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Biomarker selection is an important topic in the omics sciences, where holistic measurement

methods routinely generate results for many variables simultaneously. Very often, only a small

fraction of these variables are really associated with the phenomena of interest. Selection and

identification of these biomarkers is essential for obtaining an understanding of the complex

biological processes under study. Finding biomarkers, however, is a difficult task. Even if a

relative order can be established, e.g., on the basis of p values, it is usually hard to determine

where to stop including candidates in the final set. Higher Criticism is an approach for finding

data-dependent cutoff values when comparing two distinct groups of samples. Here, we extend its

use to multivariate data, providing a principled approach to compromise between not selecting

too many variables and catching as many true positives as possible. The results show a marked

improvement in biomarker selection, compared to the standard settings available for some

methods. Interestingly, HC thresholds can differ considerably from what has been suggested in

literature before, again showing that it is not possible to use the same cutoff value for all data

sets. The data-specific cutoff values provided by HC also open the way to more fair comparisons

between biomarker selection methods, not biased by unlucky or suboptimal threshold choices.

1 Introduction

In many areas in the life sciences one is comparing measure-

ments on two populations, with the specific goal to identify

those variables that allow to distinguish the two – these

are commonly indicated by the term ‘‘biomarkers’’. Examples

can be found in transcriptomics,1,2 proteomics3,4 and

metabolomics,5 to name but a few. The question is what

difference is significant. In early days of microarrays, the

typical approach was to look for at least a two-fold difference,

but this kind of approach ignores differences in variability.

Currently, several different forms of t tests (see, e.g., Zuber

and Strimmer6), and approaches specifically developed

for particular data types are often used. An example in

the area of expression data is the Significance Analysis of

Microarrays, SAM.7 They have the advantage that they are

very simple to interpret and require little or no tuning. Just like

for any other form of statistical testing, however, applying

these tests many times will, by definition, lead to cases where

low p values are obtained purely by chance. Often, multiple-

testing corrections are employed to decrease the number of

False Positive (FP) decisions – a popular example is the False

Discovery Rate (FDR) correction.8,9

Whether or not a multiple-testing correction is employed, a

cutoff for the p values needs to be chosen above which the null

hypothesis is rejected. Historically, a = 0.05 has become

synonymous with a significant difference, but this is a rather

arbitrary convention, and especially in fields where the number

of variables is large, such as in microarray analysis, other p

values are used regularly. In practice, multiple-testing correc-

tions are often too strict10 and, although they successfully

decrease the number of false positives (FPs), the number of

true positives (TPs) usually suffers. Adaptive forms of multiple-

testing correction (see, e.g., Reiner et al.,9 Storey and

Tibshirani10 and references therein) tackle this by at least

roughly estimating the number of non-null hypotheses. How-

ever, this estimate is not the main goal of these techniques and

serves primarily to calculate more accurate corrected statistics;

the final selection of putative biomarkers will still be made

using a standard cutoff value like a = 0.05 or a = 0.01.

Recently, a more principled approach, called Higher

Criticism,11,12 has been suggested, choosing the cutoff on the

basis of the data at hand. The method has shown to work well

in a number of applications and has some attractive properties,

amongst which the ease of use stands out: there is only one

tuning parameter which affects the results very little. It is based

on the assumption that the real differences between the classes

are rare – the number of biomarkers is relatively small – and
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weak, indicating that class differences are small and hard to

detect individually.

The problem of selecting a suitable threshold also arises in

multivariate approaches, such as regularized discriminant

analysis,13 Principal Component Linear Discriminant Analysis

(PCLDA),14 Partial Least Squares Discriminant Analysis

(PLSDA)15 and the related Variable Importance of Projection

values (VIP).16 These multivariate methods, popular in many

omics sciences, in principle may lead to better biomarker

selections since they benefit from explicitly incorporating

correlation structure. Putative biomarkers then are indicated

by those variables that have a large influence on the model, i.e.

show large absolute values of regression coefficients (PCLDA

and PLSDA) or large VIP values. Selecting a threshold in

these cases can be even more difficult than in the univariate

case: whereas p values at least have one common range, from

zero to one, and a more or less clear interpretation, regression

coefficients depend on the units and scaling of the data, as well

as on the number of variables and their correlations, so

providing one universal cutoff value is impossible. For the

VIP, an empirical rule of thumb has been to include variables

with a VIP value larger than one,16 but there is no theoretical

justification for this. Even though one study indeed has found

optimal values close to one for VIP cutoffs,17 these values

depend strongly on the data and the data pretreatment, and

different data sets may require very different thresholds.

