then AdaBoost works as described in algorithm 3 [28].

Algorithm 3 AdaBoost
Require: ( ~x1, y1), . . . , ( ~xm, ym) ∈ Ω : ~xi ∈ X , yi ∈ {+1,−1}

procedure AdaBoost(Ω,L)
for i← 1,m do

D1
i ← 1

m . Initialize to uniform distribution
end for
for t← 1, T do

ht ← L(Ω,Dt)
εt ←

∑m
i=1 Dt(i)L0/1(ht(~xi), yi) . Weighted zero-one loss of hypothesis ht

αt ← 1
2 ln( 1−εt

εt
) . αt chosen to gain exponential convergence

Dt+1
i = Dt

ie−αtyiht( ~xi)∑m

j=1
Dt

j
e−αtyjht( ~xj) . Distribution normalized s.t.

∑m
i=1 Dt+1

i = 1

end for
H(~x) = sign(

∑T
t=1 αtht(~x))

return H(~x)
end procedure

It can be proved that AdaBoost converges to a hypothesis with zero loss on training data
exponentially fast, given that every weak learner performs better than random [28]. Even
though this is not always the case in practice [20], the method often works very good. There
are also generalization bounds similar to those for SVM and it can be shown that the general
boosting method under certain conditions maximize the l1-margin of the final hypothesis,
whereas SVM maximizes the l2-margin. See [20] for a survey of these issues.

In this thesis we use the very simple Decision Stump algorithm, described in the next
section, for weak learners as preliminary experiments showed that using more complex
learning methods (e.g. C4.5 or Backpropagation Neural Networks) as weak learners tended
to lead to overfitting. This approach is also taken in the BoosTexter method by Schapire
and Singer [29]. There is however a risk involved in using such simple weak learners, since
the convergence of AdaBoost to a perfect fit on training examples is based on the restriction
that each hypothesis performs better than random, a restriction that is not always fulfilled
by simple learners such as Decision Stumps.

4.4.2 Decision Stump

A Decision Stump is a one level Decision Tree, i.e. a rule which splits the feature space in
two halves based on the value of a single feature [9]. In a feature space based on < this can
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be formalized as

DSs
j (~x) =

{
+1 if (#+1

j,s ≥ #−1
j,s ∧ ~xj ≥ s) ∨ (#+1

j,s < #−1
j,s ∧ ~xj < s)

−1 otherwise
, (4.15)

where s ∈ < and #c
j,s = |{(~x, y) ∈ Ω : ~xj ≥ s ∧ y = c}|, i.e. the number of times class c

co-occurs with the value of feature j being greater than s.
The optimal Decision Stump uses the feature which optimally splits the examples. It

can be found by simply evaluating all possible Decision Stumps and then choosing the one
which best splits the examples in Ω. The goodness of Decision Stump DSs

j (~x) splitting
feature j at point s can be measured for example by information gain (reformulated here
in a more task-specific form than in (3.2)):

IG(Ω, DSs
j ) = H(Ω)− |Ωj≥s|H(Ωj≥s) + |Ωj<s|H(Ωj<s)

|Ω|
, (4.16)

where Ωj≥s ⊆ Ω denotes the subset of examples (~x, y) ∈ Ω such that ~xj ≥ s and H(Ω)
denotes the entropy of the set Ω of examples [21].

In addition to using Decision Stumps as weak learners in the AdaBoost algorithm, we
use Decision Stump as a baseline classifier. This is motivated by two reasons. First, since
it is based on only one feature in isolation it can be seen as an indicator of how good the
individual features produced by the different representations are. Secondly this form of
really simple and computationally cheap learning methods have shown to perform on par
with more complex methods in many real world applications, at least on average [7].
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Chapter 5

Classifier Evaluation

In evaluating a classifier we make a distinction between effectiveness which denotes the abil-
ity of the classifier to make good classifications with respect to some measure, and efficiency
which denotes the performance of the classifier in terms of time or memory complexity. The
latter is discussed briefly in chapter 4.

In this chapter we discuss some important issues faced when evaluating the effective-
ness of the resulting classification system. First we explain why the task of evaluation is
problematic, particularly in the context of text classification. We then describe how to best
utilize available pre-classified data. Following this is a brief description of different evalu-
ation measures used in evaluating text classification systems. Finally we give an account of
further issues in evaluation.

5.1 Difficulties in Evaluation

In section 1.1 we discussed the interrelatedness of the different phases of the text classifica-
tion task. This is a problem in all machine learning tasks which makes analytical evaluation
of the resulting classifier practically impossible and empirical evaluation difficult [31]. An-
other problem in most practical machine learning applications is a lack of pre-classified
data which leads to high variance in the empirical evaluation measures. In the case of text
classification the evaluation task is even more difficult since we are trying to automate a
subjective practice, defined only ostensibly. The data can be inconsistent since different
human classifiers may classify some documents differently.

The subjective nature of TC is evident in the often quite low inter-indexer consistency
ICa,b of two human indexers a and b.

ICa,b =
N

A + B + N
, (5.1)

where A is the number of unique classes assigned by one indexer, B is the number of unique
classes assigned by the other and N the number of unique classes assigned by both indexers
in common.

The inter-indexer consistency has been reported to be as low as about 35% – 40% in
some domains [36]. Soergel [34] points out that a high consistency is bad if the quality
of the classifications are bad and the quality of a system can only be judged relative to
some purpose. However, when the purpose is to guide information seekers to a document
on some topic, high consistency can be a very important quality since it makes it easier to
learn where to find what one is looking for.
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On a more technical side all machine learning methods presupposes that all the data
samples are drawn form the same distribution and that this distribution is a stable under-
lying distribution. This assumption is probably not completely sound in the case of text
classification, which is an ever evolving practice both in terms of the domain and the bias
of the indexers. This together with the issues discussed above makes it difficult to define
a gold standard, i.e. what should be counted as the best possible effectiveness according to
some measure.

Next we describe some different schemes for utilizing as much as possible of the available
data for evaluation in order to keep variance low and in section 5.3 we describe different
evaluation measures.

5.2 Evaluation Schemes

As have been discussed in chapter 4 we are primarily interested in the generalization per-
formance of the classifier. We are only interested in the effectiveness on training data in
as much as it defines an upper bound on the effectiveness on unseen data. However, since
the learner need as much pre-classified examples as possible to output a good generalizing
classifier and since pre-classified examples are scarce, we need some way to optimize the use
of these examples. Otherwise the variance of the measured effectiveness can be high.

