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ABSTRACT 
 
What brain mechanisms underlie autism and how do they give rise to autistic behavioral 
symptoms? This article describes a neural model, called the iSTART model, which proposes 
how cognitive, emotional, timing, and motor processes that involve brain regions like prefrontal 
and temporal cortex, amygdala, hippocampus, and cerebellum may interact together to create and 
perpetuate autistic symptoms. These model processes were originally developed to explain data 
concerning how the brain controls normal behaviors. The iSTART model shows how autistic 
behavioral symptoms may arise from prescribed breakdowns in these brain processes, notably a 
combination of underaroused emotional depression in the amygdala and related affective brain 
regions, learning of hyperspecific recognition categories in temporal and prefrontal cortices, and 
breakdowns of adaptively timed attentional and motor circuits in the hippocampal system and 
cerebellum. The model clarifies how malfunctions in a subset of these mechanisms can, though a 
system-wide vicious circle of environmentally mediated feedback, cause and maintain problems 
with them all. 
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INTRODUCTION 
1. Overview 
Autism is a complex developmental disorder of pervasively distorted development.  Social and 
communication abilities are especially affected. Kanner (1943) suggested some inborn defect in 
his initial report. Since that time, molecular genetics, neurochemistry, neuropathology, 
embryology, neurophysiology, and various different schools of psychological analysis have all 
contributed significantly to understanding autism. A neurally-based theoretical framework that 
integrates these various lines of research is, however, still lacking, despite the existence of 
several suggestive cognitive theories that each help to rationalize a subset of autistic behaviors 
(Frith and Hill, 2003). 

This article describes a neural network model, called the Imbalanced START (iSTART) 
model, whose properties clarify possible brain mechanisms of autism and how they give rise to 
autistic behavioral symptoms. The model includes interactions between cognitive, emotional, 
timing, and motor mechanisms, and is consistent with data from a variety of disciplines that 
implicate early onset dysfunction of the limbic and cerebellar systems in autism. The START 
(Spectrally Timed Adaptive Resonance Theory) model of normal cognitive and cognitive-
emotional behavior was derived over a period of years to explain many data about the brain 
mechanisms that control normal cognitive, emotional, timing, and motor behaviors. The iSTART 
model clarifies how autism may arise from prescribed breakdowns in these mechanisms. The 
model hereby provides a unifying interdisciplinary perspective that links normal to autistic 
behaviors, and embodies a number of predictions about mechanisms underlying autism which 
may help to integrate research from diverse fields.  

This article illustrates how a complex mental disorder like autism can provide a unifying 
perspective for understanding many brain mechanisms, how they work together, and how 
specific breakdowns in these mechanisms can lead to clinical symptoms. The article can thus be 
read both as a review of several models that have successfully explained different types of data 
about normal brain and behavior, as well as a proposal for how specific breakdowns in brain 
mechanisms of several different types, and in different parts of the brain, can interact together to 
cause a pervasive mental disorder. The article thus provides a way for many scientists who are 
not currently studying autism to better understand how autism may be related to concepts and 
data about normal brain and behavior with which they are familiar, and for specialists in autism 
to use concepts and data about normal brain and behavior to better understand symptoms of 
autism. 

The article is organized as follows: Sections 2 and 3 review key data about autism. 
Sections 4-8 summarize key principles, mechanisms, and properties of three previously 
published brain models of normal behavior in a heuristic manner, and describe relevant 
quantitative properties of these models, with both normal and abnormal parameters, to clarify 
how autistic behaviors may be caused by prescribed breakdowns of normal mechanisms in 
several brain systems. These three models describe aspects of: (1) how the brain can learn to 
recognize objects and events, notably how it can determine the correct level of generalization 
with which to understand these objects and events in a context-appropriate manner (Carpenter 
and Grossberg, 1991, 1993; Grossberg, 1980, 1982b, 1984a, 1987, 1999b; Raizada and 
Grossberg, 2003); (2) how the brain can learn the emotional meanings of events through 
cognitive-emotional interactions, notably how such meanings can be learned through rewarding 
and punishing experiences, and how the brain can respond to emotional events with a properly 
calibrated intensity (Grossberg, 1972a, 1972b, 1980, 1982a, 1984a, 1984b, 2000b; Grossberg and 
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Gutowski, 1987; Grossberg and Levine, 1987; Grossberg and Schmajuk, 1987); and (3) how the 
brain can learn to adaptively time how long it focuses its attention upon motivationally important 
events, and when to respond to these events, in a context-appropriate manner (Bullock, Fiala, and 
Grossberg, 1994; Fiala, Grossberg, and Bullock, 1996; Grossberg and Merrill, 1992, 1996; 
Grossberg and Paine, 2000; Grossberg and Schmajuk, 1989). All three component models have 
been mathematically and computationally characterized elsewhere in order to explain behavioral 
and brain data about normal and, in some cases, abnormal behaviors. The principles and 
mechanisms that these models employ have thus been independently validated through their 
ability to explain data other than data about autism. The exposition herein will be kept as non-
technical as possible in order to state the main ideas with a minimum of distracting detail. 

Sections 7 and 8 also describe how these three models can be joined together in a larger 
brain system, the START model (Grossberg and Merrill, 1992, 1996), which has been used to 
quantitatively explain additional data about normal brain and behavior. Finally, these sections 
propose how changing parameters in the three component models of the START model can, 
when they ramify via interactions throughout the entire iSTART system, give rise to abnormal 
behavioral symptoms that strikingly resemble the behavioral symptoms of autistic individuals. 
This approach, for the first time, links brain mechanisms of normal behavior to proposed brain 
mechanisms of autism that are capable of giving rise to autistic behavioral symptoms, and makes 
detailed predictions about the types of brain mechanisms that may give rise to autistic behavioral 
symptoms.  

Section 9 reviews other models of autism, states their connections with the iSTART 
model, comparatively analyses the explanatory advantages of the iSTART model over these 
previous proposals, and thereby shows how the iSTART model can provide a unifying 
framework for evaluating and further explicating many previously available models of autism. 

 
METHODS AND MATERIALS 

2. Key Features of Autism 
Autism manifests during the first three years of life. The core features of autism (American 
Psychiatric Association, 1994) are qualitatively impaired socialization, impaired verbal and 
nonverbal communication, and restricted and repetitive patterns of behavior, interests, and 
activities. Children with autism are impaired in at least one or more of the following areas with 
onset before three years of age: social interaction; language as used in social communication; and 
symbolic or imaginative play.  

Autism includes a spectrum, or broad range, of behavioral and cognitive manifestations. 
Mental retardation is common but between one fourth and one third of autistic individuals have 
IQs in the normal range or above (Fombonne, 1999). Approximately one third of autistic 
individuals develop epilepsy by adulthood (Tuchman and Rapin, 1997). Twenty to thirty percent 
of individuals with autism have apparent regression of skills after a period of apparent normal 
development, typically between one and three years of age (Tuchman and Rapin, 1997).  

The term Autistic Spectrum Disorder (ASD) refers to this entire range of functions and 
findings within those individuals who have the key triad of impairments in social interaction, 
verbal and non-verbal communication, and restricted, repetitive, and stereotyped interests and 
activities.  This term includes individuals who range from low-function, with profound 
impairments in many areas, to individuals with high-function. The Diagnostic and Statistical 
Manual of Mental Disorders (1994) defines autism as part of the group of Pervasive 
Developmental Disorders. Both Autistic Disorder and Pervasive Developmental Disorder-Not 
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Otherwise Specified/Atypical Autism (PDD-NOS) are generally considered part of autism. 
Asperger Syndrome shares the core deficits in social interactions and restricted/repetitive 
behaviors and interests, while relatively sparing formal language development. Asperger 
Syndrome individuals nevertheless have abnormal social communication skills. The term 
“autistic spectrum” was coined by Wing (1997) to include those diagnostic labels within the 
DSM IV and the International Classification of Diseases (1994) and other individuals with the 
key features of impairments in social interaction, impairments in verbal and non-verbal 
communication with a narrow/repetitive pattern of behaviors, and with impairments in 
imagination. Wing (1997, p. 1762) asserted that the extant diagnostic subdivisions were 
“arbitrary and … difficult to apply and unhelpful in clinical practice.” Wing instead subdivided 
the spectrum by the nature of the social impairment and related co-morbidities: “aloof”; 
“passive”; “active but odd”; and “loners.” While those subdivisions have not found broad usage, 
the concept of an autistic spectrum has found common if not universal acceptance. Many 
researchers and clinicians accept the concept (Tager-Flusberg et al., 2001), although some 
caution that it implies stronger links between the disorders than current research may justify 
(Volkmar and Pauls, 2003). Also its common use may have led to excessive clinical labeling of 
some socially atypical children as autistic (Tager-Flusberg et al., 2001). The goal of this paper is 
to understand how the range and common themes of the entire heterogeneous autistic spectrum, 
which will henceforth be referred to as “autism,” can result from various combinations of 
disruptions in an established model of normal brain function. The model does this by proposing 
how breakdowns of multiple mechanisms in several brain areas may be involved in the 
generation of autistic behaviors. Differences in the degree of malfunction across these 
mechanisms may help to account for the differences in autistic populations. To accomplish this 
task we must first establish what clinical phenomena an adequate model of autism must explain. 

An early manifestation of autism is a failure to develop basic imitation skills. Normal 
children usually show basic imitative behaviors by the end of the first year, and are imitating 
complex actions like wiping a table by fifteen months. This is not so of most autistic children 
(Receveur et al., 2005).  

The communication deficits of autism often have onset before spoken language typically 
begins. Preverbal communication by way of gestures, sounds, and expressions are deficient. 
Many children with autism stay essentially non-verbal. Among those autistic individuals who 
develop language, other communication deficits follow and are not mere delays of the normal 
pattern of development, but are instead wide-ranging and complex disorders (Filipek et al., 
2000). Language pragmatics is often disturbed. Inappropriate and idiosyncratic word usages, 
such as inappropriate generalizations of meaning and odd analogies, are common. Often, 
individual words may be used with hyperspecificity and without ever being able to apply the 
word to a more general concept. Unusual intonation, echolalia, and pronoun reversal are 
common (Volkmar and Pauls, 2003). 

Extreme unevenness in cognitive skills is a common feature of autism. Some autistic 
individuals have “islands” of normal or occasionally even superior ability and a few have narrow 
skill sets that are so superior to normal populations that they are referred to as “savants”. These 
areas of higher ability often include mathematical and musical skills. Autistic individuals also 
have facilitated skills at detecting hidden, embedded figures (Jolliffe and Baron-Cohen, 1997; 
Ring et al., 1999) and at copying “impossible figures” (Mottron et al., 1999). Thus, the autistic 
cognitive style is notable for its extreme concreteness, with autistic individuals doing relatively 
well on tasks that require rote memory but characteristically poorly on tasks that require higher-
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order conceptual processes or abstraction (Filipek, et al. 2000). By eighteen months, an autistic 
child often lacks the normally emergent imaginary or symbolic play. Instead, an autistic child 
may tenaciously perseverate on specific features of a toy. Moreover in children with these 
tendencies, a favorite object must be exactly right (i.e., how it was when it was first noticed) and 
is often played with according to a very specific routine. It is as if each situation is learned as a 
complete specific whole and any variation from that standard invalidates any understanding that 
an autistic has of the situation and what to expect. When this “need for sameness” is violated by 
even minor variations in routines, behavioral decompensation in the form of strong emotional 
outbursts may result.  

Extreme negative emotional reactivity is not only triggered by variations in routines; 
basic sensory stimuli, such as noise, smells, or light touch, can be emotional triggers for many as 
well. This contrasts dramatically with hyporesponsiveness to other, and in particular, social 
stimuli, such as one’s name being called, facial reactions, or praise (Volkmar and Pauls, 2003; 
O’Neill and Jones, 1997). 

Attentional differences are prevalent among patients with autism and include deficient 
“shared” or “joint” attention (Filipek et al., 2000). Shared attention, which usually emerges 
during a normal child’s first year of life, and refers to the ability to follow a significant other’s 
gaze and thus to share attention in external objects with others, is characteristically deficient 
among those with autism. Reviews of home movies have documented attentional differences, 
with deficient attention in social but not in non-social areas, before six months of age in infants 
who were later to be identified as autistic (Maestro et al., 2002). Autistic individuals also 
commonly experience difficulties with disengaging or shifting attention and with splitting 
attention between objects. Paradoxically, some autistic individuals clinically appear to have 
difficulty sustaining attention in certain contexts (Allen and Courchesne, 2001) and some studies 
have documented a significant frequency of symptoms severe enough to warrant labeling this 
behavior as comorbid Attention Deficit Disorder in some autistic spectrum individuals (Sturm, 
Fernell, and Gillberg, 2004; Yoshida and Uchityama, 2004; Goldstein and Schwebach, 2004). 

Individuals with autism, especially low functioning individuals with autism, are also 
prone to repetitive stereotypic movements, such as rocking, hand flapping, and head banging. 
Other motor abnormalities variably include poor motor imitation abilities (Jones and Prior 1985), 
generalized clumsiness (Ghaziuddin and Butler, 1998), and gait abnormalities (Hallett et al. 
1993; Vilensky et al., 1981). High functioning individuals with autism tend to have large 
handwriting even when controlled for educational level (Beversdorf et al., 2001). A retrospective 
review of videotapes (Teitelbaum et al., 1998) of infants later diagnosed to have autism 
suggested that movement abnormalities may be the earliest behavioral feature in autism, with 
abnormalities present by four to five months of age. 
3. What Brain Abnormalities Cause Autism? 
Various sorts of analysis have been employed to attempt to determine what brain abnormalities 
cause autism. These analyses have included cytoarchitectural studies, imaging of structural 
volumes, functional imaging studies, genetic and gene expression studies, lesion studies, and 
studies using behavioral paradigms known to be associated with particular brain structures. 
Systems implicated have included the cerebellar, limbic, and neocortical systems. The iSTART 
model clarifies how the various abnormalities that are summarized below all contribute to the 
creation of autistic behavioral symptoms via the interaction of different types of functional 
deficits across these brain areas.  

Cytoarchitectual Studies. Postmortem cytoarchitecural studies have been limited by 
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small sample sizes but abnormalities of cerebellar structure have been frequently observed and 
consist of decreased Purkinje cell number and atypical Purkinje cell size and branching pattern 
without associated gliosis (Bailey et al., 1998; Baumann and Kemper, 1986; Fatemi et al., 2002; 
Kemper and Baumann, 1993; Ritvo et al., 1986). Cytoarchitectural abnormalities have also been 
documented, albeit with less consistency, in the amygdala, hippocampus, and ventral temporal 
cortex (Bachevalier and Loveland, 2003; Sweetten et al., 2002). The cytoarchitecture of cell 
columns in prefrontal and temporal cortex documents minicolumnar pathology in the brains of 
autistic individuals with more numerous and smaller cortical cell columns (Casanova et al., 
2002). 

Imaging Studies. Brain structures are not only affected at a microscopic level. Imaging 
studies have identified gross anatomical abnormalities in the frontal lobes, limbic systems, and 
cerebella of autistic individuals, although findings have been variable and inconsistent. An 
exhaustive review of this literature is beyond the scope of this article and can be found elsewhere 
(Herbert et al., 2004; Sokol and Edwards-Brown, 2004); a representative selection follows.  

Multiple MRI studies have documented hypoplasia of the cerebellar vermis in many 
individuals with autism and hyperplasia in a few (Courchesne et al., 1988, 1994; Hardan et al., 
2001; Saitoh and Courchesne, 1998), while others have failed to replicate the findings (Manes et 
al., 1999; Piven et al., 1997). Amygdala enlargement has been found among individuals with 
autism (Howard et al., 2000; Sparks et al., 2002), as has reduced amygdala volumes in others 
(Aylward et al., 1999; Pierce et al., 2001).  

Brain volume growth is also abnormal: One retrospective study of autistic children study 
documented relatively small head circumferences at birth with a rapid increase between one and 
fourteen months of age (Courchesne, et al. 2003); by 2 to 4 years of age 37% of autistic children 
met criteria for developmental macrocephaly (Lainhart, et al. 1997); and an increased total brain 
volume was seen in studies of older autistic children up through age 8 to 12, but not in children 
over 12 (Aylward et al. 2002; Courchesne et al. 2001). In studies of high-functioning autistic 
boys, Herbert and others have used an MRI parcellation technique to document that this 
increased volume appears to primarily occur within the white matter (Herbert et al., 2003) and 
seems to be specific to the radiate white matter (Herbert, 2004). Atypical neocortical 
asymmetries have also been documented at smaller units of analysis, with reversal of the normal 
language-related frontal cortex asymmetry (De Fosse et al., 2004) and greater asymmetry in a 
variety of neocortical areas, with the greatest amount being noted in higher-order association 
cortices, and with a greater proportion of rightward asymmetric cortex than controls (Herbert et 
al., 2005). 

Functional imaging studies also have variable findings. High-functioning autistic adults 
were studied during explicit and implicit processing of emotional face expressions (Critchley et 
al., 2000) and were found, relative to controls, to not activate a cortical “face area” (the fusiform 
gyrus) when explicitly judging emotional facial expressions, or the left amygdala and left 
cerebellum during implicit processing of emotional facial expressions. Another study of face 
perception in adults with autism (Pierce et al., 2001) also found that autistic individuals had 
reduced or absent activation of the fusiform face gyrus, the inferior occipital cortex, the superior 
temporal cortex, and the amygdala, and instead activated a variety of individual specific cortical 
areas. Similar results were found using blood oxygen level-dependent signal changes (Hubl et 
al., 2003) in which autistic individuals had lower signal strength in the fusiform face area, 
particularly during face processing, and higher signals in the medial occipital gyrus. They 
interpreted these face processing deficits not as a primary deficit in this area, but a result of 
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differences in how faces are processed – supporting models that hypothesize a preference for 
local over global modes of information processing in autism. The construct that decreased 
fusiform face activation in autistic individuals is a result of a different processing strategy than 
that of the normal population is further supported by a study in which autistic subjects processed 
familiar faces with a similar, albeit more limited, network as normal subjects, including fusiform 
face area and amygdala activation (Pierce et al., 2004), and another study (Hadjikhani et al. 
2004) that found no significant difference in fusiform face area activation between autistic 
spectrum disorder individuals and normal controls using a different task and measuring 
technique. These studies together suggest that the fusiform face area is functional in autistic 
individuals, but used differently than in the normal population in a task-dependent manner. 

Abnormal fMRI results were also found in high functioning adults with autism while 
performing spatial working memory tasks (Luna et al., 2002), with specific reduction of 
activation in the dorsolateral prefrontal cortex relative to normal controls. High functioning 
adults with autism during a task involving making mentalistic inferences from viewing another’s 
eyes (Baron-Cohen et al., 1999) exhibited relative reduction of activation in the amygdala and 
superior temporal cortex, and relative activation of fronto-temporal cortical areas. High-
functioning autistic adults during an embedded figures task, which autistic individuals typically 
perform better than normal controls (Ring et al., 1999), showed less prefrontal activation and 
greater ventral occipitotemporal activation than normal controls. In a task involving visually-
paced finger movements (Muller et al., 2001), there was reduced activation in areas activated in 
a control group and activation instead in differing areas in each individual with autism. 

Other fMRI studies also demonstrated how autistic individuals use cortical resources in 
different ways than the normal population when solving various sorts of problems. During a 
sentence comprehension task, high-functioning autistic individuals activated Wernicke’s area 
more, and Broca’s area less, than the normal population. Moreover, various cortical areas were 
less synchronized in the autistic individuals, a finding that was felt by the authors to support 
“underconnectivity” as etiologic in autism (Just et al., 2004). A subsequent study (Koshino et al., 
2005), however, was in conflict with such an interpretation. In that study, adults with high-
functioning autism were again compared to a normal population, but this time during an n-back 
working memory task with letters, on which both groups performed comparably well. The group 
with autism showed greater activation of the right prefrontal and parietal areas, and more in the 
posterior regions, compared to the normal group’s greater activation in the left parietal area. 
Significantly, there were no differences documented in the degree of synchronization of different 
regions between the groups, although the group with autism synchronized the prefrontal areas 
with the right parietal area, and the control group synchronized the prefrontal areas with the left 
parietal area. 

Imaging studies of metabolic activity in the brains of those with autism also show various 
distortions and deficiencies. Magnetic resonance spectroscopy documented decreased cerebellar 
N-acetyl-aspartame (NAA, an indicator of neuronal function and maturity) in the cerebella of 
nine autistic children compared to five sibling controls in one study (Chugani et al., 1999). 
Twenty-seven autistic individuals compared to ten normal controls, with a similar protocol, were 
found to have decreased NAA in both the cerebellum and the hippocampal-amygdala region 
(Otsuka et al., 1999). 

Genetic Studies. Genetic factors play a significant and complex role in autism (Rutter, 
2000): Concordance rates were 60% for monozygotic twin pairs and 5% for dizygotic pairs; the 
relative increase risk for siblings was 30 to 100-fold; and a broader autistic phenotype consisting 
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of mixed patterns of cognitive and social deficits with repetitive stereotyped interest patterns was 
found in the families of those with autism. Analyses have suggested that multiple genes are 
involved: estimates range from between two to ten genes (Pickles et al., 2000) to more than 
fifteen genes, each with minor effects (Risch et al., 1999). These results support the hypothesis 
that autism may be caused by multiple functional deficits across several brain regions. Linkage 
analyses using molecular genetic techniques have not yet conclusively identified any individual 
genes, although many have been suggested (Lamb et al., 2000). Future research may clarify 
which genes are definitely involved, and where and when these genes are expressed, thereby 
helping to explain how different brain structures and their functional properties may be altered 
during autism. 

Lesion Studies. Another approach to the identification of brain structures involved in 
autism has been through the use of both animal and human lesion studies. Early amygdala 
lesions have been studied in macaque monkeys (Machado and Bachevalier, 2003) and have 
resulted in alterations in the magnitude of fear responses beginning between three to five months 
after surgery: an increased fear response to peers, and a decreased fear response to novel objects. 
Macaque monkeys who had amygdala lesions during infancy also had cognitive and socio-
emotional abnormalities as adults. Amygdalectomized animals explored the environment less, 
initiated fewer social interactions, and had some increased active social withdrawal. Humans 
with bilateral damage to the amygdala were found to judge people to look more trustworthy and 
more approachable than did normal subjects (Adolphs et al., 1998). Isolated bilateral 
hippocampal sclerosis of early childhood onset results in abnormal behavior and development 
(DeLong and Heinz, 1997) with failure of learning language and complex social and adaptive 
skills in general. Children who had surgical resection of cerebellar tumors (Levisohn et al., 2000) 
were documented to have impairments in executive function, including planning and sequencing, 
and in visual-spatial function, expressive language, verbal memory and modulation of affect. 
Vermal lesions were most associated with affective dysregulation, including blunted affect, and 
disinhibited and inappropriate behaviors.  

Behavioral Studies. Established behavioral paradigms known to involve particular brain 
systems have also been used to demonstrate which brain systems are involved in autism. Several 
examples of this approach follow.  

