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The best laid plans of  mice and  
men often go awry.

(Burns, 1785)

And often, going awry is psychologically mean-
ingful. Recent advances in psychological science 
have shown that motion trajectories reflect 
underlying cognitive processes. In the current 
article, we discuss how analysis of  computer 
mouse-trajectories and their temporal dynamics 
can provide powerful insight into these processes. 
Our goal is to describe how researchers might 

incorporate mouse-tracking into their psycholog-
ical toolbox such that they can address novel 
hypotheses within their areas of  research. We pri-
marily focus on recently developed advanced 
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Abstract
Computer mouse-tracking is a relatively recently developed behavioral methodology that can contribute 
unique insight into a wide variety of psychological phenomena. By recording mouse movements en 
route to specific responses on a screen, researchers glean continuous information about tentative 
commitments to multiple response alternatives over time. This approach yields a richness of data 
that can be fully explored with a variety of sophisticated analytic techniques, but these approaches 
are relatively underutilized and can be difficult to adopt. Here we describe several techniques for 
researchers to examine the onset and timing of evolving decision processes; test the degree of response 
competition at different time points; assess trajectory complexity with spatial disorder analyses; identify 
qualitatively distinct psychological processes during response generation; and finally to distill unique 
and meaningful components from mouse-tracking data for subsequent analysis. With this guide, we 
hope researchers can address novel hypotheses otherwise inaccessible with more traditional methods.
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analytic techniques that capitalize on the richness 
of  data provided by a mouse-tracking approach. 
First, to provide a larger framework conducive 
for understanding, we discuss the basic paradigm, 
the theoretical principles underlying the method, 
and provide examples of  what novel hypotheses 
this technique has already been used to test.

We then provide step-by-step instructions for 
researchers to analyze the high-resolution tem-
poral data provided by mouse-tracking with sev-
eral techniques, and how these data might be 
analyzed to address unique questions that would 
otherwise be unanswerable with more traditional 
measures. Namely, we focus on (a) time course 
analyses of  mouse-trajectory coordinates, useful 
in examining how various factors exert influence 
on or are integrated into the evolving decision 
process over time; (b) examination of  velocity 
and acceleration, which can index the degree of  
response competition at different time points; (c) 
assessment of  spatial disorder in trajectories, 
indicative of  complexity and unpredictability 
associated with response dynamics; (d) the iden-
tification of  smooth versus abrupt response 
competition, which can yield important insights 
into the presence of  more dynamic versus more 
discrete-like cognitive processes; and finally, (e) 
principle components analysis (PCA), which can 
distill unique and meaningful components from 
the mouse-tracking data for subsequent analysis. 
Because of  our own work with mouse-tracking, 
many of  the examples will be drawn from the 
person perception and social categorization lit-
erature, but we stress that the methodology is 
readily applicable to diverse domains (see also 
Freeman, Dale, & Farmer, 2011; Song & 
Nakayama, 2008).

Basic Paradigm
Because of  the ubiquity of  a computer and 
mouse environment, setting up a mouse-tracking 
task is fairly simple, and requires no more hard-
ware than that accompanying a common com-
puter. While proprietary software could be used, 
a software package called MouseTracker has been 
developed, is frequently updated and maintained, 

and is freely available for download online at 
http://www.freemanlab.net/mousetracker or by 
searching for “MouseTracker.” This package has 
been rigorously tested and validated (Freeman & 
Ambady, 2010), and because it is the most easily 
accessible and widely available package, the rest 
of  this manuscript will use the framework of  this 
software for example purposes.

In a standard two-choice MouseTracker task,1 
participants are presented with an image, letter 
string, sound, video (or a combination of  these) 
and then make a response using options that 
appear in the top left or right corners (see Figure 1). 
As participants move a mouse cursor to select the 
appropriate response across numerous trials, the 
x-, y-coordinates of  the mouse pointer en route 
to response selection are recorded. These mouse 
trajectories are then aggregated and analyzed, 
providing a highly sensitive measure of  both the 
extent to which and when during real-time pro-
cessing a response was activated and partially 
committed to, even if  not ultimately selected 
(Freeman & Ambady, 2010; Freeman, Dale, et al., 
2011). Following the detailed help manual availa-
ble on the MouseTracker website or by down-
loading the software locally, researchers can easily 
program an input file for various tasks.

Examples
Some of  the earliest research studies implement-
ing mouse-tracking as an index of  response com-
petition examined how atypical exemplars 
activated an opposing category to a greater extent 
than typical exemplars. Participants categorized 
animal pictures into “Mammal” and “Fish” cate-
gories. Critical trials featured atypical animals, 
such as whales, that resemble members of  the 
fish category but truly belong to the mammal cat-
egory. While participants correctly selected the 
accurate category, computer mouse-trajectories 
during these critical trials deviated more towards 
the unselected category than control trials, 
reflecting the partial activation of  the “Fish” cat-
egory, in turn activating initial motor movements 
toward that response that were suppressed over 
time (Dale, Kehoe, & Spivey, 2007).
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This result demonstrates how category activa-
tion can reflect “bottom-up” competition, or 
competition as a result of  the visual characteris-
tics shared by whales and fish. In addition, cate-
gory activation can be influenced by “top-down” 
cognitive factors such as attention, motivation, or 
knowledge/expectations (e.g., stereotypes). One 
series of  studies demonstrating this possibility 
drew from stereotypes of  White individuals hav-
ing high status and of  Black individuals having 
low status in the US. Participants categorized 
faces surrounded by different status attire as 
“White” or “Black.” When participants catego-
rized a target as “White,” if  the target was wear-
ing low-status attire (e.g., janitor clothing) their 
mouse-trajectories deviated toward the “Black” 
response. Conversely, when participants catego-
rized a target as “Black,” if  the target was wearing 
high-status attire (e.g., business clothing) their 
mouse-trajectories deviated toward the “White” 
response (Freeman, Penner, Saperstein, Scheutz, 
& Ambady, 2011). These results suggest that, 
even when stereotypic expectations do not com-
pletely bias a perceptual outcome, they can never-
theless lead to a partial, tentative bias in 
perception. Thus, both bottom-up visual features 
and top-down social cognitive factors can influ-
ence mouse-trajectories individually or in con-
junction, making mouse-tracking uniquely suited 
to examine both influences.