The most simple way to achieve this is by use of test-set testing in which the set Ω
of pre-classified examples is divided into the training set Tr, the evaluation set Te and,
optionally, the validation set V a. The classifier is then constructed by learning on Tr and
the effectiveness is measured by evaluation on Te. If parameters are to be optimized, this
can be done by performing a parameter search with effectiveness measured on V a as the
objective function. It is common to split Ω into Tr,V a and Te with the ratios 70 : 10 : 20.
This method, of course, does not lead to optimal utilization of the examples in Ω since all
the examples in V a ∪ Te are “wasted”.

A better scheme is cross validation, CV, in the form of k-fold cross validation or leave-
one-out cross validation. The latter is a special case of the former in which k = |Ω|. In
CV, the effectiveness is taken as the average effectiveness of the classifier h output by the
learner L trained on different folds. Each fold corresponds to a different partitioning of Ω,
see algorithm 4. The effectiveness of h can be measured by an arbitrary loss function L,
see section 4.3. A special case of cross validation is stratified CV, in which Ω is split such
that the ratios of classes is retained in the training and testing set after the split. This is
often preferred in text classification, where the number of documents belonging to different
classes often varies substantially over a given data set.

Algorithm 4 k-fold Cross Validation
procedure CrossVal(Ω,L,k,L)

for i← 1, k do
Tei ←Partition(Ω,k,i) . Partitions Ω into k non-overlapping subsets
Tri ← Ω \ Tei

hi ← L(Tri)
li ← Evaluate(hi,Tei,L) . Evaluates hypothesis hi by L on Tei

end for
lavg = 1

k

∑k
i=1 li

return lavg

end procedure
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If we want to perform parameter optimization in the cross-validation scheme we can
either partition Tri into a training set and a validation set as in test-set testing or we can
perform a k-fold cross validation on Tri for each parameter setting and use this evaluation
score as an objective function. Then the best parameter setting is used in the current fold
of the outer cross-validation loop.

In theory leave-one-out cross validation should result in a better estimate of the effect-
iveness than k-fold cross validation. In practice the two methods have shown to perform
on par with each other and the computational complexity of k-fold is of course much lower
when modest values of k are used. Common choices are k = 5 and k = 10.

Note that the effectiveness as measured with the techniques above will mostly be slightly
pessimistic. This is because when evaluating effectiveness, we do not use all the available
data for training. Since the final classifier is trained on all examples in Ω and since more
training data never leads to worse performance, it is probable that the final classifier will
be somewhat more effective [32].

5.3 Evaluation Measures

A wide range of different evaluation measures have been used in evaluation of text classific-
ation systems. Due to time constraints we have not been able to investigate this interesting
topic in detail. We therefore discuss only the most commonly used measures. But first a
note on notation: In the following TPi denotes the set of true positives w.r.t.1 ci, i.e. doc-
uments correctly classified as belonging to ci; FPi, denotes the set of false positives w.r.t.
ci, i.e. documents falsely classified as belonging to ci; TNi denotes the set of true negatives
w.r.t. ci, i.e. documents correctly classified as not belonging to ci; and FNi, denotes the
set of false negatives w.r.t. ci, i.e. documents falsely classified as not belonging to ci.

A measure which may seem very natural for evaluating a classifier and which is some-
times used in the Machine Learning community is accuracy, Ai, defined as the probability
that a randomly drawn document dx ∈ D belongs to the set Corri = TPi∪TNi of correctly
classified documents:

Ai = Pr(dx ∈ Corri). (5.2)

This probability is approximated using the following formula:

Âi =
|Corri|
|Tei|

. (5.3)

In addition to accuracy it’s dual error defined as Ei = 1−Ai is sometimes used. The error
measure corresponds to the empirical risk making use of the L0/1 loss function as described
in 4.3.1. Unfortunately these measures do not work well with multi-label classification. Due
to the unbalance between |ci| and |c̄i| in this case, the trivial classifier which classifies all
documents as not belonging to ci would get a high accuracy score, even though it is really
a bad classifier [39].

Precision w.r.t. ci, denoted πi, and Recall w.r.t. ci, denoted ρi, are two important
evaluation measures originally used in the information retrieval community. These in com-
bination form a measure of effectiveness, in the case of information retrieval systems, the
ability of the system to retrieve relevant documents while leaving out irrelevant ones [37].

In the context of text classification πi is defined as the conditional probability that,
given that a random document dx is classified as belonging to ci, this decision is correct.

πi = Pr(Φ(dx, ci) = T | Φ̌(dx, ci) = T ). (5.4)

1Here w.r.t. is an abbreviation for with respect to
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Conversely ρi is defined as the conditional probability that, given that a random document
dx should be classified as belonging to ci, this decision is made. [31]

ρi = Pr(Φ̌(dx, ci) = T | Φ(dx, ci) = T ). (5.5)

In practice these probabilities are estimated using the following formulae:

π̂i =
|TPi|

|TPi ∪ FPi|
and (5.6)

ρ̂i =
|TPi|

|TPi ∪ FNi|
. (5.7)

These measures of precision and recall for individual classes can be combined to global
measures in different ways. The most used are microaveraging and macroaveraging. In
microaveraging each class contributes to the global measure proportional to its share of the
positive examples:

π̂µ =

∑
ci∈C |TPi|∑

ci∈C |TPi ∪ FPi|
and (5.8)

ρ̂µ =

∑
ci∈C |TPi|∑

ci∈C |TPi ∪ FNi|
. (5.9)

Whereas in macroaveraging all classes contribute equally:

π̂M =

∑
ci∈C π̂i

|C|
and (5.10)

ρ̂M =

∑
ci∈C ρ̂i

|C|
. (5.11)

These two methods for averaging can give different results on the same classification prob-
lem. This is especially the case for non-uniform domains where there is a large difference
in generality, i.e. how large a part of the document domain that belongs to a class, across
classes [31]. When the classifier performs well on classes with low generality, macroaver-
aging scores can be high even if the classifier performs bad on a large part of the document
domain. This suggests using microaveraging since each class of low generality then has
less impact on the score and the probability that a randomly drawn document belongs to
this class is relatively low. However, if for some reason the classification performance on
classes of low generality is especially important, macroaveraging could be the proper choice.
It is probably best to use both micro- and macroaveraging to ensure that performance is
sufficiently good over the whole document domain.

