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Chapter 1

Introduction and Notations

Market risk has become a major consideration in the financial world. Different in-

vestors want to have a better understanding of what risk is, how to quantify it and

what impact its measurement would have on their investment strategies. There are

no real rules of thumb in the methodology or the kind of sophisticated analytics that

should be used in quantifying risk. People may choose to rely on their own experiences

and professional judgements. In this thesis, we choose to predict the risk exposure of

a portfolio based on a projection from historical performance of the portfolio given the

empirical returns data of the assets in the portfolio. The notations of a portfolio with

n risky assets and the one-period portfolio return are given at the end of this chapter.

The empirical asset return datasets are introduced in Section 2.2 in Chapter 2.

The first benchmark for market risk measurement was only recently publicized

by J.P Morgan in October, 1994, RiskMetricsTM. The model predicts future risk

of a portfolio based on historical data, too. It estimates market risks under the

Gaussian distribution assumption. The estimation depends on the volatility esti-

mates of individual assets and the correlation estimates between pairs of assets. The

RiskMetricsTM tool provides daily updates of any portfolio's risk exposure.

The Gaussian distribution has generally been accepted by most financial practi-

tioners as the benchmark model to use to predict future returns. People have devised

different ways to assess if Gaussian normality is the right hypothesis to assume. Over

the past few years, tests of Gaussian normality have been performed on various sets
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of financial instruments from equities to bonds. Most of them conclude that the

return distributions are leptokurtic and negatively skewed. (Interested readers can

refer to RiskMetricsTM or Kempthorne et al (1992) for a more detailed description).

Chapter 2 illustrates bivariate Gaussianity assessment methods applied to financial

return samples. The two features, leptokurtosis and skewed asymmetry, are shown by

assessing the correlation between two assets, and by density contours. While it is dif-

ficult to illustrate with correlation assessment how leptokurtic a bivariate sample is,

the density contours are able to pinpoint where leptokurtosis occurs within a sample.

One of the implications of non-uniform leptokurtosis in a sample is that correlation

between two assets may be volatility dependent.

When predictions of future returns are frequently required, easy and interpretable

calculation of risk is the essence for many risk takers' practice in the financial world.

The reason why people still favourably use the Gaussian model even knowing that

it fails in capturing asymmetry and leptokurtosis of much financial data is that the

Gaussian model offers easily interpretable measurements for future return predictions.

Another reason why the Gaussian model is favoured is that many people have already

been familiarized with the model. They would feel reluctant to use another distribu-

tion model unless that is proved to be much better than the Gaussian model in most

aspects.

While the Gaussian distribution is recognized as one of the best parametric mod-

els that fit most historical financial return data, the distribution, as shown in this

thesis, does not provide a fine enough calibration of a portfolio's risk exposure at

times. In specific words, for a portfolio with a leptokurtic return distribution, the

Gaussian model underestimates the impact from a disastrous return realization, and

overestimates the potential loss of the portfolio when typical returns are expected.

The underestimation results in insufficient coverage of the portfolio's position and

consequently may lead to damages of a portfolio's credit rating. The overestimation

may lead to too conservative an amount of capital reserve kept in the portfolio.

In Chapter 3, a non-parametric methodology that measures risk or volatility im-

plied by the historical data on the Gaussian scale is proposed. This methodology
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is able to accomodate skewed asymmetric and leptokurtic portfolio return distribu-

tions. RiskMetricsTM quantifies risk by the Gaussian volatility which is given in

Section 3.2.2. The non-parametric methodology provides two measures to quantify

risk under two distinguishing market conditions which are mathematically defined

and characterized in Section 3.1.1. One measure is for the market condition when a

normal typical portfolio return is expected. This measure is called percentile-matched

volatility, which is defined in Section 3.2.3. Computation of the empirical percentile-

matched volatility is based on population quantile estimation. The estimation method

used in this thesis is presented in Section 5.4. Empirical percentile-matched volatili-

ties are compared to the Gaussian historical volatility in Section 3.2.5

Another measure is for the market condition when a disastrous portfolio return

is anticipated. This measure is called stress expected return and is defined in Sec-

tion 3.4.1. To obtain an empirical estimate of stress expected return of a portfolio,

we apply the principle of best linear unbiased estimation (BLUE) of Gaussian pa-

rameters given a censored sample and the formula for the conditional expectation

of a univariate Gaussian variable. These two technical ingredients are presented in

Chapter 5. Stress expected return of a portfolio estimated under the Gaussian dis-

tribution and the empirical distribution of the portfolio return data are compared in

Section 3.4.5.

The last few sections of Chapter 3 introduce the generalized variance-covariance

matrix and the stress variance-covariance matrix which summarizes respectively the

percentile-matched volatilities and the stress volatilities of different portfolios. The

estimation of these matrices involves the use of non-linear programming algorithms

to solve optimization problems constrained in the space of positive definite matrices.

The theory behind this estimation process is presented in Chapter 6. Due to different

limits in the speed and size of a computation, we solve the optimization problems in

the space of 2 x 2 positive definite matrices. A separate algorithm to build an n x n

(n larger than 2) generalized or stress variance-covariance matrix that summarizes

the risk exposure of a portfolio given known long or short positions of the n assets

is presented in Section 3.6. While these matrices on their own can measure the

3



risk exposures of particular portfolios, they also illustrate the skewed asymmetry and

kurtosis features of the financial return datasets. Illustrations of the different methods

throughout Chapter 3 are given using an example dataset. Results for other datasets

are summarized in the tables in Chapter 4, in terms of different 2 x 2 generalized and

stress variance-covariance matrices.

Appendix A presents the background for the best linear unbiased estimation the-

ory in Section 5.2. Starting with a review of the order statistics theory, we gather to-

gether the necessary ingredients to understand the David and Johnson method which

approximates the expectation and the variance-covariance matrix of order statistics

from an arbitrary known continuous distribution. With new findings of some prop-

erties of the David and Johnson approximation method, we include a more practical

way to compute the variance-covariance matrix for large samples of Gaussian order

statistics. The results of this chapter will be used in Chapter 5 to generate subsequent

results.

Appendix B displays the written functions and programs in different sections titled

in relation to the corresponding functions. All the results in this thesis are generated

by functions and programs written in the S-PLUS language .

1.1 Portfolio Formation

Consider n risky (i.e., positive variance) assets traded in the capital market. Let

Pj(t) denote the price (per unit or share) of the jth asset, j = 1,..., n at time t.

Due to limited liability of assets, Pj(t) > 0 for all t, j = 1,..., n. If Pj(t) = 0, then

Pj(t + T) = 0 for all > 0. Otherwise, there is an arbitrage opportunity for asset j.

Consider a portfolio comprised of the n assets at a given time t. Let Nj denote

the number of units/shares of asset j selected for the portfolio, j = 1,..., n. This

notation is not a function of time t because we are not considering the dynamics

of updating portfolios in this thesis. We are only concerned about measuring the

risk exposure of a portfolio over a fixed period. Nj < 0 implies a short-sale of

[Njj units/shares. We assume that shortsales of all assets are allowed, and that all

4



shortsales are 100% margined. Let aj(t) denote the dollar amount invested in asset j

at time t, j = 1,..., n. aj(t) < 0 implies a short-sale of aj(t)I dollars in asset j. At

any given time t, the choices of {Nj} and {aj(t)} must satisfy:

aj(t) = NjPj(t). (1.1)

Let W(t) be defined as the value of the portfolio at time t. At any given time t,

the choices of {Nj} and {aj(t)} must satisfy:

n

W(t) = ENjPj(t)
j=1

n

aj(t). (1.2)
j=1

Let wj(t) denote the fraction of the portfolio allocated to asset j at time t, j =

1,..., n. By definition,

Nj P (t)
vw ~ jaj(t)

aj (t) (1.3)
Ejn= laj (t) '

wj(t) < 0 implies a short-sale of that fraction which is Njl share/units of asset j.

From Equation 1.3,

ZIw(t)I = l (t)
j=1 =1 l a(t)I

= 1. (1.4)

This implies that the weighting magnitudes of assets in any portfolio always add up

to unity.
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1.2 Portfolio Returns in Discrete Time

Let h be the trading interval, the length of time between revisions of the portfolio.

This time scale is determined by the individual investor. For this thesis' purpose, h is

the time between successive market trading days. Due to holidays and weekends, h is

not a constant. When m is the number of trading intervals between 0 and T(- mh),

(k) is the shorthand notation for (kh), k = 0,..., m. For example, Pj(k) Pj(kh),

wj(k) = wj(kh), ... Suppose at the "end" of period k, the portfolio had {N1,..., Nn}

units of assets which are held from the beginning of period k until the beginning of

period (k + 1). At the beginning of period (k + 1) before revision of the portfolio, the

portfolio value W(k + 1) is

n
W(k + 1) = NjPj(k + 1). (1.5)

j=1

The one-period portfolio return in period k is by definition [W(k + 1) - W(k)]

divided by the initial cost invested at the beginning of the period.

If the portfolio buys Nj units of asset j at time t, it will earn the one-period rate of

the asset return [Pj(k + 1) - Pj(k)]/Pj(k). (For the purpose of this thesis, we assume

that there are no transaction costs and taxes.). The initial cost is NjPj(k) dollars.

On the other hand, the portfolio with a short position of NjI units of asset j in a

100% margined account at time t earns the one-period rate of return [Pj(k) - Pj(k +

1)]/Pj(k). The initial cost is INjlPj(k) dollars.

The total initial cost for holding the n different positions in period k is

n n

E INjlPj(k) = laj(k)I. (1.6)
j=1 j=1

The portfolio return over the kth period, denoted X(k), k = 1,..., m, is

X(k) = W(k+ 1)-W(k)
j l la j(k) l

Ej%1 Nj[Pj(k + 1) - Pj(k)]
Ej l laj(k)l
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E NjPj(k) [Pj(k + 1) - Pj(k)
j=l cj=1 laj(k)l Pj(k)

n' aj(k) [Pj(k + 1) - Pj(k)1

j=1 Ej= aj(k)l Pj(k)

Z (k) IPj(k + 1) - P(k) (1.7)
P(k(k)(17)

Let Zj(k) denote the kth period return of a long position of asset j, j = 1,..., n.

By definition,

Zj(k) = Pj(k + 1)- Pj(k)P3(k)= (1.8)Pj(k)

In vector forms, let w(k) = (wl(k),..., w,(k))' and Z(k) = (Zl(k),...,Zn(k))'.

Then the portfolio return over the kth period, k = 1,.. ., m, can also be expressed as

X(k) = wj(k)[P ( k + 1) -Pj(k )
j=1 P(k)
n

= wj(k)Zj(k)
j=1

= w(k)'Z(k). (1.9)

In this form, a one-period portfolio return is a linear combination of the one-period

asset returns. The linear combination is given by the portfolio weighting allocated to

the assets. This portfolio return depends only on the portfolio weighting allocated to

assets given by w(k). Let w = ( 1, ... , wn)' denote an arbitrary portfolio weighting.

In the kth period, for w(k) = w, let X(w, k) denote the one-period return of the

portfolio with weighting w. Then,

X(w, k) = w'Z(k). (1.10)

We are interested in comparing the return distributions and risk exposures of

portfolios with different weightings of the assets. This leads us to compare X(w, k)

for different w's that are subjected to the constraint given by Equation 1.4. Let W
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Figure 1-1: W
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Chapter 2

Departure from Bivariate

Gaussian Normality

2.1 Introduction

In this chapter, exploratory data analysis is performed on bivariate datasets. The

bivariate sample that is used to illustrate the various data analysis tecnhiques con-

sists of the US Dollar versus German Mark (USD/DEM) and the US Dollar versus

Japanese Yen (USD/JPY) exchange rates from 1985 to July 1994. For a multivariate

exploratory data analysis of these and other data, see Kempthorne et al (1992) .

Section 2.2 introduces the other currency exchange and equity index datasets used

in this thesis, and provides notations for a sample of daily multi-asset returns, the

historical portfolio return data based on this sample, and the mean and standard

deviation of the portfolio return.

In Section 2.3, we start by comparing the price movements of two assets parallel

in time. We then use a scatter diagram to illustrate the interdependence between the

two asset simple daily return moves on the same day.

In Section 2.4, we assess the departure from Gaussian normality using the correla-

tion between the two asset return moves. Interested readers can refer to RiskMetricsTM

for a more detailed discussion of this assessment.

In Section 2.5, we try to illustrate asymmetry and leptokurtosis of the data using

9



density contours. In univariate analysis, one would use the Gaussian density function

curve and empirical density histogram to illustrate asymmetry and leptokurtosis of

return data. We could have done so in the bivariate scenario by constructing a density

surface and a three-dimensional histogram. Practically, we are limited from doing this

using two-dimensional graphics. Instead, we display the horizontal cross-sections of

the density surface and the histogram at different densities. The cross-section of the

normal density surface is an elliptical density contour. We generate the same density

contour implied by the data under certain assumptions and compare this with the

Gaussian density contour. Multivariate notations are used in this section although

the graphs are limited to displaying results for bivariate samples.

2.2 The Dataset

Our currency data consist of daily nominal spot foreign exchange (FX) rates for eight

currencies with the USD and six currencies with the DEM from January 1985 to

July 19941. The eight currencies with the USD are the Australian Dollar (AUD),

Canadian Dollar (CAD), Swiss Franc (CHF), German Mark (DEM), French Franc

(FRF), British Pound (GBP), Italian Lira (ITL) and the Japanese Yen (JPY). The six

currencies with the DEM are the Swiss Franc, Spanish Peseta (ESP), French Franc,

Italian Lira, Japanese Yen and the British Pound. The rates were recorded at the

home market close.

Our equity market data consists of daily closing prices of four indexes from January

1986 through July 1990. They are the S&P 500 Index in New York (SP500), the Nikkei

Index in Tokyo (Nikkei), the Frankfurt-Commerzbank Index in Frankfurt (Dax) and

the CAC-40 Index in Paris (CAC-40).

The issues of missing or asynchronous data are ignored here. Interested readers

can refer to Vyas (1992) and to Vyas and Kempthorne (1994).

1Bankers Trust provided this data for research at the MIT International Financial Services Re-
search Center
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2.2.1 Mean and Standard Deviation of Portfolio Returns

Let z(k), (k = 1,..., m) denote n series of m daily simple return data. The return data

are computed using Equation 1.8. Given a multivariate dataset z(k) (k = 1,..., m)

and a portfolio weighting w, we define the linearly transformed univariate dataset

z(w,m) as

z(w, m) - {w'z(k): k = 1,..., m}. (2.1)

Let z(w, m) denote the sample average, and s(w, m) denote the sample standard

deviation. Then,
m

z(w,m)= ± - w'z(k), (2.2)
m k=l

and

s(w, m) = 1 (w'z(k) - z(w, m))2. (2.3)
/ k=l

This sample standard deviation is commonly known as the portfolio volatility measure

based on historical data.

2.2.2 Means, Variances and Covariance of Two Asset Re-

turns

Given a bivariate daily return dataset (n=2) z(k) (k = 1,..., m), we estimate the

Gaussian parameters (, E) with the maximum likelihood estimators (MLE) (/, Z).

Denote,

= (1, f2)',

F12 r 2

For j = 1,2,

fij = zj (k),ki
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12 m
= (zj (k) -j) ,

k=1

(2.4)

and
i m

12 = -Z(Zl(k) - pl)(Z2(k)- 2). (2.5)m k=l

A is the sample mean and , is the sample variance-covariance matrix of the bivariate

dataset z(k) (k = 1,..., m).

2.3 Preliminary Assessment

Figure 2-1 compares the movement of the USD/DEM exchange rate with the move-

ment of the USD/JPY exchange rate over the period January 1985 to July 1994. The

chart shows some correlation: positive (negative) changes in USD/DEM are usually

accompanied by the positive (negative) changes in USD/JPY.

The scatter diagram of the simple daily returns illustrates the correlation between

the two asset return moves. (The definition of simple daily return is given by Equa-

tion 1.8 in Section 1.2). Figure 2-2 ("Original") is a scatter diagram of the USD/DEM

and USD/JPY exchange rate return. Each point plots the USD/DEM simple daily

return against the USD/JPY simple daily return for the same day. We see that the

points are scattered within an elliptical region. If there were no correlation between

the two exchange rate returns, the returns plotted in the scatter diagram would lie

within a circular rather than an elliptical region. If there were perfect linear correla-

tion between the two returns, plotting would be along a diagonal line.

2.4 Gaussian Normality Assessment

To check graphically whether the sample is consistent with a bivariate Gaussian

distribution, we first transform the scatter diagram to the normalized scatter diagram

which is a plot of the normalized daily returns. The transformation is in two steps:

12



Figure 2-1: USD/DEM and USD/JPY exchange rate history
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1. Under the assumption that the bivariate data are from a Gaussian distribution

N(p, E), we estimate the parameters with (, t) as defined in Section 2.2.

2. Given the bivariate historical return data denoted as z(k) (k = 1,..., m) (Sec-

tion 3.2), normalize the data to x(k) (k = 1, ... , m) by the transformation (for

k= 1,...,m)
x(k) = - 2(z(k) -) (2.6)

After the transformation, the points should be scattered within a circular region

centered at the origin. Figure 2-2 ("Normalized") illustrates the transformed scatter

diagram of the USD/DEM and USD/JPY exchange rate return.

We express all the transformed points x(k) in their polar coordinates (R(k), O(k))

instead of in the Cartesian coordinates. If the two asset returns are bivariate Gaus-

sian, the transformed points should be well distributed in a circular region. More

specifically the angles 0(k) (k = 1,..., m) should be uniformly distributed in (0, 27r),

and the radii R(k) (k = 1,..., m) follow from

R(k)2 = (z(k) - f)'(-l(z(k)- )

- x(k)'x(k) (2.7)

If each of the data z(k) (k = 1,...,m) were independent and identically dis-

tributed as N(, t), then x(k) (k = 1,..., m) would be distributed as N(O, I). The

cross product or R2 is distributed chi-square with 2 degrees of freedom. The radii,

which are the square root of R2, therefore, follow a chi distribution with 2 degrees of

freedom.

The graphs in Figure 2-3 show the histograms for the angles and radii for the

correlation of simple daily returns in USD/DEM and USD/JPY.

The left chart represents the distribution of angles of the normalized daily return

pairs in USD/DEM and USD/JPY. The line is the plot of the cumulative frequency.

The uniformity of the distribution is indicated by the straightness of this line. The

14



Figure 2-3: Correlation of daily returns in USD/DEM and USD/JPY

I

0 pi/2 pi

Angle

I/

0

co

0N
c
0
0
0

3pi/2 2pi

o0
Co

0
LO

>)
0

) 0
Cr-

LO

o
0.0 1.25 2.50 3.75 5.00 6.25 7.50

Radius

right chart displays the distribution of the radii compared to a standard X distribution

with 2 degrees of freedom. We could use formal chi-square goodness of fit tests here

to check whether the sample is consistent with a bivariate Gaussian distribution or

is leptokurtic. The frequencies of the return with very small radii and very large

radii are higher than expected by the chi distribution. The frequency of return with

medium radii is lower than expected by the chi distribution. This shows leptokurtosis

of the data.

2.5 Gaussian Density Contour

Under the multivariate Gaussian normality assumption, the contours on which the

Gaussian density is constant are concentric ellipsoids. To generate a density contour

graphically, suppose Z - N(u, E) in n dimensions, then

(Z _ A)'F7 1(Z _ - ) X2 (2.8)

That is, the Mahalanobis' distance between and Z (left hand side of Equation 2.8)

has the X2 distribution of degree n. The exponent of the multivariate Gaussian density

15

co0

o

0

0

- -o

i Yg f



of Z is

f (Z/, ) = 1 exp {-(Z - )/-1 (Z - )} (2.9)

Given I and E, Z is the only variable in the density. We then see that the density

is constant if and only if the exponent in the density function is constant. It follows

that the density contour which contains 100(p)% of the distribution is algebraically

given as

(Z - i)'E-l(Z - ) = c(p, n) (2.10)

where c(p, n) is a constant dependent on p and n. The region within the density

contour has higher density than the density contour. Hence, if x is a point within the

contour and z is a point on the contour, we have

f (x/, z) > f(z/, E)

exp {- (x - )} > v1r exp {-(z - >)'-1 (z - L)}

(x- i)'- 1(x- ) < (z- L)'- (z- A)

That is, any point inside the density contour has a smaller Mahalanobis distance

from the mean than any point on the contour. Given the constraint that the density

contour should have 100(p)% of the distribution within it, we have

PT((Z - /)'- 1 (Z - I) < (z - )'-1'(z - )) = p (2.11)

By Equation 2.8, we have

Pr(xn <- (z - Il)'- 1(z - )) = p

:: (Z - 1,)'-1 (z - ) = F2(p), (2.12)

where F2 (.) is the distribution function of the X2 distribution with n degrees of

freedom.

Equation 2.12 holds for any point z lying on the contour. Hence, this contour,
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which is also denoted as Ep(, E), is given as

Ep(, ) = {z E : (z- /I)'-l(z - ) = F-l(p)}

Fx-' (P)
= {ar(a/) + : a' = 1, r(a/) = FMl() . (2.13)

2.5.1 Gaussian Case

Given a multivariate dataset z(k) (k = 1,..., m), suppose each z(k) is independent

and identically distributed from the Gaussian distribution N(, E). We estimate the

parameters the estimators denoted (, E). As mentioned in Section 3.2, the estimates

are respectively the sample mean and sample variance-covariance matrix by maximum

likelihood theory. Let Ep denote the estimate of Ep(/u, E) using (/2, Z). Then,

Ep = {z E : (z- )'7E- (z-/ ) = F (p)}

= {ar,(a/E) + : 'a = 1, r(a/) = r (2.14)

2.5.2 Nonparametric Case

For the empirical distribution of z(k) (k = 1,..., m), let Ep be the empirical percentile-

matched ellipse that is to be compared to Ep. Given ca E R2 such that a'a = 1, i.e.

a is a point on the unit circle centered at the origin, let F,(.) be the empirical distri-

bution function of the transformed dataset z(a, m) = {a'z(k): k = 1,..., m}.

Given (, E), each z C Ep(, E) has a dual relationship with the quantity

fp(a/C) _ ( a/ )

,4 (D ' aIZIa) (2.15)

For each z E Ep(,E), fp(a/Z) is the Gaussian cumulative distribution function

value of z in the Gaussian distribution with parameters (aji, a'a) where a = z/lzl.

From Equation 2.15, we see that fp(a/E) only depends on E and not ,u. The dual
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relationship is one-to-one because the Gaussian distribution function <(.) is monotone

and one-to-one.

A distribution is uniquely represented by its distribution function, e.g. the stan-

dard Gaussian distribution by (Di(.) and the empirical distribution of z(o, m) by Fa(.).

To check if, for example, a Gaussian distribution fits the empirical distribution of

z(a, m), we plot the empirical fractiles against the fractiles of the standard Gaussian

distribution. This is generally known as a QQ-plot. A good fit is indicated by a

straight line on the plot. This QQ-plot, however, only works for univariate samples.

Borrowing the idea of a QQ-plot in the bivariate scenario, the projected value

of each point in the ellipse Ep on the axis with slope a and passing through is

rp(a/E) + aft. This value is the {fp(a/t)}th fractile of the Gaussian distrbution

N(a'/, a'ar). If this value were to be plotted in a QQ-plot fitting the Gaussian

distribution N(a't, a'Za) to the empirical distribution of z(a, m), it would be plot-

ted against the corresponding empirical fractile given by i -l(fp(a/])). (Refer to

Section 5.4 for the definition and estimation of a general quantile function F-'(.).)

We use this idea to generate, for different a such that a'a = 1, different values of

Fi-(fp(a/E)). To display these values in a shape comparable to a Gaussian ellipse,

we need to do the following transformation which would generate Ep.

For each a such that a'a = 1, define fp(a/E) such that

fp(o/s ) = Fog'l(fp(o~a/)) - (ac, m) (2.16)

Note that the sample mean (a, m) is the same as the MLE Gaussian mean ac'A for

every a. The significance of this is that the centres of the two ellipses Ep and Ep would

be the same. Comparison of the two ellipses is illustrating the difference between the

repective spread of the empirical and the Gaussian distribution.