Researchers from diverse domains have since 
adopted mouse-tracking to answer their unique 
research questions. For instance, mouse-tracking 

has provided insight into the cognitive mecha-
nisms underlying: the implicit association test 
(Yu, Wang, Wang, & Bastin, 2012), social evalua-
tion and attitudes (Wojnowicz, Ferguson, Dale, & 
Spivey, 2009), target selection in visual search 
(Song & Nakayama, 2008), syntactic transfer in 
English-speaking Spanish learners (Morett & 
Macwhinney, 2012), how individuals with 
Williams syndrome perceive others (Martens, 
Hasinski, Andridge, & Cunningham, 2012), a 
wide range of  category competition in person 
perception (e.g., Freeman & Ambady, 2009; 
Johnson, Freeman, & Pauker, 2012), and the 
downstream consequences of  category competi-
tion in domains such as politics (Hehman, 
Carpinella, Johnson, Leitner, & Freeman, in 
press), among many other examples.

Theoretical Foundation
Understanding the theoretical principles driving 
mouse-tracking is critical to understanding how it 
is useful and distinct from other measures. 
Initially, mouse-tracking was used to distinguish 
traditional, discrete stage-based accounts of  cog-
nitive processing from continuous, dynamic 
accounts. Discrete stage-based accounts generally 
argue one cognitive process must be completed 
before the next can begin, whereas dynamic 
accounts argue that partial products of  multiple 
parallel cognitive processes converge onto a sta-
ble and integrated response over time (Spivey & 
Dale, 2004).

Female Male Female Female MaleMale

The participant clicks 
the “Start” button.

The stimulus appears. The participant moves the mouse to 
select a response button. The mouse-
trajectory is recorded (participants do 

not see the trajectory).

Figure 1.  Example of mouse-tracking trial.
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One of  the most prominent variants of  dis-
crete stage-based approaches are dual-process 
models, prevalent in the social cognitive litera-
ture. For example, dual-process models of  social 
evaluation argue that people initially evaluate oth-
ers in an automatic fashion, but that this initial 
evaluation can be further modified by a second 
discrete stage involving explicit, deliberative 
assessment. For instance, an individual’s prejudice 
may lead to an implicit negative evaluation of  
another person, but this may be controlled by a 
deliberate motivation to be nonprejudiced 
(Devine, 1989). In contrast, research adopting a 
dynamic, rather than discrete, perspective of  the 
social evaluation process has proposed that 
explicit evaluations emerge out of  the continuous 
interaction between two attitudes, one that rap-
idly gains activation early in processing (i.e., 
implicit) and one whose activation slowly 
increases in magnitude but ultimately dominates 
(i.e., explicit) (Wojnowicz et al., 2009). Together, 
these parallel processes cohere into an integrated 
and stable evaluation over time. Thus, a tradi-
tional dual-process account would predict that an 
initial, implicit evaluation is discretely activated 
(e.g., “I don’t like African Americans”), which is 
then countermanded by a more deliberate, 
explicit evaluation (e.g., “I like African 
Americans”). In contrast, a dynamic account 
would predict that both evaluations are simulta-
neously active and integrated in parallel into a sta-
ble response over time (Wojnowicz et al., 2009).

Another example comes from the domain of  
person construal. It has long been known that 
cues specifying gender, race, age, emotion, and 
other social categories are processed in the first 
hundreds of  milliseconds in the perceptual 
stream (Hehman, Stanley, Gaertner, & Simons, 
2011; Ito & Urland, 2003; Macrae & 
Bodenhausen, 2000). A recent theoretical frame-
work and dynamic-interactive model of  person 
construal argues that the early processing of  
such category-specifying cues triggers tentative 
hypotheses as to another’s social category mem-
berships. These initial hypotheses are refined as 
more information accumulates, until a final cat-
egorization that optimally integrates all available 

information stabilizes over time. Thus, cues 
extracted early (e.g., long hair) might initially 
elicit partial commitments to one gender cate-
gory (e.g., female), but as additional facial infor-
mation is processed and incorporated (e.g., 
masculine facial features), another category rep-
resentation may increasingly become activated 
(e.g., male). Beyond bottom-up sensory cues, the 
constraints of  top-down social factors (e.g., ste-
reotypes, context, goals) also influence this pro-
cess, placing excitatory and inhibitory pressures 
on consistent or inconsistent social category rep-
resentations. Any conflicting representations 
(e.g., male vs. female) then resolve through 
dynamic competition, in which the two catego-
ries compete until stabilizing onto one over time. 
In this framework, person construal is thus 
argued to be an interactive, rather than compart-
mentalized, process in which multiple social cat-
egory alternatives are simultaneously and partially 
active, competing for activation while evidence is 
dynamically integrated into a stable “compro-
mise” over time (Freeman & Ambady, 2011a).

How can computer mouse movements distin-
guish between such discrete stage-based versus 
dynamic accounts? Because discrete stage-based 
models of  cognition posit two independent and 
subsequent processes, mouse-trajectories would 
be expected to display an identical pattern of  two 
independent and subsequent movements. More 
specifically, mouse movements would display an 
initial movement toward one response option 
that is abruptly and sharply redirected toward the 
other response option. A dynamic account, in 
contrast, would predict an attraction toward one 
response option that is then adjusted toward the 
other response option in a smooth and graded 
manner. Accordingly, previous research has used 
the characteristics of  mouse-trajectories to 
address whether cognitive processes are better 
described by discrete stage-based or dynamic 
accounts. When responding whether they liked or 
disliked Black and White individuals, participants 
demonstrated a greater partial attraction toward 
“Dislike” when responding to Black individuals, 
and this trajectory was smoothly adjusted toward 
“Like” over time (Wojnowicz et al., 2009). 
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Similarly, when categorizing long- and short-
haired males and females as “Male” and “Female,” 
participants demonstrated a partial attraction 
toward the opposite gender when categorizing 
long-haired males and short-haired females, and 
these trajectories dynamically stabilized on the 
correct response over time (Freeman, Ambady, 
Rule, & Johnson, 2008). Because mouse-trajectories 
in both these examples exhibited partial attrac-
tion toward parallel competing responses that 
smoothly and continuously resolved over time 
(rather than an initial discrete activation of  one 
response that was abruptly corrected by a later 
discrete activation of  another response), such 
results support dynamic rather than discrete-like 
cognitive processes. At present, most research 
domains likely have far greater theoretical specifi-
cation than the mere distinction between dynamic 
versus discrete-like processes, but this is one gen-
eral manner through which mouse-tracking can 
distinguish between competing theoretical 
accounts in psychological science.

