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Abstract—Software-defined networking provides abstractions
and a flexible architecture for the easy configuration of network
devices, based on the decoupling of the data and control planes.
This separation has the potential to considerably simplify the im-
plementation of resilience functionality (e.g., traffic classification,
anomaly detection, traffic shaping) in future networks. Although
software-defined networking in general, and OpenFlow as its
primary realisation, provide such abstractions, support is still
needed for orchestrating a collection of OpenFlow-enabled ser-
vices that must cooperate to implement network-wide resilience.
In this paper, we describe a resilience management framework
that can be readily applied to this problem. An important part
of the framework are policy-controlled management patterns
that describe how to orchestrate individual resilience services,
implemented as OpenFlow applications.

I. INTRODUCTION

Resilience management requires the flexible configuration
of network devices, such as routers and switches, in order to
rapidly adapt their operation due to, for example, changing
network traffic volumes or the detection of anomalous traffic
profiles. In previous work [1], [2] we have demonstrated the
use of policy-based resilience strategies to contain malicious
attacks such as Distributed Denial of Service (DDoS), worm
propagations, and other types of network challenges. These re-
silience strategies are based on the reconfiguration of network
devices when evidence about anomalies are observed in the
network. Typically large-scale resilience services, e.g., DDoS
detection and remediation, are built out of the cooperation of a
number of interacting devices across the network that provide
more elementary services, e.g., flow monitoring, anomaly
detection and traffic shaping, to name but a few.

Software-defined networking (SDN) provides a flexible ar-
chitecture for quick and easy configuration of network devices.
Software-defined networking in general, and OpenFlow as its
primary realisation, increase routing scalability and support
abstractions for traffic engineering by decoupling the switch’s
routing decisions (control path) from its internal packet for-
warding logic (data path). This is known as the separation of
the control plane from the data plane. In particular, the control
plane is enforced by a remote controller, which is responsible
for all routing decisions and for switch reconfiguration. How-
ever, although OpenFlow supports the abstractions needed for
decoupling the data and control planes in the implementation

of individual services, support is still needed for orchestrating a
collection of OpenFlow-enabled devices that must cooperate to
implement a large-scale service. To illustrate such a large-scale
service, we describe how resilience services need to coordinate
a range of detection and remediation mechanisms to combat
network challenges. We thus advocate that, although SDNs
and OpenFlow adequately separate the data and control planes,
additional support is still needed for the flexible organisation
and orchestration of cooperating OpenFlow devices.

In this paper, we present a framework that is based
on policy-controlled management patterns. The framework
provides abstractions for orchestrating individual resilience
services implemented as OpenFlow applications, possibly
over distributed controllers. A management pattern is a high-
level description of the overall policy-based configuration and
interactions between a set of resilience mechanisms. These
include mechanisms for detection of attacks and anomalies,
e.g., intrusion detection systems and bandwidth monitoring
systems, and mechanisms for the remediation of these issues,
e.g., traffic shaping and load balancing. A management pattern
specifies how mechanisms deployed in the network must be
reconfigured to address a particular type of network challenge,
e.g., DDoS attack, worm propagation, large-scale disasters, etc.

The work presented here is an extension of our previous
effort on defining a management framework for network re-
silience in the context of “classical” network deployments, i.e.,
those in which the data and control plane are not decoupled [1].
By demonstrating our framework’s applicability to an SDN,
we propose that it can be applied to resilience management
in settings that include both forms of deployment model.
This ability will prove important as future networks will very
likely consist of resilience services that are implemented using
SDN technologies and more closed devices, such as network
security appliances. With respect to our previous work, this
paper presents three main contributions: (i) to the best of our
knowledge, there has been no related work that targets the
issue of managing resilience services for SDNs, so we provide
a significant extension in placing our work within the SDN
context; (ii) we demonstrate how several components of the
our framework can benefit from the functionality provided in
an SDN, which hitherto has not been readily possible; and
(iii) the experimental results presented in this paper, which are
executed in an emulation environment, affirm and extend our
previous simulation-based results [2].978-1-4799-0913-1/14/$31.00 c© 2014 IEEE



This paper is organised as follows: Section II presents back-
ground on network resilience, and how OpenFlow can assist
in building resilience services and applications. Section III
describes our framework for the orchestration of resilience ser-
vices, and how it can be applied to software-defined networks.
Section IV presents initial experimental results that indicate
the applicability of our framework to SDNs. Section V outlines
the related work on policy abstractions for SDNs, and finally
Section VI presents the concluding remarks and future work.