When this value is plotted on a two-dimensional graph to construct Ep, the point

arp (a/E)+I is plotted. To summarize the construction of Ep in a single mathematical
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Figure 2-4: Ep and Ep for USD/DEM and USD/JPY, p = 5%, 95%
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expression,

= {O(a/)+ 4: CA'c = 1, (a/) = F-l(f (a/))- (a, m)} (2.17)

Section 5.4 discusses the estimation of empirical quantile.

Illustrations of /p and Ep for the returns of USD/DEM and USD/JPY p -

5%, 95% are given in Figure 2-4. From the 5% graph, we see that E5% is smaller

than 5%. This suggests that the empirical data has a peak around the mean higher

than predicted by the Gaussian distrbution estimated by maximum likelihood. Fur-

ther, from the 95% graph, we see that E95% encapsulates E9 5%. This shows a sign

of kurtosis, especially with the distributions of positive or negative combinations of

USD/DEM and USD/JPY returns. The two figures together give evidence of lep-

tokurtosis of the data. When compared to Figure 2-3, these ellipses display leptokur-

tosis in a way that Figure 2-3 cannot. Leptokurtosis is shown in the X distribution fit

to the histogram of the "radii", but we do not know if leptokurtosis occurs around all

"angles". The ellipses in Figure 2-4 show exactly this information. Leptokurtosis is

only evident with the distribution of positive or negative combinations of USD/DEM
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and USD/JPY returns.
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Chapter 3

Portfolio Risk Measurement

3.1 Introduction and Definition of Stressful Mar-

ket Condition

When a non-disastrous portfolio return is expected, we say that the portfolio is under

non-stressful or normal market condition. Conversely, when a disastrous portfolio

return is expected, we say that the portfolio is under stressful market conditions.

This notion is mathematically defined and explained in Section 3.1.1.

This chapter provides two measures of the risk exposure of a portfolio. Section 3.2

presents the first measure, return at risk, which measures the loss tolerance level of

a portfolio when a non-disastrous portfolio return is expected. The return at risk of

portfolios with different weightings are estimated under two distribution assumptions

- the Guassian distribution and the empirical distribution of the datasets as described

in Section 2.2.

Under a portfolio return distribution other than the Gaussian distribution whose

parameters are estimated by maximum likelihood theory, the measure of the uncer-

tainty of portfolio return is given by a percentile-matched volatility which is defined

in Section 3.2.3. This volatility measure is calibrated on a Gaussian scale. In Sec-

tion 3.2.5, leptokurtosis and asymmetry of an empirical portfolio return distribution

are shown by direct comparison between the empirical percentile-matched volatility
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and the Gaussian standard deviation or the historical volatility of the portfolio return.

Section 3.3 defines the empirical percentile-matched correlation. This is the correla-

tion between two assets in a portfolio that matches the empirical percentile-matched

volatilities of the portfolio and the two individual assets. Sampling fluctuation is il-

lustrated by non-uniform estimates of this correlation using different portfolios. This

correlation analysis tool is able to capture asymmetric correlations of upside and

downside risk.

Section 3.4 presents the second measure of a portfolio's risk exposure. This mea-

sure is the stress expected return, which measures the expected return of a portfolio

given that a disastrous portfolio return is anticipated. The stress expected return,

when measured on the percentile-matched volatility scale, is given by the mean of

return and the stress volatility, which is defined in Section 3.4.3. As in Section 3.2,

estimates of measures under the Gaussian distribution and the empirical distribution

are considered and compared. The empirical stress expected return is estimated us-

ing the best linear unbiased estimation theory for the Gaussian parameters and the

formula for the conditional expectation of a Gaussian variable. These two technical

ingredients are presented in Chapter 5.

Section 3.5 presents the generalized variance-covariance matrix which is the variance-

covariance matrix that summarizes the percentile-matched volatilities of different

portfolios with only two assets. Due to computational limits, only the 2 x 2 gen-

eralized variance-covariance matrices can be obtained by a method whose details are

presented in Chapter 6.

Section 3.6 presents an algorithm to generate the generalized variance-covariance

matrix that summarizes the percentile-matched volatilities of portfolios with n (more

than 2) assets.

Section 3.7 presents the stress variance-covariance matrix which is the variance-

covariance matrix that summarizes the stress volatilities of different portfolios.
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3.1.1 Normal vs Stressful Market Conditions

If we assume that the asset returns over different periods are independent of one an-

other, and that they are identically distributed as Z, then given the same portfolio

with weighting w, the one-period portfolio returns X(w, k), k = 1,..., m, are also

independent and identically distributed. Let X(w, k), k = 1,..., m, be distributed

as X(w) w'Z, the one-period return of a portfolio with weighting w, whose distri-

bution is independent of time.

Under the independent and identical distribution assumption, let Fw(.) be the

distribution function of the one-period return distribution of a portfolio with weight-

ing w, i.e. the distribution of X(w). For a given portfolio with weighting w and

p E (0, 1), we say that the portfolio is under 100(p)% stressful conditions if and only

if it is expecting a realization x(w) such that

Fw(x(w)) < 1- p. (3.1)

Conversly, we say that the portfolio is not under 100(p)% stressful conditions if

and only if it is expecting a return realization x(w) such that

Fw(x(w)) > 1 -p (3.2)

With no knowledge of the true portfolio return distribution, we assume different

distributions for it. For continuous distributions, the cumulative distribution func-

tion is continuous and usually differentiable. For discrete distributions, however, the

probability distribution function is a step function. Different assumptions of the port-

folio return distribution can lead to different interpretations of the same portfolio's

stressful condition.

By Equation 3.1, we see that as p increases, the set of realizations x(w) for the

inequality to hold shrinks and only the lower (typically more negative) returns are

included in the set. This implies that a portfolio with higher "stress" has on average

lower returns. However, a portfolio with a lower return is not necessarily under more
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stressful conditions.

3.2 Portfolio Risk Assessment under Normal Mar-

ket Conditions

When analyzing investments, we define portfolio risk as variability or uncertainty of

future returns of a portfolio resulting from price changes in the underlying assets. Its

measurement depends on the distribution that charaterizes returns of the portfolio.

The greater the variability in the probability distribution of returns, the riskier the

investment.

Historical data provide an indication of the past relationship between return and

risk. In this thesis, we base predictions of future portfolio risk on the empirical

distribution of market movements.

An important step in quantifying daily risk exposure is the selection of a distribu-

tion that best charaterizes the historical daily returns. In this thesis, we consider and

compare two distributions - the Gaussian distribution and the empirical distribution

based on the data as described in Section 2.2. The Gaussian distribution has typically

been used to characterize most historical financial return distributions. When the ef-

ficiency of the Gaussian model is assessed in the context of portfolio risk exposure, we

may find that the model is not predicting the right exposure at times. The following

section provides the definition of return at risk for a portfolio with a general return

distribution.

3.2.1 Return at Risk

Given 0 < p < 1, let the one-period return at risk (RaR) at the 100(p)% tolerance

level of a portfolio be defined as the worst portfolio return while the portfolio is

not under 100(p)% stressful conditions. The tolerance level indicates how much a

portfolio can afford to lose over the one period. The higher the tolerance level, the

more the portfolio can afford to lose. For a given portfolio with weighting w, let
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S(w/p) denote the one-period RaR at the 100(p)% tolerance level. By definition,

S(w/p) = inf{x(w): Fw(x(w)) > 1 -p}

= inf{x(w): x(w) > F 1(1- p)}1

= Fw1(1-p) (3.3)

In developed and liquid markets, modest-sized positions can be unwound or hedged

within a trading day. Risks of such positions can be measured using a 24-hour window.

In such case, the daily RaR (DRaR) at the 95% tolerance level estimates the potential

worst loss of a portfolio resulting from a move under non-stressful market conditions

(i.e., 95% of the time) over a one-day period for unwinding.

Under the independent and identical distribution, a portfolio with a given weight-

ing w on different trading days has the same portfolio return distribution. Moreover,

for a given p E (0, 1), the one-period RaR of the portfolio at the 100(p)% tolerance

level is also the same. With a larger portfolio size but the same weighting, the dollar

amount at risk is proportionally larger.

3.2.2 Gaussian Case

If we assume further, that the n asset returns, Z, are multivariate Gaussian with mean

/, and variance-covariance matrix E, then the return of a portfolio with weighting w,

X(w), is univariate Gaussian with mean w'p and variance w'Ew. Let b(.) denote

the distribution function of the standard Gaussian distribution. Under the Gaussian

assumption, the one-period RaR of a portfolio with weighting w at the 100(p)%

tolerance level is

S(w/p) = w'LU + -1(1 - p) w'Ew. (3.4)

In this form, it is clear that RaR is determined by both the portfolio expected

return, given by w'j, and the degree of uncertainty of the portfolio return, given by

/wZEw which is its standard deviation. Let a(w) denote this standard deviation,
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i.e.,

a(w) = w'Ew. (3.5)

Given (fi, ]) as defined in Section 2.2, let S(w/p) denote the estimated DRaR of

the portfolio at the 10 0 (p)% tolerance level, and a(w) denote the sample standard

deviation of the portfolio return. In this thesis, we use the financial term, volatility,

interchangeably with the statistical term, standard deviation.

S(w/p) = w' + D-1(1 - p) w'w, (3.6)

and

a(w) = wwt. (3.7)

Calculating (w) does not necessarily invlove computing S. Another way to

obtain &(w) is to compute the sample standard deviation of the sample z(w, m) as

given by Equation 2.3.

3.2.3 Percentile-Matched Volatilities

Under the Gaussian framework of analysing portfolio risk, risk is a measure of the

spread of the return distribution. When we base the projection of future risk on

historical performance of the portfolio, e.g. z(w, m), portfolio risk can be measured

by the historical volatility which is given by Equation 2.3, the standard deviation

estimated by maximum likelihood. Analysing risk in this way, an identical historical

volatility measure under two different portfolio return distributions would lead to

the conclusion that the two portfolios are as risky as each other. This is precisely

the implication behind fitting the maximum likelihood Gaussian model to empirical

data. When the empirical return distribution is leptokurtic to the fitted Gaussian

distribution, the conclusion is too general and may lead to mismatches of risk exposure

measures. Specifically, the fitted Gaussian model underestimates the potential loss of

a portfolio incurred by an extreme negative return, and overestimates the uncertainty

of return when typical, normal reutrns are being realized.
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We need to define a nonparametric volatility measure to overcome the risk mis-

match problem which arises with leptokurtic samples. We choose to measure this

nonparametric volatility on the Gaussian scale, the scale that is traditionally used to

measure volatility. For 0 < p < 1, we define the percentile-matched volatility (PMV)

at the 100(p)% level of a portfolio with weighting w as the Gaussian volatility that

matches the pth percentile of the distribution of portfolio losses. Since a portfolio loss

is the negative of a portfolio return, this PMV matches (1 - p)th percentile of the

portfolio return distribution. Let a(w/p) denote this PMV. Mathematically, for the

portfolio return distribution with distribution function Fw(.) and mean denoted by

m(w),

a(w/p) = F (1 - p) . (3.8)

Note that when the portfolio return distribution is the maximum likelihood Gaussian

distribution, this percentile-matched volatility is the same as the historical volatility

estimate which is given by Equation 3.7.

3.2.4 Empirical Case

If we assume that the distribution of X(w) is an empirical distribution of z(w, m) with

distribution function Fw(.), then the estimated DRaR of a portfolio with weighting

w at the 100(p)% tolerance level under this assumption, denoted S(w/p) is

S(w/p) = Fw(1 - p). (3.9)

Section 5.4 discusses the estimation of population quantiles.

Let Z(w, m) denote the mean of the empirical distribution as defined in Section 2.2.

Let a(w/p) denote the empirical percentile-matched volatility (EPMV) of a portfolio

with weighting w at the 100(p)% tolerance level. By definition,

-(w/pF) (i) l (w m) (3.10)
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Figure 3-1: Portfolio weighting plotted against the "position" axis, w E W
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3.2.5 Gaussian vs Empirical

In this thesis, most risk-related measures, when displayed in graphs, are plotted

against an x-axis that shows the holding positions in a 2-asset portfolio. Each port-

folio weighting w E W is shown on the x-axis via its angle coordinate in the polar

coordinate system. Let Ow denote the "angle" of w. 8w traverses W in the anti-

clockwise direction from 0, representing w = (1, 0), to 27r, representing the same

portfolio weighting.

Figure 3-1 illustrates that when the values of w1 and w2 of a portfolio with weight-

ing w are plotted against 8w, the lines of w1 and w2 are not straight segments because

w1 and w2 are trigonometric functions of Ow.

The labels on the x-axis represent the different positions of the USD/DEM and

USD/JPY taken in the portfolio. The two letters represent the positions in USD/DEM

and USD/JPY respectively. L stands for "long", N stands for "neutral" and S stands

for "short". For example, "LN" stands for a 100% long USD/DEM portfolio; "LL"

stands for a portfolio which is half long USD/DEM and half long USD/JPY.

Figure 3-2 displays the estimated DRaR at the 95% tolerance level of a portfolio

with weighting w under the Gaussian and the empirical distribution assumptions.

w E W are weightings of portfolios that hold USD/DEM and USD/JPY.

We see that under both assumptions, the portfolio with a long position in one

asset and short position in another at the same time is least exposed at the 95%
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Figure 3-2: S(w/95%) and S(w/95%) for USD/DEM & USD/JPY, w E W
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tolerance level. Also, the portfolio that has a long position in either DEM or JPY is

slightly riskier than the portofiio that has a short position in either of them.

The sample mean z(w,m) in Equation 3.10 is the same as the MLE for the

Gaussian mean, w'/. With the same portfolio return expectation estimate, we can

directly compare the riskiness of the portfolio under the Gaussian and the empirical

distribution assumptions by comparing EPMV with the historical volatility.

While the historical portfolio volatility is a symmetric function in w, i.e. (w) =

a(-w), the EPMV is able to quantify aysmmetry and kurtosis of historical data on a

Gaussian scale. Asymmetry is shown by considering the long and short positions of a

portfolio together. In Figure 3-3, skewed asymmetry is shown by the different EPMV

curves for long and short positions. In the same figure, kurtosis of data is shown by

the EPMV of both long and short USD/DEM portfolios increasing and crossing over

the MLE volatility.
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Figure 3-3: Comparison of the EPMV for both long & short USD/DEM
60% to 100% tolerance levels
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Figure 3-4: &(w) and &(w/95%) for USD/DEM & USD/JPY, w E W'
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Figure 3-4 illustrates the EPMV at the 95% tolerance level and MLE volatility es-

timates of portfolios with weighting w E W that hold USD/DEM and USD/JPY. The

x-axis is the same as that in Figure 3-2, representing positions taken in USD/DEM

and USD/JPY respectively. We see that the curve under the Gaussian assumption

shows symmetry in the long and short positions of the same asset. This is expected

because &(w) = &(-w). However, the curve under the empirical distribution assump-

tion is able to capture asymmetry. While the EPMV curve shows that the portfolio

with a long position in USD/JPY is slightly riskier than the portfolio that shorts the

same exchange rate at 95% tolerance level, the two curves are almost the same except

in a few regions. This indicates that the MLE Gaussian model gives a good evaluation

of the empirical portfolio risk estimates for most portfolios at 95% tolerance level.

The worst matched region is around 'NS' i.e. a 100% short USD/JPY portfolio.

The EPMV of this portfolio is about 0.6%, and the corresponding Gaussian historical

volatility is about 0.64%. The relative difference is about 6%. The measure of volatil-

ity here is on a daily scale. When the volatilities are rescaled to the annual scale, the

relative difference remains the same. Hence at 95% tolerance level, the MLE Gaus-

sian model evaluates the empirical portfolio risk estimates to within roughly about

6% accuracy.

3.3 Induced Correlation

Given the volatilities of the two underlying assets, denoted al and a2 respectively,

and the correlation between the two assets, denoted p, the volatility of a portfolio

with weighting w is given by Equation 3.5. When the Equation is expanded, the

portfolio volatility is

U(w) = V/(Wlrl)2 + (W20'2)2 + 2wlW2po'' 2. (3.11)
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If the portfolio has weighting w such that wl -$ 0 and w2 - 0, we can express p in

terms of the volatilities of the two assets and that of the portfolio,

= (W)2 - (Wa1)2 - (2o 2)2 (3.12)
2wlw 20u1 0 2

Under the Gaussian distribution assumption, this correlation between the two assets

is independent of the portfolio weighting w.

Under a nonparametric empirical distribution assumption, we define the empirical

percentile-matched correlation (EPMC) for a 2-asset portfolio with weighting w as

the correlation between the two assets such that the EPMV of the two assets and

that of the portfolio are consistent in the correlation equation like 3.11. Due to the

asymmetry example in the EPMV, (a long position and a short position of the same

portfolio have different risk exposures), we have to assign the long position and the

short position of an asset with different risk measures. For wl 0 and w2 ~: 0, let

p(w/p) denote the EPMC for portfolio with weighting w at the 100(p)% tolerance

level. This correlation equation is induced from Equation 3.12 and is

_ {(w/p)}2 - w2 {J(el (w)/p)}2 - w2{(e2(w)/P)}2 (3.13)
2wlw2 &(el(w)/p)a(e2(w)p)

where

el(w) l {b: b = /lwll, b2 = 0},

e2(w) -{b: b2 = w2/1w21, b1 = 0}.

Figure 3-5 displays the MLE correlation and the EPMC for portfolios with weight-

ings w W at the 95% tolerance level between USD/DEM and USD/JPY. The

EPMC for different portfolios varies from below 0.5 to above 0.9. The graph is split

into four panels separated by the vertical solid lines. In different panels, different EP-

MVs of the individual assets are used. The EPMC are undefined at the vertical solid

lines. The MLE correlation is constant at about 0.65. Given any set of historical data

bootstrapped from the Gaussian bivariate model with the MLE correlation, we would
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Figure 3-5: MLE correlation and (w/95%) between USD/DEM & USD/JPY, w 
W
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not expect to see a constant EPMC for different portfolios. This is due to sampling

fluctuation. Here, we do not add on the goodness of fit of the MLE correlation to the

historical data. We merely show the sampling fluctuation which occurs for the chosen

historical data. Figure 3-5 shows that the EPMC for portfolios that short both assets

are "on average" higher than the EPMC of the long portfolios of both assets. This

indicates that DEM and JPY depreciates against USD together more often than they

appreciate against USD at 95% tolerance level.

Because of the inherent sampling fluctuation, the EMPC is not a robust measure

for the correlation between two assets in a portfolio. The estimate of correlation

between two assets under an empirical distribution assumption is obtained via esti-

mating the variance-covariance matrix that matches the EPMV of certain portfolios.

This will be discussed in detail later in Section 3.5. Nonetheless, EPMC is a useful

tool for detecting non-uniform correlation trends within the data.

3.4 Portfolio Risk Assessment under Stressful Mar-

ket Conditions

The RaR at the 100(p)% tolerance level is the measure of the maximum loss of a

portfolio with weighting w given that the portfolio is not under 100(p)% stressful

conditions, as defined and explained in Section 3.2. In other words, RaR only esti-

mates the worst scenario among all typical or non-disastrous return realizations of a

portfolio over one trading day. It does not measure how much loss to expect from

an atypical or disastrous return realization. Section 3.4.1 defines the stress expected

return as the measure of the expected return of a portfolio given that a disastrous

portfolio return is anticipated.

3.4.1 Stress Expected Return

For a given p (0, 1), we define the 00(p)% stress expected return (SER) of a

portfolio with weighting w as the conditional expectation of X(w) given that the
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portfolio is subject to 100(p)% stressful conditions. For the distribution of X(w)

with distribution function Fw(.), a portfolio is under 100(p)% stressful conditions

when it has a return realization x(w) such that

x(w) < F 1(1 - p) (3.14)

This follows from Equation 3.1 in Section 3.1.1.

Let v(w/p) denote the 100(p)% SER of a portfolio with weighting w. Then, from

the definition of conditional expectation,

v(w/p) = E(X (w) /X (w) < F(1- p)) (3.15)

The 100(p)% SER of a portfolio with weighting w corresponds to an RaR of the

portfolio at some 100(7r(w/p))% tolerance level, p < (w/p) < 1. We define this

100(7r(w/p))% tolerance level as the 100(p)% stress tolerance level of a portfolio with

weighting w. A stress tolerance level indicates the seriousness of a stress expected

return when compared to a typical return. Mathematically,

7r(w/p) = 1 - Fw(v(w/p)). (3.16)

From the definition of S(w/p) given in Equation 3.3,

v(w/p) = Fl(1 - r(w/p))

= S(w/7r(w/p)). (3.17)

3.4.2 Gaussian Case

Under the Gaussian assumption, i.e X(w) - N(w'p/, w'Ew), let d = -1 (1 - p).

Let (.) be the standard Gaussian density function. Then, using the conditional

expectation formula given by Equation 5.14 in Section 5.3, with S(w/p) replacing
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the constant c in the formula,

v(w/p) = w',- (3.18)

and

r(w/p) = 1-F(v(w/p))
=(W/p) - W- 1i -((w- w ). (3.19)

As in Section 3.2.2, given the bivariate sample z(k) (k = 1,..., m), we estimate

(/U, Z) with (, t). Let i'(w/p) and i(w/p) denote respectively the estimate of v(w/p)

and r(w/p) using the MLE Gaussian parameters. Then,

['(w/p) = w' -w'w (d) (3.20)i-p
and

r(w/p) = 1 - (I((w/p) - (3.21)

3.4.3 Stress Volatility

Analogous to the percentile-matched volatility defined in Section 3.2.3, we define the

100(p)% stress PMV of a portfolio with weighting w as the portfolio's PMV at the

100(p)% stress tolerance level. Let §(w/p) denote this stress PMV. For convenience,

the name of 100(p)% stress PMV is simplified to 100(p)% stress volatility. Then, for

the portfolio return distribution with distribution function Fw(.) and mean m(w),

§(w/p) = Fw1 (1 - r(w/p) - m(w) (3.22)

The stress volatility is a measure of risk that matches with the conditional expectation

of return under stressful market condition on a Gaussian scale.
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3.4.4 Empirical Case

For the empirical distribution of z(w, m) with distribution function Fw (.), let v(w/p),

ir(w)/p) and s(w/p) denote respectively the estimate of v(w/p), 7r(w/p) and s(w/p).

Then given Fi(w/p),

i(w/p) = 1 - Fw(i(w/p)), (3.23)

and

F-w(1 - kr(w/p)) - (w, m)(W/p) =1 -r(/p))
P(w/p) - (w, m)
cID-1(1 - Ik(w/p))(

Estimation of Empirical Stress Expected Return

There are different ways to specify the estimate of the empirical stress expected

return, (w/p). We propse the following method. Given the dataset z(w,m) of

portfolio returns, we first order the dataset. Denote the ordered dataset by z(w, m).

For the given p E (0, 1), we calculate r as the rounded off integer of m(1 -p). Denote

L[xJ as the largest integer smaller than or equal to x, and xl as the smallest integer

strictly larger than x. Then,

r Lm(1 - p)J if m(1 - p) - Lm(1 - p)J 0.5, (3.25)

m( - p)] if [m(1 - p)l - m(1 - p) < 0.5.

We then extract the lowest r order statistics from z(w, m). This extracted sample

is a Type-II censored sample; see Appendix A for a definition of Type-II censoring.

We estimate the Gaussian parameters based on this Type-II censored sample, ap-

plying the theory of best linear unbiased estimators (BLUE) given in Section 5.2 in

Chapter 5. We denote the BLUE of the Gaussian parameters by ((w/p), a2 (w/p)).

We call these parameters the 100(p)% stress Gaussian parameters of a portfolio with

weighting w. Let d = (F 1l(1 - p) - i(w/p))/ai(w/p). Then, the empirical SER,
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ji(w/p), is computed using Equation 5.14 in Chapter 5 with (i(w/p), i52(w/p)). i.e.

