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Abstract

Previously, statistical machine translation (SMT) models have been estimated

from parallel corpora, or pairs of translated sentences. In this thesis, we directly

incorporate comparable corpora into the estimation of end-to-end SMT models. In

contrast to parallel corpora, comparable corpora are pairs of monolingual corpora

that have some cross-lingual similarities, for example topic or publication date, but

that do not necessarily contain any direct translations. Comparable corpora are more

readily available in large quantities than parallel corpora, which require significant

human effort to compile. We use comparable corpora to estimate machine translation

model parameters and show that doing so improves performance in settings where a

limited amount of parallel data is available for training. The major contributions of

this thesis are the following:

‚ We release ‘language packs’ for 151 human languages, which include bilingual

dictionaries, comparable corpora of Wikipedia document pairs, comparable cor-

pora of time-stamped news text that we harvested from the web, and, for
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non-roman script languages, dictionaries of name pairs, which are likely to be

transliterations.

‚ We present a novel technique for using a small number of example word trans-

lations to learn a supervised model for bilingual lexicon induction which takes

advantage of a wide variety of signals of translation equivalence that can be

estimated over comparable corpora.

‚ We show that using comparable corpora to induce new translations and esti-

mate new phrase table feature functions improves end-to-end statistical machine

translation performance for low resource language pairs as well as domains.

‚ We present a novel algorithm for composing multiword phrase translations from

multiple unigram translations and then use comparable corpora to prune the

large space of hypothesis translations. We show that these induced phrase

translations improve machine translation performance beyond that of compo-

nent unigrams.

This thesis focuses on critical low resource machine translation settings, where

insufficient parallel corpora exist for training statistical models. We experiment with

both low resource language pairs and low resource domains of text. We present results

from our novel error analysis methodology, which show that most translation errors

in low resource settings are due to unseen source language words and phrases and

unseen target language translations. We also find room for fixing errors due to how
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different translations are weighted, or scored, in the models. We target both error

types; we use comparable corpora to induce new word and phrase translations and

estimate novel translation feature scores. Our experiments show that augmenting

baseline SMT systems with new translations and features estimated over comparable

corpora improves translation performance significantly. Additionally, our techniques

expand the applicability of statistical machine translation to those language pairs for

which zero parallel text is available.

Primary Reader: Chris Callison-Burch

Secondary Reader: David Yarowsky

Committee Member: Hal Daumé III
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Chapter 1

Introduction

The objective of this thesis is to directly incorporate comparable corpora into the

estimation of end-to-end statistical machine translation (SMT) models. Typically,

SMT models are estimated from parallel corpora, or pairs of translated sentences. In

contrast to parallel corpora, comparable corpora are pairs of monolingual corpora that

have some cross-lingual similarities, for example topic or publication date, but that do

not necessarily contain any direct translations. Comparable corpora are more readily

available in large quantities than parallel corpora, which require significant human

effort to compile. We use comparable corpora to estimate machine translation model

parameters and show that doing so improves performance in settings where a limited

amount of parallel data is available for training. Specifically, we use comparable

corpora in the following ways:
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CHAPTER 1. INTRODUCTION

‚ We induce high quality translations for words and short multiword phrases using

features estimated over comparable corpora and a small number of example

translations.

‚ We estimate a variety of phrase table feature functions over phrase pairs both

extracted from parallel data and induced from comparable corpora.

‚ We show that the induced translations and new feature functions significantly

improve the quality of machine translations for both low resource language pairs

and text domains.

In the last twenty years, statistical machine translation has improved dramatically

as algorithms for using parallel corpora to build translation models have improved.

However, for many potential machine translation use cases, the parallel corpora neces-

sary to train high quality statistical models do not exist. Even if we restrict ourselves

to those markets with many potential users, focusing only on languages with tens of

millions of speakers, there are thousands of possible language pairs. At best, we have

substantial quantities of parallel corpora in a few hundred of these. Furthermore,

in most of those cases, the parallel corpora consist of text from the government do-

main. For the vast majority of languages and domains, zero or very little parallel data

exists (Lopez and Post, 2013). This thesis focuses on these critical low resource ma-

chine translation settings, where insufficient parallel corpora are available for training

statistical models.

2



CHAPTER 1. INTRODUCTION

This thesis addresses two slightly different low resource settings. The first is

typically referred to simply as ‘low resource machine translation’ and is characterized

by the amount of parallel data available for training SMT models for a given pair of

languages. In Chapter 3 we present the amount of parallel data publicly available for

over one hundred languages paired with English. For Chinese and French, over one

billion words of parallel text are available for training SMT models. Additionally, for

many languages, including, for example, Italian, Serbian, Japanese, and Ukrainian,

over one million words of parallel text are available. In this thesis, we generally define

low resource language pairs as those for which we have access to fewer than one million

words of parallel data. Low resource language pairs include, for example, Malayalam,

Somali, Kazakh, and Afrikaans paired with English. Because doing evaluation on

truly low resource language pairs can be difficult, in some experiments we simulate

low resource conditions by training SMT models on samples of larger parallel training

sets.

Figure 1.1 demonstrates the effect of using varying amounts of parallel training

data to estimate a statistical machine translation model. To show the effect, we

sample varying amounts of training data from the very large French-English Hansard

parliamentary proceedings parallel corpus.1 We train SMT models on each set of

training data and measure the performance of each by translating a test set of French

sentences, also taken from the Hansard corpus, and then comparing the English ma-

1This corpus consists of manual transcriptions and translations form the Canadian parliament.
It is described in more detail in Chapter 8.
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Figure 1.1: Illustration of the effect of training data size (x-axis) on translation qual-
ity (y-axis). We estimate French to English translation models using varying amounts
of the very large French-English Hansard parliamentary proceedings parallel dataset.
Then, we measure the performance of each model by translating a held-out French
test set, also taken from the French-English Hansard parliamentary proceedings, into
English and computing the BLEU score, a metric for automatically estimating trans-
lation quality.

chine translations with reference English translations. As the amount of parallel data

increases (along the x-axis), the quality of the machine translations increases. The

effect is nearly linear with the log of the amount of training data.

The second low resource setting that we address in this thesis involves the domain

of the text that we wish to translate. In many real-world translation settings we have

access to parallel data in some text domain, for example parliamentary proceedings,

but we wish to translate text in another domain, for example from the medical do-

main. Training SMT models on text in some ‘old-domain’ and then using the models

to translate text in a ‘new-domain’ results in low quality translations due to the

4
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mismatch.

Figure 1.2 demonstrates the domain mismatch effect. The lower (red) bars show

the results of using a French-English SMT model trained on old-domain (parliamen-

tary proceedings) data to translate text in two new-domains.2 When we, instead,

use a combination of old-domain and new-domain parallel data to train our SMT

models, performance increases substantially. In the medical domain, the BLEU score

increases by about 23% and in the science domain, it increases by about 28%. The

performance increases are substantial despite the fact that the old-domain parallel

training data is very large (about 150 million words). Such large gaps in performance

mean that adapting the old-domain models to new domains of text has the potential

to yield much higher quality translations in the new-domain.

In Chapter 3 we present results from our novel error analysis methodology which

shed light on the types and number of errors that are made when we train SMT

models to translate between pairs of low resource languages. In Chapter 8 we present

a similar analysis of what goes wrong when we use an SMT model trained on text

in one domain to translate text in a different domain. In both cases, we find that

most errors are due to unseen source language words and phrases and unseen target

language translations. We also find room for improving errors due to how different

translations are weighted, or scored, in the low resource SMT models.

2Details about the new domain datasets are given in Chapter 8.
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Figure 1.2: Illustration of the effect of using old-domain data to translate text in
two different new-domains. We compare the performance of models trained on old-
domain data only with that of models trained on both old and new domain parallel
training data. Our old domain data consists of the complete French-English Hansard
parliamentary proceedings dataset, and our new domain datasets are taken from the
science and medical domains. When we add new-domain training data to our strong
old-domain baselines, translation quality increases by 23% and 28% BLEU on the
science and medical translation tasks, respectively.
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In this thesis, we present and release comparable corpora in 151 languages paired

with English as well as, for most languages, a bilingual dictionary of single word

translations. We harvested the comparable corpora from both Wikipedia and on-

line newspapers. Our bilingual dictionaries are compiled from a variety of sources,

including electronic dictionaries, scanned and digitized paper dictionaries, and crowd-

sourced translations gathered on Amazon’s Mechanical Turk platform. We provide

details on the collection and content of each data resource in Chapter 3.

Using comparable corpora, we estimate a variety of signals of translation equiva-

lence and use these signals to both identify new translations and to score bilingually

extracted translations. The signals estimated over comparable corpora include con-

textual, temporal, topic, burstiness, and frequency similarity. Temporal similarity,

for example, is a measure of the similarity between temporal signatures of a source

language word or phrase and a target language word or phrase. The intuition behind

this signal is that news stories in different languages published around the world tend

to discuss the same events as they occur. Temporal signatures are estimated using

the frequencies of a given word or phrase across a set of documents, each of which

is associated with some timestamp. We can align source language documents with

target language documents by their timestamps and then directly compare temporal

signatures. Figure 1.3 shows an example of the temporal signature of Spanish finlan-

dia contrasted with that of English finland. The temporal signatures are estimated

over our comparable corpora of time-stamped web crawls of Spanish and English on-

7
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Figure 1.3: Visualization of the temporal similarity between a pair of word transla-
tions. The frequency of finlandia in Spanish monolingual corpora over time is similar
to that of finland in English monolingual corpora over time.

line newspapers. In general, the country Finland is mentioned with similar frequency

over time in both the Spanish and English corpora. This temporal similarity signal

is one weak indication that the two words may be translations of one another. We

estimate topic similarity in a similar way. However, instead of aligning document

pairs by timestamp, we aligned them by topic. Another signal, which is perhaps

more obvious in the case of finlandia and finland, is orthographic similarity. We also

make use of this signal, which does not reference comparable corpora. In Chapter 4,

we present each signal in detail.

Although the signals of translation equivalence that we use in this thesis have

all been proposed in prior work, we present novel techniques for combining them to

make accurate translation predictions. In particular, we define novel ways to use the

signals of translation equivalence to improve translation errors due to both unseen

8
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translations and inaccurately scored translations. Prior work has induced unigram

translations from comparable corpora using a variety of unsupervised learning tech-

niques, but most of this work does not go as far as to augment end-to-end SMT

models with the new translations. We present a novel supervised approach to induc-

ing new translations from comparable corpora. Our approach requires only a small

number of example translations for training, and we integrate the new translations

into end-to-end SMT models trained in low resource conditions. We also present novel

techniques for integrating scores based on comparable corpora directly into end-to-

end SMT models. We show that such scores lead to improved translation quality in

both of our low resource settings. Augmenting baseline SMT models with both new

translations and new scores yields even bigger performance gains.

In contrast to a lot of prior work on low resource machine translation (see Section

2.1.3), we take a language-independent approach. This follows prior work on statisti-

cal machine translation, where the pipeline for training models is typically the same

for any language pair. Because they depend only on data resources and not expert

human knowledge or hand-written rules, language independent approaches have the

advantage of allowing for very quick deployment of new systems for new language

pairs. This is particularly advantageous in our target setting because new low re-

source languages may become of interest suddenly, for example in emergency disaster

situations. During the January 2010 earthquake in Haiti, human volunteers trans-

lated Creole text messages that survivors sent to English speaking relief workers. If

9



CHAPTER 1. INTRODUCTION

SMT systems could be deployed very quickly in similar situations in the future, they

may be able to supplement or replace such crowdsourcing efforts (Lewis et al., 2011).

1.1 Contributions of this thesis

The major contributions of this thesis are as follows:

‚ We release ‘language packs’ for 151 human languages, which include bilingual

dictionaries, comparable corpora of Wikipedia document pairs, comparable cor-

pora of time-stamped news text that we harvested from the web, and, for

non-roman script languages, dictionaries of name pairs, which are likely to be

transliterations.

‚ We present a novel technique for using a small number of example word trans-

lations to learn a supervised model for bilingual lexicon induction which takes

advantage of a wide variety of signals of translation equivalence that can be

estimated over comparable corpora.

‚ We show that using comparable corpora to induce new translations and esti-

mate new phrase table feature functions improves end-to-end statistical machine

translation performance for low resource language pairs as well as domains.

‚ We present a novel algorithm for composing multiword phrase translations from

multiple unigram translations and then use comparable corpora to prune the

10
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large space of hypothesis translations. We show that these induced phrase

translations improve machine translation performance beyond that of compo-

nent unigrams.

1.2 Structure of this document

Figure 1.4 gives a schematic overview of the thesis and shows how each chapter

fits into a simplistic view of statistical machine translation. The thesis is structured

as follows:

‚ Chapter 2 gives an introduction to statistical machine translation, with a focus

on the phrase-based model that we use throughout the thesis. It also introduces

and reviews prior work on expanding bilingual resources, including bilingual

lexicon induction and crowdsourcing translations, and domain adaptation for

machine translation.

‚ Chapter 3 introduces the set of languages and text corpora that we use through-

out the thesis. This chapter also presents results from a novel error analysis

technique to better understand what goes wrong in machine translation when

we train models on only small amounts of parallel training data.

‚ Chapter 4 details our novel technique for doing supervised bilingual lexicon

induction using a diverse set of similarity measures that indicate translation

11
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Chapter 5:
Phrase Table

Features

h1(fr,en), h2(fr,en), …fr     en     b1(fr,en), b2(fr,en), …

Chapter 4:
Induced Word Translations

Chapter 7:
Induced Phrase Translations

Chapter 6:
Zero or Limited 
Training Data

Chapter 8:
Train and Test 

Domain Mismatch

Chapter 3:
Comparable Corpora

Chapter 2:
Baseline Phrase-Based SMT

Figure 1.4: Schematic overview of the thesis. The large middle box depicts how we
augment baseline phrase-based SMT models using comparable corpora. In Chapter 2,
we define our baseline models, which are trained on parallel corpora. We describe our
comparable corpora in Chapter 3. In Chapters 4 and 7, we present methods for using
the comparable corpora to induce new source-target word and phrase translation
pairs, respectively, which we use to augment baseline SMT models. In Chapter 5, we
augment baseline models with new comparable corpora-based feature functions. In
Chapters 6 and 8, we present end-to-end SMT experiments using comparable corpora
to augment baseline models for translating low resource languages and domains.
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equivalence. This chapter includes an analysis of a number of factors that

contribute to the performance of bilingual lexicon induction, including word

frequency and burstiness, the size of the bilingual dictionary used for super-

vision, and the size of the comparable corpora. This chapter also includes a

direct comparison with a previously state-of-the-art model of bilingual lexicon

induction.

‚ Chapter 5 describes how we adapt our techniques for using comparable corpora

to score the similarity between a pair of words in two languages to instead score

a pair of multiword phrases. This chapter presents SMT experiments where

we replace bilingually estimated feature functions with those estimated over

comparable corpora.

‚ Chapter 6 applies our techniques for inducing translations (Chapter 4) and

scoring a phrase table (Chapter 5) to end-to-end low resource SMT for several

truly low resource source languages.

‚ Chapter 7 presents our approach to inducing multiword phrase translations

using a novel algorithm based on translation compositionality. It includes end-

to-end SMT experiments that show that the quality of machine translations

improve when we augment models with new phrasal translations in addition to

unigram translations.

13
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‚ Chapter 8 applies our bilingual lexicon induction and phrase table scoring tech-

niques to a domain adaptation setting, where we have training data in some

old-domain but wish to translate text in a new-domain. Additionally, this

chapter presents an analysis of the errors that occur in the domain shift setting.

‚ Chapter 9 concludes the thesis with an overview of the major research findings.

1.3 Related publications

This thesis is based on seven publications:

‚ Chapters 3 and 8 present and extend “Measuring machine translation errors in

new domains,” which was published in the Transactions of the Association for

Computational Linguistics (TACL) in 2013 and is joint work with John Morgan,

Marine Carpuat, Hal Daumé III, and Dragos Munteanu.

‚ Chapter 3 presents the data that we released along with “The Language Demo-

graphics of Amazon Mechanical Turk,” which was published in the Transactions

of the Association for Computational Linguistics (TACL) in 2014 and is joint

work with Ellie Pavlick, Matt Post, Dmitry Kachaev, and Chris Callison-Burch.

‚ Chapter 4 extends “Supervised Bilingual Lexicon Induction with Multiple Mono-

lingual Signals,” which was published in the Proceedings of the Conference of

the North American Chapter of the Association for Computational Linguistics
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(NAACL) in 2013.

‚ Chapter 5 presents “Toward Statistical Machine Translation without Parallel

Corpora,” which was published in the Proceedings of the Conference of the

European Association for Computational Linguistics (EACL) in 2012 and is

joint work with Alex Klementiev, Chris Callison-Burch, and David Yarowsky.

‚ Chapter 6 extends “Combining Bilingual and Comparable Corpora for Low

Resource Machine Translation,” which was published in the Proceedings of the

Workshop on Statistical Machine Translation (WMT) in 2013.

‚ Chapter 7 elaborates on “Hallucinating Phrase Translations for Low Resource

MT,” which was published in the Proceedings of the Conference on Natural

Language Learning (CoNLL) in 2014.

‚ Chapter 8 extends “Using Comparable Corpora to Adapt MT Models to New

Domains,” which was published in the Proceedings of the Workshop on Statis-

tical Machine Translation (WMT) in 2014.
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Chapter 2

Literature Review

2.1 Statistical Machine Translation

Statistical machine translation (SMT) was first formulated as a series of probabilis-

tic models that learn word-to-word correspondences from sentence-aligned bilingual

parallel corpora. IBM researchers (Brown et al., 1988, 1993a) introduced and tested

the first statistical machine translation (SMT) system trained on pairs of source and

target sentence translations. They formulated SMT as a source-channel problem, as

follows, where ê is the optimal output translation, E is the set of all possible output

sentences, and f is the input sentence:

ê “ argmax
ePE

ppe|fq “ argmax
ePE

rppeq ¨ ppf |eqs

16
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The translation model, ppf |eq may be estimated by summing over all possible word

alignments, A, in the corpus of translated sentence pairs:

ê “ argmax
ePE

ppe|fq “ argmax
ePE

r
ÿ

aPA
ppeq ¨ ppf, a|eqs

However, for efficiency, typically the single best word alignment is used to estimate the

translation model parameters. Brown et al. (1990) proposed using the classic n-gram

models often used in speech recognition to estimate the language model parameters,

ppeq, which is the probability of a sequence of target language words:

ppe1, e2, e3, ..., eiq “ ppe1q ¨ ppe2|e1q ¨ ppe3|e1, e2q ¨ ... ¨ ppei|e1, e2, e3, ..., ei´1q

N-gram back off models estimate probabilities using local context, just n´1 preceding

words, rather than the full history. A trigram approximation is estimated as follows:

ppei|e1, e2, e3, ..., ei´1q « ppei|ei´1, ei´2q

2.1.1 Phrase-Based Machine Translation

The major developments in the SMT field have built directly upon the initial IBM

word-based statistical models. Marcu and Wong (2002) and Koehn et al. (2003) in-

troduced phrase-based machine translation (PBMT), which takes advantage of multi-
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word phrase translations. Current methods, including both phrase-based (Och and

Ney, 2002; Koehn et al., 2003) and hierarchical models (Chiang, 2005), typically

start by word-aligning a bilingual parallel corpus (Och and Ney, 2003). They ex-

tract multi-word phrases that are consistent with the Viterbi word alignments and

use these phrases to build new translations. Phrase extraction heuristics (Venugopal

et al., 2003; Tillmann, 2003; Och and Ney, 2004) produce a set of phrase pairs pe, fq,

the phrase table, that are consistent with the word alignments.

Another important improvement to the original noisy channel formulation was

proposed by Och and Ney (2002, 2004) and uses a linear model instead. This model

was a crucial development in SMT because it allows the feature space to easily extend

beyond basic translation and language model probabilities. It is formalized as:

êI1 “ argmax
eI1PEI

1

1

Z
exp

Mÿ

m“1

λmhmpeI1, fJ
1 q

In this formulation, there are M features, each of which is a function, hm, of the

source and target strings. The source and target strings have lengths J and I, re-

spectively. Features are typically defined for pairs of source and target phrases, and

the score of a full target output sentence, eI1, is computed by summing over all of

its sub-phrases. Z is a normalization constant, which can be ignored. During tun-

ing, the feature weights, λm, are chosen to optimize performance on a development

set of source and target sentence translation pairs. One widely used tuning method

is Minimum Error Rate Training (MERT) (Och, 2003). Instead of maximum likeli-
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hood, MERT allows the optimization of objectives that measure translation quality.

One such objective function is BLEU (Papineni et al., 2002), which compares sys-

tem translations to reference translations produced by people. The BLEU score is

based on n-gram precision measures, which count how many n-grams in the reference

translation are contained in the system output:

BLEU “ BP ¨ expp
Nÿ

n“1

wnlogpnq

where BP is a brevity penalty, N is the maximum n-gram degree (typically 4), pn is

the precision over phrases of length n, and wn is a weight associated with each preci-

sion metric (typically uniform, resulting in a geometric mean over n-gram precisions).

We use BLEU to evaluate the quality machine translations throughout this thesis.

Recently, other tuning algorithms have been proposed that are more robust to a

large feature space than MERT (Chiang et al., 2008, 2009; Hopkins and May, 2011;

Cherry and Foster, 2012). In this thesis, we make use of both MERT and the batch

version of the Margin Infused Relaxed Algorithm (MIRA) (Crammer et al., 2006).

MIRA is an online learner that makes updates based on ‘hope’ hypothesis translations,

which are both high quality (as measured by BLEU score) and reachable by the model,

and ‘fear’ hypothesis translations, which are given high scores by the current model

but are low quality translations (Chiang et al., 2008). Cherry and Foster (2012)

introduced a batch version of the online MIRA algorithm.

In PBMT, phrase table features typically include phrase translation probabilities,
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φpe|fq and φpf |eq, which are calculated via maximum likelihood estimation over the

word-aligned training corpus. Since MLE overestimates φ for phrase pairs with sparse

counts, lexical weighting feature functions are used to smooth. Lexical weighting

features consist of average word translation probabilities, wpei|fjq, and are calculated

via phrase-pair-internal word alignments (Koehn et al., 2003). Other typical features

are n-gram language model scores and a phrase penalty, which governs whether to use

fewer longer phrases or more shorter phrases. Language model scores are estimated

over target language monolingual corpora, and the phrase penalty feature is uniform

across all phrase pairs.

Tillman (2004) define a “lexicalized reordering” model for PBMT, which is based

upon the relative positions of target language phrases, which are translated according

to the source language phrase sequence. That is, if two source phrases, si´1 and si,

translate into two target phrases, tj and tk, then a probability distribution is defined

over the relative position of the target phrases. The phrase tk can follow (be in order

with) tj, be just before it (swapped), or neither (discontinuous). Figure 2.1 shows

these three reordering patterns. This reordering model is defined over the entire

target sequence as follows:

P ptn1 , on1 q «
nź

i“1

ppti, oi|ti´1, oi´1qq

Where each oi has three possible values: monotonic (in order), swapped, or dis-

continuous (neither). The probability of each phrase having each reordering value is
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Figure 2.1: The reordering probabilities from the phrase-based models are estimated
from bilingual data by calculating how often in the parallel corpus a phrase pair pf, eq
is orientated with the preceding phrase pair in the 3 types of orientations (monotone,
swapped, and discontinuous).

dependent only upon the previously translated target phrase (ti´1) and its reordering

value.

The Moses SMT toolkit (Koehn et al., 2007) contains an implementation of the

now-standard PBMT pipeline, and we make use of it throughout this thesis. Figure

2.2 depicts the entire phrase-based SMT pipeline.

2.1.2 Other Models of Translation

Syntax-Based SMT Syntax-based machine translation grammars have shown

improvements over phrase-based grammars on some language pairs (Galley et al.,

2004; Zollmann and Venugopal, 2006; Huang and Mi, 2010; Li et al., 2010b). There
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Figure 2.2: Standard statistical machine translation pipeline. Parallel data is auto-
matically word aligned. Using the word alignments, a phrase table is extracted and
scored. Discriminative training uses a small amount of parallel data to set the weights
for each parameter in the scored phrase table as well as for the language model, which
is trained on monolingual target language text. Finally, the scored tables, language
model, and learned weights are used to decode new text.

are essentially two ways to incorporate a syntax model into an SMT system. The first

is to extract grammar rules which have some syntactic structure and which combine

into complete parse trees on the source side, target side, or both. This is approach

is enabled by not only high-performance parsers but also improvements to syntactic

decoding (Quirk et al., 2005; Quirk and Menezes, 2006; Galley et al., 2006; Zollmann

and Venugopal, 2006; Huang and Mi, 2010; Li et al., 2010a). Somewhat complemen-

tary, Koehn and Hoang (2007) integrates syntactic and morphological information

into grammar rules at the word level. The second way to integrate this information

is to add syntactically-informed features to any set of grammar rules, which may or

may not contain syntactic structure (e.g., Hanneman et al. (2010)). This approach is

enabled by recent developments in methods to efficiently and accurately tune a large
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number of SMT feature parameters (Liang et al., 2006; Chiang et al., 2009; Hopkins

and May, 2011; Cherry and Foster, 2012).

Decipherment Decipherment combines techniques from cryptography and ma-

chine translation. It is typically cast as an unsupervised substitution and transpo-

sition problem or, comparably, the task of building a translation model when there

is zero parallel text available to learn from. Knight et al. (2006) explore charac-

ter and phonetic ciphers as well as a toy word-substitution cipher. That work uses

expectation-maximization to learn a noisy-channel model and implements several

slight modifications to improve performance. Snyder et al. (2010) discover word

translations for a lost language by mapping them onto cognates of a known related,

modern language. That work only discovers a bilingual lexicon and does not attempt

to translate word sequences.

Ravi and Knight (2011) go further and use decipherment to translate multi-word

expressions, and Nuhn et al. (2012) and Ravi (2013) use pruning based on context

similarity and a hash sampling strategy, respectively, to improve training efficiency.