II. NETWORK RESILIENCE AND SOFTWARE DEFINED
NETWORKS

A. Network Resilience

Network resilience is the ability of a network to maintain
acceptable levels of service in the face of challenges to its
normal operation, such as malicious attacks, natural disasters
or human errors [3]. Ensuring network resilience requires the
continuous monitoring of a network’s operation, trying to
detect challenges that are afflicting the network and attempt-
ing their prompt mitigation. Thus a resilience strategy often
requires the coordinated management of interacting detection
and remediation mechanisms that operate in the infrastructure,
possibly in different layers of the protocol stack and in different
administrative domains.

Firstly, detection mechanisms support the identification and
categorisation of challenges to the network. Several research
efforts have focused on developing detection techniques,
whose output can be used to trigger the dynamic adaptation of
network resources to remediate anomalous conditions. These
include signature-based systems [4], [5], [6], which are based
on the detection of predetermined attack traces, as well as
anomaly detection systems, which aim to identify unexpected
changes in traffic volumes [7] or changes in the entropy of
traffic features [8]. Configuring these systems is difficult, as
different choices of sampling rate, for example, can impact
their accuracy, and must be carefully fine tuned [9]. Classi-
fication techniques can be used to identify the root cause of
network anomalies, and lead to a trade-off between complexity
and accuracy of identification [10]. Similarly, a range of
remediation mechanisms may be used for containing the effects
of a challenge. For example, various forms of traffic shaping
can be used, from simply blocking traffic to probabilistic rate
limiting, which can be applied at different protocol levels and
to individual network device ports. Firewalls and OpenFlow
switches [11], for example, can be used to block or shape
network traffic.

Thus to provide network resilience, a number of mecha-
nisms are needed, such as monitoring systems, tools to collect
IP flow information for use by intrusion detection and classi-
fication systems, and those to mitigate challenges. Despite the
multitude of mechanisms and techniques available, it is often
not clear how these should be combined and coordinated in
complex multi-service networks. We found that the published
state-of-the-art in challenge detection and classification varies
in the resources that are required, the timeliness and accuracy
of their operation, and the challenges they can effectively
operate with [12]. For example, localised detection in fluc-
tuations of traffic volumes can give a rapid and relatively
lightweight indication of the onset of challenges, such as

DDoS attacks or flash crowd events, whereas a sophisticated
classification system can yield more accurate information
about the challenge, e.g., the identification of malicious flows,
over a longer period of time. However, there are few works
investigating best practices on how to enforce network-wide
resilience strategies against specific types of challenges. This
must be based on the coordinated management of a subset
of detection and remediation mechanisms that are suitable for
a given challenge. Therefore, it must be possible to flexibly
organise detection mechanisms and specify their operation
in a way that is sympathetic to their characteristics and the
likely challenges that will occur. Moreover, configuring these
mechanisms will be complex, especially when one considers
their interaction with those to remediate challenges – an issue
that existing work does not address.

B. OpenFlow and Network Resilience

Software-defined networking in general, and Open-
Flow [13] as its primary realisation, decouple the data and
control planes, facilitating the configuration of routers and
switches. Central to this paradigm is the OpenFlow switch,
which has a set of internal flow tables, and a standard interface
and protocol for adding and removing flow entries. A flow
entry is defined by a packet header, which specifies the
flow, and an action associated with it (e.g., an action might
specify the dropping of packets belonging to a specific flow).
OpenFlow applications execute on remote controller platforms
that provide an application programming interface (API) for
sending control information over a secure channel in order
to, amongst other things, modify flow entries. This ability to
easily modify flow entries assists network operators to program
OpenFlow switches to collect statistics, and to implement
networking applications.

Using this separation of control and data plane, a number
of services that support resilience functionality can be readily
implemented. For example, Braga et al. make use of OpenFlow
and the NOX controller1 to implement a traffic classification
approach that can be used to detect Distributed Denial of
Service (DDoS) attacks using self-organising maps [14]. In
this case, OpenFlow is used to collect flow statistics that
can be used as part of the classification process. Within the
SDN community there is ongoing work on defining high-level
languages and frameworks for the specification of network
policies, which are realised using OpenFlow [15] – these
can be used for resilience purposes. For example, in the
Pyretic [16] software distribution, a sample implementation of
a firewall is given2.