[i(w/p) =- (w/p) - (w/p)(d) (3.26)1(d)

The empirical SER, v(w/p), estimated in this way assumes that the distribution

of X(w) is Gaussian. Furthermore, it specifies the Gaussian distribution using only

the empirical return data which were observed under the 100(p)% stressful conditions.

We could use distribution assumptions other than the Gaussian to compute i(w/p).

Some examples are bivariate exponential, Cauchy and Weibull, which are all candidate

models for the "tail" of financial returns distributions. For distributions other than

the Gaussian, however, new conditional expectation formulae like Equation 5.14 must

be derived.

3.4.5 MLE Gaussian vs Stress Gaussian

If the dataset z(w, m) has leptokurtosis and the empirical frequency curve or his-

togram has higher density than the Gaussian density curve beyond the 100(1 - p)th

empirical percentile, the stress Gaussian parameters (i(w/p), i2(w/p)) together ap-

proximate the empirical DRaR estimates of a portfolio with weighting w above the

100(p)% tolerance level, S(w/p') p < p' < 1, much better than the MLE Gaussian

parameters (, 52) do. Let S(w/p) denote the DRaR estimate of a portfolio with

weighting w at the 100(p)% tolerance level implied by the stress Gaussian parame-

ters (ii(w/p), i2(w/p)). Then,

S(w/p) = (w/p) + 4-1(1 - p)5-(w/p). (3.27)

We illustrate how S(w/p) approximates S(w/p) much better than S(w/p) in two

ways. Figure 3-6 illustrates that the DRaR estimates of a long USD/DEM portfolio

above 95% tolerance level are underestimated when the MLE Gaussian parameter

estimates are used. The empirical DRaR estimates are consistently larger in magni-

tude. However, the stress Gaussian parameters estimates very well approximate the
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Figure 3-6: The DRaR estimates of a long USD/DEM portfolio at above 95% toler-
ance levels under the empirical, MLE Gaussian and 95% stress Gaussian distribution
assumptions
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empirical DRaR estimates of the long USD/DEM portfolio above 95% tolerance level.

This suggests that the empirical DRaR of a portfolio with weighting w at above the

95% tolerance level can be accurately estimated by the corresponding Gaussian DRaR

estimates with the stress Gaussian parameters. Another way to illustrate the same

point is given in Figure 3-7, which is a QQ-plot of the daily return data of USD/DEM

plotted against the standard Gaussian quantiles. Kurtosis is shown by the inverted

'S' shape of the plot. Each of the fitted lines has the Gaussian mean estimate as the

y-intercept on the y-axis and the Gaussian standard deviation estimate as the slope

of the line. We see that the stress Gaussian parameter estimates fit the lower part of

the curve better than the MLE Gaussian parameter estimates.

Figure 3-8 illustrates the 95% stress Gaussian parameter estimates of portfolios

w E W that hold USD/DEM and USD/JPY in various long and short combinations.
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Figure 3-8: ((w/95%), 2(w/95%)) for USD/DEM and USD/JPY, w E W
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Taken alone each of these stress Gaussian parameters is useless in characterizing the

risk of a portfolio. But together, they can very well characterize the risks in terms of

the RaR of a portfolio at all tolerance levels above 95%.

Figure 3-9 illustrates how the 95% stress Gaussian parameters approximate the

empirical DRaR of portfolios much better than the MLE Gaussian parameters for the

tolerance level of 99%. Here, the portfolios with weightings w E W hold USD/DEM

and USD/JPY.

Given a p (0, 1), we estimate the 100(p)% stress Gaussian parameters as de-

scribed in Section 3.4.4. Hence, under different 100(p)% stressful conditions, we have

different estimates of the stress Gaussian parameters. Then, the SER and condi-

tional standard deviation of return are computed using Equations 5.14 and 5.16 in

Section 5.3 with the different stress Gaussian parameters.

Figure 3-10 illustrates respectively, for 0.95 < p < 1, the 100(p)% SER of a
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Figure 3-9: S(w/99%), S(w/99%) and S(w/99%) for USD/DEM and USD/JPY,
w W
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Figure 3-10: 100(p)% SER of a long USD/DEM portfolio and conditional standard
deviation of USD/DEM return under 100(p)% stressful conditions, 0.95 < p < 1
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long USD/DEM portfolio and the conditional standard deviation of USD/DEM re-

turn under the different stressful conditions. Both the SER and conditional standard

standard deviation are estimated using the MLE Gaussian parameters and the dif-

ferent 10O(p)% stress Gaussian parameters. It is clear that the MLE Gaussian SER

over-estimates the stress Gaussian SER. That is the MLE Gaussian model is not

conservative enough in estimating the expected return of USD/DEM when a very

negative return is anticipated. This is emphasized when the 100(p)% SERs estimated

using the MLE and stress Gaussian parameters are plotted against the empirical RaR

at the 100(p)% tolerance level (0.95 < p < 1) in Figure 3-11. This graph is another

interpretation of the same plot in the graph on the left in Figure 3-10. By the crossing

of the line 'y=x', we see how inappropriate it is to use the MLE Gaussian parameters

to estimate the empirical SER.

Figure 3-12 illustrates the 95% stress volatility together with the EPMV at 95%

tolerance level of portfolios with weightings w E W that hold USD/DEM and

USD/JPY. It is intuitive to see that the stress volatility is larger than the EPMV.
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Figure 3-11: 100(p)% SER of a long USD/DEM portfolio estimated using MLE
and stress Gaussian parameters plotted against the empirical RaR estimates at the
100(p)% tolerance level, 0.95 < p < 1
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Figure 3-12: (w/95%) and i(w/95%) for USD/DEM and USD/JPY, w E W
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3.5 Generalized Variance-Covariance Matrices

Under the multivariate Gaussian assumption, the variance-covariance matrix E sum-

marizes the risk exposure or volatility of any linear combination of the n underlying

assets. Given an estimate of E (for example the MLE Z), we can derive estimation

of the volatility of any portfolio with weighting w by Equation 3.7.

For a non-Gaussian distribution, the variance-covariance matrix Z may provide

a poor summary of the risk exposure of related portfolios. However, given the

percentile-matched volatilities of portfolios with weightings w E W at the 100(p)%

tolerance level, we can induce correlation for individual portfolios. Grouping sim-

ilar portfolios together, we propose below a method for estimating the generalized

variance-covariance matrix at the 100(p)% tolerance level, denoted E(p). This matrix

will summarize the PMVs of different portfolios at the 100(p)% tolerance level under

the general non-Gaussian distribution.

When the empirical distribution of z(k) k = 1,..., m is used to generate the

different empirical portfolio return distributions, let E(p) denote the estimate of Z(p).

E(p) is a positive definite matrix (any variance-covariance matrix is positive definite)

that best matches with all the EPMVs of portfolios with weightings w E W at

the 100(p)% tolerance level. Mathematically, t(p) is the solution of the following

minimization problem

Min S(E/W, p) = EW dw{ w'Ew -{-(w/p)} 2

subject to E p.d (3.28)

p.d. stands for 'positive definite'. Chapter 6 will discuss how to approximate solutions

to this optimization problem using non-linear programming algorithms.

In order to capture the asymmetry of risk exposure and the varying correlation

induced by different portfolios, we cannot have just one estimate of the generalized

variance-covariance matrix. We use different estimates of the generalized variance-

covariance matrix to match the PMVs of a group of portfolios with similar weightings

w. In Figure 1-1, different groups of portfolios with similar weightings are repre-
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Figure 3-13: Fitting &(w/99%) for USD/DEM and USD/JPY, w e W
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sented by different segments of W. In doing so, we need to give new notations to

the different estimates of the generalized variance-covariance matrix. These nota-

tions should identify the different collections of portfolios with similar weightings.

Using Figure 1-1, the directions NE, NW, SW and SE, for eaxmple, can identify re-

spectively the segments of W in the four quadrants, i.e. the segments in the first,

second, third and fourth quadrant are respectively denoted W(NE ) , W(NW), W(SW)

and W(SE), if we want to find the estimates of the generalized variance-covariance

matrix matching the PMVs of portfolios with weightings w within each quadrant.

Let S(E/W (NE), p), ... , S(E/W(sE), p) denote the respective objective functions, and

t(NE) (p),..., j(SE)(p) denote the respective solutions.

Figure 3-13 illustrates the EPMVs, the historical volatility estimates given by

the MLE Gaussian model and the volatility estimates given by vlw'E(99%)w of

portfolios with weightings w that hold USD/DEM and USD/JPY. We see that some
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Figure 3-14: Fitting 5(w/99%) separately in the 4 quadrants of W for USD/DEM
and USD/JPY
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parts of &(w/99%) are not fitted well by t(99%). Figure 3-14 illustrates the fit

of a(w/99%) separately in the 4 quadrants of W. i.e. we are using the portfolio

risk estimates given by the four matrices t(NE)(99%),... ,(SE)(99%) for the fitted

curve. When compared to Figure 3-13, the fit in Figure 3-14 is much better. This

illustrates that the asymmetry of risk in the empirical data at 99% tolerance level is

not captured very well by Y(99%), but is captured much better by the four matrices

t(NE)(99%),... (SE) (99%).

It is interesting to compare the different matrices and illustrate by the comparison

the skewed asymmetry and kurtosis features. Denote voll (in %) as the volatility

estimate of the first variable (USD/DEM) given by a generalized variance-covariance

matrix E(p), vol2 (in %) as the volatility estimate of the second variable (USD/JPY)

given by E(p) and corr as the correlation between the two variables (USD/DEM and

USD/JPY) given by E(p) i.e.

vol = /{(P))11

vol2 = /(E(P)}22

({(P))12
(voll) (vol2)

Table 3.1 illustrates the values of voll, vol2 and corr given by the respective

empirical generalized variance-covariance matrix estimates whose name is given in

the first column. The name with just the two exchange rates represents the matrix

E(99%). The name with the two exchange rates plus a direction, for example (NE)

represents the matrix j(NE)(99%). The sample variance-covariance matrix, named

MLE, is for comparison to show kurtosis. Asymmetry at the l00(p)% tolerance level

is shown via the different volatility estimates of the same asset given by the four

matrices t(NE) (p), .. ., (SE) (p).

We see that the risk estimates of USD/DEM and USD/JPY at the 99% toler-

ance level based on the different generalized variance-covariance matrices are respec-

tively larger than those implied by the maximum likelihood estimate of the variance-

covariance matrix. This quantifies the evidence that the MLE Gaussian model under-
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Table 3.1: Summary of the generalized variance-covariance matrices (empirical esti-
mates) for USD/DEM and USD/JPY at 99% tolerance level

estimate the risk exposure of USD/DEM and USD/JPY implied by the empirical data

at the 99% tolerance level.

Results at both the 95% and 99% tolerance levels for other foreign exchange rates

and equity indexes are given in Chapter 4.

3.6 Generalized Variance-Covariance Matrices For

More Than Two Assets

When portfolios have holdings of n assets, the different risk exposures of different

portfolios are summarized by an n-dimensional variance-covariance matrix. The re-

sults that we have generated so far are only in two dimensions. Because we can

solve the minimization problem given by Equation 3.28 fast with a pair of assets, we

use the two dimensional methods repeatedly to build the relavant variance-covariance

matrix in n dimensions for modeling the risks of portfolios under non-Gaussian distri-

bution assumptions. The algorithm to model the risk of a portfolio w at the 100(p)%

tolerance level under the empirical distribution assumption is given as follows.

Algorithm 3.1 1. Given a portfolio w = (wl,... , w)', (wj 0 Vj) identify

the sign of each wj. i.e. identify whether the portfolio has a long or short

position in the jth asset. For j = 1,..., n, set sj = +(-) if wj > (<)0. Denote

S = (S1, * * , Sn)-
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Matrix name voll(%) vol2(%) corr
USD/DEM, USD/JPY 0.863 0.758 0.636
USD/DEM, USD/JPY (NE) 0.882 0.808 0.540
USD/DEM, USD/JPY (NW) 0.887 0.808 0.624
USD/DEM, USD/JPY (SW) 0.863 0.731 0.568
USD/DEM, USD/JPY (SE) 0.854 0.731 0.700
MLE 0.732 0.643 0.645



2. Each of the n assets is identified with an integer from 1 to n. The jth asset

is identified by j. Among the n assets, choose in turn two assets from the n
n

until all the possible combinations have been chosen. Denote the kth
2

combination (xk), x )), k C {1,.., ,

3. For each k C, estimate the EPMVs of portfolios with weightings w E at

the 100(p)% tolerance level.

4. For each k E Cn, if the portfolio's holding in x) is positive (negative), set

i(k) = E (W); if the portfolio's holding in x2k ) is positive (negative), set i(k) =

N (S). Solve the problem given in Equation 3.28 with S( 2/W(ik)ik)),p) as the

objective function. Denote the solution of the problem (2 1i( k))(p).

5. Set, for i = 1, 2,

= {t(i( 2 1 )(P)}ii, (3.29)

and

rx-)fi(/k)i(k)
(Xk) (k) ) _ (_ 2 1 (P) 12

Note x k)) _ 5 (k) k))

6. Denote the n-dimensional generalized variance-covariance matrix as Y]n(s/p).

For j = 1, ... , n, set

{n(S/P)}jj = n- ( Z .2(x)) + E t2(x2))), (3.31)
{keCl:a? )=j} {kc2 :2 : )=j 

and for l <i < n, 1 < j <n such that i # j set

{Yn(S/P)}ij = p(i,J) {j(.(i2 )(p)}ll{Y(2 )))(p)}22 (3.32)
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The algorithm assembles the different 2 x 2 matrices together into an n x n matrix.

The ith diagonal element of the n x n matrix is the average of the n - 1 variance esti-

mates for the ith asset from the (n - 1) 2 x 2 generalized variance-covariance matrices

that involve the ith asset. The (i, j) element off the diagonal is the covariance of assets

i and j such that the correlation between the assets estimated by the corresponding

2 x 2 generalized variance-covariance matrix involving the two assets is maintained. In

this way, the n-dimensional generalized variance-covariance matrix remains positive

definite.

Instead of showing an n x n generalized variance-covariance matrix directly, a more

informative way to show the matrix is to use the correlation matrix with the diagonal

elements of 's replaced by the respective volatility estimates of the individual assets.

The volatility estimate of the ith asset is the square root of the ith element in the

diagonal of the n x n generalized variance-covariance matrix. The ith column and

row of the matrix are respectively named (i th asset name}si where si = +(-) if the

portfolio is long (short) in the ith asset.

Table 3.2 illustrates the information of the generalized variance-covariance matrix

that characterizes the risk at 99% tolerance level of any portfolio that has long posi-

tions in all of the four equity indexes. Table 3.3 illustrates a similar matrix but for

portfolios that short all of the four equity indexes. The two tables are generated from

results given in Table 4.3 in Chapter 4.

From the two tables, we see evidence of asymmetry in the four equity indexes.

The downside risk of each equity index is larger than the upside risk. Also the

correlations between pairs of indexes are more positive when the estimates are focusing

on accurately measuring downside risks versus upside risks. This shows that the

indexes more frequently slump together than climb together.

Table 3.4 is the variance-covariance matrix estimated by maximum likelihood.

Comparing this matrix with those in Tables 3.2 and 3.3, we see that leptokurto-

sis is evident and symmetric across all equity indexes except SP500, in which case

asymmetric leptokurtosis occurs only on the downside.
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Table 3.2: The generalized variance-covariance matrix (empirical estimate) at 99%
tolerance level for portfolios that have long positions of all of the four equity indexes

Table 3.3: The generalized
tolerance level for portfolios

variance-covariance matrix (empirical estimate) at 99%
that have short positions of all of the four equity indexes

Table 3.4: The MLE variance-covariance matrix for the four equity indexes
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SP500+ NIKKEI + DAX+ CAC-40+

SP500 + 1.340 0.180 0.340 0.340
NIKKEI + 0.180 1.370 0.440 0.420
DAX + 0.340 0.440 1.761 0..616
CAC-40 + 0.340 0.420 0.616 1.539

SP500- NIKKEI- DAX- CAC-40-
SP500- 1.094 -0.020 0.028 -0.032
NIKKEI- -0.020 1.276 -0.072 0.140
DAX- 0.028 -0.072 1.649 0.000
CAC-40- -0.032 0.140 0.000 1.216

SP500 NIKKEI DAX CAC-40
SP500 1.238 0.124 0.201 0.133
NIKKEI 0.124 1.109 0.303 0.316
DAX 0.201 0.303 1.415 0.432
CAC-40 0.133 0.316 0.432 1.175



3.7 Stress Variance-Covariance Matrices

Analogous to a generalized variance-covariance matrix at the 100(p)% tolerance level,

which is summarizing the PMVs of different portfolios at the 100(p)% tolerance level,

the 100(p)% stress variance-covariance matrix is the matrix that summarizes the

100(p)% stress volatilities of different portfolios. Let Q(p) denote this 100(p)% stress

variance-covariance matrix.

Under the empirical distribution assumption, let Q(p) denote the estimate of Q(p).

Mathematically Q(p) is the solution of a problem similar to that given by Equa-

tion 3.28. This particular problem is

Min R(E/W,p) jqweW dw {w{- f(W/p)) 2

subject to E p.d (3.33)

The only difference between this problem and the one given by Equation 3.28

is that the constant term in the objective function is different. Before, it was the

EPMV. In this problem, the constant is the empirical stress volatility estimated by

the stress Gaussian parameters.

As before, we try to capture asymmetry of risk exposure and the varying correla-

tion by solving the problem within different segments of W. Let Q(NE) (p),... , (SE) (p)

denote respectively the different empirical 100(p)% stress variance-covariance esti-

mates. The information of a matrix is summarized the same way as for the gener-

alized variance-covariance matrix using voll, vol2, and corr. Further, we can apply

Algorithm 3.1 to build the relavant empirical n x n stress variance-covariance matrix

estimate. The different steps are estimating the empirical 100(p)% stress volatilities

of portfolios with weightings w W instead of step 3; and solving Problem 3.33

rather than Problem 3.28 in step 4.

Table 3.5 shows the information of the empirical 95% stress variance-covariance

matrices estimates of portfolios that hold USD/DEM and USD/JPY. When the re-

sults of this table are compared to the results in Table 4.5, we see that the volatility

estimates given by the stress matrices lie between those given by the respective gen-
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Table 3.5: Summary of the 95% stress variance-covariance matrices (empirical esti-
mates) for USD/DEM and USD/JPY

Matrix name voll(%) vol2(%) corr
USD/DEM, USD/JPY (NE) 0.783 0.731 0.620
USD/DEM, USD/JPY (NW) 0.813 0.755 0.628
USD/DEM, USD/JPY (SW) 0.817 0.693 0.620
USD/DEM, USD/JPY (SE) 0.784 0.682 0.668
MLE 0.732 0.643 0.645

erlized matrices at 95% and 99% tolerance level. This suggests that the 95% stress

tolerance level will typically lie between 95% and 99%. (closer to 99% than 95%).

Moreover, we see from Table 3.5 that the volatility estimates given by the stress ma-

trices are all greater than the respective MLE estimates. This implies that under the

95% stressful conditions, the risk of each individual asset is larger than that estimated

by the MLE Gaussian model.

Tables 3.6 and 3.7 are the respective 95% stress variance-covariance matrix (em-

pirical estimate) of the portfolios that have either long or short positions in all of the

four equity indexes. When compared to the respective generalized variance-covariance

matrix (empirical estimate) at the 99% tolerance level, we see that all the volatility

estimates of the indiviual indexes (elements on the digonal of the matrix) are lower in

the stress matrix, with the exception of that of SP500 +. This implies that the 95%

stress tolerance level of a long portfolio of the SP500 index is beyond the 99% level

under the empirical distribution assumption. This may be because of the 1987 crash

when the one-day realized return was -20.4%, which lowers the SER and consequently

increases the stress tolerance level.

By comparing Tables 3.6 and 3.7 with Table 3.4, asymmetric leptokurtosis on the

downside is evident for all the indexes except Nikkei which has symmetric leptokur-

tosis.

Results using the two dimensional methods for other pairs of foreign exchage rates

with the USD and the DEM and pairs of equity indexes are given in Chapter 4.
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Table 3.6: The 95% stress variance-covariance matrix (empirical estimate) for port-
folios that have long positions of all of the four equity indexes

Table 3.7: The 95% stress variance-covariance matrix (empirical estimate) for port-
folios that have short positions of all of the four equity indexes
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SP500+ NIKKEI+ DAX+ CAC-40+

SP500+ 1.410 0.088 0.168 0.220
NIKKEI + 0.088 1.325 0.292 0.336
DAX + 0.168 0.292 1.645 0.360
CAC-40 + 0.220 0.336 0.360 1.420

SP500- NIKKEI- DAX- CAC-40-
SP500- 1.060 0.120 0.164 0.004
NIKKEI- 0.120 1.136 0.164 0.180
DAX- 0.164 0.164 1.409 0.204
CAC-40- 0.004 0.180 0.204 1.140



Chapter 4

Applications to Foreign Exchange

and Equity Index Returns

4.1 Introduction

This chapter presents results for datasets other than the USD/DEM and USD/JPY

exchange rates. These datasets have already been introduced and described in Sec-

tion 2.2. While many results could be presented, we give only the information sum-

mary of the 2 x 2 generalized and stress variance-covariance matrices.