Dou and Knight (2012) use decipherment over adjacent bigrams to learn new word

translations. That work focuses on a domain adaptation setting and augments an old-

domain SMT model with new word translations deciphered from comparable (nearly

parallel) new-domain texts. Dou and Knight (2013) move from adjacent bigrams to

dependency bigrams. In that work, again, the new, deciphered lexicon is used to

augment and adapt an old-domain SMT model to a new-domain of text. In contrast
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to decipherment, we use small amounts of parallel data to train supervised models,

which we then use to augment baseline SMT systems.

2.1.3 Low Resource Machine Translation

Because the standard pipeline for training SMT models relies exclusively on par-

allel text, when such data is not available in large quantities, machine translation

quality tends to be poor. Much of the prior work on low resource machine translation

has focused on individual pipeline components or error types. For example, Xiang

et al. (2010) presents an alignment combination-based method for doing unsupervised

word alignment on small amounts of bitext, improving the word alignment component

of the SMT pipeline. As we show in Chapter 3, errors due to unknown words are a

major reason for the performance degradation in low resource conditions, and a lot

of prior research has focused on these errors. We review that work in Section 2.1.4.

In addition to such focused efforts, there have been several long-term projects on

low resource SMT that have focused on improving the entire pipeline for particular

language pairs. Much of this work relies on language-specific resources and linguistic

analysis. Here, we describe two of the major, recent efforts in developing high quality

MT systems for particular low resource language pairs. In contrast to these projects,

we take a language-independent approach to low resource machine translation in this

thesis.
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2.1.3.1 AVENUE

In the early 2000s, the AVENUE project (Carbonell et al., 2002; Probst et al.,

2002; Lavie et al., 2003) researched ways to rapidly develop MT systems for low-

resource languages. The project’s first major MT system learned so-called transfer-

rules, which are synchronous context free grammar (SCFG) rules that also have the

following: explicit alignments between components (terminals or non-terminals), con-

straints on the source side, constraints on the target side, and source-target con-

straints which dictate what features are transferred from the source to the target

when the rule is applied. Rules can be manually or automatically specified. In

Probst et al. (2001), the rules are learned from a carefully controlled corpus, which

is intended to include examples of all basic linguistic structures and minimal pairs

which allow for linguistic feature detection 1 (Probst et al., 2001), and in Lavie et al.

(2003) they are learned from a combination of controlled and naturally occurring cor-

pora. The assumption is that learning at least some transfer rules from a controlled,

linguistically representative corpus will yield better MT performance than a random

set of translated sentences. Automatically learned transfer rules are lexically tied to

the training corpus but are later generalized and composed. Probst (2003) describes

how a bilingual corpus can be used to project target (high resource) side POS and

1For example, the minimal pairs the rock fell and the rocks fell are both presented in order
to determine if the low resource language marks singular and plural nouns and the corresponding
verbs differently. If a language does distinguish plural from singular, the elicitation process will go
on to determine if it also distinguishes dual nouns. It takes advantage of well-known typological
implications to limit the search. For example, if a language does not distinguish plural from singular
nouns, it will not distinguish dual.
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morphological tags onto a source (low resource) side lexicon. Lavie et al. (2004) ex-

tends the AVENUE model to include frequency-based probabilities on the ruleset and

does decoding over a translation lattice.

More recently, Monson et al. (2008) explains specific extensions of the original AV-

ENUE system. In addition to the integration of language-dependent paradigm-based

morphological analyzers, that work describes a top down SCFG grammar extractor.

Llitjós (2006) describes how to incorporate user feedback into the model, and Alvarez

et al. (2006) describes the Minor Language Elicitation (MILE) corpus, which is a set

of about 12,000 English sentences selected in order to demonstrate a comprehensive

set of linguistic phenomena and which the paper claims is a good corpus to have

translated into low resource languages. Clark et al. (2008b) use the Urdu transla-

tion of the MILE corpus to evaluate their system for detecting linguistic typological

features, which is based upon the dataset’s detailed annotations and a method for

clustering sentence minimal pairs. Clark et al. (2008a) extends this idea and develops

an active learning framework for choosing sentences from the MILE corpus to have

annotated next, based upon the features detected so far. That work uses the World

Atlas of Language Structures (Haspelmath et al., 2005) for evaluation and the fea-

ture detection system is reported to detect the correct value for 18 of the 21 target

typological features for Spanish.
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2.1.3.2 METIS-II

Carl et al. (2008), Vandeghinste et al. (2008), and Carl (2009) present the METIS-

II low resource2 MT system. This statistical MT system requires neither hand-written

translation rules nor any parallel text. However, it does require POS tagging and some

morphological analysis on the low-resource source side text and performance increases

if parses are also available. Essentially, translation is done through the use of a POS-

tagged lemmatized dictionary. The decoder uses morphological information to choose

among English full word forms, and, in some cases, and reordering is done through

language-dependent rules. Although this system does not depend on parallel text, it

does heavily depend upon sophisticated language-dependent resources.

2.1.3.3 Other work

Gangadharaiah (2011) tackles several data sparsity issues within the example-

based machine translation (EBMT) framework. These include translating OOV and

rare words not only to increase the coverage of the translation model, but also that

of the target side language model. She also develops ways to automatically cluster

translation phrase pairs. The thesis also explores using phrase and phrase pair clusters

to define the slots in translation and language modeling templates, or class-based

models. This work attempts to tackle some of the same data sparsity issues that our

work proposes to handle including, in particular, phrase table coverage. However, our

2This group refers to languages for which there are few NLP resource and datasets as ‘small
languages.’
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models for doing so are quite different and focus much more on the use of a variety

of new non-parallel data resources. Laukaitis and Vasilecas (2007) describes a hybrid

approach to building an MT system to translate from English into a low resource

language (Lithuanian). Translating from English, this work is able to do a very deep

linguistic analysis of source side text.

2.1.4 The OOV and rare word problem in SMT

Out-of-vocabulary (OOV) words, or source language words never seen during

training but that then appear at test time, is a well-acknowledged challenge for SMT,

especially in low resource conditions. When an SMT system has no evidence for how

to translate these new words, they are typically either deleted or copied into the out-

put identically, which negatively impacts the quality of output translations in a very

obvious way. The most common methods for dealing with such lexical items include

morphological analysis (Popovic and Ney, 2004; Yang and Kirchhoff, 2006), stem-

ming, using synonym lists (Callison-Burch et al., 2006), transliteration (Hassan and

Sorensen, 2005; Vilar et al., 2007; Irvine et al., 2010a), spelling expansion/correction,

dictionary expansion/integration (Okuma et al., 2007), or some combination of these

(Habash, 2008).

Carbonell et al. (2006) and Gangadharaiah et al. (2010) present an approach to

translate rare and OOV source language words identically onto the target language

and then use target language distributional similarity metrics and a very large target
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side language model to identify translations. Callison-Burch et al. (2006) and Mar-

ton et al. (2009) use monolingually-derived paraphrases to directly expand the SMT

phrase table coverage. That is, that work identifies OOV phrases in source language

text and uses a large source language monolingual corpus to identify one or more

paraphrases for each OOV phrase. Existing phrase table entries for the paraphrases

can then be used to add entries for the original OOV source phrase. Somewhat sim-

ilarly, Talbot and Osborne (2006) cluster ‘lexically redundant’ source word types in

order to reduce data sparsity. Other prior research (e.g., Goldwater and McClosky

(2005); Virpioja et al. (2010); Luong et al. (2010)) has moved the SMT unit of analy-

sis from the word to the morpheme or even character substrings (Neubig et al., 2012).

Such approaches have the potential to reduce the number of unknown source words

due to rich morphologies. Nakov and Ng (2011) tackle morphologically rich source

languages by treating morphologically similar words as potential paraphrases.

While some approaches to the OOV problem (e.g., morphological analysis, stem-

ming, paraphrasing) attempt to map the OOV word onto an in-vocabulary source

word, others (e.g., transliteration, dictionary expansion) output target language word(s)

directly. In this thesis, we focus on solving the OOV problem by identifying target lan-

guage translations directly. In Section 2.2.1, we review relevant literature on bilingual

lexicon induction, which is one dictionary expansion method that is often approached

as a separate task.
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2.2 Expanding bilingual resources

As we showed in Chapter 1, the success of statistical machine translation is depen-

dent on the amount and type of parallel training data that is used to estimate models.

Thus, prior research has focused on expanding the bilingual resources available for

training. Here, we review four approaches. The first two use comparable corpora

to identify additional pairs of translated words or sentences. Comparable corpora

are pairs of monolingual corpora that have some overlap, for example in genre or

topic. In Section 3.3, we describe the notion of comparable corpora in more detail

as well as those that we use and release in this thesis. The third approach to ex-

panding bilingual resources crowdsources manual annotations, which has been made

possible largely due to the Amazon Mechanical Turk platform (Callison-Burch and

Dredze, 2010). Finally, we review a variety of methods for automatically expanding

the coverage of SMT models directly.

2.2.1 Bilingual lexical induction

Bilingual lexicon induction is the task of identifying pairs of word translations

from monolingual or comparable corpora. Additionally, a small seed dictionary is

also typically assumed. Induced word translations can be used to expand the cover-

age of translation models extracted from parallel corpora, for example to translate

OOV words (Section 2.1.4). However, most prior work has treated bilingual lexi-
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con induction as a standalone task, without actually integrating induced translations

into end-to-end machine translation. In this thesis, we present a novel approach to

doing bilingual lexicon induction in Chapter 4 and use then induced translations in

end-to-end SMT in Chapters 6 and 8. Here, we review prior work on bilingual lexi-

con induction. We give an overview of early work on contextual similarity and then

briefly cover a plethora of other approaches to the task and, finally, describe work on

integrating induced translations into end-to-end SMT.

2.2.1.1 Contextual Similarity

Rapp (1995) and Fung (1995) were the first to propose using the context of a

given word as a clue to its translation. Rapp (1995) creates co-occurrence matrices

for the source and target languages, where the co-occurrence between a pair of words

is defined as follows:

Ai,j “ pfpi, jqq2
fpiq ¨ fpjq

Where fpi, jq is defined as the number of times words i and j, in the same language,

occur in the same context in a large monolingual corpus (Rapp (1995) uses a context

window of 11 words), and fpiq is the total number of times word i appears in the

same corpus. After computing the two co-occurrence matrices, that work iteratively

randomly permutes one of them and calculates the similarity between them. The

permutation is optimal when the similarity between the matrices is maximal, which
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is when the ordered words in the two matrices are most likely to be translations of

one another. Results are given for a set of 100 English and German word translation

pairs.

Later work, including Fung and Yee (1998) and Rapp (1999), use small seed

dictionaries to project word-based context vectors from one language into the other.

That is, each position in contextual vector v corresponds to a word in the source

vocabulary3, and vectors v are computed for each source word in the test set. Fung

and Yee (1998) calculates the ith position of word w’s context vector, vwi
, as:

vwi
“ TFi,w ¨ IDFi

Where TFi,w is the number of times i and w co-occur (in this case, defined as appearing

in the same sentence), and:

IDFi “ log
maxn

fi
` 1

Where maxn is the maximum frequency of any word in the corpus, and fi is the fre-

quency of word i. Rapp (1999) uses log-likelihood ratios instead of TF ¨ IDF . Once

source and target language contextual vectors are built, each position in the source

language vectors is projected onto the target side using a seed bilingual dictionary.

Finally, contextual similarities are calculated. That is, each projected vector is com-

3In fact, they need only correspond to those source words which have translations in the seed
bilingual dictionary.
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Figure 2.3: Example of projecting contextual vectors over a seed bilingual lexicon. In
monolingual text, Spanish crecer appears in the context of the words empleo, extran-
jero, etc. A context vector is built and projected across a seed dictionary. Context
vectors for English words (policy, expand, etc.) are collected and then compared
against the projected context vector for Spanish crecer. Words with similar context
vectors are likely to be translations of one another.

pared, using any vector comparison method, with the context vector of each target

word. Word pairs with high contextual similarity are likely to be translations. This

method of projecting contextual vectors is illustrated in Figure 2.3. Rapp (1999) uses

the same projection method as Fung and Yee (1998) but uses log-likelihood ratios

instead of TF ¨ IDF .

Other work has used dependency relations in place of adjacent words to define

context (Garera et al., 2009; Andrade et al., 2012). Turney and Pantel (2010) give a

thorough overview of vector space models of meaning.

2.2.1.2 Other Monolingual Similarity Metrics

Schafer and Yarowsky (2002) exploit the idea that word translations tend to co-
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occur in time across languages, and Schafer (2006) uses this and other contextual

similarity measures to bootstrap a small seed bilingual dictionary and induce full

dictionaries for low resource languages. Klementiev and Roth (2006) also use the

temporal cue to train a phonetic similarity model for associating Named Entities

across languages. Koehn and Knight (2002) use similarity in spelling as another

kind of cue that a pair of words may be translations of one another. Haghighi et al.

(2008) make use of contextual and orthographic clues to learn a generative model

from monolingual texts and a seed lexicon. We provide further details and compare

directly against the model proposed by Haghighi et al. (2008) in Section 4.6.

Recent work has used graph-based models to induce translations. Mausam et al.

(2010) uses freely available online dictionaries and inference over translation graphs

to compile a very large, multilingual dictionary. Laws et al. (2010) use graph-based

models to represent linguistic relations and induce translations. Tamura et al. (2012)

employ the classic notions of co-occurrence and contextual similarity but use graph-

based label propagation to induce translations.

Approaching the problem from an information retrieval perspective, Zhang et al.

(2005) use a system based on cross-lingual query expansion to identify translations

for OOV words. Other recent work includes Mimno et al. (2009), which proposes

a polylingual topic model and matched high probability words in each topic across

languages.
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2.2.1.3 Integration with SMT

All bilingual lexicon induction and dictionary expansion methods could be used

to supplement parallel data used for estimating word alignments and scored phrase

tables. The most obvious way to integrate lexicon induction output into the SMT

pipeline would be to induce translations for out-of-vocabulary and rare words. That

is, if a word in our test set does not have a translation in the phrase table, we could

induce one for it. Although most work on bilingual lexicon induction is motivated by

the idea that outputs could be integrated into end-to-end SMT, until recently such

an extrinsic evaluation was rarely performed. Daumé and Jagarlamudi (2011) use

canonical correlation analysis (CCA) and both contextual and orthographic features

to induce translations. Razmara et al. (2013) construct a graph using source lan-

guage monolingual text and identify translations for source language OOV words by

pivoting through paraphrases. In Irvine et al. (2013b), we presented a method for ex-

panding an initial translation dictionary estimated from old-domain parallel corpora

by matching marginal probabilities over new-domain comparable corpora. Daumé

and Jagarlamudi (2011), Razmara et al. (2013), and our prior work in Irvine et al.

(2013b) integrate translations into an SMT model to improve performance in domain

adaptation settings.
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2.2.2 Extracting Parallel Data from Comparable

Corpora

Resnik and Smith (2003), Munteanu and Marcu (2005), Abdul-Rauf and Schwenk

(2009a), Abdul-Rauf and Schwenk (2009b), and Smith et al. (2010) identify parallel

sentences in comparable corpora, and Munteanu and Marcu (2006) extend that orig-

inal work to identify parallel sub-sentential fragments. The latter uses a probabilistic

lexicon and information retrieval methods to identify similar document pairs and then

uses the same word translation probabilities to detect parallel fragments within the

document pairs. They supplement exiting parallel data with the new sentence and

fragment pairs evaluate end-to-end SMT systems trained on the augmented paral-

lel datasets. Quirk et al. (2007) also seek to identify phrase translation pairs from

comparable corpora, but that method requires a first pass identification of “promis-

ing” comparable pairs of sentences from paired comparable documents. It then uses a

generative model to extract fragment translation pairs. Similarly, Hewavitharana and

Vogel (2011) seek to identify phrase translation pairs from comparable corpora but

require a first pass to identify a set of comparable sentences and then a second pass

through the data to find the best phrasal alignment within each sentence pair. These

efforts at using comparable corpora to expand parallel corpora are orthogonal to the

approaches that we propose in this thesis. We use parallel corpora, when available,

and use comparable corpora to augment SMT models without assuming that they
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contain any novel parallel text.

2.2.3 Crowdsourcing Translations

New online services like Amazon’s Mechanical Turk4 (MTurk) have made it pos-

sible to elicit translations from native speakers at a relatively low cost. MTurk is

an online platform where ‘requesters’ can pay ‘workers’ small amounts of money to

complete Human Intelligence Tasks (HITs). MTurk has been used in a variety of

NLP research (e.g. Snow et al. (2008); Callison-Burch and Dredze (2010); Zaidan

and Callison-Burch (2011)). In our own work, we have used MTurk to compile large

bilingual dictionaries (Irvine and Klementiev, 2010; Pavlick et al., 2014). In Section

3.2.2, we describe our crowdsourced dictionaries in detail. Zaidan and Callison-Burch

(2011) spent less than $1,500 to recreate the NIST Urdu Evaluation set, which con-

sists of four English references for each of nearly 2,000 Urdu sentences. Post et al.

(2012) used MTurk to construct training, tuning, and testing parallel datasets for

six low resource Indian languages. Carbonell (2010) discusses some of the issues in

collecting resources for low resource languages with the goal of developing MT sys-

tems. He suggests that collecting treebanks, comprehensive bilingual dictionaries,

and detailed linguistic analyses may provide more gains than simply supplementing

the available parallel data. However, in the case of non-expert annotators, we cannot

expect to be able to gather such thorough linguistic analyses. Ambati and Carbonell

4www.mturk.com

37

www.mturk.com


CHAPTER 2. LITERATURE REVIEW

(2009) introduce proactive learning, which could help select sentences and annotation

types that would most cost-effectively increase the performance of an MT system for

a low-resource language.

2.2.4 Automatically Expanding SMT Model Cov-

erage

Instead of expanding general bilingual resources from which we can extract or

build SMT models, some work has augmented baseline models with synthetic phrase

translations which are proposed automatically. In Chapter 7, we present such a

method based on phrase translation composition in order to expand the coverage of

models trained in low resource conditions.

Chahuneau et al. (2013) generate new synthetic phrase translations containing

new target side morphological inflections. Ammar et al. (2013) propose new phrase

pairs containing transliterations, inserted function words, and morphological inflec-

tions. Tsvetkov et al. (2013) vary determiners in order to generate synthetic phrase

pairs, and Tsvetkov et al. (2014) use commonly confused phones for spoken language

translation.

Sharoff et al. (2006) and Babych et al. (2007) use a combination of filtering and

composing multiword translations that is similar the the approach we propose in

Chapter 7. However, they use their model to propose translations of difficult ex-
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pressions to human translators. Also somewhat similar to our approach, Garera and

Yarowsky (2008) compose translations of compound nouns using known unigram noun

translations and pivoting across many languages.5 However, unlike that work, our

method induces translations for any arbitrary multi-word phrase, not just noun-noun

compounds, and we use the translations in end-to-end SMT.

2.3 Domain Adaptation for Machine Trans-

lation

Domain adaptation is the task of modifying models trained on text in some old

domain to work well on text from a new domain. Prior work has adapted part-of-

speech taggers (Blitzer et al., 2006; Daumé, 2007) and sentiment classifiers (Blitzer

et al., 2007), for example, to new domains of text. Building on the successes of domain

adaptation in general natural language processing and machine learning settings,

domain adaptation for machine translation is a rapidly growing area of research. The

‘domain’ of a text is typically assumed to be given, as Sekine (1997) states, ‘artificially

or intuitively defined by a human’ (p. 2). Examples of contrasting ‘domains’ range

from topical (e.g. reviews of books versus reviews of kitchen appliances (Blitzer

et al., 2007)) to channel (e.g. newswire versus twitter (Gimpel et al., 2011)) to genre

5e.g. Albanian hekurudhë Ñ hekur udhë splitting using lexicon lookup, Ñ English iron path
using unigram translations, Ñ Italian ferro via, German eisen bahn, and Swedish yärn väg using
unigram translations into one or many other languages, Ñ ferrovia, eisenbahn, yärnväg by simple
concatenation, Ñ English railway using known translations
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or (e.g. speeches versus press releases (Foster and Kuhn, 2007)). Kilgarriff and

Rose (1998) present several information theoretic measures to estimate the similarity

between a pair of documents, which could be used to measure the homogeneity of a

hypothesis domain. However, the question of how we should define and identify text

domains most effectively for natural language processing applications remains open.

In this thesis, like the vast majority of prior NLP research, we assume that domain

is predefined.

Recent work on machine translation domain adaptation has focused on either the

language modeling component or the translation modeling component of an SMT

model. Language modeling research has explored methods for subselecting new-

domain data from a large monolingual target language corpus for use as language

model training data (Lin et al., 1997; Klakow, 2000; Gao et al., 2002; Moore and

Lewis, 2010; Mansour et al., 2011). Translation modeling research has typically as-

sumed that either (1) two parallel datasets are available, one in the old domain and

one in the new, or (2) a large, mixed-domain parallel training corpus is available. In

the first setting, the goal is to effectively make use of both the old-domain and the

new-domain parallel training corpora (Civera and Juan, 2007; Koehn and Schroeder,

2007; Foster and Kuhn, 2007; Foster et al., 2010; Haddow and Koehn, 2012; Haddow,

2013). In the second setting, it has been shown that, in some cases, training a trans-

lation model on a subset of new-domain parallel training data within a larger training

corpus can be more effective than using the complete dataset (Mansour et al., 2011;
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Axelrod et al., 2011; Sennrich, 2012; Gascó et al., 2012).

For many language pairs and domains, no new-domain parallel training data is

available. Wu et al. (2008) machine translate new-domain source language mono-

lingual corpora and use the synthetic parallel corpus as additional training data.

Daumé and Jagarlamudi (2011), Zhang and Zong (2013), as well as our prior work

in Irvine et al. (2013b) use new-domain comparable corpora to mine translations for

unseen words. That work follows a long line of research on bilingual lexicon induction

(Section 2.2.1). These efforts improve errors due to unseen translations. Our work in

Irvine and Callison-Burch (2014b) (Chapter 8) is the first to focus on fixing errors due

to inaccurate translation model scores in the setting where no new-domain parallel

training data is available.

41



Chapter 3

Languages, Data, and Analysis

As we showed in Chapter 1, the amount and type of textual data resources avail-

able for a given language pair has substantial impact on the performance of the SMT

model that we are able to estimate. This chapter provides an overview of publicly

available datasets for training SMT models for a large number of languages paired

with English. First, we enumerate all of the languages that we study in the thesis.

Then, in Section 3.2, we describe parallel datasets and dictionaries. We introduce

monolingual and comparable corpora and those corpora that we have harvested from

the web in Section 3.3. Throughout the thesis, we use these corpora to augment

traditionally trained models of translation. Finally, in 3.4, we present results from

a novel error analysis technique to better understand what goes wrong in machine

translation when we train models in low resource conditions. We include an analysis

of word alignment errors and introduce a set of manual word alignments.
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One major contribution of this thesis is the release of language packs for 151

languages paired with English. Each language pack includes the following:

1. Bilingual dictionary of source language words and their English translations (96

of the 151 languages; described in Section 3.2.2)

2. Comparable corpus of time-stamped source language online news text paired

with English news text collected on the same dates (115 of the 151 languages;

described in Section 3.3.1).

3. Comparable corpus of source language Wikipedia pages paired with their inter-

lingually linked English counterparts (142 of the 151 languages; described in

Section 3.3.2).

4. For non-roman script languages: a dictionary of source language names paired

with English equivalents, which are likely transliterations (described in Section

3.3.2.).

3.1 Languages

Our set of languages of interest include both truly low resource languages (e.g.

Somali, Nepali, Kyrgyz, Tigrinya) and high resource languages (e.g. French, Spanish,

Arabic, Chinese). Additionally, our language set includes a large degree of linguistic

diversity. Table A.1 in Appendix A shows some basic linguistic features for each
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language as reported in the World Atlas of Language Structures (WALS) (Haspelmath

et al., 2005). Of the 151 languages, 78 are from the Indo-European language family,

17 are Austronesian, 11 Altaic, 7 Afro-Asiatic, 7 Niger-Congo, 5 Sino-Tibetan, 4

each are from the Dravidian and Uralic families, and 18 are from a variety of other

families, including Quechuan, Eskimo-Alteut, Tai-Kadai, and constructed languages,

among others. Twenty-one of the languages are spoken in India; seven are spoken

in Spain, seven in the Philippines, six in Pakistan, six in Switzerland, five in France,

and four in Indonesia. Table A.1 also presents the canonical sentential word order for

each language; 47 are subject-verb-object (SVO) ordered and 43 are subject-object-

verb (SOV). Additionally, eight are VSO, two are VOS (Gilbertese and Malagasy,

both Austronesian languages), and eight have no dominant word order. The word

order of the remaining languages is not reported in WALS. Sixty-three languages are

strongly suffixing, while another eleven are weakly suffixing. Fifteen languages have

little affixation while only three are strongly prefixing (Luganda, Shona, and Zulu,

which are all Niger-Congo languages). Most prefixing languages are either spoken in

the southern half of Africa (e.g. Bantu languages) or are native North American and

Mesoamerican languages, and currently little electronic textual data is available for

these language groups (Dryer, 2011).
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3.2 Parallel Corpora and Dictionaries

3.2.1 Parallel Corpora

As we described in Chapter 2, Gale and Church (1991, 1993) and Brown et al.

(1993b) first proposed the idea of using pairs of translated sentences, or a parallel

corpus, to train a statistical machine translation model. Since then, standard ap-

proaches have moved from word-based models to phrase-based models (Koehn et al.,

2003) and, more recently, to syntax-based models (Galley et al., 2004; Chiang, 2005;

Zollmann and Venugopal, 2006). All these standard approaches to statistical machine

translation still estimate model parameters exclusively from parallel corpora.