Policy languages, such as Pyretic, can be used to rapidly
implement resilience functionality. An example is shown in
Fig. 1, whereby a policy specifies that the number of packets
should be counted, which are destined for a Web service
listening on port 80 at the IP address 10.0.0.1, per source IP
address in five second intervals. A callback is registered for
another policy that specifies if more than 200 packets have
been counted, using the aforementioned policy, the packets
for the source IP address associated with the counter and
the Web server address should be dropped. In the Pyretic

1http://www.noxrepo.org/
2http://www.frenetic-lang.org/pyretic/



1 class monitor_webserver(DynamicPolicy):
2 def main(self):
3 Q = count_packets(interval=5, group_by=[‘srcip’])
4 match(IP(‘10.0.0.1’)) & match(dstport=80) >> Q
5 Q.register_callback(self.drop_malicious)
6

7 def drop_malicious(count,pkt):
8 if (count > 200):
9 match(srcip=IP(pkt[‘srcip’]))

10 & match(dstip=IP(‘10.0.0.1’)) >> drop

Fig. 1. An example Pyretic policy that counts the number of packets to a
Web server and drops a host’s traffic if more than 200 are sent in five seconds

framework, this simple high-level policy specification executes
in the Pyretic run-time, which interfaces with a small Open-
Flow application that realises the underlying interactions with
an OpenFlow switch. We assume that a range of resilience
services, such as link monitoring and traffic shaping, can be
implemented as OpenFlow applications in a similar manner,
using either Pyretic or other high-level policy frameworks,
such as Procera [17].

Despite the existence of such policy frameworks, their co-
ordination across multiple instances that implement resilience
functionality is largely left unattended. This is highlighted
by the important distinction between the southbound and the
northbound interfaces proposed in SDN management [18].
The southbound interface refers to interaction between SDN
switches and the controller, e.g., the OpenFlow protocol. The
northbound interface concerns the representation of network-
wide policies and how these are translated into the configura-
tion of the controller. This is illustrated in Fig. 2. Although
there has been considerable research effort in defining the
southbound interface, there is comparatively little development
so far with respect to the northbound interface [18]. In partic-
ular, it is not clear how a range of resilience services, which
could be realised in a number of ways, e.g., using frame-
works like Pyretic, implemented as “low-level” OpenFlow
applications using platforms such as NOX, or as “classical”
tightly-coupled services, can be consistently orchestrated and
managed. Building on our previous work, here we show how
our resilience management framework can be applied in a
software-defined network, and can therefore be consistently
used across these deployment approaches to orchestrate and
manage resilience strategies.

Switch layer 
(e.g., OpenFlow switch)

southbound 
interface

(OpenFlow protocol)

northbound 
interface

(management patterns)

Orchestration layer 
(e.g., policies)

OpenFlow application layer 
(e.g., rate limiter, link monitor)

Controller layer 
(e.g., POX)

Fig. 2. Layers in SDN management.

III. RESILIENCE MANAGEMENT FOR SDNS

In previous work [1], we have developed a resilience
management framework, which supports a number of func-
tions including the specification and evaluation of resilience
strategies, the on-line measurement and evaluation of the
resilience of a network, and the deployment of strategies on
a network. The management framework is summarised in
Fig. 3. At the centre of the framework is a resilience manager
that supports real-time policy-driven adaptation of managed
resilience services, such as intrusion detection systems and
firewalls, in order to address challenges. Providing input to
the resilience manager is a challenge analysis component,
whose purpose is to develop situational awareness about the
existence and nature of ongoing challenges. In what follows,
we summarise the resilience management functions that are
highlighted in Fig. 3, and discuss how they can be applied in
the context of SDNs, including the specification of resilience
strategies.

A. Resilience Strategy Specification

To assist the specification of resilience strategies, our
framework relies on the notion of management patterns [1]. A
management pattern is a high-level specification template that
describes the overall policy-based configuration and interac-
tions between a set of resilience mechanisms. A management
pattern specifies how mechanisms deployed in the network
infrastructure, implemented, e.g., as OpenFlow applications,
must be reconfigured in order to address a particular type of
network challenge. Management patterns are akin to software
design patterns in the sense that patterns promote the use
of well-established solutions to recurring problems. Thus, a
management pattern provides reusable solutions to recurring
resilience problems, but also prescribes policy templates to
address them using a set of resilience mechanisms. Broadly,
resilience mechanisms are organised in two categories: they
can either implement mechanisms for detection of network
challenges, or they can be used for remediation of those
challenges. Detection mechanisms are event sources, which
include intrusion detection systems and network bandwidth
monitoring systems, for example. Remediation mechanisms
can be used for reconfiguring the network in response to
monitored events, such as traffic shaping or load balancing.