Here, we extend the Higher Criticism (HC) approach for

application with multivariate methods like PCLDA, PLSDA

and the VIP. We propose a permutation approach to obtain

p values for model coefficients (PCLDA, PLSDA) and VIP

statistics, after which the usual HC thresholding can be

applied. We demonstrate the potential of the HC thresholding

approach in these cases using experimental metabolomics data

of spiked apple extracts,18 where the differences between the

groups are known beforehand. The use of this kind of spike-in

data is essential: especially in complex biological data, there

always a risk of overinterpreting differences that are found by

a selection method, and therefore one must rely on real

experimental data where the true differences are unambiguous.

For the metabolomics data described in this paper, and

simulations that are based on them, the results are very

convincing – the HC threshold is shown to be able to identify

cutoff points that are very close to the optimal ones. For data

with more unfavourable sample-to-variable ratios, such as

microarrays or next-generation sequencing data, the technique

should still be evaluated, preferably using real-life spike-in

data with several replicates per class.

Although we are not comparing different biomarker selec-

tions methods in the current paper, it is important to mention

that the identification of data-dependent cutoff levels is essen-

tial in making such comparisons. The HC cutoffs provide a

consistent way of fine-tuning different biomarker selection

methods so that differences between the methods then are

due to method characteristics and not to an unlucky choice of

a threshold for one particular method. The final conclusion of

the paper is that HC thresholds can be easily combined with

other methods to identify biomarkers: HC threshold selection

is basically independent of the primary biomarker selection

method.

2 Theory

We focus on the situation that relevant differences need to be

found between two classes, where the number of features is

much larger than the class sizes. This situation is typical for

many of the omics sciences, perhaps most obviously so in

transcriptomics where the number of samples typically is two

to three orders of magnitude smaller than the number of genes.

In fields like metabolomics and proteomics the sample-to-

variable ratio is less unhealthy but typically less than 0.1.

In the next paragraphs we present background on multi-

variate biomarker selection approaches and HC thresholding.

The novel contribution of this paper is described in paragraph

2.3, explaining how to apply the HC approach in cases where no

explicit p values are obtained from the primary selection method.

2.1 Multivariate biomarker selection

Since the covariance matrices of most omics data sets are

singular (the number of variables usually exceeds the number

of samples by a fair amount), Linear Discriminant Analysis,

the simplest possible classification method, cannot be directly

applied. One approach, taken in both PLSDA and PCLDA, is

to compress the information in the data into a small number of

latent variables (LVs), and perform the discriminant analysis

on these. Usually, the problem is tackled in one step by

formulating it in a regression context, with the dependent

variable Y taking on values of either 0 or 1 (in a two-class

problem):

Y = XB + E E TPTB + E (1)

where E is the matrix of residuals. Matrix X is decomposed

into a score matrix T and a loading matrix P, both consisting

of a very low number of latent variables, typically less than ten

or twenty. The coefficients for the scores, A = PTB, can easily

be calculated, since the cross product matrix of the scores is

not singular, by least mean squares regression:

A = (TTT)�1 TTY (2)

which by premultiplication with P lead to estimates for the

overall regression coefficients B:

B = PA (3)

Large values in the regression vector B indicate those variables

that are important for the discrimination between the two

classes. The question is where to put the cutoff to find which of

the coefficients should be classified as putative biomarkers,

and which ones should not.

The difference between PCLDA and PLSDA lies in the

decomposition of X. In PCLDA, T and P correspond to the

scores and loadings, respectively, from Principal Component

Analysis (PCA). That is, the class of the samples is completely

ignored, and the only criterion is to capture as much variance

as possible from X. In PLSDA, on the other hand, the scores

and loadings are taken from a PLS model and the decomposi-

tion of X does take into account class information: the first

PLS components by definition explain more, often much more,

variance of Y than the first PCA components. Tuning the

PLSDA and PCLDA models, i.e. choosing the optimal number

of LVs, is usually done by methods like crossvalidation.
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The VIP statistic is derived from the PLS components and

basically summarizes the (squared) loadings for the p variables,

weighted with the amount of variance explained by each LV, va:

VIPA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
XA
a

P2
ava

 !,XA
a

va

vuut ð4Þ

where VIPA is the vector of VIP values for all variables,

obtained with A LVs, and Pa is the ath loading vector,

normalized to a length of one.17 Note that because of the

weighting with va, VIP values tend not to change too much

after the first few LVs. As a result, VIP-based biomarker

selections can be expected to be more robust than selections

relying on the size of regression coefficients.