Precision and recall are combined into a single measure called the Fβ-measure, which is
really an infinite class of measures:

Fβ(π, ρ) =
(β2 + 1)πρ

β2π + ρ
0 ≤ β <∞, (5.12)

where β is a parameter controlling the relative importance of precision and recall. When
β → 0 importance of ρ → 0. When β → ∞ importance of π → 0. Setting β = 1 gives
the F1-measure which is the most used measure of effectiveness. This is equivalent to the
harmonic mean of precision and recall. Thus it gives equal importance to both:
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F1(π, ρ) =
2πρ

π + ρ
. (5.13)

The F1-measure is the completely dominant measure of effectiveness in the field of text
classification. Sometimes it is used in conjunction with precision and recall as well.

5.4 Further Issues In Evaluation

Yang [39] note that many researchers draw far-reaching conclusions regarding their own
methods superiority, even though their experiments are not comparable to others. This is
a problem which we have also seen in the literature. It is not uncommon that a method is
stated as being superior to another even though they differ by less than a percent.

As a remedy Yang give conditions for two different ways of comparing classifiers. Direct
comparison means that Φ′ and Φ′′ can be compared if they are tested on the same set Ω, by
the same researcher with the same preprocessing of the data and so on. Indirect comparison
on the other hand means that the classifiers are tested on Ω′ and Ω′′, but are compared to
one or more baseline classifiers Φ1, . . . ,Φn which have been tested on Ω′ and Ω′′ [39].

However, it should be noted that the results evaluated in these ways may depend on
the representations used by the classifiers. Since the motive of this thesis is to compare
different representations, rather than producing an optimal classifier, these issues are not
of primary concern to us. But the results should of course be taken with a grain of salt.

One fundamental problem with all of the different measures discussed above is that
they presuppose a dichotomy between correct and incorrect classification, i.e. correctness is
treated as a boolean function. However, in practice it is often the case that some incorrect
classifications are more damaging than others. When inter-indexer inconsistency is taken
into account a document could both belong to, and not belong to, a certain class.

Furthermore, some misclassifications may be more damaging than others. For example
in a hierarchical class structure a misclassification in which a document is classified as
belonging to a parent, sibling or child class is probably a much better classification than a
misclassification in which a document is classified as belonging to a different branch of the
hierarchy. Thus, it should be possible to define measures of effectiveness which take into
account some form of measure of distance between classes, e.g. based on topology if the
class structure forms a tree or a graph. If no explicit topological structure is defined on
the document domain, it could still be possible to define similarities between classes by for
example taking the mean of the typical examples of the class. Unfortunately, this similarity
measure would depend on the representation used.

A further possibility is that the estimated degree of inter-indexer inconsistency could
be used to derive a threshold of acceptable topological distance of the misclassification in
a hierarchy of classes, or even in a flat class structure. However, in huge class hierarchies
such as the MeSH, see section 6.2, this would not be tractable.

An alternative to quantitative measures of consistency in classifications would be to use
some form of utility measure, i.e. a measure of how well a certain text classification system
serves the need of the users of the system. Of course, this would be an even more subjective
measure. It is probably better then to apply this utility measure when deriving the class
structure and use quantitative measures of the resulting systems performance.
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Chapter 6

Method and Data Sets

In this chapter the data sets or corpora and methods used in the thesis are described. We
briefly survey some standard corpora and the Medical Subject Headings class hierarchy. An
account of the preprocessing of documents along with the weighting schemes used are given.
We also describe the different parameters investigated and how parameters of the Support
Vector Machine are optimized.

6.1 Corpora

Any collection of documents, e.g. written language or transcribed spoken language, could be
said to constitute a corpus (lat. body). However, in the context of linguistics or other studies
of language the following constraints generally apply: the collection should be representative
of real world language use in some domain, it should be in machine readable form and it
should be intended for scientific use.

In the case of text classification the corpus should be endowed with a set of classes and at
least some of the documents should be marked with the classes they belong to. The corpus
should be balanced, i.e. the number of documents belonging to a certain class should be
proportional to the actual number of documents belonging to the class. Since new texts
are constantly produced this will, of course, be a prediction of the future composition of
the document domain. As we note in section 5.2, when comparing the results of different
classification methods the way the corpus is split into training and test data is also a
significant aspect.

There are several standardized corpora available for text classification tasks. The most
important are the following:

• RCV1-v21 (Reuters Corpus Volume 1 version 2) – a collection of over 800,000 Re-
uters newswire stories from between August 20, 1996, and August 19, 1997, semi-
automatically classified, i.e. the automatic classifications was checked by human clas-
sifiers, under three different controlled vocabularies: Topics, Industries, and Regions.
The RCV1-v2 collection is intended to replace the Reuters-21578 collection described
below [18].

• Reuters-215782 – a collection of 21,578 Reuters newswire stories from the year 1987
manually classified under four different controlled vocabularies of named entities: Ex-

1http://about.reuters.com/researchandstandards/corpus/ (2005-02-26)
2http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html (2005-02-26)
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changes, Organizations, Places and People; and one controlled vocabulary of Topics.
For information on different versions of the Reuters Corpus see [39].

• TREC-AP3 – a collection of 209,783 AP newswire stories from the years through 1998
and 1990 classified under a set of 20 classes.

• OHSUMED4 – a collection of 348,566 abstracts and/or titles of articles published in
medical journals in the years 1987 through 1991 manually classified under a subset
of the MeSH controlled vocabulary (see below). The documents were collected from
a subset of MEDLINE (see below). OHSUMED also contains 101 real world queries
intended for testing of information retrieval systems [17].

• 20 Newsgroups5 – a collection of approximately 20,000 newsgroup documents posted
in the year 1993 collected from 20 different newsgroups.