The largest publicly available parallel corpus is the French-English 109 corpus,

which contains nearly 1 billion words of sentence aligned French and English extracted

automatically from a variety of websites (Callison-Burch et al., 2009). Additionally,

the French-English Hansard Canadian parliamentary proceedings1 contain about 150

million word tokens of each language. As part of the DARPA Global Autonomous

Language Exploitation (GALE) program, about 200 million words of Chinese-English

and Arabic-English parallel text was compiled and made available for research. The

Europarl parallel corpus (Koehn, 2005) is another large, commonly used SMT dataset.

It contains text in 21 languages extracted from the proceedings of the European Par-

liament. The corpora range in size from about 50 million words in Danish, German,

1www.parl.gc.ca
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Spanish, Finnish, French, Italian, Dutch, Portuguese, and Swedish paired with En-

glish to about 10 million words for Bulgarian and Romanian. Similarly, the Acquis

corpus contains 4-8 million words of parallel EU legal documents in each of 21 EU

languages (Steinberger et al., 2006).

The MultiUN corpus2 is a collection of parallel text published on the United Na-

tions website between 2000 and 2009 (Eisele and Chen, 2010). The Common Crawl

parallel corpus (Smith et al., 2013) is a collection of parallel texts in 18 languages

paired with English. That dataset was harvested automatically from the Common

Crawl corpus, a 102TB snapshot of about 2 billion public webpages.3 The corpora

range from 130 million words of French-English text to 200 thousand words of Pashto-

English. Other low resource languages included in the Common Crawl parallel corpus

are Kannada, Somali, Telugu, Farsi, Bengali, Urdu, and Tamil. One million words of

text or fewer is available for each. Several datasets have been a byproduct of the an-

nual Workshop on Statistical Machine Translation,4 including the News Commentary

corpus, which consists of about 3 million words of news text and commentary trans-

lated from English into Czech, German, Spanish, French, and Russian. In this thesis,

we also make use of parallel corpora compiled through the use of crowdsourcing on

Amazon’s Mechanical Turk platform (Post et al., 2012).

A variety of other parallel corpora have been released, many through the Open

2www.euromatrixplus.net/multi-un/
3commoncrawl.org/
4www.statmt.org/
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Parallel Corpus (OPUS) project5 and the European Language Resources Association

(ELRA).6 Many of the OPUS and ELRA bitexts contain text from a particular do-

main, such as movie subtitles and biomedical data (mostly prescription drug labels)

from the European Medicines Agency (EMEA). In Chapter 8, we address methods

for adapting SMT models to new text domains.

A summary of the availability of parallel text for 96 languages paired with English

is given in Figure 3.1 and the corresponding values are given in Table B.1 in Appendix

B. Only languages for which some parallel data is available are plotted.7 Estimates

of the number of speakers of each language are taken from the Ethnologue8 and

are shown on the x-axis. The amount of parallel data is given on the y-axis. It

is important to keep in mind that the diversity of content and translation quality

vary dramatically across corpora. For example, the OPUS EMEA corpora contain

small vocabularies and large numbers of duplicate phrases, giving them low value

for training models to translate text outside of the narrow drug prescription labels

domain.

Figure 3.1 shows a positive correlation (Pearson’s r “ 0.58 on raw, non-log trans-

formed data) between the number of speakers and amount of available parallel text.

For example, Chinese and Spanish have the largest number of speakers and very large

parallel corpora are available for both. Similarly, Maori and Gaelic have few speak-

5opus.lingfil.uu.se/
6www.elra.info/
7We have not included the Bible or Book of Mormon in our estimates, which are both available

for nearly all languages in the world.
8www.ethnologue.com/
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Figure 3.1: Thousands of speakers by millions of publicly available words of parallel
data

ers and very little parallel data. In contrast, there are 260 and 190 million Hindi

and Bengali speakers, respectively, but less than 2 million words of parallel data is

available for each.

3.2.2 Bilingual Dictionaries

Throughout the thesis we also make use of bilingual dictionaries, which consist of

translations of words and, in a few instances, short phrases. We use (1) dictionaries

extracted from word aligned parallel data, (2) existing electronic dictionaries, (3)

48



CHAPTER 3. LANGUAGES, DATA, AND ANALYSIS

paper dictionaries scanned and digitized with optical character recognition (OCR),9

and (4) crowdsourced dictionaries, gathered via Amazon Mechanical Turk (MTurk).

Table B.2 in Appendix B gives data statistics for all of the dictionaries except those

extracted from word-aligned parallel corpora, which vary across experiments.

In Pavlick et al. (2014), we describe an empirical study of the languages spoken by

workers on Mechanical Turk. In that work, we focused on the 100 languages which

have the largest number of Wikipedia articles and posted HITs asking workers to

translate the most frequent 10, 000 words in the most viewed 1, 000 pages for each

source language. Although all of the source words in the Wikipedia dictionaries are

unigrams, we allowed workers to translate them into multi-word English phrases.

Workers were shown words in the context of three Wikipedia sentences. Additional

details on experimental design and quality control mechanisms are given in Pavlick

et al. (2014). As a result of that project, for languages that do have high coverage

on MTurk, we collected bilingual dictionaries of about 10, 000 words translated into

English. For the purposes of experiments in this thesis, we filter the dictionaries to

include only high quality translations. Specifically, we only use translations that have

a quality score of at least 0.6 under the metric given by Pavlick et al. (2014).

9Thanks to David Yarowsky for sharing his large collections of scanned dictionaries.
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3.3 Monolingual and Comparable Corpora

In his thesis, Schafer (2006) presents a detailed hierarchy of text resources used

in machine translation, sorted by the amount of supervision included in each. He

describes the most supervised resources to be aligned source and target language

treebanks and the least supervised resources to be independent, monolingual source

and target language corpora without accompanying bilingual dictionaries. Monolin-

gual corpora may be comparable in genre, topic, and/or associated timestamps. In

this thesis, we refer to monolingual corpora which overlap in genre as well as either

topic or associate timestamps as comparable corpora. Prior work has attempted to

measure the degree of comparability between a pair of corpora, for example using an

existing bilingual dictionary (Li and Gaussier, 2010; Li et al., 2011) or using perfor-

mance on some task as a proxy (Su and Babych, 2012). We do not attempt to measure

the comparability between our corpora but, rather, we select corpora such that they

are likely to contain text on the same topics. We use two sources of monolingual

comparable text corpora: (1) web crawls of online newspapers, and (2) Wikipedia.

In both cases, we harvest foreign language text as well as English text and estimate

document alignments to link our comparable corpora.
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3.3.1 Web crawls

Online newspapers are good sources of high quality text for many languages. We

began harvesting such data by crawling several well-known news sources that publish

stories in two or more languages, including Deutsch Welle and Voice of America. In

order to gather more data, particularly for less commonly used languages, we scraped

a list of 44, 892 newspapers and their locations, URLs, and languages from the ABYZ

News Links website.10 The resulting database of newspapers contains links to online

newspapers published in 128 languages, and we set up web crawls to download the

content from each daily.

Although ABYZ News Links provides labels of the primary publication language

for each newspaper, we found that in some cases these labels were incorrect and, in

other cases, newspapers contain content in multiple languages. This is particularly

true for publications in regions where several languages are spoken. In order to obtain

cleaner labels, we use two language identification models: (1) the Compact Language

Detection 2 (CLD2) system,11 and (2) the system released by Bergsma et al. (2012).

The CLD2 model consists of pre-trained Naive Bayes classifiers for over 80 languages

that have been enhanced to distinguish between easily confused language pairs (Malay

and Indonesian, or Spanish and Portuguese, for example). In using this model, we

provide language ‘hints,’ which increase the prior probability of the ABYZ language

labels slightly. The language identification system released by Bergsma et al. (2012)

10www.abyznewslinks.com/
11https://code.google.com/p/cld2/
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is based on compression language models and is designed specifically for use on short

inputs. It contains pre-trained models for identifying 261 human languages. We use

both language identification models to automatically identify the language of each

line of text in the web crawl data.

Qualitatively, we observe that the two language identification systems have dif-

ferent language-specific strengths and weaknesses. The system released by Bergsma

et al. (2012) is trained on Twitter data and is not always robust to languages writ-

ten in non-roman alphabets. For example, its Vietnamese model does not recognize

the language written in its native script. In contrast, the CLD2 system consistently

recognizes Vietnamese. The CLD2 system, however, frequently mistakes Zulu for

Swedish because, even when Zulu is suggested as a hint language, Swedish has a

much higher prior probability. The Bergsma et al. (2012) model consistently recog-

nizes Zulu. Additionally, for some languages in our set, one or both systems don’t

contain pre-trained models.

We use both sets of pre-trained models to identify the most likely language for each

line of text in our web crawls, and we generate a high-precision set of monolingual

data consisting of text for which either automatic language identification tag matches

the prior newspaper language labels. Table B.3 in Appendix B shows the full amount

of data collected for each language as well as the size of each high precision language

identification dataset. For most languages, the high precision set contains at least 90%

of the full web crawls dataset, suggesting that language labels are correct for most of
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our web crawls. However, for other languages the high precision set is only a small

fraction of the original. This is the case, for example, for Bosnian, Cebuano, Chinese,

Kurdish, Serbian, and Uzbek. In the case of Bosnian and Serbian, these languages

are closely related and are frequently identified as one other, or as Croatian, by

our automatic language identification systems. Uzbek is written using both the Latin

and the Cyrillic scripts, however our language identification systems only recognize its

Latin script form. For these languages, the relatively small size of the high precision

set is a result of errors by the language identification systems. However, in the case of

Cebuano, Kurdish and Chinese, the full web crawls datasets contain a large amount

of text in other languages, primarily English, and, in generating the high precision

set, we eliminate such text. In all of the experiments in this thesis, unless otherwise

noted, when we refer to our web crawls datasets, we are referring to the high precision

datasets.

Because our data is comprised of news stories, each document also has an associ-

ated time stamp, which we use to define a rough document alignment with English

news articles. That is, we treat the set of all foreign language news stories published

on a particular day as roughly comparable to those written in English on the same

day. The degree of comparability between such sets of documents varies greatly. We

don’t attempt to divide articles published on a given day by topic and infer a finer-

grained alignment with English articles on the same topic. We leave this for future

work and, instead, use all available data.

53



CHAPTER 3. LANGUAGES, DATA, AND ANALYSIS

In Irvine et al. (2014), we describe the American Local News Corpus, which is a

parallel web crawl collection effort focused on U.S newspapers. Our methodology for

setting up the automatic crawlers and doing deduplication and preprocessing is the

same for the two corpora.

3.3.2 Wikipedia

We also use Wikipedia as a source of monolingual data. For all languages, we use

Wikipedia’s January 2014 data snapshots. To maximize the degree of comparability

between our source language Wikipedia pages and English Wikipedia, we only use

those pages which have interlingual links with English pages. Unlike our newspaper

web crawls, Wikipedia content has fairly reliable language labels. However, for some

languages, English content is copied from the English Wikipedia without translation.

We use the CLD2 language ID system to identify and remove English content from

other languages’ Wikipedias. The amount of Wikipedia data that we use for each

language is given in Table B.3 in Appendix B.

We also use Wikipedia as a source for example transliterations in non-roman script

languages paired with English. In Irvine et al. (2010b), we detailed how we mined

transliteration training data from Wikipedia page titles for 150 languages. Wikipedia

categorizes articles and maintains lists of all of the pages within each category. In

mining transliteration data, we took advantage of a particular set of categories that

list people born in a given year. For example, the Wikipedia category page ‘1961
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births’ includes links to the ‘Barack Obama’ and ‘Michael J. Fox’ pages. We iterated

through birth years and the links to pages about people born in each year and then

followed interlingual links from each English page about a person, compiling a large

list of person names (Wikipedia page titles) in many languages. In Section 4.2.1.3, we

use this data to train transliterators and transliterate source language words before

comparing their orthographies with English words.

Figure 3.2 illustrates the total amount of monolingual data (web crawls and

Wikipedia) that we have for 144 of our 151 languages. We have over 1 billion words

of monolingual data for Russian and Spanish and over 200 million for Farsi, Urdu,

French, German, and Italian. These languages are not shown in the figure.

3.4 Analysis

In Irvine et al. (2013a), we presented a taxonomy of error types related to lexi-

cal choice in machine translation as well as two novel techniques for measuring the

different types of machine translation errors. In the original paper, we focused on

the challenge of adapting machine translation models to new domains of text, and in

Chapter 8, we present our analysis of errors in a domain adaptation setting. Here, we

measure the number of lexical choice errors of each type that are made in low resource

translation. We begin by outlining the error taxonomy and each analysis approach

given by Irvine et al. (2013a) and then present an analysis of what goes wrong when
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we do machine translation in low resource conditions.

3.4.1 Approach

3.4.1.1 Error Taxonomy

Errors are categorized into a taxonomy of four error types, S4: (1) seen, (2)

sense, (3) score, and (4) search. seen errors are a result of some source language

phrases being unseen in training, or out-of-vocabulary. sense errors are a result

of source language phrases being seen in training but not with the correct target

language translation. When a source language phrase is observed in training with

its correct translation, but that translation is scored lower than another translation

alternative during decoding, a score error has been made. Finally, search errors

are a result of pruning translation options during beam search. These four error types

account for all translation errors due to lexical choice as opposed to word order.

3.4.1.2 Word Alignment Driven Evaluation

The micro analysis, WADE (Word Alignment Driven Evaluation), measures errors

at the level of source language words. WADE is based on the fact that we can

word align a source language test sentence and its reference translation in the target

language. Additionally, the MT decoder naturally produces a word alignment between

each input source sentence and its output machine translation. WADE then checks
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whether the MT output has the same set of target language words aligned to each

source language word that we would hope for, given the reference.

In WADE, the unit of analysis is each word alignment between a source language

word, fi, and a reference target language word, ej. To annotate the aligned pair,

ai,j, we consider the word(s), Hi, in the output sentence which are aligned (by the

decoder) to fi. If ej appears in the set Hi, then the alignment ai,j is marked correct.

If not, the alignment is categorized with one of the S4 error types. If the source

word fi does not appear in the phrase table used for translation, then the alignment

is marked as a seen error. If fi does appear in the phrase table, but it is never

observed translating as ej, then the alignment is marked as a sense error. If fi had

been observed translating as ej, but the decoder chose an alternate translation, then

the alignment is marked as a score error. For WADE, score errors correspond to

errors in phrase table translation scores. Because WADE uses alignment links as its

unit of analysis and is agnostic to the word order in the output, it does not capture

reordering errors. The results in Irvine et al. (2013a) show that search errors are very

infrequent, so, following that work, we mark all errors other than seen and sense

as score errors. We make use of one additional category: Freebie. Our MT system

copies unseen (OOV) source words into the output, and “freebies” are source words

for which this is correct. For related languages written in the same script, like French

or Spanish and English, freebies are fairly common. Because WADE’s unit of analysis

is each alignment link between the source text and its reference, it ignores unaligned

57



CHAPTER 3. LANGUAGES, DATA, AND ANALYSIS

words in the input source text.

Figure 3.3 shows an example of a WADE-annotated French to English translation.

In addition to providing an easy way to visualize and browse the errors in MT output,

WADE allows us to aggregate counts over the S4 error types.

One potential shortcoming of WADE is that it relies on word alignments between

our test and reference sets, and alignment errors will result in errors in the error

analysis. That is, if a word, fi, in a sentence in our test set is incorrectly aligned with

a word, ej, in the corresponding reference sentence, WADE will incorrectly indicate an

error in the output machine translation if the decoder does not also produce word ej

from fi. In Appendix C, we compare WADE analyses based on automatic alignments

with those based on manual word alignments which we gather using MTurk. Although

the results change with different sets of word alignments, we find that the general

trends gleaned from the analyses are consistent.

3.4.1.3 Table Enhancement for Translation Analysis

The macro analysis, TETRA (Table Enhancement for Translation Analysis), ar-

tificially supplements a baseline model with different improvements taken from a

pseudo-oracle model in order to measure deficiencies in the baseline and potential

sources of improvement. This type of analysis is appropriate for the domain adap-

tation case where a natural comparison is between a baseline OLD-domain model

and a pseudo-oracle NEW-domain model. In the low resource case, we approximate
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a pseudo-oracle with a MT model trained in high resource conditions. We use the

high resource model to propose enhancements to the low resource system. This pro-

vides a realistic measure of what could be achieved at a corpus level if each error

category were targeted for improvement. Here, our experiments are conducted using

phrase-based SMT systems, so the translation models (TM) that are enhanced are

the phrase table and reordering table. We make three TM enhancements:

‚ +seen enhancement. In order to estimate the effect of seen errors, we enhance

the TM of the low-resource (LR) model by adding phrase pairs that translate

words found only in the high-resource (HR) model, and we measure the BLEU

improvement. More precisely, we identify the set of phrase pairs in the HR TM

for which the source side contains at least one word that does not appear in the

LR training data. These are the phrases responsible for seen errors. We build

the system TETRA`seen by adding these phrases to the LR model. When

adding these phrases, we add them together with their feature value scores.

‚ +sense enhancement: Analogously, the phrase pairs responsible for sense er-

rors are those from the HR model where the source side exists in the LR model,

but their English translations do not. We build TETRA`sense by adding

these phrases to the LR model.

‚ +score enhancement: To isolate and measure the effect of phrase scores, we

consider the phrases that our LR and HR systems have in common. For each
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phrase pair in the intersection of the two tables, we replace the LR feature

scores with the HR feature score. In the case that a phrase pair appears in

the LR table and not the HR table, which occurs rarely as a result of word

alignment differences between the two models, we include the phrase pair with

the LR feature scores. We replace phrase table translation scores and the lex-

icalized reordering scores in our reordering table separately and then together.

We compare the TETRA`translation-scores, TETRA`reordering-scores, and

TETRA`all-scores results with the baseline LR model performance.

3.4.2 Experiments

In the experiments presented here, we focus on the following four languages paired

with English: Bengali, Hindi, Urdu, and Spanish. Bengali and Hindi paired with En-

glish are truly low resource language pairs. We use the small Bengali and Hindi

datasets released by Post et al. (2012). Training data consists of up to four trans-

lations of about 9 thousand Bengali and Hindi sentences. For our WADE learning

curve analyses, we simulate typical single-reference training sets by randomly sam-

pling single English translations of each source language training sentence. For the

TETRA analyses, we use the full datasets to train our high resource models. Because

not a lot of parallel data is available for these languages, the ‘high resource’ models

that we use for the TETRA analyses are also impoverished. That is, we augment low

resource models with seen, sense, and score error corrections estimated from only
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slightly higher resource models. In all experiments, we use the four-reference tuning

and test sets for each language released by Post et al. (2012).

We use the 2009 Urdu-English NIST parallel dataset for the Urdu analysis. The

training portion of this dataset consists of 88, 108 parallel sentences, or about 1.6

million Urdu and English words.12 We use the development portion of the NIST

dataset for tuning each model and the 883 four-reference test set sentences for the

analyses.

For Spanish-English, we use the Europarl v5 parallel corpus (Koehn, 2005). This

corpus consists of about 1.7 million parallel sentences, nearly 50 million words of

each language. Additionally, we use approximately 2, 500 single-reference parallel

sentences each for tuning and testing. The tuning and test sets are newswire articles

and are taken from the 2010 WMT shared task (Callison-Burch et al., 2010).13

For each of the four language pairs, we randomly sample increasing numbers

of sentence pairs and present learning curves based on a WADE analysis. For the

TETRA analysis, we use sampled training sets of 1, 000 sentences as low resource

(LR) models and the full training sets as high resource (HR) models. We do not

attempt to hold the amount of data used to train our HR models constant across

languages but, rather, use as much data as possible for each. We use GIZA++ to

align each parallel corpus and extract a translation model with a phrase limit of five

words. We use two 5-gram English language models in all experiments trained on: (1)

12NIST also released an Urdu-English dictionary, which we do not use in our analyses here.
13news-test2008 plus news-syscomb2009 for tuning and newstest2009 for testing.
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the English side of the Europarl corpus, and (2) the English side of the full training

corpus for the given language pair.14 We retune the parameters of each model using

batch MIRA (Cherry and Foster, 2012).

3.4.2.1 WADE Analyses

In the cases that we have multiple test set reference translations (Bengali, Hindi,

and Urdu), we use the single reference translation that yields the highest BLEU

score, given a particular machine translation output.15 Figure 3.4 gives an example

Bengali test set sentence and its translation under two different low resource models:

one trained on one thousand parallel sentences and the other on eight thousand

parallel sentences. The reference translations that yield the highest BLEU scores

are slightly different. Moving from the first model to the second, two seen errors

are corrected. All of the test-reference alignment links are erroneous under the first

machine translation and 50% are under the second.

As we discussed in Irvine et al. (2013a), WADE allows for easy visualization of

machine translation errors at the sentence level as well as aggregate data statistics

that describe errors at the corpus level. For example, using the Bengali-English SMT

model trained on 1, 000 parallel sentences, only 22% of alignment links in the test set

are correct and 78% are incorrect. Moving to the model trained on 8, 000 sentence

pairs, 32% are correct and 68% are incorrect.

14For Spanish-English, we just use one language model since the training data is Europarl.
15In Section 6.4.4 we present a multi-reference version of WADE.
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Figure 3.5 shows how the distribution of WADE error types changes with varying

amounts of training data for Spanish, Urdu, Bengali, and Hindi translation into

English. The learning curves are very similar to one another. With very little training

data, seen and sense errors are the major sources of error. As the amount of training

data increases, the numbers of seen and sense errors decrease. Some of the errors

are corrected while others become score errors. score errors indicate that a given

translation model has good coverage but translation alternatives are scored in such a

way that incorrect target translations are chosen in decoding. For both Spanish and

Urdu, score errors are the biggest source of error when models are trained on at

least 20 thousand parallel sentences. For Bengali and Hindi, fewer than 10 thousand

parallel sentences are available for training, and, under the WADE analysis, seen

and sense errors are the main cause of translation errors when all available training

data is used to train the translation models.

3.4.2.2 TETRA Analyses

We also use a TETRA analysis to answer the question of what goes wrong in

translation models trained in low resource conditions. Here, for each of the four

source languages, we compare the performance of low resource (LR) models trained on

1 thousand parallel sentences with high resource (HR) models trained on all available

training data for the given language pair. We use TETRA to augment each LR model

with components from each HR model. Table 3.1 shows the results in terms of BLEU
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Language LR LR +seen LR +sense LR +score-t LR +score-r LR +score-b HR
Bengali 4.03 6.39 (`2.4) 6.65 (+ 2.6) 3.79 (´0.2) 4.03 (`0) 3.72 (´0.3) 12.70
Hindi 6.23 8.35 (+ 2.1) 8.11 (`1.9) 6.45 (`0.2) 5.67 (´0.6) 6.08 (´0.2) 15.56
Urdu 7.22 11.64 (+ 4.4) 10.90 (`3.7) 7.96 (`0.7) 7.23 (`0) 7.67 (`0.5) 20.62
Spanish 11.35 17.82 (+6.5) 13.18 (`1.8) 11.46 (`0.1) 11.25 (´0.1) 11.23 (´0.1) 22.71

Table 3.1: TETRA BLEU score results. For each language, low resource (LR) models
are trained on 1, 000 sentence pairs, and high resource (HR) models are trained on the
full available datasets (see Section 3.4.2). We use each language’s HR model to arti-
ficially correct each LR model’s seen, sense, and score errors. We correct phrase
table translation score errors (score-t) and reordering score errors (score-r) sep-
arately and then together (score-b). For each language, the TETRA augmentation
that improves the performance of the LR model the most is highlighted.

score. Augmenting the LR models with scores from the HR models makes a very

small impact. In fact, the HR scores actually hurt performance slightly for three of

the four language pairs. In contrast, augmenting the LR models with translations of

previously unseen words and phrases yields consistently substantial improvements in

BLEU scores, from 2.1 points for Hindi to 6.5 for Spanish. The gains from adding

new sense translations are also high and range from 1.8 points for Spanish to 3.7 for

Urdu.

The results of our TETRA analysis are consistent with what we found in the

WADE analysis: in very low resource conditions, seen and sense errors are more

problematic than score errors. This result is intuitive; in low resource conditions

models are estimated over small amounts of parallel data and have low coverage. That

is, the models don’t contain any or all of the possible translations for most source

phrases. As the amount of parallel training data increases, estimated translation

models have higher coverage but are less precise and more prone to scoring errors.
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3.4.3 Word Alignment Errors

In both the WADE and the TETRA analyses, we are agnostic to the difference

between errors that occur as a result of insufficient training data and those that occur

as a result of word alignment errors. For example, a sense error may occur because

a source language phrase truly does not translate as a particular target language

phrase in the parallel data. In contrast, sense errors may also occur because a source

language phrase is incorrectly word aligned, and, as a result, our models don’t include

the correct target translation in our translation grammars. Disentangling these effects

provides insight into potential performance gains from improving word alignments

over the small parallel training texts versus moving beyond the parallel training data

to attack each error type. One way to disentangle these effects would be to learn

a model from manual word alignments over the training data and then compare

errors made by the new model with those made by the model based on automatic

word alignments. However, manual word alignment is difficult and time-consuming.

Instead, we use the word alignment models learned in high resource conditions as a

proxy for manual alignments (Callison-Burch et al., 2004). Specifically, we perform

additional experiments for Spanish-English and Urdu-English translation comparing

the following two word-aligned training datasets:

1. 1, 000 parallel sentences word-aligned using an alignment model estimated over

the 1, 000 sentence pairs (LR alignments).
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2. 1, 000 parallel sentences word-aligned using an alignment model estimated using

a high-resource training dataset (HR alignments).

For Urdu, our high resource word alignment model is estimated over 1.6 million words

of training data and for Spanish, it is estimated over 50 million words of training data.

Both datasets are described in Section 3.4.2.

Table 3.2 shows the results of our experiments disentangling the effects of the

limited coverage of small training sets and poorly estimated word alignment models.