2.2 Higher Criticism

Higher Criticism, a term first used by John Tukey and later

formalized and generalized by Jin and Donoho,11,12 is a

second-level form of significance testing, basically comparing

the number of significant differences found with the number

expected under the null hypothesis. Under this joint null

hypothesis of not a single difference, p values are uniformly

distributed. For a given number of p values, the distributions

of the smallest, the one-but-smallest, etc., are given by beta

distributions which for a large number of samples can be

conveniently described by normal distributions: the order

statistic pi (the ith value out of N sorted p values) is approxi-

mately normally distributed with mean i/N and variance

i/N(1 � i/N). From this, the HC statistic can be defined:12

HC ¼ max

ffiffiffiffi
N
p
ði=N � piÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

i=Nð1� i=NÞ
p

where the maximum is taken over i values between 0 and a

fraction a0 of N. Typically, a0 = 0.1. The form of the statistic

is familiar: the difference between the actual and expected

value, divided by the square root of the variance. In other

words, the HC objective is the ‘‘z score of the p value’’,

indicating the largest deviation of the expected behaviour of

the p values. The test will select the first k variables, where k

corresponds to the location of the maximum of the HC

statistic in the chosen range of [0, a0], and is specifically

devised to detect a small fraction of true differences in the

presence of a large number of no-difference situations. Note

that HC threshold selection should not be performed on p

values corrected for multiple testing: their distribution under

the null hypothesis is different.

2.3 HC cutoffs for model coefficients and VIP values

It has been shown that HC thresholding works very well in

combination with t testing on a number of ‘‘standard’’ data

sets.12 However, the p values on which the HC statistic is based

need not necessarily come from t tests,11 but can be applied to

all cases where p values are obtained which under the null

hypothesis of no difference show a uniform distribution. In

this paper, we further extend the applicability of the approach

for those cases where no p values are obtained by the primary

variable selection method. This is achieved by generating

approximate p values using permutation testing, so that HC

thresholding can also be applied to statistics like regression

coefficients. In particular, we show that cutoff values can be

obtained for PCLDA and PLSDAmodel coefficients as well as

for the VIP measure, all of which are popular biomarker

selection methods in the omics sciences.

Basically, there is no distribution theory on model coeffi-

cients from PLSDA or PCLDA, nor for VIP values, which

could be used to derive p values – the distribution of such

coefficients depends strongly on the distribution of the original

data. Therefore we resort to simulation. We use permutations

of the class response variable to set up null distributions for

the regression coefficients of PLSDA and PCLDA on one

hand, and VIP coefficients on the other hand. Then, p values

are determined by comparing the experimentally found coeffi-

cients with the null distributions, for each variable separately.

These are simply the fraction of values of the null distribution

that is larger in size (in absolute sense). As an example: if 210

out of 100 000 permutations lead to a regression coefficient

whose absolute value is larger than the one found for the real,

experimental data, then the p value for this variable is 210/

100 000 = 0.0021. It should be noted that for a meaningful

application of the HC criterion the p values should have

sufficient granularity. If the number of permutations would

be too small, too many variables would have p values that are

exactly the same. In this paper, a number of 100 000 permuta-

tions is used for the analysis of the real data, and 10 000

permutations are used for the simulated data sets. An advan-

tage of this simulation approach is that it is independent of the

scaling of the data, and can also be applied to data that have

not been standardized to zero mean and unit variance. For

example, in metabolomics, one popular form of scaling is

Pareto scaling,19 where every column is mean-centered and

then divided by the square root of the standard deviation,

rather than by the standard deviation itself.

Note that the permutation strategy is not applicable for the

case of PCLDA with only one latent variable: since the

compression step only takes into account X, the LDA step

will always use the same latent variable in which the original

variables have exactly the same ratios. In practice, PCLDA

with one latent variable will not work well, and we will not

consider it further here. For PLSDA and the VIP using one

latent variable, the simulation of the null distribution will

work since the compression takes into account class informa-

tion as well, and scrambling the class information will lead to

other loadings. The p values found in this way can be handled

by Higher Criticism just like the p values from, e.g., t tests.