4.2 Generalized Variance-Covariance Matrices Re-

sults

This section presents the results of estimating the 2 x 2 generalized variance-covariance

matrices as in Table 3.1 in Section 3.5 for other pairs of foreign exchange rates at both

the 95% and 99% tolerance levels. Table 4.1 presents the results for pairs of foreign

exchange rates chosen from the seven currencies with the DEM. Table 4.2 presents

the results for pairs of foreign exchange rates chosen from the eight curreicies with

the USD. Table 4.3 presents the results for pairs of equity indexes chosen from the

four equity indexes.
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Table 4.1: Summary of the generalized variance-covariance matrices (empirical esti-
mates) for pairs of exchange rates with the DEM at 95% and 99% tolerance levels

95% tolerance level 99% tolerance level
Matrix name voll (%) vol2 (%) corr voll (%) vol2 (%) corr

USD, CHF 0.712 0.263 0.036 0.866 0.289 -0.024
USD, CHF (NE) 0.708 0.277 0.000 0.886 0.319 -0.104
USD, CHF (NW) 0.711 0.261 0.028 0.870 0.304 -0.040
USD, CHF (SW) 0.714 0.257 0.056 0.861 0.287 -0.100
USD, CHF (SE) 0.724 0.261 0.060 0.890 0.289 0.160

USD, ESP 0.731 0.258 -0.204 0.864 0.421 -0.148
USD, ESP (NE) 0.728 0.243 -0.196 0.899 0.338 -0.260
USD , ESP (NW) 0.717 0.238 -0.320 0.871 0.383 -0.052
USD , ESP (SW) 0.706 0.244 0.000 0.885 0.534 -0.280
USD, ESP (SE) 0.719 0.263 -0.316 0.921 0.554 0.220
USD , FRF 0.721 0.103 -0.260 0.878 0.138 -0.176
USD , FRF (NE) 0.721 0.100 -0.280 0.907 0.137 -0.316
USD , FRF (NW) 0.719 0.105 -0.240 0.868 0.134 -0.196
USD , FRF (SW) 0.706 0.092 -0.080 0.868 0.155 -0.240
USD, FRF (SE) 0.730 0.105 -0.236 0.883 0.162 0.000
USD , ITL 0.731 0.247 -0.204 0.873 0.392 -0.100
USD , ITL (NE) 0.725 0.218 -0.176 0.905 0.360 -0.276
USD , ITL (NW) 0.718 0.220 -0.340 0.876 0.372 -0.020
USD , ITL (SW) 0.700 0.232 0.068 0.874 0.452 -0.160
USD , ITL (SE) 0.734 0.252 -0.240 0.903 0.473 0.144
USD, JPY 0.718 0.584 -0.312 0.872 0.658 -0.336
USD, JPY (NE) 0.715 0.595 -0.300 0.888 0.731 -0.388
USD, JPY (NW) 0.703 0.581 -0.368 0.903 0.703 -0.236
USD, JPY (SW) 0.724 0.573 -0.320 0.869 0.617 -0.380
USD, JPY (SE) 0.725 0.575 -0.316 0.873 0.643 -0.220

USD, GBP 0.717 0.455 0.208 0.861 0.550 0.140
USD, GBP (NE) 0.717 0.474 0.268 0.889 0.583 -0.020
USD, GBP (NW) 0.710 0.477 0.144 0.858 0.594 0.140
USD, GBP (SW) 0.715 0.417 0.200 0.885 0.550 0.040
USD , GBP (SE) 0.717 0.434 0.260 0.887 0.538 0.288

CHF, ESP 0.267 0.244 0.064 0.299 0.438 -0.060
CHF, ESP (NE) 0.264 0.234 0.016 0.304 0.350 0.060
CHF , ESP (NW) 0.260 0.238 0.040 0.281 0.340 0.020
CHF , ESP (SW) 0.261 0.255 0.180 0.306 0.524 -0.280
CHF , ESP (SE) 0.262 0.244 -0.040 0.310 0.539 -0.056
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Table 4.1: Summary of the generalized variance-covariance matrices (empirical esti-
mates) for pairs of exchange rates with the DEM at 95% and 99% tolerance levels

95% tolerance level 99% tolerance level
Matrix name voll (%) vol2 (%) corr voll (%) vol2 (%) corr

CHF, FRF 0.265 0.099 0.076 0.297 0.146 -0.012
CHF , FRF (NE) 0.265 0.094 0.080 0.312 0.139 -0.004
CHF ,FRF (NW) 0.266 0.098 0.116 0.283 0.128 -0.036
CHF , FRF (SW) 0.264 0.099 0.120 0.287 0.152 -0.060
CHF , FRF (SE) 0.264 0.100 0.020 0.302 0.161 -0.080

CHF , ITL 0.264 0.234 0.068 0.293 0.406 0.016
CHF , ITL (NE) 0.269 0.220 0.076 0.303 0.363 0.068
CHF , ITL (NW) 0.260 0.213 0.040 0.287 0.378 0.164
CHF , ITL (SW) 0.263 0.246 0.100 0.300 0.459 -0.200
CHF , ITL (SE) 0.267 0.254 0.036 0.312 0.441 -0.020
CHF , JPY 0.260 0.580 0.096 0.302 0.657 0.008
CHF , JPY (NE) 0.259 0.588 0.148 0.317 0.685 -0.060
CHF , JPY (NW) 0.254 0.583 0.080 0.282 0.693 0.000
CHF , JPY (SW) 0.257 0.573 0.100 0.283 0.619 0.148
CHF , JPY (SE) 0.258 0.571 0.040 0.318 0.629 0.040
CHF, GBP 0.262 0.442 -0.076 0.291 0.568 -0.048
CHF, GBP (NE) 0.261 0.465 -0.056 0.305 0.608 -0.120
CHF, GBP (NW) 0.260 0.468 -0.116 0.276 0.597 -0.120
CHF, GBP (SW) 0.257 0.421 -0.060 0.285 0.539 -0.052
CHF, GBP (SE) 0.259 0.414 -0.100 0.311 0.531 0.040
ESP , FRF 0.243 0.103 0.412 0.423 0.145 0.412
ESP , FRF (NE) 0.234 0.093 0.560 0.329 0.135 0.424
ESP , FRF (NW) 0.253 0.097 0.388 0.494 0.134 0.340
ESP , FRF (SW) 0.250 0.106 0.520 0.513 0.144 0.476
ESP , FRF (SE) 0.229 0.097 0.280 0.336 0.145 0.320
ESP , ITL 0.253 0.240 0.428 0.417 0.412 0.348
ESP , ITL (NE) 0.233 0.218 0.452 0.331 0.372 0.560
ESP , ITL (NW) 0.251 0.215 0.280 0.487 0.368 0.280
ESP , ITL (SW) 0.249 0.243 0.940 0.520 0.462 0.132
ESP , ITL (SE) 0.235 0.245 0.328 0.320 0.435 0.280
ESP , JPY 0.244 0.589 0.172 0.414 0.665 0.052
ESP , JPY (NE) 0.233 0.579 0.220 0.354 0.702 -0.048
ESP , JPY (NW) 0.240 0.589 0.060 0.521 0.706 0.120
ESP , JPY (SW) 0.258 0.577 0.236 0.508 0.651 -0.020
ESP , JPY (SE) 0.231 0.573 0.160 0.340 0.626 0.120
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Table 4.1: Summary of the generalized variance-covariance matrices (empirical esti-
mates) for pairs of exchange rates with the DEM at 95% and 99% tolerance levels

95% tolerance level 99% tolerance level
Matrix name voll (%) vol2 (%) corr voll (%) vol2 (%) corr
ESP, GBP 0.252 0.448 -0.248 0.419 0.566 -0.208
ESP , GBP (NE) 0.222 0.464 -0.120 0.335 0.606 -0.136
ESP , GBP (NW) 0.259 0.464 -0.380 0.530 0.597 -0.140
ESP , GBP (SW) 0.248 0.414 -0.120 0.498 0.529 -0.260
ESP , GBP (SE) 0.230 0.418 -0.412 0.337 0.542 -0.200
FRF , ITL 0.103 0.233 0.516 0.147 0.415 0.424
FRF , ITL (NE) 0.092 0.218 0.604 0.134 0.374 0.460
FRF , ITL (NW) 0.101 0.214 0.456 0.149 0.369 0.432
FRF , ITL (SW) 0.096 0.250 0.808 0.153 0.442 0.560
FRF , ITL (SE) 0.100 0.246 0.456 0.155 0.459 0.460
FRF , JPY 0.099 0.587 0.204 0.139 0.665 0.124
FRF , JPY (NE) 0.098 0.589 0.180 0.140 0.707 -0.024
FRF , JPY (NW) 0.098 0.587 0.140 0.152 0.708 0.120
FRF , JPY (SW) 0.094 0.577 0.360 0.155 0.628 0.132
FRF , JPY (SE) 0.096 0.580 0.220 0.130 0.631 0.220
FRF, GBP 0.102 0.441 -0.188 0.141 0.568 -0.128
FRF, GBP (NE) 0.090 0.459 0.020 0.133 0.613 -0.240
FRF, GBP (NW) 0.102 0.460 -0.280 0.138 0.593 -0.272
FRF, GBP (SW) 0.095 0.411 -0.100 0.152 0.539 -0.136
FRF , GBP (SE) 0.093 0.414 -0.380 0.143 0.536 -0.060
ITL , JPY 0.240 0.585 0.176 0.401 0.660 0.172
ITL, JPY (NE) 0.217 0.589 0.224 0.378 0.692 0.100
ITL, JPY (NW) 0.245 0.576 -0.040 0.431 0.717 0.180
ITL, JPY (SW) 0.241 0.573 0.344 0.458 0.636 0.100
ITL , JPY (SE) 0.210 0.573 0.164 0.369 0.637 0.276
ITL , GBP 0.243 0.450 -0.128 0.391 0.571 -0.088
ITL, GBP (NE) 0.207 0.465 0.080 0.365 0.609 -0.180
ITL, GBP (NW) 0.243 0.454 -0.400 0.445 0.605 0.040
ITL, GBP (SW) 0.250 0.419 -0.020 0.453 0.542 -0.180
ITL , GBP (SE) 0.213 0.420 -0.300 0.370 0.556 0.020
JPY, GBP 0.581 0.451 -0.176 0.648 0.565 -0.076
JPY, GBP (NE) 0.590 0.469 -0.136 0.699 0.604 -0.060
JPY, GBP (NW) 0.565 0.466 -0.248 0.627 0.603 -0.100
JPY, GBP (SW) 0.567 0.417 -0.136 0.620 0.553 -0.220
JPY, GBP (SE) 0.577 0.413 -0.292 0.695 0.539 0.056
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Table 4.2: Summary of the generalized variance-covariance matrices (empirical esti-
mates) for pairs of exchange rates with the USD at 95% and 99% tolerance levels

95% tolerance level 99% tolerance level
Matrix name voll (%) vol2 (%) corr voll (%) vol2 (%) corr
AUD, CAD 0.603 0.271 -0.272 0.758 0.315 -0.232
AUD, CAD (NE) 0.655 0.260 -0.240 0.873 0.313 -0.320
AUD, CAD (NW) 0.551 0.258 -0.308 0.669 0.310 -0.120
AUD , CAD (SW) 0.546 0.270 -0.240 0.673 0.368 -0.404
AUD, CAD (SE) 0.658 0.279 -0.292 0.887 0.362 0.000
AUD, CHF 0.608 0.790 -0.140 0.758 0.889 -0.160
AUD, CHF (NE) 0.666 0.808 -0.144 0.885 0.906 -0.232
AUD, CHF (NW) 0.554 0.785 -0.240 0.665 0.909 -0.100
AUD, CHF (SW) 0.551 0.784 -0.160 0.652 0.890 -0.208
AUD, CHF (SE) 0.665 0.785 -0.084 0.863 0.882 -0.092
AUD, DEM 0.611 0.711 -0.132 0.750 0.863 -0.144
AUD, DEM (NE) 0.668 0.722 -0.128 0.876 0.887 -0.184
AUD , DEM (NW) 0.565 0.708 -0.136 0.665 0.861 -0.084
AUD, DEM (SW) 0.545 0.707 -0.120 0.665 0.906 -0.300
AUD, DEM (SE) 0.649 0.709 -0.176 0.864 0.867 -0.108
AUD, FRF 0.612 0.685 -0.148 0.747 0.840 -0.168
AUD , FRF (NE) 0.669 0.690 -0.136 0.871 0.854 -0.224
AUD FRF (NW) 0.566 0.688 -0.140 0.666 0.836 -0.084
AUD , FRF (SW) 0.541 0.678 -0.120 0.653 0.862 -0.268
AUD , FRF (SE) 0.648 0.687 -0.172 0.877 0.868 -0.052
AUD, GBP 0.609 0.722 0.200 0.765 0.859 0.236
AUD, GBP (NE) 0.656 0.761 0.216 0.864 0.927 0.108
AUD, GBP (NW) 0.551 0.756 0.228 0.675 0.895 0.324
AUD, GBP (SW) 0.561 0.681 0.204 0.657 0.859 0.188
AUD, GBP (SE) 0.661 0.690 0.160 0.888 0.839 0.280
AUD, ITL 0.607 0.675 -0.144 0.756 0.845 -0.184
AUD, ITL (NE) 0.660 0.662 -0.100 0.886 0.849 -0.264
AUD, ITL (NW) 0.558 0.666 -0.172 0.670 0.850 -0.080
AUD, ITL (SW) 0.550 0.679 -0.160 0.655 0.853 -0.240
AUD, ITL (SE) 0.651 0.683 -0.160 0.863 0.864 -0.112
AUD, JPY 0.611 0.616 -0.116 0.768 0.774 -0.108
AUD, JPY (NE) 0.656 0.605 0.028 0.864 0.806 -0.028
AUD , JPY (NW) 0.548 0.620 -0.216 0.664 0.811 -0.104
AUD , JPY (SW) 0.552 0.601 -0.160 0.674 0.738 -0.260
AUD , JPY (SE) 0.671 0.602 -0.084 0.871 0.741 -0.024
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Table 4.2: Summary of the generalized variance-covariance matrices (empirical esti-
mates) for pairs of exchange rates with the USD at 95% and 99% tolerance levels

95% tolerance level 99% tolerance level
Matrix name voll (%) vol2 (%) corr voll (%) vol2 (%) corr
CAD, CHF 0.267 0.793 0.212 0.326 0.888 0.164
CAD, CHF (NE) 0.261 0.803 0.180 0.310 0.902 0.040
CAD, CHF (NW) 0.275 0.803 0.200 0.365 0.902 0.240
CAD, CHF (SW) 0.272 0.788 0.232 0.348 0.887 0.160
CAD , CHF (SE) 0.260 0.780 0.200 0.322 0.872 0.200

CAD , DEM 0.269 0.719 0.200 0.320 0.870 0.152
CAD , DEM (NE) 0.259 0.715 0.188 0.307 0.879 -0.004
CAD , DEM (NW) 0.274 0.718 0.184 0.370 0.899 0.280
CAD , DEM (SW) 0.269 0.704 0.360 0.353 0.895 0.080
CAD , DEM (SE) 0.253 0.710 0.140 0.327 0.867 0.240
CAD , FRF 0.272 0.689 0.220 0.320 0.846 0.156
CAD , FRF (NE) 0.261 0.696 0.200 0.309 0.856 -0.016
CAD , FRF (NW) 0.276 0.686 0.200 0.366 0.851 0.272
CAD , FRF (SW) 0.272 0.678 0.328 0.361 0.884 -0.020
CAD , FRF (SE) 0.254 0.685 0.156 0.323 0.848 0.240

CAD, GBP 0.266 0.720 -0.204 0.326 0.861 -0.208
CAD ?, GBP (NE) 0.263 0.754 -0.252 0.316 0.883 -0.176
CAD , GBP (NW) 0.270 0.757 -0.224 0.357 0.903 -0.200
CAD, GBP (SW) 0.268 0.675 -0.108 0.364 0.857 -0.360
CAD, GBP (SE) 0.262 0.680 -0.200 0.307 0.856 -0.024

CAD , ITL 0.270 0.680 0.200 0.323 0.837 0.192
CAD , ITL (NE) 0.253 0.664 0.276 0.307 0.854 0.040
CAD, ITL (NW) 0.269 0.661 0.116 0.371 0.854 0.328
CAD , ITL (SW) 0.274 0.680 0.272 0.356 0.867 0.096
CAD , ITL (SE) 0.254 0.684 0.164 0.323 0.846 0.240

CAD , JPY 0.275 0.616 0.072 0.322 0.769 0.060
CAD , JPY (NE) 0.253 0.617 0.220 0.311 0.832 -0.060
CAD , JPY (NW) 0.270 0.614 -0.088 0.365 0.800 0.036
CAD , JPY (SW) 0.277 0.594 0.124 0.352 0.751 -0.080
CAD , JPY (SE) 0.258 0.603 0.056 0.324 0.729 0.212

CHF , DEM 0.792 0.713 0.940 0.895 0.868 0.948
CHF , DEM (NE) 0.810 0.713 0.920 0.896 0.888 0.980
CHF , DEM (NW) 0.787 0.717 0.944 0.887 0.867 0.952
CHF , DEM (SW) 0.789 0.703 0.912 0.890 0.867 0.904
CHF , DEM (SE) 0.793 0.714 0.936 0.892 0.850 0.932
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Table 4.2: Summary of the generalized variance-covariance matrices (empirical esti-
mates) for pairs of exchange rates with the USD at 95% and 99% tolerance levels

95% tolerance level 99% tolerance level
Matrix name voll (%) vol2 (%) corr voll (%) vol2 (%) corr
CHF, FRF 0.795 0.684 0.928 0.896 0.844 0.932
CHF , FRF (NE) 0.808 0.696 0.872 0.906 0.861 0.880
CHF FRF (NW) 0.795 0.689 0.936 0.894 0.840 0.940
CHF , FRF (SW) 0.780 0.684 0.944 0.891 0.838 0.928
CHF , FRF (SE) 0.795 0.685 0.924 0.899 0.846 0.920
CHF, GBP 0.789 0.717 -0.784 0.890 0.882 -0.784
CHF, GBP (NE) 0.801 0.751 -0.792 0.889 0.889 -0.748
CHF, GBP (NW) 0.788 0.762 -0.648 0.896 0.906 -0.744
CHF , GBP (SW) 0.781 0.689 -0.792 0.881 0.845 -0.792
CHF, GBP (SE) 0.798 0.680 -0.824 0.888 0.861 -0.844
CHF , ITL 0.790 0.671 0.880 0.905 0.851 0.880
CHF , ITL (NE) 0.804 0.659 0.900 0.907 0.851 0.932
CHF , ITL (NW) 0.797 0.678 0.892 0.878 0.830 0.876
CHF , ITL (SW) 0.787 0.681 0.848 0.887 0.852 0.928
CHF , ITL (SE) 0.797 0.678 0.876 0.895 0.843 0.852
CHF , JPY 0.791 0.615 0.644 0.881 0.758 0.636
CHF , JPY (NE) 0.803 0.628 0.584 0.892 0.809 0.580
CHF , JPY (NW) 0.774 0.618 0.596 0.907 0.802 0.632
CHF, JPY (SW) 0.794 0.594 0.736 0.887 0.715 0.616
CHF , JPY (SE) 0.790 0.605 0.652 0.885 0.725 0.680
DEM, FRF 0.717 0.689 0.984 0.876 0.854 0.984
DEM , FRF (NE) 0.719 0.694 0.948 0.882 0.858 1.000
DEM , FRF (NW) 0.709 0.689 0.984 0.874 0.846 0.984
DEM , FRF (SW) 0.708 0.681 1.000 0.866 0.863 0.960
DEM , FRF (SE) 0.720 0.685 0.984 0.876 0.854 0.984
DEM, GBP 0.713 0.713 -0.804 0.867 0.875 -0.812
DEM, GBP (NE) 0.724 0.747 -0.808 0.882 0.899 -0.796
DEM, GBP (NW) 0.716 0.761 -0.716 0.873 0.892 -0.840
DEM, GBP (SW) 0.713 0.690 -0.816 0.869 0.844 -0.836
DEM, GBP (SE) 0.715 0.684 -0.824 0.861 0.866 -0.760
DEM , ITL 0.717 0.669 0.928 0.882 0.853 0.928
DEM , ITL (NE) 0.721 0.656 0.952 0.888 0.857 0.952
DEM , ITL (NW) 0.717 0.669 0.932 0.861 0.827 0.920
DEM, ITL (SW) 0.716 0.683 0.856 0.863 0.852 0.972
DEM 9 ITL (SE) 0.725 0.681 0.932 0.871 0.848 0.916
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Table 4.2: Summary of the generalized variance-covariance matrices (empirical esti-
mates) for pairs of exchange rates with the USD at 95% and 99% tolerance levels

95% tolerance level 99% tolerance level
Matrix name voll (%) vol2 (%) corr voll (%) vol2 (%) corr
DEM, JPY 0.716 0.620 0.652 0.863 0.758 0.636
DEM, JPY (NE) 0.716 0.614 0.700 0.882 0.805 0.540
DEM, JPY (NW) 0.697 0.619 0.592 0.887 0.808 0.624
DEM, JPY (SW) 0.716 0.595 0.780 0.863 0.731 0.568
DEM , JPY (SE) 0.710 0.608 0.648 0.854 0.731 0.700
FRF , GBP 0.685 0.719 -0.804 0.853 0.876 -0.816
FRF, GBP (NE) 0.692 0.746 -0.804 0.845 0.892 -0.780
FRF, GBP (NW) 0.684 0.764 -0.724 0.872 0.885 -0.848
FRF, GBP (SW) 0.680 0.688 -0.804 0.848 0.849 -0.840
FRF, GBP (SE) 0.680 0.681 -0.872 0.843 0.865 -0.752
FRF , ITL 0.692 0.670 0.936 0.861 0.856 0.928
FRF , ITL (NE) 0.694 0.660 0.940 0.863 0.844 1.000
FRF , ITL (NW) 0.685 0.666 0.936 0.846 0.837 0.916
FRF , ITL (SW) 0.679 0.678 0.976 0.851 0.854 0.996
FRF , ITL (SE) 0.693 0.677 0.936 0.838 0.850 0.912
FRF, JPY 0.691 0.620 0.636 0.833 0.752 0.624
FRF, JPY (NE) 0.688 0.621 0.620 0.828 0.803 0.600
FRF, JPY (NW) 0.672 0.620 0.572 0.877 0.810 0.628
FRF, JPY (SW) 0.690 0.588 0.820 0.847 0.729 0.524
FRF , JPY (SE) 0.678 0.607 0.636 0.833 0.732 0.696
GBP , ITL 0.719 0.676 -0.764 0.877 0.843 -0.780
GBP , ITL (NE) 0.744 0.689 -0.772 0.894 0.828 -0.752
GBP , ITL (NW) 0.677 0.655 -0.892 0.866 0.838 -0.720
GBP , ITL (SW) 0.690 0.682 -0.768 0.838 0.827 -0.772
GBP , ITL (SE) 0.752 0.677 -0.760 0.895 0.848 -0.868
GBP , JPY 0.724 0.620 -0.544 0.858 0.757 -0.520
GBP , JPY (NE) 0.731 0.624 -0.492 0.909 0.784 -0.496
GBP , JPY (NW) 0.677 0.622 -0.620 0.836 0.814 -0.480
GBP , JPY (SW) 0.685 0.601 -0.532 0.841 0.721 -0.588
GBP , JPY (SE) 0.765 0.593 -0.584 0.893 0.746 -0.368
ITL , JPY 0.675 0.622 0.604 0.831 0.761 0.608
ITL , JPY (NE) 0.663 0.623 0.644 0.842 0.809 0.516
ITL , JPY (NW) 0.673 0.620 0.564 0.842 0.806 0.560
ITL , JPY (SW) 0.679 0.599 0.700 0.855 0.718 0.572
ITL , JPY (SE) 0.656 0.606 0.592 0.814 0.740 0.676
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Table 4.3: Summary of the generalized variance-covariance matrices (empirical esti-
mates) for pairs of equity indexes at 95% and 99% tolerance levels

95% tolerance level 99% tolerance level
Matrix name vol1 (%) vol2 (%) corr voll (%) vol2 (%) corr
SP500, NIKKEI 1.001 0.896 0.136 1.202 1.341 0.112
SP500 , NIKKEI (NE) 1.013 0.952 0.180 1.286 1.412 0.180
SP500 , NIKKEI (NW) 0.985 0.928 0.140 1.090 1.386 0.180
SP500 , NIKKEI (SW) 0.982 0.840 0.080 1.112 1.317 -0.020
SP500 , NIKKEI (SE) 1.013 0.861 0.148 1.318 1.209 -0.044
SP500 , DAX 1.008 1.221 0.148 1.222 1.674 0.156
SP500 , DAX (NE) 1.010 1.290 0.160 1.406 1.656 0.340

SP500 , DAX (NW) 0.947 1.278 0.100 1.117 1.778 0.120
SP500 , DAX (SW) 0.977 1.133 0.220 1.065 1.617 0.028

SP500 , DAX (SE) 1.018 1.158 0.116 1.331 1.683 0.260
SP500, CAC-40 0.974 1.142 0.048 1.242 1.385 0.104

SP500, CAC-40 (NE) 1.013 1.154 0.080 1.325 1.544 0.340

SP500 , CAC-40 (NW) 0.975 1.193 0.084 1.087 1.517 0.024

SP500 , CAC-40 (SW) 0.968 1.129 -0.112 1.103 1.192 -0.032
SP500, CAC-40 (SE) 1.031 1.139 0.220 1.294 1.201 0.020
NIKKEI, DAX 0.913 1.225 0.248 1.282 1.703 0.272
NIKKEI, DAX (NE) 0.967 1.302 0.320 1.317 1.833 0.440
NIKKEI, DAX (NW) 0.862 1.247 0.200 1.320 1.816 0.420
NIKKEI, DAX (SW) 0.862 1.149 0.164 1.275 1.670 -0.072
NIKKEI, DAX (SE) 0.895 1.168 0.164 1.418 1.668 0.340

NIKKEI, CAC-40 0.908 1.130 0.216 1.291 1.368 0.336

NIKKEI, CAC-40 (NE) 0.978 1.168 0.260 1.380 1.537 0.420
NIKKEI, CAC-40 (NW) 0.865 1.153 0.208 1.299 1.592 0.440
NIKKEI, CAC-40 (SW) 0.882 1.117 0.028 1.234 1.208 0.140
NIKKEI, CAC-40 (SE) 0.938 1.123 0.248 1.373 1.266 0.404
DAX, CAC-40 1.226 1.132 0.316 1.721 1.361 0.392

DAX, CAC-40 (NE) 1.307 1.161 0.328 1.790 1.536 0.616

DAX, CAC-40 (NW) 1.167 1.182 0.352 1.722 1.645 0.500

DAX, CAC-40 (SW) 1.164 1.107 0.220 1.661 1.248 0.000

DAX, CAC-40 (SE) 1.293 1.128 0.348 1.807 1.236 0.460
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4.3 Stress Variance-Covariance Matrices Results