Since we are particularly interested in classification in the domain of medical documents we
were originally planning on using the OHSUMED collection as our primary corpora and the
20 Newsgroups collection for comparison. Unfortunately, this was not possible due to the
large amount of parameters involved in the evaluation and the huge size of these corpora.
Instead we chose to create our own corpus by downloading articles from PUBMED6, an
interface to the MEDLINE database which is a bibliographic database of medical literature
maintained by the National Library of Medicine (NLM). In this way we could restrict the
corpora to include only texts from a small sub-domain of MeSH, the Cardiomyopathies
subtree which is a tree consisting of 12 classes structured as follows:

Cardiomyopathies (722)
- Cardiomyopathy, Alcoholic (17)
- Cardiomyopathy, Dilated (981)
- Cardiomyopathy, Hypertrophic (527)
- - Cardiomyopathy, Hypertrophic, Familial (40)
- Cardiomyopathy, Restrictive (39)
- Chagas Cardiomyopathy (82)
- Endocardial Fibroelastosis (6)
- Endomyocardial Fibrosis (29)
- Kearns-Sayer Syndrome (29)
- Myocardial Reperfusion Injury (240)
- Myocarditis (388)

where the numbers in brackets are the number of documents belonging to each class. See
next section for a description of the MeSH vocabulary. Note the highly skewed distribution
of the number of documents per class.

The Cardiomyopathies corpus contains 2900 documents, each consisting of the title and
abstract of medical articles from the year 2000–2004. The corpus was constructed by posing
the following query to PUBMED:

"cardiomyopathies"[MeSH Major Topic] AND hasabstract[text] AND
English[Lang] AND medline[sb] AND "humans"[MeSH Terms] AND
("2000/01/01"[PDAT] : "2004/12/31"[PDAT])

3http://www.daviddlewis.com/resources/testcollections/trecap/ (2005-02-26)
4http://www.ltg.ed.ac.uk/disp/resources/ (2005-02-26)
5http://people.csail.mit.edu/people/jrennie/20Newsgroups/ (2005-02-26)
6http://www.ncbi.nlm.nih.gov/entrez/ (2005-08-23)

36



6.2. MEDICAL SUBJECT HEADINGS

We also created a second Cardiomyopathies corpus by posing the same query for the years
1995–1999. This gave us a corpus of 2241 documents. This corpus is used for pre-building
the DOR and TCOR representations as described in section 2.2.2.

For reference, we created a corpus based on the 20 Newsgroups corpus by collecting
a subset of 150 documents from each of the 20 document classes. This gave us a corpus
consisting of 3000 Usenet messages. As with the Cardiomyopathies corpus, we also created
a second 20 Newsgroups based corpus of equal size for use in prebuilding of the DOR and
TCOR representations. Documents in the 20 Newsgroups corpora is classified under the
following 20 document classes each class containing 150 documents per corpus:

alt.atheism
comp.graphics
comp.os.ms-windows.misc
comp.sys.ibm.pc.hardware
comp.sys.mac.hardware
comp.windows.x
misc.forsale
rec.autos
rec.motorcycles
rec.sport.baseball
rec.sport.hockey
sci.crypt
sci.electronics
sci.med
sci.space
soc.religion.christian
talk.politics.guns
talk.politics.mideast
talk.politics.misc
talk.religion.misc

6.2 Medical Subject Headings

MeSH is a controlled vocabulary produced by the United States National Library of Medi-
cine.7 Its main purpose is to aid in indexing and searching for biomedical and health-related
information. It is a dynamic thesaurus which is revised once a year to capture actual lan-
guage use in the field. This revision means that new terms are added to the vocabulary
while old terms may be removed.

MeSH is structured in a hierarchy with broader terms near the root and more specific
terms further down. Different paths through the hierarchy have different lengths, the longest
consisting of 11 levels. All terms except for some of the broadest in the top can function
as a leaf node, i.e. it can be assigned to a document. Each term resides in at least one
position in the hierarchy, but it is quite often the case that a term resides in several different
positions. When assigning MeSH-terms to a document the rule is to always use the most
specific term. One exception to this rule applies when more than three terms in the same
sub-tree are appropriate terms. Then a broader term, i.e. the parent term of the sub-terms,
is used.

7This section is based on information available from the web site of the United States National Library
of Medicine, see http://www.nlm.nih.gov/mesh/meshhome.html (2005-08-20).
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Each position in the hierarchy is given a unique numerical identifier. This means that the
MeSH hierarchy could be described as a tree, when nodes are identified with positions or as
a directed acyclic graph, DAG, when nodes are identified with terms. Mostly the hierarchy
is considered as a tree, but the DAG representation could be relevant for exploiting the
hierarchical structure for text classification purposes.

The complete MeSH vocabulary consists of several different types of terms, which are
used for different purposes. We use only the descriptors which are used to characterize
the main content of documents. This is due to the fact that our main interest lies in the
text-classification methods rather than in the MeSH itself.

As described in the previous section, only the small Cardiomyopathies subtree of MeSH
is used. The 2005 edition of MeSH contains 22 995 descriptors, while the Cardiomyopathies
tree contains only 12 descriptors. Using the complete MeSH would make evaluation of
the text classification methods much harder since the amount of pre-classified data needed
would be huge and execution times of the algorithms unacceptably long, considering the
number of parameters investigated. This restriction means that we are unable to compare
our results with other studies in which the complete MeSH-hierarchy is used.

6.3 Preprocessing and Weighting

Before creating document representations we filter all documents through the classical
stoplist from the SMART information retrieval system, containing 567 common English
words.8 We further remove all documents with fewer than 5 words. The use of this number
is not based on any theoretical considerations, but it is commonly used in the literature.
The remaining documents are tokenized by removing all non-alphabetical characters and
identifying word boundaries with white spaces. After stemming the tokenized words by
use of the Porter stemmer we remove all terms that occur in fewer than 3 documents.
Again, this number is merely heuristically selected. This preprocessing drastically reduces
the number of term occurrences and unique terms in the lexicon, see table 6.1. In the Car-
diomyopathies corpus the number of term occurrences are reduced to 323 067 occurrences
after removing 264 876 occurrences and the 20 Newsgroups corpus contains 260 068 term
occurrences after removing 462 521 occurrences. The language use in the two corpora is
thus very different, with the 20 Newsgroups corpus containing much more varied language
than the Cardiomyopathies corpus.

Table 6.1. Number of unique terms after preprocessing.

Cardiomyopathies 20 Newsgroups
After stop word removal 17 445 62 052
After stemming 12 055 51 017
After document frequency threshold 3886 7507

As described in section 2.3, we use the weighting scheme of (2.2)–(2.4). In the BoW repres-
entation we simply weight the terms after preprocessing, while in the BoC representations
we weight all elements of a term’s concept vector by the weight of the term. See section
2.2.3 for a discussion of this heuristic.