This enables us to find which regression coefficients or VIP

values correspond to variables that are associated with real

differences between groups.

3 Data

3.1 Spike-in apple data

In order to test biomarker selection algorithms, it is crucial

that the data fulfill two conditions: they should be realistic,

i.e., they should be completely similar to true, experimental

data, and it should be known exactly and in advance which

differences are ‘‘true’’ differences. The first condition should
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provide a reality check: even if a particular method performs

well for data from a certain theoretical distribution, it does not

mean that it will yield good results in practice. The second

condition should guard against overinterpretation: it is quite

easy to see meaning in differences that are present only by

chance. This is especially true when the number of variables is

high, as currently is the case in most omics data sets.

In practice, the only way to obtain such data is to create

spike-in data sets, in which specific differences have been

introduced prior to the physical measurement. Several such

data sets are available in the microarray field.20,21 For other

omics data, far fewer data sets have been published.

Here, we use a metabolomics data set from spiked apples.18

In total, nine chemical compounds have been spiked in

extracts from ten Golden Delicious apples – three different

sets of concentration were used. Extracts from ten other

Golden Delicious apples were used as controls. Raw MS data,

measured in positive ionization mode (measuring the posi-

tively charged ions produced in the electrospray ionization of

the sample) as well as in negative ionization mode (for the

negative ions), have been exported to CDF format, and

analyzed with XCMS22 and CAMERA23 according to the

settings given elsewhere.18 In total, 1632 features have been

identified in the positive-ionization mode data, and 995 in the

negative ionization mode. The spike-in compounds have been

measured separately as well, and these data have been treated

in exactly the same way as the data from the apple extracts. In

total, 22 features in both positive and negative ionization

modes could be related to features from the spiked-in com-

pounds. One spike-in compound, quercetin, could not be identi-

fied due to both its low concentration and unfavorable

measurement conditions.18 Note that even when not all features

of the spike-in compounds are selected as biomarkers, it may

very well be possible that all compounds themselves are repre-

sented in the list of significant differences between the two classes.

3.2 Simulated data

Further insight in the behaviour of the HC threshold selection

in a multivariate context can be obtained by simulation. Not

only does this give an idea of the robustness of the method and

the spread that can be seen in the results, it also prevents one

lucky combination of data and method to lead to overly

optimistic assessments.

Two approaches can be found in the literature to generate

such data sets. The first is to make assumptions on the (joint)

distributions of the variables, such as multivariate normality.

Different correlation scenarios can be investigated. Unfortunately,

it is unclear how close such simulations are to real data: testing

multivariate normality is not a realistic option given the low

object-to-variable ratio usually encountered in the omics sciences.

Here, simulated spiked data sets are generated from the

spike-in apple data by randomly selecting a set of variables that

will act as biomarkers and multiplying the corresponding

columns in the data matrices with predefined constants. Put

differently, the matrix X of experimental data (without spiked

variables) is postmultiplied by a diagonal matrix S, where certain

elements of the diagonal of S have values larger than one:

X0 = XS

These artificially spiked data are then compared with the

control set in exactly the same way as is done with the

real data. This strategy has been applied in literature before

(see, e.g., Meinshausen and Bühlmann,24 where this kind of

data is indicated with the term ‘‘real’’ data sets) and has the

advantage that no assumptions of multivariate normality are

made.

Simulated concentration levels are again at 120, 140, and

200% of the original concentrations, just like in the experi-

mental data; before the simulations, the features associated

with the real spiked-in compounds were removed from the

data matrices. The number of artificially increased variables is,

again, twenty-two. Again, the comparison in each case is

between the control group (unchanged from the experimental

set, save the removal of the real spike-in features) and one of

the artificially spiked-in sets. Biomarkers were chosen ran-

domly so that the differences between groups one, two and

three only consist of the differences in the starting data. One

hundred data sets were simulated for each situation.