Why is measuring participants’ hand move-
ments a valid index of  real-time cognitive dynam-
ics? This approach is valid because response 
competition readily manifests in goal-directed 
motor movements. Specifically, research has 
shown that dynamic activity in neuronal popula-
tions of  the premotor cortex is strongly tied to 
continuous motor movements, and these neu-
ronal populations are stimulated by the decision 
process. For instance, single-cell recordings of  
neuronal activity in nonhuman primates revealed 
that during two-choice tasks in which primates 
have to reach out to select a response option, 
directionally tuned cells in the premotor cortex 
initially fire for both choices simultaneously. Over 
time, however, activity for the unselected choice 
decreases while activity for the selected choice 
increases (Cisek & Kalaska, 2005). These neu-
ronal patterns of  activity are consistent with pre-
dictions by dynamic models of  response 
competition, in which multiple potential 
responses compete and resolve over time into a 
single stable representation. Moreover, behavio-
ral work has long established that motor move-
ment is continuously updated by cognitive 

processing over time (Goodale, Pélisson, & 
Prablanc, 1986), and electrophysiological work 
suggests that the process of  categorizing a visual 
stimulus may immediately share its ongoing 
results with the motor cortex to continuously 
guide a hand-movement response over time 
(Freeman, Ambady, Midgley, & Holcomb, 2011). 
Thus, during a continuous movement in selecting 
one of  two choices, the diverse elements of  
movement during response selection (e.g., accel-
eration of  the hand, deviations toward one or 
another category, how frequently direction is 
changed) can be recorded and analyzed for insight 
into the psychological processes underlying the 
movement.

Recommendations for Basic Set-Up
Prior to discussing data-analytic approaches for 
analyzing these psychological processes, there are 
first several methods employed in our experi-
ments we recommend as best practice for mouse-
tracking data collection, to obtain the “cleanest” 
data possible for analysis. We note, however, that 
these approaches have not been empirically vali-
dated, and instead are derived from our previous 
experience.

First, prior to beginning experimental trials, 
participants are given several practice trials to 
familiarize themselves with the paradigm. 
Participants are encouraged to start moving as 
quickly as possible following stimulus onset, even 
if  not yet fully certain of  a response, and to feel 
comfortable “going with their gut.” We intention-
ally avoid, however, specifying mouse-movement 
as the index of  interest. Prior to starting an experi-
ment, the experimenter ensures that participants 
understand the importance of  initiating move-
ment early. Indeed, we typically set the initcut fea-
ture to 400 ms, which causes trials in which 
movement initiation exceeds 400 ms following 
stimulus onset to display a warning message after 
participants have made their responses, encourag-
ing faster initiation time on future trials. However, 
whether or not initiation time monitoring is 
implemented and, if  so, what the initcut threshold 
is set at depends on the timing of  experiments 
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and the particular interests of  researchers. In a 
psycholinguistics or moral decision-making exper-
iment, for example, the need for initiation time 
monitoring could be quite different. Without hav-
ing an initiation time, participants may be tempted 
to begin moving only once a decision has been 
completely finalized, thus rendering the measure 
off-line. On the other hand, encouraging extremely 
fast initiation times by setting initcut to extreme 
thresholds such as 100 ms poststimulus onset may 
be so difficult that it may lead participants to 
strategize (e.g., making early, random movements 
to pass the threshold), which can bias results and/
or dampen sensitivity to effects. For each particu-
lar task and psychological process being investi-
gated, we recommend researchers conduct some 
pilot work to determine if  initiation time monitor-
ing would be helpful and what an appropriate 
threshold would be.

Other considerations include counterbalanc-
ing whether response alternatives appear in the 
top left versus right of  the screen across partici-
pants (at least for the standard two-choice design 
with static response alternatives; in other experi-
ments, response alternatives may change trial by 
trial). We also recommend using right-handed 
individuals, given the primacy of  right-handed 
motor movement in these experiments. In the 
standard two-choice design, leftward and right-
ward kinematics can differ slightly likely due to 
right-handedness (e.g., Spivey, Grosjean, & 
Knoblich, 2005). A great deal of  future methodo-
logical work is needed to investigate the role of  
handedness and numerous other factors that may 
influence mouse-tracking data. For hardware rec-
ommendations and other considerations, see 
Freeman and Ambady (2010).

Data Analysis

Mouse-Trajectory Deviations
The most commonly used method of  mouse-
tracking analysis thus far has focused on averaged 
deviations in trajectories toward one response or 
another. The measures specifically rely on area 
under the curve—the geometric area between the 

observed mouse-trajectory and an idealized 
straight-line trajectory drawn from the start and 
end points—and maximum deviation, the length 
of  a perpendicular line between the idealized 
straight-line trajectory and farthest point from 
that straight line in the observed trajectory. Both 
measures assess the degree of  attraction toward 
an unselected response, indexing the magnitude 
of  activation for each response option as the 
decision process unfolds over time. Analysis of  
these measures has been more fully covered else-
where (Freeman & Ambady, 2010). Instead, this 
paper will focus on more sophisticated data ana-
lytic techniques that allow researchers to fully 
capitalize on the richness of  data resultant from 
recording dynamic mouse-trajectories over time.

Temporal Analyses
With MouseTracker, the position of  the mouse 
cursor is recorded between 60–75 times per sec-
ond (Freeman & Ambady, 2010). The onset and 
timing of  mouse-trajectory deviations can there-
fore be used as a milliseconds resolution meas-
ure of  the time course response activation (Dale 
& Duran, 2011; Farmer, Cargill, Hindy, Dale, & 
Spivey, 2007; Freeman & Ambady, 2010), and 
how behavioral responses evolve differently 
over time.

