
SUBMITTED TO IEEE TRANS. ON SIGNAL PROCESSING 1

Design of Optimized Radar Codes with a Peak

to Average Power Ratio Constraint
A. De Maio, Y. Huang, M. Piezzo, S. Zhang, A. Farina

Abstract

This paper considers the problem of radar waveform design in the presence of colored Gaussian

disturbance under a Peak to Average power Ratio (PAR) and an energy constraint. First of all, we focus

on the selection of the radar signal optimizing the Signal to Noise Ratio (SNR) in correspondence of a

given expected target Doppler frequency (Algorithm 1). Then, through a max-min approach, we make

robust the technique with respect to the received Doppler (Algorithm 2), namely we optimize the worst

case SNR under the same constraints as in the previous problem. Since Algorithms 1 and 2 do not

impose any condition on the waveform phase, we also devise their phase quantized versions (Algorithms

3 and 4 respectively), which force the waveform phase to lie within a finite alphabet. All the problems

are formulated in terms of non-convex quadratic optimization programs with either a finite or an infinite

number of quadratic constraints. We prove that these problems are NP-hard and, hence, introduce design

techniques, relying on Semidefinite Programming (SDP) relaxation and randomization as well as on the

theory of trigonometric polynomials, providing high quality sub-optimal solutions with a polynomial time

computational complexity. Finally, we analyze the performance of the new waveform design algorithms

in terms of detection performance and robustness with respect to Doppler shifts.
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I. INTRODUCTION

Modern digital technology and adaptive transmitters now give the ability to generate high-accuracy,

sophisticated, broad-bandwidth radar waveforms, dynamically adaptable to and optimized for a range of

different tasks (detection, tracking, target recognition, etc.) potentially on a pulse-by-pulse and channel-

by-channel basis. For instance, a modern multifunction phased array radar can adapt the waveform, dwell

time, and update interval according to the nature of the surrounding clutter environment, the Signal to

Noise Ratio (SNR), and the particular target (the most likely type of target, the threat that it may represent,

and the degree to which it is manoeuvering, etc.). This is essentially the subject of waveform diversity

[1], [2], [3], [4], [5], namely a new flexibility and dynamic adaptation which demands new ways of

characterizing waveform properties and optimizing waveform design.

The possibility of modulating adaptively the radar signal depending on the surrounding environment

and on the expected target characteristics has lead to the concept of matched-illumination [6], [7], [8],

which determines the optimized transmission waveform and the corresponding receiver response through

the maximization of SNR. This concept is also thoroughly investigated in [9], with reference to a Gaussian

point-target and stationary Gaussian clutter, showing that the optimum allocation procedure places the

signal energy in the noise band having minimum power. Recent studies concerning waveform optimization

in the presence of colored disturbance can be found in [10], where a signal design approach relying on the

maximization of the SNR under a similarity constraint with a given waveform is proposed and assessed.

In [11], focusing on the class of linearly coded pulse trains (both in amplitude and in phase), the authors

introduce a code selection algorithm which maximizes the detection performance but, at the same time,

is capable of controlling both the region of achievable values for the Doppler estimation accuracy and

the degree of similarity with a pre-fixed radar code. In [12] and [13], the approach is extended to account

for a Space-Time Adaptive Processing and an unknown target Doppler frequency respectively. However,

since in several practical situations, the radar amplifiers might work in saturation conditions and hence

an amplitude modulation might be difficult to perform, in [14], the authors also consider the synthesis

of constant modulus (unimodular) phase coding schemes for radar coherent pulse trains.

In this paper, we introduce a new waveform design approach relying on the maximization of the detec-

tion performance under a more general constraint than unimodularity. Specifically, we design waveforms

with a bounded transmitted Peak to Average power Ratio (PAR). This constraint is very reasonable for

radar applications and includes, as a special case, the phase only condition. Indeed, it has also been

imposed in [15] for the synthesis of waveforms with stopband and correlation constraints. Actually,
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controlling the PAR permits to constrain the excursions of the squared code elements around their mean

value. This also allows to keep under control the dynamic range of the transmitted waveform which is

an important practical issue (for the current technology) because high PAR values necessitate a linear

amplifier having a large dynamic range and this is difficult to accommodate. Finally, the PAR control is

also a crucial task in OFDM systems and the interested reader might refer to [16] and references therein

where this issue is addressed.

First of all, we focus on the selection of the radar waveform optimizing the SNR in correspondence of

a given expected target Doppler frequency, under a PAR and an energy constraint (Algorithm 1). Notice

that this problem is of practical importance when it is required a confirmation of an initial detection in

a certain Doppler bin, namely when some knowledge about the Doppler frequency is available. Besides,

when the Doppler parameter is unknown, the practical application of Algorithm 1 can be obtained either

tuning the design Doppler to a challenging condition, dictated by the clutter Power Spectral Density

(PSD) shape, or optimizing the waveform to an average scenario. This is tantamount to considering as

objective function the average SNR over the possible target Doppler shifts.

Afterword, we make robust the technique with respect to the received target Doppler frequency resorting

to a max-min approach (Algorithm 2). Otherwise stated, we optimize the worst case (over the target

Doppler) SNR under the same constraints as in the previous problem. Since Algorithms 1 and 2 do not

impose any condition on the waveform phase (i.e. the waveform phase can range within the continuous

interval [0, 2π)), we also devise their phase quantized versions (Algorithms 3 and 4 respectively) which

force the waveform phase to belong to a finite alphabet.

All the problems are formulated in terms of non-convex quadratic optimization problems with a

finite (cases of Algorithms 1 and 3) or an infinite (cases of Algorithms 2 and 4) number of quadratic

constraints. We prove that these problems are NP-hard and, hence, introduce design techniques, relying

on Semidefinite Programming (SDP) relaxation and randomization1 as well as on the theory of trigono-

metric polynomials [19], which approximate the optimal solution with a polynomial time computational

complexity. For Algorithms 1 and 3, we also provide an analytical expression of the approximation bound

which quantifies the quality of the obtained waveforms.

At the analysis stage, we assess the performance of the new technique in terms of detection probability

achievable by the Neyman-Pearson receiver and robust behavior of the detection performance with respect

1SDP relaxation and randomization techniques have also been used in other signal processing fields. For instance, in maximum

likelihood multiuser detection [17] and transmit beamforming [18].

October 30, 2010 DRAFT



SUBMITTED TO IEEE TRANS. ON SIGNAL PROCESSING 4

to the Doppler frequency. The results show that the new algorithms trade off detection performance and

SNR robustness with small desirable values of the PAR as well as (Algorithms 3 and 4) with the number

of quantization levels used to represent the waveform phase.

The paper is organized as follows. In Section II, we present the system model and the formulation

of the waveform design problems; in Sections III-VI, we devise solution algorithms for the considered

problems; in Section VII, we analyze the performance of the new waveform design techniques providing

numerical results aimed at assessing their quality. Finally, conclusions are given in Section VIII.