4 Software

The techniques described in this paper as well as the spike-in

apple data are part of the BioMark package25 for R,26 available

from the CRAN repository (http://cran.r-project.org). The

package implements the extraction of biomarkers on the basis

of a variety of t-statistics (from the st package6), PLSDA

regression coefficients and VIP values (using package pls27), as

well as methods to find optimal cut-off values for them, both

based on the Higher Criticism approach (this paper) and on an

alternative approach, called stability selection, assessing the

coefficient stability under perturbation of the data.24,28

5 Evaluation of results

For the real apple data as well as for every individual

simulated set, six different comparisons are made: comparing

groups one, two and three against the controls for both

positive and negative ionization mode data. In total, twenty-

eight models are considered for each combination of spike-in

data and controls. As a univariate approach, the usual two-

sample t test assuming equal variances is employed. In addi-

tion, PCLDA, PLSDA and VIP models, each taking into

account two to ten latent variables are considered. For brevity,

we will focus on the results of two, four and ten latent variables

only – these will show the trends with sufficient clarity.

In every case, putative biomarkers are identified by the

HC-thresholding methodology. For the student-t and VIP

statistics, we also calculate putative biomarkers given by the

usual cutoffs of 0.05 and 1, respectively.

The results of all biomarker selections will be evaluated in

the familiar terms of True and False Positives, and True and

False Negatives (TNs and FNs). Graphically, this can be

conveniently visualized in a Receiver-Operator Characteristic

(ROC) curve. For one particular selection, one plots the

fraction of false-positive features FP/(FP + TN) on the x

axis, and the fraction of true biomarkers that is found by the

selection method (TP/(TP + FN)) on the y axis. Another

quality assessment is made by the ‘‘selection efficiency’’, also
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known as the ‘‘positive predictive value’’ (PPV). This is defined

as the fraction of selected features that corresponds to TPs:

TP/(TP + FP). Especially if follow-up experiments are costly

or time-consuming, and one cannot afford many false positive

selections, this is an important criterion.

6 Results and discussion

6.1 Real apple data

6.1.1 Standard cutoff values. Fig. 1 shows the results of t

testing and VIP analysis using the ‘‘standard’’ cutoff values of

0.05 and 1, respectively. In interpreting this type of figures, one

should keep in mind that the x-axis corresponds to the fraction

of the total number of variables: a value of 0.1 therefore

corresponds to 100 variables for negative ionization data

and 162 variables for positive ionization data. In contrast,

the y-axis range from zero to one corresponds to the twenty-

two true biomarkers. Several observations can be made

immediately. The VIP consistently selects more features than

the t tests, somewhere around 30% of the total number of

features. In return, it usually also finds more true positives: for

the negative mode around twenty (out of twenty-two, more

than 80%), and for the positive mode between fifteen and

twenty. The number of latent variables shows no consistent

pattern and is of minor importance, which is in agreement with

expectations – since the VIP is a weighted sum of loadings with

the weights given by the explained variance, the addition of

later latent variables will only cause minor changes in VIP.

Clearly, the default cutoff value of one for the VIP in this case

is not strict enough: selecting one third of all variables as

biomarkers in many cases is not useful.

The regular t test selects approximately ten percent of all

features, which is a lot better than the VIP – however, the

number of TPs is also lower. The difference in the latter is not

so big, however, and overall one probably could say that the t

test is more efficient than the VIP using the standard cutoffs.

Performing a multiple testing correction on p values (using the

same a = 0.05 cutoff) leads to a fraction of selected features

less than five percent, but this time at the expense of a drastic

decrease in the number of true positives, in agreement with

observations from literature.10 Again, one feels that it may be

possible, with a more suitable selection of the cutoff level, to

strike a better balance between FPs and TPs. From these

results, it follows that comparing the t test and the VIP as

biomarker selection methods is difficult since in both cases the

threshold is chosen arbitrarily.

6.1.2 HC-thresholding. The efficiency of the HC thresholds

in picking up the true biomarker features is summarized in

Fig. 2 for a number of models. Especially for the VIP models,

but also for the t tests, the number of selected variables has

decreased dramatically upon the application of the HC threshold.

The VIP selections have decreased from a massive 30% –

corresponding to a selection containing hundreds of variables –

to less than 5%, i.e., several tens of variables. The size of the

selection based on t statistics decreases from approximately

10% to 5%.

Using the HC cutoffs, PCLDA is the method with the most

generous selection. Indeed, in most cases the maximal number

of variables is selected, corresponding to 10% of the variables

(determined by a0, the one parameter of the HC method).