Management patterns are specified in terms of roles, to
which management functions and policies are associated. Roles
can be used to represent abstractly OpenFlow applications
(e.g., rate limiter, link monitor, traffic classifier, etc.) that
implement some kind of resilience functionality. A manage-
ment pattern is specified off-line, based on the functionality
expected from a set of roles. But during run-time, OpenFlow
application instances will be assigned to these roles, based
on the availability of the devices associated with a given
network. For example, a pattern for combating a flash crowd
may include roles such as VirtualMachineReplicator and Web-
ServerMonitor, whereas a pattern for addressing a DDoS attack
may include roles such as TrafficClassifier and RateLimiter.

Management patterns make use of previous work for
systematically constructing interactions between policy-based
systems in terms of three complementary perspectives [19]:
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• Communication (event exchanges): events are neces-
sary for triggering event-condition-action ECA poli-
cies. Event exchanges can be enforced, for example,
through a blackboard communication model, a simple
diffusion between a source and a target, or support
some form of event correlation to produce a high-
level event.

• Task-allocation (policy exchanges): dynamically
loading new policies into a device enables the easy
reconfiguration and adaptation of its behaviour during
runtime. Task-allocation via policy exchanges can be
based on a hierarchical control or a more elaborate
bidding approach between groups of devices, for ex-
ample.

• Structure (interface exchanges): interfaces are neces-
sary for validating the actions prescribed by a policy.
Access to interfaces can also be achieved in different
ways, for example, via an encapsulated composition,
a peer-to-peer interaction, or a multi-level service
aggregation, which is not necessarily encapsulated.

To encode different abstractions for achieving event, policy
and interface exchanges we can express them in terms of man-
agement relationships. A catalogue of common management
relationships, such as p2p, event diffusion, and hierarchical
control, has been presented in [19]. Each defines its own
specific management functions (e.g., source/target, for event
diffusion). These primitive management relationships can be
seen as building blocks, which are associated with two or more
roles in a pattern. This enables sophisticated event sharing
and alert forwarding strategies to be systematically built out
of simple primitives. Event sources can be defined and event
sharing schemes can be implement using high-level manage-
ment relationships. Similarly, event-driven policies and policy
loading strategies can be specified using these primitives.
A management pattern combines the behaviour of a set of
management relationships to prescribe the behaviour of the
roles within the pattern.

We advocate the use of management patterns to realise the

specification of the northbound interface in Fig. 2. Manage-
ment patterns can encode the policy configurations between
OpenFlow applications, and specify how event sources share
information with the other components in a resilience strategy.
Patterns are implemented in the Ponder2 policy framework3.
The configuration policies in a management pattern are stan-
dard Ponder2 policies. Event forwarding, interface exchange
and policy loading protocols are also implemented in Ponder2.
In previous work [1], we describe in details the specification
of patterns, including its parameterisation with roles and the
establishment of management relationships between them.

Further, high-level management patterns are translated into
low-level device configuration. The OpenFlow application re-
ceives a reconfiguration request based on its role and the man-
agement functions associated with the role. This is translated
to packet forwarding rules and flow table reconfigurations (to
insert, delete, or modify rules) that will be transmitted to the
OpenFlow-enabled switch using the OpenFlow protocol.

B. Resilience Measurement

An important resilience management function is to measure
the current resilience status of the network, and determine
when it is not at desired levels. In our resilience management
framework, deviations from a resilience target, expressed in
a Service Level Agreement (SLA), can lead to fine-grain
adaptation of the infrastructure, such as the adjustment of
parameters associated with resilience services. In cases when
there are significant deviations, coarse-grain adaptation, i.e.,
the invocation of new management patterns, can occur. Central
to this process is the resilience estimator, which takes as input
measurement information and a resilience target expressed in
an SLA, and generates an event when deviations occur.