A. Notation

We adopt the notation of using boldface for vectors a and matrices A. The i-th element of a and the

(i, j)-th entry of A are respectively denoted by ai and Aij . The transpose operator and the conjugate

transpose operator are denoted by the symbols (·)T and (·)H respectively. tr(·) is the trace of the square

matrix argument, I and 0 denote respectively the identity matrix and the matrix with zero entries, while

ek is the vector with all zeros except 1 in the k-th position (their size is determined from the context).

The letter j represents the imaginary unit (i.e. j =
√
−1), while the letter i often serves as index in this

paper. R and C are respectively the set of real and complex numbers. For any complex number x, we

use <(x) and =(x) to denote respectively the real and the imaginary parts of x, |x| and arg(x) represent

the modulus and the argument of x, and x∗ stands for the conjugate of x. The Euclidean norm of the

vector x is denoted by ‖x‖. The symbols � represents the Hadamard element-wise product [20], while

E[·] stands for the expected value operator. The curled inequality symbol � (and its strict form �) is

used to denote generalized inequality: A � B means that A−B is an Hermitian positive semidefinite

matrix (A � B for positive definiteness). diag (·) denotes the vector formed by the diagonal elements

of matrix argument whereas Diag (·) indicates the diagonal matrix formed by the components of vector

argument.

II. SYSTEM MODEL AND FORMULATION OF THE PROBLEMS

Let us focus on a monostatic radar transmitting a linearly encoded pulse train and consider the

signal model of [11], where the N -dimensional column vector v = [v(t0), v(t1), . . . , v(tN−1)]
T of the

observations is expressed as

v = αc� p+w , (1)

with α a parameter accounting for channel propagation and target backscattering effects, c the N -

dimensional column vector containing the code elements, p = [1, ej2πνd , . . . , ej2π(N−1)νd ]T the temporal
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steering vector, νd the normalized Doppler frequency, and w = [w(t0), w(t1), . . . , w(tN−1)]
T the vector

of the disturbance samples.

We are looking for codes optimizing the SNR (either in the matched case, namely in correspondence

of a given normalized target Doppler, or in the worst normalized Doppler case), under a constraint on

the transmitted energy, namely ‖c‖2 = N , and forcing an upper bound to the PAR, i.e.

PAR =
maxi=1,...,N |ci|2

1
N ‖c‖2

= max
i=1,...,N

|ci|2, (2)

where c = [c1, . . . , cN ]T ∈ CN . Evidently, a bound on the PAR is tantamount to imposing a more general

constraint than the phase-only condition, which can be obtained letting PAR=1.

In the following, we formulate mathematically the waveform design problems, showing how the

matched or worst case SNR can be optimized and the constraints can be enforced, under the assumption

that w is a zero-mean complex circular Gaussian vector with known positive definite covariance matrix

E[wwH ] = M . First of all, we remind that the SNR is defined as (see [11] for the derivation of this

expression as well as of the decision rule to which it refers)

SNR = |α|2(c� p)HM−1(c� p) = |α|2cH
(
M−1 � (pp†)∗

)
c = |α|2cHRc , (3)

where R = M−1� (ppH)∗. Note that R is positive definite since xHRx = (x�p)HM−1(x�p) > 0

for any x 6= 0 (which is equivalent to x�p 6= 0), and that M−1 = (M−1� (ppH))� (ppH)∗. Hence,

for a given normalized target Doppler νd, we can formulate the Waveform Design Problem (WDP) in

terms of the following complex quadratic optimization program

maxc cHRc

s.t. PAR = maxi=1,...,N |ci|2 ≤ γ

‖c‖2 = N

(4)

(PAR constrained WDP) where 1 ≤ γ ≤ N rules the maximum allowable PAR.

If the target Doppler is not a-priori known, it makes sense to consider the waveform optimizing the

worst case SNR. This criterion leads to the following Robust PAR constrained WDP

maxc minνd∈[0,1]c
HRc

s.t. PAR = maxi=1,...,N |ci|2 ≤ γ,

‖c‖2 = N.

(5)

Since problems (4) and (5) do not impose any condition on the waveform phase (i.e. the waveform phase

can range within the continuous interval [0, 2π)), it is of interest to consider also their phase quantized
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versions, forcing the waveform phase to belong to a finite set. This observation leads to PAR constrained

and phase quantized WDP

maxc cHRc

s.t. PAR = maxi=1,...,N |ci|2 ≤ γ

arg ci ∈ {0, 1
M 2π, . . . , M−1M 2π}, i = 1, . . . , N

‖c‖2 = N

(6)

(where the number of quantization levels M is an integer such that M ≥ 2) and robust PAR constrained

and phased quantized WDP:

maxc minνd∈[0,1]c
HRc

s.t. PAR = maxi=1,...,N |ci|2 ≤ γ,

arg ci ∈ {0, 1
M 2π, . . . , M−1M 2π}, i = 1, . . . , N

‖c‖2 = N

(7)

which respectively refer to the case of known and and unknown normalized target Doppler.

Before proceeding with the design of solution techniques for (4), (5), (6), and (7), we address the

differences between them and the optimization problems formulated and solved in our previous papers.

To this end, let us highlight what we have done in previous works:

1) the problem in [11] is a non-convex homogeneous Quadratically Constrained Quadratic Program-

ming (QCQP) with three constraints, the strong duality holds for the problem, and a polynomial-time

algorithm is established based on a suitable rank-one decomposition;

2) the problem in [12] is a non-convex homogeneous QCQP with four constraints for which strong

duality does not hold in general. Nevertheless, we have shown how to construct an optimal solution

in polynomial-time, provided only that the SDP relaxation of the original problem gives an optimal

solution with rank not equal to two;

3) the problem in [14] is an NP-hard QCQP optimization problem due to the phase-only and the

possibly finite alphabet constraint, whose optimal solution is approximated using the relaxation

and randomization approach typical of the boolean Quadratic Programming (QP) problems;

4) the problem in [13] is a QCQP with infinitely many constraints, for which we establish a determin-

istic approximation procedure, with polynomial time computational complexity, to output a solution

leading to high-quality radar waveforms.

In this work, we will establish new randomized approximation algorithms for the WDP (4) and its

phase-quantized version (6) respectively. Due to the PAR constraint considered in (4) quite different in
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nature from the constraint (the similarity constraint under the infinite norm) in the optimization problem

considered in [14], the approximation procedures for (4) and (6) must be re-designed and the mathematical

analysis for the approximation bounds has to be re-assessed. For the robust PAR constrained WDPs (5)

and (7), we will propose respective randomized approximation algorithms, in contrast to the deterministic

approximation algorithm built in [13], according to some convex optimization techniques and the new

randomization procedures.

III. PAR CONSTRAINED WDP

Problem (4) can be equivalently reformulated as

maxc cHRc

s.t. |ci|2 ≤ γ, i = 1, . . . , N

‖c‖2 = N.