Nevertheless, its number of TPs is not higher than that of the

other methods. Overall, PCLDA seems to be the worst of the

methods considered. It also shows the largest influence of

the number of latent variables, not surprising given that the

latent variables are constructed without taking class information

into account. For the subsequent LDA step to be able to pick

up relevant information, one would expect more components

to lead to more meaningful models, and this is clearly the case

here: for PCLDA, more components means a better perfor-

mance. Selection on the basis of PLSDA coefficients leads to

very low numbers of selected variables, especially in the

negative ionization data. Both the VIP and PLSDA show a

Fig. 1 Biomarker selection results for VIP (red symbols) and t tests

(black symbols), using standard cutoff values of 1 and 0.05, respec-

tively. The x axis shows the fraction of features selected; the y axis the

fraction of true biomarkers that is found by the selection method.

Fig. 2 Biomarker selection results using HC cutoffs. Four methods

are compared: the t test (in black), the VIP statistic (in red), and the

PLSDA (purple) and PCLDA (blue) regression coefficients. Scales are

equal to those of Fig. 1.
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much lower dependence on the number of latent variables than

PCLDA, which is a good thing: it means that a misspecifica-

tion of the optimal number of latent variables will not

influence the selection to a great extent.

In Fig. 3, ROC curves are shown for the t test and the VIP

using two latent variables. The corresponding plots for VIPs

with four and ten latent variables are very similar. Standard

cutoff values, for the t test corresponding to the 0.975 quantile

of the t distribution with 18 degrees of freedom, and in case of

the VIP the value of one, are indicated in blue, and HC-based

thresholds in red. Note that the ROC curves for the VIP and

the t test are very similar: both in this case select variables in

almost exactly the same order, even though the numerical

values of both statistics show differences. The optimal point in

these plots is the top left corner. What is the best point on the

curve, i.e., the best threshold, depends on the application. In

cases where all true differences need to be found, even if this

means a large number of false positives, the optimal value will

be less conservative than in cases where false positives need to

be kept at a minimum. In all cases, the HC-selection is more

conservative than the standard selection – the difference is

particularly big for the VIP, where the standard selections are

clearly far too generous.

Fig. 4 presents one way of evaluating the optimality of a

solution, focussing on the efficiency, i.e. the ratio of the

number of true positives and the number of selected variables.

Gray bars indicate HC-based selection for the three compar-

isons (groups one to three versus controls); thick red

line segments for the t test and VIP selections indicate

selections with the default thresholds of 0.05 and VIP = 1,

respectively. Again, we can compare the performance

of the HC-based selections with the standard thresholds. For

the VIP statistic, significant gains in efficiency can be achieved

in all cases by choosing cutoffs with HC, caused, as we

have seen, by the much lower number of selected variables.

For the t test, HC threshold selection gives similar or better

results than the standard threshold of 0.05, which in some

cases, of course, can be very close to the optimal threshold

identified by HC.

6.2 Simulated data

The simulated data confirm the conclusions from the experi-

mental data. Fig. 5 shows the results of t test and VIP-based

selections, both with their standard thresholds of 0.05 and 1,

respectively, and the selections based on HC-suggested

thresholds – the comparison is between group 1 and the

controls for the positive ionization mode. Results for the other

comparisons can be found in the ESI.w In each case, it is clear

that the efficiency of the HC-based selections is much better

than that of the standard thresholds, mostly caused by a

drastic reduction in the number of selected variables: the

standard thresholds are too generous. The price that is paid

is that also the number of true positives suffers somewhat, but

for the VIP in particular the gain in efficiency is quite extreme,

indicating again that the standard threshold of one for these

data is totally inappropriate.

Although the point of the current paper is not to compare

different primary biomarker selection methods, the application

of the HC statistic in this sense does provide an advantage: an

unbiased and objective way to select optimal data- and

method-dependent thresholds. Clearly, if ‘‘standard’’ thresholds

are chosen, some methods, like the VIP in our apple data

Fig. 3 ROC curves for the t and VIP statistics. The position of the

standard cutoff values (0.05, 1) are indicated in blue; HC-thresholds

in red.

Fig. 4 Bar plots showing the selection efficiencies for all models

considered using HC-based thresholds. Red bars indicate standard

thresholds of 0.05 and 1 for the t test and the VIP measure, respectively.
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examples, may be judged too harshly. In such a case it is not

the primary selection method that is at fault, but rather the

default selection threshold that is inappropriate. Fig. 6 shows

an example of HC thresholding applied to the positive ioniza-

tion data, group one versus controls. Similar plots for the other

comparisons are available in the ESI.w The lowest number of

variables is selected by PLSDA, with the VIP very close. These

two types of models also lead to the highest selection efficiencies.