Abnormalities of performance occur during classical conditioning of the eye-blink 
response (Sears et al., 1994). These abnormalities clarify the types of adaptive timing deficits 
that autistic individuals may have, and that may express themselves in a variety of behavioral 
contexts. The classically conditioned eye-blink response is a useful probe of these adaptive 
timing deficits because it is one of the best-studied examples of associative learning in 
vertebrates. In this paradigm, a sensory stimulus, such as a light or tone, is paired with a puff of 
air after some interval. The air puff unconditionally elicits an eye blink. Pairing leads to learning 
whereby the sensory stimulus can elicit a conditioned eye blink response at around the expected 
time of the air puff. It is known that the cerebellum helps to coordinate the timing and amplitude 
of the conditional eye-blink and that the cerebellar cortex is critically involved in its adaptive 
timing (Bullock et al., 1994; Fiala et al., 1996; McCormick et al., 1982; McCormick and 
Thompson, 1984; Perrett et al., 1993). Compared to controls, autistic subjects learned the task 
more quickly, but performed short-latency, high-amplitude responses. In other words, the 
adaptive timing that is controlled by cerebellar cortex was absent. The conditioned eye-blink 
paradigm provides a way to test a cerebellar adaptive timing deficit that may express itself in a 
variety of more complex and socially important behaviors. 
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Difficulty in controlling the timing of responses was also found in a study that used a 
temporal reproduction paradigm (Szelag et al., 2004). Autistic individuals were unable to 
modulate their responses to auditory and visual stimulus duration, and consistently reproduced 
the same response duration independent of stimulus duration. Again, the adaptive timing 
function that is controlled by the cerebellum was missing. 

Oculomotor movement abnormalities have been variable. Depending on the study, they 
have been found to be consistent with cerebellar pathology (Takarae et al., 2004), inconsistent 
with cerebellar dysfunction and more consistent with neocortical dysfunction (Minshew et al., 
1999), or inconsistent with an intrinsic abnormality in any specific area and best explained by 
disturbances of functional connectivity within the visual pursuit system (Goldberg et al., 2002; 
Nowinski et al., 2005). Some data from a study of autistic reflexive and volitional saccades are 
more consistent with prefrontal effects. No difference was found between the autistic and the 
control group on measures of saccade metrics, while there was an increase in response 
suppression errors on both anti-saccade and oculomotor delayed-response tasks (Minshew f., 
1999).  

Other studies document motor planning deficiencies in autistic individuals, which may be 
consistent with cerebellar dysfunction (Beversdorf et al., 2001; Rinehart et al., 2001). One study 
showed that visual attention deficits, including slowed covert orienting of attention, are similar in 
both adult autistic individuals and other individuals with cerebellar damage (Townsend et al., 
1999). Functional MRI studies show cerebellar activation in tasks of visual selective attention 
and attention-shifting devoid of motor components (Allen et al., 1997; Le, 1998). Patients with 
cerebellar damage from strokes or from tumor are slow to orient attention in space, and approach 
normal performance only after a 800–1200 msec delay (Townsend et al., 1999). Similar slowed 
orienting of visual attention has been documented in children with autism and is correlated with 
the degree of cerebellar hypoplasia (Harris et al., 1999). 

Event-Related Potential Studies. Event-related potentials (ERPs) provide useful data 
about brain dynamics that correlate with higher cognitive functions and may be altered in 
individuals with autism. Such data may be clarified by the iSTART model because component 
models of iSTART predicted ERP properties of normal individuals that were later confirmed 
experimentally. The ERP P300 covaries with stimulus probability and task relevance. It was 
smaller in autistic children 8 to 19 years old than in age and gender matched controls for 
phonetic stimuli at left hemisphere recording sites and not at right hemisphere sites, while no 
differences were found for musical chord stimuli at any site (Dawson et al., 1988), consistent 
with the concept that adaptive timing for non-language auditory input (musical chord stimuli) 
develops normally, whereas processing of language-related auditory stimuli (phonetic stimuli) is 
reduced relative to normal levels.  

In summary, autism is a heterogeneous condition with key behavioral features. These key 
features include impaired socialization, impaired verbal and nonverbal communication, and  
restricted and repetitive patterns of behavior, interests, and activities. Associated features 
include: impaired imitation skills; uneven cognitive skills with a concrete learning style and 
impairments in abstract thought  and symbolic or imaginary play, and a range of cognitive ability 
from mentally retarded to normal or above average; diminished  emotional reactivity to many 
(particularly socially salient) stimuli while paradoxically being  prone to strong negative 
emotional reactivity to some lower-order stimuli or to variations in routine; attentional 
differences that include impaired joint attention and difficulties in flexibly  disengaging and 
shifting attention while also occasionally being easily distractible; subtle  motor anomalies; and 
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onset of subtle abnormalities during  the first year of life and manifesting more dramatically 
during years two and three of  life. 

A complete model of autism needs to explain the genesis and progression of these key 
and associated features, be consistent with the behavioral heterogeneity within and across the 
disorder (inclusive of Autistic Disorder, Asperger’s Syndrome, and Pervasive Developmental 
Disorder-Not Otherwise Specified), and should clarify how apparently many genotypes and 
neuroanatomic variations of the neocortical, limbic, and cerebellar systems are all associated 
with this similarly disordered developmental pathway (see Table 1). 

 
Table 1 

 
a) Some Key Symptoms of Autism that iSTART Helps to Explain 

 
Social skill impairments  
 
Verbal and nonverbal communication deficiencies 
 
Restricted and repetitive patterns of behavior, interests, and activities 
 
Imitation skill deficiencies 
 
Uneven cognitive skills including a concrete learning style with impaired abstract thought  
 
Variable levels of cognitive ability from mentally retarded to normal or above average 
 
Diminished emotional reactivity to many (particularly socially salient) stimuli 
 
Strong negative emotional reactivity to some lower-order stimuli or to variations in  routine 
 
Impaired joint attention and difficulties in flexibly disengaging and shifting attention  
 
Deficient adaptive timing of motor behaviors 
 
Subtle abnormalities during first year becoming more dramatic during years two and three 
 
Abnormalities in neocortical, hippocampal, limbic, and cerebellar regions of the brain 
 
Abnormalities in functional neuroimaging and event-related potential measures of brain processing 

 

 

MODEL EXPLANATIONS 
4. iSTART: A Neural Model of How Autistic Symptoms Can Arise  
The data reviewed above summarize the case for characterizing autism as resulting from early 
onset dysfunction in parts of the neocortical, limbic and cerebellar systems. To mechanistically 
understand how these brain dysfunctions result in the behavioral and cognitive manifestations of 
autism requires, first, a neural model of the normal behavioral functions that break down during 
autism. The model used in this article is a system-wide synthesis of three neural models that have 
each previously been developed to explain different sorts of brain and behavioral data other than 
data about autism. After a brief overview, each component model will explained more fully and 
then integrated with the other models into a larger model system, called START (Spectrally 



 

10 

Timed Adaptive Resonance Theory). When parameters of START are suitably altered in the 
Imbalanced START, or iSTART, model, formal behavioral symptoms strikingly like those of 
autism are observed. The model also offers testable hypotheses about the brain mechanisms that 
cause the symptoms and how they break down. 

The first model, called Adaptive Resonance Theory, or ART, proposes how the brain 
learns to recognize objects and events. This is accomplished through an interplay between 
bottom-up perceptually-driven inputs and learned top-down expectations. Bottom-up inputs 
attempt to match top-down expectations, and the top-down expectations can prime the brain to 
anticipate expected feature patterns. When a match occurs, the system locks into an attentive 
resonant state that drives the recognition learning process; hence the term adaptive resonance. 
ART predicts that all conscious events are resonant events. The degree of match that is required 
for resonance and sustained attention to occur is set by a vigilance parameter. Vigilance may be 
increased by predictive errors, and controls whether a particular learned representation will be 
concrete or abstract. Low vigilance allows the learning of broad abstract recognition categories; 
high vigilance forces the learning of specific concrete categories. If a match is inadequate, then 
the current input is processed as a novel stimulus. Attention is then rapidly reset so that memory 
can be searched for another, or new, representation of the event. The iSTART model proposes 
that individuals with autism have their vigilance fixed at such a high setting that their learned 
representations are very concrete, or hyperspecific; that is, hypervigilance leads to hyperspecific 
learning. This property leads to a multitude of problems with learning, cognition, and attention 
due to the manner in which top-down matching, attention, learning, attention focusing and reset, 
and memory search are organized. The ART model clarifies thalamo-cortical-hippocampal 
interactions, among others in the brain. 

The second model, called the CogEM (or Cognitive-Emotional-Motor) model, extends 
ART to the learning of cognitive-emotional associations, notably associations that link external 
objects and events in the world to internal feelings and emotions that give these objects and 
events value. These emotions also activate the motivational pathways that energize actions aimed 
at acquiring or manipulating objects or events to satisfy them. Resonance can also occur within 
CogEM circuits. Here the resonance is between sensory/cognitive representations of what is 
possible and emotional representations of what is valued. The resonance tends to focus attention 
selectively upon objects and events that promise to satisfy emotional needs. The emotional 
representations are proposed to be organized into opponent affects, such as fear vs. relief. These 
opponent affective circuits are energized by internal sources of arousal. Under normal 
circumstances, arousal is set at an intermediate level; that is, a Golden Mean is typically 
maintained at, or near, an intermediate arousal level, at least most of the time while we are 
awake. Either underarousal or overarousal can cause abnormal emotional reactions and, with 
them, abnormal cognitive-emotional learning. In particular, there is an Inverted-U in emotional 
reactivity in these opponent circuits. If the emotional center is overaroused, then the threshold to 
activate an emotion is abnormally low, but the intensity of emotion is abnormally small. In 
contrast, if the emotional circuits are underaroused, then the threshold for activating an emotion 
is abnormally high but, when this threshold is exceeded, the emotional response can be 
hyperreactive. The iSTART model proposes that various individuals with autism experience 
underaroused emotional depression, which helps to explain their emotional outbursts as well as 
their baseline of reduced emotional expression. The CogEM model clarifies thalamo-cortico-
amygdala interactions, among others in the brain. 
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The third model, called the Spectral Timing model, clarifies how the brain adaptively 
times responses in order to acquire rewards and other goal objects. Such adaptive timing is 
essential for all terrestrial animals, since rewards and other goals are often delayed in time 
relative to actions that are aimed at acquiring them. The brain needs to be dynamically buffered, 
or protected against, reacting within the time interval before a delayed reward can be received as 
a predictive failure. The Spectral Timing model accomplishes this by predicting how the brain 
distinguishes expected non-occurrences of rewards, which should not be allowed to interfere 
with acquiring the delayed goal, from unexpected non-occurrences of rewards, which can trigger 
the usual consequences of predictive failure, including reset of working memory, attention shifts, 
emotional rebounds, and the release of exploratory behaviors. The Spectral Timing model 
proposes how various individuals with autism experience failures of adaptive timing, thus 
leading to the premature release of behaviors in a context-inappropriate manner that can prevent 
these behaviors from being rewarded. The Spectral Timing model clarifies thalamo-cortico-
hippocampal-cerebellar-basal ganglia interactions, among others in the brain.  

The next section reviews these models of how the brain gives rise to normal behaviors in 
more detail. This review summarizes key properties and mechanisms of each model and 
illustrative behavioral and brain data about normal individuals that each model has successfully 
explained and predicted. The fact that these models have explained and predicted more 
behavioral and brain data than competing models provides some confidence in their underlying 
brain mechanisms. It is then shown how these models can generate formal symptoms that 
resemble autistic behaviors when their mechanisms are imbalanced and/or lesioned in prescribed 
ways as part of the iSTART model. This exposition hereby links autistic symptoms to 
mechanisms and data that have no obvious connection to autism, and thereby opens up a wide 
range of possible new experiments to evaluate autistic behaviors and to further test and develop 
the model. Such an approach also should make it easier for scientists who are studying several 
types of normal behavioral and brain properties to link their work to studies of autism. 
5. Adaptive Resonance Theory model 
5.1. Perceptual and Cognitive Learning, Expectation, Attention, and Fantasy 
First let us consider the Adaptive Resonance theory, or ART, model. ART proposes an answer to 
the “stability-plasticity dilemma”; namely, how the brain can learn quickly throughout life 
without being forced to unselectively forget previously learned memories just as quickly 
(Grossberg, 1980, 1999b). This problem has also been called the catastrophic forgetting problem 
(Carpenter, 2001; French, 1999; Page, 2000). ART proposes how normal learning and memory 
may be stabilized through the use of learned top-down expectations (Figure 1a). In other words, 
we are “intentional” beings so that we can learn quickly without suffering catastrophic 
forgetting. Top-down expectations have been predicted to operate at multiple cortical and 
thalamic levels, including top-down expectations from higher cortical areas such as from 
prefrontal to inferotemporal cortex, and also at lower cortical areas such as from striate visual 
cortex to the lateral geniculate nucleus (Gove, Grossberg, and Mingolla, 1995; Grossberg, 
1999b, 2003a; Raizada and Grossberg, 2003). 

Top-down expectations learn prototypes that are capable of focusing attention (Figure 1b) 
upon the combinations of features that comprise conscious perceptual experiences. When top-
down expectations are active in a priming situation in the absence of bottom-up information, 
they can modulate or sensitize their target cells to respond more effectively to future bottom-up 
information that matches the prototype. Such expectations cannot, however, fully activate these 
target cells under most circumstances. When bottom-up inputs do occur, an active top-down 
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expectation selects the cells whose input features are consistent with the active prototype, and 
suppresses those that are not, thereby generating an attentional focus on the combinations of 
features that may be expected in that situation. This matching and attentional process can 
synchronize and amplify the activities of selected cells, leading to a context-sensitive state of 
“resonance”. Thus, attentionally relevant stimuli are selected for learning, while irrelevant 
stimuli are suppressed and hence prevented from destabilizing existing representations. Such a 
matching process has been mathematically proved to be necessary to stabilize the memory of 
learned representations in response to a complex input environment (e.g., Carpenter and 
Grossberg, 1991).  

The solution that ART proposes to the stability-plasticity dilemma is to allow neural 
representations to be rapidly modified only by those incoming stimuli with which they form a 
sufficiently close match. If the match is close enough, then learning occurs. Precisely because the 
match is sufficiently close, this learning causes fine-tuning of the existing representation, rather 
than a radical overwriting. Matching gets started by initially endowing the top-down matching 
pathways with broadly distributed adaptive weights. Learning prunes these weights and makes 
them more selective. If the active neural representation does not match with the incoming 
stimulus, then its neural activity will be inhibited and hence unable to cause plastic changes. 

In order to realize these matching properties, top-down expectations and attention were 
predicted to be controlled by top-down on-center off-surround networks (Figure 1c). A balance 
between top-down excitation and inhibition in the on-center of this network enables attention to 
provide excitatory modulation of on-center cell responses to bottom-up inputs, even while cells 
are strongly inhibited in the off-surround. Recent psychophysical and neurophysiological data 
have supported many ART predictions about the link between learning, matching, competition, 
and attention. 

The prediction that top-down attention has an on-center off-surround characteristic has 
received psychological and neurobiological empirical confirmation in the visual system (Bullier, 
Hupé, James, and Girard, 1996; Caputo and Guerra, 1998; Downing, 1988; Mounts, 2000; 
Reynolds, Chelazzi, and Desimone, 1999; Smith, Singh, and Greenlee, 2000; Somers, Dale, 
Seiffert, and Tootell, 1999; Sillito, Jones, Gerstein, and West, 1994; Steinman, Steinman, and 
Lehmkuhle, 1995; Vanduffell, Tootell, and Orban, 2000). Feedback from auditory cortex to the 
medial geniculate nucleus (MGN) and the inferior colliculus (IC) also has an on-center off-
surround form (Zhang et al., 1997), as does feedback within the rodent barrel system 
(Temereanca and Simons, 2001). Based on such data, the ART attentional prediction has recently 
been described using the phrase “biased competition” (Desimone, 1998; Kastner and 
Ungerleider, 2001), in which attention biases the competitive influences within the network. 

The attentional feedback pathway has recently been predicted to occur in identified cells 
and cell layers within the neocortex, notably within the visual cortex. This refinement of ART is 
called the LAMINART model (Grossberg, 1999a, 2003a; Raizada and Grossberg, 2003). The 
LAMINART model predicts that top-down signals from layer 6 of a higher cortical area reach 
layer 6 of a lower cortical area, where they are relayed to layer 4 of that area via modulatory on-
center off-surround interactions.  
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Figure 1. (a) Patterns of activation, or short-term memory (STM), across feature-selective cells at a lower 
processing level send signals via bottom-up pathways to a higher processing level. Cells at the higher level respond 
selectively to prescribed combinations of features at the lower level. For example, such cells may represent 
recognition categories, as in inferotemporal cortex. The selective activation of category cells is achieved by 
multiplying the bottom-up signals with adaptive weights, or learned long-term memory (LTM) traces at the ends of 
the bottom-up pathways, before these learning-gated signals activate target category cells. These category cells 
compete among themselves to select a small number of winning cells. The combination of bottom-up adaptive 
filtering and competition are the basic ones for defining a self-organizing map; see Section 14. The active category 
cells, in turn, activate top-down pathways that read-out learned expectations via their own LTM traces. These top-
down expectations are matched against the STM pattern that is active at the lower featural level. (b) This matching 
process confirms, synchronizes, and amplifies STM activities of features that are supported by large LTM traces in 
an active top-down expectation, and suppresses STM activities of features that do not get top-down support. The 
size of the hemidisks at the end of the top-down pathways represents the strength of the learned LTM trace that is 
stored in that pathway. (c) The ART Matching Rule may be realized by a modulatory top-down on-center off-
surround network. In particular, bottom-up inputs, such as in pathways 1 and 2, can activate their feature-selective 
cells when no top-down expectation is active. When a top-down expectation is active whose prototype (the learned 
on-center with excitatory pathways) does not include the feature activated by pathway 1, then the top-down off-
surround cancels the bottom-up input, thereby suppressing activation of that feature. Since the feature that is 
activated by pathway 2 is included in the top-down prototype, the top-down excitation and inhibition approximately 
cancel (typically, with a small positive priming bias), so that activation of the corresponding feature-selective cell is 
preserved, synchronized, and even amplified. [Reprinted with permission from Grossberg (1999b).] 

(a) 

(b) 

(c) 
Volition 
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The ART prediction that bottom-up sensory activity is enhanced when matched by top-down 
signals is in accord with an extensive neurophysiological literature showing the facilitatory effect 
of attentional feedback (e.g., Luck et al., 1997; Roelfsema et al., 1998) but not with models in 
which matches with top-down feedback cause suppression (e.g., Mumford, 1992; Rao and 
Ballard, 1999). The ART prediction raises an additional question: Is there evidence that top-
down feedback controls plasticity in the area to which it is directed? 

Recent data support the ART prediction that top-down feedback regulates plasticity.  
Psychophysically, the role of attention in controlling adult plasticity and perceptual learning was 
demonstrated by Ahissar and Hochstein (1993). Neurophysiological evidence of Gao and Suga 
(1998) showed that acoustic stimuli caused plastic changes in the inferior colliculus of bats only 
when the IC received top-down feedback from auditory cortex. This plasticity is enhanced when 
the auditory stimuli were made behaviorally relevant, in accord with the ART proposal that top-
down feedback allows attended—that is, relevant—stimuli to be learned, while suppressing 
unattended irrelevant ones. Evidence that cortical feedback also controls thalamic plasticity in 
the somatosensory system has been found by Nicolelis and colleagues (Krupa et al., 1999) and 
by Parker and Dostrobsky (1999). See Kaas (1999) for a review. 

Another predicted role of these feedback connections is to synchronize the firing patterns 
of higher and lower cortical areas. Given that “cells that fire together wire together”, 
synchronous firing would be expected to increase the ability of the mutually excitatory resonant 
activity caused by ART matching to facilitate synaptic plasticity and learning. It has elsewhere 
been shown that variants of the ART and LAMINART models are capable of rapidly 
synchronizing their activation patterns during both perceptual grouping and attentional focusing 
(Grossberg and Somers, 1991; Grossberg and Grunewald, 1997; Yazdanbakhsh and Grossberg, 
2004). Recent discussions of top-down cortical feedback, synchrony, and how they support ART 
predictions are given by Engel, Fries, and Singer (2001), Fries, Reynolds, Rorie, and Desimone 
(2001) and Pollen (2001). 

The ART model predicts how the brain has exploited the modulatory property of 
expectations and attention to enable fantasy, imagery, and planning activities to occur 
(Grossberg, 2000a). In particular, phasic volitional signals can shift the balance between 
excitation and inhibition by increasing the gain of excitation and inhibition when a top-down 
expectation is active (Figure 1c). Such a volitionally-mediated shift enables top-down 
expectations, in the absence of supportive bottom-up inputs, to cause conscious experiences of 
imagery and inner speech, and thereby to enable fantasy and planning activities to occur. If, 
however, these volitional signals become tonically hyperactive during a mental disorder, top-
down expectations are predicted to give rise to conscious experiences, such as hallucinations, in 
the absence of bottom-up inputs and volition. The ability of top-down expectations to activate 
internal representations that support imagery, fantasy, and planning activities raises the issue of 
how these expectations are themselves controlled. Below it is suggested how interactions 
between cognitive-emotional mechanisms from CogEM and of cognitive and perceptual 
mechanisms of ART help to clarify how this happens. 

Before turning to these interactions, it is worthwhile to mention a basic property of ART 
which the iSTART model identifies as being fundamental in autism. This property concerns the 
manner in which brain learning controls the level of abstractness of learned prototypes. This 
issue is of particular importance in light of the concreteness and hyperspecificity of autistic 
cognitive processing. 
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5.2. How is the Generality of Knowledge Controlled? Exemplars, Prototypes, and Vigilance 
What information is bound together into object or event representations? Some evidence 
suggests that exemplars, or individual experiences, can be learned and remembered, like those of 
familiar faces (Medin, Altom, and Murphy, 1984; Medin and Shaffer, 1978; Medin and Smith, 
1981). However, this cannot be the final answer to this question, since storing every exemplar in 
memory can lead to a combinatorial explosion of memory storage, unwieldy memory retrieval, 
and an inability to learn general or abstract properties of the world. Other scientists have 
proposed that we learn prototypes (Posner and Keele, 1970; Smith and Minda, 1998, 2000; 
Smith, Murray, and Minda, 1997) that represent more general properties of the world, such as the 
fact that everyone has a face. But then how do we learn specific episodic memories, and how is 
the appropriate level of generalization and abstraction determined?  

ART provides an answer to this question that overcomes these problems and clarifies 
how the inferotemporal cortex, interacting with prefrontal cortex and the hippocampal system, 
learns to recognize and classify objects and events. In particular, one class of thirty human 
cognitive experiments (the so-called 5–4 category structure) has been used to test conflicting 
views in the prototype-exemplar debate (Medin, Altom, and Murphy, 1984; Nosofsky, 2000; 
Nosofsky, Kruschke, and McKinley, 1992; Nosofsky and Zaki, 2002; Smith and Minda, 2000), 
but exemplar and prototype models have not explained how these recognition categories are 
learned. Neurophysiology labs have also collected data about monkey cell responses from 
inferotemporal cortex during recognition tasks, showing that both specific and general 
information can be represented in this brain region (Desimone, 1991; Desimone and Ungerleider, 
1989; Gochin, Miller, Gross, and Gerstein, 1991; Harries and Perrett, 1991; Mishkin, 1978, 
1982; Mishkin and Appenzeller, 1987; Perrett, Mistlin, and Chitty, 1987; Schwartz, Desimone, 
Albright, and Gross, 1983).  