(8)

Notice that when γ = 1, a feasible point for (8) has the property that |ci| = 1 ∀i, and thus the norm

constraint ‖c‖2 = N is redundant, i.e., (8) reduces to

maxc cHRc

s.t. |ci|2 ≤ 1, i = 1, . . . , N.
(9)

Problem (9) has been proven NP-hard in [21]2 (see relating works [22], [23], [24]) and approximation

algorithms for (9) are established in [21] (see [25] also). An interesting application for (9) with all

parameters and design variable being real-valued can be found with reference to blind Maximum-

Likelihood (ML) detection of Orthogonal Space-Time Block Codes (OSTBCs) with unknown Channel

State Information (CSI) in Multiple-Input-Multiple-Output (MIMO) transmissions [26].

In this section, we consider (8) with γ > 1, which means that the norm constraint does not vanish.

Clearly, problem (8) is a non-convex QCQP with multiple constraints3. We claim that problem (8) with

γ greater than one is NP-hard by a reduction from an even partition problem which is known to be

NP-complete.

2Indeed, problem (9) is equivalent to (9) with all the inequality constraints becoming equality constraints, due to the fact

that the maximal value of a convex function is attained only the boundary of a convex region. In other words, replacing the

inequality constraints in (9) into equality ones, neither the optimal value nor the optimal solution set of problem (9) would be

changed. It has been shown in [21] that the problem (9) with all equality constraints is NP-hard, thus problem (9) is NP-hard,

as it stands now.
3For a QCQP, non-convexity does not imply that it is hard to solve; it turns out that, if the number of constraints is not too

high, the QCQP can be solved efficiently; in other words, the SDP relaxation of it is tight. See [27], [28].
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Proposition 3.1: The radar code design problem (8) is NP-hard with parameters R � 0 and γ > 1.

Proof: See Appendix A.

Thanks to Proposition 3.1, the radar code design problem (8) is unlikely to admit a polynomial time

solution method (which means (8) is computational intractable in general). Thus, we will make efforts

toward the design of an approximation algorithm for (8).

A. Approximation algorithm via semidefinite programming relaxation and randomization

To get an approximate solution (alternatively termed as a suboptimal solution) of (8), we consider its

SDP relaxation:
maxC tr (RC)

s.t. Cii ≤ γ, i = 1, . . . , N

tr (C) = N

C � 0.

(10)

Evidently, problem (10) with the additional rank constraint Rank (C) = 1 is equivalent to (8). It follows

from the strong duality theorem [29, Theorem 1.7.1] of SDP that (10) is solvable4, since the SDP (10)

is feasible (for example, I is a feasible point) and its dual is strictly feasible:

minti t0N + γ
∑N

i=1 ti

s.t. R−
∑N

i=1 tiEi − t0I � 0

ti ≥ 0, i = 1, . . . , N

(11)

where Ei stands for the N ×N matrix with the ii-th entry being one and all other entries being zero. In

practice, an optimal solution of (10) can be obtained using public solvers (such as cvx [30] and SeDuMi

[31]).

Let C? be an optimal solution of (10). We intend to extract a rank-one feasible solution of (10) with

mathematically provable quality from C?, which may or may not be of rank-one. We remark that if

RankC? happens to be one, then the radar code design problem (8) is solved and the SDP relaxation is

tight.

However, often, it is not the case that Rank C? is one, which means that the SDP relaxation (10) is not

tight for (8). Therefore, the design of a suitable procedure to construct in polynomial time a suboptimal

solution of problem (8) is a compromising must. The idea of a Gaussian randomization procedure to

4By saying “solvable”, we mean the problem is feasible, bounded above (for maximization problem), and the optimal value

is attained [29, page 13].
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produce an approximate solution to an NP-hard optimization problem comes from the seminal work [32]

by Goemans and Williamson where the authors proposed a randomized approximation algorithm for the

NP-hard max-cut problem, with the approximation bound 0.87856, via the SDP relaxation technique.

Since then, a large number of NP-hard optimization problems have been solved by the approximation

method of SDP-relaxation-plus-randomization, importantly with improved/tight approximation bound

provable mathematically. For an overview of it from a perspective of signal processing, we suggest

the reader to refer to the magazine paper [28]. Using the idea (mainly from [32] and [33] and references

therein), we are going to present a Gaussian randomization procedure to obtain an approximate solution of

problem (8), based on the optimal solution C? of the SDP relaxation problem (10). The quoted procedure

requires the definition of a suitable “ad hoc” covariance matrix of the Gaussian distribution to be adopted

in the randomization step. The basic criterion for selecting such a covariance matrix is that the entire

randomization procedure has to lead to a feasible solution of the original problem with probability one

and it has also to provide mathematical tractability in assessing the quality of the resulting solution.

According to this guideline, denote by

d =
√

diag (C?), (12)

and by d−

(d−)i =

 1/di, if di > 0

1, if di = 0
i = 1, . . . , N. (13)

Additionally, let

D = Diag (d), D− = Diag (d−), (14)

and observe that, from (12)-(14),

(D−D)ii =

 1, if di > 0

0, if di = 0
i = 1, . . . , N. (15)

Hence, the entries of the matrix

C̃
?

= C? + (I −D−D) (16)

comply with

(C̃
?
)ik =


(C?)ik, if i 6= k

(C?)ii, if (C?)ii > 0

1, if (C?)ii = 0

. (17)
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By the construction of C̃
?
, we see that the diagonal elements C̃

?
are positive and and that C̃?ii = 1

provided that C?ii vanishes. Exploiting the above definitions and observations, we have further important

properties about C̃
?
:

Proposition 3.2: Let C? be a positive semidefinite matrix and d, d−, D, D−, C̃
?

be defined as

(12)-(14), (16), respectively. Then, the matrix D−C̃
?
D− enjoys the following properties:

(i) D−C̃
?
D− � 0;

(ii) the diagonal elements of D−C̃
?
D− are one.

Proof: See Appendix B.

This proposition indicates that D−C̃
?
D− can be a suitable choice for the covariance matrix of a

Gaussian distribution to be adopted in our randomized approximation algorithm. Indeed, suppose that

we take a Gaussian random vector ξ from the distribution NC(0,D−C̃
?
D−); then each component

of ξ is with zero mean and unit variance (according to (ii) of Proposition 3.2), i.e., the vector ξ

enjoys dependent standard complex Gaussian random components. It can be seen that with probability

one, (
√
C?11

ξ1
|ξ1| , . . . ,

√
C?NN

ξN
|ξN |) is feasible for the PAR constrained WDP (4). Additionally, such a

construction of the covariance D−C̃
?
D− shares some advantages in mathematically assessing the quality

of a randomized approximation algorithm (as can be seen in the next sub-section). Based on these

observations, in order to produce an approximate solution (i.e., a suboptimal solution, or a feasible

solution) of (8), we propose the following randomization procedure (in Algorithm 1).