Previous work has suggested that measuring the resilience
of networks should be undertaken at multiple levels of the
network protocol stack [20], [21]. With this in mind, SDNs
can support the implementation of resilience measurement in

3http://www.ponder2.net



a number of ways. Topological metrics, e.g., average node
degree and betweenness, can provide useful insights into the
resilience of a network. Arguably, by making use of a logically
centralised control functionality, an overview of the network
topology can be more readily achieved. For instance, this
information can be made available as a by-product of control
functionality that implements routing.

Furthermore, specific resilience measurement functionality,
implemented as OpenFlow applications, can be deployed on
OpenFlow controllers in order to measure the items expressed
in an SLA. These measurement applications can take advan-
tage of OpenFlow to collect useful counter data available
at switches. For example, data, such as the received and
transmitted packets or bytes associated with a flow or port, can
give indications of the current performability4 of the network.
Additionally, OpenFlow counters are available that relate to
receiving and transmission errors, which may indicate the onset
of challenges. A summary of these is shown in Table I.

Per Port Per Queue

Receive & Transmit Drops Transmit Overrun Errors
Receive & Transmit Errors
Receive Frame Alignment Errors
Receive Overrun Errors
Receive CRC Errors

TABLE I. OPENFLOW ERROR COUNTERS

In our framework, the resilience estimator itself can be
viewed as an OpenFlow application, which makes use of the
aforementioned counters and other information, such as the
current network topology, in order to invoke adaptations that
address resilience issues.

C. Resilience Strategy Deployment

In our framework, a challenge analysis module collects
events from the network infrastructure, such as the output from
intrusion detection systems, so they can be correlated to enable
the identification of a challenge. There are a number of tech-
niques that can be used for correlation. Statistical correlation
techniques use statistical features of events, and do not require
previous knowledge of an attack to function [22]. Correspond-
ingly, they can be used to correlate previously unseen attacks.
Meanwhile, correlation techniques, which identify similarities
between events largely use clustering techniques to group them
based on their features [23]. A general drawback of these
approaches is that empirically acquired domain knowledge
is required to configure the clustering mechanisms, although
some exceptions exist [24]. There are techniques that correlate
events through the use of a knowledge-base, for example, that
describe an attack scenario [25]. The major difficulty and
overhead of using knowledge-based approaches is creating
the models used for correlation. We advocate the use of a
hybrid approach that makes use of a knowledge-base for well-
understood challenges, such as those examined in the PReSET
tool (see Section III-D), and capitalise on machine learning-
based approaches to correlate previously unseen behaviours.

When the challenge analysis module identifies a challenge,
coarse-grain ECA policies determine which patterns must

4“Performability is that property of a computer system such that it delivers
performance required by the service, as described by QoS (quality of service)
measures.”[3]

be deployed. As previously mentioned, in our management
framework, resilience services that exist in the network, e.g.,
on firewalls, routers and switches, are assigned to roles, such as
link monitor and rate limiter, that are specified in management
patterns. In a “classical” network, i.e., not an SDN, resilience
services are tightly coupled with the devices that implement
them. Assignment of roles to resilience services involves the
task of associating services, and their implementation on a
device, to a specific role. In a software-defined network,
role assignment involves associating an OpenFlow application
and an associated set of switches, which realise a resilience
service, to a role (Fig. 4). We assume that, in an SDN, many
different OpenFlow applications could be eligible for enforcing
a resilience strategy and its policies.

OpenFlow
Switch

OF Controller

LinkMonitor
OF Application

TrafficClassifier
OF Application

RateLimiter
OF Application

...

...

Role_1 Role_2 Role_n...

Role assignment

OpenFlow
Switch

OpenFlow
Switch

Fig. 4. Role assignment performs the matching of the requirements of a role
to the functionality offered by an OpenFlow application.

Role assignment is achieved through matching the require-
ments of the roles specified in the pattern (in terms of the
policies that a service must be capable of enforcing or the
events that it must be capable of handling) to the interface of
an OpenFlow application. More specifically, role assignment
is defined in terms of a set of events (E) that must be sent,
notifications (N) that must be handled, and operations (O) that
must be supported by an OpenfFlow application. Formally, let
Itfm = 〈Om, Em, Nm〉 be the management interface of an
application, let r be a role, and let Reqr = 〈Or, Er, Nr〉
be the requirements for that role, then the assignment of the
OF application which has Itfm to role r is subject to the
following:

assign(Itfm, r)→ (Or ⊆ Om) ∧ (Er ⊆ Em) ∧ (Nr ⊆ Nm)