An ART model has been developed that quantitatively simulates the pattern of human 
data from the 5–4 category structure experiments and clarifies neurophysiological data about 
how monkeys learn to categorize both exemplars and prototypes (Carpenter and Grossberg, 
1991, 1993; Ersoy, Carpenter, and Grossberg, 2002; Grossberg, 1980, 1999b; Grossberg, 
Carpenter, and Ersoy, 2005). In particular, Carpenter, Ersoy, and Grossberg have shown that, 
when popular exemplar models are interpreted as processing models that carry out their 
operations in real time, they implicitly invoke categories which bind together the exemplars that 
belong in each category, as well as both bottom-up and top-down learned interactions among 
each category and its exemplars. Thus, even exemplar models, when interpreted as real-time 
processing models, implicitly embody many of the properties that ART models make explicit in 
order to show how categories and their top-down expectations are learned through time without 
experiencing catastrophic forgetting. 

To overcome the problems of traditional exemplar and prototype models, ART learns 
prototypes that consist of the critical feature patterns, or combinations of relevant features to 
which an individual pays attention. These are not the traditional prototypes of prototype models, 
which are typically selected by experimentalists to define their experimental inputs. Rather, these 
critical feature patterns are incrementally learned by an ART model through time from sequences 
of experienced exemplars. ART mechanisms explain how an individual can autonomously 
discover which features are worthy of attention in any given situation. Such discovery can occur 
with or without external supervision. The generality of learned prototypes is determined by the 
network’s vigilance parameter, which is controlled by environmental feedback or internal 
volition. Low vigilance permits learning of general categories with abstract prototypes. High 
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vigilance forces memory searches to occur for a new category when even small mismatches exist 
between an exemplar and the category that it activates. Given high enough vigilance, a category 
prototype may encode a single exemplar. ART proposes how, in a normal brain, vigilance can 
track the demands of a particular environment, creating specific or general categories as needed 
to solve environmental problems; see below. In the ART simulation of 5-4 category learning, a 
small number of abstract and specific critical feature patterns jointly form a distributed code for 
each learned category, thereby clarifying how a small number of cells in inferotemporal cortex 
can represent an object, and supporting the Nosofsky view that rules-plus-exceptions are learned 
(Nosofsky, 1984, 1987; Nosofsky, Kruschke, and McKinley, 1992; Palmeri, Nosofsky, and 
McKinley, 1994). 

Spitzer, Desimone, and Moran (1988) have reported neurophysiological data that are 
consistent with the existence of vigilance control in the inferotemporal cortex, indeed with the 
ART prediction that links vigilance control, top-down matching, and attention. These authors 
write that “In the difficult condition the animals adopted a stricter internal criterion for 
discriminating matching from non-matching stimuli. The animal’s internal representations of the 
stimuli were better separated…increased effort appeared to cause enhancement of the responses 
and sharpened selectivity for attended stimuli.”  

In a network whose vigilance is fixed through time at an abnormally high level, the 
system would be literally “hypervigilant,” and environmental events would be classified with 
extreme concreteness and hyperspecificity, with learned categories coding highly specific, 
exemplar-like information. The iSTART model predicts that many individuals with autism have 
their vigilance fixed at a high level.  

There are other mental disorders for which ART has proposed explanations in terms of 
defective vigilance control. Indeed, the ART model has earlier been used to explain data about 
the type of abnormal learning and memory that occur during medial temporal amnesia. Carpenter 
and Grossberg (1993; see also Grossberg and Merrill, 1996) predicted how a lesion of the ART 
orienting system, which is interpreted to model aspects of hippocampal dynamics, eliminates 
vigilance control; that is, the lesioned model behaves as if it has a very low vigilance. The model 
as a whole then exhibits many symptoms of medial temporal amnesia. 

Recent support for this prediction has been forthcoming through the modeling work of 
Nosofky and his colleagues. Knowlton and Squire (1993) reported dissociations between 
categorization and recognition in amnesic individuals and used these data to argue for multiple 
memory systems to mediate these tasks. However, Nosofsky and Zaki (1998) and Zaki et al 
(2003) have shown that they can quantitatively fit the Knowlton and Squire (1993) and their own 
data using an exemplar model in which they choose a low value of their sensitivity parameter. 
Their low sensitivity parameter plays a role like the low vigilance parameter in ART. It should 
be noted that, when an exemplar model is interpreted as a real-time dynamical processing model, 
its hypotheses look very much like those of an ART model. These parallel approaches may thus 
become even more closely linked through future research. Indeed, Nosofsky and Johnson (2000, 
p.375) have argued that many multiple-system accounts can be replaced by a single system 
model when “similarity relations among exemplars change systematically because of selective 
attention to dimensions and because of changes in the level of sensitivity relating judged 
similarity to distance in psychological space. Adaptive learning principles may help explain the 
systematic influence of the selective attention process and of modulation in sensitivity settings 
on judged similarity.” ART provides a dynamical account of how subjects can incrementally 
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learn to selectively pay attention to stimulus dimensions and of how they may alter their 
vigilance, or sensitivity, in a context-sensitive way. 

In summary, just as abnormally low vigilance may help to explain properties of data 
about medial temporal amnesia, abnormally high vigilance may help to explain data about 
autism. The normal control of vigilance is thus a topic that warrants a great deal more 
neurobiological investigation. 

5.3. How are Learning, Attention, Memory Search, Hypervigilance, and Hyperspecificity 
Related? 
Given that vigilance control can enable a learning individual to learn either abstract and general, 
or concrete and specific, information as a particular learning environment demands, it is 
important to understand how vigilance control is realized under normal circumstances. Vigilance 
control is part of the process whereby top-down expectations match incoming bottom-up 
information, and determines whether a match is deemed good enough to trigger new learning. 
Figure 2 summarizes the ART proposal of how an attentional system and an orienting system 
normally work together to discover and learn effective recognition categories without 
experiencing catastrophic forgetting. As noted above, ART locates the attentional system in 
thalamocortical structures such as the temporal and prefrontal cortices. ART proposes that the 
orienting system includes the hippocampal system, which has long been known to be involved in 
mismatch processing, including the processing of novel events (e.g., Otto and Eichenbaum, 
1992; Vinogradova, 2001).  

Vigilance comes into the story during the matching process that takes place between an 
exemplar input and the top-down expectation that is read out by an active recognition category. 
A sufficiently bad mismatch is predicted to reset an active category, and to thereby initiate a 
memory search, or hypothesis testing, cycle that can lead to the selection of a new category. 
Such a mismatch can occur, say, because the exemplar input represents an unfamiliar type of 
experience. The new category is selected by a mismatch-driven memory search, or bout of 
hypothesis testing: A mismatch within the attentional system activates the complementary 
orienting system. Novelty-activated nonspecific arousal signals from the orienting system rapidly 
reset the recognition category within the attentional system that has been reading out the poorly 
matching top-down expectation (Figures 2b and 2c). The cause of the mismatch is hereby 
removed, thereby freeing the system to activate a different recognition category (Figure 2d). And 
so the cycle goes. If no matching recognition category exists, say because the bottom-up input 
represents a truly novel experience, then the search process automatically activates an as yet 
uncommitted population of cells, with which to learn a new recognition category to represent the 
novel information.  

This hypothesis-testing cycle predicted that certain brain operations occur in a particular 
sequence of events. This prediction was tested by measuring sequences of event-related 
potentials that are recorded through scalp electrodes when humans perform recognition tasks 
(Banquet and Grossberg, 1987). In particular, correlated sequences of P120, N200, and P300 
ERPs have been recorded which have the properties predicted by ART of mismatch, arousal, and 
reset operations, respectively. All breakdowns of ART search that are predicted below to occur 
individuals with autism should be reflected in these ERP measures. 

In addition to this ERP support for the ART hypothesis-testing cycle, Miller, Li, and 
Desimone (1991) have reported neurophysiological data showing that there is an “active 
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matching process that was reset between trials” in monkey inferotemporal cortical cells that are 
involved in recognizing visual objects. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Search for and learning of a recognition code within Adaptive Resonance Theory: (a) The input pattern I 
is instated across the feature detectors at level F1 as a short term memory (STM) activity pattern X. Input I also 
nonspecifically activates the orienting system A. STM pattern X is represented by the gray pattern across F1. Pattern 
X both inhibits A and generates the output pattern S. Pattern S is multiplied by long term memory (LTM) traces, or 
learned adaptive weights. These LTM-gated signals are added at F2 nodes to form the input pattern T, which 
activates the contrast-enhanced STM pattern Y across the recognition categories coded at level F2. (b) Pattern Y 
generates the top-down output pattern U which is multiplied by top-down LTM traces and added at F1 nodes to form 
the prototype pattern V that encodes the learned expectation of the active F2 nodes. If V mismatches I at F1, then a 
new STM activity pattern X* is generated at F1. X* is represented by the gray pattern. It includes the features of I 
that are confirmed by the top-down expectation V. Mismatched features are inhibited. The inactivated nodes 
corresponding to unconfirmed features of X are unhatched. The reduction in total STM activity which occurs when 
X is transformed into X* causes a decrease in the total inhibition from F1 to A. (c) If inhibition decreases sufficiently, 
A releases a nonspecific arousal wave to F2, which resets the categorical STM pattern Y at F2. (d) After Y is 
inhibited, its top-down prototype signal is eliminated, and activity pattern X can be reinstated at F1. Enduring traces 
of the prior reset lead X to activate a different STM pattern Y* at F2. If the top-down prototype due to Y* also 
mismatches I at F1, then the search for an F2 code continues until a more appropriate F2 representation is selected. 
Then an attentive resonance develops and learning of the attended data is initiated. [Adapted with permission from 
Grossberg and Merrill (1996).] 
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Vigilance ρ is computed within the ART orienting system A (ρ in Figure 2; see triangular symbol 
that represents A). Here, bottom-up excitation in an exemplar input pattern I activates feature-
selective cells in the attentional system (labeled F1 in Figure 2a), while also sending convergent 
activation to a population of cells in the orienting system. This distributed pattern of active cells 
in F1 is denoted by X in Figure 2a. If more feature-selective cells are activated in the attentional 
system, then the total excitation of the orienting system increases too. What, then, keeps the 
orienting system from firing in response to all input patterns? When only the bottom-up 
exemplar input activates F1, then all the active feature-selective cells can send convergent 
inhibition to the orienting system. The orienting system then remains quiet because its total 
excitatory input is balanced by its total inhibitory input, no matter how many cells may be 
activated by the input pattern. 

When a top-down expectation also acts on F1 , then only the “matched features” can 
remain active there, due to the ART Matching Rule (Figures 1c and 2b). That is, the activity 
pattern X caused solely by the bottom-up inputs I across the feature-selective cells (Figure 2a) is 
transformed into the pattern X* of activation across the matched features (Figure 2b). Since 
fewer cells are active in X* than in X, the total inhibition to the orienting system is reduced. This 
reduction in inhibition becomes greater as the mismatch between the bottom-up input pattern and 
the prototype of the top-down expectation becomes greater. If the mismatch becomes too great to 
satisfy the vigilance criterion, then a reset, or “novelty”, wave is activated (Figure 2c).  

How does the novelty wave know which cells in the category level F2 need to be reset? 
The orienting system can compute that a mismatch has taken place in the attentional system, but 
not which categories in the attentional system read out top-down expectations that led to the 
mismatch. Thus, the reset wave takes the form of a burst of nonspecific arousal that equally 
arouses all of the recognition categories in F2. The active categories F2 respond to this arousal 
burst by being selectively inhibited by it, as in Figure 2c. Reset is accomplished by the same sort 
of interaction between arousal, competition, and habituative dynamics that is described more 
fully in the summary of cognitive-emotional interactions in Section 6 and Appendix A. (See 
Grossberg (1980) and Carpenter and Grossberg (1990, 1991) for descriptions of how selective 
reset happens in an ART cognitive learning network.) The mismatched top-down prototype is 
hereby inactivated and a search begins for another, better-matching, recognition category, as in 
Figure 2d.  

More specifically, vigilance ρ weighs how similar an input exemplar I must be to a top-
down prototype V in order for resonance to occur. Vigilance ρ is the relative gain of excitation to 
inhibition in the orienting system. For example, resonance occurs if ρ times the total bottom-up 
excitation from input I to the orienting system A is less than the total inhibition from X* to the 
orienting system. Then the orienting system is inhibited, and resonance between levels F1 and F2 
has a chance to develop. If, however, this inequality is reversed, then the orienting system can be 
activated, leading to a nonspecific novelty wave (e.g., an N200 ERP) that can reset the presently 
active category in F2 and initiate search for a better-matching category.  

ART proposes how vigilance gain criterion can be adjusted up and down within the 
orienting system to learn more specific or general information, respectively, in response to 
predictive failures within each environment. For example, suppose that a predictive failure 
causes vigilance to increase just enough to trigger the release of a novelty wave. Recall that low 
vigilance allows general categories to form, whereas high vigilance forces specific categories to 
form. Thus, every increase in vigilance implies that a more specific category will be learned. By 
bumping vigilance up to the smallest value that can correct a predictive error, the most general 



 

20 

categories can be learned that can eliminate predictive errors. This patented concept is called 
Match Tracking because vigilance tracks the match value. In this way, ART clarifies how the 
brain can try to learn categories that are sensitive to the statistical structure of any given 
situation, much as some cells in inferotemporal cortex learn to code highly specific information 
(e.g., a particular view of a familiar face), whereas other cells learn to code more general 
information about the environment. In general, combinations of both specific and general 
categories will be learned, so that both exemplars and more abstract information can be 
recognized.  

If for any reason the vigilance gain gets “stuck” at a high level, then concreteness, or 
hyperspecific learning, will ensue. Persistently high vigilance can cause the learning of concrete 
and hyperspecific category prototypes both in the bottom-up filtering pathways that select a 
recognition category and in the top-down expectation pathways that focus attention upon 
expected events. Attentional deficits will ensue when vigilance remains abnormally high because 
hyperspecific prototypes will mismatch and reset attention in response to even small 
environmental variations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Alphabet learning by ART 1: Different vigilance levels (.5 and .8) cause different numbers of letter 
categories to be learned with different critical feature patterns. The critical feature patterns resemble the input 
exemplars more as vigilance is chosen higher. [Reprinted with permission from Carpenter and Grossberg (1987).] 
 

(a) TOP-DOWN TEMPLATES (b) TOP-DOWN TEMPLATES 
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Figure 3 summarizes a computer simulation from Carpenter and Grossberg (1987) that illustrates 
how ART can learn more general categories when vigilance is lower, and more specific 
categories when vigilance is higher, with the limit of maximal vigilance learning categories that 
include a single input exemplar. To simplify the example, there is no preprocessing of input 
letters as the alphabet is presented in order. The rows designate the learning trial (1, 2,…). The 
columns designate the inputs (BU, which abbreviates Bottom Up), the category number (1, 2,…), 
and the prototype, or template, that is learned on each trial. The symbol RES indicates that a 
resonance occurs between the input exemplar and the corresponding prototype. The numbers 
under the prototypes indicate the order in which the categories were searched before resonance 
occurred. In Figure 3a, vigilance is set at .5, and 4 categories are learned after 20 letters are 
presented. The prototypes are indicated in the last row of the figure. Their critical feature 
patterns are quite abstract. In Figure 3b, vigilance is set at .8, and 9 categories are learned after 
20 letters are presented, with prototypes like look more like the input exemplars themselves. 
With vigilance set at 1, there would be 20 categories, each with an exemplar prototype. 

5.4. Reconciling distributed and symbolic representations using resonance: Symbol 
grounding 
If the top-down expectation is close enough to the bottom-up input pattern, then the pattern X* of 
attended features reactivates the category Y which, in turn, reactivates X*. The network hereby 
locks into a resonant state through a positive feedback loop that dynamically links, or binds, the 
attended features across X* with their category, or symbol, Y.  

The individual features at F1 have no meaning on their own, just like the pixels in a 
picture are meaningless one-by-one. The category, or symbol, in F2 is sensitive to the global 
patterning of these features, but it cannot represent the “contents” of the experience, including 
their conscious qualia, due to the very fact that a category is a compressed, or “symbolic” 
representation. Harnad (1990) has called this the “symbol grounding problem”. It has often been 
erroneously claimed by practitioners of Artificial Intelligence that a single system can either 
process distributed features or symbolic representations, but not both. This is not true in the 
brain. Nor is it true in ART, which proposed a framework for solving the symbol grounding 
problem before Harnad described this problem, namely: The resonance between distributed 
feature patterns and recognition categories converts the pattern of attended features into a 
coherent context-sensitive state that is linked to its category through feedback. It is this coherent 
state, that joins together distributed features and symbolic categories into a unified bound state, 
which can enter consciousness. ART predicts that all conscious states are resonant states. In 
particular, such a resonance binds spatially distributed features into either a synchronous 
equilibrium or oscillation, until it is dynamically reset. Such synchronous states have recently 
attracted much interest after being reported in neurophysiological experiments; see Section 5.1. 
Synchronous states as a substrate of conscious experience were predicted in the 1970’s in the 
articles which introduced ART. Grossberg (1999b) reviews this historical background and 
summarizes examples from the visual and auditory modalities that support the prediction that all 
conscious states are resonant states. The prediction that hyperspectific recognition categories 
may be learned by some individuals with autism implies that synchronous resonances may be 
reset more frequently in these individuals. 

6. Cognitive-Emotional-Motor Model 
6.1. Three Types of Representations and Learning 
The second model is the CogEM model, which joins together Cognitive, Emotional, and Motor 
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processes (Grossberg, 1982a, 1984a, 2000b); see Figures 4 and 5. The CogEM model proposes 
how emotional centers of the brain, such as the amygdala, interact with sensory and prefrontal 
cortices — notably ventral, or orbital, prefrontal cortex — to generate affective states, attend to 
motivationally salient sensory events, and elicit motivated behaviors. Activating the feedback 
loop between cognitive and emotional centers is predicted to generate a cognitive-emotional 
resonance that can support conscious awareness of events happening in the world and how we 
feel about them. Recent experimental data provide increasing support for the predicted role of 
interactions between amygdala and orbitofrontal cortex in the control of response selection and 
predicted outcomes based on value acquired through previously rewarded behaviors (Baxter et 
al., 2000; Schoenbaum et al., 2003). 
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Figure 4. (a) The simplest CogEM model: Three types of interacting representations (sensory, drive, and motor) that 
control three types of learning (conditioned reinforcer, incentive motivational, and motor) help to explain many 
reinforcement learning data. Sensory representations S temporarily store internal representations of sensory events in 
working memory. Drive representations D are sites where reinforcing and homeostatic, or drive, cues converge to 
activate emotional responses. Motor representations M control the read-out of actions. Conditioned reinforcer 
learning enables sensory events to activate emotional reactions at drive representations. Incentive motivational 
learning enables emotions to generate a motivational set that biases the system to process information consistent 
with that emotion. Motor learning allows sensory and cognitive representations to generate actions. (b) In order to 
work well, a sensory representation S must have (at least) two successive stages, S(1) and S(2), so that sensory events 
cannot release actions that are motivationally inappropriate. See text for details. 
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Figure 4a summarizes the hypothesis that (at least) three types of internal representation interact 
during reinforcement learning: sensory and cognitive representations S, drive representations D, 
and motor representations M. Sensory representations S temporarily store internal 
representations of sensory events in working memory. Drive representations D are sites where 
reinforcing and homeostatic, or drive, cues converge to activate emotional responses. Motor 
representations M control the read-out of actions.  
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Figure 5. Anatomical interpretation of CogEM model. The two successive stages of a sensory representation S are 
interpreted to be in the appropriate sensory cortex (corresponds to S(1) in Figure 4b) and the prefrontal cortex, 
notably the orbitofrontal cortex (corresponds to S(2) in Figure 4b). The prefrontal stage requires motivational support 
from a drive representation D to be fully effective, in the form of feedback from the incentive motivational learning 
(IML) pathway. The amygdala is interpreted as one important part of a drive representation. Amydgala inputs to 
prefrontal cortex cause feedback to sensory cortex that selectively amplifies and focuses attention upon 
motivationally relevant sensory events. (b) When a drive representation like the amygdala gets depressed (gray box), 
diminished activation of its outputs in response to sensory events depresses motivational inputs to the prefrontal 
cortex in response to emotionally important events, and hereby attenuates motivationally-appropriate signals to and 
from the prefrontal cortex (dashed lines). As a result, motivationally irrelevant events are not attentionally 
suppressed, and prefrontally-mediated plans and actions are insufficently activated.  See the text and Figure 6 for 
more details.   
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In particular, the S representations are thalamocortical representations of external events, 
including the object recognition categories that are learned by inferotemporal and prefrontal 
cortical interactions (Desimone, 1991; Gochin, Miller, Gross, and Gerstein, 1991; Harries and 
Perrett, 1991; Mishkin, Ungerleider, and Macko, 1983; Ungerleider and Mishkin, 1982), and that 
are modeled by ART. Sensory representations temporarily store internal representations of 
sensory events in short-term memory via recurrent on-center off-surround networks; see Figure 
4. The D representations include hypothalamic and amygdala circuits at which reinforcing and 
homeostatic, or drive, cues converge to generate emotional reactions and motivational decisions 
(Aggleton, 1993; Bower, 1981; Davis, 1994; Gloor et al., 1982; Halgren et al., 1978; LeDoux, 
1993). The M representations include cortical and cerebellar circuits that control discrete 
adaptive responses (Evarts, 1973; Ito, 1984; Kalaska et al., 1989; Thompson, 1988). More 
complete models of the internal structure of these several types of representations are developed 
elsewhere (e.g., Brown, Bullock, and Grossberg, 2004; Bullock, Cisek, and Grossberg, 1998; 
Carpenter and Grossberg, 1991; Contreras-Vidal, Grossberg, and Bullock, 1997; Fiala, 
Grossberg, and Bullock, 1996; Grossberg, 1987; Grossberg and Merrill, 1996; Grossberg and 
Schmajuk, 1987; Raizada and Grossberg, 2003). The model even in this simple form has 
successfully learned to control motivated behaviors in mobile robots (e.g., Baloch and Waxman, 
1991; Chang and Gaudiano, 1998; Gaudiano and Chang, 1997; Gaudiano, Zalama, Chang, and 
Lopez-Coronado, 1996). 

Three types of learning take place among these representations: Conditioned reinforcer 
learning (CRL) enables sensory events to activate emotional reactions at drive representations. 
Incentive motivational learning (IML) enables emotions to generate a motivational set that biases 
the system to process cognitive information consistent with that emotion. Motor learning allows 
sensory and cognitive representations to generate actions.  

In particular, learning within the S → D conditioned reinforcer pathways converts a CS 
into a reinforcer when it activates its sensory representation S just before the drive representation 
D is activated by an unconditioned stimulus (US), or other previously conditioned reinforcer 
CSs. The ability of the CS to subsequently activate D via this learned pathway is one of its key 
properties as a conditioned reinforcer. As these S → D associations are being formed, incentive 
motivational learning within the D → S incentive motivational pathways also occurs, due to the 
same pairing of CS and US. Incentive motivational learning enables an activated drive 
representation D to prime, or modulate, the sensory representations S of all cues, including the 
CSs, that have consistently been correlated with it. That is how activating D generates a 
“motivational set”: it primes all of the sensory and cognitive representations that have been 
associated with that drive in the past. These incentive motivational signals are a type of 
motivationally-biased attention. The S → M motor, or habit, learning enables the sensorimotor 
maps, vectors, and gains that are involved in sensory-motor control to be adaptively calibrated, 
thereby enabling a CS to read-out correctly calibrated movements. 