Algorithm 1 Gaussian randomization procedure for radar code design problem (8)
Input: R, γ;

Output: a randomized approximate solution c of (8);

1: solve the SDP (10) finding C?;

2: define d, d−, D, D− according to (12)-(14);

3: draw a random vector ξ ∈ CN from the complex normal distribution NC(0,D−(C? + (I −

D−D))D−);

4: let ci =
√
C?iie

j arg ξi , i = 1, . . . , N .

We remark that in practice the randomization steps 3 and 4 can be repeated many times, in order to

obtain a solution with better quality. As it can be directly seen, the computational cost of Algorithm 1

is dominated by solving SDP (10) which has a complexity of O(N3.5 log(1/ε)) [28], given a solution

accuracy ε > 0.
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B. Approximation bound

The approximation bound of an approximation algorithm is a measure characterizing the approximate

quality of the algorithm. For a randomized approximation algorithm solving a maximization (mini-

mization) problem, an approximation bound5 R ∈ (0, 1] (R ∈ [1,+∞)) means that for all instances

of the problem, the algorithm always delivers a feasible solution whose expected objective functional

value is at least (at most) R times the optimal value. Such an algorithm is usually called randomized

R-approximation algorithm. More precisely, let v(·) be the optimal value of an instance of a given

maximization (minimization) problem (·), then a feasible solution z produced by a randomized R-

approximation algorithm, complies with

E[the objective function evaluated at z] ≥ Rv(·)

(E[the objective function evaluated at z] ≤ Rv(·) for minimization problem). It is clear that an algorithm

produces a better approximation (for either maximization problem or minimization problem), if the

approximation bound is closer to 1. In this subsection, we aim at establishing an approximation bound

for Algorithm 1. Toward this end, let us revoke a result proved in Section 3.3, page 884 of [21]:

Lemma 3.3: Let Z be a positive semidefinite matrix with all one diagonal elements and z be a

randomized vector generated setting zi = ej arg ξi , i = 1, . . . , N , where ξ ∼ NC(0,Z). Then,

E[zzH ] = F (Z) =
π

4
Z +

π

2

∞∑
k=1

((2k)!)2

24k+1(k!)4(k + 1)
(ZT �Z)(k) �Z � π

4
Z (18)

where (A)(k) denotes the Hadamard product of k copies of A.

Besides, from Proposition 3.2, we get

Proposition 3.4: Let C? be a positive semidefinite matrix and d, d−, D, D−, C̃
?

be defined as

(12)-(14), (16), respectively. Then,

D(D−C̃
?
D−)D = C?.

Proof: See Appendix C.

Capitalizing Lemma 3.3 and Proposition 3.4, we obtain the proposition below showing that the

randomized Algorithm 1 has the approximation abound π
4 .

Proposition 3.5: Let c be the randomized solution output by Algorithm 1. Then,

E[cHRc] = tr (R(DF (D−C̃
?
D−)D)) ≥ π

4
tr (RC?) ≥ π

4
v((8)) (19)

5It also is termed as performance guarantee, or worst case ratio in the open literature.
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where C̃
?

is defined in (16) and the function F (·) is defined in (18).

Proof: See Appendix D.

Before concluding, we remark that problem (8) is equivalent to the real-valued quadratic program:

maxu,v [uT vT ]

 <(R) −=(R)

=(R) <(R)

 u
v


s.t. u2i + v2i ≤ γ, i = 1, . . . , N∑N

i=1(u
2
i + v2i ) = N

(20)

where u = <(c) and v = =(c). The approximation bound for the approximation algorithm solving a

real-valued quadratic program like in (20) but without any special structure of the positive semidefinite

matrix appearing in the objective function, obtained in [33], is 2
π (≈ 0.6366), instead of π

4 (≈ 0.7854).

We see that complex quadratic program (8) is a structured real quadratic program (20); in other words,

the matrix appearing in the objective function of (20) has the structure <(R) −=(R)

=(R) <(R)

 ,
rather than a general (2N)×(2N) positive semidefinite matrix. As a consequence, the complex quadratic

program (8) is equivalent to a subclass of real quadratic programs, and it is reasonable that it shares a

tighter approximation bound. Indeed, this phenomenon happens also in related literature as for instance

in [21], [22] and [27].

IV. ROBUST PAR CONSTRAINED WDP

Problem (5) can be equivalently expressed as

maxc, t t

s.t. t ≤ pH(M−1 � (ccH)∗)p, ∀νd ∈ [0, 1]

|ci|2 ≤ γ, i = 1, . . . , N

‖c‖2 = N.

(21)

The conventional SDP relaxation of (21) is

maxC , t t

s.t. t ≤ pH(M−1 � (C)∗)p, ∀νd ∈ [0, 1]

Cii ≤ γ, i = 1, . . . , N

tr (C) = N

C � 0.

(22)
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Problem (22) includes the infinitely many quadratic constraints t ≤ pH(M−1 � (C)∗)p, ∀νd ∈ [0, 1].

However, we prove that they can be transformed into a finite number convex constraints, resorting to the

SDP representation of nonnegative trigonometric polynomials [19]. To this end, we first observe that

pH(M−1 � (C)∗)p− t = x0 − t+ 2<

(
N−1∑
k=1

xke
−jkω

)
,

where ω = 2πνd and

xk =

N−k∑
i=1

(M � (C)∗)i+k,i, k = 0, 1, . . . , N − 1. (23)

Hence, we exploit the following theorem, proved in [19, Theorem 3.1] and quoted here as a lemma.

Lemma 4.1: The trigonometric polynomial f(ω) = x0 + 2<
(∑N−1

k=1 xke
−jkω

)
is nonnegative over

[0, 2π], if and only if there exists an N ×N Hermitian matrix X � 0 such that

x = WHdiag (WXWH), (24)

where x = [x0, . . . , xN−1]
T , W = [w0, . . . ,wN−1] ∈ CL×N , wk = [1, e−jkθ, . . . , e−j(L−1)kθ]T , k =

0, . . . , N − 1, θ = 2π/L, L ≥ 2N − 1.

The above Lemma implies that (22) can be recast equivalently as the following SDP:

maxC ,X , t t

s.t. WHdiag (WXWH) + te1 = x

Cii ≤ γ, i = 1, . . . , N

tr (C) = N

C � 0, X � 0

(25)

where x is defined by (23), e1 = [1, 0, . . . , 0]T , and W is the same as the one defined in Lemma 4.1

by taking L = 2N − 1.

Proposition 4.2: It holds that SDP problem (25) is solvable.

Proof: See Appendix E.

Let (C?,X?, t?) be an optimal solution of (22). We generate feasible solutions ck, k = 1, . . . ,K (K

will be referred to as the number of randomizations), of (5) using C? in a way similar to Algorithm 1.