For specific examples as to how this temporal 
information might be used, one series of  studies 
had participants categorize female political candi-
dates as male or female, and examined how the 
activation of  the male category (from masculine 
facial features) was associated with electoral out-
comes. Attraction to the male category was nega-
tively associated with electoral victory for female 
candidates. The researchers then examined when 
in the perceptual stream mouse-trajectories might 
differentiate female winners from losers, finding 
that a partial activation of  the male category (i.e., 
partial attraction toward the “male” response) as 
early as 380 ms following face presentation was 
significantly predictive of  electoral failure 
(Hehman et al., in press). In addition, other work 
has compared mouse-trajectories of  Chinese and 
American participants during race categorization, 
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finding that a race-relevant visual context influ-
enced the mouse-trajectories of  Chinese partici-
pants earlier in the processing stream than for 
American participants, thus indicating that the 
context exerted an earlier influence on the cate-
gorization process in Chinese participants 
(Freeman, Ma, Han, & Ambady, 2013). Finally, 
other work examining gender categorization has 
shown that the atypicality of  facial pigmentation 
cues led to trajectory deviations starting 100 ms 
earlier than that of  facial shape cues, providing 
fine-grained time course information that pig-
mentation cues were processed earlier than shape 
cues (Freeman & Ambady, 2011b).

How to.  To begin these analyses, researchers 
would import their data into MouseTracker Ana-
lyzer normally as described elsewhere (Freeman 
& Ambady, 2010). However, on the “Time” tab, 
researchers would instead select “Raw time analy-
sis.” Doing so will refrain from standardizing the 
length of  trajectories, the default option, and thus 
allow for increased precision when examining 
movement within trajectories (however, if  trajec-
tories should substantially differ in length as a 
function of  experimental condition, we recom-
mend either normalized time analysis or per-
forming raw time analysis only within each 
respective condition). “Max time” specifies at 
which point raw time trajectories would no longer 
be recorded, and “Time bins” specifies the 
amount of  data points reported across a single 
trajectory (e.g., for a 1,000 ms trajectory, 20 time 
bins would equal 20 data points of  x- and y-coor-
dinate information averaged across 50 ms). 
With raw time analysis selected, when exporting 
the data from MouseTracker Analyzer to a 
comma-separated-value (CSV) file, raw x- and 
y-coordinates over time will be appended to each 
row of  data (i.e., each trial). Cursor movement 
over time can then be analyzed as a function of  
other variables.

For instance, returning to the previous politi-
cal example (Hehman et al., in press), we com-
pared mouse-trajectories for targets receiving 
more votes (+1 SD) with targets receiving fewer 
votes (−1 SD). To do so, we averaged all 

mouse-trajectories for each political candidate to 
estimate the average x- and y-coordinate of  the 
mouse cursor at each time bin. Using a series of  
correlations, we then tested whether the 
x-coordinate was significantly correlated with the 
electoral success of  each candidate at each time 
bin (see Figure 2). X-coordinates were signifi-
cantly associated with electoral outcomes starting 
at 380 ms and throughout the rest of  the trajec-
tory, supporting the possibility that the activation 
of  the male category early in the perceptual 
stream might be influencing electoral outcomes.

Instead of  x-coordinates alone, proximity to 
response options might instead be of  interest to 
some researchers. Proximity is the Euclidean (i.e., 
straight line) distance between the cursor and 
response option, incorporating both x- and 
y-coordinates, and thus would be particularly use-
ful when examining the potential for both hori-
zontal and vertical deviations in trajectories over 
time. The formula for calculating Euclidean dis-
tance at any single time point is:

distance((x, y), (a, b)) = (  ) (2 2x a y b− + − )

when (x, y) would represent the x- and y-coordi-
nates of  the cursor at any time point and (a, b) 
would represent the coordinate location of  either 
response option. Although distance itself  can be 
helpful, prior mouse-tracking studies have typi-
cally calculated proportional proximity:

1  distance / max distance− ( )

After calculating proximity at each time point, 
researchers could examine the mouse’s proximity 
to the unselected response option over time (e.g., 
Freeman & Ambady, 2009; Freeman, Pauker, 
Apfelbaum, & Ambady, 2010), its proximity to 
the selected response option over time, or both 
(e.g., Spivey et al., 2005). For example, Spivey et 
al. (2005) examined what point in time the 
mouse’s proximity to the selected response sig-
nificantly differed from its proximity to the unse-
lected response. Such an analysis is akin to 
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examining x-coordinate divergence over time, 
except that divergence using proximity scores 
incorporates both horizontal and vertical (i.e., x- 
and y-coordinate) divergence over time.

These are but two examples of  how the time 
course of  trajectory data might be used, and 
researchers might of  course compare x- or 
y-coordinates across experimental conditions, 
across participant personality variables, across differ-
ent populations, among many other possibilities.

Velocity and Acceleration
Examining time bins can additionally provide 
useful information about both the acceleration 
and peak velocities of  the mouse cursor during 
response selection, and the psychological pro-
cesses that might be driving such movement 
dynamics. Analysis of  these components can 
shed insight into the temporal dynamics of  
response activation and competition. For 
instance, some quantitative theoretical models of  

response competition posit that, when competing 
response alternatives inhibit one another early in 
processing, as the competition is resolved this 
inhibition is alleviated and rapid gains in activa-
tion of  the previously inhibited response alterna-
tive should be observed (Usher & McClelland, 
2004). This leads to the prediction that stronger 
competition between response options should be 
characterized by an initial decreased velocity as 
competing choices inhibit each other, followed by 
an increase in velocity once the system converges 
upon a decision and the inhibition is alleviated 
(see Figure 3).

Recent work has tested these models by ana-
lyzing the velocity profile of  mouse movements 
during response selection. Investigating explicit 
racial attitudes, the researchers demonstrated that 
when participants made positive evaluative judg-
ments of  Black individuals, the velocity profile of  
mouse movements during the evaluative judg-
ment process fits this predicted pattern of  an ini-
tial decreased velocity and subsequent increased 
acceleration. Mouse movements when making 
positive evaluations of  White individuals, on the 
other hand, were smoother and more continuous 
(Wojnowicz et al., 2009). This change in velocity 
might reflect the competition between positive 
and negative attitudes when evaluating Black indi-
viduals. Thus, velocity and acceleration provide 
unique information that can subtly but power-
fully index the degree of  competition, as well as 
its resolution over time. Importantly, such con-
tinuous behavioral data can additionally be com-
pared with the real-time predictions of  
quantitative theoretical models.