Role assignment is not concerned with the mapping and
physical distribution of OpenFlow controllers in the network
topology [26], [27], or the embedding of virtual networks
into a given physical network substrate [28]. Instead, role
assignment can be seen as an optimisation problem of finding
the best subset of resources “capable of enforcing a specific
management pattern and its policies”. In addition to requir-
ing OF applications that match the roles requirements, role
assignment may also take into account a number of pre-
specified constraints such as CPU, memory and bandwidth
requirements, or location. As we assume that many different
OF applications could be eligible for enforcing a resilience



strategy, we thus aim to investigate how the selection and
association of different applications to roles can be performed
in an optimal manner, considering the several alternatives.
Currently, role assignment is performed manually, but as future
work we intend to formulate it as an optimisation problem,
using a mixed integer programming (MIP) [29] formulation.
Further, we aim to support role assignment in a flexible
manner, catering for reassignment according to the resources
available, and on-demand.

Upon role assignment, event and policy exchanges between
OpenFlow applications occur according to the pattern speci-
fication. For example, a pattern specification may use a task-
loading management relationship to define that the following
policy should be sent to reconfigure the application running
the RateLimiter role:

1 policy throttling { //loaded into RateLimiter
2 on notify_detection(IPAddress, link)
3 do limit(IPAddress, link, %x);
4 }

The policy above specifies how a naı̈ve yet preventive
traffic shaping should be applied to all traffic destined to a
specific IP address and passing through a specific link, if an
anomaly event is received. When receiving this policy, the
rate limiter application performs its reconfiguration, ultimately
communicating with the controller and updating the flow table
with a new rule on the corresponding OpenFlow switch. For
instance, the limit action can be realised by introducing a
flow rule that maps flows that are destined for IPAddress to
a pre-configured queue associated with a port, i.e., a link.
An OpenFlow switch can be configured with a number of
queues on its ports, and the ports be assigned a minimum
and maximum rate, specified as a percentage – equivalent to
the %x parameter in the aforementioned policy. Flows that are
mapped to a specific queue are treated according to that queues
configuration; in this case, subjected to a maximum rate.

Similarly, a pattern specification may also define the neces-
sary event forwardings between OpenFlow applications. In par-
ticular, the snippet below defines that the application running
the AnomalyDetection role should forward notify detection
events to the application running the RateLimiter role using
a diffusion management relationship. This instructs the Open-
Flow application running the AnomalyDetection role to collect
specific flow statistics in the respective OpenFlow switch and
forward a corresponding event to the rate limiting application.

1 diffusion (target RateLimiter,
2 source AnomalyDetection)
3 event: notify_detection(IPAddress, link);

A pattern defines the overall configuration of mechanisms,
but the parameters and thresholds of these mechanisms are
defined according to fine-grain ECA policies, which take as
input the most recent indication of the state of the network,
as published by the resilience estimator. To accommodate this
form of policy-driven adaptation, OpenFlow applications that
implement resilience functionality must expose an interface
that can be invoked by the Ponder2 framework.

D. Resilience Strategy Evaluation

In previous work [2], we have developed a tool called
PReSET for simulating resilience strategies, which is based

on a coupling of the OMNET++ network simulator and the
Ponder2 policy-based management framework. The purpose of
this tool is to evaluate the effectiveness of resilience strategies
that address a particular challenge, which can subsequently be
promoted to resilience management patterns. Such a tool as
PReSET is necessary because validating resilience strategies
on live networks is often not possible, and testbed facilities
are typically limited in scale; this is in contrast to the nature
of a number of pertinent challenges such as DDoS attacks,
Internet worms and botnets, which involve large numbers
of topologically distributed hosts that generate significant
volumes of traffic. In PReSET, resilience mechanisms are
implemented as OMNeT++ modules that can generate events
that are sent to an external Ponder2 instance, and have actions
invoked upon them based on policies. This approach enables
policies that are shown to perform well via simulation to be
readily implemented on a real network deployment with little
additional effort.