Then we pick ck, say c1, such that the objective function value t1 is maximal over all

tk = min
νd∈[0,1]

pH(M � (ckc
H
k )∗)p, k = 1, . . . ,K. (26)

The minimization problems (26) are one dimensional optimization problem. It is seen that each problem

in (26) is equivalent to an SDP. In fact, for each k, we have

tk = max
s

s s.t. pH(M � (ckc
H
k )∗)p ≥ s, ∀νd ∈ [0, 1]. (27)
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It follows from Lemma 4.1 that problem (27) is equivalent to

tk = maxX1, s
s

s.t. WHdiag (WX1W
H) + se1 = xk

X1 � 0, s ∈ R

(28)

where the l-th element of xk is similar that defined in (23), i.e.,

(xk)l =

N−l∑
i=1

(M � (ckc
H
k )∗)i+l,i, l = 0, 1, . . . , N − 1. (29)

Algorithm 2 summarizes the procedure to generate an approximate solution of (5).

Algorithm 2 Gaussian randomization procedure for the code design problem (5)
Input: M , γ;

Output: a randomized approximate solution c of (5);

1: solve the SDP (25) finding C?;

2: define d, d−, D, D− according to (12)-(14);

3: draw random vectors ξk ∈ CN from the complex normal distribution NC(0,D−(C? + (I −

D−D))D−), k = 1, . . . ,K;

4: let (ck)i =
√
C?iie

j arg(ξk)i , i = 1, . . . , N , k = 1, . . . ,K;

5: compute

tk = min
νd∈[0,1]

pH(M � (ckc
H
k )∗)p, k = 1, . . . ,K,

by solving the SDPs (28);

6: pick the maximal value over {t1, . . . , tK}, say t1, and output c1.

We remark that the complexity of the algorithm is dominated by the computation required for solving

SDPs (25) and (28). Lastly, we point out that an alternative way to numerically solve the one dimensional

problems is to perform one dimension search since each of the problems has sufficiently smooth objective

function and compact feasible interval. In the numerical simulation, we shall use the Matlab c©command

fminbnd to perform it.
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V. PAR CONSTRAINED AND PHASE QUANTIZED WDP

In this section, we consider the synthesis of an approximation algorithm for (6), equivalently reformu-

lated as:
maxc cHRc

s.t. |ci|2 ≤ γ

arg ci ∈ {0, 1
M 2π, . . . , M−1M 2π}, i = 1, . . . , N

‖c‖2 = N.

(30)

Clearly, when M goes to infinity, (30) becomes (8). We claim that problem (30) is also NP-hard, as

shown below.

Proposition 5.1: The phase quantized code design problem (30) is NP-hard with parameters R � 0

and γ > 1.

Proof: See Appendix F.

Due to the hardness of problem (30), similar to Algorithm 1, we propose a randomized approximation

algorithm based on the SDP relaxation technique (as explained in Algorithm 3). Notice that the SDP

relaxation problem for (30) is (10) as well.

Algorithm 3 Gaussian randomization procedure for radar code design problem (30)
Input: R, γ, M ;

Output: a randomized approximate solution c of (8);

1: solve the SDP (10) finding C?;

2: define d, d−, D, D− according to (12)-(14);

3: draw a random vector ξ ∈ CN from the complex normal distribution NC(0,D−(C? + (I −

D−D))D−);

4: let ci =
√
C?iiµ(ξi), i = 1, . . . , N . where µ(x) is defined as

µ(x) =



1, if arg x ∈ [0, 2π 1
M )

ej2π
1

M , if arg x ∈ [2π 1
M , 2π

2
M )

...

ej2π
M−1

M , if arg x ∈ [2πM−1M , 2π)

. (31)
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We remark that, using the related idea in [33], the approximation algorithm is applicable to the following

quadratic program:
maxc cHRc

s.t. arg ci ∈ {0, 1
M 2π, . . . , M−1M 2π}, i = 1, . . . , N

[|c1|2, . . . , |cN |2]T ∈ F

(32)

where F ⊆ RN+ is a closed convex set. In this case, the convex relaxation of (32) is

maxC tr (RC)

s.t. diag (C) ∈ F

C � 0

(33)

which can be solved efficiently due to the convexity of the problem. As to the approximation bound for

Algorithm 3, let us quote Lemma 3.3 of [21] as the following lemma.

Lemma 5.2: Let Z be a positive semidefinite matrix with all diagonal elements being one, z be a

randomized vector generated setting zi = µ(ξi), i = 1, . . . , N , where ξ ∼ NC(0,Z), and the rounding

function µ(x) is defined according to (31). Then,

E[zzH ] � 2

π
<(Z) for M = 2, and E[zzH ] �

M2 sin2 π
M

4π
Z for M ≥ 3. (34)

Resorting to the above lemma, we have the following result concerning the approximation bound.

Proposition 5.3: Let c be the randomized solution obtained through Algorithm 3. Then,

E[cHRc] ≥ R(M)× tr (RC?) ≥ R(M)× v((8)) (35)

where

R(M) =

 2
π , if M = 2
M2 sin2 π

M

4π , if M ≥ 3
. (36)

Proof: The proof is based on Propositions 3.2, 3.4, and Lemma 5.2. It is completely similar to the

proof of Proposition 3.5 and, thus, it is omitted here.

In words, Algorithm 3 is a randomized R(M)-approximation algorithm for (30), where some examples

of R(M) are R(4) = 0.6366, R(8) = 0.7458, R(16) = 0.7754, R(32) = 0.7829, R(64) = 0.7848,

R(128) = 0.7852.
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VI. ROBUST PAR CONSTRAINED AND PHASE QUANTIZED WDP

In this section, we aim at solving problem (7), which can be equivalently written as

maxc, t t

s.t. t ≤ pH(M−1 � (ccH)∗)p, ∀νd ∈ [0, 1]

|ci|2 ≤ γ, i = 1, . . . , N

arg ci ∈ {0, 1
M 2π, . . . , M−1M 2π}, i = 1, . . . , N

‖c‖2 = N.

(37)

It is verified that (22) is an SDP relaxation of (37). Let (C?,X?, t?) be an optimal solution of (22). Based

on C?, we construct approximate solutions of (7), and then select the one with the best performance.

Algorithm 4 summarizes the procedure to generate an approximate solution of (7).

Algorithm 4 Gaussian randomization procedure for radar code design problem (7)
Input: M , γ, M ;

Output: a randomized approximate solution c of (7);

1: solve the SDP (25) finding C?;

2: define d, d−, D, D− according to (12)-(14);

3: draw random vectors ξk ∈ CN from the complex normal distribution NC(0,D−(C? + (I −

D−D))D−), k = 1, . . . ,K;

4: let (ck)i =
√
C?iiµ((ξk)i), i = 1, . . . , N , k = 1, . . . ,K, where µ(x) is defined in (31);

5: compute

tk = min
νd∈[0,1]

pH(M � (ckc
H
k )∗)p, k = 1, . . . ,K

by solving the SDPs (28);

6: pick the maximal value over {t1, . . . , tK}, say t1, and output c1.