Velocity and acceleration may also reflect the 
degree of  response activation and thus allow for 
inferences about when commitments to a partic-
ular response are made. For example, in one 
series of  studies participants affirmed or denied 
autobiographical information, after being 
instructed to respond honestly or deceptively 
(Duran, Dale, & McNamara, 2010). False affirm-
ative responses showed smaller peak velocities 
than true affirmative responses, and velocity 
peaks were significantly delayed for false relative 
to true responses. Thus, peaks in velocity may 

Figure 2.  Example plotted x-, y coordinate data. We 
tested at which time bin mouse cursor x- coordinates 
were significantly correlated with electoral outcomes. 
Here, x-coordinates were significantly correlated at 
380 ms (indicated by the brackets) and remained 
significant until the end of the trajectory. White dots 
represent the location of each time bin.
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reveal the degree and onset of  response commit-
ment, potentially unveiling cases in which multi-
ple response commitments occur.

How to.  In the standard two-choice mouse-
tracking paradigm, velocity is calculated as the 
distance between subsequent coordinates at dif-
ferent raw time points, and acceleration may be 
computed from changes in velocity across time 
points. MouseTracker Analyzer can compute 
these values on the basis of  x-coordinates only 
(horizontal velocity/acceleration), y-coordinates 
only (vertical velocity/acceleration), or both 
(Euclidean-based velocity/acceleration), and 
include them in output upon specification. To do 
so, researchers would again select “Raw time 
analysis” in the “Time” tab of  MouseTracker 
Analyzer. Proceeding normally, upon clicking 
“Compute,” researchers will be asked to indicate 
from which coordinates to compute velocity and 
acceleration. After exporting the data to the CSV 
file, velocity and acceleration values will be 
appended to the end of  each trial per the number 
of  time bins specified in the “Time” tab. From 
these data, researchers may explore how velocity 

and acceleration relate to their psychological phe-
nomena of  interest.

Spatial Disorder Analysis
Complexity arises in the behaviors of  many 
dynamic biological systems, including the human 
brain. In some cases, it may be helpful to measure 
the complexity of  mouse trajectories. Should mul-
tiple response alternatives act as simultaneous 
attractors exerting an influence on participants’ 
mouse trajectories (relative to only one), this addi-
tional stress might manifest as less smooth, more 
complex, and unpredictably fluctuating trajectories 
(see Figure 4). For instance, research has found 
that atypical (e.g., whale) relative to typical (e.g., cat) 
exemplars of  a category (e.g., mammal) elicit more 
complex trajectories (Dale et al., 2007). For 
researchers subscribing to dynamical systems per-
spectives, complexity in response trajectories may 
be taken as evidence for a formal dynamical pro-
cess at work (e.g., Dale et al., 2007; Spivey, 
Anderson, & Dale, 2009). Spatial disorder analyses 
are optimal for those interested in estimating the 
complexity of  trajectories. Spatial disorder may be 

Figure 3.  X-coordinate velocity plotted over time of mouse-movements when categorizing typical and atypical 
exemplars. Note that for atypical targets, velocity is initially slower than for typical targets (e.g., at 600 ms), 
but over time becomes increases to “catch up.” These velocity profiles thus indicate different initial response 
commitments and how response options compete over time.
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analyzed through various trajectory parameters. 
Sample entropy (Richman & Moorman, 2000) is 
likely the most comprehensive measure, measuring 
the degree of  irregularity and unpredictability in 
movement across the x-axis. Although far more 
crude, the simplest measure is x-flips, the total 
number of  directional shifts made in a trajectory 
and supplying information about directional con-
sistency. However, if  disorder in x-axis movement 
does not involve directional changes, x-flips often 
will not pick up on these changes (Dale, Roche, 
Snyder, & McCall, 2008).

How to.  Spatial disorder analyses may be per-
formed several ways. In mouse-tracking sample 
entropy analyses, we are interested in spatial dis-
order along the decision axis as complexity upon 
this axis should relate to competition. For discus-
sion, we assume the x-axis is the decision axis in a 
task. The sample entropy of  a time series is the 
“negative natural logarithm of  the conditional 
probability that … sequences similar for m points 
remain similar at the next point” (Richman & 
Moorman, 2000, p. 2039). Thus, sample entropy 
increases as areas in a trajectory similar at one 

length are no longer similar at a greater length, 
meaning there is greater complexity and fluctua-
tion in the trajectory.2 To compute sample 
entropy, researchers would first convert the data 
to normalized time so that trajectory length does 
not confound entropy between trials (the default 
option in MouseTracker). Next, researchers 
would determine various parameters, including 
(a) the number of  time steps to normalize time to 
(N), (b) the “window” size (m; length of  sequences 
to be compared for similarity), and (c) the toler-
ance (r; threshold for determining similarity 
between windows). There are no universal stand-
ards for these parameters, but we make several 
recommendations. By default, MouseTracker 
normalizes trajectories to 101 time steps, and we 
use that here. Evidence indicates windows 
between m of  3 and 6 are most sensitive (Dale 
et al., 2007), though researchers may want to test 
different window sizes. Finally, to determine simi-
larity between windows, researchers can count 
the number of  window pairs that are similar 
within a tolerance based upon a distance measure. 
For example, recent work (Dale et al., 2007) com-
puted the maximal difference between pairs of  

Figure 4.  The sample entropy of two different mouse-trajectories. Here, the more jagged and complex 
trajectory during categorization of the atypical than typical target results in greater sample entropy.
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x-shifts within a window, and determined the 
window pair to be similar if  the difference was 
within a tolerance of  .2 multiplied by the standard 
deviation of  the x-shifts (the method employed 
in our Python script in the Supplementary 
Material).