BLEU scores go up by about 3 points for Urdu when moving from the low resource

alignments to the high resource alignments. This is a considerable improvement in

translation quality resulting from improving word alignments alone. For Spanish, the

BLEU score improves by about 1.5 points. For both language pairs, most of the gain in

translation quality comes from a reduction in sense errors. Although some previously

sense errors become score errors, others are corrected. This is expected: although

some source language phrases were observed in training, when they were misaligned,

incorrect translations were extracted and the correct translations were not included

in the grammars. sense errors are particularly pronounced when training data is

sparse and source phrases are observed infrequently, reducing the chances that they

are aligned with correct translations.
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Correct Freebie Seen Sense Score BLEU
Urdu
LR Alignments 31.2 0.2 24.7 30.1 13.8 7.22
HR Alignments 37.7 0.2 23.4 21.8 16.9 10.20
Spanish
LR Alignments 38.0 5.0 22.3 22.8 12.0 11.35
HR Alignments 40.5 4.9 21.7 17.3 15.5 12.94

Table 3.2: Disentangling the effect of incorrect training data word alignments from the
effect of a limited training dataset. The percent of test set and reference translation
word alignment links that are correct, freebies, or seen, sense, or score errors are
given along with BLEU scores. In both cases, a translation model is estimated over
1, 000 parallel sentences. The low resource (LR) alignment model is estimated using
only the 1, 000 parallel sentences, and the high resource (HR) alignment model is
estimated using much larger parallel datasets.

3.4.4 Analysis Conclusion

Our analysis has shown that when we train translation models with only small

amounts of parallel data, the major sources of error are seen and sense errors. That

is, many source language words and phrases are not observed at all in training and

many others are observed without all of their correct target language translations.

In this thesis we improve the performance of translation models learned over small

amounts of parallel data by identifying new source word and phrase translations using

monolingual corpora. These new translations reduce the number of seen and sense

errors. We further improve performance by adding feature functions estimated over

comparable corpora that help models discriminate between good and bad translations,

correcting score errors.
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Figure 3.2: Word cloud illustrating the amount of monolingual data (web crawls
and Wikipedia) that we have gathered and paired with English for 144 languages.
Bigger fonts indicate more monolingual data. We have over 200 million words for
the following languages, which are not shown in this plot: Russian, Spanish, Farsi,
French, Urdu, German, and Italian.
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Figure 3.3: Example of WADE visualization. Dashed boxes around the French input
mark the phrase spans used by the decoder. In this example, contient is translated
correctly. The French word gadovist does not appear in the phrase table, but because
its identity translation is correct, it is marked as a Freebie. French que is translated as
the empty string, but the reference translates it as what. Because what was a possible
translation for que in the model but it was not chosen by the decoder, that alignment
link is marked as a score error.
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Figure 3.4: WADE analysis on a single Bengali sentence translated using SMT models
trained on (1) 1, 000 parallel sentences, and (2) 8, 000 parallel sentences. The refer-
ence translations that yield the highest BLEU scores for each machine translation
vary slightly. In both cases, there are four alignment links between the Bengali test
sentence and the reference translation. Using the model trained on only one thousand
sentence pairs, two of the alignment links are marked as seen errors and the other
two as sense errors. Using a model trained on eight thousand sentence pairs, the
seen errors are corrected, but the sense errors remain.
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(b) Urdu-English
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(c) Bengali-English
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(d) Hindi-English

Figure 3.5: Aggregate WADE analyses on Spanish and Urdu test sets translated using
SMT models trained on varying amounts of training data. For both source languages,
The number of seen and sense errors decrease and the number of correct alignments
increases with the log of the training data. Although some seen and sense errors
are corrected, many become score errors.
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Bilingual Lexicon Induction

Bilingual lexicon induction is the task of inducing word translations from mono-

lingual corpora in two languages. Being about to mine translations from monolingual

text is potentially very powerful. In the case of low resource machine translation, we

often only have access to a small seed parallel corpus or a small (incomplete) bilingual

dictionary as the only bilingual resource available to translate entire texts. Therefore,

there are likely to be many unknown (out-of-vocabulary, or OOV) words in the text

of interest. In Section 3.4, we showed that unseen words (seen errors) are a major

source of error in low resource SMT settings and, as we will show in Chapter 8, the

same is true in domain adaptation settings. Being able to mine translations for these

words from monolingual corpora means that we could produce some translation for

every word in our text, achieving perfect model coverage (but not perfect accuracy).

In this chapter, we focus on the task of bilingual lexicon induction. Later, in
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Chapters 6 and 8, we integrate mined translations into full, end-to-end low resource

SMT models and domain adapted SMT models, respectively. We conduct simulated

low resource experiments by withholding some of the translations in our bilingual

dictionary for evaluation. We use the rest of the dictionary to inform the learning of

a translation induction model. This setting mimics what we expect from an actual

low resource translation setting: we know how to translate some, but not all, foreign

language words.

4.1 Motivating Prior Work

As reviewed in Section 2.2.1, several monolingual distributional similarity met-

rics, including context, temporal, and orthographic similarity have been proposed as

signals that words are translations. Most prior work has used unsupervised meth-

ods (like rank combination) to aggregate these types of orthogonal signals (Schafer

and Yarowsky, 2002; Klementiev and Roth, 2006). Surprisingly, no past research has

employed supervised approaches to combine diverse monolingually-derived signals for

bilingual lexicon induction. The field of machine learning has shown repeatedly that

supervised models dramatically outperform unsupervised models, including for closely

related problems like statistical machine translation (Och and Ney, 2002).

For the bilingual lexicon induction task, a supervised approach is natural, par-

ticularly because computing contextual similarity typically requires a seed bilingual
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dictionary (Rapp, 1995), and that same dictionary may be used for estimating the

parameters of a model to combine monolingual signals. Alternatively, in a low re-

source machine translation (MT) setting, it is reasonable to assume a small amount

of parallel data from which a bilingual dictionary can be extracted for supervision. In

this setting, bilingual lexicon induction is critical for translating source words which

do not appear in the parallel data or dictionary.

Previous work in bilingual lexicon induction only reports results on inducing trans-

lations for the most frequent source language words (often only nouns), completely

avoiding any scalability or data sparsity issues. Because those word counts are not

sparse, that task is much easier than inducing translations for a random set of words,

as Section 4.3 shows. In end-to-end SMT, unknown words tend to be relatively in-

frequent. This means that it is unclear whether previous bilingual lexicon induction

results would improve SMT quality for low resource languages. In Section 4.3, we

present experimental results on a wide variety of languages, for which a wide variety

of monolingual corpora and seed bilingual dictionaries are available. We also present

bilingual lexicon induction results in terms of monolingual word frequencies in order

to understand the effects of data sparseness.
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4.2 Using Monolingual Data to Predict

Translations

We frame bilingual lexicon induction as a binary classification problem; for a pair

of source and target language words, we predict whether the two are translations of

one another or not. For a given source language word, we score all target language

candidates separately and then rerank them. We use a variety of signals derived from

source and target monolingual corpora as features and use supervision to estimate

the strength of each. Our diverse set of signals, which serve as features in our clas-

sification framework, include contextual, temporal, topical, orthographic, frequency,

and burstiness similarity. We presented our method for doing minimally supervised

bilingual lexicon induction in Irvine and Callison-Burch (2013b), and this chapter

extends upon that work.

We describe the diverse set of monolingual signals in Section 4.2.1, several of

which we first proposed in Klementiev et al. (2012). We report the performance of

individual signals alone and a baseline method for combining them in Section 4.2.3.

Then, in Section 4.2.4, we use a supervised method for learning to combine the signals

to predict word translations.
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4.2.1 Monolingual Signals of Translation Equiva-

lence

4.2.1.1 Contextual Similarity

We use the vector space approach of Rapp (1999) to compute similarity between

word in the source and target languages. More formally, assume that ps1, s2, . . . sNq

and pt1, t2, . . . tMq are (arbitrarily indexed) source and target vocabularies, respec-

tively. A source word f is represented with an N -dimensional vector and a target

word e is represented with an M -dimensional vector (see Figure 2.3). The component

values of the vector representing a word correspond to how often each of the words in

that vocabulary appear within a two word window on either side of the given word.

These counts are collected using monolingual corpora. After the values have been

computed, a contextual vector f is projected onto the English vector space using

translations in a given bilingual dictionary to map the component values into their

appropriate English vector positions. This sparse projected vector is compared to the

vectors representing all English words, e. Each word pair is assigned a contextual

similarity score cpf, eq based on the similarity between e and the projection of f .

Various means of computing the component values and vector similarity measures

have been proposed in literature (e.g. Fung and Yee (1998); Rapp (1999)). Following

Fung and Yee (1998), we compute the value of the k-th component of f ’s contextual
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vector, fk, as follows:

fk “ nf,k ˚ plogpn{nkq ` 1q

where nf,k and nk are the number of times sk appears in the context of f and in the

entire corpus, and n is the maximum number of occurrences of any word in the data.

Intuitively, the more frequently sk appears with fi and the less common it is in the

corpus in general, the higher its component value. After projecting each component

of the source language contextual vectors into the English vector space, we are left

with M -dimensional source word contextual vectors, F , and target word contextual

vectors, E, for all words in the vocabulary of each language. We use cosine similarity

to measure the similarity between each pair of contextual vectors:

simcontextpF,Eq “ F ¨ E
||F ||||E||

Table 4.1 shows example ranked lists using contextual similarity to rank English

words for several Spanish words. For example, contextual similarity ranks the English

words reached, enjoyed, and contained highly as candidate translations of Spanish

alcanzaron. These incorrect English words tend to appear in similar contexts as the

correct English translation, reached. In Appendix D.1, we present results using a

variety of both probabilistic and non-probabilistic dictionaries to project contextual

vectors.
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alcanzaron sanitario desarrollos volcánica montana
reached exil advances volcanic arendt
enjoyed rhombohedral developments eruptive montana
contained apt changes coney glasse
contains immune placing rhonde teter
saw circulatory innovations bleaker waddingham

includes nervous use staten daryl
included endocrine changes robben callowhill

hit coordinate making ostrov richings
achieved ucsd addition ellesmere beswick
estates windowing allowing gilligan holgersson

Table 4.1: Example of ranked word translations using contextual similarity. The
correct English translations, when found, are bolded. English words are ordered by
their contextual similarity scores with the given Spanish word.

4.2.1.2 Temporal Similarity

Some of our monolingual corpora have associated time stamps. In particular, each

document in our web crawls of online news websites has an associated publication date

(see Section 3.3). We gather temporal signatures for each source and target language

unigram from our time-stamped web crawl data in order to measure temporal similar-

ity (Schafer and Yarowsky, 2002; Klementiev and Roth, 2006; Alfonseca et al., 2009).

The intuition is that news stories in different languages will tend to discuss the same

world events on the same day and, correspondingly, we expect that source and target

language words which are translations of one another will appear with similar fre-

quencies over time in monolingual data. For instance, if the English word tsunami

is used frequently during a particular time span, the Spanish translation maremoto

is likely to also be used frequently during that time. Figure 4.1 illustrates how the
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temporal distribution of Spanish terremoto is more similar to its English translation

earthquake than to other English words. Microsoft, one of the non-translations, like

earthquake, is very bursty (formal definition given in Section 4.2.1.6). Strength, an-

other non-translation, in contrast, appears with fairly consistent frequency over time.

The temporal histograms for terremoto and earthquake both show significant peaks

in the middle of the series, which correspond to the major earthquake that occurred

in Haiti in January of 2010. Although the two words have reasonably well matched

temporal signature, there are some differences. For example, there is an earthquake

event near the end of the series that is covered in Spanish news but not as much in

English news.

We calculate the temporal similarity between a pair of words, simtemppF,Eq using

the method defined by Klementiev and Roth (2006). We generate a temporal signa-

ture for each word by sorting the set of (time-stamped) documents in the monolingual

corpus into a sequence of equally sized temporal bins and then counting the number

of word occurrences in each bin. Our English web crawl data is essentially limitless,

so we restrict the English data that we use in a particular foreign language exper-

iment to be no more than three times the size of our source language web crawled

data, and only include news articles from those dates for which we also have source

language articles. In our experiments, we set the temporal bin size to 3 days, so the

size of temporal signatures is equal to the number of days spanned by our corpus

divided by three. We normalize the temporal signature of each word by dividing all
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Figure 4.1: Temporal histograms of the Spanish word terremoto paired with three
English candidate translations: the correct translation earthquake and the incorrect
candidates microsoft and strength. The temporal histograms are collected from mono-
lingual texts spanning several years and show the number of occurrences of each word
(on the y-axes) across time. While the correct translation has a good temporal match
(simtemp(terremoto, earthquake) “ 2 ¨ 10´4), the non-translations are less temporally
similar (simtemp(terremoto, microsoft) “ 2 ¨ 10´5, simtemp(terremoto, strength) “
3 ¨ 10´5). In all examples, only dimensions (dates) which are non-zero valued for
both signatures are shown, which results in the signature for terremoto appearing
somewhat different across the three comparisons.
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alcanzaron sanitario desarrollos volcánica montana
travel snowpocalypse occupied wawel dzv
road airport aer volcanic spatz
news dioxide madoff ash centimes

services steinmeier declaration spewed kleve
arts gobbling ponzi eyjafjallajokull reallocate
word investigating affects otunbajewa frostrup
special convicted suspected eruption roze
chief spy fed cloud minc
top offices combat rubell bicyclists

inspired bond arrested dormancy lgbt

Table 4.2: Example of ranked word translations using temporal similarity. The correct
English translations, when found, are bolded. English words are ordered by their
temporal similarity scores with the given Spanish word.

of the counts by the total count and, again, we use cosine similarity to compare the

normalized temporal signatures for a pair of words:

simtemppF,Eq “ F ¨ E
||F ||||E|| ,

where F and E are source and target language word temporal signatures, respectively.

Table 4.2 shows example ranked lists using temporal similarity to rank English

words for several Spanish words. For example, ash and spewed, as well as the Icelandic

volcano eyjafjallajokull, are all temporally similar to the Spanish word volcánico.

Since volcanic eruptions are generally talked about in newspapers all around the

world when they occur, it is not surprising that this signal is able to score several

related words highly. In Appendix D.2, we compare the performance of using raw

temporal signatures and using the Discrete Fourier Transform of those signatures.
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4.2.1.3 Orthographic Similarity

We measure orthographic similarity between a pair of words as the normalized1

edit distance between the two words:

simorthpf, eq “ edpf, eq
|e||f |
2

where ed is the standard Levenshtein edit distance between the two strings. For

word classes that tend to be transliterated, rather than translated, (e.g. person and

place names, and etymologically related words), we expect the edit distances between

English words and their translations to be small. Prior work has learned mappings

between character sets (e.g. Yamada and Knight (1999); Snyder et al. (2010)). Berg-

Kirkpatrick and Klein (2011) use decipherment techniques to learn correspondences

between the alphabets of two languages given two lexicons containing unmatched

cognates.

For non-Roman script languages, we transliterate words into the Roman script

before measuring orthographic similarity, following our prior work in Irvine et al.

(2010b). We treat transliteration as a monotone character translation task and train

models on the mined pairs of person names in foreign, non-Roman script languages

and English. Because transliteration is strictly a monotone operation, we do not allow

reordering in our models. Additionally, unlike in machine translation, our translation

1Normalized by the average of the lengths of the two words
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RussianÑEnglish
f o t Ñ f a u t
c y Ñ t s y

w u k Ñ s c h u k

GreekÑEnglish
o χ ´α Ñ o c h a
γ ε ρ Ñ g e r

α λ μ Ñ a l l m

Table 4.3: Examples of Russian to English and Greek to English transliteration rules
extracted from pairs of person names.

and language models can support very large n-gram sizes because the number of

characters in a given script is small compared to word vocabularies; we use phrase

length limits of 10 when extracting translation grammars and in estimating language

models. We use a character-based language model trained on the complete list of

English names. Table 4.3 shows some example rules that we learn for transliterating

Russian and Greek into the Roman script.

In Irvine et al. (2010b), we provide a detailed evaluation of our transliteration

technique. For purposes of bilingual lexicon induction, we use the top-1 transliteration

to compute edit distance.

Table 4.4 shows example ranked lists using orthographic similarity to rank English

words for several Spanish words. For those Spanish words that have English cognates,

such as sanitario and volcánica, the orthographic signal ranks correct translations

highly.
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alcanzaron sanitario desarrollos volcánica montana
alcantara sanitary ferroalloy volcanic montana
albanian sanitation barrosos volcanism fontana
lazzaroni unitario destroyers voltaic montane
lanaro sanitarium mccarroll vacancy mentana
aleandro sanitation disallows konica montagna
lazaros sagittario disallow dominica montanha
canaro sanitarias scrolls veronica montan
alianza kantaro payrolls monica montano
lazaro sanitorium carroll volcano montani

catanzaro santoro steamrolls vratnica montand

Table 4.4: Example of ranked word translations using orthographic similarity. The
correct English translations, when found, are bolded. English words are ordered by
their orthographic similarity scores with the given Spanish word.

4.2.1.4 Topic Similarity

Words and their translations are likely to appear in articles written about the

same topic in two languages. Thus, topic or category information associated with

monolingual data can also be used to indicate similarity between a word and its

candidate translation. In order to score a pair of words, we collect their topic signa-

tures by counting their occurrences in each topic, normalize the signatures, and then

comparing the resulting vectors. We, again, use the cosine similarity measure:

simtopicpF,Eq “ F ¨ E
||F ||||E|| ,

where F and E are normalized source and target language word topical signatures,

respectively.

In our experiments, we use interlingual links between Wikipedia articles to esti-
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Barack_Obama Обама,_Барак

Virginia Виргиния

Iraq_War Иракская_война

Ückeritz Иккериц

Otto_von_Bismarck Бисмарк,_Отто_фон

Music Музыка

15

32

10

0

1

4

United 
States

Соединённые 
Штаты 
Америки

8

15

8

0

0

5

1

0

0

0

0

7 

0

2

0

0

0

0

Мексика
ездить на 
велосипеде

Wikipedia

Figure 4.2: Illustration of how we compute the topical similarity between United
States and three Russian candidate phrase translations. We first collect the topical
signatures for each phrase (e.g. United States appears in the page about Barack
Obama 15 times and in the page about Virginia 32 times.) based on the interlingually
linked pages. We can then directly compare each pair of topical signatures.

mate topic similarity. We treat each linked article pair as a topic and collect counts

for each word across all articles in its corresponding language. Thus, the dimension-

ality of a word’s topic signature corresponds to the number of interlingually linked

article pairs, and each value corresponds to the number of times the word appears in

the given article. For each foreign language, the number of Wikipedia articles linked

to English pages is given in Table B.3 in Appendix B. The number of linked articles

range from 84 (Kashmiri) to over 500 thousand (French). Figure 4.2 illustrates this

signal. Our Wikipedia-based topic similarity signal is similar in spirit to polylingual

topic models (Mimno et al., 2009).

Table 4.5 shows example ranked lists using topic similarity to rank English words

for several Spanish words. Using topic similarity, montana, miley, and hannah are

ranked highly as candidate translations of the Spanish wordmontana. The TV charac-
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alcanzaron sanitario desarrollos volcánica montana
reached health developments volcanic montana
began transcultural developed eruptions miley
led medical development volcanism hannah

however sanitation used lava beartooth
early patient using plumes cyrus

including deliverables modern eruption crazier
took pharmaceutical based volcano bozeman

remained sewerage important volcanoes chelsom
several healthcare history breakouts absaroka

continued care different volcanically baucus

Table 4.5: Example of ranked word translations using topic similarity. The correct
English translations, when found, are bolded. English words are ordered by their
topic similarity scores with the given Spanish word.

ter Hannah Montana is played by actress Miley Cyrus, so the topic similarity between

these words makes sense.

4.2.1.5 Frequency Similarity

Words that are translations of one another are likely to have similar relative fre-

quencies in monolingual corpora. We measure the frequency similarity of two words,

simfreq, as the absolute value of the difference between the log of their relative corpus

frequencies, or:

simfreqpe, fq “ |logp freqpeqř
i freqpeiqq ´ logp freqpfqř

i freqpfiqq|
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4.2.1.6 Burstiness Similarity

Burstiness is a measure of how peaked a word’s usage is over a particular corpus

of documents (Pierrehumbert, 2012). Bursty words are topical words that tend to

appear when some topic is discussed in a document. For example, earthquake and

election are considered bursty. In contrast, non-bursty words are those that appear

more consistently throughout documents discussing different topics, use and they,

for example. Church and Gale (1995, 1999) provide an overview of several ways to

measure burstiness empirically. Following Schafer and Yarowsky (2002), we measure

the burstiness of a given word in two ways. The first is based on Inverse Document

Frequency (IDF):

IDFw “ ´log
dfw
|D| ,

where dfw is the number of documents that w appears in, and |D| is the total num-

ber of documents in the collection. The second burstiness measure, similar to that

defined by Church and Gale (1995), is the average frequency of w divided by the per-

cent of documents in which w appears. We make one modification to the definition

provided by Church and Gale (1995) and use relative frequencies rather than absolute

frequencies to account for varying document lengths.

Bw “
ř

diPD rfwdi

dfw
,
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Frequency, f , and IDF Burstiness
number of words, n Top-5 Bottom-5 Top-5 Bottom-5

f “ 50, n “ 802

kratsa contemporaneously straubing-bogen wavering
tebet unrecognizable tebet busing
kagome categorizing cloppenburg unconvinced
khaldūn modern-style autosan redesigning

psittacosaurus crazed gøta oftentimes

f “ 100, n “ 303

subarticle call-ups penedès demoralized
trackmania workable lyrebird misgivings
lyrebird purports azarbaijan precluded
gârbea outnumber padstow workable
biecz unmatched trackmania forestall

Table 4.6: Examples of highest and lowest ranked English words according to two
measures of burstiness. Empirical estimates were taken from a subset of English
Wikipedia data.

where, as before, dfw is the number of documents in which w appears and rfwdi
is

the relative frequency of w in document di. Relative frequencies are raw frequencies

normalized by document length. Table 4.6 shows examples of high and low ranked

bursty words under each measure for two different constant word frequencies. The

examples show that both measures of burstiness yield rankings that are consistent

with our intuitions, yet they provide different results.

We compare both the IDF and the B scores for pairs of words using ratios:

simIDF pe, fq “ minr IDFe

IDFf

,
IDFf

IDFe

s

simburstpe, fq “ minrBe

Bf

,
Bf

Be

s
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4.2.1.7 Additional Signals

In addition to the basic features listed above, we perform some experiments to

test the usefulness of additional signals of translation equivalence. Two such signals

are word prefix contextual similarity and word suffix contextual similarity. Prefix

contextual similarity is calculated in the same way as the contextual similarity score,

but we use source and target word stems, or word prefixes up to five characters long,

instead of full words. That is, the word prefix contextual similarity score for the

word pair (blanco, white) is the same as that of (blanca, white). In this particular

example, we collect only a single contextual vector for blanc{o,a}. In Spanish, this

translation of the English word white appears with either a masculine or feminine

ending, depending on what it modifies. By summing the distributional counts of

blanco and blanca, we expect a contextual vector that is more similar to English

white than either alone. We measure the similarity of a pair of prefixal contextual

vectors using cosine similarity, as before.

Suffix contextual similarity measure is similar to the word stem measure, except

instead of using word prefixes, it uses word suffixes of up to five characters long.

For example, the word stem contextual similarity score of the word pair (imposible,

possible) is the same as that of (posible, imposesible). With this signal, we expect to

sum over alternate word prefixes in the same way that the word stem signal sums over

alternate word suffixes. Again, the similarity between a pair of suffixal contextual

vectors is measured using cosine similarity.
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In addition to prefix and suffix contextual similarity, we also estimate prefix and

suffix topic and temporal similarity. We also use an indicator feature which is posi-

tive if the source and target words are the same string. Of course, this indicator is

most useful for languages written in the same script. Finally, we add a final feature

indicating the target translation’s monolingual frequency, which serves as a sort of

prior probability that the target word is of interest at all. Specifically, we define this

feature as the inverse of the log of the target word’s frequency.

Although we have limited our experiments to this set of varied signals of transla-

tion equivalence, our basic framework is easily extendible.

4.2.2 Orthogonality of Signals

In this section we seek to answer two questions about how the signals presented

in Section 4.2.1 interact. First, intuitively, the signals presented seem orthogonal.

That is, they provide very different types of information about how words are used

in language, and we hypothesize that the lists of ranked candidate translations under

each signal are uncorrelated with the exception (and hope!) that correct translation

pairs rank relatively high according to all or most of the signals. In our first set

of experiments, we measure their orthogonality empirically. Second, we hypothesize

that some signals tend to rank translation candidates more accurately than others.

For example, we would expect that the frequency signal is a weaker predictor than,

for example, orthographic similarity, particularly for closely related language pairs.
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In our second set of experiments, we compare the accuracies of each signal and include

analyses by language and by part-of-speech.

In order to empirically measure orthogonality of our signals, we measure pairwise

Spearman rank-order correlation coefficients. Specifically, we first use each signal sep-

arately to rank all translation candidates. Then, we measure the correlation between

all pairs of ranked lists using the Spearman coefficient. A correlation coefficient of

1.0 indicates perfect positive correlation, -1.0 indicates perfect negative correlation,

and coefficients close to zero indicate that our signals do not correlate.

For each of 24 languages,2 we randomly select 1, 000 source language words and use

each of our eight basic translation signals to rank all candidate English translations.

For each source language word and each pair of signals, we measure the Spearman

correlation coefficient. We average the pairwise results across the 1, 000 source words

and then average across languages.

Table 4.7 shows the results. The first thing to note is that the highest average

correlation coefficient is between the frequency and the inverse-document frequency

(IDF) signals (0.49). This makes sense because IDF is based on word frequency.

The second highest value corresponds to a negative correlation (-0.31) between or-

thographic similarity and wikipedia contextual similarity. These features are based

on entirely different information, and we would not expect them to have a positive

correlation. The fact that they are negatively correlated is surprising, but confirms

2We use the same set of 24 languages that we experiment with elsewhere in this chapter. The
languages are listed in Table 4.11.
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crawls-cont
wiki-cont -0.15 wiki-cont
temporal -0.14 -0.19 temporal
orth. -0.28 -0.31 -0.28 orth.
topic -0.15 -0.14 -0.13 -0.30 topic
freq. 0.01 0.13 0.02 -0.18 0.13 freq.
burst. -0.10 0.06 -0.07 0.06 0.11 0.28 burst.
idf 0.06 0.10 -0.12 -0.01 0.00 0.49 0.14

Table 4.7: Measure of the correlation (orthogonality) between signals. For each of 24
languages, we randomly select 1, 000 source language words and compute the Spear-
man rank correlation coefficient across pairwise ranked lists of translation candidates
generated by each of eight signals of translation equivalence. We average coefficients
within each language. The results here show the mean of the correlation coefficient
between all pairs of signals across the 24 languages.

our intuition that the signals provide orthogonal information.