Because of the design of PReSET, integrating resilience
strategies that make use of OpenFlow functionality is relatively
straightforward. Klein and Jarschel [30] have implemented
OMNeT++ modules for OpenFlow, including modules that
model an OpenFlow switch, controller and a number of simple
applications, such as a hub and a switch. Integration of
these modules into the PReSET tool can be readily achieved.
Resilience services that are realised as OF Controller App
modules – a dummy OpenFlow application that communicates
with an OF Controller module to receive packet-in signals
– can be extended to interface with the Ponder2 framework.
To do this requires the implementation of a simple XMLRPC
server within the simulation that enables communication to the
external Ponder instance. Further details about how to achieve
this integration can be found in [2]. At the time of writing,
a shortcoming of the OpenFlow model implemented by Klein
and Jarschel is that a number of OpenFlow messages are not
supported, including the OFPT_STATS_REQUEST message,
which can be used to collect important statistics for resilience
measurement, as discussed in Sec. III-B. This is clearly an area
for future work.

IV. EXPERIMENTAL RESULTS

To demonstrate the applicability of our resilience man-
agement framework to SDNs, we have carried out initial
experiments. We have used the Mininet5 framework to create
a virtual network, based on Open vSwitch6. Mininet utilizes
network namespaces, a feature of the Linux kernel, to imple-
ment lightweight network virtualization. Nodes in a Mininet
network, which represent hosts, switches and controllers, can
execute arbitrary applications that are available on the file
system. Additionally, switches that are modelled in Mininet
can connect to remote OpenFlow controllers; we made use of
this facility for our experiments.

To realise an exemplar resilience service, we created a
POX-based7 OpenFlow application (module), whose purpose
is to monitor Web traffic at a switch and drop traffic from
aggressive hosts. To do this, the POX module periodically

5Mininet: http://mininet.org/
6Open vSwitch: http://openvswitch.org/
7POX: http://www.noxrepo.org/pox/about-pox/



collects flow statistics from a switch and calculates the amount
of traffic in bytes destined for TCP port 80 (Web traffic), for
each source data link layer address it observes. At each period,
the module checks if the bytes sent for each host has exceeded
a transmission threshold. If this threshold has been exceeded,
the host acquires a penalty. A host can incur a penalty threshold
number of penalties, after which further flows from that host
are dropped by the switch. The aforementioned parameters are
configured via policies, in a similar manner to the examples
discussed earlier in the paper. We envisage the resilience ser-
vice being invoked via policies if unusual load is observed at a
Web server, for example, thus addressing a potential problem in
the network. A code sample, illustrating how these parameters
and the modules core behaviour can be implemented in POX,
is shown in Fig. 5.

1 # Iterate through a dictionary that holds the byte count
2 # per source address collected during this period
3 for dl_src in counts.keys():
4 # Check if the host has exceeded the transmission_threhold
5 if counts[dl_src] > transmission_threshold:
6 if penalties.has_key(dl_src):
7 # Increase the penalty for this host
8 penalties[dl_src] += 1
9 # Check if the host has exceeded its penalty_threshold

10 if penalties[dl_src] > penalty_threshold:
11 for connection in core.openflow._connections.values():
12 # Send OpenFlow message for host with
13 # non-specified action, causing dropping
14 msg = of.ofp_flow_mod()
15 my_match = of.ofp_match()
16 my_match.dl_src = EthAddr(dl_src)
17 msg.match = my_match
18 msg.priority = 65535
19 connection.send(msg)
20 else:
21 penalties[dl_src] = 1

Fig. 5. A POX code snippet that can be used to implement a resilience
service that drops traffic from hosts generating aggresive quantities of traffic

To test our OpenFlow-based resilience service, we created
a network, using the Mininet framework, which consisted of
a number of hosts connected to a single OpenFlow switch.
The switch was configured to connect to a remote POX-based
controller, running the forwarding.l2 learning module, which
implements a basic learning switch, and our resilience module.
A Web server was started on a host in the network, and
“background” traffic was generated by hosts using the wget
application. At a specified time, a host “attacked” the Web
server, implemented using the Apache Webserver benchmark-
ing tool, called ab. For analysis, traffic was captured on the
host running the Web server using tcpdump. This behaviour
was implemented in a Python script, which made use of the
Mininet API.

The results of our experiment are shown in Fig. 6. Ini-
tially, background traffic is generated; at 20 secs the attack
is launched at the Web server. Our resilience module was
configured with a penalty threshold of four. After incurring
four penalties, a flow rule, which causes packets to be dropped
for the specified flow, is installed on the switch for the host
conducting the attack. This behaviour can be seen shortly after
40 secs into the experiment, whereby traffic levels observed
at the Web server return to normal levels. (The “sawing”
behaviour during the attack period, which can be seen in
Fig. 6, is caused by the ab application stopping and restarting
on the attacking host.) These preliminary experimental results
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Fig. 6. Traffic measured at a Web server; an attack is launched at 20 secs
and mitigated by dropping associated flows at 40 secs

demonstrate the potential to implement resilience functionality
using OpenFlow and have this functionality orchestrated using
the resilience management framework, which is discussed
in the paper. Further work will involve elaborating on this
scenario, in order to incorporate additional resilience services
that can be organised into strategies, specified as patterns, and
configured using further policies.