When creating the TCOR representation with Random Indexing we use a sliding window
as context. The sliding window is 8 terms wide on both sides of the focus term and the

8http://terral.lsi.uned.es/∼ircourse/examples/stoplist.html (2005-02-30)
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random labels of the surrounding terms are weighted by 2(1−d), where d is the distance to
the focus term [19]. In creating the DOR representations and the TCOR with documents
as contexts, we use simple unweighted term counts when creating the concept vectors.

6.4 Parameters Investigated

There are a vast amount of parameters to investigate. Due to limited time and resources,
we are only able to investigate a handful. The parameters which we have investigated have
not been chosen in the most structured manner. Rather, we have chosen those which are
sufficiently straightforward to investigate with the computational resources, the software
and the data sets at our disposal. The following parameters have been examined:

• Representations: BoW, BoC-DOR, BoC-TCOR-DOC, BoC-TCOR-SW

• Dimensionality reduction with BoC: Random Mapping, Feature Selection

• Random Mapping: k ∈ {30, 60, 90, 120, 150}

• Random Mapping: e ∈ {∼k/10,∼k/3}

• Feature selection by Gain Ratio: ξ ∈ {0.01, 0.05, 0.10, 0.15}

• Bag-of-concepts with/without pre-built DOR/TCOR representation

• Machine learning algorithms: SVM-LIN, SVM-RBF, AdaBoost, Decision Stump

where DOR denotes the document occurrence representation, TCOR-DOC denotes the term
co-occurrence representation with whole documents as context and TCOR-SW denotes the
TCOR representation with a sliding window as context. SVM-LIN and SVM-RBF denotes
the use of linear and radial basis function kernels with SVM.

The ranges of these parameters where selected based on the results of initial experiments
often in conjunction with heuristics appearing in the literature or based on the hypotheses
underlying the thesis. Only the value e = k/3 is based on a sounder theoretical ground,
see section 3.3.2. As described there the value of e is approximated with the smallest even
integer ≤ k/10 and ≤ k/3, respectively. The values of the reduction factor used for feature
selection are based on [41].

We have used Random Indexing to implement the random mapping. Unfortunately,
due to restrictions in the Random Indexing implementation used we have only been able
to investigate TCOR with sliding window when using RM for dimensionality reduction.
When using TCOR with feature selection, document contexts are used instead. Thus the
results for BoC-TCOR-SW with RI and BoC-TCOR-FS are not comparable on the basis
of different dimensionality reduction techniques. We have not tried any dimensionality
reduction methods with BoW, since the ML-methods we use are computationally efficient
when data is sparse.

Optimal parameters for SVM are found using 3-fold stratified cross validation on Tr
with F1 as the objective function in a grid search. Ranges used in this search are, with
linear kernel: C ∈ [2−7, 27] and with radial basis kernel: C ∈ [2−2, 210] and σ ∈ [0.01 ·
dims−1, 100 · dims−1], where dims is the dimensionality of the feature vectors. The para-
meter search is performed in two steps. First a coarse search on the parameter grid is
performed. Then a finer search centered around the optimal value from the coarse search
is performed. When using the linear kernel the coarse grid consists of the C-parameter
interval divided into 10 steps, with size increasing exponentially. The fine grid consists
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of the interval [copt−1 + 0.05 · step, copt+1 − 0.05 · step] divided into 10 steps, where copt is
the optimal step in the coarse search. When using the radial basis function the coarse
grid consists of the C-parameter interval divided into 4 steps and the σ-parameter interval
divided into 5 steps. The fine grid is constructed analogously with a division into 2 and
5 steps respectively. To speed up the search, if the last two steps have not changed the
performance, the step size is temporarily doubled until performance changes. The values of
C and σ are based on the values recommended in [8] but are somewhat modified based on
initial experiments and computational considerations.

In addition to the above parameters we also tried different variants of undersampling
and oversampling to reduce problems with the non-uniform size of classes. Since these
methods did not improve performance, we only mention them here and we do not discuss
the effect of different parameter choices related to these methods in the next chapter.

6.5 Software Used

We used an implementation of Random Indexing developed at NADA, KTH by Martin
Hassel who also implemented the Porter Stemmer.9 The Support Vector Machine imple-
mentation used was LIBSVM 2.8 by Chang et al.10 We modified the source code to make it
possible to perform a parameter search based on the F1-measure instead of accuracy. How-
ever, the implementation still relies on the L0/1 loss function in the optimization problem,
F1 is only used in the meta-search for good parameters. For feature selection, AdaBoost
and Decision Stump we used the WEKA 3 machine learning package developed at the
University of Waikato.11

9http://www.nada.kth.se/∼xmartin/java/ (2005-08-20).
10http://www.csie.ntu.edu.tw/∼cjlin/libsvm/ (2005-08-20).
11http://www.cs.waikato.ac.nz/∼ml/weka/ (2005-08-20).
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Chapter 7

Results and Discussion

In this chapter we present the results gained in the evaluation. The chapter is divided into
sections based on the different parameters investigated. In each section we present the most
interesting results followed by a brief discussion. For completeness we have put plots of the
complete evaluation on the Cardiomyopathies corpus in appendix A.

Due to the strong dependence amongst the different parameters investigated, the results
are hard to interpret and present. We have tried to separate the different parameters and
tried not to draw too farreaching conclusions. All results were measured by the use of 3-fold
stratified cross validation, which helps in reducing noise.

7.1 Dimensionality Reduction

7.1.1 Feature Selection

Feature selection by Gain Ratio proves to be a robust dimensionality reduction method,
see figure 7.1. Since results for Cardiomyopathies showed no improvement in effectiveness
using more than 10% of the features, ξ = 0.15 was dropped for the 20 Newsgroups corpus.
As is clearly seen, there is no significant improvement on average when using more than 5%
of the features. This is in line with the results of Yang et al. [41] who saw no degradation in
effectiveness even when using as little as 1-2% of the features with the BoW representation.
However, there is a substantial dip in microaveraged effectiveness, when using only 1% of
the features with the Cardiomyopathies corpus.

In practice, feature selection is too computationally expensive for the dense BoC rep-
resentations. This can be greatly alleviated if the feature selection is performed on a small
validation set before building representations for the complete document collection. Then
it is only necessary to use the selected features in the rest of the classification process. It
is however possible that this will lead to a degradation in effectiveness since the feature
selection is performed on incomplete data.