Interestingly, and again in agreement with the experimental data,

the choice of the number of latent variables does not seem to

have any influence on the selection. This is a reassuring property,

since it means that even a suboptimal choice does not lead

to inappropriate selections. PCLDA shows a completely

different picture: there, the only useful results are obtained

with ten latent variables, the maximum number that is

considered in this paper. In the other cases, the HC selection

is just selecting as many points as possible, and the efficiency

of these models is very bad indeed. The t test selects slightly

more variables than PLSDA and the VIP. In general, it also

retrieves more true positives, but is slightly worse in terms

of efficiency. Should this behaviour be consistent over other

data sets, one can use this information to determine which

method is optimal in a particular case, depending on which

kind of error, a false positive or a false negative, is more

expensive.

7 Conclusions

The question what difference is significant when comparing

two data sets has become extremely important in this era of

high-throughput measurements. Any method to answer this

question will have to strike a balance between the costs of

including too many unimportant variables and the cost of

missing real differences. Even when having p values of statis-

tical testing available, the cutoff point determining how many

variables to accept as potential biomarkers must be chosen

with care – the usual level of 0.05 is chosen rather arbitrary

and can lead to sub-optimal selections. This is true regardless

of whether the p values under consideration have been

corrected for multiple testing or not. Because the widely

different characteristics of data sets, leading to very different

correlation structures, optimal cutoff points need to be deter-

mined on a case-by-case basis.

Higher Criticism tackles this task in a systematic fashion,

and this paper shows the viability of such an approach using a

spike-in data set from metabolomics for which the true

differences are known. Obviously, a full evaluation of the

merits of the approach would require application to many

more of such data sets. Application to data sets of higher

dimensionality, for instance from gene expression data or

SNPs, needs additional research. Nevertheless, the benefits

of using an adaptive choice of threshold, as compared to the

Fig. 5 Plots comparing the results for ‘‘standard’’ thresholds with HC-generated thresholds for 100 simulated data sets (group one versus

control), positive ionization mode. The first column of plots presents the number of selected features; the dashed line indicates the upper selection

limit of 10%, set by the one parameter for HC. The second column presents the number of true positives in the selections, and the third shows the

efficiencies (PPVs).

Fig. 6 Number of selected variables, number of true positives, and

efficiencies (PPVs), respectively, of all ten methods considered, after

selection based on HC thresholding. Comparison of simulated group 1

spiked data and controls, positive ionization. Solid lines, added for

easier interpretation, connect the medians of the groups.
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rather naive – but widely used – choices of 0.05 for p values

and 1 for VIP coefficients should be clear. As an additional

novelty, this paper extends the scope of HC thresholding

to coefficients from PCLDA and PLSDA discriminant

models, and to the VIP statistic, by using simulated null

distributions from data permutation. In the case of the

regression coefficients, no cutoffs have been suggested up to

now, which is obvious because of the dependence on the

scaling, size and structure of the data; the threshold of one,

proposed earlier for the VIP, is shown to be also dependent on

the data and in our case gives much inferior results than the

thresholds suggested by the HC approach. The big advantage

of HC threshold selection is that it does not rely on error

estimates, which in small-sample situations can be highly

variable.

As such, HC aims at the same goals as adaptive forms of

multiple testing correction9,10 and as stability selection.24,28

The latter approach uses sub-sampling of the data to assess the

consistency of biomarker selection. The advantage of using

permutations, as is done by HC, is that no sub-sampling

of the data is needed, which in the small data sets typical for

omics studies, where high replication is the exception rather

than the rule, can be difficult. The disadvantage of the HC

approach is the large number of permutations, needed to get

p values with sufficient resolution (not just 0.01, 0.02, etc.).

However, the calculations can easily be parallelized. More-

over, for PCLDA, PLSDA and the VIP, efficient dedicated

functions can be utilized, completing the necessary calcula-

tions within an hour on an ordinary desktop computer. The

HC approach requires no fine-tuning: the one parameter

that needs to be set is related to the assumption that real

biomarkers are rare, and its default value of 10% is shown to

work well in practice.

A final important advantage of having one consistent

threshold selection is that it allows for a fair comparison of

different biomarker selection algorithms. For the spike-in data

analyzed here, it could be shown that PCLDA is performing

far worse than the other methods considered in almost all

cases. Indeed, an evaluation of several biomarker selection

methods, using spike-in data sets from different fields, is

currently underway in our group.
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