The question of whether different signals tend to better predict the translations

of different source words or whether one or two signals always dominate remains.

Relatedly, it is possible that some signals are better able to predict the translations of

certain classes of words that others. For example, it may be true that the orthographic

and topic signals are better at predicting the translations of named entities than, for

example, the contextual signals, which may better predict the translations of closed

class words.

First, we ask how frequently each signal ranks the correct translation higher than

any other signal. That is, we ask how often each signal is a better predictor of how

to translate a given word than all other signals. We use the same set of randomly

selected 1, 000 source language words used to estimate rank correlations. For each,

we identify the rank of the correct English translation under each of the eight basic
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Language crawls-cont wiki-cont temporal orth. topic freq. burst. idf

Azeri 3.6 41.0 3.6 11.0 30.3 5.9 4.2 0.4
Bulgarian 5.1 27.0 3.1 17.0 42.2 4.3 0.6 0.8
Bengali 8.7 26.7 0.9 15.4 40.4 4.5 2.3 1.2
Bosnian 8.8 41.2 4.2 16.5 21.8 4.7 2.5 0.4
Cebuano 12.7 22.1 7.3 20.6 25.7 4.6 6.4 0.5
Welsh 11.0 55.6 3.2 9.6 11.1 8.0 1.2 0.4
Gujarati 9.4 33.9 5.3 8.6 31.8 4.3 3.9 2.9
Hindi 4.5 25.5 2.0 10.6 46.7 4.9 2.8 2.9
Hungarian 4.6 36.1 0.0 10.1 25.7 12.5 5.4 5.7
Indonesian 12.3 54.9 4.3 10.8 6.4 7.9 0.5 2.8
Latvian 5.4 41.6 4.8 18.6 23.1 5.0 1.3 0.3
Nepali 11.2 32.0 6.4 12.5 27.6 5.1 4.2 0.8
Romanian 5.7 39.3 1.5 35.0 9.6 5.4 2.7 0.8
Slovak 4.8 42.1 4.2 17.5 22.8 4.3 3.3 1.0
Somali 8.7 28.3 3.4 11.1 18.1 17.4 12.5 0.5
Albanian 7.2 47.8 3.1 21.9 11.0 6.0 3.0 0.1
Serbian 3.8 27.4 1.6 17.5 42.8 4.5 1.6 0.7
Swedish 4.3 45.0 2.1 22.3 10.7 11.1 2.5 2.1
Tamil 7.7 25.2 1.8 4.2 53.7 5.1 1.6 0.8
Telugu 6.6 29.4 5.8 10.2 39.9 3.1 3.4 1.6
Turkish 6.8 43.4 8.7 9.8 15.2 11.4 2.5 2.1
Ukrainian 7.2 35.1 4.0 24.0 17.0 6.9 3.6 2.2
Uzbek 7.4 6.6 0.5 20.1 41.0 15.1 7.4 1.9
Vietnamese 11.0 16.6 9.7 7.7 21.0 16.6 3.3 14.1

Average 7.4 34.3 3.8 15.1 26.5 7.4 3.4 2.0

Table 4.8: Percent of 1, 000 words for which each translation signal ranks a correct
translation highest, across 24 languages.

signals. We then measure how often each signal ranks the correct translation higher

than the other signals. As elsewhere in this chapter, we use the Mechanical Turk (see

Section 3.2.2) dictionaries as gold standards.

Table 4.8 shows the results. Although each signal is the most informative for at

least some source language words in all 24 languages, the following three dominate

most often: wikipedia contextual similarity, orthographic similarity, and topic sim-
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ilarity. Given this result, we ask a related question: are some signals particularly

informative for certain classes of words? In order to begin to answer this question, we

label each source word with the most frequent part-of-speech (POS) tag for its En-

glish translation using the tagger in the Natural Language Toolkit (NLTK).3 We use

the pre-trained sequential backoff tagger released with NLTK, which tags sequences

of English words with tags from the Penn Treebank (Marcus et al., 1993). However,

we do not tag word sequences but rather individual English words in our test set.

We use information from English because POS taggers are not readily accessible for

many of our languages of interest.

Given English POS tags projected onto each of our source language words, we

perform a similar analysis as before, but we now group source language words by

POS tag. Then, for each language and all words in each POS category, we count how

often each signal ranks a correct translation higher than all other signals. Table 4.9

shows the results. For clarity, we collapse some POS classes. For example, we mark

both noun and plural nouns as simply ‘Noun.’ Because there are so few word types,

we also collapse all closed class categories, including conjunctions, determiners, and

prepositions into a single ‘Closed’ category. In comparison with Table 4.8, results are

grouped by POS tag instead of by language. The final row is identical to that in Table

4.8. Because most (65%) words are nouns, the summary statistics are dominated by

them.

3http://www.nltk.org/

94

http://www.nltk.org/


CHAPTER 4. BILINGUAL LEXICON INDUCTION

POS Class % Words crawls-cont wiki-cont temporal orth. topic freq. burst. idf

Verb 10.9 8.9 34.0 4.6 7.3 31.1 9.1 2.9 2.1
Noun 64.8 7.0 36.7 3.5 17.4 23.7 7.0 2.9 1.9
Adverb 3.9 10.5 35.3 6.6 5.1 29.0 7.3 3.5 2.6
Adjective 13.3 6.2 34.4 3.1 19.0 27.3 5.5 3.1 1.4
Closed 7.1 9.4 28.4 5.3 6.6 36.8 5.4 7.0 1.1

Average 7.4 34.3 3.8 15.1 26.5 7.4 3.4 2.0

Table 4.9: Analysis of Signals by Part-of-Speech tag.

The results in Table 4.9 are very consistent across word classes with one no-

table exception. The orthographic feature makes very good translation predictions

for nouns and adjectives but not for the other word classes. This makes sense; we

would expect orthographic similarity to be informative for borrowed and transliter-

ated words, which tend to be nouns. The overall consistency suggests that there is

likely little to gain from training word class-specific models for making translation

predictions. In Section 4.2.3, we define a baseline method for combining the orthog-

onal features to make a single translation prediction, and in Section 4.2.4 we learn

models for combining features.

4.2.3 Individual Monolingual Signals

The features that we use to identify word translations are based on the signals

described above, and similarity scores are estimated over two source of comparable

corpora, web crawls and Wikipedia (see Section 3.3 for a detailed description of each

dataset):
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1. Web Crawls Contextual Similarity

2. Web Crawls Temporal Similarity

3. Orthographic Similarity

4. Wikipedia Contextual Similarity

5. Wikipedia Topic Similarity

6. Wikipedia Frequency Similarity

7. Wikipedia IDF Similarity

8. Wikipedia Burstiness Similarity

9. Web Crawls Prefix Contextual Similarity

10. Web Crawls Prefix Temporal Similarity

11. Web Crawls Suffix Contextual Similarity

12. Web Crawls Suffix Temporal Similarity

13. Wikipedia Prefix Contextual Similarity

14. Wikipedia Prefix Topical Similarity

15. Wikipedia Suffix Contextual Similarity

16. Wikipedia Suffix Topical Similarity
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17. String Identity

18. Inverse Log of Target Wikipedia Frequency

Table 4.10 shows examples of Romanian words paired with several English words,

both correct and incorrect, and scored with all 18 features.

It’s intuitive that combining these orthogonal measures would improve perfor-

mance on bilingual lexicon induction, and Schafer (2006) showed that to be true. We

define our baseline for combining our set of monolingual signals, H, to be the mean

reciprocal rank (MRR) across all features:

MRRe “
ř

hPH
1

rhpeq
|H|

where rhpeq is the rank of English word e under the monolingual similarity measure

h. This unsupervised approach to rank aggregation assumes no prior knowledge of

which signals are likely to be the most informative.

We measure performance using accuracy in the top-k ranked translations. We

define top-k accuracy over some set of ranked lists L as follows:

acck “
ř

lPL Ilk
|L|

where Ilk is an indicator function that is 1 if and only if a correct item is included in

the top-k elements of list l. That is, top-k accuracy is the proportion of ranked lists

in a set of ranked lists for which a correct item is included in the highest k ranked
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CHAPTER 4. BILINGUAL LEXICON INDUCTION

elements.

Figure 4.3 shows the performance of each of the monolingual similarity measures

alone as well as the baseline MRR method for combining them. Each box-and-whisker

plot shows the top-10 accuracy range, quartiles, and median across a set of 24 diverse

languages (listed in Figure 4.11). The Wikipedia topic and context features using

whole words and word prefixes are the highest performing single features. More

importantly, Figure 4.3 shows that even using the simple MRR method of combining

signals is more effective than using any single feature. This result motivates our

approach to using supervision to learn how to optimally combine these orthogonal

signals and output a more accurate ranking.

4.2.4 Learning to combine orthogonal monolingual

signals

We use a supervised approach to combining the monolingual signals enumerated

above. For each language, we choose up to 10, 000 source language words among those

that occur in each of our comparable corpora (web crawls and wikipedia) at least ten

times and that have at least one translation in our gold standard dictionaries. In

this chapter, in order to keep our experiments consistent across languages, we use

the Mechanical Turk (see Section 3.2.2) dictionaries as gold standards. Because some

monolingual datasets and some dictionaries are small, the source word samples are
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Figure 4.3: Performance using each of the 18 features separately to rerank translation
candidates as well as our baseline method for combining them, which uses the simple
mean reciprocal rank across all features. Box and whisker plots depict the distribution
of performance across a set of 24 languages. The three lines in each box illustrate the
first, second (median), and third quartiles. Outliers (defined as being more than 1.5
times the interquartile range away from either quartile) are shown with circles. The
whiskers show non-outlier minimum and maximum values.
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CHAPTER 4. BILINGUAL LEXICON INDUCTION

smaller than 10, 000 for some languages. For example, although our MTurk dictionary

contains translations for 9, 977 Gujarati words, only 4, 442 of those words appear at

least ten times in both of our monolingual corpora. We randomly divide the source

language words into three equally sized sets for training, development, and testing.

We learn binary classifiers to predict whether a pair of words are translations of

one another or not. The translations in our training data serve as positive training

examples. The negative training examples are constructed by randomly pairing source

language words in the training data with English words.4 We use our development

data to set the number of negative examples positive example. Using three negative

examples for each positive example optimized performance on the development set. At

test time, after scoring all source language words in the test set paired with all English

words in our candidate set,5 we rank the English candidates by their classification

scores and evaluate accuracy in the top-k translations.

We use the fast, online learner implemented in the Vowpal Wabbit package (Agar-

wal et al., 2014) to estimate the parameters of our log-linear classifiers.6 VW uses

a gradient descent-based algorithm for learning binary predictors, and we perform

100 learning passes over the training data. Although our current feature space is

4Among those that appear at least ten times in our monolingual data, consistent with our can-
didate set.

5All English words appearing at least three times in our monolingual data. In practice, we further
limit the set to those that occur in the top-1000 ranked list according to at least one of our signals.
Because words outside of these top-1000 lists are extremely unlikely to end up with a relatively high
prediction score, doing so does not impact our performance but speeds up the prediction step.

6We use http://hunch.net/~vw/ version 6.1.4, and run it with the following arguments that
affect how updates are made in learning: –exact adaptive norm –power t 0.5
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CHAPTER 4. BILINGUAL LEXICON INDUCTION

somewhat small, in future work we plan to scale up learning to take advantage of, for

example, full context vectors, and VW will be well-suited to learn over very large fea-

ture spaces. We train classifiers separately for each source language, and the learned

weights vary based on, for example, corpora size and the relatedness of the source

language and English (i.e. the number of cognates). Although the scale of feature

values varies somewhat (e.g. frequency difference can be greater than 1), making it

difficult to interpret feature weights, we compared feature weights and found that the

highest weighted feature for 19 languages is the Wikipedia topic similarity feature,

and the highest for 5 languages is the Wikipedia context feature. These results are

consistent with what we saw comparing the performance of individual features in

Figure 4.3.

4.3 Experiments

For each source language, we use our trained models to induce translations for

each source language word in our test sets, and we do evaluation against our gold

standard bilingual dictionaries. We rank English translations by their translation

classification score and measure percent accuracy in the top-k. This measure is some-

what conservative since the dictionaries aren’t expected to be exhaustive, meaning

that some target language translations for a given source language word won’t appear

in the dictionary and the system won’t be given credit for ranking these target items
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CHAPTER 4. BILINGUAL LEXICON INDUCTION

high in its translation list. This is particularly true here because we have used the

MTurk dictionaries, which are somewhat noisy. However, in these experiments, we

only evaluate on words that do appear in our bilingual dictionary. It’s possible that

such words are easier to translate than, say, a given OOV word in some sentence

which we wish to translate. The results presented in this section are on the held-out

blind test sets described above.

4.3.1 Comparison with Unsupervised Baseline

Table 4.11 shows the top-10 bilingual lexicon induction accuracy results for each

language using the baseline model as well as the supervised discriminative models.7

Figure 4.4 shows the same top-10 accuracies, sorted by performance. Finally, Fig-

ure 4.5 shows summary box-and-whisker plots for both the MRR baseline and our

proposed supervised model. It’s clear that the supervised method outperforms the

baseline by a large margin for all 24 languages. Results using the supervised mod-

els vary from 11% accuracy on Uzbek to 57% accuracy on Bulgarian. The average

accuracy across languages using the MRR baseline is 15.8% and using a supervised

approach is 34.2%, or greater than twice the average baseline accuracy.

7Performance is different from that reported in Irvine and Callison-Burch (2013b) because, here,
we have done additional quality control and cleaning over our MTurk dictionaries, which we use for
training and evaluation, as described in 3.2.2. Our feature set is also slightly different, including, for
example, the burstiness feature, which was not a part of our original feature set presented in Irvine
and Callison-Burch (2013b).
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Figure 4.4: Top-10 bilingual lexicon induction accuracy of the baseline MRR approach
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4.3.2 Analysis by Word Frequency

Figure 4.6 presents results on the same set of experiments, but bins source lan-

guage words by their Wikipdia corpus frequency.8 We binned the words in each

evaluation test set by frequency, and each bin contains 100 source language words.

That is, the most frequent 100 source language words were put in the first bin, and

the least frequent were put into the last bin. The horizontal axis in each figure plots

the average corpus frequency of the words in a given bin versus the percent of those

source language words that have a correct translation in the top-k ranked list of

translations.

The results in Figure 4.6 are presented starting with the language with the least

amount of Wikipedia data (Somali) and ending with the language with the largest

amount (Swedish), among those languages for which results are presented. Corpus

frequencies for even the most frequent words in the first few source languages are very

small. For example, the average frequency of the 100 most frequent Somali words is

only 13.

Prior work on bilingual lexicon induction has focused on identifying translations

for frequent words. In general, our monolingual signals are stronger for those words

that appear frequently in monolingual corpora than for those words that appear less

frequently and have sparse context and temporal counts. Therefore, we hypothesized

8Because the features estimated over the Wikipedia corpora are much stronger than those esti-
mated over the web crawls, we find the analysis over Wikipedia frequency to be more meaningful
than combining word frequencies across corpora.
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that translation accuracy would be higher for frequent words than for less frequent

words, resulting in accuracies that go up from left to right, or from lower frequency

to higher frequency, in the figures. Figure 4.6 shows that this effect holds true, but

it is not as strong as we expected.

To quantify the effects of frequency, we compute the Spearman rank-order cor-

relation coefficient between the frequency rank of a given source word and the rank

of its correct translation.9 Across all languages, we find a slightly positive average

correlation on average, 0.08, indicating that, as we expected, more frequency words

tend to have higher ranked correct translations. This effect is significant to a p-value

of 0.01 for 14 of the 24 languages,10 however the correlation is not as large as we

expected. In Section 4.3.3 we do a similar analysis based on burstiness.

4.3.3 Analysis by Word Burstiness

Figure 4.7 presents results again on the same set of experiments but bins source

language words by their Wikipedia corpus burstiness. We use the burstiness definition

(Bw, not IDFw) given in Section 4.2.1.6. As we did for the word frequency analysis,

we bin the words in each evaluation set by burstiness, with each bin containing 100

source words. That is, the 100 most bursty source language words were put in the

9Although we have integer-valued frequency information, our comparison variable only contains
ranks, so we convert frequency to an ordinal variable by ranking the words in each test set by their
Wikipedia monolingual frequencies, from highest to lowest.

10Bosnian, Cebuano, Somali, Nepali, Gujarati, Bengali, Latvian, Indonesian, Welsh, Tamil, Turk-
ish, Telugu, Hungarian, Swedish
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(d) Gujarati
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(k) Telugu
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(l) Tamil
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Figure 4.6: Bilingual lexicon induction as a function of source word frequency in
Wikipedia monolingual data. Among the languages shown, we have the least mono-
lingual data for Somali and the most for Swedish.
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first bin, and the least bursty were put into the last bin. The horizontal axis in each

figure plots the average burstiness of the words in a given bin versus the percent of

those source language words that have a correct translation in the top-k ranked list

of translations.

We hypothesized that it may be easier to induce translations for bursty words than

for non-bursty words because their temporal and topic signatures are very peaked.

The results in Figure 4.7 confirm this. Again, without binning by burstiness, we

compute the Spearman rank-order correlation coefficient between the rank of a given

word’s burstiness and the rank of its correct translation. Across all languages, we

find a positive average correlation on average, 0.25, indicating that, as we expected,

we tend to rank correct translations higher for more bursty words. This effect is

significant to a p-value of 0.01 for all 24 languages. Comparing our results here

with those in Section 4.3.2, we see that burstiness is a better indicator of ranking

performance on a given word than frequency.

4.3.4 Analysis by Amount of Monolingual Data

Figure 4.8 plots the average top-10 and top-100 accuracies versus the total amount

of monolingual data (web crawls and Wikipedia; amounts given separately in Table

B.3 in Appendix B) for each of the 24 languages. In general, an increase in mono-

lingual data seems to improve accuracy. The correlation is not perfect, however.

For example, performance on Turkish and Vietnamese is relatively poor despite the
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Figure 4.7: Bilingual lexicon induction as a function of source word burstiness in
Wikipedia monolingual data.
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Figure 4.8: Total size of source language comparable corpora (Wikipedia and web
crawls) in millions versus top-10 bilingual lexicon induction accuracy.

relatively large amount of monolingual data available for each.

4.4 Learning Curve Analyses

4.4.1 Translated Word Pairs

Figure 4.9 shows learning curves over the number of positive training instances for

each source language. In all cases, the number of randomly generated negative train-

ing instances is three times the number of positive. For all languages, performance is

stable after about 300 correct translations are used for training. This shows that our

supervised method for combining signals requires only a small training dictionary. In

most cases, for a new language, a dictionary of this size could be mined from the

Internet or created using crowdsourcing (Irvine and Klementiev, 2010).
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Figure 4.9: Learning curves over number of positive training instances, up to 1,000.
For some languages, 1,000 positive training instances are not available. In all cases,
the number of negative training instances is three times the number of positive. For
all languages, performance is fairly stable after about 300 positive training instances.
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4.4.2 Monolingual Data

Given the results presented in Section 4.3, one remaining question that we may

want to answer is the following: How much monolingual data would we need to

ensure high quality induced bilingual lexicons? Or, put slightly differently, do our

experiments show any signs of bilingual lexicon induction performance leveling off

after a certain amount of monolingual data is available? If so, any further performance

gains would have to be made by improving our techniques instead of, for example,

expanding our web crawls to additional websites. These are important considerations

as we move to integrating induced translations into end-to-end SMT.

Figure 4.10 shows bilingual lexicon induction learning curves for four languages,

Gujarati, Albanian, Azeri, and Tamil. Top 1, top 10, and top 100 accuracies are plot-

ted on the y-axis for each language, and the x-axis shows the amount of monolingual

data used to score and rank translation candidates. We generated the learning curves

by sampling the web crawl and wikipedia monolingual corpora at the same rate. The

total amount of monolingual data available for Gujarati is about 5 million words, and

it is about 11 million for Azeri, 13 million for Tamil, and 15 million for Albanian.

Performance levels off after about half of the Azeri and Tamil data and one third

of the Albanian data are used. This corresponds to about 5 million words. For

Gujarati, performance increases rapidly up to the full amount of 5 million monolingual

words. These results indicate that we need at least a few million words of comparable

corpora to achieve good performance, and using more monolingual data does not
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harm performance.

4.5 Learning Models Across Languages

The results in Section 4.4.1 showed that we only need a few hundred pairs of

translated words to learn a high-performing discriminative model for inducing word

translations. Although we expect that this amount of data could be quickly gathered

for any language pair of interest, this assumption may not always hold. It may be de-

sirable then to use a model trained on data for another language pair. For example, if

we were unable to obtain the few hundred Gujarati-English word translations needed

to achieve high bilingual lexicon induction performance, we may use the classification

model trained on Hindi data, which is a closely related language. Here, we present

experiments using a model trained on data from one language pair to induce transla-

tions for another language pair. That is, for example, we test the effectiveness of the

discriminative model weights that we learned using Hindi-English data to score and

rerank hypothesis Gujarati-English translations, for example. Note that we only use

the learned discriminative weights across languages (one for each feature); in all cases,

we estimate the feature values themselves using same-language comparable corpora.

In our example, we estimate feature values for pairs of Gujarati and English words

using Gujarati-English comparable corpora, but then we use the weights learned over

our Hindi training data to combine the features in order to predict Gujarati trans-
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Figure 4.10: Bilingual lexicon induction learning curves over varying comparable
corpora sizes for (a) Gujarati, (b) Albanian, (c) Azeri, and (d) Tamil. The x-axis is
shown on a log scale.
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lations. In all experiments, we use the same set of 18 features described in Section

4.2.3.11

Interestingly, we find that the weight vectors obtained from other languages often

result in higher test set performance than those obtained on that languages’s develop-

ment set. Table 4.12 shows the results for 20 language pairs. Results on the diagonal

are identical to those presented in Table 4.11. Test set languages are listed in each

row and columns indicate the trained model used to make predictions. For 6 of the

20 languages (Telugu, Tamil, Indonesian, Bulgarian, Romanian, Vietnamese), using

the model trained on that language’s training data performs better than using any

of the 19 models trained using data in another language. These six languages are

mostly relatively high resource languages, for which we have large comparable cor-

pora. Interestingly, of the remaining 14 languages, for half (Nepali, Welsh, Bengali,

Albanian, Azeri, Bosnian, Turkish) we see the highest performance on the test set

when we make predictions using the model trained on Indonesian data. There do not

seem to be any trends that correspond to language relatedness. In most cases, models

trained on languages for which there is more comparable corpora available than there

is for the test language tend to perform better. This is not an intuitive result because,

at test time, features are computed over the test language’s comparable corpora.

In general, Figure 4.12 shows that there is little variance in performance when we

vary the model used to make predictions at test time. That is, the weights that we

11Our contextual similarity feature is also dependent on having access to a bilingual dictionary
for contextual vector projection. We ignore this here in order to keep results comparable to those
presented in Section 4.3.
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learn for our 18 features do not vary tremendously across the training datasets for

different languages. This is an important finding as it suggests that, even if we do not

have access to any example word translations for a given language pair, we may use

a model trained on translations and comparable corpora from an alternate language

pair to make high quality predictions.

4.6 Comparison with Prior Work

We compare our discriminative bilingual lexicon induction approach with the pop-

ular generative model presented in Haghighi et al. (2008). Haghighi et al. (2008)

presents a canonical correlation analysis (CCA) based approach to inducing bilingual

lexicons. The generative model presented in that work first generates a set of one-to-

one matchings, M , between pairs of source and target words. Then, a feature vector

is generated for each matched word type, si and tj, from a ‘language-independent

concept,’ zi,j. Similar to our work, source and target words are represented by fea-

ture vectors characterizing their orthographies and contexts in monolingual corpora.

However, unlike our work, the generative model proposed in Haghighi et al. (2008)

allows neither source nor target word types to have multiple translations. Inference

is done through boostrapped EM; the best CCA parameters, θ, are computed in the

M-step, and the maximum weighted bipartite matching is found in the E-step using

the Hungarian algorithm. In the first iteration, an initial lexicon is used to seed
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the E-step, and in additional EM iterations, an increasing number of high-confidence

matchings are included until a complete bipartite matching is identified. The ap-

proach is referred to as matching canonical correlation analysis (MCCA).

In the original paper, Haghighi et al. (2008) presents results on several language

pairs. However, evaluation is only done over nouns, which is a bursty word class,

and lexicons are limited to high-frequency words. As we showed in Sections 4.3.2 and

4.3.3, frequent and bursty words tend to be the easiest to translate accurately.

Using code released by Haghighi et al. (2008), we directly compare our system

with the MCCA approach. We present experiments on the Spanish-English language

pair, taking monolingual corpora from our Wikipedia collection and bilingual lexicons

from our MTurk dictionary. We randomly sample about 6, 000 Wikipedia page pairs,

which contain about 5 million words of text in both languages. This amount of

monolingual data is comparable to what was used in the experiments presented in

Haghighi et al. (2008). We identify a bilingual dictionary of 1, 100 word translation

pairs in the MTurk dictionary for which both the source and target lexicons are unique

and all words appear in monolingual corpora greater than ten times. We randomly

select 100 word pairs to serve as a seed lexicon in the MCCA approach and as training

data in our discriminative approach, and we use the remaining 1, 000 word pairs as

an evaluation set.

We use the standard learning parameters in the MCCA code released by Haghighi

et al. (2008), which include ten iterations of bootstrapped EM and a context window of
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size four. The MCCA model uses both orthographic features and contextual features

estimated over the Wikipedia monolingual corpora. We use MCCA to compute a

full bipartite matching and measure accuracy over the complete test set of 1, 000

translation pairs.