7.1.2 Random Mapping

As can bee seen from figure 7.2 and figure 7.3 random mapping performs better with higher
values of k, although the difference between k = 90, k = 120 and k = 150 seems to
be negligible in general. At the same time the dependence on the value of e is highly
unpredictable. Even though 3-fold stratified cross validation is used, the variance across
classes and runs is quite high even for the k-parameter, see appendix A.
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Figure 7.1. Feature selection by Gain Ratio proves to be a robust dimensionality reduction
method. Top left: Microaveraged F1-scores for the Cardiomyopathies corpus using feature
selection by Gain Ratio with ξ ∈ {0.01, 0.05, 0.10, 0.15}. Top right: Same as top left, but
macroaveraged. Bottom left: Same as top left, but for the 20 Newsgroups corpus with ξ ∈
{0.01, 0.05, 0.10}. Bottom right: Same as bottom left, but macroaveraged.

It is surprising that the improvement in effectiveness flattens out so quickly with higher
dimensionality in random mapping. Sahlgren et al. [26] report poor performance when using
a dimensionality less than k = 1000 and improved performance with a dimensionality of up
to k = 5000. One explanation for this is that they use a somewhat larger corpus. Another
possible explanation is that they do not seem to optimize any parameters related to the SVM
classifier. This is crucial for good performance, see section 7.3. As is discussed in section
4.2.2, when using a higher dimensional feature space the examples are linearly separable with
higher probability. Thus when not optimizing the C-parameter, which controls the penalty
of misclassifications a higher dimensionality might lead to better performance. Since the
noise introduced by RM quickly approaches a normal distribution with variance 1/k it seems
unlikely that such high dimensionality should be needed. The results for the 20 Newsgroups
corpus supports this conclusion. While this corpus contains approximately twice as many
terms as the Cardiomyopathies corpus, the number of extra dimensions needed in random
mapping is quite small, see figure 7.3. The result for BoC-DOR is even more similar, since
the two corpora contain roughly the same number of documents.

We have not been able to evaluate the BoC-TCOR-DOC representation with random
mapping. The results for BoC-TCOR-SW which yield concept vectors of the same dimen-
sionality as BoC-TCOR-DOC indicate that the dimensionality needed for BoC-TCOR-DOC
will be in the same order.
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Figure 7.2. Random mapping proves to be robust as well, although at a higher variance. Top
left: Microaveraged F1-scores for the Cardiomyopathies corpus with BoC-DOR using random
mapping with k ∈ {30, 60, 90, 120, 150} and e ∈ {≈k/10,≈k/3}. Top right: Same as top left,
but macroaveraged. Bottom left: Same as top left, but with BoC-TCOR-SW. Bottom right:
Same as bottom left, but macroaveraged.
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Figure 7.3. Random mapping shows similar behaviour with respect to the k and e parameters
for the 20 Newsgroups corpus as for the Cardiomyopathies corpus, even though the original
dimensionality of the former is approximately twice as high as the latter when using BoC-
TCOR-SW. Left: Microaveraged F1-scores for the 20 Newsgroups corpus with BoC-TCOR-
SW using random mapping with k ∈ {30, 60, 90, 120, 150} and e ∈ {≈k/10,≈k/3}. Right:
Same as left, but macroaveraged.
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The following is only speculations, but we believe that the seemingly completely contingent
relationship between the value of e and the effectiveness of all the classifiers may prove
to be more structured if we study the border region between the different classes. This
is especially the case with SVM since the solution of the optimization problem solved by
the SVM depend only on the support vectors, i.e. the examples closest to the separating
hyperplane. This means that if the number of support vectors is small, then even small
changes to the similarity between support vectors can change the solution substantially. If
the number of support vectors on the other hand is large, then even a large change to some
of the support vectors could give a small change to the solution. Given enough support
vectors a small probability for larger amount of noise, i.e. a lower value of e, may be
preferable to a lower probability for a smaller amount of noise, i.e. a higher value of e. Due
to time constraints we have not been able to investigate this issue further.

7.1.3 Feature Selection versus Random Mapping

Beginning with the Cardiomyopathies corpus, when we compare random mapping with fea-
ture selection, the latter seems to give less distinctive individual features in conjunction with
BoC-DOR. This is at least the case when using microaveraged F1. When macroaveraging
the opposite seems to be the case. This is however due to the fact that AdaBoost and DS
work quite well on some classes on which SVM fails completely. With the other document
classes, RM seems to give the most discriminating individual features as indicated by the
fact that Decision Stump and AdaBoost perform better with RM than FS with these classes.
Given that random mapping is a distributed representation which intuitively should give
worse individual features this is an unexpected result.

At the same time RM in conjunction with BoC-DOR fails completely on one class,
Endocardial Fibroelastosis, while FS give quite good effectiveness, see left of figure 7.4. Ef-
fectiveness with feature selection and BoC-DOR also gives substantially better effectiveness
on the class Endomyocardial Fibrosis, see right of figure 7.4.

Turning to the 20 Newsgroups corpus, the difference between random mapping and
feature selection is smaller on average but random mapping actually outperforms feature
selection in some cases.
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Figure 7.4. Random mapping fails completely or performs poorly in some cases with the
Cardiomyopathies corpus. Left: F1-scores for the Endocardial Fibroelastosis class. Right:
F1-scores for the Endomyocardial Fibrosis class.

Since feature selection is a completely deterministic dimensionality reduction method, it
might be preferable to random mapping when evaluating different representations to reduce
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variance. In real-world applications in which a low time complexity is often preferable,
random mapping is probably the best choice. Even if we select only 1% of the features, the
dimensionality will be in the order of thousands when working with real-world data. Thus
if random mapping shows to be robust using only a few hundred dimensions, memory and
time complexity will be lower by several orders of magnitude.

7.2 Pre-building

The use of pre-built DOR and TCOR, as described in section 2.2.3, do not improve results
on the Cardiomyopathies corpus and it actually leads to worse performance in some cases.
The only positive result for this representation is that it seems to improve performance of
Decision Stump for some classes. Due to space constraints we do not include any details
about the specific results for this corpus.