This section presents the results of the 2 x 2 empirical stress variance-covariance matri-

ces estimates for pairs of foreign exchange rates with the USD and DEM respectively

and for pairs of equity indexes under 95% stressful condition. Table 4.4 presents

the results for pairs of foreign exchange rates chosen from the six curreicies with the

DEM. Table 4.5 presents the results for pairs of foreign exchange rates chosen from

the eight curreicies with the USD. Table 4.6 presents the results for pairs of equity

indexes chosen from the four equity indexes. The estimates from the MLE Gaussian

model are also included for comparison. We see that across nearly all different assets,

the MLE estimate of the individual asset's volatility is smaller than that implied by

any empirical stress variance-covariance matrix estimate that involves the asset.
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Table 4.4: Summary of the 95% stress variance-covariance matrices (empirical esti-
mates) for pairs of foreign exchange rates with the DEM

Matrix name voll (%) vol2 (%) corr
USD, CHF (NE) 0.791 0.293 0.028
USD, CHF (NW) 0.827 0.299 0.052
USD, CHF (SW) 0.815 0.277 -0.036
USD , CHF (SE) 0.791 0.280 0.072
USD, CHF MLE 0.734 0.272 0.001
USD , ESP (NE) 0.802 0.323 -0.200
USD, ESP (NW) 0.805 0.329 -0.160
USD, ESP (SW) 0.814 0.414 -0.128
USD , ESP (SE) 0.802 0.419 -0.140
USD , ESP MLE 0.737 0.347 -0.171
USD , FRF (NE) 0.795 0.118 -0.140
USD, FRF (NW) 0.814 0.126 -0.220
USD, FRF (SW) 0.813 0.147 -0.216
USD , FRF (SE) 0.800 0.142 -0.160
USD, FRF MLE 0.737 0.128 -0.202
USD, ITL (NE) 0.796 0.317 -0.204
USD, ITL (NW) 0.806 0.325 -0.080
USD , ITL (SW) 0.809 0.418 -0.140
USD , ITL (SE) 0.801 0.407 -0.120
USD , ITL MLE 0.737 0.331 -0.141
USD , JPY (NE) 0.783 0.660 -0.284
USD, JPY (NW) 0.811 0.670 -0.248
USD, JPY (SW) 0.813 0.604 -0.344
USD , JPY (SE) 0.787 0.618 -0.360
USD , JPY MLE 0.734 0.600 -0.327
USD, GBP (NE) 0.798 0.580 0.040
USD, GBP (NW) 0.819 0.588 0.260
USD, GBP (SW) 0.811 0.499 0.088
USD, GBP (SE) 0.797 0.498 0.264
USD, GBP MLE 0.734 0.474 0.208
CHF , ESP (NE) 0.290 0.323 0.064
CHF, ESP (NW) 0.278 0.325 0.100
CHF, ESP (SW) 0.283 0.413 -0.088
CHF , ESP (SE) 0.291 0.416 -0.136
CHF, ESP MLE 0.269 0.341 -0.008
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Table 4.4: Summary of the 95% stress variance-covariance matrices (empirical esti-
mates) for pairs of foreign exchange rates with the DEM

Matrix name voll (%) vol2 (%) corr
CHF, FRF (NE) 0.295 0.125 0.040
CHF , FRF (NW) 0.275 0.125 0.060
CHF, FRF (SW) 0.280 0.143 0.000
CHF , FRF (SE) 0.293 0.146 -0.012
CHF, FRF MLE 0.269 0.126 0.040

CHF, ITL (NE) 0.293 0.318 0.048

CHF , ITL (NW) 0.275 0.316 0.036
CHF , ITL (SW) 0.282 0.414 -0.080
CHF , ITL (SE) 0.297 0.407 -0.012
CHF, ITL MLE 0.269 0.326 0.005

CHF, JPY (NE) 0.299 0.674 -0.036
CHF, JPY (NW) 0.284 0.657 0.116
CHF, JPY (SW) 0.278 0.603 0.152
CHF, JPY (SE) 0.297 0.611 0.052
CHF, JPY MLE 0.268 0.595 0.103

CHF, GBP (NE) 0.297 0.582 -0.168
CHF, GBP (NW) 0.279 0.577 -0.028
CHF, GBP (SW) 0.276 0.499 -0.112
CHF, GBP (SE) 0.293 0.496 -0.024
CHF, GBP MLE 0.268 0.473 -0.081

ESP, FRF (NE) 0.320 0.129 0.344
ESP, FRF (NW) 0.411 0.129 0.400
ESP, FRF (SW) 0.409 0.139 0.500
ESP, FRF (SE) 0.317 0.141 0.360
ESP, FRF MLE 0.337 0.125 0.384
ESP, ITL (NE) 0.320 0.317 0.364
ESP, ITL (NW) 0.400 0.319 0.280
ESP, ITL (SW) 0.409 0.409 0.420
ESP, ITL (SE) 0.324 0.406 0.380
ESP, ITL MLE 0.337 0.325 0.358
ESP, JPY (NE) 0.330 0.671 0.000
ESP, JPY (NW) 0.418 0.669 0.076
ESP, JPY (SW) 0.413 0.620 0.064
ESP, JPY (SE) 0.322 0.614 0.220
ESP, JPY MLE 0.341 0.600 0.114
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Table 4.4: Summary of the 95% stress variance-covariance matrices (empirical esti-
mates) for pairs of foreign exchange rates with the DEM

Matrix name voll (%) vol2 (%) corr
ESP, GBP (NE) 0.329 0.580 -0.264
ESP, GBP (NW) 0.415 0.582 -0.212
ESP, GBP (SW) 0.414 0.497 -0.236
ESP, GBP (SE) 0.315 0.500 -0.232
ESP, GBP MLE 0.341 0.476 -0.264
FRF, ITL (NE) 0.123 0.313 0.516
FRF , ITL (NW) 0.138 0.315 0.380
FRF, ITL (SW) 0.142 0.410 0.520
FRF, ITL (SE) 0.133 0.409 0.360
FRF, ITL MLE 0.125 0.325 0.352
FRF, JPY (NE) 0.127 0.670 0.076
FRF, JPY (NW) 0.143 0.672 0.160
FRF, JPY (SW) 0.141 0.618 0.160
FRF, JPY (SE) 0.124 0.619 0.220
FRF, JPY MLE 0.126 0.600 0.151
FRF, GBP (NE) 0.125 0.580 -0.200
FRF, GBP (NW) 0.142 0.585 -0.120
FRF, GBP (SW) 0.140 0.497 -0.148
FRF, GBP (SE) 0.128 0.499 -0.100
FRF, GBP MLE 0.126 0.475 -0.194
ITL , JPY (NE) 0.324 0.668 0.140
ITL, JPY (NW) 0.412 0.680 0.200
ITL, JPY (SW) 0.410 0.615 0.140
ITL , JPY (SE) 0.317 0.615 0.220
ITL , JPY MLE 0.326 0.600 0.158
ITL, GBP (NE) 0.321 0.580 -0.184
ITL, GBP (NW) 0.411 0.592 -0.008
ITL, GBP (SW) 0.404 0.506 -0.140
ITL, GBP (SE) 0.313 0.498 -0.088
ITL, GBP MLE 0.326 0.475 -0.166
JPY, GBP (NE) 0.668 0.576 -0.152
JPY, GBP (NW) 0.613 0.577 -0.056
JPY, GBP (SW) 0.608 0.504 -0.180
JPY, GBP (SE) 0.670 0.495 -0.020
JPY, GBP MLE 0.595 0.473 -0.165
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Table 4.5: Summary of the 95% stress variance-covariance matrices (empirical esti-
mates) for pairs of foreign exchange rates with the USD

Matrix name voll (%) voI2 (%) corr
AUD, CAD (NE) 0.795 0.299 -0.312
AUD, CAD (NW) 0.623 0.289 -0.260
AUD, CAD (SW) 0.635 0.315 -0.292
AUD , CAD (SE) 0.800 0.317 -0.152
AUD, CAD MLE 0.638 0.280 -0.228
AUD, CHF (NE) 0.809 0.857 -0.180
AUD, CHF (NW) 0.631 0.873 -0.100
AUD, CHF (SW) 0.636 0.852 -0.224
AUD , CHF (SE) 0.797 0.870 -0.060
AUD, CHF MLE 0.639 0.793 -0.150
AUD, DEM (NE) 0.801 0.788 -0.136
AUD, DEM (NW) 0.622 0.800 -0.144
AUD, DEM (SW) 0.633 0.814 -0.240
AUD, DEM (SE) 0.797 0.833 -0.040
AUD, DEM MLE 0.638 0.734 -0.150
AUD, FRF (NE) 0.805 0.758 -0.156
AUD, FRF (NW) 0.622 0.764 -0.156
AUD, FRF (SW) 0.638 0.817 -0.292
AUD , FRF (SE) 0.797 0.813 -0.048
AUD, FRF MLE 0.638 0.706 -0.160
AUD, GBP (NE) 0.795 0.816 0.188
AUD, GBP (NW) 0.631 0.837 0.280
AUD, GBP (SW) 0.618 0.802 0.184
AUD , GBP (SE) 0.810 0.797 0.240
AUD, GBP MLE 0.638 0.741 0.213
AUD , ITL (NE) 0.807 0.761 -0.200
AUD, ITL (NW) 0.619 0.751 -0.196
AUD, ITL (SW) 0.632 0.809 -0.216
AUD, ITL (SE) 0.799 0.814 -0.060
AUD, ITL MLE 0.638 0.726 -0.139
AUD, JPY (NE) 0.801 0.743 -0.104
AUD, JPY (NW) 0.621 0.725 -0.140
AUD, JPY (SW) 0.636 0.682 -0.220
AUD, JPY (SE) 0.797 0.681 -0.072
AUD , JPY MLE 0.638 0.643 -0.120

71



Table 4.5: Summary of the 95% stress variance-covariance
mates) for pairs of foreign exchange rates with the USD

matrices (empirical esti-

Matrix name voll (%) vol2 (%) corr
CAD, CHF (NE) 0.286 0.872 0.096
CAD, CHF (NW) 0.330 0.868 0.248
CAD, CHF (SW) 0.320 0.864 0.088
CAD, CHF (SE) 0.305 0.860 0.252
CAD, CHF MLE 0.281 0.793 0.170
CAD, DEM (NE) 0.285 0.792 0.136
CAD, DEM (NW) 0.322 0.794 0.196
CAD, DEM (SW) 0.315 0.816 0.160
CAD, DEM (SE) 0.302 0.812 0.236
CAD , DEM MLE 0.280 0.734 0.173
CAD, FRF (NE) 0.282 0.761 0.180
CAD, FRF (NW) 0.322 0.764 0.200
CAD, FRF (SW) 0.316 0.809 0.116
CAD, FRF (SE) 0.302 0.805 0.272
CAD, FRF MLE 0.280 0.706 0.180
CAD , GBP (NE) 0.295 0.829 -0.220
CAD, GBP (NW) 0.311 0.832 -0.240
CAD, GBP (SW) 0.321 0.793 -0.248
CAD , GBP (SE) 0.288 0.794 -0.108
CAD, GBP MLE 0.280 0.741 -0.211
CAD , ITL (NE) 0.283 0.754 0.200
CAD, ITL (NW) 0.327 0.752 0.240
CAD, ITL (SW) 0.310 0.803 0.192
CAD , ITL (SE) 0.300 0.802 0.228
CAD, ITL MLE 0.280 0.726 0.163
CAD, JPY (NE) 0.292 0.738 -0.020
CAD, JPY (NW) 0.323 0.741 0.032
CAD, JPY (SW) 0.316 0.691 -0.028
CAD, JPY (SE) 0.292 0.688 0.140
CAD, JPY MLE 0.280 0.643 0.057
CHF, DEM (NE) 0.875 0.796 0.908
CHF, DEM (NW) 0.856 0.791 0.948
CHF, DEM (SW) 0.864 0.810 0.896
CHF, DEM (SE) 0.866 0.814 0.936
CHF, DEM MLE 0.793 0.733 0.938
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Table 4.5: Summary of the 95% stress variance-covariance matrices (empirical esti-
mates) for pairs of foreign exchange rates with the USD

Matrix name voll (%) vol2 (%) corr
CHF, FRF (NE) 0.874 0.762 0.904
CHF, FRF (NW) 0.853 0.762 0.940
CHF, FRF (SW) 0.867 0.798 0.844
CHF , FRF (SE) 0.873 0.796 0.920
CHF, FRF MLE 0.793 0.704 0.922
CHF, GBP (NE) 0.866 0.842 -0.768
CHF , GBP (NW) 0.862 0.832 -0.736
CHF, GBP (SW) 0.851 0.792 -0.796
CHF , GBP (SE) 0.861 0.784 -0.820
CHF, GBP MLE 0.793 0.740 -0.771
CHF, ITL (NE) 0.867 0.752 0.924
CHF, ITL (NW) 0.853 0.750 0.876
CHF, ITL (SW) 0.866 0.792 0.796
CHF, ITL (SE) 0.864 0.802 0.840
CHF, ITL MLE 0.793 0.725 0.835
CHF, JPY (NE) 0.864 0.735 0.560
CHF, JPY (NW) 0.855 0.750 0.620
CHF, JPY (SW) 0.866 0.696 0.528
CHF, JPY (SE) 0.858 0.682 0.668
CHF, JPY MLE 0.792 0.642 0.643
DEM, FRF (NE) 0.789 0.757 0.996
DEM, FRF (NW) 0.804 0.767 0.984
DEM, FRF (SW) 0.809 0.804 0.964
DEM, FRF (SE) 0.800 0.793 0.980
DEM, FRF MLE 0.734 0.706 0.979
DEM, GBP (NE) 0.783 0.827 -0.760
DEM, GBP (NW) 0.822 0.839 -0.764
DEM, GBP (SW) 0.796 0.795 -0.828
DEM, GBP (SE) 0.799 0.786 -0.764
DEM, GBP MLE 0.734 0.741 -0.799
DEM, ITL (NE) 0.787 0.750 0.960
DEM, ITL (NW) 0.804 0.758 0.924
DEM, ITL (SW) 0.813 0.809 0.840
DEM , ITL (SE) 0.794 0.800 0.892
DEM , ITL MLE 0.734 0.726 0.893
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Table 4.5: Summary of the 95% stress variance-covariance
mates) for pairs of foreign exchange rates with the USD

matrices (empirical esti-

Matrix name voll (%) vol2 (%) corr
DEM, JPY (NE) 0.783 0.731 0.620
DEM, JPY (NW) 0.813 0.755 0.628
DEM, JPY (SW) 0.817 0.693 0.620
DEM , JPY (SE) 0.784 0.682 0.668
DEM, JPY MLE 0.732 0.643 0.645
FRF, GBP (NE) 0.759 0.828 -0.760
FRF, GBP (NW) 0.812 0.837 -0.760
FRF, GBP (SW) 0.788 0.802 -0.832
FRF, GBP (SE) 0.761 0.786 -0.800
FRF, GBP MLE 0.706 0.741 -0.798
FRF, ITL (NE) 0.756 0.750 1.000
FRF, ITL (NW) 0.790 0.763 0.928
FRF, ITL (SW) 0.810 0.805 0.820
FRF, ITL (SE) 0.765 0.801 0.888
FRF, ITL MLE 0.706 0.726 0.895
FRF , JPY (NE) 0.756 0.727 0.628
FRF, JPY (NW) 0.799 0.754 0.616
FRF, JPY (SW) 0.807 0.698 0.536
FRF , JPY (SE) 0.760 0.682 0.656
FRF, JPY MLE 0.704 0.643 0.635
GBP, ITL (NE) 0.828 0.761 -0.732
GBP, ITL (NW) 0.786 0.750 -0.764
GBP , ITL (SW) 0.795 0.794 -0.756
GBP , ITL (SE) 0.841 0.794 -0.744
GBP, ITL MLE 0.741 0.726 -0.745
GBP , JPY (NE) 0.833 0.744 -0.516
GBP, JPY (NW) 0.787 0.736 -0.504
GBP, JPY (SW) 0.789 0.679 -0.592
GBP, JPY (SE) 0.835 0.688 -0.460
GBP, JPY MLE 0.739 0.643 -0.544
ITL , JPY (NE) 0.753 0.725 0.620
ITL, JPY (NW) 0.796 0.751 0.556
ITL , JPY (SW) 0.811 0.686 0.616
ITL , JPY (SE) 0.750 0.687 0.640
ITL , JPY MLE 0.724 0.643 0.590
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Table 4.6: Summary of the 95% stress variance-covariance matrices (empirical esti-
mates) for pairs of equity indexes

Matrix name voll (%) vol2 (%) corr
SP500, NIKKEI (NE) 1.390 1.331 0.088

SP500 , NIKKEI (NW) 1.086 1.323 0.164
SP500, NIKKEI (SW) 1.067 1.139 0.120

SP500, NIKKEI (SE) 1.396 1.115 0.120

SP500, NIKKEI MLE 1.238 1.109 0.124

SP500, DAX (NE) 1.425 1.605 0.180
SP500, DAX (NW) 1.105 1.645 0.140

SP500, DAX (SW) 1.044 1.403 0.168

SP500, DAX (SE) 1.388 1.415 0.260
SP500 , DAX MLE 1.238 1.415 0.201
SP500 , CAC-40 (NE) 1.410 1.393 0.220
SP500, CAC-40 (NW) 1.104 1.405 0.028
SP500, CAC-40 (SW) 1.069 1.135 0.004

SP500, CAC-40 (SE) 1.361 1.113 0.100

SP500, CAC-40 MLE 1.238 1.175 0.133

NIKKEI, DAX (NE) 1.326 1.658 0.300
NIKKEI, DAX (NW) 1.177 1.648 0.396

NIKKEI, DAX (SW) 1.142 1.407 0.164

NIKKEI, DAX (SE) 1.276 1.419 0.280

NIKKEI , DAX MLE 1.109 1.415 0.303

NIKKEI, CAC-40 (NE) 1.318 1.420 0.340
NIKKEI, CAC-40 (NW) 1.196 1.434 0.424

NIKKEI, CAC-40 (SW) 1.126 1.143 0.180
NIKKEI, CAC-40 (SE) 1.272 1.115 0.300
NIKKEI, CAC-40 MLE 1.109 1.175 0.316

DAX, CAC-40 (NE) 1.654 1.421 0.400
DAX, CAC-40 (NW) 1.482 1.428 0.480

DAX, CAC-40 (SW) 1.417 1.148 0.200
DAX, CAC-40 (SE) 1.610 1.136 0.420
DAX, CAC-40 MLE 1.415 1.175 0.432
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Chapter 5

Estimation of Return at Risk and

Stress Expected Return

5.1 Introduction

This chapter includes the two different methods to estimate the two respective port-

folio risk measures under normal and stressful market conditions. Estimation of the

return at risk measure under normal market conditions is discussed in the last section

of this chapter. Estimation of the stress expected return under stressful market condi-

tions is discussed in Sections 5.2 and 5.3. As defined in Chapter 3, the stress expected

return of a portfolio is the conditional expectation of the portfolio return given that

it is smaller than a threshold. As we assume that the portfolio return distribution is

Gaussian, the conditional expectation of a Gaussian variable given that it is smaller

than a constant is formulated in Section 5.3. The Gaussian parameters used in the

conditional expectation formula are estimated using best linear unbiased estimation

(BLUE) for Gaussian parameters based on a Type-II censored sample. Readers can

refer to Appendix A for a defintion of Type-II censoring.

Section 5.2 reviews the BLUE for the location and scale parameter family of

distributions based on a Type-II censored sample, which is quoted from Balakrishnan

et al (pages 80-83) . The idea was first used by Wilk and Shapiro (1965) for the

Gaussian distribution based on complete samples. In their paper, they could only
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claim to calculate the expectations and covariances of the order statistics of standard

Gaussian samples up to size n=30. The calculation of means and product moments

of Gaussian order statistics for sample sizes up to 20 were prepared by Teichroew

(1956) . Sarhan and Greenberg (1956) have tabulated the variances and covariances

to ten decimals for n < 20. These tables have been extended to n < 50 by Tietjen et

al (1977)

As I need to work with sample size as large as 2500, I really have to rely on

other sources or methods like the David-Johnson approximation which is described in

section A.5. An algorithm to estimate the variance-covariance matrix of the Gaussian

order statistics of a Type-II censored sample is given in Section 5.2.1. This algorithm

works with complete samples of any size as long as the size of the Type-II censored

sample is not too large for the computer to handle. A DECstation 5000/25, for

example, can easily handle a matrix multiplication with 100 x 100 matrices. Therefore,

the algorithm when implemented on the DECstation 5000/25 can work well with a

Type-II censored sample of size 100 from any complete sample of any size. The

algorithm is based on the findings presented at the end of Appendix A.

Section 5.4 reviews how to estimate the population or empirical quantiles. This

section provides the background information for estimating an empirical daily return

at risk. This estimation step is included in the process of generating a generalized

variance-covariance matrix.

5.2 BLUEs of the Location and Scale Parameters

Let ,u and a denote respectively the location and scale parameters of a distribution

that belongs to the location and scale parameter family of distributions. An example

in this family is a Gaussian distribution. Given a sample of size n, and known

censoring limits r and s such that r < s, let Xr+l:n < Xr+2:n < ... <_ Xn-s:n be a

Type-II censored sample from a location-scale parameter distribution. Let us denote

Zi:n = (Xi:n - )/a (r + 1 < i < n - s) and, E(Zi:n) = ai:n (r + 1 < i < n - s) and
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COV(Zi:n, Zj:n) = /i,j:n (r + 1 < i < j < n - s). We use the notations

X = (Xr+l:n Xr+2:n, ... , Xn-s:n),

a = (Or+l:n, ar+2:n, . . Oln-s:n)/,

and
3tr+l,r+1:n 3r+l,r+2:n

,3r+2,r+l:n r+2r+ +2:n

t3n-s,r+l:n t3n-s,r+2:n

... /r+l,n-s:n

... 3r+2,n-s:n

/n-s,n-s:n

(5.3)

In addition, let 1 denote a column vector of (n - r - s) ones.

Following Lloyd (1952), let us consider the generalized variance given by

(X -/p1 - a)'-1'(X -pl - act)

X'3-1X - p1'_-1X - _a'/l'X - _X'-ll1 + 21/-11

+/a',3-ll - raX'-la + ,1a'3-la + a2c a',-l1a
X'P-1X + /z21'-11 + a2a'C-la - 2p1'l-1X
-2aca''-lX + 2oaa',-l11. (5.4)

By minimizing the expression of the generalized variance in Equation 5.4 with respect

to and a, we obtain the equations

(5.5)

,ua'P-11 + o-a''-lca = '3-l'X. (5.6)

Upon solving Equations 5.5 and 5.6, we derive the BLUEs of and a

*~, _ {'/-1l'-l -a'P-1, }X3-= - l)( ) ('-1X1)2
= -/AX, (5.7)
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and

o* 111,__ ,,1 1'
(t'P-la)(l'1-ll) - (a'p-11)2 X

= 1'AX, (5.8)

where A is a skew-symmetric matrix of order n - r - s given by

{ -l(l' - al')f-} (59),4 = {(,/3 1a)(1,P_1) _ (as,311)2 (5.9)

Furthermore, from Equations 5.7 and 5.8 we obtain the variances and covariances of

the estimators to be

Var(l*) = {( ( ll) - -1 )2} (5.10)(Q-1c,0)( 10--11) - (/-11)2

Var(o*) 2 1)1 -1)2 (5.11)

and

Cov(Il*, *)= - (a' a 1P-l1 2 (5.12)
(~-1a)(l1I- f11) - (a~]l1)2

For the complete sample case (r = s = 0) in which the population distribution is

symmetric, some simplification in the Equations 5.7 to 5.12 is possible. In fact, the

BLUE [L* in Equation 5.7 becomes the sample mean for the Gaussian distribution.

For a proof of this result, interested readers may refer to Lloyd (1952) .