We use the seed lexicon of 100 word pairs to train our supervised discriminative

model. As before, we randomly select three times as many negative examples for

training. We then use the learned model to score all words in the source test lexicon

paired with all words in the target test lexicon. In order to make our results com-

parable, we follow Haghighi et al. (2008) and use the Hungarian algorithm (Kuhn,

1955) to find the best set of one-to-one bipartite matchings across the source and

target lexicons, maximizing the total score across all matchings. We measure the

performance of our discriminative model using, like Haghighi et al. (2008), only or-

thographic and contextual features. Then, we also measure performance when we

add our topic, frequency, and burstiness similarity features to the model.

Table 4.13 shows the performance of each bilingual lexicon induction model. The

MCCA approach correctly matches 15% of the 1, 000 test set pairs. Our discriminative

approach using only orthographic and contextual similarity features correctly matches

24%. When we add our full feature set, our model achieves 42% accuracy. These

results demonstrate that our discriminative model needs no more training data than

is needed to seed a generative model like the one presented in Haghighi et al. (2008).

This is consistent with our results in Section 4.4.1, where we showed that our models
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can achieve high accuracies on the bilingual lexicon induction task using only small

amounts of supervision.

In addition to our discriminative model outperforming the MCCA generative

model on the matching task, it has the added advantage of not being restricted to

predicting 1:1 word translations. This is critical as, even for closely related language

pairs, many words do not have a one-to-one correspondence across languages. One

example from the domain adaptation setting is the French word enceinte. In medical

contexts, it translates as pregnant in English, but in government contexts it translates

as place, house, or chamber and in scientific contexts is translates most frequently as

enclosures. We would not want to restrict models of bilingual lexicon induction to

choosing only one sense, or one translation, for French enceinte. That is, the poly-

semy of words varies across languages and it is important to be able to account for

this in any model of bilingual lexicon induction.

4.7 Conclusions

On average, we observe gains of greater than 100% over an unsupervised rank-

combination baseline by using a seed bilingual dictionary and a diverse set of mono-

lingual signals to train a supervised classifier. Using supervision for bilingual lexicon

induction makes sense. In some cases a dictionary is already assumed for computing

contextual similarity, and, in the remaining cases, one could be compiled, for exam-
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ple through crowdsourcing (Irvine and Klementiev, 2010; Callison-Burch and Dredze,

2010; Pavlick et al., 2014). Our supervised framework has the additional advantage

that any new monolingually-derived similarity metrics can easily be added as new

features.

Our experiments showed that we only need a few hundred example translations

to learn a high quality model of bilingual lexicon induction. Additionally, we showed

that even in the case that this small amount of supervision is not available, we can

effectively use a model trained on a different language pair to induce translations. We

have also observed that translating less frequent and less bursty words is harder than

translating more frequent, more bursty words. We found that using more monolin-

gual data does not hurt performance, but high quality lexicons can be induced with

just a few million words of comparable corpora. These findings inform our machine

translation experiments, which follow in Chapters 6 and 8.

In Chapter 5, we expand the ideas presented in this chapter to score pairs of

phrases, in addition to pairs of unigrams. This allows us to score all phrase pairs

found in a phrase-based statistical machine translation phrase table and, in theory,

induce phrasal translations in addition to unigram translations. Doing so introduces

lots of new challenges because there are many more phrases than word types and

because phrase counts are sparser than word counts. These challenges are explored

in detail in Chapter 7.
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MRR Supervised Absolute % Relative
Language Baseline Model Improvement Improvement
Vietnamese 2.5 7.9 5.4 216.0
Uzbek 4.3 10.8 6.5 151.2
Somali 9.1 18.1 9.0 98.9
Turkish 9.0 22.5 13.5 150.0
Hungarian 8.1 22.6 14.5 179.0
Nepali 11.0 22.8 11.8 107.3
Azeri 10.7 25.6 14.9 139.3
Cebuano 12.3 28.3 16.0 130.1
Indonesian 17.4 32.0 14.6 83.9
Swedish 15.4 32.6 17.2 111.7
Slovak 13.6 36.6 23.0 169.1
Bengali 19.6 37.4 17.8 90.8
Ukrainian 13.6 37.7 24.1 177.2
Tamil 17.1 37.9 20.8 121.6
Latvian 16.6 38.5 21.9 131.9
Albanian 19.4 39.6 20.2 104.1
Telugu 25.7 41.0 15.3 59.5
Bosnian 19.0 43.1 24.1 126.8
Hindi 25.9 43.4 17.5 67.6
Welsh 14.5 44.4 29.9 206.2
Gujarati 33.3 45.3 12.0 36.0
Serbian 18.8 47.2 28.4 151.1
Romanian 17.3 47.6 30.3 175.1
Bulgarian 26.0 56.9 30.9 118.8
Average 15.8 34.2 18.3 129.7

Table 4.11: Top-10 Accuracy on test set. Performance increases for all languages mov-
ing from the baseline (MRR Baseline) to discriminative training (Supervised Model).
The average accuracy across languages using the MRR baseline is 15.8 and using our
supervised approach is 34.2.
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Model Accuracy (%)
MCCA 15.1
Discriminative Model w/ Context and Orth. Features Only 24.3
Discriminative Model w/ All Features 42.3

Table 4.13: Comparison of bilingual lexicon induction accuracies using (1) matching
canonical correlation analysis (MCCA), (2) our supervised discriminative model us-
ing only contextual and orthographic features, and (3) our supervised discriminative
model using our complete feature set. Accuracy is measured as the percent of test
set translations that are correctly matched by each model’s full bipartite matching.
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Chapter 5

Monolingual Phrase Table Scoring

In this chapter, we begin with the idealization that a set of hypothesis phrase

pairs is given, and we use comparable corpora to score this existing phrase table.

We define features over phrase pairs that are based on comparable corpora and are

similar to those proposed for unigrams in Chapter 4. Then, we present SMT ex-

periments where we replace the standard bilingually estimated feature set with new

features estimated over comparable corpora. We examine the degradation in trans-

lation performance when bilingually estimated translation probabilities are removed,

and show that more than 50% of the loss can be recovered with our proposed feature

set. We further show that our monolingual features add 1.5 BLEU points when com-

bined with standard bilingually estimated phrase table features. Much of the work in

this chapter was published in Klementiev et al. (2012). In Klementiev et al. (2012)

we also propose a novel algorithm for estimating a lexicalized reordering model from
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comparable corpora. However, here and in the rest of this thesis, we only focus on

lexical choice, not reordering.

5.1 Phrase Table Scoring

Here we extend the feature set defined for words in Chapter 4 to phrases. We use

the following signals of translation equivalence for phrase pairs:

1. Web Crawls Contextual Similarity

2. Web Crawls Temporal Similarity

3. Wikipedia Contextual Similarity

4. Wikipedia Topic Similarity

5. Orthographic Similarity

For each phrase pair in our set, we measure phrasal contextual, temporal, and topic

similarity and lexical contextual, temporal, topic, and orthographic similarity.

5.1.1 Phrasal Features

We estimate phrasal features exactly as we did for word pairs. That is, we gather

contextual, temporal, and topic vectors for each source and target phrase in our set

of phrase pairs using the corresponding side of our comparable corpora. Phrasal
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temporal and topic vector signatures are M -dimensional, where M is the number of

days or topics in our corpus, and each element contains counts of the number of times

the given phrase appeared in the data associated with each date or topic. As we

did for words, we normalize temporal and topic signatures by dividing each count by

the total count, and, again, we use cosine similarity to compare pairs of normalized

vectors:

simtemppF,Eq “ F ¨ E
||F ||||E|| ,

where F and E are source and target language phrase temporal or topic signatures,

respectively.

We also estimate phrasal contextual similarity. Contextual vectors are collected

as before: we identify each appearance of source phrase f and target phrase e in our

comparable corpora and collect counts of the words that appear in the context of each

phrase. That is, although we collect contextual vectors for phrases, each component

of the vectors corresponds to how often a particular unigram appears in its context.

We do not collect counts of phrases that appear in the context of f and e because

their counts are generally very sparse. As with words, we compute the value of the

k-th component of f ’s contextual vector, fk as follows:

fk “ nf,k ˚ plogpn{nkq ` 1q

where nf,k and nk are the number of times sk appears in the context of f and in
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the entire corpus, and n is the maximum number of occurrences of any word in the

data. We project each component of the source language contextual vectors into the

English vector space and then use cosine similarity to compare contextual vectors.

Because the word order internal to a phrase may vary across its translations,

phrasal orthographic similarity is unlikely to be informative. For example, English

artificial intelligence translates into Spanish as inteligencia artificial. Although the

phrase pair contains two pairs of cognates with strong orthographic similarity, because

their word order is opposite, measuring orthographic similarity on the phrase pair

directly would not be effective without additional modeling of movement.

5.1.2 Lexical Features

We compute not only phrasal features but also lexical similarity features for each

phrase pair. Our lexical equivalents of the phrase-level similarity scores are based

on the similarity of individual words within the phrases. To compute these lexical

similarity features, we average similarity scores over all pairs of words in the two

phrases. For example, for the phrase pair the artificial intelligence and la inteligencia

artificial, we compute the average similarity between all nine word pairs. By averaging

over all word pairs, we avoid propagating word alignment errors while also effectively

penalizing unaligned words. In many cases, we observed that, because individual

words are more frequent than multiword phrases, the accuracy of the lexical features

is higher than their phrasal equivalents. We compute lexical features for all of the
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signals enumerated above: contextual, temporal, topic, and orthographic.

5.2 Experiments with An Existing Phrase

Table

We use the Spanish-English (high resource) and Urdu-English (low resource) lan-

guage pairs to test our method for estimating translation phrase table features from

comparable corpora. This allows us to compare our method against the normal bilin-

gual training procedure. We expect bilingual training to result in higher translation

quality because it is a more direct method for learning translation probabilities. After

removing bilingually estimated translation features, our goal is to recover as much of

the loss as possible using features estimated over comparable corpora.

For both language pairs we begin with phrase-based SMT models trained using

the Moses framework (Koehn et al., 2007). With the exception of maximum phrase

length, which is set to 3 in our Spanish experiments, we use default values for all

of the parameters. We learn lexicalized reordering models from the parallel training

corpora and use them in all experiments.1

For Spanish, we use the full Europarl v5 parallel training corpus (Koehn, 2005).

Our Spanish experiments use a trigram language model trained on the English side

1In Klementiev et al. (2012), we present a method for also estimating a lexicalized reordering
model from comparable corpora.
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Europarl Gigaword Wikipedia
date range 4/96-10/09 5/94-12/08 n/a
shared dates 829 5,249 n/a
es articles n/a 3,727,954 59,463
en articles n/a 4,862,876 59,463
es lines 1,307,339 22,862,835 2,598,269
en lines 1,307,339 67,341,030 3,630,041
es words 28,248,930 774,813,847 39,738,084
en words 27,335,006 1,827,065,374 61,656,646

Table 5.1: Monolingual training data statistics for Spanish-English phrase table fea-
ture replacement experiments.

of the Europarl corpus using SRILM with Kneser-Ney smoothing. We tune feature

weights (rerunning tuning for all experiments) using minimum error rate training

(MERT) and a development bitext of 2,553 sentence pairs. We use the development

and test data distributed in WMT shared task (Callison-Burch et al., 2010).2 The

Spanish test set is translated newswire articles consisting of 2,525 single-reference

sentence pairs.

We use the Urdu training/development/test corpora released by Post et al. (2012)

(more details on this dataset are given in Chapter 6). Following that work, in our

Urdu experiments we use a 5-gram language model trained on the English side of

the training corpus. For each Urdu experiment, we rerun tuning using batch MIRA

(Cherry and Foster, 2012).

In our Spanish-English experiments, we compare the effect of estimating the pa-

rameters of our model from two sets of comparable corpora, detailed in Table 5.1:

2Specifcally, news-test2008 plus news-syscomb2009 for dev and newstest2009 for test.
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Spanish-English phrase table Urdu-English phrase table
Phrase pairs 3, 093, 228 1, 529, 084
Foreign phrases 89, 386 478, 943
English phrases 926, 138 579, 944
Foreign Unigrams 13, 216 32, 198
Average # translations 98.7 7.7
Foreign Bigrams 41, 426 63, 373
Average # translations 31.9 4.3
Foreign Trigrams 34, 744 89, 867
Average # translations 13.5 3.1

Table 5.2: Statistics about the Spanish-English and Urdu-English phrase tables used
in feature replacement experiments. The numbers of unique unigrams, bigrams, and
trigrams are given for each language along with the average number of translations
for each.

‚ First, we treat the two sides of the Europarl parallel corpus as a comparable

corpus, where the contextual and temporal distributions of phrases are very

similar across languages.3

‚ Next, we estimate the features from truly comparable, non-parallel corpora. To

estimate the contextual and temporal similarity features, we use the Spanish

and English Gigaword corpora.4 These corpora are substantially larger than

the Europarl corpus, providing 27x as much Spanish and 67x as much English

for contextual similarity, and 6x as many paired dates for temporal similarity.

Topical similarity is estimated using Spanish and English Wikipedia articles

that are paired with inter-language links.

3Haghighi et al. (2008) also used this method to show how well translations could be learned
from monolingual corpora under ideal conditions, where the contextual and temporal distribution
of words in the two monolingual corpora are practically identical.

4We use the Agence France-Presse (afp), Associated Press Worldstream (apw), and Xinhua News
Agency (xin) sections of the corpus.
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To project context vectors from Spanish to English, we use our electronic Spanish-

English bilingual dictionary (see Table B.2 in Appendix B). The context vectors for

words and phrases incorporate co-occurrence counts using a two-word window on

either side.

In our Urdu experiments, we only measure the effect of using truly monolingual

datasets to estimate feature values. In particular, we use the news crawl (286 million

words of Urdu) and Wikipedia (3.2 million words of Urdu) datasets that we described

in Section 3.3.

Across all of our experiments, we keep our sets of phrase pairs consistent. The

Spanish phrase table contains over 3 million phrase pairs extracted from the word-

aligned parallel Europarl corpus, and the Urdu table contains about 1.5 million phrase

pairs. We maintain the phrase pairs but drop their associated translation scores and

then estimate replacement similarity scores over comparable corpora. The set of

possible translations is constrained for each source phrase and therefore is likely to

contain good translations. However, the average number of possible translations is

high, especially for Spanish where they range from nearly 100 translations for each

unigram to 14 for each trigram. For Urdu, because the training data is smaller, the

average number of translations is smaller, ranging from 8 for each unigram to 3 for

each trigram. Table 5.1 gives some data statistics about the set of phrase pairs for

both source languages. The phrase tables contain a lot of noise, which results in poor

end-to-end translation quality without good estimates of the translation quality of
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Figure 5.1: Spanish-English results replacing bilingually estimated phrase table fea-
tures with monolingually estimated features. Much of the loss in BLEU score when
bilingually estimated features are removed from a Spanish-English translation system
(Experiment 2) can be recovered when they are replaced with monolingual equivalents
estimated from Europarl data (Experiments 3-6; ‘CC’ refers to features estimated over
comparable corpora). The second chart shows the performance of monolingual fea-
tures derived from non-parallel comparable corpora. Over 56% of the BLEU score
loss can be recovered (Experiment 12). When we use both bilingually and monolin-
gually estimated features (Experiments 7 and 13), BLEU scores improve by over one
point.

each phrase pair, as Section 5.2.1 shows.
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Figure 5.2: Urdu-English results replacing bilingually estimated phrase table features
with monolingually estimated features. For Urdu, over 36% of the loss in BLEU
score when bilingually estimated features are removed can be recovered when they
are replaced with monolingual equivalents estimated from comparable corpora (Ex-
periment 7). When we use both bilingually and monolingually estimated features
(Experiments 8), the BLEU score improves by over half a point.

5.2.1 Results

5.2.1.1 Ablation Experiments

Figure 5.1 shows the results of our Spanish experiments and Figure 5.2 shows the

results of our Urdu experiments. Our standard SMT model for Spanish achieves a

BLEU score of 21.87, and our standard model for Urdu achieves a BLEU score of

20.39. When we remove phrase table features from each, the Spanish and Urdu BLEU

scores drop 9 points to to 12.86 and 8 points to 12.32, respectively.

Spanish Experiments 3-6 show how much our proposed features can help the

model recover when they are estimated over the Europarl training corpus, treating

the two sides as a comparable corpus. Of the temporal, orthographic, and contextual

features, the temporal feature performs the best. Together (Experiment 6, ‘All CC’),
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they recover more than each individually, yielding a total gain of 4 BLEU points.

Spanish Experiments 8-12 estimate each of the features from non-parallel compa-

rable corpora. Remarkably, estimating our new features over the non-parallel corpora

(Experiment 12) performs better than estimating features over the parallel corpus itself

(Experiment 6). Using all of the features estimated over the Gigaword and Wikipedia

corpora yields a total gain of over 5 BLEU points, or about 56% of the BLEU point

loss that occurred when we dropped all of the original translation features. Much of

this gain is due to the topic similarity feature, which we estimate using Wikipedia

but for which we have no equivalent Europarl feature.

For Urdu, Experiments 3-7 show how using features estimated over monolingual

data can help recover some of the loss incurred when we remove all features (Exper-

iment 2). The context and topic features alone help more than either the temporal

or orthographic feature. Using all four new feature types, we regain about 3 BLEU

points, or about 36% of the BLEU point loss.

5.2.1.2 Combining Bilingually and Monolingually Estimated

Features

Finally, we supplement the standard bilingually estimated model parameters with

our monolingual features (Spanish Experiment 13, Urdu Experiment 8). For Spanish,

we see a 1.5 BLEU point increase over the standard model. Again, this result is

higher than if we supplement the original model with features estimated over the par-
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allel training corpus (Experiment 7). This indicates that our monolingually estimated

scores as well as the Gigaword and Wikipedia comparable corproa are able to capture

some novel information not contained in the standard feature set. For Urdu, we see

a 0.6 BLEU point gain when we use monolingually estimated features in addition to

the standard bilingually estimated ones.

5.3 Phrase Table Scoring Conclusions

This chapter showed that, given a high-quality but noisy phrase table, our new

set of translation features, which are based on comparable corpora and are closely

related to our bilingual lexicon induction feature set, do a good job of distinguishing

good phrase pairs from bad phrase pairs. By comparing the full monolingual exper-

iment (‘All CC’ in Figure 5.1) with the experiment that used the bare phrase table

to translate, we can see that the monolingual scores greatly improve that baseline

model’s accuracy. Using the new features based on comparable corpora, we were

able regain over 56% of the BLEU point loss that occurred when we dropped the

bilingually estimated phrase table features.

We also observed promising results supplementing a baseline SMT model with

features estimated over comparable corpora. In Chapter 6 we expand upon that idea

and, beginning with a small bitext, use comparable corpora to supplement a baseline

SMT model. There we also drop the idealization that we begin with a high quality
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phrase table. Later, in Chapter 8 we use the feature set described here to supplement

SMT models in a domain adaptation setting.
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Chapter 6

End-to-End SMT with Zero or

Small Parallel Texts

In this chapter, we build upon the bilingual lexicon induction technique developed

in Chapter 4 as well as our approach to scoring phrase pairs using comparable corpora,

which we presented in Chapter 5. Here, we consider the settings in which we have

access to (1) bilingual dictionaries but no parallel sentences for training, and (2) only

a small amount of parallel training data. In the first case, we wish to augment a

baseline dictionary gloss with additional translations and features estimated using

source and target language comparable corpora. Similarly, in the second case, we

wish to augment a baseline statistical model learned over small amounts of parallel

training data with additional translations and features estimated over comparable

corpora. Assuming access to a bilingual dictionary or small amount of parallel text
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is realistic, especially considering the recent success of crowdsourcing translations

(Zaidan and Callison-Burch, 2011; Ambati, 2011; Post et al., 2012; Pavlick et al.,

2014).

We frame the shortcomings of SMT models trained on limited amounts of parallel

text1 in terms of accuracy and coverage. Coverage refers to the word and phrase

translations that a model has any knowledge of at all, and it is low when the training

text is small, which results in a high out-of-vocabulary (OOV) rate. Even for source

language words and phrases that we do observe in small training sets, many of the

possible target language translations are typically not observed. Our definition of

coverage encompasses both seen and sense errors, which we introduced in Chapter

3. It can also loosely be thought of as the recall of a given SMT model, or, of all of

the possible translations that exist between a pair of languages, the number which

are included in the model.

Accuracy refers to the correctness, or the precision, of the translation pairs and

their corresponding probability features that make up the translation model. Our

SMT models contain both translation and reordering probabilities. In Chapter 3, we

introduced score errors, and we used a TETRA analysis to measure the impact of

both translation score and reordering score errors in low resource settings. We

found that because the quality of unsupervised automatic word alignments correlates

with the amount of available parallel text and alignment errors result in errors in

1We consider low resource settings to be those with parallel datasets of fewer than 1 million
words. Most standard MT datasets contain tens or hundreds of millions of words.
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Figure 6.1: Token-based and type-based OOV rates across six Indian languages. The
curves are generated by randomly sampling the training datasets described in Section
6.4.1.

extracted translation pairs, accuracy tends to be low in low resource settings. Addi-

tionally, estimating translation and reordering probabilities over sparse training sets

results in inaccurate feature scores.

In this Chapter, we focus on seen errors, which impact the coverage of an SMT

model, and translation score errors, which impact the accuracy of an SMT model.

By inducing translations for low frequency words, we also improve sense errors. We

do not tackle reordering score errors.
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6.1 Improving Coverage

Figure 6.1 shows the percent of word tokens and word types in a development set

that are OOV with respect to varying amounts of training data for several Indian

languages (datasets described in Section 6.4.12). In order to improve the coverage of

our low resource translation models, we use the supervised bilingual lexicon induction

technique that we presented in Chapter 4 to learn translations for words which appear

in our test sets but not our training data (OOVs). As before, we use a diverse set

of features estimated over comparable corpora and a small set of known translations

as supervision for training a discriminative classifier, which makes predictions (trans-

lation or not a translation) on test set words paired with all possible translations.

Possible translations are taken from the set of all target words appearing in the com-

parable corpora. Candidates are ranked according to their classification scores. In

the settings that we explore in this chapter, we have access to either a seed bilingual

dictionary or a small parallel corpus, which makes such a supervised approach to

bilingual lexicon induction a natural choice.

We use the same feature set as in Chapter 4, which includes the temporal, contex-

tual, topic, orthographic, and frequency similarity between a candidate translation

pair. We derive translations to serve as positive supervision from our existing bilingual

dictionaries or from automatically aligned parallel text3 and, as before, use random

2Note that in this analysis, we do not use the dictionaries, only complete sentences of training
data.

3GIZA++ intersection alignments over all training data.
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Figure 6.2: Examples of OOV Bengali words, our top-3 ranked induced translations,
and their correct translations. Correct induced translations are bolded.

word pairs as negative supervision, depending on the experimental setting. Figure

6.2 shows some examples of Bengali words, their correct translations, and the top-3

translations that this framework induces.

In our initial experiments, we add the single highest ranked English candidate

translation for each source language OOV to our phrase tables. Adding these trans-

lations by definition improves the coverage of our MT models.

6.2 Improving Accuracy

Following the phrase table scoring methods presented in Chapter 5, we use compa-

rable corpora to estimate additional features over the translation pairs in our phrase

tables and include those features in tuning and decoding in order to improve the

accuracy of our models. We compute both phrasal and lexical features for all of the

following except orthographic similarity, for which we only use lexically smoothed

features, resulting in nine additional features: temporal similarity based on time-

stamped web crawls, contextual similarity based on web crawls and Wikipedia (sep-
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arately), orthographic similarity using normalized edit distance, and topic similarity

based on inter-lingually linked Wikipedia pages. As before, we use time-stamped web

crawl data to estimate temporal similarity, Wikipedia interlingual links to estimate

topic similarity, and both corpora to estimate contextual similarity. Our expectation

is that by adding a diverse set of similarity features to the phrase tables, our models

will better distinguish between good and bad translation pairs, improving accuracy.

6.3 Zero Parallel Data Setting

In this section, we assume that no parallel corpus of translated sentences is avail-

able for training. Instead, we build statistical translation models using existing

bilingual dictionaries, transliterations, and induced translations and translate sev-

eral Wikipedia pages in each of 22 languages. We chose to translate the following

source language Wikipedia pages because they are familiar topics, cover a variety of

subjects, and exist in many languages: Barack Obama, Islam, and Forest.

We generate phrase tables for each source language based on (1) bilingual dic-

tionaries, (2) transliterations, and (3) induced translations for OOV words. We de-

scribed our bilingual dictionaries in Section 3.2.2. Our dictionaries consist mostly of

unigram translations but do include some multiword phrase pairs. As we described in

Section 4.2.1.3, we do transliteration by training character-based translation models

on Wikipedia page titles. We generate the 1-best transliteration for all non-domain
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script source language words. We used the data, features, and reranking methods

described in Chapter 4 to propose 10 translations for each OOV source language

word. Then, we score each patchwork phrase table using the same similarity features

described above: web crawls contextual similarity, web crawls temporal similarity,

Wikipedia contextual similarity, Wikipedia topic similarity, and orthographic simi-

larity. We compute both phrasal and lexical translation features. Additionally, we

estimate a lexicalized reordering model from our Wikipedia comparable corpora using

the algorithm that we proposed in Klementiev et al. (2012). We estimate a language

model over the entire English Wikipedia corpus except those five topical pages which

we wish to translate.

Typically in statistical machine translation, in addition to using parallel corpora to

estimate the parameters of an SMTmodel, a small bitext is also used as a development

set to tune the feature weights of the log linear model. For many of the low resource

languages that we experiment with here, such data is not readily available even in the

small quantities needed for tuning. Rather than gather tuning sets for each language,

we reuse the weights that were learned for a Bengali-English MT experiment4 that

used the same set of monolingually derived features. Of course, the source language

and corpora change substantially in these new experiments, and the optimal weights

are unlikely to be the same. In the next section, 6, we make use of small amounts of

bitext to seed a phrase table, tune feature weights, and also for automatic evaluation.