Taken together, these processes control the learning and recognition of sensory and 
cognitive memories, which are often classified as part of a “declarative memory” system 
(Mishkin, 1982, 1993; Squire and Cohen, 1984); and the performance of learned motor skills, 
which are often classified as part of a “procedural memory” system (Gilbert and Thatch, 1977; 
Ito, 1984; Thompson, 1988). 
6.2. Motivationally Appropriate Actions using Multiple Stages of Sensory Representation 
In order to generate only motivationally appropriate behaviors, the circuit in Figure 4a needs to 
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have two successive stages of sensory processing which are interpreted to occur in a sensory 
cortex and a prefrontal cortex to which it projects (Figure 5a). If only a single sensory cortex 
were used (that is, lump the sensory and prefrontal cortex together, as in Figure 4a), then, after a 
reinforcing cue activates a sensory representation S, it can activate a motor representation M at 
the same time that it also sends conditioned reinforcer signals to a drive representation D such as 
the amygdala. Then a motor response could be initiated before the sensory representation 
receives incentive motivational feedback to determine whether the sensory cue should generate a 
response at that time. For example, eating behavior could be initiated before the network could 
determine if it was hungry. This deficiency is corrected by using a sensory cortex and its 
prefrontal cortical projection, as in Figure 4b and 5a. Here, the various sensory cortices play the 
role of the first cortical stage of the sensory representations, the (orbital) prefrontal cortex plays 
the role of the second cortical stage of the sensory representations, and the amygdala and related 
structures play the role of the drive representations.  
 This two-stage sensory representation overcomes the problem just mentioned by 
embodying a key property of drive representations. Each drive representation D obeys a 
polyvalent constraint whereby it can generate large incentive motivational output signals to 
sensory representations S only if it gets a sufficiently large primary or conditioned reinforcer 
input at the same time that it gets a sufficiently large internal drive input. The internal drive input 
designates whether an internal drive, such as hunger, thirst, sex, etc. is high and in need of 
satisfaction. Different drive representations exist to represent these distinct internal homeostatic 
states. The polyvalent constraint means that a drive representation cannot fire vigorously unless 
it simultaneously receives a sufficiently large external sensory input and internal drive input. Due 
to the polyvalent constraint at the drive representation, an external reinforcing cue cannot 
activate strong incentive motivation, and with it action, to satisfy a drive that is already satisfied, 
because the drive input would be too small.  
 By imposing a similar polyvalent constraint on prefrontal cortical cells, the sensory 
representations cannot trigger an action unless they simultaneously receive sensory input from 
the corresponding sensory cortex and incentive motivational input from a drive representation.  
Thus, the polyvalent constraint on prefrontal firing prevents this region it from triggering an 
action until it gets incentive feedback from a motivationally-consistent drive representation 
(Grossberg, 1971, 1987). 
 More specifically, presentation of a given cue, or CS, activates the first stage of its 
sensory representation (in sensory cortex); see )1(

CSS  in Figure 4b. This activation is stored in 
short-term memory using positive feedback pathways from the sensory representation to itself. 
The stored activity generates output signals to all the drive representations with which the 
sensory representation is linked, as well as to the second stage )2(

CSS of the sensory representation 
(in prefrontal cortex; see Figure 5a). The second stage of the sensory representation obeys a 
polyvalent constraint: It cannot fire while the CS is stored in short-term memory unless it 
receives converging signals from the first sensory stage and from a drive representation.  
 This polyvalent constraint solves the problem of motivationally-inappropriate release of 
actions as follows: Suppose that the first stage of the sensory representation sends a large 
primary or secondary reinforcing signal to a drive representation at a time when the drive 
representation is also receiving a sufficiently large drive input. Then the polyvalent constraint of 
the drive representation is satisfied and the drive representation can fire. In other words, the drive 
representation can fire when the drive is not yet satisfied and sensory cues are available that 
predict drive satisfaction. All the drive representations that are active at that time compete among 
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themselves to allow the most active one—the one that represents the best combination of sensory 
and drive information at that moment—to fire. If the winning drive representation has a strong 
learned incentive motivational pathway to the second stage of the active sensory representation, 
then the polyvalent constraint of the second stage is satisfied, and it can generate output signals. 
In summary, by making the final stages of both the sensory and the drive representations 
polyvalent, the S → M motor pathways are activated only if the S → D → S feedback pathway 
can get sufficiently activated. In other words, the network generates a strong conditioned 
response only if it receives enough motivational support.  
6.3. Motivated Attention and Blocking 
Positive feedback from the prefrontal cortex to its sensory cortex also exists, as proposed by 
ART in order to stabilize rapid neocortical learning; see Figures 4b and 5. Such positive 
feedback can direct attention to motivationally salient sensory events, and to select 
motivationally appropriate responses. (Reynolds and Chelazzi (2004) provide an excellent 
review of attentional modulation of visual processing.) In other words, attentional feedback can 
help to explain how attentional blocking can occur, whereby the sensory representations of 
unattended and irrelevant sensory cues can be suppressed and thereby prevented from being 
learned (Grossberg and Levine, 1987; Pavlov, 1927). How does such cortical feedback enable 
attentional blocking to occur?  
 As noted above, model prefrontal cortical cells can fire only if a drive representation with 
which it is associated receives strong incentive motivational inputs from a drive representation. 
As a result, positive feedback from the prefrontal cortex to the sensory cortex amplifies only 
those active sensory representations that are motivationally prepotent in the present context. This 
amplification of activity enables these sensory representations to attentionally block less salient 
representations via the recurrent lateral inhibitory connections that exist among the sensory 
representations. These inhibitory connections are part of the recurrent on-center off-surround 
networks that store sensory cues in short-term memory without a loss of contrast sensitivity 
(Grossberg, 1973, 1980, 1982a).  
6.4. Interactions between Sensory Cortices, Amygdala, and Orbital Prefrontal Cortex 
The circuit in Figure 4a may, in principle, be replicated at multiple stages of thalamocortical and 
corticocortical processing of sensory events. For example, the first sensory stage may be a 
thalamic stage, and the second sensory stage may be a neocortical stage, as in the data of 
LeDoux (1993). The circuit in Figure 5a is consistent with Figure 6, which is adapted from 
Barbas (1995), who noted that many different types of sensory cortex, including visual, 
somatosensory, auditory, gustatory, and olfactory cortex, are connected to both the amygdala 
(and other emotional centers) and to the prefrontal cortex, and that the amygdala also sends a 
strong projection to the prefrontal cortex. We interpret this anatomy in terms of the model circuit 
in Figure 4b where, as noted above,  the various sensory cortices are the first cortical stage of the 
sensory representations, the (orbital) prefrontal cortex is the second cortical stage of the sensory 
representations, and the amygdala and related structures are the drive representations.  
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Figure 6. Orbital prefrontal cortex receives projections from sensory cortex (visual, somatosensory, auditory, 
gustatory, and olfactory) and from the amygdala, which also receives inputs from the same sensory cortices. 
[Reprinted with permission from Barbas (1995).] 
 
The following properties of Figure 5a are consistent with this anatomical interpretation: The 
amygdala, and related structures, has been identified in both animals and humans to be a brain 
region that is involved in learning and eliciting memories of experiences with strong emotional 
significance (Aggleton, 1993; Davis, 1994; Gloor et al., 1982; Halgren et al., 1978; LeDoux, 
1993). The orbitofrontal cortex is known to be a major projection area of the ventral, or object-
processing cortical visual stream (Barbas, 1995; Fulton, 1950; Fuster, 1989; Rolls, 1998; Wilson 
et al., 1993). Cells in the orbitofrontal cortex are sensitive to the reward associations of sensory 
cues, as well as to how satiated the corresponding drive is at any time (e.g., Mishkin and 
Aggleton, 1981; Rolls, 1998). The feedback between the prefrontal and sensory cortical stages 
may be interpreted as an example of the ubiquitous positive feedback that occurs between 
cortical regions (Felleman and Van Essen, 1991; Macchi and Rinvik, 1976; Sillito et al., 1994; 
Tsumoto, Creutzfeldt, and Legéndy, 1978; van Essen and Maunsell, 1983), including prefrontal 
and sensory cortices. Finally, the model is also consistent with data suggesting that the ventral 
prefrontal cortex and the amygdala are involved in the process by which responses are selected 
on the basis of their emotional valence and success in achieving rewards (Damasio et al., 1991; 
Passingham, 1997). In further support of the CogEM model hypothesis that the prefrontal 
sensory representation gates the release of properly motivated actions, Fuster (1989) has 
concluded from studies of monkeys that the orbital prefrontal cortex helps to suppress 
inappropriate responses. These monkey data are consistent with clinical evidence that patients 
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with injury to orbital prefrontal cortex tend to behave in an inappropriate manner (Blumer and 
Benson, 1975; Liddle, 1994).  
 As noted in Figure 5a, amydgala inputs to prefrontal cortex cause feedback to sensory 
cortex that selectively amplifies and focuses attention upon motivationally relevant sensory 
events. When a drive representation like the amygdala cannot fire at normal levels, as in Figure 
5b (gray box), its diminished outputs in response to sensory events depresses motivational inputs 
to the prefrontal cortex in response to emotionally important events. The polyvalent constraint at 
the prefrontal cortex is therefore no longer satisfied, and the prefrontal cortex cannot fire 
adequately. Motivationally-appropriate signals to and from the prefrontal cortex (dashed lines) 
are hereby attenuated. As a result, motivationally irrelevant events are not attentionally 
suppressed, and prefrontally-mediated plans and actions are insufficently activated.  
 The CogEM model proposes that emotional centers like the amygdala can experience 
such a reduced overall output, which can thereby cause the types of problems with motivated 
attention and action that has just been summarized. This condition is referred to as a form of 
“emotional depression.” Although emotionally-charged outputs from amygdala may be reduced, 
such reduction is not herein identified with the full-blown clinical disease of depression.  
 How does such emotional depression arise in the model? How this occurs can be seen by 
noting that emotional centers are often organized into opponent affective processes, such as fear 
and relief (Grossberg, 1984b, 2000b). These opponent-processing emotional circuits are called 
gated dipoles for reasons described below. The response amplitude and sensitivity to external 
and internal inputs of these opponent-processing emotional circuits are calibrated by an arousal 
level and chemical transmitters that slowly inactivate, or habituate, in an activity-dependent way. 
These opponent processes exhibit an Inverted-U whereby their outputs may become depressed if 
the arousal level is chosen too large or too small (Figure 7). Underaroused and overaroused 
depression can be distinguished clinically by their parametric properties, some of which are 
summarized in Figure 7 and proved mathematically in the Appendix. The iSTART model 
proposes that some symptoms of autism are due to underaroused depression and the way in 
which this condition interacts with other circuits, notably cognitive and motor circuits, 
throughout the brain. In particular, if the amygdala experiences underaroused depression, then 
this deficiency could ramify throughout the brain in the manner schematically shown in Figure 
5b. 
6.5. Opponent Processing: Inverted-U, Antagonistic Rebound, and Attentional 
Perseveration  
Given this background, let us now consider in more detail how opponent emotions, like fear and 
relief, may be organized in the brain, and how they may become depressed. ART predicts that 
such opponent emotions are a special case of a more general brain design for opponent 
processing, including opponent perceptual features like red and green colors, or downward and 
upward motions, or horizontal and vertical orientations. All of these different examples have the 
property of generating antagonistic rebounds whereby, say, offset of a sustained fearful cue can 
elicit a wave of relief, or removal of a desired food can elicit a wave of frustration, or offset of a 
sustained red image can yield a green aftereffect, or offset of a sustained downward motion of 
water can yield an upward motion aftereffect, or offset of a sustained image with radial spokes of 
a wheel can yield an aftereffect of concentric circles, and so on. In all of these cases, there are 
ON and OFF channels that can experience an antagonistic rebound. These opponent rebounds are 
predicted to play a key role in controlling ART reset and search, as discussed above, as well as in 
rebalancing sensory, cognitive, emotional, and motoric representations in response to rapidly 
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changing environmental inputs. They have been used to explain a wide variety of behaviors 
about animal and human cognitive-emotional learning and decision-making (e.g., Grossberg, 
1972b, 1980, 1984a, 1984b, 2000b, Grossberg and Gutowski, 1987; Grossberg and Schmajuk, 
1987). 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 7. Gated dipole opponent processes exhibit an Inverted-U behavioral response as a function of arousal level, 
with underaroused and overaroused depressive syndromes occurring at the two ends of the Inverted-U. See text for 
details. [Reprinted with permission from Grossberg (2000b).] 
 
Such opponent processing circuits exhibit a Golden Mean of optimal behavior at an intermediate 
arousal level, as noted in Figure 7. For larger or smaller levels of arousal, behavior deteriorates 
in different ways, thereby giving rise to an Inverted-U in network performance as a function of 
its arousal level. In different parts of the brain, the arousal source may differ. In general, a 
baseline of arousal means an input that is tonically on (or internally generated and active during 
an interval of fast phasic inputs) and which is received equally by both the ON and OFF channels 
of the dipole. 

Both the Inverted-U and the antagonistic rebound are the result of habituative chemical 
transmitters, or transmitters that are released in an activity-dependent way faster than they can 
recover. These transmitters exist in the opponent channels, where they multiply, or gate, the 
signals on their way to the opponent, or competitive, processing stage. Due to the factors that are 
summarized in Figure 8a and proved in the Appendix, when arousal is too small, such an 
opponent process experiences an elevated response threshold in response to an ON channel 
input, since there is not enough tonic arousal to enable outputs to occur in response to normal 
phasic input levels. Paradoxically, such an underaroused circuit also gives rise to hyperexcitable, 
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or larger than normal, responses to increments in the ON input that exceed this elevated 
threshold. This is true because the arousal input, when it is gated by the habituative transmitter, 
acts like a gain that divides cell activation. Division by a smaller arousal level causes larger 
suprathreshold cell activations. When arousal is too large, the opponent process experiences a 
low behavioral threshold, since there is plenty of tonic arousal to boost the effect of phasic 
inputs. Paradoxically, an overaroused dipole gives rise to hypoexcitable, or smaller than normal, 
outputs, in response to increments in the ON input that exceed the reduced threshold, because an 
abnormally large arousal divides the cell activation. Due to these properties, an increase in 
arousal can decrease the sensitivity of an underaroused opponent process of this kind, and can 
bring it into the normal behavioral range.  

This opponent processing model is called a “gated dipole” because habituative 
transmitters “gate,” or multiply, signal processing in each of the channels of the opponent 
“dipole.” Due to the Inverted-U property of a gated dipole, which is mathematically proved in 
the Appendix, a suitable pharmacological “up” should reduce the supra-threshold 
hypersensitivity of patients with underaroused dipole circuits, as is assumed herein for 
individuals with autism.  

Figure 8a defines the simplest gated dipole using a feedforward circuit. In general, gated 
dipoles are defined by feedback circuits in order to store their operating levels in short-term 
memory and thereby, for example, to maintain a steady motivational baseline while an entire 
action is being carried out. Figure 8b illustrates a feedback gated dipole that is called a READ 
(REcurrent Associative Dipole) circuit. In includes associative pathways whereby a sensory 
representation kS can learn to activate either the ON or OFF channels of the dipole via adaptive 
weights kw . Retrograde dendritic spikes (the region below x7 and x8 in Figure 8b) dissociate the 
read-out of previous emotional memories from the read-in of new emotional memories, which 
enables learning to remain sensitive to changing reward contingencies. See Grossberg and 
Schmajuk (1987) for computer simulations of how a READ circuit can learn and remember 
stable emotional memories for many years until they are actively erased by disconfirmed sensory 
or cognitive expectations. 

Sensory and cognitive representations, as well as emotional representations, can be 
organized into opponent channels with habituative ON and OFF cells. ART illustrates how an 
unexpected event can trigger a burst, or sudden increment, of nonspecific arousal (see Figure 2c). 
When such an arousal burst is received on top of the baseline tonic arousal input of a normal 
dipole, it can cause an antagonistic rebound of activity in the OFF channel. In other words, the 
sensory, cognitive, or emotional hypothesis that is represented in a dipole’s activity can be 
disconfirmed by an unexpected event. In such a normal dipole, an unexpected event can hereby 
reset ongoing processing and lead to a shift of attention. In an underaroused dipole, by contrast, 
an unexpected event can cause a paradoxical amplification of activity in the ON channel of the 
dipole, instead of the more normal antagonistic rebound of activity in the OFF channel. Thus, 
instead of resetting the dipole in response to an unexpected event, an unexpected event can 
instead cause the dipole to maintain, indeed enhance, the activity in its currently active channels. 
Such an enhancement can result in perseveration of attention on a given object of event, rather 
than flexible disengagement and shifting of attention. Split attention, shifting attention, and joint 
attention, which requires a flexible shift of the balance of split attention from an object of social 
value, such as a mother’s gaze, to another object and back again, may thus all be impaired in 
such an underaroused model. If, however, an arousal burst is sufficiently strong, then an 
unusually intense antagonistic rebound can be caused. See the Appendix for a mathematical 
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proof of these properties. These underaroused properties are observed among individuals with 
autism. 

A gated dipole’s perseverative and rebound properties emerge through interactions across 
the entire gated dipole circuit. They cannot be understood just by looking at the pharmacology or 
neurophysiology of individual cells within the circuit. When their effects ramify throughout the 
sensory and prefrontal cortices with which they interact, as in Figures 4 and 5, they can lead to a 
number of clinical symptoms. 
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Figure 8. (a) A gated dipole opponent process can generate habituative ON responses and transient OFF rebounds in 
response to the phasic onset and offset, respectively, of the input J to its ON channel. Term I delivers tonically 
active nonspecific arousal that energizes antagonistic rebounds when the phasic input J shuts off. Terms z1 and z2 are 
the habituative transmitter gates, or depressing synapses, in the ON and OFF channels; see the square synaptic 
symbols. They multiply, or gate, signals f(x1) and f(x2) that are derived from the ON and OFF activities x1 and x2, 
respectively, before the gated signals f(x1)z1 and f(x2)z2 excite the activities x3 and x4, respectively. The habituative 
gates convert the step-on-baseline activity pattern x1 into the overshoot-habituation-undershoot-habituation pattern at 
activity x3. Next, the opponent interaction works; namely, the baseline activity x4 in the OFF channel due to the 
arousal I is subtracted from the habituative ON activity x3 to yield x5. When activity x5 is thresholded to generate an 
ON output signal, it has an initial overshoot of activation, followed by habituation. When the signs of excitation and 
inhibition are reversed in the OFF channel, the activity x6 is caused. The antagonistic rebound in the OFF output is 
generated by thresholding x6. The antagonistic rebound is thus derived from the mirror-image of excitation and 
inhibition of the undershoot-habituation part of the ON channel activity at x5. [Reprinted with permission from 
Grossberg (2000b).]; (b) A READ (Recurrent Associative Dipole) circuit. The READ circuit is a gated dipole with 
excitatory feedback pathways between activities x7 and x1, and activities x8  and x2. Feedback enables the READ 
circuit to maintain a stable motivational baseline to support an ongoing motivated behavior. A sensory 
representation Sk sends conditionable signals to the READ circuit that are gated by conditioned reinforcer adaptive 
weights, or long term memory traces, wk7 and wk8 to the ON and OFF channels, respectively. Read-out of previously 
learned adaptive weights is dissociated from read-in of new values of the learned weights. New weight learning is 
generated by teaching signals from the ON or OFF channel that wins the opponent competition. The combination of 
recurrent feedback and associative dissociation enables the adaptive weights to avoid learning baseline noise, 
maintain sensitivity to the relative balance of ON and OFF channel conditioning through time, and preserve their 
learned memories until they are disconfirmed by new learning contingencies. [Reprinted with permission from 
Grossberg and Schmajuk (1987).] 
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6.6. When Hypervigilant Cognitive Learning Modulates Underaroused Emotional Circuits 
Let us suppose that certain individuals with autism have a variety of underaroused emotional as 
well as sensory and cognitive opponent representations (not necessarily all sensory and cognitive 
representations, however). Consider what can happen when this property is combined with 
hyperspecific and hypervigilant cognitive learning. That is, consider how an underaroused 
CogEM model interacts with a hypervigilant ART model. In this combined system, various 
formal symptoms emerge that strikingly resemble behavioral properties of individuals with 
autism. 

For example, suppose that positive affect motivates a learned action. As noted in Section 
6.5, underaroused emotional and sensory dipoles can exhibit a paradoxical enhancement of their 
ON channels when a nonspecific arousal burst is triggered by an unexpected event. How can 
such paradoxical enhancements be caused in an individual with autism? Imagine that such an 
individual inspects an object closely in slightly different ways. The hyperspecific top-down 
expectations of such an individual may cause mismatches with the different views of the object. 
These mismatches can cause nonspecific arousal bursts, which can cause enhanced ON channel 
responses. In particular, enhanced positive affect in underaroused emotional dipoles can lead to 
enhanced storage of the object representation in sensory and cognitive dipoles. A persistent and 
self-reinforcing perseverative behavior can result, which might manifest itself in persistently 
inspecting the same object, over-and-over, from slightly different perspectives. 

Suppose, however, that an arousal burst is caused which is significantly larger, say due to 
a larger mismatch of a presently active hyperspecific category prototype with a very different 
and unexpected event in the world. Then an unusually intense, and negative, antagonistic 
rebound can be caused. Thus, novel experiences can be highly aversive when hyperspecific 
categories mismatch them and suddenly generate a burst of arousal to underaroused emotional 
dipoles. These negative rebounds may be one reason why individuals with autism are prone to 
experiencing severe negative reactions to unanticipated events. 

When one considers the plight of any individual who combines these two mechanisms, it 
becomes clear that one coping strategy is to avoid the type of novelty that will cause unbearable 
negative rebounds. The other side of the coin is perseveration on small details of the 
environment. Such a combination of properties may help to understand the autistic  “need for 
sameness” in many situations, and the fact that behavioral decompensation often occurs in 
response to what a normal person would view as relatively minor variations in routines.  
6.7. Impoverishment of Motivated Goals, Intentions, and Theory of Mind 
The most immediate effect of a depressed response in the outputs of emotion-representing areas 
is flat affect―that is, a reduced output from emotional centers―although how this is understood 
must be carefully evaluated, as indicated in the preceding discussion of underaroused and 
overaroused depression. Flat affect may cause an inability to represent others’ beliefs and 
intentions, in the sense that all mental states that depend upon interpreting one’s own emotional 
state, or the emotional states of others, can be diminished. Such a deficiency can cause major 
difficulties in social communication. It happens in the CogEM model of Figures 4 and 5 because 
emotionally charged sensory inputs, such as the expressions on other people’s faces or their tone 
of voice, will activate the appropriate part of a temporal cortex but may not elicit an appropriate 
emotional output from the amygdala and related emotion-representing circuits via conditioned 
reinforcer pathways.  

A problem with the setting of motivationally directed goals and intentions can then 
indirectly arise. This happens in the model because the depressed response of the emotional 
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representations, in brain areas like the amygdala, depresses the incentive motivational signals 
that would normally activate the prefrontal cortex in response to motivationally salient events 
(Figure 5b). As a result, the prefrontal cortex will not be adequately activated, and a hypofrontal 
condition can emerge. Due to this hypofrontality, the working memory representations and plans 
that are ordinarily formed within the prefrontal cortex will be degraded, so social goals and plans 
will not form in a normal fashion. The combination of depressed affective responses to 
environmental and internally generated cues, combined with insufficient motivational support for 
emotionally-appropriate plans and actions, helps to explain why individuals with autism are said 
to be without a Theory of Mind; see Section 9. 