We point out that, although we do not have an analytical approximation bound, our numerical sim-

ulations indicate that such an approximate scheme leads to high quality radar waveforms, also with a

moderate sample size K. This point will be better elicited in the section addressing numerical results.

VII. PERFORMANCE ANALYSIS

This section is devoted to the performance analysis of the proposed waveform design techniques in

correspondence of different values for the design parameters (namely, the PAR constraint γ, the number of
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randomizations K, the number of phase quantization levels M , etc.). To this end, we assume a disturbance

covariance matrix M , accounting for both clutter and thermal noise, with the following structure:

M =

Nc∑
i=1

βip(νd,i)p(νd,i)
H + βnI

where the number of discrete clutter scatterers Nc = 10, their strength βi = β = 103, νd,i = (i − 1)/2,

i = 1, . . . , 10, and βn = 10−2.

The analysis is conducted in terms of Pd of the GLRT receiver [11] (or equivalently the standard

matched flter with pre-whitening, followed by squared modulus operation and threshold comparison) for

a fixed target normalized Doppler frequency ν̄d (design parameter for Algorithms 1 and 3), and robustness

of the detection capabilities with respect to Doppler shifts for a fixed ᾱ:

Pd(α, ν̄d) = Q

(√
2|α|2cHR(ν̄d)c,

√
−2 lnPfa

)
,

Pd,rob = Pd(ᾱ, νd), νd = −1

2
, . . . ,

1

2
, α = ᾱ,

where Q (·, ·) is the Marcum Q function [34], assuming a false alarm probability Pfa = 10−6. Addition-

ally, due to the randomization procedures involved into Algorithms 1-4, the aforementioned performance

metrics have been averaged over 500 independent trials. We explicitly highlight that, for Algorithms 1

and 3, Pd,rob = Pd(ᾱ, νd) is the detection performance obtained when the code is designed for the given

ν̄d, while the actual target and the receiver steering vectors are matched to the same Doppler νd.

In Figure 1, we plot Pd, achieved using the code devised according to Algorithm 1, versus |α|2, for

N = 10, some values of γ (precisely, γ ∈ {1, 1.3, 1.6, 1.9, 2.2, 2.5}), and ν̄d = 0.1. The curves highlight

that greater and greater PAR parameters lead to better and better Pd values. Such behaviour was indeed

expected, because increasing γ (namely, imposing a less restrictive PAR constraint on the devised code) is

tantamount to increasing the size of the feasible set. However, it is also evident that, after a threshold value

for γ, depending on the maximum eigenvalue of the covariance matrix M , no additional performance

improvements can be observed. This phenomenon has a clear analytical interpretation. In fact, for γ

greater than the threshold value, the PAR constraint becomes inactive and an optimal solution to (4)

coincides with an optimal solution to

maxc cHRc

s.t. ‖c‖2 = N.
(38)

In other words, the optimal waveform is proportional to the eigenvector of R corresponding to the

maximum eigenvalue.
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The robustness of Algorithms 1 and 2 with respect to target Doppler shifts is studied in Figure 2.

Therein, we plot Pd,rob versus the actual νd for the PAR constrained (Algorithm 1) and the Robust PAR

constrained (Algorithm 2) codes, assuming N = 10, K = 10, |ᾱ|2 = 0 dB, and γ = {1, 1.3, 1.6, 1.9, 2.2}.

The nominal target Doppler for Algorithm 1 is set to ν̄d = 0.1, while Algorithm 2 does not require this

information. Inspection of the curves shows that Algorithm 1 outperforms Algorithm 2 when the actual

target Doppler is sufficiently close to the nominal one. However, in the presence of significant Doppler

mismatches, Pd,rob of Algorithm 1 exhibits a significant deterioration, approaching values very close to

zero. Besides, the transition from the Doppler interval with close to 1 detection rates to the undetectability

region is quite sharp. On the contrary, the performance curves of Algorithm 2 show a quite flat shape with

respect to Doppler variations, outperforming Algorithm 1 for a wide range of Doppler shifts. This feature

is far more evident as γ increases, leading (for the considered values of the parameters) to codes with

greater and greater detection capabilities, due to the less restrictive constraints forced into the optimization

problem.

In Figure 3, we analyze the impact of the number of randomizations K on the detection performance of

Algorithm 2. Specifically, we plot the worst case Pd versus |α|2 for N = 10, γ = 1.3, and several values

of K (K ∈ {1, 5, 10, 25}). We can notice a performance improvement as K increases. This behavior

can be explained based on Step 6 of Algorithm 2, which selects the code ensuring the best performance

among all the K randomization experiments. It is also worth pointing out that, for a quite moderate

number of randomizations, K = 5, 10, the performance can be considered satisfactory, in the sense that

a further increase in K does not lead to additional sensible improvements in Pd.

In Figures 4 and 5, we conduct the same analysis developed in Figures 1 and 2 (for Algorithms 1 and

2) with reference to the performance of Algorithms 3 and 4. Precisely, in Figure 4, we plot Pd of the code

designed according to Algorithm 3 versus |α|2 for N = 10, ν̄d = 0.1, some values of the PAR parameter

γ ∈ {1, 1.3, 1.6, 1.9, 2.2}, and M = 4 levels for the phase quantization. As in Figure 1, increasing γ

leads to better and better detection levels. In Figure 5, we plot Pd,rob versus the actual νd for the PAR

constrained Phase quantized (Algorithm 3) and the Robust PAR constrained Phase quantized (Algorithm

4) codes, assuming N = 10, K = 10, |ᾱ|2 = 0 dB, M = 4 and γ ∈ {1, 1.3, 1.6, 1.9, 2.2}. The nominal

target Doppler for Algorithm 1 is set to ν̄d = 0.1, while Algorithm 2 does not require this information.

Analyzing the curves, we can repeat the same considerations as in Figure 2.

Let us now focus on Algorithms 1 and 3 and the corresponding approximation bounds. In Figure 6, we

assume N = 10, ν̄d = 0.1, K = 10, M = 4 and compare the performance of Algorithms 1 and 3 with

the Pd curves obtained exploiting their approximation bounds defined by (19) and (35) respectively (i.e.
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TABLE I: Average CPU time in seconds required to solve problems (10) and (25).

γ 1 1.3 1.6 1.9 2.5

SDP (10) 0.083 0.104 0.097 0.085 0.086

SDP (25) 0.097 0.143 0.158 0.128 0.112

using (19) or (35) in the first argument of the Marcum Q function in place of the respective quadratic

form). Each subplot refers to a specific value of the PAR parameter γ. The plots highlight that Algorithm

1 performs better than Algorithm 3, which quantizes the phase of the transmitted waveform on four

different levels. The performance loss of the latter with respect to the former is kept within 1 dB, for

Pd = 0.9, and is quite acceptable considering also the easiest hardware implementation of a phase

quantized waveform. It is also interesting to observe that the Pd curves obtained using the approximation

bound provide a quite good approximation of the actual detection performance, for all the considered

values of the parameter γ and for both the considered algorithms. As a matter of fact, the lower bound

approximation is at most 2 dB far from the true Pd curve.