4The Bengali model was chosen at random.
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Because we do not have translations for source language Wikipedia pages, we

cannot evaluate translation quality with an automatic metric like BLEU. However,

because the topics are familiar, it is possible to read the output and get a qualitative

sense of the translation quality. Table E.1 in Appendix E shows the first few lines

of each source language page on Barack Obama translated into English. In Section

6.4.3, we present a variety of BLEU score results on test sets for which we do have

reference translations.

Figures 6.3 and 6.4 show the first few sentences of the Hindi Wikipedia pages on

Forest and Islam translated several ways. In each figure, the Hindi source paragraph

is given in (1) followed by a dictionary gloss (2) and a transliteration gloss (3). The

dictionary glosses are based on our original bilingual dictionaries (see Table B.2 in

Appendix B). If the dictionaries contain more than one translation of a given word,

we pick one randomly. We transliterate each Hindi word to obtain the transliteration

glosses. We use the machine translation based approach to transliteration presented

in Irvine et al. (2010b) and, like that work, train models based on Wikipedia person-

page titles. In both sets of translations, the dictionary glosses are somewhat readable,

but there are many OOV words. The transliterations, in contrast, are not nearly as

readable. Although the transliterations of some cognates, including hayadrologik and

biosphia in the forest translation, are understandable, most words are not. In our

experiments, we have seen that the number of cognates and named entities, which can

often be accurately transliterated instead of translated, vary by subject matter. For
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example, in the Hindi page on Barack Obama, there are many more ‘transliteratable’

words than the Hindi page on forests.

The ‘Dictionary + Transliterations + Monolingual Scoring’ (4) translation model

uses a phrase table of dictionary translations and transliterations (used for the two

word glosses) and our approach to monolingually scoring a phrase table described in

Chapter 5, including both translation and reordering scoring. The next translation

(5) is the same as the previous but also includes top-10 translations that we induce for

each Hindi word by the methods presented in Chapter 4. Translation 5 is equivalent to

those presented in Section 6.3 and uses no parallel data for training. For translations

4-5, as well as 6-7, we use a 5-gram language model trained on the English gigaword

corpus. Translations 4 and 5 both have the ability to combine the strengths of our

dictionary translations and our transliterations, and both are much better translations

than either gloss. Scoring the dictionary pairs and the transliterations monolingually

allows our translation model to learn how to distinguish competing translations for a

given word. Introducing induced translations has a few noticeably good effects. For

example, in the first sentence of the forest translation, the transliterations uchucha,

esjangal, and podahe are used in the ‘Dictionary + Transliterations + Monolingual

Scoring’ model. However, the next translation uses the induced translations systolic,

canopy, and headless instead of the transliterations. It’s unlikely that any of these

words is a completely accurate translation, but they are closer than the non-English

transliterations.
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Translation 6 is produced by the model trained on our small Hindi training bitext

(used in Section 6.4) and the gigaword-based English language model. The final trans-

lation (7) takes advantage of our entire bag of tricks: the small training bitext, our

bilingual dictionaries, transliterations, induced translations, and monolingual scoring.

The phrase table is populated with the top-10 induced translations, top-1 transliter-

ations, dictionary pairs, and phrase pairs extracted from the word aligned training

text. Each phrase pair is scored monolingually and those taken from the bitext are

also scored bilingually. We use bilingually-estimated reordering scores when they are

available and monolingually estimated scores (Klementiev et al., 2012) for the re-

maining phrase pairs. Like the dictionary word gloss, using the model trained on the

small bitext to translate the Hindi text alone results in many OOV words. However,

using the small bitext allows us to accurately translate common words and phrase and

function words, for example which is and one of the most important. Qualitatively,

we prefer the final translation for each Hindi paragraph, which takes advantage of

both bilingual and monolingual resources. This is consistent with the BLEU score

results presented in Section 6.4.3.

6.4 Small Parallel Corpora Setting

In the next set of experiments, we begin with a baseline SMT model learned from a

small parallel corpus and augment the model to improve its coverage and accuracy. As
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Original Text (1)

one forest one u1 density its "%� one field is wood ( tree ) e"�T�� its lots definitions , is which of various �%��T�o on based G.�# 
�o�%E total 9.4 % the earth of surface 
o surround 4 is ( either 30 % ) those of ��%"o ( habitat ) HY;o�o �i 
 ?�%# ( hydrologic flow ) 

�o8�%�o S" ( modulator ) , and soil ( soil ) safeguard , one the earth its �'o D�i a 
% rules important sides of ���.
% foreign do is 

history telling is , of " forest " one �'#+ field whose means 
%�W�' for on �%�W of for nidhirit  i 
%� ( hunting ) its :%�% "%�T�' ( feudal ) 


u�'��% ( nobility ) is , and these  i 
%� in jungles compulsory more if me all ( see wild no was royal forest ( royal forest ) ) .#%�K 
i  , 

 i 
%� its in jungles usual �u��Q� its importance areas 
o  % �i � did while ,  @� forest at the end wild land more generally means do 

of for was �%.e
 �u��Q� ( woodland ) which of one �T�� from different is . 

Dictionary Word Glosses (2)

ak vn ak uchcha ghantwa ke sath ak ksatra ha ped ( tree ) esjangal ke ki pribhashaën , ha jo ki vibhinn mandndon pr adharit 
han.yh podahe lgbhag . % prithvi ki sath ko gher te ha ( ya 30 % ) jo ki avason ( habitat ) hayadrologik prawah ( hydrologic flow ) 
modulators ( modulator ) , mitti ( soil ) bchaw , ak prithvi ke biosphia ka sarveadhik mahatwpurn phluon ke gthn.ka prawas krate 

ha dharampal battata ha , ki " vn " ak bihd ksatra jiska mtalb kanuni taur pr baju ke lier nirdharit shikar ( hunting ) ke dwara 
samanti ( feudal ) kulenta ( nobility ) ha , in shikar junglon jruri jayada agar man sbhi ( dekhen jungali nhin the royle vn ( royal 
forest ) ) .hallanki , shikar ke junglon aksr woodland ke mahatwpurn ksatron ko shamill kiya jbki , shbd vn antt: jungali bhumi 

adhik samanyat: mtalb karne ke lier aya tho.aq woodland ( woodland ) jo ki ak jangal se bhinn ha .

Transliteration Gloss (3)

one forest one uchcha density of sath one field is tree ( tree ) esjangal of many definitions , is which of various mandndon on 
based han.yh podahe nearly . % of the earth surface ko surround te is ( or 30 % of which ) avason ( habitat ) hayadrologik 

prawah ( hydrologic flow ) modulators ( modulator ) , and soil ( soil ) safeguard , one of the earth biosphia ka more important 
sides of gthn.ka foreign to do is history telling is , of " forest " one bihd field whose means kanuni for on its baju for nidhirit shikar 
( hunting ) of dwara samanti ( feudal ) kulenta ( nobility ) is , and these shikar forests necessary more if among all ( see no wild 

was royal forest ( royal forest ) ) .hallanki , shikar of forests often woodland of important areas ko shamill did while , shbd forest at 
the end wild land more generally means do its for was tho.aq woodland ( woodland ) which of one jangal from different is .

Dictionary + Transliterations + Monolingual Scoring (4)

one forest one systolic density of which one field is tree ( tree ) canopy of many definitions , is which of various crm on based 
han.yh nearly headless . % of the earth surface ko surround te is ( or 30 % ) which of keyhole ( organisms ) canopy irr ( telecom 

low ) modulators ( coniferous ) , and soil ( erosion ) safeguard , one the earth of app ka more important sides of gthn.ka foreign to 
do is history telling is , of " forest " one maestra field whose means responsibility for on pulleys of for nidhirit mane ( africana ) of 
dhara necker ( electors ) émigrés ( forest ) is , and these lions forests more necessary if among all ( see no wild the royal forest 

( royal society ) ) .hallanki , mane of forests often evergreen of important areas ko they did while , quirk forest at the end wild land 
more generally means do its for was tho.aq evergreen ( forests ) which of one forest from different is .

Dictionary + Transliterations + Induced + Monolingual Scoring (5)

a forest with a high density is one area of the tree ( e"�T�� ) many definitions of the tree , which is full of various �%��T�o �o�%E 
based on almost 9.4 % to the surface of the earth is ' �e� ) ( or 30 % of the habitat , which produced ( flow ) ) ( flow HY;o�o �i 
 

( hydrologic ) �o8�%�o S" ( modulator ) soil , and the will of the earth , one of the most important scripts �'o D�i a ���.
% . history 

tells everybody , " " the " " forest , which a �'#+ area on legal means for �%�W ( hunting victim decided by the feudal ) 
u�'��% 
( ( "%�T�' ) ) nobility , and these victim is more important �T��o ( , forests , see if all in were not royal forest .#%�K 
i  ( ) ) royal forest 

of the victim , often �u��Q� �T��o included to the important areas , while in the forest , word means more generally , forest land for 

�u��Q� came to woodland ( ) �%.e
 , which is different from the one from .

Small Bitext Translation (6)

a high density of a forest area is with a tree ( tree ) canopy of definitions , which is one of the many different crm based on this 
canopy almost . % of the earth 's surface to surround ' is ( or 30 % ) which houses , ( elephants ) canopy flow ( hydrologic low ) 
canopy ( canopy ) , and the soil ( erosion ) saved , one of the most important earth 's monoculture gthn.ka journey of scripts . " " 

he tells the history , " " a forest area maestra , whose legal means for the pulley on decided victim ( elephants ) by tong 
( electors ) danton ( forest ) , and more important forests victim if these all in ( see was not , wild royal forest ( royal 

forest ) ) .hallanki , victim of the evergreen often forests of important areas , while . finally , wild forest land , the word means 
more commonly used to refer to came tho.aq evergreen ( forests ) , which is different from the one from .

Small Bitext Trans + Dict + Translit + Induced + Mono Scoring (7)

Figure 6.3: First paragraph of Hindi Wikipedia page on Forest, and a progression of
translations of it.
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  -lrb- ملاسلإا  -rrb-                                 
  -lrb-  -rrb-    -lrb-  -rrb-  

                         -lrb-  -rrb-    ,      ,  
  ,                                 

      ,               -lrb-   gabriel -rrb-      ,  
       ,     -                            

    ,   ,                              
             

Original Text (1)

islam religion ( ملاسلإا  ) christian religion of after  its foundation / support on world  another all from huge religion is । islam  arabic 

language   is whose worth   is from which of   are ( 1 )  and peace (  ) dedicated । 
   believe is । for this followers  major  is that god  one is and complete universe me  that only  ( worship ) its 

 is , and universe me every thing ,  and  , view and invisible his desire its front  and quiet is । islam religion of holy book  

name kuran -holy book of islam is whose hindi me means  lesson is । for this followers  arabic me   go is , whose  muslim 

happens is । muslim    is that koran  (  among gabriel )  one  of  , mohammad saheb   century its 

arab me , total 23 year me -   tha  went  । muslim islam    religion no know as । his  god  mohammad saheb from 

before also earth on lots embassdor sent are , in which  , musa and   is । muslims its  musa and  of many lectures  

people   do gave । maximum muslims its for mohammad saheb god of  embassdor was and koran  race of for  message is । 

Dictionary Word Glosses (2)

islam dharam ( ملاسلإا  ) isai dharam ke bad anuyaiyon ke adhar pr dunia ka dusara sb se bdha dharam ha . islam shbd arbi bhasha ka shbd ha 
jiska moole shbd sallama ha gis ki do pribhashaën han ( i ) aman shanti ( ii ) atamsamarpn .

islam akeshwarvad ko manta ha . iske anuyayion ka pramukh viswaas ha ki ishwar sierf ak ha puri s.ti man sierf vh hi mahima ( ibadt ) ke laik ha , 
s.ti man har chez , zinda began , drishy adrishy usky iachha ke samane atamsamarpit shant ha . islam dharam ki pavitra pustek ka nam quran ha 
jiska hindi man mtalb sswar path ha . iske anuyayion ko arbi man muslim kha jata ha , jiska bahuvchn musalman hota ha . musalman yh viswaas 

rkhte ha ki quran gibrail ( isaiyat man gabriel ) namk ak frishte ke dwara , muhammad sahb ko viiwin sdi ke arb man , lgbhag ii sal man yad-
kanthus  th karaya ghiya tha . musalman islam ko koi nya dharam nhin manate . unce anussaur ishwar ne muhammad sahb se phle bhi dhrati pr 

ki dut bhage han , jinman ibrahim , musa isa shamill han . musalmanon ke anussaur musa isa ke ki upadeshon ko logon ne vicrit kar dia . 
adhictam musalmanon ke lier muhammad sahb ishwar ke anthim dut the quran manushy jati ke lier anthim sandesh ha .

Transliteration Gloss (3)

islam religion ( ملاسلإا  ) christian religion of after anuyaiyon its basis on world ka second all from big religion is . islam shbd arabic language ka 
shbd is whose original shbd sallama is from which of do pribhashaën is ( 1 ) aman and peace ( ii ) dedicated .

islam akeshwarvad ko believe is . its followers ka major viswaas is that god sierf one is and complete universe among sierf that only mahima 
( worship ) of laik is , and universe among each and every thing zinda , and began , view and invisible his desire of front atamsamarpit and quiet 

is . islam religion of holy book ka name quran is whose hindi among means sswar path is . its followers ko arabic among muslim kha go is , whose 
bahuvchn muslim happens is . muslim yh viswaas rkhte is that koran gibrail ( isaiyat among gabriel ) namk one frishte of dwara , muhammad 
saheb ko viiwin century of arab man , nearly 23 year among yad-kanthus  tha karaya made tha . muslim islam ko koi nya no religion feel . his 

anussaur god ne muhammad saheb from before also earth on many dut is sent , in which ibrahim , musa and isa shamill is . muslims of anussaur 
musa and isa of many lectures ko people ne vicrit do give . maximum muslims of for muhammad saheb god of anthim dut and the koran manushy 

race for its anthim message is .

Dictionary + Transliterations + Monolingual Scoring (4)

islam religion ( alevi ) christian religion of after adulation of basis on world ka second all from big religion is . islam quirk arabic language ka quirk 
is whose original quirk isis is from which of do rima is ( 1 ) aman and peace ( ii ) dedicated . 

islam anic ko believe is . its followers ka major undead is that god sirf one is and complete universe among sirf that only pardes ( worship ) of 
below is , and universe among each and every thing , sexiest and began , view and invisible his desire of front ndf and quiet is . islam religion of 
holy book ka name koran is whose hindi among means guttural path is . its followers ko arabic among muslim who go is , whose verbs muslim 
happens is . muslim yh undead there is that quran reciters ( crucifixion among pen ) took one of frisbee dhara , muhammad saheb ko nagari 

century of arab man , nearly 23 year among yad-kanthus  tha online made tha . muslim islam ko but this no religion feel . his like god ne 
muhammad saheb from before also earth on many dut is sent , in which suras , genesis and middle there is . muslims of being genesis and 

middle of many lectures ko people ne folklore do had . maximum muslims of for muhammad saheb god of shunga dut and the koran manus race 
of for shunga message is .

Dictionary + Transliterations + Induced + Monolingual Scoring (5)

islam religion ( ) ملاسلإا  after the christian religion on the basis of followers to the world 's second largest religion . islam is the word of the arabic 
language is the word , which is the word salma of which are two means  ( 1 ) ( 2 ) submission and peace . 

 believes in monotheism . its followers believe that god is the only one in the whole universe , and only the glory of the (  , ) , and all 

the things in the creation and   ,  , god , are at his will and quiet . islam 's holy book is the name of the quran , which means recitation 

in hindi . its followers are called muslims in arabic , is the plural of muslims . muslims believe that quran in christianity ) gabriel ( gabriel , by the 
faristha named to prophet muhammad in the 7th century in arabia , almost 23 years in the verses of the -  was made to islam . muslims do 

not believe that there is no new religion . according to him , before the prophet muhammad , god has also sent many messengers on earth , in 
which includes , musa and isa are included . according to the muslims , musa and isa many people pervert . for the majority of muslims 

mohammed saheb was the last prophet of god and quran for the human race is the last message .

Small Bitext Translation (6)

islam , christianity ) alevi ( religion after the followers on the basis of the world is the second largest religion islam . word of the arabic language 
from which means is are ( 1 ) aman and peace ( 2 ) surrender . 

islam monotheism . this is to the head of the followers believe that there is only one god , and only in the whole world , he is the lack of ) worship 
( , and in every thing , sexiest creation and imran , god , in front of the wish and are peaceful . islam 's holy book is the name of the quran 

recitation in hindi , which means its adherents . muslims in arabic , it is said , whose big muslim . muslims believe that quran gabriel ( christianity 
in gabriel ) named a frisbee by the , to the prophet muhammad in the 7th century , the arab almost 23 years in the verses of the yad-kanthus . 
muslims , islam is a new religion . do not believe according to mohammed before god has also sent envoy on earth , in which there are many 
including , musa bc . muslims are included , and according to the teachings of musa bc , and many people to deform . many muslims for the 

messenger of god 's prophet muhammad was the last of the quran and the last message for mankind .

Small Bitext Trans + Dict + Translit + Induced + Mono Scoring (7)

Figure 6.4: First paragraph of Hindi Wikipedia page on Islam, and a progression of
translations of it.
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before, we combine techniques that take advantage of a variety of signals that can be

estimated from comparable corpora. As in Chapter 4, we estimate a variety of signals

of translation equivalence and combine those signals in order to predict translations

for OOV words. Additionally, as in Chapter 5, we use the same comparable corpora

and signals to estimate translation feature scores for new and existing translation

pairs in our SMT model. We see improvements in translation quality between 0.5

and 1.4 BLEU points translating the following low resource languages into English:

Tamil, Telugu, Bengali, Malayalam, Hindi, and Urdu.5

6.4.1 Data

Post et al. (2012) used Mechanical Turk to collect small parallel corpora for the

following Indian languages and English: Tamil, Telugu, Bengali, Malayalam, Hindi,

and Urdu. They collected both parallel sentence pairs and a dictionary of word

translations.6 We use all six datasets, which provide real low resource data conditions

for six truly low resource language pairs. Table 6.1 shows statistics about the datasets.

As usual, we use both our web crawls and our Wikipedia comparable corpora for

each language pair. Dataset sizes are given in Table B.3 in Appendix B.

5We published the results presented in this section in Irvine and Callison-Burch (2013a).
6No dictionary was provided for Hindi.
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6.4.2 Experimental setup

We use the training/development/test data splits given by Post et al. (2012) and,

following that work, include the dictionaries in the training data and report results

on the devtest set using case-insensitive BLEU and four references. We use the Moses

phrase-based MT framework (Koehn et al., 2007). For each language, we extract a

phrase table with a phrase limit of seven. In order to make our results comparable

to those presented in Post et al. (2012), we follow that work and use the English side

of the training data to train a language model. Using a language model trained on

a larger corpus (e.g. the English side of our comparable corpora) may yield better

results, but such an improvement is orthogonal to the focus of this work. Throughout

our experiments, we use the batch version of MIRA (Cherry and Foster, 2012) for

tuning the feature set.7 We rerun tuning for all experimental conditions and report

results averaged over three tuning runs (Clark et al., 2011).

Our baseline uses the bilingually extracted phrase pairs and standard translation

probability features. We augment it with the single top ranked translation for each

OOV to improve coverage (+ OOV Trans) and with additional features to improve ac-

curacy (+Features). We make each modification separately and then together. Then

we present additional experiments where we induce translations for low frequency

words, in addition to OOVs (6.4.3.3), append top-k translations (6.4.3.4), vary the

amount of training data used to induce the baseline model (6.4.3.5), and vary the

7We experimented with MERT and PRO as well but saw consistently better baseline performance
using batch MIRA.
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Language
Words of Training Data Dev Types Dev Tokens
Sentences Dictionary % OOV % OOV

Tamil 334, 714 77, 240 44 25
Telugu 414, 094 40, 742 39 21
Bengali 239, 555 6, 783 37 18
Malayalam 263, 086 151, 194 6 3
Hindi 658, 977 0 34 11
Urdu 615, 635 116, 496 23 6

Table 6.1: Information about datasets released by Post et al. (2012): words in the
source language parallel sentences and dictionaries, and percent of development set
word types and tokens that are OOV (do not appear in either section of the training
data).

amount of comparable corpora used to estimate features and induce translations

(6.4.3.6).

6.4.3 Results

6.4.3.1 Bilingual Lexicon Induction

Before presenting end-to-end MT results, we examine the performance of the

supervised bilingual lexicon induction technique that we use for translating OOVs.

In Table 6.2, top-1 accuracy is the percent of source language words in a held out

portion of the training data 8 for which the highest ranked English candidate is a

correct translation. Post et al. (2012) gathered up to six translations for each source

word, so some have multiple correct translations. Performance is lowest for Tamil

and highest for Hindi. For all languages, top-10 accuracy is much higher than the

8We retrain with all training data for MT experiments.
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Language Top-1 Acc. Top-10 Acc.
Tamil 4.5 10.2
Telugu 32.8 47.9
Bengali 17.9 29.8
Malayalam 12.9 23.0
Hindi 44.3 57.6
Urdu 16.1 33.8

Table 6.2: Percent of word types in a held out portion of the training data which are
translated correctly by our bilingual lexicon induction technique. Evaluation is over
the top-1 and top-10 outputs in the ranked lists for each source word.

Tamil Telugu Bengali Malayalam Hindi Urdu
Experiment BLEU Diff. BLEU Diff. BLEU Diff. BLEU Diff. BLEU Diff. BLEU Diff.

Baseline 9.45 11.72 12.07 13.55 15.01 20.39

+Features 9.77 +0.32 11.96 +0.24 12.25 +0.18 14.15 +0.60 15.34 +0.33 20.97 +0.58
+OOV Trans. 9.45 0.00 12.20 +0.48 12.74 +0.67 13.65 +0.10 15.59 +0.58 21.30 +0.91
+Feats & OOV 9.98 +0.53 12.25 +0.53 12.55 +0.48 14.18 +0.63 16.08 +1.07 21.78 +1.39

OOV Oracle 12.32 +2.87 16.04 +4.32 16.41 +4.34 13.55 0.00 17.72 +2.71 22.80 2.41

Hiero 9.81 12.46 12.72 13.72 15.53 19.53
SAMT 9.85 12.61 13.53 14.28 17.29 20.99

Table 6.3: BLEU performance gains that target coverage (+OOV Trans.) and ac-
curacy (+Features), and both (+Feats & OOV). OOV oracle uses OOV translations
from automatic word alignments. Hiero and SAMT results are reported in Post et al.
(2012).

top-1 accuracy. In Section 6.4.3.4, we explore appending the top-k translations for

OOV words to our model instead of just the top-1.

6.4.3.2 Improving Coverage and Accuracy in End-to-End SMT

Table 6.3 shows our results adding OOV translations, adding features, and then

both. Additional translation features alone, which improve our models’ accuracy,

increase BLEU scores between 0.18 (Bengali) and 0.60 (Malayalam) points.
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Adding OOV translations makes a big difference for some languages, such as

Bengali and Urdu, and almost no difference for others, like Malayalam and Tamil.

The OOV rate (Table 6.1) is low in the Malayalam dataset and high in the Tamil

dataset. However, as Table 6.2 shows, the translation induction accuracy is low for

both. Since few of the supplemental translations are correct, we don’t observe BLEU

gains. In contrast, induction accuracies for the other languages are higher, OOV rates

are substantial, and we do observe moderate BLEU improvements by supplementing

phrase tables with OOV translations.

In order to compute the potential BLEU gains that we could realize by correctly

translating all OOV words (achieving 100% accuracy in Table 6.2), we perform an

oracle experiment. We use automatic word alignments over the test sets to identify

correct translations and append those to the phrase tables.9 The results, in Table

6.3, show possible gains between 4.3 (Telugu and Bengali) and 0 (Malayalam) BLEU

points above the baseline. Not surprisingly, the possible gain for Malayalam, which

has a very low OOV rate, is very low. Our +OOV Trans. model gains between 0%

(Tamil) and 38% (Urdu) of the potential improvement.

Using comparable corpora to improve both accuracy (+Features) and coverage

(+OOV Trans.) results in translations that are better than applying either technique

alone for five of the six languages. BLEU gains range from 0.48 (Bengali) to 1.39

(Urdu). We attribute the particularly good Urdu performance to the relatively large

9Because the automatic word alignments are noisy, this oracle is conservative.
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comparable corpora (Table B.3). In Section 6.4.3.6, we present results varying the

amount of Urdu-English comparable corpora used to induce translations and estimate

additional features.

Table 6.3 also shows the Hiero (Chiang, 2005) and SAMT (Zollmann and Venu-

gopal, 2006) results that Post et al. (2012) report for the same datasets. Both syntax-

based models outperform the phrase-based MT baseline for each language except

Urdu, where the phrase-based model outperforms Hiero. Here, we extend a phrase-

based rather than a syntax-based system because it is simpler. However, we expect

that our improvements will also apply to syntactic models. Because our efforts have

focused on the accuracy and coverage of translation pairs and have not addressed

reordering or syntax, we expect that combining them with an SAMT grammar will

result in state-of-the art performance.