Given such a hypofrontal response, top-down signals from the prefrontal cortex to the 
sensory cortices will also be reduced or eliminated (Figure 5b). As a result, the sensory 
representations will not be able to use these top-down signals to organize information processing 
according to its emotional meaning or motivational goals.  
7. Adaptive Timing Model 
7.1. Adaptively Timed Learning, Motivation, Attention, and Action 
The above discussion illustrates one aspect of a major conceptual dichotomy that is often used in 
research about normal and amnesic learning and memory. This dichotomy concerns the 
distinction between processes that are variously called declarative memory and procedural 
memory, knowing that and knowing how, memory and habit, or memory with record and 
memory without record (Bruner, 1969; Mishkin, 1982, 1993; Ryle, 1949; Squire and Cohen, 
1984). The amnesic patient HM exemplified this distinction by learning and remembering motor 
skills like assembly of the Tower of Hanoi without being able to recall having done so (Bruner, 
1969; Cohen and Squire, 1980; Mishkin, 1982; Ryle, 1949; Scoville and Milner, 1957; Squire 
and Cohen, 1984). HM’s surgical lesion included extensive parts of the hippocampal formation 
and amygdala. Subsequent animal studies have shown that damage to the hippocampal formation 
(Ammon’s horn, dentate gyrus, subiculum, fornix) and the parahippocampal region (entorhinal, 
perirhinal, and parahippocampal cortices) can reproduce analogous amnesic symptoms (Mishkin, 
1978; Squire and Zola-Morgan, 1991). These results implicate this aggregate hippocampal 
system in the processes that regulate declarative memory, or “knowing that”. Such processes 
support a competence for learning recognition categories and being able to flexibly access them 
in a task-specific way (Eichenbaum, Otto, and Cohen, 1994). The discussion of ART above is 
about declarative memory, particularly about the learning of recognition categories, and involves 
predicted interactions between cortical and hippocampal representations. Indeed, as noted in 
Section 5.2, ART exhibits a constellation of formal symptoms that strikingly resemble symptoms 
of medial temporal amnesia when its orienting system is lesioned (Carpenter and Grossberg, 
1993). 

A parallel line of research has implicated the cerebellum in the processing of procedural 
memory, or “knowing how”. The cerebellum is an essential circuit for conditioning discrete 
adaptive responses during eye movements, arm movements, nictitating membrane movements, 
and jaw movements (Ebner and Bloedel, 1981; Gilbert and Thach, 1977; Ito, 1984; Lisberger, 
1988; Optican and Robinson, 1980; Thompson, 1988; Thompson et al., 1984, 1987). Models of 
cerebellar learning have been developed over the years to help explain these motor conditioning 
data (Albus, 1971; Bullock, Fiala, and Grossberg, 1994; Fiala, Grossberg, and Bullock, 1996; 
Fujita, 1982a, 1982b; Grossberg, 1969b, 1972c; Grossberg and Kuperstein, 1986; Ito, 1984; 
Lisberger, 1988; Marr, 1969). 

A key property of cerebellar learning is that it is adaptively timed, so that learned 
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responses are emitted at times that are appropriate within the environmental constraints of the 
learning paradigm. Cognitive-emotional learning is also adaptively timed, so that motivated 
attention can be maintained on salient goal objects for the necessary amount of time to carry out 
goal-directed actions.  

Many goal objects may be delayed subsequent to the actions that elicit them, or the 
environmental events that signal their subsequent arrival. Humans and many animal species can 
learn to wait for the anticipated arrival of a delayed goal object, even though its time of 
occurrence can vary from situation to situation. Such behavioral timing is important in the lives 
of animals which can explore their environments for novel sources of gratification. On the one 
hand, if an animal or human could not inhibit its exploratory behavior, then it could starve to 
death by restlessly moving from place to place, unable to remain in one place long enough to 
obtain delayed rewards there, such as food. On the other hand, if an animal inhibited its 
exploratory behavior for too long while waiting for an expected source of rewards, such as food, 
to materialize, then it could starve to death if food is not, after all, forthcoming.  

Thus, the survival of a human or animal may depend on its ability to accurately time the 
delay of a goal object based upon its previous experiences in a given situation. Such human or 
animal needs to balance between its exploratory behavior, which may discover novel sources of 
reward, and its consummatory behavior, which may acquire expected sources of reward. To 
effectively control this balance, the human or animal needs to be able to suppress its exploratory 
behavior and focus its attention upon an expected source of reward at around the time that the 
expected delay transpires for acquiring this reward.  
7.2. Adaptively Timed Gating 
To illustrate the sort of timing that is intended here, suppose that an animal typically receives 
food from a food magazine 2 seconds after pushing a lever, and that the animal orients to the 
food magazine right after pushing the lever. When the animal inspects the food magazine, it 
perceives the non-occurrence of food during the subsequent 2 seconds. These non-occurrences 
disconfirm the animal’s sensory expectation that food will appear in the magazine. Because the 
perceptual processing cycle that processes this sensory information occurs at a much faster rate 
than 2 seconds, it can compute this sensory disconfirmation many times before the 2 second 
delay has elapsed. 
 The core issue is: What spares the animal from erroneously reacting to these expected 
non-occurrences of food during the first 2 second as predictive failures? Why does the animal 
not immediately become so frustrated by the non-occurrence of food that it shifts its attentional 
focus and releases exploratory behavior aimed at finding food somewhere else? Alternatively, if 
the animal does wait, but food does not appear after the 2 seconds have elapsed, then why does 
the animal then react to the unexpected non-occurrence of food by becoming frustrated, resetting 
it working memory, shifting its attention, and releasing exploratory behavior? 
 Any solution to this problem needs to account for the fact that the processing of 
registering sensory mismatches or matches is not itself inhibited: If the food happened to appear 
earlier than expected, the animal could still perceive it and eat. Instead, the effects of these 
sensory mismatches upon reinforcement, attention, and exploration are somehow inhibited, or 
gated off. That is, a primary role of such an adaptive timing mechanism seems to be to inhibit, or 
gate, the process whereby a disconfirmed expectation would otherwise negatively reinforce 
previous consummatory behavior, reset working memory, shift attention, and release exploratory 
behavior. 

In summary, unless motivated attention and action are both adaptively timed, an animal 
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or human could be condemned to either emit premature goal-oriented responses (as occurs in 
individuals with autism; see Section 3), or to generate maladaptive orienting and exploratory 
movements in any situation wherein a goal object does not immediately appear. Adaptively 
timed learning enables both attention and action to be appropriately timed to generate adaptive 
behavior in each environment.  

Evidence for adaptive timing has been found during many different types of 
reinforcement learning. For example, during classical conditioning, a conditioned stimulus (CS) 
such as a tone or light, when paired with an unconditioned stimulus (US) such as a shock, can 
learn to generate conditioned responses (CR), such as fear or limb withdrawal, that were 
originally elicited only by the US. Such learning is optimal at a range of positive interstimulus 
intervals (ISI) between the CS and US that are characteristic of the animal and the task, and is 
greatly attenuated at zero ISI and long ISIs. Within this range, learned responses are timed to 
match the statistics of the learning environment (Smith, 1968). Although the amygdala has been 
identified as a primary site in the expression of emotion and stimulus-reward association 
(Aggleton, 1993), as summarized in Figures 5 and 6, the hippocampal formation has been 
implicated in the adaptively timed processing of cognitive-emotional interactions. For example, 
Thompson et al. (1987) distinguished two types of learning that go on during conditioning of the 
rabbit Nictitating Membrane Response: Adaptively timed “conditioned fear” learning that is 
linked to the hippocampus, and adaptively timed “learning of the discrete adaptive response” that 
is linked to the cerebellum.  

 
Figure 9. The simplest version of the START model. Adaptively timed learning maintains motivated attention at the 
same time that it inhibits activation of the orienting system. See text for details. [Reprinted with permission from 
Grossberg and Merrill (1992).]  
 
 
A synthesis of the ART and CogEM models, called the START model, for Spectrally Timed 
ART model (Fiala, Grossberg, and Bullock, 1996; Grossberg and Merrill, 1992, 1996; Grossberg 
and Schmajuk, 1987), proposes a unified explanation of why both the hippocampal system and 
the cerebellum may need adaptive timing circuits for their normal functioning (Figures 9 and 
10). Appendix B summarizes the equations of the START model that was simulated by 
Grossberg and Merrill (1992). The START model predicts how motivational mechanisms within 
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the amygdala, and related emotion-representing brain areas, can rapidly draw motivated attention 
to salient cues. This can happen via a cognitive-emotional resonance within CogEM feedback 
circuits between sensory representations S and drive representations D (see Figure 9). Once these 
salient cue representations are selected and activated, what prevents the actions that they control 
from being prematurely released via the CogEM circuit in Figures 4b and 5?  

 
 

Figure 10. Circuit for adaptively timed cerebellar learning. Adaptively timed Long Term Depression at Purkinje 
cells depresses the level of tonic inhibitory firing of these cells to cerebellar nuclei, thereby disinhibiting nuclear 
cells and allowing them to expressed their learned gains in an adaptively timed way. See text for details. [Reprinted 
with permission from Grossberg and Merrill (1996).] 
 
 
7.3. Spectral Timing in Cerebellum and Hippocampus: Timed Action and Attention 
Figure 10 summarizes a model of how the cerebellum adaptively times the release of motor 
commands by using a “spectrum” of learning sites that are each sensitive to a different range of 
delays between CS and US. A process of “spectrally timed learning” selects that subset of sites 
whose reaction rates match the expected delays, or interstimulus intervals (ISIs), between the CS 
and the US. Learning at parallel fiber/Purkinje cell synapses depresses the tonically active output 
from cerebellar Purkinje cells to cerebellar nuclei. This Long Term Depression (LTD) occurs in 
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an adaptively timed way. LTD hereby disinhibits the target cerebellar nucleus sites and allows 
the adaptively timed expression of learned gains from these sites. Such learning enables the 
cerebellar output to be released at around the time when the US is expected.  

In particular, suppose that a conditioned stimulus (CS), say via the motor output pathway 
M in Figure 9, activates pathways to both a subcortical cerebellar nucleus and to cerebellar 
cortex parallel fibers that synapse on Purkinje cells with a spectrum of differently timed 
intracellular processes. Unconditioned stimulus (US)-activated climbing fibers provide a 
teaching signal that also converges upon the parallel fiber/Purkinje cell synapses. This teaching 
signal causes the active synapses within the parallel fiber spectrum to become weaker (Long 
Term Depression) if they are activated by the CS when the US teaching signal becomes active. 
Synapses whose spectral activity does not overlap the climbing fiber signals become stronger 
(Long Term Potentiation, or LTP). Because the Purkinje cells tonically inhibit their subcortical 
target cells, their adaptively timed inhibition by the CS disinhibits the effect of tonic Purkinje 
cell outputs on cerebellar nuclear cells. In other words, a timed gate opens and allows the 
subcortical cells to fire. The model proposes that climbing fibers also control learning of 
adaptive gains along subcortical pathways through the nuclear cells. Thus, when the adaptively 
timed Purkinje cell gate opens, the learned gains can be expressed at the correct time and with 
the correct amplitude to cause a correctly calibrated motor response. 
 Bullock, Fiala, and Grossberg (1994) and Fiala, Grossberg, and Bullock (1996) have 
developed and simulated a detailed model of cerebellar adaptive timing. The cerebellar Spectral 
Timing model of Fiala, Grossberg, and Bullock (1996) links biochemistry, neurophysiology, 
neuroanatomy, and behavior. This model predicts how the metabotropic glutamate (mGluR) 
receptor system may be involved in cerebellar adaptively timed learning, as well as, by 
extension, in other brain regions with adaptively timed cell responses, such as the hippocampus 
and basal ganglia (Brown, Bullock, and Grossberg, 1999; Grossberg and Merrill, 1992, 1996). A 
number of subsequent experiments have supported the prediction of a role for calcium signalling 
and mGluR in cerebellar adaptive timing (Finch and Augustine, 1998; Ichise et al., 2000; Miyata 
et al., 2000; Takechi, Eilers, and Konnerth, 1998). Figure 11a shows a simulated adaptively 
timed cerebellar output where the interstimulus interval, or ISI, between a conditioned stimulus 
(CS) and unconditioned stimulus (US) is 500 msec. The series of increasing curves shows the 
adaptively timed response on successive learning trials. Figure 11b shows how the cerebellar 
output can be released prematurely when adaptive timing by the cerebellar cortex fails. Figure 
11c shows data of Perrett, Ruiz, and Mauk (1993) demonstrating that a similar failure in 
adaptively timed responding occurs when the cerebellar cortex is lesioned after learning via the 
nictitating membrane response paradigm. In summary, adaptive timing in the cerebellum 
reconciles two equally important, but potentially conflicting, behavioral requirements: Fast 
allocation of attention to motivationally salient events, and adaptively timed responses to these 
events. 
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Figure 11. (a) Computer simulation of spectral timing in the cerebellar cortex at the parallel fiber-Purkinje cell 
synapse. The adaptively timed cerebellar nucleus output after learning in response to an interstimulus interval of 500 
msec between the conditioned reinforcer and the unconditioned reinforcer. The increasing curves represent 
successive learning trials. (b) When the cerebellar cortex is ablated from the model, the response from the cerebellar 
nucleus occurs prematurely. [Reprinted with permission from Bullock, Fiala, and Grossberg (1994).] (c) Data from 
the nictitating membrane response paradigm showing a similar effect of a cerebellar cortical lesion on conditioned 
responses. CS1 was trained to an interstimulus intervals (ISI) or 150 msec, wherease CS2 was trained to an ISI of 
750 msec. In both cases, ablation of cerebellar cortex caused a premature response to be made. [Reprinted with 
permission from Perrett, Ruiz, and Mauk (1993).] 
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Section 3 summarized data showing that individuals with autism, who are known to have 
cerebellar deficiencies, also perform short-latency responses in the eye-blink paradigm. The 
Spectral Timing model provides a way to understand how such adaptive timing deficits occur. Its 
prediction of a key role of mGluR in adaptively timed learning also points to new experiments or 
tests that can be done with autistic individuals to determine if, indeed, the mGluR system is not 
functioning normally in them. 

In addition to adaptive timing of motor responses by the cerebellum, there is a need for 
motivated attention to be maintained long enough for the adaptively timed action to be executed. 
Adaptively timed motivated attention can hereby prevent irrelevant novel events from 
prematurely resetting thalamocortical sensory and cognitive representations as they actively 
read-out adaptively timed responses. The START model (Grossberg and Merrill, 1992, 1996) 
accomplishes this by showing how circuits within the hippocampus that are capable of 
adaptively timed learning can modulate the responses of ART and CogEM circuits that have 
already been summarized. Hoehler and Thompson (1980) have provided experimental evidence 
that adaptively timed circuits exist in both the hippocampus and the cerebellum by doing ISI 
shift experiments during which the peak time of the hippocampal trace can change before the 
peak time of the discrete adaptive response.  

In particular, as summarized in Section 5, the ART model proposes how attentional and 
orienting systems interact to categorize information and to develop resonant states if an active 
top-down prototype and a bottom-up sensory input form a sufficiently good match. If the 
mismatch is too big for resonance to occur, then other things being equal, the orienting system 
can trigger a search for a better category with which to categorize the information. The 
hippocampal system is proposed to be part of the orienting system that is activated by these 
mismatches and relays them as novelty-sensitive reset bursts to the thalamocortical system. Such 
an ART-mediated activation of the orienting system is not, however, sensitive to whether the 
novel event that caused the mismatch is relevant to the task. The START model clarifies how 
mismatches may be modulated by task-relevance in an adaptively timed way. In particular, the 
START model suggests how motivationally salient cognitive representations may be enhanced, 
while orienting responses are inhibited, by an adaptively timed hippocampal dentate-CA3 circuit,  
during the same time intervals when conditioned responses are disinhibited by an adaptively 
timed cerebellar circuit. See Appendix B for a mathematical description of the START Spectral 
Timing model.  

In particular, Figure 9 summarizes how adaptively timed learning within the dentate-CA3 
circuits (T in Figure 9) of the hippocampus is proposed to inhibit the activation of the orienting 
system A during an interval wherein a valued and predictable goal is being acted upon. Indeed, 
hippocampal dentate-CA3 cell firing reflects the learned delays observed during the rabbit 
nictitating membrane response (Berger, Berry, and Thompson, 1986). Figure 12 summarizes a 
computer simulation of adaptively timed learning within the dentate-CA3 circuit. The curves in 
(a) and (b) show how the individual spectral components cooperate to generate an adaptively 
timed population output R in (c). The START model hereby proposes how adaptively timed 
inhibition of the hippocampal orienting system (Figure 9) and adaptively timed disinhibition of 
cerebellar nuclear cells (Figure 10) are coordinated to enable motivated attention to be 
maintained on a goal while adaptively timed responses are released to obtain the goal. 
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Figure 12. Computer simulation of spectral timing in the dentate-CA3 circuit. (a) The CS1 input turns on at the time 
marked by the leftmost vertical dashed line. The US turns on at the time marked by the rightmost vertical dashed 
line. The functions f1j summarize the different rates of activation of distinct cell sites to the CS1 input. (b) The 
functions y1j are chemical transmitters that habituate, or are inactivated, at a rate proportional to their driving signals 
f1j . (c) The sampling functions g1j are the products of f1j and y1j because the transmitters multiply, or gate, their 
respective cell activation. The functions g1j are the differently timed responses of cell sites that together form the 
basis for spectral timing. (d) Learning of the correlation between CS and US occurs at each site only when its g1j  is 
positive. In this sense, each g1j learns by sampling, or gating, the US activity that is correlated with it. Both the 
timing and rate of learning by the adaptive weights w1j covary with the size of its g1j . Due to the fact that the various 
g1j have their peak activities at different times, each site is maximally sensitive to learning correlations with different 
delays between CS and US. The timed cell responses g1j also give rise to outputs h1j in which the signals g1j are 
multiplied, or gated, by their adaptive weights w1j. In other words, each output     h1j = g1j w1j. (e) When these 
adaptively weighted signals are added up, they form a total population output signal R = ∑j h1j that is adaptively 
timed to peak at around the ISI where the US turns on. Thus, spectral timing is a property of an entire population of 
adaptively gated pathways. [Reprinted with permission from Grossberg and Merrill (1992).] 
 
Processing stages S(1) and S(2) in Figure 9 play the role of sensory cortex and prefrontal cortex, 
respectively, in the CogEM model circuit of Figures 4b and 5. Stage D is an emotional center, or 
drive representation, like the amygdala in Figure 5. Stage M schematizes motor output pathways. 
The feedback pathways D→ S(2)→ S(1) from a particular drive representation to sensory 
representations are capable of focusing attention on motivationally consistent events in the 
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world. The excitatory pathways from S(1) → D learn the conditioned reinforcer properties of a 
sensory cue, such as a CS, whereas the pathways D→ S(2) learn the incentive motivational 
properties of cues. Representations in S(2) can fire vigorously only if they receive convergent 
signals from S(1) and D, corresponding to the sensitivity of orbitofrontal cortex to both sensory 
and reinforcing properties of cues. Then they deliver positive feedback to S(1) and bias the 
competition among sensory representations to focus attention on their respective features and to 
attentionally block inhibited features.  

Prior to conditioning, a CS can be stored at S(1) and can prime D and S(2) without 
supraliminally firing these representations, as also illustrated in Figures 4b and 5a. After 
conditioning, the CS can trigger strong conditioned S(1) → D→ S(2)→ S(1) feedback and rapidly 
draw attention to itself as it activates the emotional representations and motivational pathways 
controlled by D. Representation D can also inhibit the orienting system A as it focuses attention 
upon motivationally valued sensory events. Here is thus one way in which the CogEm and ART 
models interact: Emotionally salient goal objects can inhibit the orienting system and thus 
prevent irrelevant distractors from attracting attention when there is an ART mismatch. This 
inhibition of the orienting system becomes adaptively timed as follows: The sensory 
representations S(1) send pathways to a spectral timing circuit T, assumed to be in the dentate-
CA3 region of the hippocampus, whose adaptive weights w are trained by a Now Print, or 
teaching signal, N. The teaching signal N is transiently activated by changes in the activity of the 
drive representation D that occur when a reinforcing event activates D. After conditioning of T 
takes place, adaptively timed readout from T can maintain attention on task-relevant cues by 
amplifying their cortical representations S(2) while inhibiting the orienting system A for an 
adaptively timed duration. In the figure, the simplest such inhibitory path is depicted, directly 
from T to D and thereupon to A. A more complex set of pathways exists in vivo. 

Many data have been rationalized using these circuits, including data from delayed non-
match to sample (DNMS) experiments wherein both temporal delays and novelty-sensitive 
recognition processes are involved (Gaffan, 1974; Mishkin and Delacour, 1975). In summary, as 
shown in Figures 9 and 10, the START model enables three key properties to simultaneously 
obtain:  

1. Fast Motivated Attention. Rapid focusing of attention on motivationally salient cues 
occurs from regions like the amygdala to prefrontal cortex (the D→ S(2) pathway in Figure 9). 
Without further processing, fast activation of the CS-activated S(2)  sensory representations could 
prematurely release motor behaviors. 

2. Adaptively Timed Responding. Adaptively timed read-out of responses via cerebellar 
circuits, as in Figure 10, enables learned responses to be released at task-appropriate times, 
despite the fact that CS cortical representations can be quickly activated by fast motivated 
attention. 

3. Adaptively Timed Duration of Motivated Attention and Inhibition of Orienting Responses. 
Adaptively timed inhibition of mismatch-sensitive cells in the orienting system of the 
hippocampus (pathway T→D→A in Figure 9) prevents the premature reset of active CS 
representations by potentially distracting irrelevant cues during variable task-specific delays. 
This inhibition is part of the competition that exists between consummatory and orienting 
behaviors (Staddon, 1983). Even while this inhibitory mechanism prevents CS representations 
from being prematurely reset, adaptively timed incentive motivational feedback (D→ S(2)→ S(1) 
in Figure 9) helps to maintain the activation of these representations in short-term memory. As a 
result, the CS representations can continue to read-out the sensory signals that will elicit 
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adaptively-timed responding. A neural marker of adaptively timed motivational feedback is 
predicted to be the Contingent Negative Variation, or CNV, event-related potential; see 
Grossberg (1984a) for further discussion and classical data about CNV. 
8. iSTART Model of Autism 
8.1. Combining Three Sorts of Imbalances in the iSTART Model 
Now that the necessary background models are understood, it is possible to explore how various 
early-onset lesions influence model properties, and to compare these properties with those of 
individuals with autism. The main proposal of the present article is that when various START-
like mechanisms become imbalanced in the brain — notably, underaroused depression in the 
drive representations of regions like the amygdala, hypervigilant learning in the recognition 
learning circuits of temporal and prefrontal cortices, and a failure of adaptive timing in the 
hippocampal and cerebellar circuits — then formal analogs of behavioral symptoms observed in 
autism emerge. That is why we call the model the Imbalanced START, or iSTART, model.  
8.2. Interactions between Hypervigilant Learning and Underaroused Depression 
Sections 4–7 have already summarized some of the behavioral difficulties that these imbalances 
can cause and, along with Sections 2-3, have compared them with the behavior of individuals 
with autism. For example, the iSTART model clarifies what happens when underaroused 
depression is combined with hyperspecific and hypervigilant learning. That is, it explains what 
happens when an underaroused CogEM model interacts with a hypervigilant ART model. In 
particular, suppose that positive affect motivates an action. As noted in Section 6.5 and proved in 
the Appendix, underaroused emotional and sensory dipoles can exhibit a paradoxical 
enhancement of their ON channels when a nonspecific arousal burst is triggered by an 
unexpected event. Perseverature bursts of positive affect can hereby be expected from the high 
probability that the same object, viewed in slightly different ways, will mismatch the 
hyperspecific top-down expectations of an individual with autism. A persistent perseverative 
behavior can result, which might manifest itself in persistently inspecting the same object. 
Suppose, however, that an arousal burst is caused which is significantly larger, say due to a 
larger mismatch of a presently active hyperspecific prototype with a different and unexpected 
event in the world. Then an unusually intense, and negative, antagonistic rebound can be caused. 
Thus, novel experiences can be highly aversive when hyperspecific categories mismatch them 
and suddenly generate a burst of arousal to the system’s underaroused dipoles. These negative 
rebounds may be one reason why individuals with autism are prone to negative reactions to 
unanticipated events. One behavioral strategy for coping with these system properties is to avoid 
the type of novelty that will cause unbearable negative rebounds. The other side of the coin is 
perseveration on small details of the environment. Such a combination of properties may help to 
understand the autistic “need for sameness” in many situations, and the fact that behavioral 
decompensation often occurs in response to what a normal person would view as relatively 
minor variations in routines. 
8.3. Interactions between Underaroused Depression and Adaptive Timing 
Let us now consider how adding adaptive timing to the discussion can further clarify how 
symptoms of autism may arise. In particular, early in development, emotional needs may begin 
to be met by responding with simple motor patterns in response to basic sensory stimuli. 
However, continued successful development requires the ability to learn to adaptively time new 
actions to receive the potentially rewarding consequences of these actions.  