After data is exported with x-axis points in 
normalized time per trajectory (101 time steps on 
the x-axis per trajectory), researchers would com-
pute the x-shifts between each step in normalized 
time (∆x = xtimestep+1 – xtimestep, which should 
result in N − 1 x-shifts). Next, researchers would 
count the number of  similar m and m + 1 sized 
x-shift windows (Mm and Mm+1). Finally, research-
ers would calculate the average count of  similar 
windows for all m and m + 1 sized windows, 
whereafter sample entropy can be computed as 
–ln(Mm+1/Mm) (i.e., ln[Mm] – ln[Mm+1]). See the 
Supplementary Material for a Python script to 
calculate sample entropy and further detail. This 
measure may then be submitted to statistical tests 
to investigate its relation to other variables.

In normalized time, MouseTracker automati-
cally provides x-flips (and y-flips) per trajectory in 
its output. The user may set parameters regarding 
what constitutes a change in direction. To do so, 
after the data has been imported and visualized 
but prior to selecting “Compute,” researchers 
would select “Settings” to indicate the minimum 
and maximum distances to be considered a 
change in direction. To detect very subtle changes 
in direction, a minimum change of  .01 may be 
appropriate; to detect larger scale changes, how-
ever, a minimum of  .25 may be more appropriate. 
Following exporting the data to a statistical analy-
sis software package, x-flips can then be analyzed 
an as outcome measure of  interest.

Smooth Versus Abrupt Response 
Competition
Trajectories.  A visual inspection of individual 
mouse-trajectories from any mouse-tracking 
experiment will quickly reveal that they may take 
several general shapes. In this section, we exam-
ine how these different shapes may themselves be 
analyzed to test whether different experimental 

conditions might result in different types of com-
petition or response-activation patterns. One dis-
tinction that has been theoretically valuable is 
between mouse-trajectories exhibiting smooth, 
graded competition (Figure 5, Panel A), and those 
in which competition results in initial movement 
towards one response that is abruptly redirected 
midflight toward the other response (Figure 5, 
Panel B). Researchers may find that these two 
response trajectories are an index of unique cog-
nitive processes, which, when analyzed, help to 
answer their theoretically important psychologi-
cal questions.

For instance, consider a situation in the 
domain of  person perception. When perceiving a 
face, some features are highly salient but not very 
diagnostic of  the social categories in question, 
and some features are not very salient but highly 
diagnostic. Consider hair length, a highly salient 
but not very diagnostic feature (as both males and 
females can vary in hair length), and gendered 
facial features, less salient but highly diagnostic in 
accurately categorizing another’s gender. When 
categorizing targets with gender-typical hair but a 
mixture of  masculine and feminine facial fea-
tures, the activation of  the male and female cate-
gory representations could be smooth and 
gradual, as additional cues are integrated until 
ultimately one category is selected and the activa-
tion of  the competing category is inhibited. 
Mouse-trajectories capturing this process would 
similarly be smooth and graded, as in Panel A. On 
the other hand, targets with gender-atypical hair 
might elicit a qualitatively different kind of  trajec-
tory. For example, when categorizing a male with 
long hair, because hair is highly salient, the 
“female” category might initially receive a great 
deal of  activation. Only upon further processing 
of  the target and incorporating the masculine 
facial cues would activation of  the female cate-
gory be suppressed, and the male category come 
to be fully activated. Mouse-trajectories capturing 
this process would reveal an initial direct path 
toward the female category that is then abruptly 
shifted toward the male response midflight 
(Figure 5, Panel B). Recent work has provided 
evidence for both these smooth and abrupt 
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competitive dynamics during gender categoriza-
tion (Freeman, 2014).

How to.  Several approaches can be taken to deter-
mine if  mouse-trajectories are better defined as 
smooth versus abrupt response competition. The 
first is a qualitative approach. Researchers can 
examine each trial for each participant in Mouse-
Tracker Analyzer, and manually code each trial as 
smooth or abrupt (accordingly, coders should be 
blind to hypotheses). To mark a trial with an 
abrupt direction change, select a particular trajec-
tory and right-click on it in the “Selected Trajec-
tories” box in the bottom right of  the window. 
Select the “Assign single trajectory to condition” 
option, and input whatever code is being used to 
demarcate trajectories with abrupt shifts. Upon 
exporting the data into the CSV file, this code will 
accompany the trajectory for use in subsequent 
analysis.

While rigorous, examining all trajectories for 
all participants can be quite time-consuming and 
subject to human error, and faster quantitative 
approaches might be adopted utilizing default 
output from MouseTracker Analyzer. Previous 
research has defined trajectories with abrupt 
shifts as those with a maximum deviation exceed-
ing .9, indicative of  a significant deviation toward 
an unselected category (Freeman, 2014). In this 
particular study, the qualitative method described 
in the previous lines and the quantitative approach 
described here were highly correlated, but 

researchers should use their own judgment in 
deciding which is best for addressing their 
hypotheses. A final option is to use the measures 
of  velocity and acceleration, covered earlier in the 
current work, to index smooth versus abrupt 
response competition. Previous research has 
found that abrupt shifts in trajectory were marked 
by an initial spike in velocity towards one 
response, followed by a second spike in velocity 
after the reversal in direction (Freeman, 2014).

Following identification, trajectories with 
abrupt directional changes may then be statisti-
cally compared to those with smoothed move-
ment, or whether a smooth versus abrupt change 
trajectory was evidenced may be used as a 
dependent variable for various analyses. For 
instance, previous research has found that when 
categorizing targets by gender, more ambiguous 
targets elicited a greater likelihood of  abruptly 
shifting mouse-trajectories, as compared to 
smooth trajectories (Freeman, 2014).

Distribution.  While the above section lays out how 
individual trajectories might be defined as smooth 
versus abrupt shifts to answer particular research 
questions, often a given experimental condition 
can contain a mixture of  subpopulations varying 
in form. For example, and as discussed earlier, 
researchers have argued that a given experimental 
condition involves dynamic competition of  mul-
tiple responses continuously competing over time 
(Dale et al., 2007; Freeman & Ambady, 2009; 

Female Male Female Male
A B

Figure 5.  Examples of mouse-trajectories indicative of (A) smooth, continuous competition between 
responses and (B) a discrete, abrupt shift in categorization. Whether trajectories more resemble one or the other 
of these alternatives can provide insight into the underlying cognitive processes determining response options.
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Spivey et al., 2005). The mean trajectory of  this 
condition should therefore appear similar to that 
in the top panel of  Figure 6, exhibiting graded, 
dynamic attraction toward the opposite response. 
However, it is also a strong possibility that such a 
mean trajectory could be spuriously produced by 
one subpopulation of  trajectories exhibiting 
abrupt shifts in direction (Mode #2 in the bot-
tom panel, Figure 6) and another subpopulation 
exhibiting a completely direct movement with 
virtually no attraction (Mode #1 in the bottom 
panel, Figure 6)—the exact prediction made by 
discrete rather than dynamic models. Previous 
research has empirically demonstrated that aver-
aging across these two modes of  discrete-like tra-
jectories (some “incorrect” trials exhibiting 
abrupt shifts and other “correct” trials exhibiting 
direct movements) produces a mean trajectory 
that feigns graded, dynamic attraction as in the 
top panel of  Figure 6 (Freeman et al., 2008).