V. RELATED WORK

SDN policy abstractions are now widely recognised as an
important element in building layered, modular applications.
As a result, several research efforts have defined high-level
languages for specifying SDN applications. In particular, pol-
icy abstractions have been suggested for assisting the building
of OpenFlow applications. Although OpenFlow provides a
standard interface for manipulating rules on the switches, the
controller programming model still presents a low-level pro-
gramming interface that is error prone. Policy abstractions are
capable of hiding the low-level configuration details (e.g., bit
patterns for specifying sets of packets and integer priorities for
disambiguating rules), and only present relevant information to
the upper layers.

Frenetic [31] provides a high-level, declarative query lan-
guage for aggregating network traffic, as well as for specifying
high-level packet forwarding policies. For example, Frenetic
supports the specification of policies using expressive filter
patterns, such as intersection, union, difference
and complement. It also supports the parallel composition
of policies, which gives each module (e.g. routing and mon-
itoring) the perception of operating on its own copy of each
packet, thereby supporting code reuse. The runtime abstracts
the details related to translating these policies to switch-level
rules, and installing/uninstalling rules on the switches.

Pyretic [16] is a language and system that enables pro-
grammers to specify policies at a high-level of abstraction. It
extends the work developed in Frenetic, and introduces the
sequential composition of policies, which allows a module
to act on packets already processed by another module (e.g.
routing after load balancing). Pyretic also supports abstract
network topologies, in which each module applies a policy
over its own abstract view of the topology, thereby supporting
information hiding and protection.



Procera [17] is a declarative policy language for SDNs
based on functional reactive programming. It provides a col-
lection of domain-specific operators for expressing temporal
queries, defined over external events such as bandwidth use,
intrusion detection or specific time events. Procera provides
an event algebra that supports operations for filtering, trans-
forming and merging event streams. The policy layer sits on
top of the controller and can react to signals about network
events as well as out-of-band signals from users and external
devices. Procera is extensible so users can extend the language
by adding new constructs and event operators.

Our work is complementary to the policy languages de-
scribed above. We assume that OpenFlow applications will
still be built using high-level languages like Frenetic, Pyretic
and Procera. However, our focus is not on building individual
applications, but instead on how to combine and orchestrate
these individual applications, possibly implemented over dis-
tributed controllers, into network-wide resilience services. We
expect that management patterns can assist in providing these
much need abstractions.

VI. CONCLUDING REMARKS

Software-defined networking provides a flexible architec-
ture for the configuration of network devices, based on the
decoupling of the data and control planes. Although software-
defined networking in general, and OpenFlow in particular,
provide such abstractions, support is still needed for orches-
trating a collection of devices and services that must cooperate
to implement network-wide resilience services. To address
this issue, we advocate the use of management patterns as
abstractions for orchestrating individual resilience services im-
plemented as OpenFlow applications, possibly over distributed
controllers.

In the framework presented in this paper, management
patterns can be used to specify the management relationships
between resilience mechanism types to combat specific types
of network challenges. Based on the mechanisms required by
each pattern, OpenFlow applications deployed in the network
are chosen and configured to perform event exchanges and
policy reconfigurations as prescribed by the overall pattern.
The benefits of using management patterns are two-fold:
(1) they can be used to systematically build network-wide
resilience services using building-block abstractions that define
common management relationships; (2) patterns are abstract
specifications for containing specific types of challenges, so
they can be reused in different parts of the network or with
the devices currently available in a given network.

As part of our immediate future work, we are going to
expand on our experimental results using the Mininet emulator.
We intend to emulate a wider range of network challenges
and attacks, and perform a thorough assessment of network
reconfigurations using management patterns. We also intend
to work on the integration of the PReSET [2] toolset for
resilience simulation with an OMNeT++ implementation of
OpenFlow [30]. We expect to be able to evaluate policy-based
resilience strategies based on OpenFlow reconfigurations also
using the simulation environment.
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