To understand this issue better, suppose that new adaptively timed movements cannot be 
learned. This deficiency can be due to a direct malfunction of adaptive timing circuits in the 
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cerebellum and/or hippocampus. In particular, if the cerebellar cortex is damaged, then responses 
can be prematurely released, as illustrated in Figures 11b and 11c. If the dentate-CA3 
hippocampal circuit is damaged, then adaptively timed persistence of motivated attention and 
inhibition of orienting responses cannot occur. If motivated attention and action are not 
adaptively timed, then spurious resets of attention may more readily occur, as noted in item (3) in 
Section 7.3. Social skills and language development, in particular, are learned through adaptively 
timed behaviors in a process of shared attention and imitation. Under these circumstances, a wide 
variety of social behaviors may not get a chance to be learned, and attention may instead be 
maintained on lower-order sensory representations and tasks. The above considerations suggest 
that part of the reason that representations of typical social significance may fail to develop is 
that they may not get a chance to be strongly reinforced.  

Flexible shifts of attention can be impaired because, if the timing circuit T in the 
hippocampus is damaged (see Figure 9), attention may more easily be distracted from goal 
objects during task-related delays. Such a lack of timed control over variable delays can harm 
behavior more when it is necessary to shift attention among different sets of cues. On the other 
hand, if the orienting system A in the hippocampus is also damaged (see Figures 2 and 9), then 
flexible reset of attention in response to novel events may be impaired because mismatch-based 
novelty-mediated attention shifts are no longer operational. If the attentional system in the 
neocortex remains intact, then direct activation of a recognition code in response to a familiar 
event is still possible, and the matching process can partially update short-term memory. 
However, without an intact adaptive timing or orienting system, the network can no longer 
flexibly search for the proper configuration of targets to attend, especially in the presence of 
complex spatial layouts that include distracting cues. Gaffan (1992) has described analogous data 
from hippocampectomized monkeys. 

A failure of adaptive timing can also be due to insufficient teaching signals from 
depressed emotional centers to adaptive timing circuits. Thus, underaroused emotional 
depression, in addition to its negative effects on the development of a Theory of Mind, can lead 
to a reduction of normal reinforcing signals to hippocampal and cerebellar circuits, and with it 
abnormalities of adaptively-timed, motivated attention and action. For example, rewards and 
punishments generate teaching signals to the adaptive timing circuits in the hippocampus (via 
D→ N in Figure 9) and cerebellum (via US-activated climbing fibers in Figure 10) to assure that 
properly timed responses are reinforced. Reduced Now Print teaching signals N in Figure 9 or 
climbing fiber teaching signals in Figure 10 can both cause a failure of adaptively timed 
learning; in the former case, motor learning, and in the later case, motivated attention and 
inhibition of orienting responses. 

If any of these mechanisms fail, then adaptively timed behavior may fail, and with it the 
future rewards that would normally be received, contingent upon making these adaptively timed 
behaviorss, may not be forthcoming.  

One can also speculate that the breakdown of the normal cycle of behavior and reward, 
with a dramatic reduction in the normal frequency of behaviorally appropriate rewards, can in 
itself contribute to a reduction in the arousal I of emotional centers, as in Figure 8 and the 
Appendix, thereby leading to the types of symptoms, reviewed above, that occur when drive 
representations D are underaroused. Thus, a tendency towards emotional underarousal can lead 
to reduced learning signals for adaptively timed learning, which can then lead to a reduction of 
reward frequency, which can then reinforce the underarousal that prevents adequate reward-
based learning signals from occurring. Such a feedback cycle would involve amygdala, 
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cerebellum, and hippocampus, among other brain regions. In summary, circuits for adaptive 
timing, reward, motivation, and cognition all interact in the iSTART model via feedback. 
8.4. Interactions between Adaptive Timing and Hyperspecific Learning  
As another example of how system-wide feedback can maintain, and even worsen, behavioral 
symptoms, consider the fact that the frequent spurious orienting resets that can occur due to 
dysfunctional adaptive timing may also contribute to hyperspecific learning. If sensory inputs are 
prematurely reset, then this can interfere with the normal cycle of adaptively timed shifting of 
attention to the expected consequences of motor actions. Such a learner could not easily test 
whether variations on a sensory event predict similar consequences, so abstract prototype 
formation may not have a chance to occur. This hypothesis predicts that there should be a 
correlation between the specificity of learned categories in (say) the inferotemporal cortex 
(Spitzer et al., 1988) and the number of novelty-triggered N200 potentials (Deadwyler et al., 
1979, Deadwyler et al., 1981) or even novelty-sensitive cells (Otto and Eichenbaum, 1992) in the 
hippocampus (Carpenter and Grossberg, 1993). 

Drive satisfaction is often contingent on behaviors that use learned abstract prototypes 
which are capable of recognizing variations of previously experienced events. When drive 
satisfaction is chronically prevented from occurring as a result of hyperspecific learning, then the 
drive representations may become depressed. Thus, either hyperspecific learning in neocortical 
circuits, or failures in adaptive timing in cerebellar or hippocampal circuits, can contribute 
indirectly to underaroused emotional depression. 

A “vicious circle” of environmentally mediated feedback can result in which depressed 
drives, say as measured by a hypoactive amygdala, fail to trigger the learning of adaptively timed 
behaviors in hippocampus and cerebellum, whose absence enables the orienting system in 
hippocampus to spuriously reset cognitive representations in the neocortex during times when 
attention should be given to a particular task, which then leads to hyperspecific learning of 
neocortical recognition categories, which then makes it easier to generate mismatch events with 
sensory cues, which then prevents the normal frequency of behaviorally-appropriate rewards 
from being received from the amygdala and other reward centers, which then contributes to the 
maintenance of depressed drives at these centers. Figure 13 summarizes some of these 
environmentally mediated feedback relationships. 

  
Figure 13. Schematic of feedback relationships whereby particular brain imbalances can ramify throughout other 
brain regions, thereby sustaining the imbalance by feedback, and also creating or maintaining other symptoms. 
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In addition to these various environmentally mediated interactions, depressed drive 
representations may cause a hypofrontal syndrome; see Figure 5b. As a result, the normal 
motivationally-selective top-down attentional priming signals to sensory cortices will be 
weakened, attentional blocking will be deficient, and motivationally irrelevant information can 
flood the sensory system, thereby making it even harder to process motivationally-relevant 
sensory cues, so that drives continue to be unmet, rewards unreceived, and the cycle perpetuates 
itself through this route as well.  

The motivationally irrelevant information that can flood the brain in this way includes 
signals from lower-order sensory representations that have built-in pathways to emotional 
centers. Such a flood of signals can overcome the elevated thresholds due to underarousal of 
these centers. Excessive emotional responses can result. This property may also clarify the 
hypersensitivity of individuals with autism to a variety of lower order stimuli, such as noise and 
touch. 

Deficient development of language is clarified by these model mechanisms. Language 
development requires several factors: It requires shared attention with a caretaker and splitting 
attention between the objects of that shared attention, analysis of the sounds being produced, of 
the sounds just heard, and of the motor actions required to make those sounds. The previous 
sections show how these properties can be damaged in the brain of an individual with autism. In 
order for language to develop and be learned in a stable way, top-down representations of 
linguistic structure and word meaning need to be learned (Section 5). Indeed, ART dynamics 
have been used to explain a variety of data about speech perception and word recognition, 
including the role of top-down expectations and attention in dynamically grouping evolving 
sequences of incoming sounds into conscious word percepts (e.g., Grossberg, 2003b; Grossberg, 
Boardman, and Cohen, 1997; Grossberg and Myers, 2000). Hyperspecific learning can impair 
the ability of these top-down expectations to incorporate contextually-important language 
distinctions.  

Language development also requires adaptively timed learning to enable children to learn 
culturally important sequential motor actions through imitation. For example, cerebellar adaptive 
timing mechanisms, in concert with neocortical working memory mechanisms, have been used to 
model how children may learn handwriting through imitation (Grossberg and Paine, 2000; Paine, 
Grossberg, and Van Gemmert, 2005). In the adult, conversation requires sustaining attention and 
the ability to flexibly disengage it. It requires delaying a motor response appropriately so that 
reciprocal communication may occur. It requires recognition of representations of social value. 
All of these processes are impaired within the iSTART model herein described.  

The early onset of such imbalances would be expected to disrupt and distort subsequent 
normal activity-dependent development (Belmonte et al. 2004; Herbert, 2004), thereby impeding 
attention to salient social and communicative stimuli. In comparison, other processing streams 
may be relatively less affected by dysfunctional adaptive timing and may develop with normal or 
even enhanced levels of function, due to a lack of competition from hypoactive systems during 
developmental critical periods. An analogy to visual cortical development as a model may be apt. 
Visual experience shapes the development of the primary visual cortex using a combination of 
competitive and associative mechanisms (Grossberg, 1976a; Hubel and Wiesel, 1965; Olson and 
Grossberg, 1998; von der Malsburg, 1973). Unequal levels of activity result in a greater 
allocation of cortical resources to the more active eye and a commensurately lesser allocation to 
the less active eye. The role of activity-dependent mechanisms to shape development has been 
reported in other sensory cortices (Fox et al., 1996; O’Leary et al., 1995, Schlaggar et al., 1993). 
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Similar processes may also occur during the development of functional maps that represent 
higher cortical processes. For example, if linguistic stimuli are subject to adaptive timing 
deficiencies in children with autism, while musical chord stimuli are not, as was suggested in 
ERP studies (Dawson et al., 1988), then higher cortical resources might be selectively reduced 
for linguistic processing while they are enhanced for musical processing. Thus autistic 
development is distorted more than delayed.  

Multiple lesions within the cognitive-emotional-timing circuit that is summarized above 
may combine to result in symptoms of autism. The iSTART model clarifies how several 
different combinations of deficits can all contribute to a full set of symptoms, consistent with the 
behavioral, cytoarchitectural, neurophysiological, and genetic data that were summarized in 
Sections 2 and 3, which together suggest that multiple “hits” may occur in different portions of 
the brain for autism to fully manifest itself. 
8.5. Predictions and Open Issues 
The iSTART model leads to a number of testable predictions (see Table 2), and also raises 
several basic issues that have not previously been articulated, let alone mechanistically 
explained, and for which experimental evidence does not yet seem to be available. In particular, 
all of the above explanations of how underaroused depression, hypervigilant learning, and 
deficient adaptive timing can yield symptoms of autism constitute mechanistic predictions that 
can be tested. The fact that multiple brain loci support these properties and may all contribute to 
autistic symptoms is consistent with the existence of significant heterogeneity in the presentation 
of autism.  

New issues include the following: Can underaroused emotional depression and 
hypervigilant cognitive learning both sometimes be directly caused by a similar underlying 
defect? This is a reasonable question to ask, because both underaroused depression and 
hypervigilant learning are problems due to incorrectly calibrated gains: in the case of 
underaroused depression, the gain of the excitatory signals that arouse the drive representations, 
say in the amygdala; in the case of hypervigilant learning, the gain of the excitatory signals that 
try to activate the orienting system, say in the hippocampal system. Alternatively, can one defect 
indirectly cause the other, as in the case where underaroused depression can weaken adaptive 
timing, which can lead to spurious “hypervigilant” resets of attention and learning even if the 
vigilance parameter is chosen in the normal range? Or are they both indirect consequences of a 
failure within the hippocampal and/or cerebellar adaptive timing circuits themselves? Whichever 
routes may be there at the outset, the above discussion clarifies how they may perpetuate 
themselves via a system-wide “vicious circle” of environmentally mediated feedback. The 
hypothesis that such environmentally mediated feedback can perpetuate or aggravate symptoms 
also raises the question of how it can be modified to ameliorate them. 
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Table 2 
Model Predictions 

Hyperspecific learning of recognition categories 
Vary recognition exemplars gradually to test for narrow category boundaries 
Test ERPs that measure category reset, memory search, and attention shifts; e.g., correlated series of P120, N200, 

and P300 potentials 
Test fMRI measures of abnormal novelty detection in hippocampal area 
Test the predicted relationship between increased specificity of learned categories, say in the temporal and prefrontal 

cortices, and the number of novelty-triggered N200 ERPs 
Merge the Spitzer et al (1988) and Otto and Eichenbaum (1992) neurophysiological paradigms to test in monkeys if 

difficult discrimination conditions generate more hippocampal novelty potentials 
Study how baseline vigilance level is determined in normal individuals and clinical patients; cf. a possible role for 

Acetylcholine 
Test if some individuals with autism have abnormally high baseline vigilance while some individuals with medial 

temporal amnesia may have abnormally low baseline vigilance 
Study how baseline vigilance may change during memory search for a correct recognition category; correlate 

vigilance changes with N200 and P300 ERPs 
Test if the mismatch of a more general category causes vigilance to momentarily increase more than mismatch of a 

more specific category (“match tracking”)  
Test if hyperspecific learned categories prevent unrecognized variations of an event from becoming conditioned 

reinforcers due to their inability to trigger the actions that elicit the normal number of rewards 
 

Underaroused Emotional Depression 
Test if certain behavioral thresholds are elevated but responses are hypersensitive when the elevated threshold is 

exceeded by carefully controlled increments in stimulus intensity 
Study possible brain bases for underaroused depression, notably in the amygdala 
Use classical conditioning blocking paradigm to test if attentional blocking is deficient 
Correlate blocking properties with fMRI measures of amygdala unresponsiveness; does poor blocking correlate with 

amygdala unresponsiveness? 
Test if orbitofrontal cortex is less responsive during intervals of amygdala unresponsiveness 
Test if low amygdala activation occurs during inadequate attentional blocking while high amygdala activation 

occurs during events that cause extreme negative emotional reactivity; e.g., variations in routines and responses 
to some sensory stimuli 

Test if small mismatches of a hyperspecific recognition category do not generate a P300 ERP but large mismatches 
trigger both a P300 and strong amygdala activation corresponding to negative affect 

Study ERPS and fMRI measures during perseverative attention to small details of an object for evidence that 
enhanced positive motivational activations, including ON motivational bursts, may occur during slight shifts of 
attention, rather than the extreme negative emotional activations that larger variations in routine and some 
sensory stimuli may cause  

Develop tests to see if reducing the proposed underaroused depression by gradually increasing arousal results in less 
severe behavioral reactions to immediately subsequent suprathreshold stimuli 

 
Failures of Adaptively Timed Learning 

Test if adaptive timing deficits occur in certain autistic individuals, whether due to premature release of actions as a 
result of a cerebellar problem, or inability to maintain attention upon motivationally valued goal objects due to a 
problem in the dentate-CA3 hippocampal area  

Study possible cerebellar deficiencies using the eye blink paradigm, including possible problems with metabotropic 
glutamate receptor functioning, for evidence of problems with adaptive timing of actions. 

Study possible hippocampal deficiencies by testing inability to maintain attention upon a valued goal object for a 
predetermined time interval 

Test if some failures of adaptive timing may be due to inadequate Now Print teaching signals in hippocampal and 
cerebellar circuits due to inadequate responses in areas like the amygdala to rewarding events 

Use adaptive timing deficits as one marker for future autism in some infants  
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By clarifying that several different routes to autism may exist, the iSTART model also opens the 
way towards differentiating individuals with autism early in life in terms of which route they 
may be on. Such a clinical differentiation may lead to more effective treatments in the future. 

9. Discussion 
9.1. Comparison with other Theories of Autism 
In Section 3. the requirements of a satisfactory model of autism were set forth. The iSTART 
model provides a conceptual and mechanistic foundation that substantially meets these 
requirements. As explained above, iSTART explains how the phenotypic common final pathway 
of autism can result from a variety of different combinations of early onset imbalanced 
perturbations to the system and is thus consistent with both the clinical and the etiologic 
heterogeneity of autistic spectrum disorders. Indeed, it has already been suggested by others that 
clinical, imaging and structural heterogeneity of autistic spectrum disorders may best be 
explained in terms of disruption of a distributed circuit that includes cerebellar, limbic, and 
cortical structures, and not necessarily to any particular point of the circuit (Eigsti and Shapiro, 
2003; Herbert, 2004; Lee et al,. 2003).  

The iSTART model is consistent with a large experimental database and proposes how 
key autistic features arise. It clarifies how social functions and attention, verbal and nonverbal 
communication, and imitation skills may be particular affected, how a concrete hyperspecific 
cognitive style results, and how development subsequently distorts. It provides an explanation of 
the apparent paradoxical co-occurance of hyporesponsivity to many, particularly social, stimuli, 
with extreme negative reactivity to many lower-order stimuli, changes in routine, and social 
stimuli that manage to overcome an elevated threshold. It is consistent with the frequent presence 
of motor dysfunction and dyscoordination in autistic individuals and its apparent early onset, and 
with the documented deficiencies of autistic individuals in the adaptive timing task of the 
conditioned eye blink response and in motor planning. In this last regard, the model is also 
notable for being consistent with the presence of subtle deficiencies in early development, 
escalating into more florid developmental distortions as higher-order processing demands 
increase. It provides a more precise analysis of how breakdowns of brain mechanisms can lead to 
symptoms of autism than other proposed models of autism. While it is compatible with many of 
these alternative models, it also differs from them by explaining how each of their hypotheses 
may be manifestations of specific breakdowns in prescribed brain mechanisms, in anatomically 
specified regions, interacting within a dysfunctional network with other anatomically specified 
brain mechanisms, rather than being prime causes. 

One alternative model (Howard et al., 2000) supposes autism to be secondary to an 
amygdala deficit. This hypothesis is based on studies showing that the amygdala of individuals 
with autism fails to activate in normal ways to a variety of social stimuli such as faces. There are 
also similarities in the neuropsychological profiles of high functioning individuals with autism 
and other patients with amygdala damage. The iSTART model is compatible with the amygdala 
hypothesis because it considers a depressed, notably underaroused depressed, drive 
representation within a region like the amygdala to be a critical network feature. The iSTART 
model also notes, however, that symptoms of autism may arise even if the prime lesion is not in 
the amygdala, since amygdala depression can also result from imbalances elsewhere in the brain.  

A similar comment can be made about the executive dysfunction hypothesis (Hughs et 
al., 1996). Here again, the iSTART model includes executive dysfunction as a result of 
underaroused depression. While hypofrontality, and thus executive dysfunction, could in 
principle cause depression in drive circuits by using their reciprocal connections, there does not 
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seem to be experimental evidence for the prime lesion of autism as occurring in the frontal lobes. 
Executive dysfunction is also not the earliest manifestation of the condition. For example, a 
study of preschoolers with autism found no group differences between them and normal controls 
on eight executive function tasks, but did find that children with autism initiated fewer joint 
attention and social interaction behaviors (Griffen et al., 1999). This result has been confirmed in 
a larger study, comparing children with autistic spectrum disorder, children with developmental 
delay, and normal children, matched for mental age, on both dorsolateral and ventromedial 
prefrontal tasks (Dawson et al., 2002). Children with autistic spectrum disorders performed 
comparably to both comparison groups on all executive function tasks. Moreover, executive 
function deficits are seen in other disorders (Volkmar and Pauls, 2003) and do not correlate well 
with degree of social disability (Dawson et al. 1998).  

A deficient Theory of Mind (TOM) has also been proposed to explain autism (Baron-
Cohen, 1989; Perner et al., 1989). In this proposal, autism is the result of an inability to 
understand the mental states and motivations of others. Consequently they are unable to 
competently predict others’ actions and therefore perform actions that are socially aberrant. This 
proposal well describes many (but not all) aspects of older childhood and adult autistic behavior, 
but is subject to the same criticisms as is the executive function hypothesis. First of all, autism 
occasionally becomes manifest before TOM is felt to be extant: The earliest estimate for 
operational TOM is about 18 months and explicit operation of TOM is not felt to occur before 
age 4 to 6 years (Frith and Frith, 2003), whereas children with autism have measurable problems 
with eye contact, orienting to name, joint attention, imitation, nonverbal communication, and 
language development before 18 months of age (Charman et al., 1997; Cox et al., 1999). Indeed, 
behaviors that distinguish infants with autism from other developmental disabilities are 
identifiable as early as 8 months of age (Baranek, 1999; Mars et al., 1998; Werner et al., 2000). 
Deficient TOM is not specific to autism (Happe and Frith, 1996). Higher functioning autistic 
individuals have been shown to have performed adequately at TOM tasks while still having 
severe social dysfunction (Bowler, 1992; Sigman, Yarmiya and Capps. 1995). Also, as for the 
amygdala and the executive dysfunction hypotheses, deficient TOM may occur as a result of 
underaroused depression in iSTART. 

Another group of related hypotheses are the “weak central coherence” model (Happe, 
1996) and the “deficient hierarchization” model (Mottron et al., 1999). While differing in subtle 
ways, both of these hypotheses focus on deficiencies in binding perceptual inputs into higher-
order representations. Neither of these models explain all key autistic features, or attempt to fit 
known neuropathologic data. The iSTART model proposes an ART-based learning mechanism 
whereby this processing deficiency can occur and places it in context wherein many data about 
normal learning and binding can be explained.  

Several groups have used neural networks to model “weak central coherence” and the 
cognitive hyperspecificity that is commonly seen in autism. Gustafsson has described autism as 
deficient self-organization of feature maps (Gustafsson, 1997). Gustafsson initially speculated 
that excessive lateral inhibition, as a primary deficit, may prevent adequate feature maps from 
forming, and more recently has proposed a low capacity to produce serotonin and insufficient 
nitric oxide production as possible mechanisms (Gustafsson 2004). Brock and colleagues (Brock 
et al,. 2002) proposed that a deficit in temporal binding results in a reduction of integration of 
various different specialized local neural networks and consequently weak central coherence, and 
O’Laughlin and Thagard (O’Laughlin and Thagard, 2000) modelled weak central coherence  as a 
consequence of a high inhibition to excitation ratio in a connectionist network.  
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“Weak central coherence” is explained within the iSTART model as a manifestation of 
hypervigilant ART-based learning. Indeed, ART models contain self-organizing feature maps as 
part of their dynamics, notably the bottom-up adaptive pathways and competitive selection of 
recognition categories in Figure 2a. iSTART differs from these other models by demonstrating 
how hypervigilant learning may result from many different sorts of early-onset imbalanced brain 
mechanisms and places it within a system that explains much more of autism than just the 
hyperspecific cognitive style. 