On the other hand, pre-building seems to give some improvement in effectiveness on
the 20 Newsgroups corpus when using feature selection, see top of figure 7.5. When using
random mapping pre-building is highly detrimental, see bottom of figure 7.5. Overall pre-
building thus seems to be a bad idea, and the small improvement when using feature
selection may actually depend on the fact that we select a certain fraction of the features.
Hence, since the number of features is larger when using pre-building, the selected number
of features will also be larger.
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Figure 7.5. Top left: Microaveraged F1-scores for the 20 Newsgroups corpus with BoC-
DOR and feature selection with and without pre-building. Top right: Same as top left but
macroaveraged. Bottom left: same as top left but with random mapping instead of feature
selection. Bottom right: same as bottom left but macroaveraged.
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Figure 7.6. SVM is quite sensitive to parameter choice. Left: F1-score as a function of
the C parameter with linear kernel. Right: F1-score (coloured) as a function of the C and σ
parameters with radial basis function kernel.

Recalling the underlying hypothesis that bag-of-concepts representations better capture the
semantics of documents and that the DOR and TCOR representations actually do capture
the semantics of terms, one could expect that pre-building should be a good idea. The
question then is whether the flaw lies in the hypotheses or somewhere else. One possible
explanation for the method’s poor performance is that too much noise is introduced when
occurence and co-occurence statistics are collected on documents that are not used to train
the classifier. This may be the case if these documents contain a high amount of new
terms which are not present in the documents used in classification. However, since these
documents were pre-processed the same way as the documents used in the classification,
most of the noise should be filtered out already.

7.3 Machine Learning Algorithms

As expected SVM outperforms both AdaBoost and DS on almost all document classes.
The only exceptions are Endocardial Fibroelastosis and Kearns-Sayer Syndrome from the
Cardiomyopathies corpus. These are both really small document classes containing only 6
documents each and both seems to be highly keyword-dependent.

The difference in performance between the different machine learning methods is smallest
in conjunction with BoW, where AdaBoost performs almost on par with SVM, with DS
performing slightly worse than AdaBoost on average. When using the BoW representation
there is only one class, Cardiomyopathies on which DS and AdaBoost fail completely while
SVM show good performance.

As shown in figure 7.6 it is crucial to optimize the C and σ parameters when using SVM
with linear and radial basis function kernels. As noted in section 6.4, we have not optimized
the number of rounds used in AdaBoost. AdaBoost is however known to be quite stable
with respect to this parameter and improvement usually drops quite fast with increased
number of rounds.

There is no significant difference between the performance of SVM-LIN and SVM-RBF
on average. This is especially the case with the Cardiomyopathies corpus. With 20 News-
groups it seems like the linear kernel is better suited for use with BoC-DOR, while the
RBF-kernel is better suited for use with BoC-TCOR-DOC when using feature selection.
When using random mapping there is no significant difference between the two kernels.
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Figure 7.7. On average BoC improves effectiveness as compared to BoW. Top left: Best
microaveraged F1-score on the Cardiomyopathies corpus for each representation. Top right:
Same as top left, but macroaveraged. Bottom left: Same as top left, but on the 20 Newsgroups
corpus. Bottom right: Same as bottom left, but macroaveraged.

Given that the linear kernel has only one parameter to optimize and that each kernel
evaluation has lower computational complexity, it is probably the best choice in practical
applications.

7.4 Representations

Microaveraged results on the Cardiomyopathies corpus indicate that there is a small increase
in effectiveness when using BoC representations as compared to BoW together with SVM,
see left of figure 7.7. When using AdaBoost and DS, BoW outperforms BoC in all cases
except for BoC-TCOR-DOC. The difference is however quite small and may be attributable
to the fact that the parameter optimization of SVM is still quite coarse. Macroaveraged
results on the Cardiomyopathies corpus on the other hand show a substantial increase
in effectiveness when using BoC-DOR and especially BoC-TCOR-DOC, see top right of
figure 7.7. When using feature selection both these representations outperform BoW in
conjunction with all the machine-learning methods. BoC-TCOR-SW does not improve
effectiveness at all as compared to BoW when using macroaveraging.

The BoW representation outperforms all the BoC representations on only one class,
Kearns-Sayer Syndrome, and this is only when using Decision Stump or AdaBoost, see
figure 7.8. The equal performance of DS and AdaBoost suggests that the best classification
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Figure 7.8. Sometimes it suffices to use only one feature for good classification performance.
This figure shows F1-scores on the Kearns-Sayer Syndrome document class. Results is only
given for the best parameter choice of each representation.

in this case is based on only one keyword.
There are however some document classes on which the BoW representation fails radic-

ally while BoC works quite well, see figure 7.9. The classes are “Endomyocardial Fibrosis”,
“Cardiomyopathy, Restrictive”, “Cardiomyopathy, Hypertrophic, Familial” and “Cardiomy-
opathy, Alcoholic”. These are all classes containing few documents and the performance
of BoC is not as good as on the larger classes, even though it is significantly better than
BoW. While the noted Kearns-Sayer Syndrome contains very few documents, it seems clear
that document classes containing few documents benefit most from the BoC representations
with the exception for strongly keyword dependent classes.

This is interesting since Sahlgren and Cöster [26] report the opposite result, i.e. that
BoC representations works best with the largest document classes. They use the Reuters-
21578 corpus described in section 6.1, which may explain this difference. However, since
they do not seem to have optimized any of the parameters related to SVM, their results
might be misleading. Further, the improvement of effectiveness in their results is only in
the order of a few percents, while we see a substantial improvement. Here it should be
noted that there is a large difference in resolution of the measurements of performance on
small classes compared to large classes.

Except for the small classes discussed above there is a smaller, but significant, improve-
ment in effectiveness on the class Cardiomyopathies which contains 722 documents.

Comparing the different BoC representations also yields interesting results. For the
large document classes there is no significant difference in effectiveness between the dif-
ferent representations. This is at least the case when using SVM, which gives the best
performance on all these classes. The effectiveness of DS and AdaBoost is more varied,
with performance slightly worse than SVM when used with TCOR-DOC. When used with
DOR, their performance is somewhat worse than with TCOR-DOC. And when used with
TCOR-SW, DS and AdaBoost perform poorly. This suggests that TCOR-SW yields more
distributed representations than DOR and TCOR-DOC and that TCOR-DOC yields the
best individual features. The reason for this behaviour is unclear. One reason might be
that in the TCOR-DOC representation a word always co-occurs with itself, thus capturing
some of the keyword-dependent aspects of the BoW representation. This is not the case
with the random indexing implementation used with TCOR-SW.