In this thesis, we apply this BLUE theory to estimate the mean and variance of

a Gaussian distribution. a and 3 for a Type-II censored sample of Gaussian order

statistics are obtained with the algorithm given in the following section.
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5.2.1 Approximation of a and for a Type-II censored sam-

ple of Gaussian order statistics

As suggested at the end of the Section A.5, the procedure to approximate a and 3

is as follows:

Algorithm 5.1

1 < i < n.
1. Use Equations A.31 and A.32 to approximate ai:n and /i,i:n

We will denote here the approximations aon and i,i:n respectively.

2. a is given by (r+l:n,... , ,n--s:n)

3. The elements fi,j:n of 13 (r + 1 < i < j < n- s) are given by:

Pi,j:n = j ( + ) / i,i:nj,j:n

4. Use symmetry to obtain the other elements of the matrix.

5.3 Conditional Expectation and Variance

Gaussian Variable

This section computes the conditional expectation and variance of a one-dimensional

Gaussian variable X - N(p,, a2 ) given that X < c where c is a real constant.

Let d = (c - u)/a. The conditional first moment or expectation is given as

E((X/X < )/1, o2) E(Xl{x<c}/p, u2)
E(l{x<c,}/l,, 2)

1 [C _(_-P)2
= ---- ~J x xe 2,2 dX

i // ,2?(d) 2i 2 OO
-- (d)V (ax + /)eC dz

aq(d)
(d)
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The conditional second moment is given by

E((X 2 /X < c)/l[, a2) E(X21{x<cp, o2)
E(l1x<c/,L, 2)

1 _C (-_)2
-- I e 2cr2 dx

I1(d) 2i Jz 2

d)v- j (az + t)2e- 2 dz

2 2uaO(d)

4 (d)
+ ( (d)

oP(d)

The conditional variance is given by

Var((X/X < c) /, a2 ) = E((X 2 /X < C)/u, a2) - {E((X/X < c)/u, a2)}2

= a2(1- d(d)
4(d)

(5.16)

5.4 Estimation of Population Quantiles

For a population with known distribution and distribution function F(.), a quantile

function, denoted G(.), is defined for 0 < u < 1 by

G(u) = F-l(u) = inf{x: F(x) > u} (5.17)

Based on a random sample of size n from a population with distribution function

F(.), an estimate of F(.) is given by the empirical distribution function Fn(.) defined

by

F0,
Fn(x) = (i-1 )/n

1,

for x < XI:n,

for Xi-l:n < X < Xi:n,

for x > Xn:n

when the corresponding order statistics are X:n < X 2:n < ' < Xn:n.

It is well known that Fn(x) -± F(x) in probability. So a natural estimate function

G(u) in Equation 5.17 is given by the sample quantile function Gn(u) defined by
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G,(u) = F,(u) = inf{x: F(x) > u}

Xi:n, for - < u < . (5.19)

The above sample quantile function has been studied in detail by Cs6rgo and

Revesz (1981) . They have established several properties of the empirical distribution

function F,(x). It should be noted that Gn(u) gives a nonparametric estimate of

G(u) that is based on a single order statistics, regardless of the form of the population

distribution F(x). A modified estimate of G(u) has been proposed by Parzen (1979)

that uses adjacent order statistics and is given by

U) i i-i :
nG(u) = n(1 - u)Xil:n + n(u - )Xi, for i1 < u < (5.20)

This estimate is based on linear interpolation of adjacent order statistics.

The algorithm in the S-PLUS language to compute an empirical quantile is based

on this estimate by Parzen. The empirical quantile estimation for all the results of

this thesis uses this algorithm in S-PLUS.
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Chapter 6

Estimation of Generalized and

Stress Variance-Covariance

Matrices

6.1 Introduction

In this chapter, we focus our attention on nonlinear programming algorithms that

approximate solutions to the minimization problem specified in Equation 3.28 or 3.33.

In Section 6.2, we discuss how to discretize the contour integral into a finite sum,

and the minimization problem specified in Equation 3.28 or 3.33 is replaced by a

nonlinear program.

Section 6.5 presents the general idea of a three-dimensional uniform search algo-

rithm, which is used to solve the nonlinear program. This algorithm is an extension

of the one-dimensional uniform search algorithm which is reviewed in Sections 6.3

and 6.4.

Section 6.6 proves that the objective function is strictly quasiconvex. Conse-

quently, the algorithm can converge to an approximate solution in a finite number of

steps. The proof makes use of several lemmas which are also presented in this section.

Section 6.7 illustrates the possible choices of variable space for 2 x 2 positive
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definite matrices.

Section 6.8 presents the three-dimensional uniform search algorithm to solve the

nonlinear program.

6.2 Problem Context in Finite Dimensions

Let C denote a general open or closed contour. C can be a closed contour, e.g. C = W

or C can be an open contour, e.g. C = W(NE). The minimization problem that we

seek to solve is either Problem 3.28 or 3.33. Suppose we use Problem 3.28.

Min S(/C,p) = wEC dw {I(/w'w - (w/p)}2

subject to E p.d

Since it is difficult to obtain an analytic solution to the above problem in its infinite

dimensions, we approximate the problem with a nonlinear program in finite dimen-

sions. We choose a finite set of w E C. We denote the set 3n = {W1 , W2, .' Wn,.

Let k > 0 denote a constant positive real number. If we choose Bn such that

Ilwi+l-will2 = k i = 1,..., n - 1 for an open contour C, (in addition, Ilwl-wI 2 = k

for a closed contour C), then the objective function is approximated by the sum

fC dw { w'Ew - i(w/p)}2 _ ,{wwi - (wi/p)}2k (6.1)i=1

Since k is a constant, we can simplify with the approximation problem, which is given

as

Min S(E/Bn,p) i2 =l{w - a(wi/p)}2

subject to E p.d.,

where (wi/p), i = 1,..., n are the empirical percentile-matched volatilites of port-

folios with weightings wi at 100(p)% tolerance level. In this optimization problem

context, they are a set of constants that depend only on i. Hence, we simplify
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the notation of &(wi/p) to ci. Let fi(E) denote the ith element in the sum. i.e.

fi(E) = wCiwi- c. The finite nonlinear program for the approximation problem

is then given as

Min S(E/B,p)= =1(fi()) 2

subject to Z p.d. (6.2)

Any feasible E is a positive definite 2 x 2 matrix. Suppose

X=( X2 (6.3)
X2 X3

Let x = (1, x 2, x 3 )'. The positive definite constraint can be expressed as

X1 > 0

X3 > 0

2 < Xl3. (6.4)

As this is a problem in three dimensions, i.e. three degrees of freedom, if n = 3

i.e. 3 consists of only three points, we can completely solve the three simultaneous

linear equations given as, for wi = (ai, bi)' and i = 1, 2, 3,

/axl + 2aibix2 + b2x3 - ci = 0. (6.5)

When n > 3, we solve this problem by using multi-line search algorithms without

using derivatives. One example is the uniform search. To make use of the capabilities

of S-PLUS language, we can more efficiently perform a uniform search over a three

dimensional grid instead of sequential uniform search in one dimension. Before we

describe how the uniform search over a three dimensional grid works, we review the

theory in line search and the one-dimensional uniform search algorithm, which are

quoted from Bazaraa et al (pages 266-268).
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6.3 Line Search Without Using Derivatives

One-dimensional line search is the backbone of many algorithms for solving nonlinear

programming problems. Many nonlinear programming algorithms proceed as follows.

Given a point Xk, find a direction vector dk and then a suitable step size Ak, yielding

a new point Xk+1 = xk + Akdk. The new point Xk+1 presumably yields improvement

in value of the objective function. This process is then repeated. Finding the step

size Ak involves solving the subproblem to minimize f(xk + Adk), which is a one-

dimensional search problem in the variable A. The minimization may be over all real

A, nonnegative A, or A such that xk + Adk is feasible.

Consider a function 0 of one variable A to be minimized. One approach to min-

imizing 0 is to set the derivative ' equal to 0 and then solve for A. Note, however,

that 0 is usually defined implicitly in terms of a function f of several variables. In

particular, given the vectors x and d, (A) = f(x + Ad). If f is not differentiable,

then 0 will not be differentiable. If f is differentiable, then 0'(A) = d'Vf(x + Ad).

To find a point A with 0'(A) = 0, we have to solve the equation d'Vf(x + Ad) = 0,

which is usually nonlinear in A. Furthermore, A satisfying 0'(A) = 0 is not necessarily

a minimum; it may be a local minimum, a local maximum, or even a saddle point.

For these reasons, and except for some special cases, we avoid minimizing 0 by letting

its derivative be equal to zero. Instead, we resort to some numerical techniques for

minimizing the function 0.

In this section, we discuss a method that does not use derivatives for minimizing

a function 0 of one variable over a closed bounded interval. This method falls under

the category of simultaneous line search problems, in which case the candidate points

Xk, at which the objective function is evaluated, are determined before the line search

begins.

6.3.1 The Interval of Uncertainty

Consider the line search problem to minimize (A) subject to a A < b. Since the

exact location of the minimum of 0 over [a, b] is not known, this interval is called
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the interval of uncertainty. During the search procedure if we can exclude portions

of this interval that do not contain the minimum, then the interval of uncertainty is

reduced. In general, [a, b] is called the interval of uncertainty if a minimum point A

lies in [a, b], though its exact value is not known. Theorem 6.3.1 below shows that if

the function is strictly quasiconvex, then the interval of uncertainty can be reduced

by evaluating 0 at two points within the interval. The following is the definition of a

quasiconvex function.

Definition 6.3.1 Let f : S - El, where S is a nonempty convex set in En. The

function f is said to be strictly quasiconvex if, for each x1 and X2 E S with f(xi) 

f(x 2), the following inequality is true:

f[Ax1 + (1- A)x2] < max(f(xi), f(x 2)} for each A E (0,1) (6.6)

Theorem 6.3.1 Let 0: E1 E1 be strictly quasiconvex over the interval [a, b]. Let

A, E [a, b] be such that A < u. If 0(A) > (/I), then O(z) > 0(t1) for all z C [a, A). If

O(A) < (u), then (z) > (A) for all z C (, b].

The proof of this theorem can be found in Bazaraa et al (page 267) . From the above

theorem, under strict quasiconvexity if 9(A) > 0(/s), the new interval of uncertainty

is [A, b]. On the other hand, if 0(A) < 0(iu), the new interval of uncertainty is [a, u].

These two cases are illustrated in Figure 6-1.

6.4 An Example of a Simultaneous Search: Uni-

form Search

Uniform search is an example of simultaneous search, where we decide beforehand the

points at which the functional evaluations are to be made. The interval of uncertainty

[al, bl] is divided into smaller subintervals via the grid points al + k6 for k = 1,..., n,

where b = al + (n + 1)6, as illustrated in Figure 6-2. The function 0 is evaluated at
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Figure 6-1: Reducing the interval of uncertainty
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Figure 6-2: Uniform search

each of the n grid points. Let A be a grid point with the smallest value of 0. If is

strictly quasiconvex, it follows that a minimum of 0 lies in the interval [A - 6, A + 6].

6.4.1 The Choice of the Grid Length 6

We see that the interval of uncertainty [al, b1] is reduced, after n functional evalua-

tions, to an interval of length of 26. Noting that n = [(b1- a1)/6] - 1, if we desire

a small final interval of uncertainty, then a large number n of function evaluations

must be made. One technique that is often used to reduce the computational effort
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is to utilize a large grid size first and then switch to a finer grid size.

6.5 Three-dimensional Uniform Search

We extend the one-dimensional uniform search described in Section 6.4 to three dime-

sions. The interval of uncertainty is now a cube represented by [(al, a2, a3), (bl, b2, b3)] 

{(Xi, 2 , x 3): ai < xi < bi i = 1, 2, 3}. The cube is divided into smaller subcubes via

the grid points (al + k161, a2 + k2 2, a3 + k36 3) for ki = 1,... , ni i = 1, 2, 3, where

bi = ai+(ni+l)6i i = 1, 2, 3. The objective function is evaluated at each of the nln 2n 3

grid points. Let A = (Al, A2, A3) be a grid point with the smallest value of the objec-

tive function. If the objective function is strictly quasiconvex in each of its variable, it

follows that a minimum of the objective lies in the cube [A - (1, 62, 63), A + (1, 62, 63)]

which will become the new interval of uncertainty in the next step of the three-

dimensional uniform search. The proof of this uses Theorem 6.3.1 three times for the

three variables.

6.6 Convex Functions and Generalizations

We need to prove that the objective function is a strictly quasiconvex function before

we can use the uniform search algorithm. We prove it by using a few lemmas stated

as follows.

Lemma 6.6.1 Let S be a nonempty open set in En, and let f S -+ E1 be a convex

function on S. Then, f is strictly quasiconvex.

Proof: Suppose, given xl, x 2 E S with f(xl) ~ f(x 2) and A E (0, 1),

f(Axl + ( - A)x2) Af(x1)+ (1 - A)f(x2)
< Amax{f(xl),f(X2)} + (1- A)max{f(xi),f(x 2)}

= max{f(xi), f(x 2)}o
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Lemma 6.6.2 Let S be a nonempty

be convex functions on S. Then, Fn

Proof: We prove by induction.

pose the statement is true for some

and A E (0, 1),

open set in En, and let fi : S -+ El, i = 1,...,n

= Zi=1 fi is also convex on S.

The statement is obviously true for n = 1. Sup-

k such that 1 < k < n. Then given xl, x2 E S

Fk+l(xl + (1- A)X2) = Fk(X1l + (1 - )X2) + fk+l(xl + (1 - )X2)

< AFk(xl) + (1 - A)Fk(X2) + Afk+l(xl) + (1 - A)fk+l(X2 )

= AFk+l(xl) + (1 - A)Fk+l(X 2)E

The two lemmas together imply that in order to prove the objective function

S(E/Bn, p) given in 6.2 is a strictly quasiconvex function, it is sufficient to prove that

each fi(E), i = 1,..., n is convex.

Lemma 6.6.3 fi(E) is convex in the space of positive definite matrices.

Proof: Suppose given E1 and E 2 which are both positive definite, A C (0, 1), and

i = 1,..,n

fi(AEl + (1 - A)E2) = {vw[AEl + (1 - A) 2]Wi - C}2

= wi(AEl + (1- A)E2)wi - 2ciwi(Al + (1 - A)E2)wi + Ci

= A(wElwi) + (1 - A)(w'E2wi)

-2ci/A(wiEwi) + (1 - A)( 2wiW) + c + (1 - A)c2

Now given that the ci, i = 1,..., n are the volatility estimates which are always > 0,

and V/ is a concave function in x E (0, oo), it follows from the last equality that

fi(Al 1 + (1 - )E2) < A(WiElWi) + (1 - A)(WiE2Wi) - 2ci(A/iwilw

+(1- A) wi 2w) + A2 + (1 - )c2

= A(WZw, - Ci)2 + (1 - A)(w' ZWi - ci)2

= Afi(, 1) + (1 - A)fi(,2)
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6.7 Variable Space

In a three-dimensional uniform search step, we search over the a bounded grid in

the space of ( 1, X2, x 3). For convenient implementation of the uniform search, there

are other candidates for the best variable space to be used. The following are two

possible variable spaces for consideration.

1. Keep x1 and x 3 as before. Let p = x2/1 3 . The variable space is (xl, x 3, p).

All the constraints are the same, except the last one becomes p2 < 1. In this

form, p2 lies in the bounded interval (-1, 1). If we know whether the ci are lying

in a positively or negatively correlated elliptical shape, we can further constrain

p to the range [0, 1) or (-1, 0]. We need to provide an initial bound for x1 and

X 3 .

2. The variable space is (A1, A2, 0) where the two A's are the eigenvalues of the

matrix E and (cos 0, sin 0)' is the eigenvector associated with the larger eigen-

value. Suppose A1 is the larger eigenvalue. The transformation of E is given

as

= Ro (1 Ro (6.7)
0 A2

where Ro is the orthogonal matrix that rotates around the origin through and

angle 0 in the anti-clockwise direction. The constraints become

A1 >0

A2 > 0

A 1 Ž A2

0 > 0

0 < 7r·
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If we know whether the ci are lying in a positively or negatively correlated

elliptical shape, we can further constrain 0 to the range (0, 2) or (, 7r). In any

case, 0 is bounded. We just need to provide initial upper bound for Al.

6.8 The Algorithm

The algorithm that is used to solve Problem 6.2 is a three-dimensional uniform search

over the variable space (x,, X 3 , p). The algorithm is given as

Algorithm 6.1 * Initialization Step:

1. Set oE0 to be the sample variance-covariance matrix, and k = 0.

2. Define Lo and Uo as

L o min
i=l,...,n Ci

UO max
i-1,...,n Ci

3. Define ,(U) (U0)2
0o and (L) - (Lo)2 ,o. The first three-dimensional

grid is then Go - [((L))11, ((L)) 22 -1], [((U))11, ((U)) 2 2, 1]. Go to the

main step.

*Main Step:

1. Perform the three-dimensional uniform search (Section 6.5) to search for

the minimizing E in the three dimensional grid given by Gk. Denote the

minimizing E as Ek+l.

2. If each element of the matrix E(U) - E(L) has absolute value smaller than

1, and if S(k+1/B3n,p) - S(Yk/Bn,p)l < , stop. The minimizing matrix

is k+1 and lies in the interval [AkL), kU)]. Otherwise, set k = k + 1.

Generate Gk as described in Section 6.5. Go to step 1 of the Main step.
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Figure 6-3: Initial lower and upper bounds for fitting &(w/95%) for portfolios that
hold USD/DEM and USD/JPY, w E W

r,

CD
0o

0,

O> Ci 
co

I I I i I I
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Positions taken in the 2-asset portfolio

Figure 6-3 illustrates the initial upper and lower bounds for the empirical percentile-

matched volatilities at 95% tolerance level for portfolios with weightings w E W that

hold USD/DEM and USD/JPY.
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Appendix A

Univariate Ordered Statistics

A. 1 Introduction

In this appendix, we review the basic theory of order statistics and the David and

Johnson's approximation for the moments of order statistics from a known continuous

distribution. The reviewed materials are selectively quoted from Chapters 2 and 3

of Balakrishnan et al (1991) . The end of this appendix includes a new approxima-

tion method to compute the variance-covariance matrix for standard Gaussian order

statistics. This new method has made a breakthrough in the best linear unbiased

estimation for the Gaussian distribution parameters. Before, although the David and

Johnson approximation method can approximate the variance-covariance matrix for

standard Gaussian order statistics, it is computationally not fast enough for sample

sizes as large as like 2000, which is roughly the size of a sample of 9 years' daily

closing prices. Given a sample of size n, the order of magnitude of the number of

computations needed to use the David and Johnson approximation method to com-

pute the approximating variance-covariance matrix for order statistics is O(n 2 ). The

new method's order of magnitude, however, is only O(n). This new method is used

in Chapter 5 for the best linear unbiased estimation of the Gaussian parameters.

Section A.2 provides descriptions of Type-I and Type-II censored samples.

In Section A.3, starting with the joint distribution of all n order statistics, we

derive the joint distribution of two order statistics and the marginal distribution of a
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single order statistic.

By making use of these results, we then present some fundamental formulae that

are necessary for the computation of single and product moments of order statistics

in Section A.4. Next, we consider the uniform distribution and derive the closed

forms of the moments and product moments of order statistics from uniform samples.

Further, we present some identities of the moments and product moments of order

statistics for symmetric distributions about zero. This helps reduce the amount of

computation for the standard Gaussian distribution.

In Section A.5, we review the David-Johnson (1954) approximation for the mo-

ments of order statistics from an arbitrary continuous distribution. This method of

approximation, based on the probability integral transformation and the explicit ex-

pressions of the moments of uniform order statistics, provides a simple and practical

method of approximating the single and the product moments of order statistics for

large random samples from known distributions. A detailed account of this and some

other methods of approximation for the moments of order statistics may be found

in the monograph on this topic by Arnold and Balakrishnan (1989) . At the end of

this section, it is shown that there is no need to use David-Johnson approximation

to obtain the variance-covariance matrix for order statistics of the standard Gaus-

sian distribution. A good enough approximation of this matrix can be obtained by

using the correlation matrix for order statistics of the uniform distribution, which is

in closed form.

A.2 Censored Data

By censored data we shall mean that, in a potential sample of size n, a known number

of observations is missing at either end (single censoring) or at both ends (double

censoring). In Type-I censoring, the sample is curtailed below and/or above a fixed

point. The number of censored observations is random. In Type-II censoring, the

number of censored observations is known and the censoring fixed point is usually

an empirical percentile of the complete sample. Both forms of censoring are different
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from truncation, where the population rather than the sample is curtailed and the

number of lost observations is unknown.

A.3 Basic Theory

A.3.1 Joint Distribution of n Order Statistics

Let X 1, X2 ,..., Xn be independent, absolutely continuous random variables with com-

mon probability density function (pdf) f(x) and cumulative distribution function

(cdf) F(x), and let X1:n < X2:n < ... _< Xn:n be the corresponding order statistics.