In the last part of this section, we investigate the effects of the number of quantization levels.

Specifically, in Figure 7, we plot Pd versus |α|2 for ν̄d = 0.1, K = 10, γ = 1.3, and several values of

M (M ∈ {2, 4, 8, 16}). As expected, increasing the number of quantization levels, leads to better and

better performances until M ≤ 8. Then, a saturation effect is experienced and the performance obtained

by the phase quantized Algorithm 3 ends up coincident with that provided by Algorithm 1, which, as

already pointed out, assumes code elements with phases ranging in a continuous interval.

Finally, before concluding this section, we provide in Table I the average CPU time required to solve

the SDP problem (10) (and (25)) which is the most computational expensive step of Algorithms 1 and

3 (Algorithms 2 and 4). All the experiments were conducted on a desktop computer equipped with a

Intel Core 2 Quad Q9400 CPU (2.66 GHz). The results highlight that the computational time is quite

modest and acceptable for all the considered values of γ. Nevertheless, it is also worth pointing out

that the waveform design must not necessary be performed on-line. It can be also implemented off-line

producing a waveform library [5] and then during the operation a waveform from the library is selected

for that particular scenario.
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VIII. CONCLUSIONS

In this paper, we have considered radar waveform design in the presence of colored Gaussian distur-

bance under a PAR and an energy constraint. First of all, we have focused on the selection of the radar

signal optimizing the SNR in correspondence of a given expected target Doppler frequency (Algorithm

1). Then, through a max-min approach, we have devised a robust version (with respect to the received

Doppler) of the aforementioned technique (Algorithm 2), optimizing the worst case SNR under the

same constraints as in the previous problem. Since Algorithms 1 and 2 do not impose any condition

on the waveform phase, we have also introduced their phase quantized versions (Algorithms 3 and 4

respectively), forcing the waveform phase to belong to a finite alphabet. Actually, this is a quite nice

feature for a practical implementation of the techniques. All the problems have been formulated in

terms of non-convex quadratic optimization programs with a finite (Algorithm 1 and 3) or an infinite

(Algorithm 2 and 4) number of quadratic constraints. We have proved the NP-hard nature of the problems

and, hence, have introduced design techniques, relying on Semidefinite Programming (SDP) relaxation

and randomization as well as on the theory of trigonometric polynomials, which provide high quality

sub-optimal solutions with a polynomial time computational complexity.

At the analysis stage, we have evaluated the performance of the devised algorithms, considering both the

detection probability achieved by the Neyman-Pearson detector, as well as the robustness with respect

to target Doppler shifts. Additionally, we have studied the effects of the possible phase quantization

showing the trade off existing between the number of quantization levels and some simplicity in circuitry

implementation.

Possible future research tracks might concern the generalization of the waveform design problem so as

to account for an additional similarity constraint with a known code sequence. This new approach will

pave the way to a joint control of both the PAR and the waveform ambiguity function. Unfortunately,

the additional constraint cannot be easily handled and the design of a solution method to the resulting

optimization problems is still an open issue.

APPENDIX

A. Proof of Proposition 3.1

Proof: It is clear that problem (8) is equivalent to the problem:

maxz zHRz

s.t. |zi|2 ≤ 1, i = 1, . . . , N

‖z‖2 = N/γ.

(39)
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Let N = 3P + 1, γ = 1 + P
2P+1 , z = [xT ,yT ]T , where x = [z0, z1, . . . , zP , zP+1, . . . , z2P ]T and

y = [z2P+1, . . . , z3P ]T ; let b0 = [−j2 e
Ta,aT ,0TP ,0

T
P ]T , bi = [−j, eTi ,−eTi ,0TP ]T , i = 1, . . . , P , where

a ∈ RP is a given vector with integer-valued components and e ∈ RP is the all-one vector. Let λ be

any number not less than the maximal eigenvalue of
∑P

i=0 bib
H
i , and R be λI2P+1 0

0 0P×P

− P∑
i=0

bib
H
i . (40)

This previous assumption ensures R � 0. Therefore, we have

zHRz = λ‖x‖2 −
P∑
i=0

|zHbi|2 ≤ λN/γ = λ(2P + 1) (41)

and the equality holds for any feasible point z for (39), if and only if |zi| = 1, i = 0, . . . , 2P , and

bHi z = 0, i = 0, . . . , P . That is, all zi, i = 0, . . . , 2P , are of unit modulus and

j

2
eTaz0 +

P∑
i=1

aizi = 0, jz0 + zi − zP+i = 0, k = 1, . . . , P,

which, due to nonzero z0, are equivalent to

j

2
eTa+

P∑
i=1

ai(zi/z0) = 0, j + zi/(z0)− zP+i/(z0) = 0, i = 1, . . . , P, (42)

Set zi/z0 = ejθi , i = 1, . . . , 2P , and the last P equations of (42) become

cos θi − cos θP+i = 0, 1 + sin θi − sin θP+i = 0, i = 1, . . . , P,

which imply that θi = −θP+i ∈ {−π
6 ,−

5
6π}, and the first equation of (42) becomes

1

2
eTa+

P∑
i=1

ai sin θi = 0,

P∑
i=1

ai cos θi = 0,

which further amounts to
P∑
i=1

ai cos θi = 0, θi ∈ {−
π

6
,−5

6
π}, i = 1, . . . , P.

This is clearly equivalent to the partition problem described in [35, pp 47 - 60], namely finding a binary

vector x such that
P∑
i=1

aixi = 0, xi ∈ {±1}, i = 1, . . . , P. (43)

Summarizing, we arrive at the conclusion that finding a feasible solution such that (41) is valid with

equality is equivalent to finding a solution x ∈ RP of (43).
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B. Proof of Proposition 3.2

Proof: (i) It follows from (15) that I −D−D � 0. Thus C̃
?

= C? + (I −D−D) � 0, which

implies D−C̃
?
D− � 0.

(ii) It is seen immediately from (12)-(14) and (17).

C. Proof of Proposition 3.4

Proof: Notice that D−D = DD−, namely D and D− commute. Since C? is positive semidefinite,

then

DD−C?D−D = C?,

where we use the fact that if a positive semidefinite matrix has a diagonal element 0, then the corre-

sponding row and column contains all zero elements. Observe that (I − D−D)D−D = 0. Then, it

follows that

DD−C̃
?
D−D = DD−(C? + (I −D−D))D−D = C?.

D. Proof of Proposition 3.5

Proof: Let yi = ej arg ξi , i = 1, . . . , N , where ξi is generated by step 3 of Algorithm 1. Thus

c = Dy. It follows from Lemma 3.3 that the expectation of yyH is

E[yyH ] = F (D−C̃
?
D−) � π

4
D−C̃

?
D−.