Results on the small classes on which the BoW representation fails is more interesting,
again see figure 7.9. Here TCOR-SW gives somewhat better results than BoW, while
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Figure 7.9. While the BoW representation fails completely on some of the small document
classes, BoC gives acceptable and in some cases good effectiveness. Top left: F1-scores on
the Endomyocardial Fibrosis document class. Top right: F1-scores on the Cardiomyopathy,
Restrictive document class. Bottom left: F1-scores on the Cardiomyopathy, Hypertrophic, Fa-
milial document class. Bottom right: F1-scores on the Cardiomyopathy, Alcoholic document
class.

TCOR-DOC and DOR show a large increase in effectiveness. There is a slight performance
difference in favour of DOR, but since the resolution of the F1 measure on these small
classes is quite poor, this difference might just be accidental.

Results on the 20 Newsgroups partly confirm the approprietness of BoC representa-
tions, found on the Cardiomyopathies corpus. On the 20 Newsgroups corpus, however, the
improvement is much smaller for DOR and TCOR-DOC, while the TCOR-SW actually
leads to worse performance, see bottom of figure 7.7. Interestingly, performance on the 20
Newsgroups is much more stable over classes as can be seen from the similarity between
microaveraged and macroaveraged results. This is particularly the case for SVM, while DS
and AdaBoost show some variation.
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Chapter 8

Conclusions

In this chapter we give a brief summary of the insights reached in the thesis. We present the,
in our view, most important positive and negative results. Finally we give some suggestions
for future research.

8.1 Main Results

The most important positive result is in our opinion that BoC give a huge improvement
in effectiveness on classes on which BoW fails. Another promising result is that random
mapping is robust down to about 100 dimensions in conjunction with SVM, although one
can expect that a somewhat higher dimensionality will be needed in real-world applications.

It is also positive that DOR and TCOR-DOC in general work better than TCOR-SW.
This is in line with the intuition of Sahlgren [25] who states that a broader context captures
what a word is about rather than what it means. Unfortunately we have not been able to
find any significant difference in performance between DOR and TCOR-DOC in general,
which was anticipated given the results of Lavelli et al. [16].

The biggest disappointment is the fact that pre-building the term meaning representa-
tions does not improve performance. However, we would not rule out the method altogether
without pursuing some further research. It is our belief that if pre-building is shown never
to be a good idea, then there is something wrong with the underlying hypothesis that DOR
and TCOR captures the meaning of words, or with the hypothesis that linear combinations
of word’s meaning captures the semantics of documents.

The second biggest disappointment is that we are unable to give any clues on how the
parameter e in random mapping affects performance.

8.2 Implementational and Practical Issues

When designing a text classification system for use in real world domains, we suggest that
BoW is used as a primary representation and that BoC is used as a complement on document
classes on which BoW fails. It is, however, not clear how to find these classes in advance.
If there is a sufficiently large amount of pre-classified data, this could be used to evaluate
the different representations. But it would of course be preferable if there were some more
analytical methods available. It might also be possible to make use of machine-learning
methods to predict the best representation for a given document class.

We believe that random mapping is the only practically useful dimensionality reduction
method on real world text classification problems, since feature selection by measures such as
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information gain or gain ratio is too computationally expensive. Although feature selection
works better in some cases, random mapping is sufficiently robust especially in conjunction
with SVM.

When it comes to machine learning methods, the support vector machine is in our opin-
ion preferable. In theory the RBF-kernel should be better or as good as the linear kernel,
given sufficient parameter optimization. However, when taking computational considera-
tions into account, the linear kernel is probably the best choice. The SVM implementation
used in this thesis works well, despite that it uses the L0/1 loss function discussed in section
4.3. However, we recommend that an implementation, which uses the Fβ function directly
in the optimization problem, is used instead. See the paper by Joachims [11] for further
information.

8.3 Suggestions for Future Research

We observe three fundamental questions related to the use of bag-of-concepts representa-
tions in text classification to be studied more thoroughly by future researchers:

• How does the choice of context affect the effectiveness of the resulting system?

• How should concept vectors be combined to document vectors to best capture the
semantics useful for classification?

• Are there other models of word’s meanings which better mimic the semantics used by
humans as compared to the simple frequency count of the DOR and TCOR models?

All three questions are related to the question of how to best model the contextual aspects of
meaning and they will probably have different answers depending on the document domain
and the classification task at hand.

Specifically related to the medical domain is the question of how to utilize the vast know-
ledge accumulated in different ontologies and knowledge bases such as the Unified Medical
Language System, UMLS. This knowledge might prove very useful in the construction of
text-classification systems, if we could somehow combine it with the representations studied
in this thesis.

A related question is whether a combination of BoW and BoC and possibly other rep-
resentations may give better results than the best individual representation. There are sev-
eral possible machine learning schemes for combining representations, e.g.voting/ensemble
methods and mixture of experts methods.

Another important issue is the usefulness of the different representations with other
languages than English. It is possible that some representations are especially suited for
Swedish which has more combined forms than English. In the context of clustering and in-
formation retrieval, for example, stemming and lemmatization have been shown to improve
performance more with Swedish than with English.

A more technical question related to SVM is how to best construct a hierarchical clas-
sifier. To reduce a flat hierarchy to binary classification is extremely computationally de-
manding when used in conjunction with large class structures and large document domains,
such as the MeSH. One possibility is of course to use a simple divide and conquer approach.
This will however not solve the problem for larger flat regions of the hierarchy. There exist
solutions to this problem in the case of single-label classification, but to our knowledge not
in the case of multi-label classification.

In hierarchical domains it would also be very interesting to study the graveness of mis-
classifications which different representations and algorithms lead to, as discussed in section
5.4.
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Cardiomyopathies Results
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BoC−TCOR−SW k=90 e=10
BoC−TCOR−SW k=60 e=20
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APPENDIX A. CARDIOMYOPATHIES RESULTS
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BoC−TCOR−SW k=150 e=50
BoC−TCOR−SW k=150 e=16
BoC−TCOR−SW k=120 e=40
BoC−TCOR−SW k=120 e=12
BoC−TCOR−SW k=90 e=30
BoC−TCOR−SW k=90 e=10
BoC−TCOR−SW k=60 e=20

BoC−TCOR−SW k=60 e=6
BoC−TCOR−SW k=30 e=10

BoC−TCOR−SW k=30 e=4

F1−score

Myocardial Reperfusion Injury
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BoC−TCOR−SW k=60 e=6
BoC−TCOR−SW k=30 e=10

BoC−TCOR−SW k=30 e=4
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