McClelland (2000) contrasted cross-bar associative networks, which can cause massive 
associative interference, with conjunctive codes that can learn compressed categories and thereby 
reduce the amount of associative interference. He illustrated conjunctive coding using a back 
propagation model. McClelland proposed that, through some “subtle change in some of the 
parameters…they may be predisposed to use an excessively conjunctive form of neural coding” 
(p. 501). This property was suggested to clarify hyperspecificity in autism. What parameters may 
be involved were not specified. Unfortunately, back propagation is widely understood to be 
biologically implausible (Grossberg, 1988). The back propagation model does not have any top-
down attentive matching, uses non-local transport of learned weights, cannot learn without 
supervision, can learn only slowly, and has an unstable memory in response to either changing 
exemplar statistics, fast learning, or even sustained maintenance of an input pattern. In contrast, 
categorization within an ART model can prevent associative interference at all vigilance levels, 
while high vigilance can lead to hyperspecific categories which can too easily mismatch input 
exemplars.  

Cohen (1994) also used a back propagation model, but not to simulate possible brain 
mechanisms of autism. Rather, Cohen used the model to learn a map with a training set formed 
from interviews with caregivers of children with autism and caregivers of children with mental 
retardation not associated with autism. The map was learned between eleven descriptive 
properties of behavior (reactions to pain, eye contract, gesture, imagination, tactile 
defensiveness, social interaction, verbal perseveration, topic perseveration, repetitive behavior, 
empathy/facial expression, intonation/understanding) and the two outputs (autism, mental 
retardation). The test set consisted of interviews of parents of children with autism and of 
children with mental retardation not associated with autism. From this learned map, Cohen 
(1994) concluded that “having too few processing elements led to relatively weak learning and 
generalization while having too many processing elements…led to good learning but relatively 
weak generalization” (p. 13). These are conclusions, however, about how back propagation can 
learn which combinations of interview categories predict autism, not about how the brains of 
individuals with autism work.  

Courchesne and Allen have proposed that the parietal lobe and the cerebellum are both 
involved in the pathophysiology of autism with cerebellar modulation of the use of attentional 
resources (Allen and Courchesne, 2001). The iSTART model is compatible with this proposal, 
and shows how deficiencies of basic neocortical ART attentional mechanisms and basic 
cerebellar adaptive timing mechanisms might contribute to symptoms of autism. Moreover, 
iSTART also describes how interacting mechanisms within a larger brain system give rise to 
symptoms of autism that go beyond the Courchesne proposal.  
9.2. Concluding Remarks 
The Imbalanced START model proposes how particular types of imbalanced mechanisms in 
different parts of the brain can generate autistic symptoms through brain-wide interactions. The 
model proposes a unified explanation of why autism is characterized by deficient imitation skills, 
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deficient social skills, hypervigilant learning, uneven cognitive strengths and weaknesses, and 
hypersensitivity to various stimuli. Multiple paths can lead to this stable system state: primary 
early underaroused depression, or primary early dysfunctional adaptive timing, or combinations 
of each can lead to a “vicious circle” of environmentally mediated feedback. This approach 
enables the iSTART model to provide a rigorous conceptual framework within which to unify 
the major previous models of autism, and to clarify how the hypotheses of these models may be 
mechanistically explained. 

Although the iSTART model provides testable linking hypotheses between brain 
mechanisms and behavioral symptoms, it is not without its limitations. In its present form, the 
model can explain and predict how various combinations of imbalanced interactions between 
cognitive, emotional, and timing systems can lead to symptoms of autism, but it does not explain 
their underlying genetic or biochemical causes. However, by clarifying links between underlying 
brain mechanisms and behavioral outcomes, the iSTART model may help future research to 
focus more directly on characterizing the types of mechanisms that can lead to these behavioral 
outcomes, and how their underlying genetic or biochemical causes may be linked. 

To this end, the iSTART model makes testable predictions, several of which are outlined 
above. Signs of underaroused depression and of dysfunctional adaptive timing should be found 
early in infants destined to develop autism. A means of quantifying either or both of these 
functions in infants would be a valuable tool in testing cohorts of high-risk infants. In particular, 
during underaroused depression, certain emotional centers, such as the amygdala, may be less 
easily triggered, but may have excessive responses when their elevated thresholds are exceeded, 
say in response to particular smells. Excessive responses from such emotional centers may be 
measured by fMRI. Likewise, sudden but partial reductions in an affectively charged cue may 
cause an affective rebound in normals, much as withdrawal of a fearful cue can cause relief, or 
removal of ice cream can cause frustration. During underaroused depression, such an 
antagonistic rebound may not occur. (On the other hand, it can cause other behavioral effects due 
to hypervigilance.) Additional testable markers of underaroused depression are summarized in 
the Appendix. 

The iSTART model reinforces the importance of early identification and treatment of 
autistic disorders. Early identification could allow for interventions which disrupt the cycle of 
feedback that can develop between underaroused depression of drive representations and 
dysfunctional adaptive timing. Early overt and prolonged pairing of important socio-emotional 
and language-related stimuli with salient reinforcers may be able to partially compensate for 
underaroused depression and dysfunctional adaptive timing. Such interventions may help 
relevant processing streams win the competition for processing resources and thereby mitigate 
the distortions of development that characterize autism. 
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APPENDIX A:  
HABITUATIVE  TRANSMITTER S AND GATED DIPOLE OPPONENT PROCESSES 

This appendix demonstrates a number of testable properties of habituative transmitters and gated 
dipole opponent processing circuits that are relevant to the hypothesis that various such dipoles 
are underaroused in many individuals with autism. 
A1. Habituative Transmitters as Gates at Depressing Synapses. Gated dipole opponent 
processes rely heavily for their properties on how chemical transmitters transform signal flow 
through the dipole circuit. Gated dipoles use a chemical transmitter model that was derived from 
associative learning postulates in Grossberg (1968, 1969c). The gated dipole model itself was 
derived from conditioning postulates in Grossberg (1972b). The transmitter derivation that is 
given below argues that this transmitter law is the minimal dynamic law for unbiased 
transmission using a depletable signal (Grossberg, 1980). This type of law has recently received 
additional experimental support and has also been called a law for depressing synapses (Abbott 
et al., 1997; Tsodyks, Pawelzik, and Markram, 1998). The experimental and modeling literature 
on this topic has grown rapidly during the past several years. 
 We start by asking the following question: What is the simplest law whereby one nerve 
cell can send unbiased signals to another nerve cell? The simplest law says that if a signal S  
passes through a given nerve cell v 1, the signal has a proportional effect 
      T = SB,      (A1) 
where B > O , on the next nerve cell v 2. Suppose, in addition, that the signal from v 1 to v 2 is due 
to the release of a chemical z(t) from v 1 that activates v 2. If such a chemical transmitter is 
persistently released when S  is large, what keeps the net signal, T , from getting smaller and 
smaller as v 1 runs out of transmitter? Some means of replenishing or accumulating the 
transmitter must exist to counterbalance its depletion due to release from v 1. To accommodate 
this interpretation, we can rewrite (A1) in the form 
      T = Sz      (A2) 
and ask: How can the system keep z  replenished so that 
      Btz ≅)(      (A3) 
at all times t? This is a question about the sensitivity of v 2 to signals from v 1, since if z  could 
decrease to small values, then even large signals S  would have only a small effect on T . 
Equation (A2) has the following biophysical interpretation. The signal, S , causes the transmitter, 
z , to be released at a rate T = Sz . When two processes, such as S  and z , are multiplied, they are 
said to interact by mass action, or that z  gates S . In summary, (A2) says that z  gates S  to 
release a net signal T , and (3) says that the cell tries to replenish z  to maintain the system's 
sensitivity to S . The simplest law that joins together both equations (A2) and (A3) is the 
following differential equation for the net rate of change, dz dt , of z : 

          SzzBA
dt
dz

−−= )( .    (A4) 

Equation (A4) describes the following four processes going on simultaneously. 
 Accumulation or Production and Feedback Inhibition: The term A(B − z)  can be given 
two possible interpretations, depending on whether it represents a passive accumulation process 
or an active production process. In the former case, there exist B  sites to which transmitter can 
be bound, z sites are bound at time t, and B − z  sites are unbound. Then term A(B − z)  says that 
transmitter is bound at a rate proportional to the number of unbound sites. In the latter 
interpretation, two processes go on simultaneously. Term AB on the right-hand side of (A4) says 
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that z is produced at a constant rate AB. Term – Az says that once z is produced, it inhibits the 
production rate by an amount proportional to the concentration of z. In biochemistry, such an 
inhibitory effect is called feedback inhibition by the end product of a reaction. Without feedback 
inhibition, the constant rate of production, AB, would eventually cause the cell to burst. With 
feedback inhibition, the net production rate is A(B − z) , which causes z(t)  to approach the finite 
amount B , as is required by (A3). The term A(B − z)  hereby enables the cell to accumulate a 
target level B  of transmitter. 
 Gating and Release: Term –Sz  in (A4) says that z is inactivated or released at a rate Sz . 
As in (A2), inactivation or release of z is due to a mass action interaction, or gating, of S  by z. 
 Equations (A2) and (A4) describe the simplest dynamical law that corresponds to 
constraints (A2) and (A3). These equations reconcile the two constraints of unbiased signal 
transmission and maintenance of sensitivity when the signals are due to release of transmitter. 
A2. Weber-Law Adaptation and Habituation.   To determine how the net signal, T = Sz ,  
reacts to a sudden change in S , as in Figure 8a, suppose that z( t)  reacts slowly compared to the 
rate with which S (t) can change. For definiteness, suppose that 0)( StS =  for all times t ≤ t0  and 

that, at time t = t0, S(t)  suddenly increases to S1. In the ON channel of Figure 8a, S0 = f(I) and 

S1 = f(I + J). By (A4), z(t) reacts to the constant value S(t) = S0  by approaching an equilibrium 
value z(t0) . This equilibrium value is found by setting dz dt = 0  in equation (A4) and solving 
for 

      z(t0) =
AB

A + S0
.    (A5) 

By equation (A5), a larger value of S0  causes more transmitter to be inactivated or released. In 
other words, z(t0)  is a decreasing function of S0 . By contrast, (A2) implies that the net signal to 
v 2 at time t0  equals 

          S0z(t0) =
ABS0
A + S0

,     (A6) 

and thus that the rate of transmitter release is an increasing function of S0 . Thus, even though 
the transmitter is depleted more by a larger input signal, the net output signal grows with the 
input.  
 Now let S(t) switch to the value S1 > S0 . Because z( t) is slowly varying, z( t) 
approximately equals z(t0)  for awhile after t = t0. Thus, the net signal to v2  during these times 
is approximately equal to 

           S1z(t0 ) =
ABS1
A + S0

.     (A7) 

Equation (A7) has the same form as a Weber law, K(A + L)
-1

. The signal S1 is evaluated relative 
to the baseline, S0 , just as K is evaluated relative to L. This Weber law is due to slow 
intracellular adaptation of the transmitter gate to the input level through time. It is not due to fast 
intercellular lateral inhibition across space (Grossberg, 1980, Appendix C and D), which also 
obeys a Weber law, and which provides key normalization properties during categorization 
within an ART model. Many of the properties derived below are due to this intracellular Weber 
law. 



 

54 

 As z(t) in (A4) begins to respond to the new transmitter level, S = S1, z(t) gradually 
approaches the new equilibrium point that is determined by S = S1, namely 

            z(∞) =
AB

A + S1
.     (A8) 

The net signal consequently decays to the asymptote, 

           S1z(∞) =
ABS1
A + S1

.     (A9) 

Thus, after S(t) switches from S0  to S1, the net signal Sz  jumps from (A6) to (A7) and then 

gradually decays to (A9). See x3 in Figure 8a. The exact course of this decay is described by the 
equation 

   S1z(t) =
ABS1
A + S0

e−(A+S1)(t−t0) +
ABS1
A + S1

(1− e−( A+S1)(t−t0) )  (A10) 

for t ≥ t0 , which shows that the rate, or gain, A + S1 of the response increases with the signal S1, 
just as in the case of shunting lateral inhibition (Grossberg, 1980). The sudden increment 
followed by slow decay can be intuitively described as an overshoot followed by habituation to 
the new sustained signal level, S1. Both intracellular adaptation and habituation occur whenever 
a transmitter fluctuates more slowly than the signals that it gates.  
 The size of the overshoot can be found by subtracting equation (A9) from (A7). As in the 
ON channel of Figure 8a, let S0 = f (I)  and S1 = f (I + J ), where f (w)  is a signal function that 
tranforms the inputs I  and I + J  that exist before and after the increment J  into net signals S0  
and S1, respectively. Then the overshoot size is approximately 

          S1z(t1) − S1z(∞) =
ABf (I + J )[ f (I + J) − f (I)]

[A + f (I)][A + f (I + J)]
.   (A11) 

Section 4 below shows that the rebound size in response to offset of the phasic input J is related 
to (A11) in a way that allows both f (w)  and the tonic arousal level, I , to be estimated. 
A3. Gated Dipole. It is shown below how, if transmitters gate signals before the gated signals 
compete, as in Figure 8a, then an antagonistic rebound can be elicited by offset of a specific 
phasic input, as in light-ON versus light-OFF, or fear versus relief. It is also shown how 
unexpected events can cause an antagonistic rebound. They do this by triggering a sudden 
increase in the level of nonspecific arousal that is gated by all the transmitter pathways. 
 Figure 8a depicts the simplest network in which two opponent ON and OFF channels 
receive inputs that are gated by slowly varying transmitters before the channels compete to elicit 
a net output response. In such a feedforward gated dipole, specific phasic inputs are turned on 
and off by internal or external cues and nonspecific arousal inputs are on all the time, or tonic, 
even though their size can vary through time. Each channel can have its own sum of specific 
inputs, K1 or K2, such as hunger or satiety drive inputs, respectively, that are added to positive 
or negative conditioned reinforcer signals. Both channels also receive the same arousal input, L. 
The total signals to the two channels are, therefore, S1 = f (K1 + L) , where the signal function, 
f (w) , is monotone increasing.  
 The relative sizes of S1 and S2  and their rates of change through time relative to the 
transmitter fluctuation rate determine whether an antagonistic rebound will occur. To emphasize 
this fact, let 
     I = min(K1 + L, K2 + L)    (A12) 
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and 
      J = K1 − K2 .     (A13) 
In other words, the smaller slowly varying total input to a dipole channel, I , determines the 
network's net arousal level and J  determines how asymmetric the inputs are to the two channels. 
Suppose, for definiteness, that K1 > K2 . Then S1 = f (I + J ) and S2 = f (I). The notational shift 
from S1 = f (K1 + L) and S2 = f (K2 + L)  to S1 = f (I + J ) and S2 = f (I) in equations (A12) 
and (A13) is motivated by more than formal convenience. The notation I  and J  emphasizes that 
the dipole does not know how many input sources are perturbing it through time. All it can 
compute is the net arousal level, I , and the degree of asymmetry, J , above I , whether one or a 
million input sources are active. If a million cues equally perturb the ON-channel (e.g., positive 
conditioned reinforcers, as in Figures 4 and 5) and another million cues equally perturb the OFF-
channel (e.g., negative conditioned reinforcers), the net effect of all the cues will be to increase 
I , not J . Thus, after dipole competition takes place, all these cues need not generate any 
incentive motivation. On the other hand, by increasing I , these cues can alter the sensitivity of 
the dipole to other asymmetrically distributed inputs due to the dipole's Inverted-U  properties; 
see Section A6 below. This is the kind of simple but subtle distinction that the I  and J  notation 
represents in Figure 8a. 
A4. Rebound due to Phasic Cue Offset. One of the diagnostic properties of a gated dipole 
opponent process is that it generates antagonistic rebounds in response to sudden changes in both 
its phasic input J and its tonic arousal input I. How these rebound properties are predicted to 
change when a dipole receives insufficient arousal (“underaroused depression”) is one of the 
testable properties of the iSTART model; see Sections 6.5 and 6.6. A rebound can be caused, 
after the network equilibrates to the phasic input J , if input J is suddenly shut off. This effect is 
analogous to the reaction that occurs when a previously sustained light is shut off in a sensory 
dipole, or a previously sustained aversive cue is shut off in a motivational dipole. To see how 
this rebound is generated, suppose that the arousal level is I  and that the cue input is J . Let the 
total signal in the ON-channel be S1 = f (I + J ) and that in the OFF-channel be S2 = f (I); see 
Figure 8a. Let the transmitter in the ON-channel, z1, satisfy the equation 

         
d
dt

z1 = A(B − z1) − S1z1    (A14) 

and the transmitter in the OFF-channel, z2 . satisfy the equation 

     
d
dt

z2 = A(B − z2) − S2z2 .    (A15) 

After z1 and z2  equilibrate to S1 and S2 , their levels no longer change through time, so 
(d dt )z1 = (d dt)z2 = 0. At equilibrium, equations (A14) and (A15) imply 

      z1 =
AB

A + S1
     (A16) 

and 

      z2 =
AB

A + S2
.     (A17) 

Since S1 > S2 , it follows that z1 < z2 ; that is, z1 is habituated more than z2 . However, the gated 
signal in the ON-channel is S1z1 and the gated signal in the OFF-channel is S2z2 . Since 

      S1z1 =
ABS1
A + S1

     (A18) 
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and 

      S2z2 =
ABS2
A + S2

,    (A19) 

it follows from the inequality S1 > S2  that S1z1 > S2z2 , despite the fact that z1 < z2 . Thus, the 
ON-channel gets a bigger signal than the OFF-channel. After the two channels compete, the 
input J  produces a sustained ON-output whose size is proportional to 

    S1z1 − S2z2 =
A2B[ f (I + J) − f (I)]

[A + f (I)][A + f (I + J)]
.   (A20) 

Division of the overshoot amplitude (A11) by the sustained ON-output amplitude (A20) yields a 
predicted relationship between the size of the overshoot in the ON-channel and the size of the 
steady-state ON-output; namely, 

           
on − overshoot

steady on − output
=

f (I + J)
A

,    (A21) 

which provides an estimate of f (w)  and I if J  is parametrically varied.  
 In particular, if f (w)  is a linear signal, f (w) = w , then the sustained ON-ouput in (A20) 
becomes 

           S1z1 − S2z2 =
A2BJ

(A + I)(A + I + J)
,   (A22) 

which is an increasing function of J  (e.g., more fear given more shock) but a decreasing 
function of the arousal level I  (analgesic effect). 
 Now shut J  off to see how an antagonistic rebound (e.g., relief) is generated. The cell 
potentials rapidly adjust until new signal values, S1

* = f (I)  and S2
* = f (I), obtain. However, the 

transmitters z1 and z2  change much more slowly, so that equations (A16) and (A17) are 
approximately valid in a time interval that follows J  offset. Thus, the gated signals in this time 
interval approximately equal 

          S1
*z1 ≅

ABf (I)
A + f (I + J)

    (A23) 

and 

          S2
*z2 ≅

ABf (I)
A + f (I)

.     (A24) 

Thus, S1
*z1 < S2

*z2 . The OFF-channel now gets the bigger signal, so an antagonistic rebound 
occurs, the size of which is approximately 

    S2
*z2 − S1

*z1 =
ABf (I)[ f (I + J) − f (I)]
[A + f (I)][A + f (I + J)]

.    (A25) 

Division of the rebound amplitude (25) by the steady-state ON-output (20) yields an interesting 
relationship between the maximal OFF-rebound-output and the steady ON-output; namely, 

           
A
If

outputon
reboundoff )(

=
−

− ,     (A26) 

which, combined with the estimate of f and I from (A21),  provides a sharper estimate of the 
arousal level I . A comparison of equation (A21) with (A26) shows that, as the arousal level I  is 
parametrically varied, (A21) should have the same graph as (A26), shifted by J . This 
comparison provides an estimate of J  (that is, of how the behavioral input is transformed into 
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neural units) and also a strong test of the model. Once f (w)  is estimated, equations (A20) and 
(25) can be verified. If the signal f is linear, so that f (w) = w  in (A25), then 

          S2
*z2 = S1

*z1 =
ABIJ

( A + I)(A + I + J )
.   (A27) 

The rebound is then an increasing function of J  (e.g., offset of a larger shock elicits more relief) 
and the dipole rebound is an Inverted-U  function of I  (an optimal arousal level exists). 
 The rebound is transient (see OFF in Figure 8a) because the equal signals, S1 = S2 = f (I)  
gradually equalize the z1 and z2  transmitter levels until they both approach AB( A + f (I))−1. 
Then S1z1 − S2z2 approaches zero, so the competition between channels shuts off both of their 
outputs. 
A5. Rebound due to Mismatch-triggered Arousal Burst. A surprising property of gated 
dipoles is their reaction to sudden increments, or bursts, in the arousal level, I . Such increments 
may, for example, occur in response to unexpected events. In an ART model, mismatch between 
a learned top-down expectation and a bottom-up sensory or cognitive input pattern can trigger a 
burst of nonspecific arousal from the orienting system; see Figure 2c. An arousal-mediated 
rebound enables ongoing information processing to be reset in response to the predictive 
disconfirmation that the mismatch represents.  
 In order to calibrate the predicted size of the rebound, suppose that the ON-channel and 
the OFF-channel have equilibrated to the input levels I  and J . Now suddenly increase the 
arousal level I  to I* , thereby changing the signals to S1

* = f (I* + J)  and S2
* = f (I*)  The 

transmitters z1 and z2  continue to obey equations (A16) and (A17) for awhile, with 
)(1 JIfS +=  and S2 = f (I) . A rebound occurs if S2

*z2 > S1
*z1. In general, 

 

 S2
*z2 − S1

*z1 =
AB[ f (I*) − f (I* + J)] + B[ f (I*) f (I + J) − f (I) f (I* + J)]

[A + f (I)][A + f (I + J)]
. (A28) 

In particular, if the signal function is linear, with f (w) = w , then a rebound occurs whenever 
      I* > I + A ,     (A29) 
since then 

          S2
*z2 − S1

*z1 =
ABJ(I* − I − A)

( A + I + J)(A + I)
.    (A30) 