Therefore, we have

E[cHRc] = E[yHDRDy]

= tr (DRDE[yyH ])

≥ π

4
tr (DRDD−C̃

?
D−)

=
π

4
tr (RDD−C̃

?
D−D)

=
π

4
tr (RC?)

≥ π

4
v((8))

where the first inequality is due to the fact that DRD � 0 and, in the last equality, we apply Proposition

3.4.
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E. Proof of Proposition 4.2

Proof: Let us work on the dual problem of (25), and show that it is strictly feasible and bounded

above, which by the strong duality [29, Theorem 1.7.1], means that (25) is solvable.

Recall that W = [w0, . . . ,wN−1] ∈ CL×N , wk = [1, e−jkθ, . . . , e−j(L−1)kθ]T , k = 0, . . . , N − 1,

θ = 2π/L, L = 2N − 1. Then, we can rewrite W as

W =


vH0

vH1
...

vHL−1

 , vm =


1

ejmθ

...

ej(N−1)mθ

 , m = 0, . . . , L− 1. (44)

Thus,WHdiag (WXWH) =
∑L−1

m=0(v
H
mXvm)vm. From the equality constraint te1 = x−WHdiag (WXWH),

we have

t =

N∑
i=1

(M �C∗)ii −
L−1∑
m=0

vHmXvm, (45)

and
N−k∑
i=1

(M �C∗)i+k,i =

L−1∑
m=0

vHmXvme
jkmθ, k = 1, . . . , N − 1. (46)

It is clear that (45) can be further rewritten into

t = tr (A0C)− tr (B0X), (47)

where

A0 = I �M , B0 =

L−1∑
m=0

vmv
H
m, (48)

Observe that (46) has 2(N − 1) equalities (counting the real part and imaginary part):

tr (Ak,1C) = tr (Bk,1X), tr (Ak,2C) = tr (Bk,2X), k = 1, . . . , N − 1 (49)

where

Bk,1 =

L−1∑
m=0

vmv
H
m cos(kmθ), Bk,2 =

L−1∑
m=0

vmv
H
m sin(kmθ), k = 1, . . . , N − 1, (50)

and

Ak,1 =
1

2
Mk, Ak,2 =

1

2
(Mk �E), k = 1, . . . , N − 1. (51)

The N ×N Hermitian matrices Mk, k = 1, . . . , N − 1, are defined by

(Mk)i+k,i = (M)i+k,i, i = 1, . . . , N − k (52)
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and the diagonal elements and the other lower triangular elements of Mk are zero. The N×N Hermitian

matrix E is defined by  (E)ii = 1, i = 1, . . . , N,

(E)il = −j, ∀i > l.
(53)

By considering (45)-(47), (49), we can rewrite problem (25) equivalently into the following form

maxX ,C tr (A0C)− tr (B0X)

s.t. tr (Ak,1C)− tr (Bk,1X) = 0, k = 1, . . . , N − 1

tr (Ak,2C)− tr (Bk,2X) = 0, k = 1, . . . , N − 1

tr (EiC) ≤ γ, i = 1, . . . , N

tr (C) = N

C � 0, X � 0

(54)

where Ei are the same as those in problem (11). Therefore, the dual problem of (54) is

min{yi},z,{xk,1},{xk,2} γ
∑N

i=1 yi +Nz

s.t. zI +
∑N

i=1 yiEi +
∑N−1

k=1 (xk,1Ak,1 + xk,2Ak,2) � A0,∑N−1
k=1 (xk,1Bk,1 + xk,2Bk,2) � B0,

yi ≥ 0, i = 1, . . . , N, z ∈ R, xk,1 ∈ R, xk,2 ∈ R, k = 1, . . . , N − 1.

(55)

We take a point c satisfying |ci| ≤ γ for i = 1, . . . , N and ‖c‖ = N , and set

t = min
νd∈[0,1]

p†(M � (c0c
†
0)
∗)p,

which is a one-dimensional optimization. It follows from (28) that solving the one-dimensional optimiza-

tion is equivalent to solving an SDP. Thus (c, t) is feasible for (21) and (ccH , t) is feasible for (22), and

thus (25) is feasible. It follows by the weak duality theorem that the dual SDP (55) is bounded below.

It is further seen that problem (55) is strictly feasible. In fact, let z be a sufficiently large positive

number, yi positive numbers sufficiently close to zero, xk,1, xk,2 equal to zero; then (z, y1, . . . , yN ,

x1,1, x1,2, . . . , xN−1,1, xN−1,2) is a strictly feasible solution of (55). Here, we note that B0 = WHW

is the diagonal matrix with each diagonal element being L. Therefore, we conclude that problem (25) is

solvable, because the dual is bounded below and strictly feasible.

October 30, 2010 DRAFT



SUBMITTED TO IEEE TRANS. ON SIGNAL PROCESSING 26

F. Proof of Proposition 5.1

Proof: We are showing that problem (30) includes the max-cut problem and the max-3-cut problem

which are known to be NP-hard [32], [36], and [37]. In fact, problem (30) is equivalent to

maxc cHRc

s.t. |ci|2 ≤ 1

arg ci ∈ {0, 1
M 2π, . . . , M−1M 2π}, i = 1, . . . , N

‖c‖2 = N/γ.

(56)

The max-cut problem for a given undirected weighted graph (E, V ) with P nodes, is cast as

maxx
∑

k<l wkl(1− xkxl)/2

s.t. xk ∈ {±1}, k = 1, . . . , P
(57)

where wkl ≥ 0 is the weight on the edge between nodes k and l6. Let Q be the Laplacian matrix of the

graph, i.e., Qkl = −wkl for k 6= l and Qkk =
∑P

l 6=k, l=1wkl. Thus, Q � 0 and the objective function of

max-cut problem (57) is equal to 1
4x

TQx. Now, in (56), setting M = 2 (this means that arg ci ∈ {0, π},

∀i, i.e., any ci is real-valued), N = 2P , γ = 2 (this implies that ‖c‖2 = P ), and

R =

 1
4Q 0

0 0P×P


(the so-defined R, together with ‖c‖2 = P and |ci| ≤ 1 ∀i, implies that an optimal solution c? of the

maximization problem (56), has |c?i | = 1, i = 1, . . . , P , and |c?i | = 0, i = P + 1, . . . , 2P ), we reduce

(56) into the max-cut problem (57).
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Figure 3: Worst case Pd versus |α|2 for Pfa = 10−6, γ = 1.3, N = 10, and K ∈ {1, 5, 10, 25}

randomizations. Algorithm 2 - Robust PAR constrained code.
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Figure 7: Pd versus |α|2 for Pfa = 10−6, ν̄d = 0.1, γ = 1.3, K = 10, and M ∈ {2, 4, 8, 16}. Algorithm

3 - PAR constrained Phase quantized code (dashed-dotted lines). Algorithm 1 - PAR constrained code

(o-marked curve). Notice that the curve of Algorithm 1 overlaps with that referring to Algorithm 3 for

M = 8 and M = 16.
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