Because it is highly unlikely that every single 
trajectory within a given condition would exhibit 

such extreme abrupt shifts (rather than only a 
certain proportion doing so), the critical analysis 
needed to understand the underlying nature of  
responding in this condition and to distinguish 
between dynamic versus discrete models is 
whether the trajectory curvatures are unimodally 
or bimodally distributed. A unimodal distribution 
would indicate one population of  trajectories 
exhibiting smooth, graded competition with a 
distributed range of  low, medium, and high 
strength (consistent with dynamic models), 
whereas a bimodal distribution would indicate 
two subpopulations of  trajectories exhibiting two 
different modes of  discrete-like responding (con-
sistent with discrete models). As such, distribu-
tional characteristics are treated as empirical 
patterns to be predicted and tested directly, as 
they reveal temporal dynamics across an entire 
condition (e.g., Dale & Duran, 2011). Given the 
importance of  these analyses for understanding 
the nature of  a condition’s temporal dynamics, 
Freeman and Dale (2013) recently conducted 
simulations to examine how various bimodality 
measures are influenced, and in some cases 
biased, by how divergent the two response modes 
are (i.e., “distance” in Figure 6), the proportion 
of  trials in the two response modes (i.e., “propor-
tion” in Figure 6), the total number of  trials used, 
and the amount of  skew present (often observed 
in response data).

How to.  To examine the distributions, researchers 
would export normalized area under the curve or 
maximum deviation data within the population 
of  responses they wish to analyze from Mouse-
Tracker. Recent simulations of  bimodality meas-
ures found Hartigan’s dip statistic, a measure of  
multimodality, to be most sensitive and accurate 
in most contexts (Freeman & Dale, 2013). This 
test can be performed using the dip test package 
in MATLAB (http://www.nicprice.net/diptest) 
or R (http://cran.r-project.org/web/packages/
diptest/index.html).

Distributions with dip statistics under .05 are 
considered significantly bimodal, those under .1 
marginally bimodal, and those greater than .1 uni-
modal (Hartigan & Hartigan, 1985). However, 

Correct Incorrect

p

Correct Incorrect

1 – p p
Distance

1 – p

p

Distance

Mode #1 Mode #2

Figure 6.  A schematic illustration of how a single 
mode of dynamic competition (top panel) and dual 
modes of discrete response patterns (bottom panel) 
manifest in the distributional characteristics of mouse-
trajectory deviations. Adapted from Freeman and 
Dale (2013).
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the measure historically used in mouse-tracking 
research since Spivey et al. (2005) has been the 
bimodality coefficient (b). To manually calculate the 
bimodality coefficient (b), a researcher computes:

b g

g n
n n

= +1

+ 3( 1)
( 2)( 3)

1
2

2

2−
− −

in which g1 is skewness of  the distribution, g2 is 
kurtosis, and n is the number of  observations. 
The distribution is bimodal if  b > .555 (Freeman 
& Dale, 2013). To date, the b coefficient has been 
used in many published mouse-tracking papers, 
and it was empirically demonstrated to have suf-
ficient sensitivity to distinguish between dynamic 
versus discrete models using mouse-tracking data 
(Freeman et al., 2008). However, recent work 
found that it can suffer from strong biases due to 
positive skew in addition to more anomalous 
biases, and that the dip statistic may instead be 
the optimal bimodality measure for future work 
(Freeman & Dale, 2013). Nevertheless, the b 
coefficient is available through MouseTracker. 
Once researchers have run “Compute” on their 
time-normalized data, they may then right-click 
the condition panes in order to see the distributional 
analysis for that condition. The distributional 
analysis window provides various statistics includ-
ing the b coefficient, choice of  attraction meas-
ure (“Area Under the Curve” or “Maximum 
Deviation”), and visualization options.

Principle Components Analysis
In this final section we will discuss using principle 
components analysis (PCA) to identify distinct 
components within averaged mouse-trajectories 
that can be extracted for subsequent analysis. 
PCA is a data-driven dimensionality reduction 
technique that can be used to identify core com-
ponents underlying vast amounts of  data. By 
assessing the variance shared between numerous 
data points, this technique forms linear combina-
tions of  the original measures that capture most 
(e.g., 99%) of  the original variance while reducing 

the dimensionality of  the data to its “core” com-
ponents (Dunteman, 1989). An advantage of  this 
technique is that it can create components that 
are 100% orthogonal by definition, allowing for 
statistical tests of  single dimensions without con-
cern for overlap or interactions with other 
dimensions.

In social psychology, PCA frameworks are 
perhaps best known for use in both exploratory 
and confirmatory factor analyses examining how 
many dimensions a self-report scale might have. 
But PCA can be used in a wide variety of  situa-
tions in which data reduction is of  interest to 
researchers, such as identifying latent compo-
nents on both spatial and temporal dimensions in 
electrophysiological data (Hehman et al., 2011; 
Hehman, Volpert, & Simons, 2014; Spencer, 
Dien, & Donchin, 2001). Similarly, it is ideal for 
identifying unique components within a mouse-
trajectory, in which the data points within each 
component may be more correlated than with 
data points in other components. These separate 
components may index unique psychological 
constructs. PCA thus provides a method to iden-
tify and extract multiple components from aver-
aged mouse-trajectories for purposes of  
submitting them to further analysis. For instance, 
researchers might wish to examine whether cues 
processed early in the perceptual stream (e.g., 
race, gender) influence early components of  the 
trajectory whereas cues processed later in the 
stream (e.g., context, facial configuration) influ-
ence later components of  the trajectory.