Then, given the realizations of these n order statistics to be xl:n <_ x2:n < .. < Xn:n,

the original variables Xi (i = 1, 2,..., n) are constrained to take on values Xik:, which

by symmetry carries equal and independent probability for each of the n! permuta-

tions (i1 , i2, . . ., in) of (1, 2,. .. , n). As a result, their joint density is

fl,2 ...,n:n(Xl:n, X2:n, ... Xn:n)

n! Hinl f (xi:n), -00 < Xl: <X2:n < ... < Xn:n < 00

~~~~~~~~~~~= < ~(A.1)

0, otherwise.

A.3.2 Distribution of a Single Order Statistic

Let us consider the order statistics Xi:n and derive its density from Equation A.1.

With the joint density of all n order statistics, we integrate out the variables (Xi:n, . . , Xi-l:n),

(Xi+l:n, . v Xn:n) in order to derive the marginal density function of Xi:n (1 < i < n)

as

fi:n(xi:n) = n!f (XZi:n)

x · . f2n f(Xl:n)... f(xi-l:n)dXll: n ... di-l:n
00 i+2:n... fn) n... dXnn (A)

X ...j f(i+l:n) f(Xn:n)dXi+l:n dXnn (AX2)
i:n J/i:n

96



Direct integration yields

-:

and

. . . i+ :nf~i~, Xi:n

{F(i:n)i- 1

f (Xl:n) ... f (i-l:n)dxl:n ... dXi-:n - F(i - 1)! 

f ** D~~i~~~l n~~{ - F(xi :)}-if(Xi+l:n)... f(Xn:n,)di+:n... dXn:n - F(X:)
(n - i)!

Upon substituting the expressions A.3 and A.4 for the two sets of integrals in Equa-

tion A.2, we obtain the marginal density function of Xi:n (1 < i < n) as

fi:n (Xi:n) (i - 1)! (n - i)! {F(: )}{1 - F(xi:n)}f(i:
for -oo < i:n < 00. (A.5)

A.3.3 Joint Distribution of Two Order Statistics

Let us consider the order statistics Xi:n and Xj:,n (1 < i < j < n) and derive their

joint density from Equation A.1.

By considering the joint density of all n order statistics and integrating out

the variables (Xl:n,... , Xi-l:n), (Xi+l:n,... , Xj_-:n), (Xj+l:n,... , Xn:n), we derive the

joint density function of Xi:n and Xj:n as

fi,j:n(Xi:n, Xj:n) = n!f (Xi:n)f (Xj:n)

X :n .. X 2

JXi:n i:n

X ... fXj+2:,
j:n Xj:n

f (Xl:n) ... f (il:n)dXl:n ... di-l:n

f (Xi+l:n) ... f (Xj-l:n)dXi+ l:n ... dXj-l: n

n
f (Xj+l:n) ... f(Xn:n)dxj+l:n... dXn:n. (

Direct integration yields

Xi:n
... 2:n

f(Xl:n) . . . f(Xi-l:n)dXl:n ... dXi-l:n = ( _ )}
(i - 1)!
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f(Xi+l:n) ... f(xj-l:n)dXi+l:n ... dXj-:n = {F(xj -F( - i-

(A.8)

f (Xj+l:n) ... f (Xn:n)dXj+l:n ... dXn:n 
{1 - F(xj n)-j (A(n -j)!(A.9)

Upon using the Equations A.7 - A.9 for the three sets of integrals in Equation A.6,

we obtain the joint density function of Xi:n and Xj:n (1 < i < j < n) as

fi,j:n(Xi:n, Xj:n) =

(i - 1)! (j - - 1)! (n - j)!{F(Xin)} {F(xj) -F(xi
x{1 - F(Xj:n)}n-if (i:n)f(xj:n)

for -00 < Xi:n < Xj:n < 00. (A.10)

A.4 Moments and Other Expected Values

A.4.1 Some Basic Formulae

Let X 1,X 2, . . ,Xn be a random sample from a population with pdf f(x) and cdf

F(x), and let X:,n < X 2:, < ... < Xn,: be the order statistics obtained from the

above sample. Let ci( ) denote the single moment E(X1 kn). We assume that E(Xkn )

is finite, i.e. E(IXU) < oo. Then, from the density function of Xi:n in Equation A.5,

we have for i = 1, 2,..., n and k > 1

0o

n!

(i-1)! (n- i)! 0 { )
- F(x)}n-if(x) dx,

For convenience, let ai:n denote a()l. Then from the first two single moments of%:n'
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fi:n
Xi2:n

and

0...f : n
xj:n JZ:n

(k)
i:n
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Xi:,, we may compute the variance as

Next, let ai,j:n denote the product moment E(Xi:nXj:n). Then, from the joint

density function of Xi:n and Xj:n in Equation A.10, we have for 1 < i < j < n

= E(Xi:nXj:n)

= dx dy xyfi,j:n(x, y)

(i-1)! (j- i- 1)!(n j)! 
x{ - F(y))n-if (X)f(y)

dy xy{F(x)}i-l{F(y)- F(xz) j-i -

(A.13)

For convenience, let ai,i:n denote a(2). From the first two single moments and the

above product moments, we may compute the covariance of Xi:n and Xj:n as

/3i,j:n = COV(Xi:n, Xj:n) = 0 ti,j:n - i Oi:nj:n, 1<i<j <n (A.14)

The correlation between Xi:n and Xj:n is

Pi,j:n =
COv(Xi:n, Xj:n)

VVar(Xi:) Var(Xj:n)

fi,j:n

/3i,i:n3j,j:n
(A.15)

A.4.2 Results for the Uniform Distribution

Let Ul:n < U2:n < .. . _< Un:n be the order statistics from a uniform (0,1) distribution.

Then from Equation A.11, we get for 1 < i < n and k > 1

= E(Ukm)

(i- 1)! (n- i)!
X k+i-I(
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i,j :n

(k)
?,: n

- x)"- i dx



n! (k + i - 1)!

(i - 1)! (n + k)!

i(i + 1)... (i + k - 1) A
)( + l)(n + 2) ... (n + k)

Thus, by setting Pi = i/(n + 1) and qi = I -Pi, we find from Equation A.16 that

ai:n = E(Ui:n) = Pi (A.

and

= Var(Ui:n)
i(i + 1)

(n + 1)(n + 2)
Piqi
n + 2

Similarly, from Equation A.13, we get for 1 < i < j < n and k1, k2 > 1

(kl,k 2)
Oi,j:n

= E (Ui Un )
n!

-i-1)!(n -j)!Jo dy2 kl d (y )ji-(ylyk2(1

n! (k + i - 1)!(k1 + k2 + j - 1)!
(i - 1)! (kl + j - 1)! (n + k + k2)!
i(i + 1)...(i + k- l)(j + kl)(j + kl 1l)... (j + k + k2 - 1)

(n + 1)(n + 2)... (n + k + k2)

- y)n-j

(A.19)

By setting k = k2 = 1 in Equation A.19, we immediately obtain for 1 < i < j < n

i(j + 1) fA 
.U)

which, when used with Equation A.17, yields for 1 < i < j < n

= COV(Ui:n, Uj:n)

i(j + 1)
(n + 1)(n + 2)
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i2

(n + 1)2

(A.18)

(i -1)! (j

ij 
(n + 1)2

Xl'l

-1�

Uii'j:n (n + )(n + 2)'



-Piqj (A.21)n+2

and

](i,j:n
i,ji:n j,j:n

_ piqj

pjqi

i(n + I -j)
(A.22)(n + 1 - i)j

Proceeding similarly, we derive for 1 < i < i2 < i 3 < i4 < n

( il:n Ui2:n U is3ni4in)
n! (k1 + i - 1)! (kl + k2 + i2 - 1)!

(il 1)! (k + i2- 1)! (kI+ k2+ i3 - 1)!
(kl +k2+k3+i3 -1)! (k + k2 + k3 + k 4 + i 4 - 1)! (A23)

(k + k2 + k3 + i4 - 1)!(n+kl +k2 + k3 + k4)!

A.4.3 Some Identities for Symmetric Distributions about

Zero

For distributions that are symmetric about zero, it may be noted from Equation A.5

that for 1 < i < n

Xi:n (-X)n-i+l:n, (A.24)

and from Equation A.10 that for 1 < i < j < n

(Xi:n, Xj:n) ((-X)n-i+:n, (-X)n-j+i:n). (A.25)

Therefore, for distributions which are symmetric about zero, we have the results for

1 < i < n and k > 1

n-i+l:n (- (A.26)
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and for 1 < i < j < n

Oan-j+l,n-i+l:n = COi,j:n, (A.27)

and

/n-j+l,n-i+l:n = An-j+l,n-i+l:n- aOn-j+l:nun-i+l:n

= i,j:n - Ci:nOaj:n

= i,j:n, (A.28)

A.5 David and Johnson's Approximation

The probability integral transformation u = F(x) transforms the order statistics Xi:n

from a population with pdf f(x) and cdf F(x) into the uniform order statistics Ui:n

for i = 1,2,..., n. Conversely, the probability integral transformation x = F-1 (u)1

transforms the order statistics Ui:n from a uniform distribution into the order statistics

Xi:n for i = 1, 2,..., n. By the latter transfomration, we get for 1 < i < n

Xi:n d F-l(ui:n) = G(Ui:n). (A.29)

By a Taylor series expansion around the point Pi as defined by Equation A.17, it

follows from Equation A.29 that

Xin = Gi + Gi(Ui:n - i) + Gi(Ui:n -pi) 2

+-GI(Ui:n -i) 3 + Giv(Ui:n - pi)4 + ...; (A.30)
6 24

here, Gi denotes G(pi), G' denotes dG(u)/dul1=pi, and similarly Gi, G, Gi,...,

denote successive derivatives of G(u) evaluated at u = Pi. Then, by taking expectation

on both sides of Equation A.30 and by using the expressions of the central moments

of uniform order statistics derived from Equation A.23 (written, however, in inverse

powers of (n + 2) by David and Johnson (1954) for simplicity and computational

1In general, for u E (0, 1),F-l(u) _ inf{x: F(x) > u}
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ease), we obtain

ai:n n Gi + piqi G i

2(n + 2) 
piqi 1

piqi
(n + 2)2

i - Pi)G i +

-3 (qi - Pi)G" + PiQiGv

F 1 _ pi)2 Giv
_((_- p)2 _ p4q~)GG

1 1 2 2i]
+ piqi(qi - pi)Gv + p iq G,2

6 48
(A.31)

where qi is as defined in Section A.4.2. Similarly, by taking expectation on the series

expansion for X& obtained from Equation A.30, and then subtracting from it the

expression of a2 obtained from Equation A.31, we get an approximate formula for

the variance of Xi:n:

Piqi [2(qi -i {Gi
(n + 2)2 i ' ~'t

+ 2(Gi
2 2J

[-2(qi - pi)GG'i' + {(qi - pi)2 - piqi}

x {2GiGi + 3(GI) 2} + piqi(qi - Pi) { 5GG + 3Gi'G"

+ -Pii GiGi + 2GIGvi + (Gi)-
122i 2 2 3 

(A.32)

Next, by taking expectation on the series expansion for Xi:nXj:n obtained from Equa-

tion A.30, and then subtracting from it the expression of ai:n aj:n obtained from

Equation A.31, we derive an approximate formula for the covariance of Xi:n and Xj:,n

(1< i <j <n):

piqj , + Piqj
-(n+ 2) I ( + 2)2+ iG"G-q 1 pqG

2 2 ip-q G2G2 ± iG '
Piqj

(n + 2)3
[- (qi - pi) GI"'G - (q - pj)G i)G + {(q - p)2 - piqi}G'iG

+{(qj - pj) 2 -pjiq}GiG,"+ {(q2 -pj)(qj -Pj) + 1pjq
5 5

-2piqjI G"G + -piqj(qj - Pi)Gv ± pjqj(qj ,- p,)G'G
2i 6 6 

+ {iqj(qi - Pi)+ -piqi(qj - pj) GI GI + {Piqj(qj - pj)
2 i 
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Piqi (G)2

(n + 2) 
Piqi

(n + 2)3

ij :n [(qi - pi)G"G' + (qj -pj)G'G"-P)i j -(j j-



+21 ( -Pi)} G'I 'G7 + _p.q.G .+ -pjqG'G 
2 3I8 8

+ pi2 qiqjGivG + pipjqj G i G3v

+ l-(2pi2q + 3pipjqiqj)Gi G . (A.33)i (A33)

By using Equation A.22, the correlation between Xi:n and Xj:n (1 < i < j < n)

is approximated by

Pi,j:n =

i(n + 1 - j) 1 (G'i')2 _ 2GG111 (G l)2

j(n+1- i) 4(n+2) (G i)2Pq G (GI) 2

+O(n-2)] (A.34)

From Equations A.31 and A.34, as pointed out by Arnold and Balakrishnan (1989) ,

if both i, j and n increase with i/n, j/n remaining fixed, the asymptotic distribution

of X,:n has the mean Gi which is F-'(E(Ui:n)) and the asymptotic joint distribution

of Xi: and Xj:, has the correlation of the uniform order statistics.

As pointed out by David and Johnson (1954) , the evaluation of the derivatives

of Gi is rather easy in most cases. First of all, we realize that

G' du fI(F(u))IuPi = f(G )' (A.35)G, = du I=p= f(F-l(u)) ,,=p, = f(Gi)'

which is just the reciprocal of the pdf of the population evaluated at Gi. The above

expression of G i in Equation A.35 allows us to write down the higher derivatives of

Gi without great difficulty in most cases.

A.5.1 Results for the Standard Gaussian Distribution

For the standard Gaussian distribution, by making use of the property f'(x)

-xf(x) we get

G'i = 1/f(Gi),
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G' = Gil/{f(Gi))2,

G.i = {1 + 2(Gi)2 }/{f(Gi)} 3 ,

GiV = Gi{7 + 6(Gi)2 }/{f(Gi)} 4,

Gv = {7 + 46(Gi)2 + 24(Gi)4 }/{f(Gi)} 5,

Gvi = Gi{127 + 326(Gi)2 + 120(Gi)4 }/{f(Gi)} 6 ,

etc.

As illustrated by David and Johnson (1954) , and also by several other authors, this

simple approximation procedure works well in most cases. However, this procedure

may not provide satisfactory results for the extreme order statistics. In this case,

the convergence of this approximation to the exact value may be very slow, and even

nonexistent in some cases. An analysis of the error after a number of terms of the

David-Johnson series for the expected values of Gaussian statistics is presented by

Saw (1960) . Interested reader can compare the results in Table A.1 with results in

Saw (1960). Table A.1 presents the relative error of a,:, using Equation A.31 with

the exact values taken from the tables of Hartner (1961) and Tippett (1925) . We

see that the relative error decreases as n increases. Hence for the standard Gaussian

distribution, we can sufficiently accurately approximate the expectations of the order

statistics using the David and Johnson's approximation.

If one uses Equation A.34 up to the term O(n-l) as an approximation to compute

Pi,j:n, one would find that Pl,n:n does not converge at all. Convergent results can be

obtained by using Equation A.33 directly to compute Pi,j:n. This is illustrated in

Table A.2. The relative error using the correlation of the uniform order statistics to

approximate the correlation of the standard Gaussian order statistics computed by

David and Johnson's approximation is defined as (1 < i < j < n)

DJ
Ei,j:n Pj:n. (A.36)

j(n+l-i)

105



Table A.1: Approximations and relative errors for n:n in the standard Gaussian
distribution

The bounds given in the Table A.2 are

L(n)

U(n)

min min i,j:n
i j

= max maxEi,j:ni j (A.37)

From the results in Table A.2, it is easy to see that there is no need to use

Equation A.33 to compute the variance-covariance matrix for the standard Gaussian

order statistics of any sample sizes. One can simply use the uniform correlation ma-

trix for the order statistics and derive the variance-covariance matrix for the standard

Gaussian order statistics using the variances of the order statistics computed by Equa-

tion A.32. With this procedure, we can reduce amount of computation significantly

and maintain a high degree of precision.
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n DJ's approx. Exact value Relative error
100 2.50905 2.50759 5.84e-4
200 2.74745 2.74604 5.14e-4
300 2.87915 2.87777 4.80e-4
400 2.96955 2.96818 4.61e-4
500 3.03806 3.03670 4.48e-4
600 3.09305 3.09170 4.38e-4
700 3.13889 3.13755 4.28e-4
800 3.17813 3.17679 4.22e-4
900 3.21239 3.21105 4.17e-4
1000 3.24277 3.24144 4.09e-4



Table A.2: Relative error bounds of the correlation matrix approximation for the
standard Gaussian order statistics
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n L(n) U(n) n L(n) U(n)
3 0.00e+00 1.92e-16 30 -9.29e-16 1.Ole-15
4 -3.33e-16 1.67e-16 40 -3.49e-15 5.46e-16
5 -1.53e-15 0.00e+00 50 -1.32e-15 1.39e-15
6 -6.66e-16 3.04e-16 60 -8.74e-15 1.06e-15
7 -3.89e-16 2.98e-16 70 -2.67e-15 8.34e-16
8 -3.51e-16 2.94e-16 80 -1.25e-15 1.53e-15
9 -5.55e-16 5.09e-16 90 -5.93e-15 6.25e-16

10 -3.20e-16 3.22e-16 100 -3.61e-15 2.26e-15
11 -1.98e-15 5.25e-16 200 -8.01e-15 1.42e-15
12 -4.21e-16 5.86e-16 300 -1.13e-14 1.94e-15
13 -4.18e-16 3.61e-16 400 -1.32e-14 5.88e-15
14 -5.66e-16 5.87e-16 500 -1.88e-14 1.21e-14
15 -4.36e-16 4.48e-16 600 -2.15e-14 2.31e-15
16 -1.25e-15 6.66e-16 700 -1.07e-14 2.45e-14
17 -1.40e-15 4.86e-16 800 -1.33e-14 1.07e-14
18 -1.12e-15 3.34e-16 900 -3.91e-14 1.09e-14
19 -6.05e-16 1.19e-15 1000 -2.49e-14 3.19e-14
20 -2.50e-15 4.05e-16 2000



Appendix B

S-PLUS Program Source Codes

The program source codes written in S-PLUS to generate this thesis' results are

presented here in this appendix.

Copyright 01995 by Massachusetts Institute of Technology. All rights reserved.

B.1 Transformation and Manipulation of Data

#dataconvert.src

#this file contains data manipulation functions

# file (character string) has format (date,vector of numeric data)

# in each row, with the headings in the first line

# n is the number of numeric fields in the file

# value is a matrix of simple returns(flag=1) or prices.

# column names=headings, row names = dates

# Inf or -Inf in the matrix represent missing data.

convert_function(file,flag,n) 

tempscan(file,what="")

nametemp[2:(1+n)]

temp_temp[(2+n):length(temp)]
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temp_matrix(temp,byrow=T,ncol=(n+l))

date_temp [,1]

temptemp[,2:(n+l)]

temp_as.numeric(temp)

temp_matrix(temp,ncol=n)

temp_ifelse(temp==O,NA,temp)

dimnames(temp)_list(date=date,name=name)

if (flag==1) {

result_(temp[2:length(temp[,1]),]-temp[1: (length(temp[,1])-1),])/

temp[1: (length(temp[,1])-1),]

resultifelse(result==Inf,NA,result)

resultifelse(result==-Inf,NA,result)

tempresult

}

temp

}

#col= vector representing the column indices.

#this function eliminates the dates on which any one of the

#chosen columns has missing data

extractfunction(x,col){

resultx[,col]

if(length(col)!=1)

for(i in c(l:length(col))){

index_(1:length(result[,i]))[is.na(result[,i])]

if(length(index)!=0)

resultresult[-index,]

}

elsef

index_(l:length(result)) [is.na(result)]
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if(length(index)!=0)

result_result [-index]

}

result

B.2 Estimation of the EPMV and Stress Volatil-

ity

#biorder.src

#stress = 1, stress volatility estimates, = 0, PM volatiltiy estimates

#bins = multiple of 180

#sc = 1, circle, = 2 diamond

#col=c(i,j) columns (2) of fxrate used i.e. pairs of assets

#p=e.g 95 for 95\% tolerance level or stress condition

#fxrate=fxrate(fx return data, 1985-1994 from BT),

# =equity(4 equity indexes return data)

pea_function(fxrate,p,col,sc,bins,stress){

data_extract(fxrate,col)

x_data[,1]

y_data[,2]

v_var(data)

xname_dimnames(data) [[2]] [1]

yname_dimnames (data) [[2]] [2]

temp_empquan(x,y,p,xname,yname, O,sc,bins,stress)

angle_temp[-length(temp[,6]),6]

templ_theoquan(x,y,v,p,temp[,1:2] )

list(theo=templ,emp=temp)
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}

quantilel_function(x,p){

x_sort(x)

ind_p*length(x)

inf_floor(ind)

quan_(ind-inf)*x[inf+l] + (inf+l-ind)*x[inf]

quan

}

#bins = multiple of 180

#sc = 1, circle, = 2 diamond

empquan_function(x,y,p,xname,yname,flag,sc,bins,stress){

angle_c(0:(bins-l))/(bins/2)*pi

anglel_c (angle,angle [1])

if(sc==l)

alpha_cbind(cos(anglel),sin(anglel))

elsef

temp_diam(bins/4,0)

alpha_temp$posit ions

anglel_temp$angle

angle_anglel [-length(anglel)]

}

data_cbind(x,y)

p_--p/100

if (stress==l){

select_c(l:round(p*length(data)))

temp_DJcov(length(data[,1]),select)

a_temp$a

b_solve(temp$b)
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onerep(l,length(select))

ca_rep(a,length(select))

ca_matrix(ca,ncol=length(select),byrow=T)

deltab%*% (ca-t (ca) ) %*%b

d2_as.numeric((t(a)%*Y.b%*%a)*(t(one)/.*%b%.*%one)-(t(a)%*%bY.*one) 2)

deltadelta/d2

}

r_c(1:3)

for(i in c(1:length(alpha[,1]))){

xdata_sort(data%*%alpha[i,])

if (stress==1) 

x_xdata[select]

mu-t (a) %*%delta%*%x

sigma_t(one)%*7delta/.*%x

answer_tailev(mu, sigma, p)

tildep_length(xdata[xdata<=(answer$exp/100)] )/length(xdata)

stresvol_(answer$exp/100-mean(xdata))/qnorm(tildep)

r_rbind(r,c(answer$exp/100,mean(xdata),stresvol))

else

r_rbind(r,c(quantilel(xdata,p),mean(xdata),

(quantilel (xdata,p)-mean(xdata))/qnorm(p)))

}

rr[2:length(r[,1]),]

resultr[, 1]*alpha

radius_-r[,1]

m_r[,2]

vl_c(NA,rep(r[1,3,length(angle)/4-1),NA,rep(r[(length(angle)/2+1),3],

length(angle)/4-1),NA,rep(r[(length(angle)/2+1),3],
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length(angle)/4-1),NA,rep(r[1,3],length(angle)/4-1),NA)

v2_c(NA,rep(r[(length(angle)/4+1),3],length(angle)/4-1),NA,

rep(r[(length(angle)/4+1),31,length(angle)/4-1) ,NA,

rep(r[(length(angle)*3/4+1),3],length(angle)/4-1),NA,

rep(r[(length(angle)*3/4+1),3],length(angle)/4-1),NA)

rho_(r[,3] 2-alpha[, 1]2*vl2-alpha[,2]2*v22) / (2*alpha[,1] *

alpha[,2] *vl*v2)

if(flag==1)

plot(result,type="l", lty=2,xlab=xname,ylab=yname)

print("Estimation finished")

cbind(alpha,radius,result,anglel,r[,3],rho)

}

theoquanfunction(x,y,v,p,alpha){

mc(mean(x) ,mean(y))

maalpha%*.m

q_qnorm (-p/1 00 )

va_(alpha%*%v)*alpha

va_sqrt(va[, 1]+va[,2])

vaifelse(is.na(va),Inf,va)

rlva*q+ma

r2_cbind(rl*alpha[,1],rl*alpha[,2])

r_v[1,2]/sqrt(v[1,1]*v[2,2])

list(value=-rl,position=r2,rho=r,iv=va)

}