Thus, given a linear signal function, a rebound will occur if I*  exceeds I + A  no matter how J  
is chosen. In other words, if the event is so unexpected that it increments the arousal level by 
more than amount A , then all dipoles in the network will simultaneously rebound. Moreover, the 
size of the OFF-cell rebound increases as a function of the size of the ON-cell input, J , as 
equation (A30) shows. In particular, no rebound occurs if the ON-cell was inactive before the 
unexpected event occurs. The rebound mechanism is selective: It rebounds most vigorously 
those cells which are most active (J >> 0) , and which thus played the largest role in reading out 
the mismatched expectation, and spares inactive cells (J ≅ 0). 
A6. Inverted-U in Dipole Output. The signal function f in a gated dipole is not, in general, 
linear. In fact, it is often a sigmoid, or S-shaped, function of activity (Grossberg, 1973, 1980). 
Sigmoid signal functions have important properties of noise suppression and contrast-
enhancement. The predicted underaroused depression of an individual with autism follows from 
an Inverted-U property; see Figure 7. A gated dipole exhibits an Inverted-U  property if its signal 
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function f (w)  is a sigmoid function; that is, if f (0) = df dw (0) = 0, df dw(w) > 0  if w > 0, 
f (∞) < ∞ , and d2 f dw2 (w)  changes sign once from positive to negative as w  increases. In 
particular, if f (w)  is sigmoid, an Inverted-U  occurs in the sustained ON-output (A20) as I  is 
parametrically increased, despite the fact that an Inverted-U  does not obtain in (A22) when 
f (w)  is linear. The proof of the Inverted-U property is are simplified by using the signum 
function 
   sgn{w }= +1 if w > 0, 0  if w = 0 , and −1 if w < 0.  (A31) 
First consider the ON-reaction in equation (A20), which is denoted by x5  in Figure 8a. Writing 
the derivative of a function g(I)  as ′ g (I), then, by (A20), for each fixed J , 

 
sgn{ ′ x 5(I)} = sgn{A2[ ′ f (I + J) − ′ f (I)] + 2A[ f (I) ′ f (I + J) − f (I + J) ′ f (I)]

+ [ f 2(I) ′ f (I + J ) − f 2(I + J) ′ f (I)]}.
 (A32) 
Since f (w)  is sigmoid, 
           f (0) = ′ f (0) = 0 .     (A33) 
Thus, by (A32) and (A33), 
              sgn{ ′ x 5(0)} = sgn{A2 ′ f (J)} > 0 .   (A34) 
At large values of I , 
                                                        f (I + J ) > f (I),                               (A35) 

whereas 
           ′ f (I + J) < ′ f (I).     (A36) 
Consequently, each term in brackets on the right-hand side of (A32) is negative. Thus, at large I  
values, 
            sgn{ ′ x 5(I)} < 0      (A37) 
The inequalities (A34) and (A37) show that, for fixed J , x5(I) increases and then decreases as a 
function of I . This is the Inverted-U  for the ON-reaction. In fact, since f (∞) < ∞ , (A20) 
implies that limI→∞ x5(I) = 0 . A similar proof holds for the OFF-reaction. 
A7. Underaroused Hypersensitivity to Suprathreshold Phasic Input Increments. An 
underaroused syndrome is hypersensitive to phasic input increments that exceed an elevated 
threshold level. This may be one reason why individuals with autism may react badly to certain 
otherwise normal sensory stimuli. To prove this property, suppose that I  is chosen abnormally 
small and, consequently, that f (I)  is very small because of f ’s S-shaped graph. Let J  represent 
the intensity of a fearful cue (e.g., a shock level) and let the dipole ON-output (A20) be 
correlated with the amount of fear. Since I  is so small, the "fear threshold is raised" in the sense 
that a larger value of J  is needed to create a large net ON-output than when I  is chosen in the 
"normal" range. Until this output threshold is exceeded, the dipole will exhibit abnormally low 
responses to fearful cues. On the other hand, although the fear threshold is high, once J  is 
chosen sufficiently large to elicit a detectable net ON-reaction, additional increments in J  create 
larger than normal increments in fear. This is because the terms f (I)  in the numerator and 
denominator of (A20) are abnormally small. More precisely, differentiating (A20) with respect to 
J , we find the rate at which the ON-output increases to unit increases in J . This rate is 

         
∂
∂J

(S1z1 − S2z2) =
A2B ′ f (I + J)

[A + f (I + J)]2 .   (A38) 
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If I + J  is chosen so that f (I + J ) is small but growing rapidly, then ′ f (I + J)  is large when the 
denominator, [ A + f (I + J)]2, is small. In summary, underaroused depression is hyperexcitable 
above its high threshold. 
A8. Paradoxical ON-Response to Small Mismatches and Enhanced Rebounds to Large 
Mismatches. Two other properties of underaroused dipoles are predicted to be related to the 
“need for sameness” of an individual with autism; see Section 6.6. These properties, like 
underaroused hyperexcitability, are due to the faster-than-linear, or threshold, behavior of the S-
shaped signal function, f (w) , at small activity values, w . Neither property holds if the signal 
function is linear, say f (w) = w . In particular, by (30), when f (w) = w , a mismatch-mediated 
arousal increment ΔI  in response to an unexpected event causes a rebound whenever ΔI > A. 
The minimal ΔI  capable of causing a rebound is independent of the ambient arousal level, I . 
This property does not hold when f (w)  grows faster than linearly, say f (w) = w2 , which 
approximates the sigmoid shape of f (w)  at low arousal levels. By (A28), a rebound occurs when 
f (w) = w2  only if 
      ΔI > g(I, J) ,     (A39) 
where the function 

        g(I , J) =
A − I(I + J) + ( A + I2)

1
2
[A + (I + J )2]

1
2

2I + J
   (A40) 

is a decreasing function of I . In fact, g(I , J)  approaches 0 as I  is chosen arbitrarily large. Thus, 
a much larger ΔI  is needed to rebound an underaroused dipole than a normally aroused dipole. 
Moreover, if ΔI < AJ−1, then when I ≅ 0 , 

     
∂

∂ (ΔI)
(I + ΔI + J )2

A + (I + J)2 −
(I + ΔI)2

A + I2
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ > 0 .   (A41) 

In other words, a mismatch-mediated arousal burst can actually enhance the ON-output of an 
underaroused dipole instead of rebounding the dipole. However, once the rebound threshold is 
exceeded, then the size of the rebound is greater due to the small arousal terms (i.e., the Weber 
law) in the denominator of (A28). 
 
A9. Paradoxical Lack of Rebound to Phasic Input Decrement: Ordering of Reinforcement 
Magnitude. This section predicts how several behavioral indices should all covary as arousal 
level is parametrically increased. These predictions are important when one considers the 
hypothesis that certain individuals with autism are underaroused whereas various individuals 
with schizophrenia are overaroused (Grossberg, 2000b). The first index says that reducing J  
units of shock (or other negative reinforcer) to J 2  units is less rewarding (i.e., produces a 
smaller rebound) than reducing J 2  units of shock to 0 units, despite the fact that both 
operations reduce shock by J 2  units. This result is based on the fact that (A20) and (A25) 
include Weber law ratios of I  and J  terms as well as differences of I  and J  terms. More 
generally, one can predict when reducing J1 units of shock to K1 units at arousal level I1 is more 
reinforcing than reducing J2  units of shock to K2 units at arousal level I2 (Grossberg, 1972b). 
To make these assertions, assume that the size of the relief rebound caused by reducing the shock 
level is proportional to the rewarding effect of the manipulation, other things being equal. 
 To simplify the computations, it is convenient to use a signal function 
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         f (w) = max(w − C,0).    (A42) 
Such a signal function has a threshold C , below which it equals 0 and above which it grows 
linearly. This threshold function approximates a sigmoid function in the activity range before 
saturation occurs. Denote the steady-state ON-reaction that occurs after a specific input of 
intensity J  is kept on for S  time units by x5(S, J → K) and the OFF-rebound that occurs when 
intensity J  is switched to K  at time t = S  by x6(S+ , J → K). To compute x6(S+ , J → K), the 
transmitters z are approximated by their steady-state values at t = S  and the potentials x by their 
new steady-state values in response to input K . 
 Given an arousal level I  that exceeds the threshold, C , then 

        x6 S+ ,J →
J
2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ =

AB
J
2

(I − A − C)

(D+ I)(D + I + J)
,   (A43) 

where D = A − C . By comparison, (A20) and (A25) imply that 

         x5(S, J → 0) =
A2BJ

(D + I)(D + I + J)
   (A44) 

and  

         x6(S+ , J → 0) =
ABJ(I − C)

(D + I)(D + I + J)
   (A45) 

from which it also follows that 

         x6 S+ ,
J
2

→ 0⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ =

AB
J
2

(I − C)

(D + I) D + I +
J
2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

   (A46) 

and 

     
x6(S+ , K → 0)
x5(S, K → 0)

= A−1(I − C)    (A47) 

for any K > 0. Comparing (A43) and (A46), shows that the relative rebound sizes satisfy 

           x6 S+ ,
J
2

→ 0⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ > x6 S+, J →

J
2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ ,   (A48) 

or that cutting J  units in half is less rewarding than shutting off J 2  units. In addition, the ratio 
(A47) increases with I , as in the more general equation (A26). Substituting (A47) into (A43) 
shows that 

  x6 S+ ,J →
J
2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ =

A2B
J
2

[x5
−1(S, K → 0)x6(S+, K → 0) −1]

(D + I)(D + I + J)
  (A49) 

By (A49), an arousal level that favors the possibility of learned avoidance in the presence of 
fearful cues (i.e., the OFF-rebound is much bigger than the ON-response so that the right hand 
side of (A49) is positive) also favors a large rewarding effect when the shock level is halved. If, 
however, I  is chosen to be small (underarousal), then x6  in (A43) can be negative (no rebound 
occurs) even if x6  in (A46) is positive (a rebound occurs). In other words, cutting a shock in half 
may generate no relief, even if shutting off half the shock level totally does cause relief.  
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APPENDIX  B: 
SPECTRAL TIMING IN THE START MODEL 

 
START: A Unified Model of Adaptive Timing and Conditioned Reinforcer Learning The 
START model combines Spectral Timing mechanisms with mechanisms from Adaptive 
Resonance Theory, or ART (see Section 7), hence its name. The adaptive timing equations 
described herein model adaptively timed learning in the dentate-CA3 hippocampal circuits; see 
Figure 12. The later cerebellar adaptive timing model of Fiala, Grossberg, and Bullock (1996) 
refined adaptive timing concepts to predict how the metabotropic glutamate receptor system may 
contribute to adaptive timing, notably how mGluR mechanisms may give rise to spectral timing. 
The present summary provides a simpler analysis of the main adaptive timing concepts and 
equations. 
 The START model was tested by simulating parametric data from reinforcement learning 
experiments, notably classical conditioning experiments. Each sensory event is therefore called a 
conditioned stimulus, or CS . The thi  sensory event is denoted by iCS . Event iCS  activates a 
population of cells that is called the thi  sensory representation iS  (Figure 9). Another population 
of cells, called a drive representation D , receives a combination of sensory, reinforcement, and 
homeostatic (or drive) stimuli. Reinforcement learning, emotional reactions, and motivational 
decisions are controlled by D . During conditioning, presentation of a iCS  before a US  causes 
activation of iS  followed by activation of D . Such pairing causes strengthening of the adaptive 
weight, or long term memory trace, in the modifiable synapses from iS  to D . This learning 
event converts iCS  into a conditioned reinforcer. Conditioned reinforcers hereby acquire the 
power to activate D  via the conditioning process.  
In the START model, reinforcement learning in →iS D  pathways is supplemented by a parallel 
learning process T  that is concerned with adaptive timing. As shown in Figure 9, both of these 
learning processes output to D , which in turn inhibits the population of cells A that form the 
orienting system; also see Figure 2. The orienting system is a source of nonspecific arousal 
signals that are capable of resetting short-term memory, triggering opponent emotional reactions, 
attention shifts, and orienting responses. The inhibitory pathway from D  to A  is a gate that 
prevents these events from occurring in response to expected disconfirmations (Section 4).  
B1. Limited Capacity Short Term Memory The sensory representations iS  compete for a 
limited capacity, or finite total amount, of activation. Winning populations are stored in short-
term memory, or STM. The competition is carried out by an on-center off-surround interaction 
among the populations iS . The property of STM storage is achieved by using recurrent, or 
feedback, pathways among the populations. A tendency to select winning populations is 
achieved by using membrane equations, or shunting interactions, to define each population’s 
activation, and a proper choice of feedback signals between populations (Grossberg, 1973, 
1980). Expressed mathematically, each iCS  activates an STM representation iS  whose activity 

iS  obeys the shunting on-center off-surround competitive feedback equation:  

   (1 )( ( ) ( )) ( )α β γ
≠

= − + − + − .∑i A i A i i S i A i S k
k i

d S S S I t f S S f S
dt

            (B1) 



 

62 

In (B1), ( )iI t  is the input that is turned on by presentation of iCS . Term α− A iS  describes passive 
decay of activity iS . Term (1 )( ( ) ( ))β − +A i i S iS I t f S  describes the excitatory effect on iS  of the 
input ( )iI t  and the feedback signal ( )S if S  from population iS  to itself. Activity iS  can continue 
to grow until it reaches the excitatory saturation point, which is scaled to equal 1 in (1). Term 

( )δ
≠

− ∑A i S k
k i

S f S  describes inhibition of iS  by competitive signals ( )S kf S  from the off-surround 

of populations ≠k i . Due to these feedback signals, a brief 1CS  input gives rise to a sustained 
STM activation 1S , which is partially inhibited by competition from 0S ’s activation in response 
to a US . The signal function Sf  in (B1) is chosen to suppress noise while contrast enhancing the 
most active cell activities. In the Grossberg and Merrill (1992) simulations, the simple threshold, 
or half-wave rectification, function  
    ( ) [ ] max( 0)μ μ+= − ≡ − ,f w w w                                          (B2) 
was used, except in equation (B8) below, which uses a sigmoid signal function. 
B2. Drive Representation The computer simulations reported herein use only a single drive 
representation D . Explanations of data arising from competing drive representations are 
discussed in a number of modeling articles; e.g., Grossberg (1972a, 1972b, 1982a, 1984a). The 
activity D  of the drive representation D  obeys the equation  

    
  

d
dt

D = −α D D + βD
i

∑ fD (Si )Ci + γ D R.    (B3) 

In (B3), term α− D D  describes the passive decay of activity D . Term ( )β ∑D D i i
i

f S C  describes 

the total excitatory effect of all the sensory representations iS  on D . In this term, the signal 
function Df  is chosen as in (B2), and iC  is the adaptive weight, or long-term memory (LTM) 
trace, in the pathway from the sensory representation iS  of iCS  to the drive representation D . 
This LTM trace is denoted by iC  because its size measures how well iS  can activate D , and 
thus how iCS  ( 1≥i ) has become a conditioned reinforcer through learning. Because iC  
multiplies ( )D if S , a large activation of iS  will have a negligible effect on D  if iC  is small, and 
a large effect on D  if iC  is large. Coefficient 0C  is set equal to a large value from the start 
because it enables the US  to activate D  via its sensory representation 0S . Term γ DR  describes 
the total output of the spectral timing circuit to D . Output R  is defined in equation (B11) below.  
B3. Conditioned Reinforcement The adaptive weight iC  that calibrates conditioned 
reinforcement obeys a gated learning law (Grossberg, 1968, 1980):  

    ( (1 ) ( ))α β= − + − .i C i i C i C
d C S C C f D
dt

                                       (B4) 

Learning by iC  is turned on and off by the signal iS , which thus acts like a learning gate, or 
modulator. Once turned on, iC  performs a time-average of activity at the drive representation D  
via the signal ( )Cf D , which is chosen as in equation (B2). Activity 1C  cannot exceed the finite 
value 1, due to the shunting term 1− iC . The value of iC  can both increase and decrease during 
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the course of learning. The remaining equations of the model describe the adaptive timing 
process.  
B4. Activation Spectrum The START model is said to control “spectral” timing because, each 
drive representation D  interacts with a population of cell sites whose members react at a 
spectrum of rates jr . Neural populations whose elements are distributed along a temporal or 
spatial parameter are familiar throughout the nervous system. Two examples are populations of 
spinal cord cells that obey the size principle (Henneman, 1957, 1985), and cells of the visual 
cortex that are tuned to spatial frequency (Jones and Keck, 1978; Musselwhite and Jeffreys, 
1985; Parker and Salzen, 1977a, 1977b; Parker, Salzen, and Lishman, 1982a, 1982b; Plant, 
Zimmern, and Durden, 1983; Skrandies, 1984; Vassilev, Manahilov, and Mitov, 1983; Vassilev 
and Strashimirov, 1979; Williamson, Kaufman, and Brenner, 1978). The spectral activities ijx  
that are associated with drive representation D  and activated by sensory representation iS  obey 
the equation  

    ( (1 ) ( ))= − + − ,ij j ij ij x i
d x r x x f S
dt

    (B5) 

where xf  satisfies equation (B2). By equations (B1) and (B5), presentation of iCS  to iS  via an 
input iI  generates an output signal ( )x if S  that activates the local potentials ijx  of all cell sites in 
the target population. The potentials ijx  respond at rates proportional to 1 2, = , , ,jr j … n , where j 
indexes the different cell sites that form the spectrum. These potentials activate the next 
processing stage via signals  

     
8

8 8( )
δ

= .
+
ij

ij
ij ij

x
f x

x
     (B6) 

Signal ( )ijf x  is a sigmoid function of activity ijx . Figure 12a shows the activation spectrum 

  
fij = f (xij (t))  that arises from presentation of iCS  to iS  via input iI  in equation (B1), using a 

choice of rate parameters jr  in equation (B5) which range from 10 (fast) to 0.0025 (slow).  
B5. Habituative Transmitter Spectrum Each spectral activation signal ( )ijf x  interacts with a 
habituative chemical transmitter ijy  via the equation  

    (1 ) ( )α β= − − .ij y ij y ij ij
d y y f x y
dt

     (B7) 

This is the same equation for transmitter habituation as in equations (A14) and (A15) of 
Appendix A. According to equation (B7), the amount of neurotransmitter ijy  accumulates to a 
constant target level 1, via term (1 )α −y ijy , and is inactivated, or habituates, due to a mass action 
interaction with signal ( )ijf x , via term ( )β− y ij ijf x y . The different rates jr  at which each ijx  is 
activated causes the corresponding ijy  to become habituated at different rates as well. The family 
of curves ( )ijy t , 1 2= , , ,j … n , is called a habituation spectrum. The signal functions ( ( ))ijf x t  in 
Figure 12a generate the habituation spectrum of ( )ijy t  curves in Figure 12b.  
B6. Gated Signal Spectrum Each signal ( )ijf x  interacts with ijy  via mass action to generate a 
net output signal from its population of cell sites. This process is also called gating of ( )ijf x  by 
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ijy  to yield a net output signal ijg  that is equal to ( )ij ijf x y . Each gated signal 
( ) ( ( )) ( )≡ij ij ijg t f x t y t  has a different rate of growth and decay, thereby generating the gated 

signal spectrum shown in Figure 12c. Each of the functions ( )ijg t  is a unimodal function of time 
that is maximally positive at different times. Each function ( )ijg t  achieves its maximum value 

ijM  at time ijT , where ijT  is an increasing function of j, and ijM  is a decreasing function of j .  
B7. Spectral Learning Law Learning of spectral timing obeys an equation  

    ( ) ( )α= − + ,ij z ij ij ij
d z f x y z N
dt

      (B8) 

where N  is a transient Now Print signal (see Section B8) that is derived from the activity D of 
the drive representation in equation (B3). Activity of D is, in turn, caused by reinforcing events 
such as a US. Each long-term memory (LTM) trace ijz  in equation (B8) is computed at the end of 
the pathway, or synapse, that processes the gated signal ( )=ij ij ijg f x y . The signal ijg  acts as a 
sampling signal that turns on, or gates, the learning process, and causes ijz  to approach N  
during the sampling interval at a rate proportional to ijg . The attraction of ijz  to N  is called 
steepest descent. Thus (8) is an example of learning by gated steepest descent. Each ijz  changes 
by an amount that reflects the degree to which the curves ( )ijg t  and ( )N t  have simultaneously 
large values through time. If ijg  is large when N  is large, then ijz  increases in size. If ijg  is 
large when N  is small, then ijz  decreases in size. As in equation (B4), ijz  can either increase or 
decrease as a result of learning. Because the different ijg  peak at different times, the entire 
population can work together to learn the interstimulus intervals, or ISIs, between the CS and 
US. 
Associative learning by gated steepest descent was introduced into neural network models in 
Grossberg (1969a) and is the learning law that was used to introduce Adaptive Resonance 
Theory (Grossberg, 1976a, 1976b). An associative learning law of this form was subsequently 
used by Levy and his colleagues to model their data on hippocampal Long Term Potentiation 
(LTP) and Long Term Depression (LTD) (Levy, Brassel, and Moore, 1983, Levy and Desmond, 
1985). Singer (1983) has also used such a law to model his experiments on adaptive tuning of 
visual cortical cells during the visual critical period. These experiments support the Adaptive 
Resonance Theory predictions (Grossberg, 1976a, 1976b, 1980) that both hippocampal 
LTP/LTD and feature detector tuning in visual cortex should obey a learning law with gating 
properties that is capable of both increasing (LTP) and decreasing (LTD) synaptic weights 
during associative learning.  
B8. Now Print Signal A transiently active Now Print signal N  modulates the learning process 
in equation (B8). The signal N  may be activated either by a US  or by a CS  that has already 
become a conditioned reinforcer. Both the US  and a conditioned reinforcer CS  can activate the 
drive representation D , as shown in equation (B3). We assume that the Now Print signal N  is 
turned on by sufficiently large and rapid increments in the activity D . Such a transient signal N  
may be derived from a change in sustained activity D  by the action of a slow inhibitory 
interneuron, as in equation  
     N = [ fC (D) − E − ε]+.     (B9) 
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In equation (B9), the signal ( )Cf D  from the drive representation D attempts to excite the site 
where learning occurs. It is balanced by E , which is the activity of an inhibitory interneuron that 
more slowly time-averages ( )Cf D , as in equation  

     
d
dt

E = α E (−E + fC (D)).      (B10) 

 The notation   [w − ε]+  in equation (B9) means that ε  is an output threshold for the signal  
w = fC (D) − E . In other words, 0=N  if ( ) ε− ≤Cf D E , and ( ) ε= − −CN f D E  if 

( ) ε− >Cf D E . The Now Print signal N responds to increments in D with brief learning signals 
that occur when the US turns on and that can be sampled by the spectrally timed signals ijg . An 
important property of N  is that it increases in amplitude, but not significantly in duration, in 
response to larger inputs ( )Cf D . Thus learning is faster in response to stronger rewards. 
B9. Doubly Gated Signal Spectrum Each long-term memory trace ijz  learns to a different 
degree depending upon how well its spectral rate coincides with the interstimulus interval 
between CS onset and US onset. These learned traces, in turn, gate the signals ( )ijg t in order to 
generate a twice-gated output signal ( ) ( ( )) ( ) ( )=ij ij ij ijh t f x t y t z t  from each of the differently 
timed cell sites. Each twice-gated signal function ( )ijh t  thus registers how well the timing of CS  

and US  is learned and read-out by the jth  spectral rate. Figure 12d plots the output signals 
( )ijh t . Comparison with the corresponding signals ( )ijg t in Figure 12c shows how adaptively 

timed learning changes the relative strength of each spectral output without changing its timing.  
B10. Output Signal The total output R of the network is the sum of the twice-gated signals 

( )ijh t  from all the spectral components corresponding to all the iCS . Thus  

    ( )
,

= .∑ ij ij ij
i j

R f x y z        (B11) 

The output signal R computes the cumulative learned reaction of the whole population to the 
input pattern. Figure 12e shows the function R  derived from the ijh  shown in Figure 12d. A 
comparison of Figures 12c-e illustrates how the output ( )R t  generates an accurately timed 
response from the cumulative partial learning of all the cell sites in the population spectrum. The 
once-gated signals ( )ijg t  in Figure 12c are biased towards early times. The twice-gated signals 

( )ijh t  in Figure 12d are biased towards the ISI , but many signals peak at other times. The output 
( )R t  combines these partial views into a cumulative response that peaks at the ISI . Adaptively 

timed learning is thus a property of this entire population of cell sites. 
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