How to.  To conduct PCA on mouse-trajectory 
data, researchers would first feed the x-and 
y-coordinate information (found appended to 
each trial in the exported CSV file) into a data 
analysis software package (e.g., R, SPSS). What 
specific data is submitted to the PCA is at the 
researcher’s discretion and depends upon the 
research question; here we use normalized 
x-coordinates (though other measures covered in 
previous sections such as velocity and accelera-
tion might be revealing). Once the data is loaded, 
researchers would perform a principle compo-
nents analysis on the data. In SPSS, this would be 
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done by selecting Analyze-> Dimension Reduc-
tion->Factor. Variables representing all time bins 
would then be entered into the “Variables” box. 
To derive orthogonal components, varimax rota-
tion would be specified on the “Rotation” tab.3 
See Supplementary Material for SPSS syntax and 
further detail.

Upon running the analysis, researchers would 
examine the “Rotated Component Matrix” in the 
output. These are the unique components identi-
fied in the mouse-trajectory data. Loadings on 
each of  these components can then be plotted 
over time for interpretation (see Figure 7). In 
mouse-tracking tasks typically conducted in our 
research, we generally find three to five distinct 
components driving mouse-trajectories. For 
example, Figure 7 demonstrates four distinct 
components within the x-coordinates of  mouse-
trajectories averaged around 50 participants with 
several hundred trials each. Simply, the x-coordinates 
within each of  these components are more cor-
related than between these components. From 
these results, researchers might surmise that what 
appears as continuous x-coordinate movement 
throughout a mouse-trajectory is driven by four 
unique components, which may index unique 
cognitive processes. Plotted across percentage of  

time of  the full trial on the x-axis, individual com-
ponents might reflect, for example, an initial 
impulse upon seeing the stimulus peaking around 
30% of  the way through the trial (Component 3), 
a midflight correction of  this impulse occurring 
about 50–60% of  the way through the trial 
(Component 1), and finally movement towards 
the final selection decision (Component 2) (com-
ponents are labeled according those accounting 
for the greater percentage of  variance in the total 
trajectory, so Component 1 accounts for the 
greatest percentage of  variance, Component 2 
the second most, etc).

Component matrices can then be used to guide 
the creation of  new variables, using the time bins 
that load highest on each component. For 
instance, referring to the example in Figure 7 and 
using time bins that load .6 or higher, a 
“Component 3” variable might be created by aver-
aging time bins 20 through 40, a “Component 1” 
variable by averaging time bins 45 through 65, and 
a “Component 2” variable from averaging time 
bins 66 through 100. Statistical tests can then 
compare individual variation on these compo-
nents to address particular research questions. For 
instance, earlier we referenced theoretical perspec-
tives on social evaluation that describe how less 
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Figure 7.  Principal components analysis decomposing distinct components of x-coordinates within hundreds 
of averaged mouse-trajectories.
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explicit attitudes guide evaluations of  others ear-
lier in processing but then how the dynamic evalu-
ative process is overcome by a slower, more 
explicit attitude later in processing (Devine, 1989; 
Wojnowicz et al., 2009). Researchers with similar 
interests in examining early and automatic versus 
slower and more deliberative processing might 
implement PCA to identify components uniquely 
associated with each of  these processes. These 
extracted components could then be submitted 
for a targeted and more sensitive analysis.

General Discussion
Computer mouse-tracking is an easily implementa-
ble method that produces data with great richness 
and depth. While most published research using 
mouse-tracking has focused on analyzing devia-
tions in trajectories, here we present five additional 
and more sophisticated techniques that allow 
researchers to answer theoretically significant 
questions across many domains in psychological 
science. These techniques are (a) statistical com-
parison of  mouse-coordinates over time, useful in 
examining the onset and timing of  evolving deci-
sion processes; (b) examination of  velocity and 
acceleration, which can index the degree of  com-
petition at different time points during the decision 
process; (c) assessment of  trajectory complexity 
with spatial disorder analyses, revealing unpredict-
able movements due to additional stress from mul-
tiple response alternatives attracting response 
trajectories; (d) the identification of  smooth versus 
abrupt response competition, which can shed 
insight into potentially qualitatively distinct psy-
chological processes during response generation; 
and finally (e) PCA, which can distill unique and 
meaningful components from mouse-tracking 
data for subsequent analysis.

Given the multiple potential analyses dis-
cussed before and the richness of  mouse-tracking 
data, there are several final points important for 
researchers employing these methods to consider. 
“Researcher degrees of  freedom” is an issue 
receiving a considerable amount of  attention in 
the sciences recently (Francis, 2013; Simmons, 
Nelson, & Simonsohn, 2011), and reanalyzing a 

dataset with multiple approaches increases the 
likelihood of  finding spurious significance. The 
techniques presented before, however, are based 
on the same underlying data, and can be used as 
complementary analyses supporting the conclu-
sions of  the primary approach. That said, many 
of  these different analytic approaches carry their 
own implications and theoretical significance, as 
they all answer unique questions about underly-
ing patterns in the data. The value of  any single 
approach will depend on the goals of  a given 
study. As with any methodology, we recommend 
researchers use the analytic approaches that best 
address their specific hypotheses, but in addition 
consider complementary approaches to provide 
converging evidence for their conclusions or 
more deeply examine the nuances of  their data.

In conclusion, we hope this guide will facilitate 
the incorporation of  more advanced mouse-
tracking techniques into researchers’ psychologi-
cal toolboxes, so that they may address novel 
hypotheses that are more difficult to assess using 
more traditional measures.
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Notes
1.	 While the two-choice design has been stand-

ard, recent research has adopted four-choice or 
other multiple-response options as well (Cloutier, 
Freeman, & Ambady, 2014; Freeman, Nakayama, 
& Ambady, 2013).

2.	 Specific software packages exist for sample 
entropy analyses, but for greatest accessibility 
we here report how to run such analyses without 
them (see the PhysioNet MATLAB package; Dale 
et al., 2007).

3.	 For an introductory but in-depth discussion of  
the advantages and disadvantages of  various rota-
tion techniques, we recommend Field (2009).
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