#flag=i:plot the theoretical and empirical peanut on the same graph

#flag=2:plot the risk exposure at p% tolerance level or the stress

#tolerance level vs position of portfolio

#flag=3:plot the PM (stress) volatility vs position of portfolio
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#flag=4:plot the PM correlation vs position of portfolio

#flag=O:no plots

#pea_pea(fxrate,p,col,2,180,stress)

peaplot_function(pea,fxrate,p,col,flag,a){

data_extract(fxrate,col)

xname_dimnames (data) [[2]] [1]

yname_dimnames (data) [[2]][2]

templpea$theo

temp_pea$emp

v_temp[c((0:4)*(length(temp[,6])-1)/4+1),6]

if (flag==l) {

plot (templ$position, type="l",lty=l,xlab=xname, ylab=yname,

xlim=range(c(templ$position[,1] ,temp[,4])),

ylim=range(c(templ$position[,2] ,temp[,5])))

lines(temp[,4],temp[,5],lty=2)

legend(locator(l),legend=c("Theoretical" ,"Empirical"),

lty=c(1,2),cex=0.7)

}

if (flag==2){

plot(temp[,6,-templ$value*100,axes=F,type="l",lty=l,

xlab="Positions taken in the 2-asset portfolio",

ylab="DRaR (%)",ylim=range(-c(O,templ$value,temp[,3])*100))

lines(temp[,6] ,-temp[,3]*100,lty=2)

abline(v=v,lty=3)

axis (2)

axis(1,seq(0,2*pi,length=9),

c("LN","LL"," NL", "SL", "SN", "SS","NS","LS","LN" ))

box()

legend(locator(l),legend=c("Gaussian","Empirical"),lty=c(1,2), cex=0.7)

}
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if (flag==3) {

plot (temp[,6] ,templ$iv*100,axes=F,type="l",lty=l,

xlab="Positions taken in the 2-asset portfolio",

ylab="Volatility (%)",ylim=range(c(templ$iv,temp[,7])*100))

lines(temp[,6],temp[,7]*100,lty=2)

axis(2)

axis(l,seq(0,2*pi,length=9),

c("LN", ,"LL", "NL",, " SL"," SN", "SS", 'NS", "LS", "LN"))

box()

legend(locator(l),bty="n" ,legend=c("MLE Gaussian ","EPMV"),

lty=c(1,2),cex=0.7)

if (flag==4){

angletemp [-length (temp [, 6] ),6]

n_length(angle)

temp2_ifelse(abs(temp[,8])<1,temp[,8],NA)

temp3_temp2[is.na(temp2)==F]

plot(angle,rep(templ$rho,n),axes=F,type="l",lty=3,

xlab="Positions taken in the 2-asset portfolio",

ylab="Correlation",xlim=range(temp[,6]),

ylim=range(c(temp3,templ$rho)))

for(i in c(0:3)){

t_temp[(i*n/4+1):((i+l)*n/4),8]

temp4_ifelse(abs(t)<1,t,NA)

temp5_temp4[is.na(temp4)==F]

stemp[(i*n/4+1):((i+l)*n/4),6]

temp4_ifelse(abs(t)<1, s,NA)

temp4_temp4[is.na(temp4)==F]

lines(temp4,temp5,lty=2)

}
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abline(v=temp[c(1,46,91,136,181),6],lty=1)

axis(2)

axis(1,seq(0,2*pi,length=9),

c("LN", "LL", NL", ",SL", "SN", "SS", '"NS","LS", "LN") )

box()

legend(locator ( ),bty="n" ,legend=c("MLE Gaussian","EPMC"),

lty=c(3,2),cex=0.7)

}

if(a==1){

par(mfcol=c(l,1),fin=c(8,8.6/6*2.03))

plot(temp[,6],temp[,i],type="l",lty=1,axes=F,

ylim=range(temp[,1:2]),

xlab="Positions taken in the 2-asset portfolio",

ylab="Portfolio Weighting")

lines(temp[,6],temp[,2],lty=2)

abline (v=v, lty=3)

axis (2)

axis(1,seq(0,2*pi,length=9),

c ("LN", LL", NL,, "SL, "SN", SS", NS", "LS", "LN))

box()

legend(locator(l),legend=c("lst asset","2nd asset"),

lty=c(1,2),cex=0.7)

list(theo=templ,emp=temp)

#this function plots the EPMV of the long and short positions

#of a portfolio

epmvfunction(fxrate,col){

dataextract (fxrate, col)
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p_c(l:length(data))/(length(data)+1)

data_sort(data)

result_(data-mean(data))/qnorm(p)*100

plot(p[p>0.6] ,result[p>0.6,type="l",lty=1,

xlab="100(p)% Tolerance Level",ylab="Volatility (%)",

ylim=range(c(result[p>0.6],result[p<0.4])))

lines(1-p[p<0.4],result[p<0.4],lty=2)

abline(h=sqrt(var(data))*100,lty=3)

legend(locator(l) ,bty="n", legend=c("EPMV (Long)","EPMV (Short)",

"MLE Gaussian"),lty=c(1,2,3),cex=0.7)

1

B.3 BLUE for Gaussian Type-II Censored Sam-

ple

#stresvol.src

#this function computes the SERs and stress volatilities of portfolios

stress_function(fxrate,col,n,p,flag){

alpha_diam(n,O)$positions

data_extract (fxrate, col)

select_c(l:round((l-p/100)*length(data[,1])))

temp_DJcov(length(data[, 1),select)

a_temp$a

b_solve(temp$b)

one_rep(l,length(select))

ca_rep(a,length(select))
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ca_matrix(ca,ncol=length(select),byrow=T)

delta_b%* (ca-t(ca)) *%b

d2_as.numeric((t(a) %*%b%*%a)*(t(one) *%b%*%one)-(t(a)%*%b%*%one)2)

delta_delta/d2

result_c(1:3)

for(i in c(l:length(alpha[,1]))){

print(i)

xdata_sort(data%*%alpha[i,])

x_xdata[select]

mu_-t(a)%*%delta%*%x

sigma_t(one)%*%delta%*%x

answer_tailev(mu,sigma,(1-p/100))

tildep_length(xdata[xdata< =(answer$exp/100)])/length(xdata)

stresvol_(answer$exp/100-mean(xdata))/qnorm(tildep)

if(flag==) {

qqnorm(xdata)

abline(mu,sigma,lty=2)

abline(mean(xdata),sqrt(var(xdata)),lty=3)

legend(locator(l),legend=c("BLUE","MLE"),lty=c(2,3), cex=0.7)

}

result_rbind(result,c(mu,sigma,stresvol))

}

resultresult[2:length(result[,1]),]

result

}

#stres_stress(fxrate,col,n,p,O)

#flag = 1, plot the stress Gaussian parameters

#flag = 2, plot the SER

#flag = 3, plot the stress and PM volatility
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stressplot_function(stres,fxrate,p,col,flag){

angle_seq(0,2*pi, length=length(stres [,1]))

if (flag==1) {

par(mfcol=c(1,1))

par (pty="m")

par(mar=c(5,4,2,4))

plot(angle,stres[,2],type="l",lty=l,axes=F,

ylab="Standard deviation",xlab="")

axis (2)

axis(1,seq(0,2*pi,length=9),

c ("LN","LL", "NL", "SL","SN","SS","NS", "LS" ,"LN"))

box()

mtext(side=1,line=3,"Asset allocation in portfolio")

par (new=TRUE)

plot (angle,stres[,11],type="l" ,lty=2,axes=F,ylab="",xlab="")

axis (side=4)

mtext(side=4,line=3,"Mean")

legend(locator(l),bty="n" ,legend=c("Standard deviation","Mean"),

lty=c(1,2),cex=0.7)

}

if (flag==2) {

pea_pea(fxrate,p,col,2,length(stres[,1])-1,0)

par(mar=c(5,4,4,2)+0.1)

templ_pea$theo

temp_pea$emp

stresrisk_-(stres[, 1]+qnorm(l-p/100)*stres[,2])

plot(temp[,6],templ$value*100,axes=F,type="l",lty=1,

xlab="Positions taken in the 2-asset portfolio",

ylab="DRaR (%)",

ylim=100*range(c(templ$value,temp[,3],stresrisk)))
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lines(temp[,6],temp[,3]*100,lty=2)

lines(temp[,6],stresrisk*100,lty=3)

axis (2)

axis(1,seq(0,2*pi, length=9),

c ("LN", "LL","NL", , SL" , "SN" , "SS", "NS", "LS", "LN"))

box()

legend(locator(l),bty="n" ,legend=c("MLE Gaussian", "Empirical",

"Stress Gaussian"),lty=c(1,2,3),cex=0.7)

}

if (flag==3){

peap_pea(fxrate,p,co1,2,length(stres[,1]) -1,0)

par(mar=c(5,4,2,4))

plot(angle,stres[,31*100,axes=F,type="l",lty=1,

ylab="Volatility (%)",

xlab="Asset allocation in portfolio",

ylim=100*range(c(stres[,3],peap$emp[,7])))

lines(angle,peap$emp[,7]*100,lty=2)

axis (2)

axis(1,seq(0,2*pi,length=9),

c ("LN", "LL"," NL", " SL" , "SN", "SS", "NS", "LS", "LN"))

box()

legend(locator(l),bty="n",legend=c("Stress volatility",

"PM volatility"),lty=c(1,2),cex=0.7)

}
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B.4 Variance-Covariance Matrix for Gaussian Or-

der Statistics

#David-Johnson Approximation for the mean, variance-covariance

#matrix of the standard normal order statistics os sample size n

#this approximates the mean by DJ, and approximates the matrix

#by the uniform correlation multiplies by the variances

#approximated by DJ. select is the selected order statistics

DJcovfunction(n,select){

temp_Gi(n)

alpha_temp$gO+temp$p*(1-temp$p)/(n+2)*(temp$g2/2+1/(n+2)*

((1-2*temp$p)*temp$g3/3+temp$p*(1-temp$p)*

temp$g4/8)+1/(n+2) 2* ( (2*temp$p-) *temp$g3/3+ ( (1-2*temp$p)2-

temp$p*(1-temp$p) ) *temp$g4/4+temp$p*(1-temp$p)*(1-2*temp$p)*

temp$g5/6+(temp$p*(1-temp$p)) 2*temp$g6/48))

beta_temp$p*(1-temp$p)/(n+2) *temp$gl2

+temp$p*(1-temp$p)/(n+2) 2*(2*(1-2*temp$p)*temp$g2*temp$gl+

temp$p*(1-temp$p)*(temp$gl*temp$g3+temp$g2-2/2))

+temp$p*(1-temp$p)/(n+2)3*(-2* (1-2*temp$p)*temp$gl*temp$g2+

((1-2*temp$p) 2-temp$p*(1-temp$p) ) * (2*temp$gl*temp$g3+

3/2*temp$g2^2)+temp$p*(1-temp$p)*(1-2*temp$p)*

(5*temp$gl*temp$g4/3+3*temp$g3*t g2)temp$p-2*(1-temp$p) 2*

(temp$g5*temp$gl+2*temp$g4*temp$g2+5/3*temp$g32)/4)

u_matrix(rep(l,(length(select))^2),ncol=length(select))

for(i in c(l:length(select)))

u[i,]_select[i]/(n+l-select[i] )*beta[select[i]]
for(j in c(l:length(select)))
u[,j]_u[,j] *(n+l- j I Vt[j])/select[j]*beta[select[j]]
u_sqrt(u)

121



for(i in c(l:(length(select)-1)))

u[(i+l):length(u[,i]),i]_u[i,(i+l):length(u[,i])]

list(a=alpha[select],b=u)

}

#Compute the first six Gaussian derivatives evaluated at E(U(i,n))

Gi_function(n){

p_c(l:n)/(n+l)

GOqnorm(p)

G1_1/dnorm(GO)

G2_GO/dnorm(GO)^2

G3_(1+2*GO^2)/dnorm(GO) 3

G4_GO*(7+6*GO2)/dnorm(GO)^ 4

G5_(7+46*GO^2+24*GO^4)/dnorm(GO) 5

G6_GO* (127+326*GO^'2+120GO^4)/ dnorm(GO) 6

list(p=p,gO=GO,gl=G1,g2=G2,g3=G3,g4=G4,g5=G5,g6=G6)

}

#Compute the mean, variace-covariance matrix

DJorderfunction(n){

tempGi(n)

alpha_temp$gO+temp$p*(1-temp$p)/(n+2)*(temp$g2/2+1/(n+2)*

((1-2*temp$p)*temp$g3/3+temp$p*(1-temp$p)*temp$g4/8)+

1/(n+2)2* ( (2*temp$p-1) *temp$g3/3+ (1-2*temp$p)2-temp$p*

(1-temp$p) ) *temp$g4/4+temp$p*(1-temp$p) * (1-2*temp$p)*

temp$g5/6+(temp$p*(1-temp$p))^2*temp$g6/48))

resultc(1:n)

for(i in c(l:(floor((n+l)/2)))){

print (i)

betaijtemp$p[i]*(1-temp$p[i:(n+l-i)])/(n+2)*temp$gl[i]*
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temp$gl[i:(n+l-i)]

+temp$p[i]*(1-temp$p[i:(n+1-i)])/(n+2)~2*((1-2*temp$p[i])*

temp$g2[i]*temp$gl[i:(n+l-i)]+(1-2*temp$p[i:(n+1-i)])*

temp$gl[i]*temp$g2[i: (n+1-i)]+temp$p[i]*(-temp$p[i])*

temp$gl[i:(n+l-i)]*temp$g3[il/2+temp$p[i:(n+l-i)]*

(1-temp$p[i:(n+1-i)])*temp$gl[i]*temp$g3[i:(n+1-i)]/2+

temp$p[il*(l-temp$p[i:(n+1-i)])*temp$g2[i]*

temp$g2[i:(n+l-i)]/2)

+temp$p[i]*(1-temp$p[i:(n+l-i)])/(n+2)^3*(-(1-2*temp$p[i])
*

temp$gl[i:(n+1-i)]*temp$g2[i]-(1-2*temp$p[i:(n+1-i)])*

temp$gl[i]*temp$g
2[i:(n+1-i)]+((1-2*temp$p[i])-2-temp$p[i]*

(1-temp$p[il))*temp$gl[i: (n+l-i)]*temp$g3i]+

((1-2*temp$p[i:(n+1-i)])2-temp$p[i:(n+1-i)]*

(1-temp$pi:(n+1-i)]))*temp$gli] *temp$g3[i:(n+1-i)]+

(3*(1-2*temp$p[i])*(1-2*temp$pi:(n+l-i)])/2+

temp$p[i:(n+l-i)]*(l-temp$p[i])/2-2*temp$p[i ]*

(1-temp$p[i:(n+1-i)]))*temp$g2[i]**temp$g2i:(n+1-i)]+

5*temp$p[i]*(1-temp$p[i])* (1-2*temp$p[i])*temp$gli:(n+1-i)]*

temp$g4[i]/6+5*temp$p[i:(n+1-i)]*(l-temp$p[i:(n+1-i)])*

(1-2*temp$p[i:(n+l-i)])*temp$g4[i:(n+ -i)]/6+

(l*(l$p[i]*(1-temp$p i:(n+-i)])*(1-2*temp$p[i)+temp$p[i]*

(l-temp$p i])*(1-2*temp$p[i:(n+l-i)])/2)*temp$g3i] *

temp$g2[i:(n+1-i)]+(temp$p i ]*(l-temp$p[i:(n+1-i)])*

(1-2*temp$pi:(n+l-i)])+temp$p[i:(n+l-i)]*

(1-temp$p[i:(n+1-i)])*(1-2*temp$p[i])/2)*temp$g3[i:(n+1-i)]*

temp$g2[i]+temp$p[i]^2*(1-temp$p[i])^2*temp$g5[i]*

temp$gl[i:(n+l-i)]/8+temp$p[i:(n+l-i)]^2*

(l-temp$p[i:(n+1-i)])^2*temp$g5[i:(n+1-i)]*

temp$gl[i]/8+temp$p[i]-2*(1-temp$p[i])*(1-temp$pi:(n+1-i)] )*

temp$g4 i] *temp$g2 [i: (n+l-i)] /4+temp$p[i]*temp$pi: (n+l-i)] *
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(1-temp$p[i:(n+1-i)])^2*temp$g4[i:(n+1-i)]*temp$g2[i]/4+

(2*temp$p[i] 2*(1-temp$p[i:(n+1-i)] )2+3*temp$p[i]*

temp$p[i:(n+1-i)]*(1-temp$p[i])*(1-temp$p[i:(n+1-i)]))*

temp$g3[i]*temp$g3[i: (n+-i)]/12)

result_rbind(result,c(rep(NA,i-l),betaij,rep(NA,i-1)))

}

result_result[2:length(result[,1]),]

kissmatrix(rep(1,n*length(result[, 1])),ncol=n)

for(i in c(l:n))

kiss[,i]_result[,i]/sqrt(result[min(i,n+1-i),min(i n+1-i)])

for(j in c(l:length(result[,1])))

kiss[j,]_kiss[j ,]/sqrt(result[j,j])

list(a=alpha,b=result, r=kiss)

}

DJdiff_function(n){

temp_DJorder(n)

u_matrix(rep(1,n*length(temp$r[,1]) ),ncol=n)

xc(l:n)

for(i in c(l:length(temp$r[,1])))

u[i,]_i/(n+ -i )

for(j in x)

u[,j] _u[, j] * (n+ l-j)/j
usqrt(u)

for(i in c(l:(length(temp$r[,1])-1)))

u[(i+l):length(temp$r[,1]),i]_u[i,(i+1):length(temp$r[,1])]

diff_(temp$r-u)/u

list(max=max(diff[is.na(diff) !=1]) ,min=min(diff[is.na(diff) !=1]))
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DJconvfunction(k){

nc(2:k)*100

result_c(1:2)

for(i in c(l:length(n))){

tempDJdiff(n[i])

result_rbind(result, c (temp$min,temp$max))

}

resulteresult[2:length(result[, 1]),

result

}

concov_function(result,r,s){

for(i in c(1:(length(result[,1])-1)))

result[(i+l):length(result[,i]),i]_result[i,(i+l):length(result[,i])]

for(i in c(n:(n-length(result[,1])+2)))

result[(n-i+2):length(result[,i]),il]_result[(n-i+l),(i-):

(n-length(result[,i])+1)]

resultlresult[,(length(result[, 1])+l):length(result[1,])]

resultl_matrix(resultl,ncol=length(result[,1]),byrow=T)

if((floor(n/2)*2==n)){

result2_result[,1:length(result[,1])]

result2_result2[length(result2):l1]

result2_matrix(result2,ncol=length(result[, 1]),byrow=T)

}

else{

result2_result[1:(length(result[,1])-), 1: (length(result[,1])-1)]

result2_result2[length(result2): 1]

result2_matrix(result2,ncol=length(result[,1])-1,byrow=T)

}

result-rbind (result, cbind(resultl ,result2))
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result[r:s,r:s]

}

#this function generates results for the estreme order statistics

DJextremefunction(n){

result_c(1:2)

for(i in c(l:n)*100){

print (i)

resultrbind(result,c(i,DJorder(i) [i]))

}

resultresult[2:length(result [,1]),

result

}

B.5 Assessment of Bivariate Gaussian Normality

#preass.src

#this file contains functions used in the section preliminary

#assessment

#this functions plots two series of prices (flag=l) or returns

#(flag!=1) parallel in time

#x is the two-column

parplot_function(x,flag){

if(flag==1) {

x_ifelse(x==O,NA,x)

xname_dimnames(x) [[2]] [1]

yname_dimnames(x) [[2]] [2]

time_seq(0,9.5,length=length (x[, 1]))

par(mar=c(5,5,2,5))

126



plot(time,x[,1] ,type="l",lty=l,axes=F,ylab="",xlab="")

axis(2)

axis(l,c(0:9),c(85:94))

par(new=TRUE)

plot(time, x[,2],type="l" ,lty=2,axes=F,ylab="",xlab="")

axis (side=4)

mtext(side=2,line=3,xname)

mtext(side=l,line=3, "Year")

mtext(side=4,line=3, yname)

box()

legend(locator(l),bty="n",legend=c(xname,yname),lty=c(1,2),cex=O.7)

}

elsef

xname_dimnames(x) [[2]] [1]

ynamedimnames(x) [[2]] [2]

plot(x,ylab=yname,xlab=xname)

I
x

#this function plots the normalized scattergram (flag=1) or

#the histograms for the radius and angle (flag=1)

normalize function(x,flag){

xnamedimnames(x) [[2]] [1]

ynamedimnames(x) [[2]] [2]

m_apply(x,2,mean)

v_var(x)

v_solve(v)

tempeigen(v)

diag_t(temp$vectors) %*%v%*%temp$vectors
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diag_sqrt(diag)

gdiag%*%t(temp$vectors)

result_t(t(x)-m)%*%t(g)

if (flag==1) {

par(mfrow=c(1,2))

xrrange(x[,1])

yr_range(x[,2])

r_c(min(xr[l],yr[1]),max(xr[2],yr[2]))

par (pty="s")

plot(x,ylab=yname,xlab=xname, xlim=r,ylim=r)

mtext("Original" ,side=3,line=1.5)

xrrange(result[,1])

yrrange(result[,2])

r_c(min(xr[ll,yr[1]),max(xr[2],yr[2]))

plot(result,ylab=yname,xlab=xname,xlim=r,ylim=r)

mtext("Normalized",side=3,line=1.5)

}

else{

radii_sqrt(result[, 1]2+result [,2]2)

angleifelse(result[, 1] >0,ifelse(result[,2]>0,

atan(result[,2]/result[, 1]),

2*pi-atan(abs(result[,2])/result[,1])),

ifelse(result[,2]>0,pi-atan(result[,2]/abs(result[,1])),

pi+atan(result[,2]/result[,1])))

b_seq(0,2*pi,length=37)

temp_hist(angle,breaks=b,plot=F)

cum_O0

for(i in c(l:(length(b)-l))){

cum_c(cum,sum(temp$counts [1:i] )/length(angle))

}
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par(mfcol=c(1,2))

par(mar=c(5,4,2,4))

hist(angle,breaks=b,plot=TRUE,col=2,axes=F,xlab="Angle",

ylab="Frequency")

axis (2)

axis(l, seq(0,2*pi,length=5),c("0","pi/2","pi", "3pi/2","2pi" ))

par (new=TRUE)

plot (b,cum,type="l",lty=l,xlab=" ",ylab="" ,axes=F)

axis (side=4)

box()

par(mar=c(5,4,2,2))

br_seq(0,7.5,length=61)

hist(radii,breaks=br,plot=TRUE,axes=F,col=2,xlab="Radius",

ylab="Frequency")

axis (2)

axis (,seq(0,7.5,length=7))

r_seq(0,7.5,length=1000)

par (new=TRUE)

plot (r,dchisq(r^2,2) *2*r,type="l" ,lty=l,axes=F,ylab="",xlab="")

box()

result

B.6 Bivariate Ellipsoids

#bivarnorm.src

#This is to calculate the p confidence "ellipsoid"

#This is to compare on the same graph the 100(p)Y. normal
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#and the empirical ellipsoid

#flag =1, plot ellipses, =0 no plot

bivar_function(fxrate,p,col,flag){

data_extract(fxrate,col)

xl_data[, 1]

yl_data[,2]

xname_dimnames(data) [[2]] [1]

yname_dimnames(data) [[2]] [2]

x_xl-mean(xl)

y_yl-mean(yl)

muc(mean(xl),mean(yl))

resultl_c(l:2)

result2_c(1:2)

temp_var(cbind(x,y))

templ_solve(temp)

k_qchisq(p/100,2)

pie_seq(0,pi,length=181)

pie_pie[-181]

alpha_cbind(cos(pie),sin(pie))

kiss_alpha%*%templ*alpha

kissl_kiss[,1]+kiss[,2]

kis_alpha%*%temp*alpha

kisl_kis [, 1]+kis [,2]

rl_sqrt(k/kissl)

fl_pnorm(c(rl,-rl),mean=O,sd=sqrt(kisl))

fl_matrix(fl,ncol=2)

r_c(1:2)

for(i in c(l:length(alpha[,1]))){

print(i)

new_cbind(x,y)%*%alpha[i,]
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rrbind(r,quantile(new,fl[i,]))

}

rr[2:length(r[,1]),]

result2_t(t(rbind(r[,1]*alpha,r[,2]*alpha))+mu)

resultl_t(t(rbind(rl*alpha,-rl*alpha) ) +mu)

resultlirbind(resultl,resultl[1,])

result2_rbind(result2,result2[1,])

what_cbind(x,y) %*%templ

what-what[, 1] *x+what[,2]*y

whatwhat[what<k]

if(flag[1]==1){

par(pty="s")

xr_range(c(resultl[,1]*100,result2[,1]*100))

yr_range(c(result[,2]*100,result2 [,2]*100))

plot (resultl*l00,type="l" ,lty=l,ylab=paste(yname," ()"),

xlab=paste(xname," () "),

xlim=c(min(xr[1] ,yr[1]),max(xr[2] ,yr[2])),

ylim=c(min(xr[1] ,yr[1]) ,max(xr[2] ,yr[2])))

lines(result2[,1]*100,result2[,2]*100,lty=2)

if (flag[2] ==1)

mtext(paste("Comparison between Bivariate Normal &

Empirical Density Contour for",xname,"and",yname,

"at",p,"%"),side=3,line=1.5)

legend(locator(l),bty="n" ,legend=c("Gaussian","Empirical"),

lty=c(1,2),cex=0.5)

list(p=length(what)/length(x),theo=resultl,emp=result2)

#

#this function produces the graph of ellipses in Chapter 2
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eliplot_function(fxrate,p,col){

par(mfcol=c(1,2))

temp_bivar(fxrate,p[l],col,c(1,0))

mtext(paste(p[1] ,"% Ellipsoids") ,side=3,line=1.5)

templ_bivar(fxrate,p[2],col,c(1,O))

mtext(paste(p[2] ,"% Ellipsoids"),side=3,line=1.5)

1

B.7 Generating W

#diam.src

#This function generates and draws the portfolio weightings (flag=1)

#n = number of points in a quadrant

diam_function(n,flag){

tempseq(O,1, length=n+1)

temp_temp[-(n+l)]

dia_rbind(cbind((1-temp),temp),cbind(-temp,( -temp)),

cbind((-l+temp),-temp),cbind(temp,(-l+temp)))

diarbind(dia,dia[1,])

angle_atan(dia[,2]/dia[,1] )

angle[(n+l):(3*n)]_angle[(n+l):(3*n)]+pi

angle[(3*n+l):(4*n+l)]_angle[(3*n+): (4*n+1)]+2*pi

if (flag==l) {

par(pty="s")

plot(dia[, 1],dia[,2, axes=F,type="l",lty=1,

xlab="lst asset's holding",ylab="2nd asset's holding")

axis(1,seq(-1,1,length=3),c("-1","0","1"))

axis(2,seq(-1,1,length=3),c("-1","0""1))
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box()

list (positions=dia,angle=angle)

I
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