6.4.3.3 Translations of Low Frequency Words

Given the positive results in Section 6.4.3.2, we hypothesize that mining transla-

tions for low frequency words, in addition to OOV words, may improve accuracy. For

source words which only appear a few times in the parallel training text, the bilin-

gually extracted translations in the standard phrase table are likely to be inaccurate

and incomplete. Augmenting a model with additional translations for low frequency

words may fix some previously sense errors, in which a source word was observed in

training but not with its correct translation. Therefore, we perform additional exper-
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Language Baseline
M : trans added for freqpwsrcq ď M
0 1 5 10 25 50

Tamil 9.5 10.0 9.9 10.2 10.2 9.9 10.2
Telugu 11.7 12.3 12.2 12.3 12.4 12.3 11.9
Bengali 12.1 12.6 12.8 13.0 12.9 13.1 13.0
Malayalam 13.6 14.2 14.1 14.2 14.2 13.9 13.9
Hindi 15.0 16.1 16.1 16.2 16.2 16.0 15.8
Urdu 20.4 21.8 21.8 21.8 21.9 22.1 21.8

Table 6.4: Varying minimum parallel training data frequency of source words for
which new translations are induced and included in the phrase-based model. In
all cases, the top-1 induced translation is added to the phrase table and features
estimated over comparable corpora are included (i.e. +Feats & Trans model).

iments varying the minimum source word training data frequency for which we induce

additional translations. That is, if freqpwsrcq ď M , we induce a new translation for

it and include that translation in our phrase table. Note that in the results presented

in Table 6.3, M “ 0. In these experiments, we include our additional phrase table

features estimated over comparable corpora and hope that these scores will assist the

model in choosing among multiple translation options for low frequency words, one or

more of which is extracted bilingually and one of which is induced using comparable

corpora. Table 6.4 shows the results when we vary M . As before, we average BLEU

scores over three tuning runs.

In general, modest BLEU score gains are made as we augment our phrase-based

models with induced translations of low frequency words. The highest performance

is achieved when M is between 5 and 50, depending on language. The largest gains

are 0.5 and 0.3 BLEU points for Bengali and Urdu, respectively, at M “ 25. This is

not surprising; we also saw the largest relative gains for those two languages when we
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added OOV translations to our baseline model. With the addition of low frequency

translations, our highest performing Urdu model achieves a BLEU score that is 1.7

points higher than the baseline.

In different data conditions, inducing translations for low frequency words may

result in better or worse performance. For example, the size of the training set impacts

the quality of automatic word alignments, which in turn impacts the reliability of

translations of low frequency words. However, the experiments detailed here suggest

that including induced translations of low frequency words will not hurt performance

and may improve it.

6.4.3.4 Appending Top-K Translations

So far we have only added the top-1 induced translation for OOV and low fre-

quency source words to our phrase-based model. However, the bilingual lexicon in-

duction results in Table 6.2 show that accuracies in the top-10 ranked translations

are, on average, nearly twice the top-1 accuracies. Here, we explore adding the top-k

induced translations. We hope that our additional phrase table features estimated

over comparable corpora will enable the decoder to correctly choose between the k

translation options. We induce translations for OOV words only (M “ 0) and include

all comparable corpora features.

Table 6.5 shows performance as we append the top-k ranked translations for each

OOV word and vary k. With the exception of Bengali, using a k greater than 1
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Language Baseline
k: top-k translations added

1 3 5 10 25
Tamil 9.5 10.0 10.0 9.8 10.0 10.0
Telugu 11.7 12.3 11.7 11.9 11.7 11.6
Bengali 12.1 12.6 12.6 12.6 12.7 12.8
Malayalam 13.6 14.2 14.2 14.2 14.2 14.1
Hindi 15.0 16.1 16.0 15.9 15.9 15.9
Urdu 20.4 21.8 21.8 21.7 21.5 21.6

Table 6.5: Adding top-k induced translations for source language OOV words, varying
k. Features estimated over comparable corpora are included (i.e. +Feats & Trans
model). The highest BLEU score for each language is highlighted. In many cases
differences are less than 0.1 BLEU.

does not increase performance. In the case of Bengali, and additional 0.2 BLEU is

observed when the top-25 translations are appended. In contrast, we see performance

decrease substantially for other languages (0.7 BLEU for Telugu and 0.2 for Urdu)

when the top-25 translations are used. Therefore, we conclude that, in general, the

models do not sufficiently distinguish good from bad translations when we append

more than just the top-1. Although using a k greater than 1 means that more correct

translations are in the phrase table, it also increases the number of possible outputs

over which the decoder must search.

6.4.3.5 Learning Curves over Parallel Data

In the experiments above, we only evaluated our methods for improving the accu-

racy and coverage of models trained on small amounts of bitext using the full parallel

training corpora released by Post et al. (2012). Here, we apply the same techniques
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but vary the amount of parallel data in order to generate learning curves. Figure 6.5

shows learning cures for all six languages. In all cases, results are averaged over three

tuning runs. We sample both parallel sentences and dictionary entries.

All six learning curves show similar trends. In all experimental conditions, BLEU

performance increases approximately linearly with the log of the amount of training

data. Additionally, supplementing the baseline with OOV translations improves per-

formance more than supplementing the baseline with additional phrase table scores

based on comparable corpora. However, in most cases, supplementing the baseline

with both translations and features improves performance more than either alone.

Performance gains are greatest when very little training data is used. The Urdu

learning curve shows the most gains as well as the cleanest trends across training

data amounts. As before, we attribute this to the relatively large comparable corpora

available for Urdu.

6.4.3.6 Learning Curves over Comparable Corpora

In our final experiment, we consider the effect of the amount of comparable cor-

pora that we use to estimate features and induce translations. We present learning

curves for Urdu-English because we have the largest amount of comparable corpora

for that pair. We use the full amount of parallel data to train a baseline model, and

then we randomly sample varying amounts of our Urdu-English comparable corpora.

Sampling is done separately for the web crawl and Wikipedia comparable corpora.
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Figure 6.5: Comparison of learning curves over lines of parallel training data for four
SMT systems: our baseline phrase-based model (baseline), model that supplements
the baseline with translations of OOV words induced using our supervised bilingual
lexicon induction framework (+Trans), model that supplements the baseline with
additional phrase table features estimated over comparable corpora (+Feats), and
a system that supplements the baseline with both OOV translations and additional
features (+Trans & Feats).
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Figure 6.6: Urdu to English translation results using varying amounts of comparable
corpora to estimate features and induce translations.

Figure 6.6 shows the results. As before, results are averaged over three tuning runs.

The phrase table features estimated over comparable corpora improve end-to-end

MT performance more with increasing amounts of comparable corpora. In contrast,

the amount of comparable corpora used to induce OOV translations does not impact

the performance of the resulting MT system as much. The difference may be due to

the fact that data sparsity is always more of an issue when estimating features over

phrase pairs than when estimating features over word pairs because phrases appear

less frequently than words in monolingual corpora. Our comparable corpora features

are estimated over phrase pairs while translations are only induced for OOV words,

not phrases. So, it makes sense that the former would benefit more from larger

comparable corpora.
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6.4.4 Post-Augmentation WADE Analysis

Earlier in the thesis, in Section 3.4.2, we presented a WADE analysis showing

the relative frequency of seen, sense, and score errors made by models trained on

small amounts of bitext. In Section 6.4.3.2, we showed improvements in translation

quality as measured by BLEU when we applied our methods for using comparable

corpora to improve seen and score errors. Here, we analyze our augmented models

using WADE in order to better understand the effects of our comparable corpora-

based modifications. We begin by presenting a version of WADE that uses multiple

reference translations (Section 6.4.4.1) and then present the results of the analysis

(Section 6.4.4.2).

6.4.4.1 WADE with Multiple References

Recall that the basic unit of analysis for WADE is an alignment link. With

WADE, we word align (either manually or automatically) each source language test

set sentence with its target language reference translation. Then, we compare the set

of word alignments between a given source language test sentence and its machine

translation with the reference links. Alternative machine translations are compared

with respect to how many of the reference links they cover. Figure 6.7 shows an

example. It is easy to compare the first sentence to the second using WADE because

they are each evaluated over the same set of four reference links. In the example, two

errors in the first machine translation are corrected in the second, and another shifts
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Figure 6.7: Example using WADE to compare two machine translations. Moving
from the first machine translation to the second, one sense error is corrected, one
score error is corrected, and one seen error becomes a sense error.

from a seen error to a sense error.

In contrast to WADE, the basic unit of analysis in the BLEU metric is each

ngram in the target language machine translation output. Generalizing the BLEU

metric from one reference to many involves allowing each ngram in the output to

match an ngram in any of the available reference translations. For example, if we

had a second reference translation for the example given in Figure 6.7 that read it is

handsome, then the second machine translation, he is very handsome, would achieve

a perfect unigram precision even though neither reference contains all of the same

word tokens.10 The BLEU metric is intentionally simple, allowing for flexibility in

the number of reference translations (Papineni et al., 2002).

Because WADE’s unit of analysis involves the reference translation itself, it is

more difficult to generalize it to multiple references than it is to generalize BLEU.

10The lack of higher order ngram matches would prevent the output from receiving a perfect
BLEU score.
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Figure 6.8: Example of the complications involved in using WADE to compare
two machine translations using two reference translations. Identifying correspond-
ing alignment links, comparing error categories, and dealing with incorrect automatic
alignments are all challenges in doing a WADE analysis using multiple reference
translations.

That is, BLEU measures the following: is the output similar to the set of reference

translations? In contrast, WADE measures is the reference translation included in

the output and, if not, why? BLEU measures precision over the machine translation

output; WADE measures recall over the reference translations (and, specifically, over

reference alignments, allowing for detailed error annotation). Generalization is further

complicated by the fact that, in practice, we often use automatic word alignments

and do no enforce consistency across partially overlapping reference translations.
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Consider Figure 6.8. In comparison with Figure 6.7, we now have a second refer-

ence translation, he is pretty, and the goal is now to combine the analysis using the

first (top) reference and the second (bottom) reference translation, with the ultimate

goal of comparing the first (left) machine translation output with the second (right).

In some cases, it is clear which reference alignment links correspond and how to com-

bine them. For example, in the first reference lindo is aligned with cute and in the

second reference lindo is aligned with pretty. The first MT model does not include

a translation of lindo, so both reference alignments are marked as seen errors. It

is clear that in any model of integrating the two reference translations to produce

a single analysis, the first MT model should be credited with having made a seen

error due to the OOV word lindo. The second MT model makes a sense error with

respect to the first reference translation because it had not seen lindo translate as

cute. However, it makes a score error with respect to the second reference because,

although the reference translation pretty was available in the model, it instead pre-

ferred handsome. In this case, it is less obvious which error type we should credit to

the translation model. However, we argue that score errors are lower on the error

hierarchy than sense errors because the latter could change to the former as models

are augmented but the opposite would never happen unless translations are removed

from the model. Utilizing such an error hierarchy is reasonable in our experimental

settings, where our comparison systems are always supersets of the baselines; transla-

tion pairs and scores are never removed from baseline models. We acknowledge that
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such an approach may not be appropriate in all settings, however.

Next, consider the first word in the test sentence, él, which is aligned with he in

the first reference and with he is in the second. The first output makes one sense

error with respect to the first reference and two sense errors with respect to the

second. In combining references, it is not clear whether the output should be marked

as having made one or two sense errors. This example illustrates how alignment errors

make the analysis difficult to do accurately.

Our approach to doing WADE analyses with multiple references slightly redefines

the unit of analysis. Instead of using test-reference alignment links initially, we first

consider each word in the source language input. For each word in a given test

sentence, we identify the reference for which the set of WADE-annotated links out of

the test word are ‘best.’ As mentioned, we use a hierarchy of error types to define

those that are more egregious than others (i.e. seen errors are worse than sense

errors, sense errors are worse than score errors). Consider the first MT output in

the example in Figure 6.8. The best set of annotated alignments from the first test

set word, él, are taken from the first reference (a single sense error). The WADE-

annotated alignments from the second word, es, are identical under both references

(a single correct link). The third word, muy, is more accurately translated under

the second reference (zero links in comparison with a score error) and, finally, the

alignment from the fourth word, lindo, is a seen error under both references.

This approach requires us to rigorously define how to compare two sets of anno-
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tated alignments. We employ the following strategy:

1. seen errors are assigned 4 points, sense errors are assigned 3 points, score

errors are assigned 2 points, and a correct alignment is assigned 0 points.

2. For each set of reference links, point values are averaged across all alignment

links. If there are no word alignments to a given test set word, a null alignment

point value of 1 is assigned.

For each input test word, we use this strategy to compare the alignment links between

it and the set of aligned words in each of our reference translations and choose the

lowest scoring set. The chosen set of ‘best’ alignment links for each input word are

included in the cumulative WADE analysis, which, as in the original formulation

of WADE, is measured across a single set of test-reference alignment links. In the

case that we only have one reference translation, the ‘best’ set of alignment links for

each test word is always taken from the sole reference translation, and the resulting

analysis follows our original definition of WADE, given in Section 3.4.1.2.

One drawback of this approach is that it does not reward longer ngram matches.

That is, for example, the first word in an input sentence could be best matched with

the first reference, the second word with the second reference, the third word with

the third reference, etc. This is a general shortcoming of WADE, and it is only made

more clear in the multiple reference version. However, this is the cost of being able

to generate detailed error-type annotations.
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6.4.4.2 Analysis

Table 6.6 shows the results of our multi-reference WADE analysis over the output

from several of the low resource models described in Section 6.4.3. In particular, we

present WADE results over the models represented by the first and last point in each

of the four learning curves and six source languages shown in Figure 6.5.

In general, the results of the WADE analyses are what we might expect. When

we add translations for OOV words (` Translations models), the number of seen

errors decrease substantially.11 The corresponding increases in sense errors indicate

that many of the previously seen errors become sense errors, which makes sense;

our models have now seen the previously OOV words, but they do not include all

correct translations because our bilingual lexicon induction method is imperfect. In

most cases the number of correct alignments also increases, which is in keeping with

the observed increases in BLEU score.

It would be insightful to be able to measure the shifts between error types across

different outputs. For example, it appears that we when add our induced translations,

many previously seen errors become sense errors and some are corrected. It would

be interesting to see the frequency of each shift. Although this is straightforward to

measure in a single reference setting, it is more complicated with multiple references.

For example, in the output of a first SMT model a given source language test word

may have a best set of alignment links with a reference that includes one seen error

11A few seen errors remain for those words which appear so infrequently in our comparable
corpora that we are not able to induce translations for them.
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Language Model seen sense score Correct BLEU

Bengali

500 sentence pairs baseline 48.0 23.0 4.9 24.1 2.30
` Scores 48.0 23.0 4.9 24.1 2.13
` Translations 2.3 64.8 4.0 28.9 3.50
` Scores and Translations 2.3 64.4 3.8 29.4 3.17
Full training data 20.6 17.5 11.7 50.1 12.07
` Scores 20.6 17.6 11.9 49.9 12.25
` Translations 1.3 35.6 11.6 51.5 12.74
` Scores and Translations 1.3 35.6 11.6 51.6 12.55

Tamil

500 sentence pairs baseline 71.0 9.8 0.6 18.6 1.69
` Scores 71.0 9.8 0.6 18.6 1.71
` Translations 2.3 74.2 0.6 23.0 2.53
` Scores and Translations 2.3 74.2 0.6 22.9 2.49
Full training data 26.3 20.9 10.1 42.7 9.45
` Scores 26.3 20.9 10.3 42.5 9.77
` Translations 1.6 44.2 10.0 44.1 9.45
` Scores and Translations 1.6 44.3 10.1 43.9 9.98

Telugu

500 sentence pairs baseline 69.5 14.4 8.2 7.9 2.04
` Scores 69.5 14.4 8.3 7.9 2.04
` Translations 5.5 64.9 3.7 25.9 4.18
` Scores and Translations 5.5 64.9 3.8 25.9 4.24
Full training data 28.8 18.2 14.0 39.0 11.72
` Scores 28.8 18.2 13.9 39.1 11.96
` Translations 3.0 42.9 14.1 40.0 12.20
` Scores and Translations 3.0 42.9 13.9 40.3 12.25

Urdu

500 sentence pairs baseline 41.9 18.1 4.2 35.7 1.83
` Scores 42.0 18.1 4.4 35.6 2.26
` Translations 1.5 45.6 4.3 48.6 5.44
` Scores and Translations 1.5 45.6 4.4 48.4 5.43
Full training data 8.7 7.1 9.5 74.7 20.39
` Scores 8.7 7.1 9.8 74.4 20.97
` Translations 0.6 14.0 9.4 76.0 21.30
` Scores and Translations 0.6 14.1 9.6 75.7 21.78

Hindi

500 sentence pairs baseline 30.2 12.4 5.8 51.6 4.23
` Scores 30.5 12.5 6.3 50.7 4.46
` Translations 1.4 35.0 5.8 57.8 6.05
` Scores and Translations 1.4 35.2 6.1 57.3 6.09
Full training data 11.9 6.3 8.3 73.5 15.01
` Scores 11.9 6.3 8.4 73.4 15.34
` Translations 0.7 16.4 8.3 74.5 15.59
` Scores and Translations 0.7 16.3 8.1 74.8 16.08

Malayalam

500 sentence pairs baseline 79.8 7.0 1.9 11.3 0.5
` Scores 79.6 6.9 1.2 12.2 0.42
` Translations 4.1 75.5 5.4 14.9 1.21
` Scores and Translations 4.1 75.6 5.7 14.6 0.99
Full training data 2.2 37.8 12.2 47.8 13.55
` Scores 2.2 37.7 11.9 48.1 14.15
` Translations 1.5 38.6 12.7 47.2 13.65
` Scores and Translations 1.5 38.5 12.4 47.6 14.18

Table 6.6: WADE Analysis of Augmented SMT Models. The percent of alignment
links in the ‘best’ set (computed separately for each input source language word)
that are annotated with each error type is given. For comparison, the multi-reference
BLEU score on the output from each model is also given.
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and one sense error. Then, in the output of a second SMT model, the same source

language test word may have a best set of alignment links with a different refers that

includes one score error and one correct link. Because the two sets of best alignment

links consider different reference translations, we cannot know whether the original

seen error or the original sense error has been corrected. To make such an inference

we would need to align the reference translations with one another. We leave further

research in this vein for future work.

In the results we presented in Section 6.4.3, when we added new phrase table

features estimated over our comparable corpora, we typically observed small but

consistent increases in BLEU scores, and we attributed these gains to a decrease in

score errors. However the results in Table 6.6 do not show consistently decreasing

numbers of score errors when we add the new features. As mentioned, WADE

does not estimate the quality of multi-word ngrams. However, when we manually

compare the outputs from our feature-augmented models with the outputs from our

baseline models, we see that they tend to include longer ngram matches with the

reference translations. That is, our new features seem to correct reordering errors

more often than they correct lexical selection errors. This is possible in cases where

the new feature functions give high scores to phrase translations, and the decoder is

able to translate longer complete phrases. We can see this effect in the component

ngram precisions that contribute to overall BLEU scores. For example, the Malayalam

baseline model trained on the full dataset achieves a BLEU score of 13.55 and when

169



CHAPTER 6. END-TO-END SMT WITH ZERO OR SMALL PARALLEL
TEXTS

we add our comparable corpora-based features, the BLEU score increases to 14.15.

However, score errors only decrease in number slightly. When we take a closer look

at the BLEU score, we see that the unigram precision only increases by 3% but the

bigram precision increases by 5%.

6.4.4.3 WADE Analysis Conclusions

WADE was originally meant to be a tool for doing error analysis, not for evalu-

ating and comparing machine translations. The distinction is slight but significant.

As an error analysis technique, it provides a nice way to visualize system outputs

and gives a general sense of what types of lexical selection errors are made. However,

using the method to evaluate and compare only slightly different models and their

outputs is perhaps not appropriate. When we compare very similar machine trans-

lation outputs, errors in the automatic word alignments that WADE is based upon

become relatively more substantial. Additionally, making the fine-grained distinc-

tions and comparisons required for doing multi-reference WADE is unsatisfying as an

overall measure of translation quality. Both error analysis and automatic methods

for measuring quality are important and active subfields of machine translation, and

we leave further improvements to methods like WADE to future work.

170



CHAPTER 6. END-TO-END SMT WITH ZERO OR SMALL PARALLEL
TEXTS

6.5 End-to-End SMT with Zero or Small

Parallel Texts Conclusion

In this chapter, we applied bilingual lexicon induction techniques that we pre-

sented in Chapter 4 and phrase table scoring techniques that we presented in Chap-

ter 5 to the settings where we have zero or only a small amount of parallel text for

training SMT models. We focused on translating truly low resource languages. Our

experiments showed the following:

1. In settings where we have only a dictionary of word translations, compiling

a model that takes advantage of transliterations, feature functions estimated

over comparable corpora, and induced translations increases the readability of

outputs substantially. Our qualitative experiments show that beginning with

even a very small parallel corpus instead of a dictionary of word translations

further improves translation quality substantially.

2. When we begin with a small training bitext, our approaches to improving cov-

erage (induced translations) and accuracy (new phrase table feature functions)

improve BLEU scores, and their combined impact is nearly additive.

3. In additional experiments on low resource languages where we begin with a

small amount of parallel training data, we found the following:

171



CHAPTER 6. END-TO-END SMT WITH ZERO OR SMALL PARALLEL
TEXTS

(a) Inducing translations for low frequency words in addition to OOV words

can improve BLEU scores modestly.

(b) Augmenting baseline models with top-k induced translations where k ranges

from 3 to 25 can improve performance beyond augmenting models with

only top-1 translations.

(c) The impact of our coverage and accuracy improvements is greatest when

very little training data (ă 10, 000 sentence pairs) is used.

(d) The size of our comparable corpora impacts the accuracy of our new feature

functions more than the quality of our induced translations.

4. We presented a multi-reference version of WADE. Although the resulting anal-

yses are insightful, we caution that the methodology should be used carefully

and not in all experimental conditions.

In Chapter 4, we presented methods for inducing word translations. In Chapter

7, we use those techniques to induce multi-word translations. Doing so involves

considerable additional challenges.
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Phrase Translation Mining

In this chapter, we move from inducing word translations to inducing phrase trans-

lations. Figure 7.1 shows the percent of n-grams in our Hindi and Spanish SMT tuning

sets that appear in varying amounts of training data. It is clear from the plots that

when only limited amounts of parallel training data are available, the corresponding

phrase tables will have limited coverage, particularly for multi-word source phrases.

In this chapter, we present our approach to inducing phrase translations beyond those

that can be identified with small amounts of bitext.

Like our methods for scoring phrase pairs, we use bilingual lexicon induction in

order to learn phrase translations from comparable corpora. If the source and tar-

get language each contain, for example, 100, 000 unigram word types, the number

of pairwise comparisons is about 10 billion, which is significant but computationally

feasible. In theory, we could follow our method for inducing word translations directly
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(a) Hindi Type-Based
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(b) Hindi Token-Based
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Figure 7.1: Hindi (a, b) and Spanish (c, d) type-based (a,c) and token-based (b, d)
phrasal OOV rates for the SMT development set for each language over a varying
number of training data words. The Spanish training data consists of about 50 million
words of Europarl text, and the Hindi training data consists of about 180 thousand
words of crowdsourced translations of Wikipedia documents.

174



CHAPTER 7. PHRASE TRANSLATION MINING

in order to induce multiword phrase translations. That is, we could score all source

language phrases paired with all target language phrases using signals derived from

comparable corpora and use the phrase pairs extracted from the small bitext as su-

pervision for combining the signals in a discriminative classifier. However, in contrast

to unigrams, the difficulty in inducing a comprehensive set of phrase translations is

that the number of phrases, on both the source and target sides, is immense, and

such a brute force approach is not computationally feasible. In theory, the number

of possible phrases of up to length m in the target language is V m
t , where Vt is the

size of the target language unigram vocabulary. That is, a target language phrase,

in theory, is any sequence of m words sampled from Vt. Similarly, the number of

possible phrases of up to length m in the source language is V m
s , where Vs is the size

of the source language unigram vocabulary. Using a brute-force induction method

comparable to our method for inducing unigram translations would require making

V m
t ˚ V m

s phrase comparisons.

Of course, we don’t observe all possible ordered combinations of words in a lan-

guage in naturally occurring text. For example, outside of this document, the phrase

“round moses phrases” is unlikely to occur even though all three words in the phrase

are reasonably common.1 However, even if we limit the phrase comparisons to those

that we observe in monolingual corpora, the number of pairwise comparisons is com-

putationally infeasible. For example, there are about 83 and 113 million unique

1In fact, a google search on the trigram yields zero results
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phrases up to length three in the English and Spanish Wikipedias, respectively. The

total number of pairwise comparisons necessary to do an exhaustive search over all

source and target language phrases is over 9 quadrillion. Thus, even if we limit the

task to short, observed phrases, the number of required pairwise phrase comparisons

is infeasible.

In addition to the computational challenges, doing an exhaustive pairwise search

for phrase translations may not yield good results. Rapp and Sharoff (2014) showed,

for example, that multiword phrases are too infrequent for a model based only on

contextual information to make good predictions. This negative result was found

even in the scenario where over half a billion words of source and target language

Wikipedia data was used.

However, supplementing a low resource machine translation model with induced

phrase translations is potentially quite useful. Multi-word translation units have been

shown to improve the quality of SMT dramatically (Koehn et al., 2003). Phrase trans-

lations allow translation models to memorize local context-dependent translations and

reordering patterns.

There are several ways to reduce the computational complexity of this task as we

have defined it, including the following:

‚ Reduce the complexity of estimating monolingual signals

– Sample monolingual corpora

˚ Uniformly, for building signatures of all phrases
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˚ Proportional to the frequency of a given phrase

– Ignore dimensions that are unlikely to be informative (e.g. very low or

high frequency words as contexts)

‚ Reduce the complexity of computing the similarity between pairs of monolingual

signatures

– Use randomized algorithms (e.g. locality sensitive hashing (Goemans and

Williamson, 1995; Indyk and Motwani, 1998; Charikar, 2002)) to reduce

the dimensionality of signatures

‚ Prune the set of phrase pair comparisons

– Limit the set of source phrases for which to induce translations

– Limit the set of target phrases which are eligible to be translations for any

source phrase

– For each source phrase, limit the set of target phrases to those that are

more likely translations

– Approximate the search over all target phrases by sorting signatures and

comparing only the k-closest signatures in the sort, rather than all (e.g.

using PLEB, or Point Location among Equal Balls techniques (Indyk and

Motwani, 1998))

In this chapter, we focus on the major source of complexity: the number of pairwise
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phrase comparisons. Rather than compare all source language phrases with all target

language phrases, we identify ways to propose a smaller set of hypothesis phrase

translations for each source language phrase. In Section 7.1, we explore several ways

to efficiently filter the search space of all target language phrases and in Section 7.2 we

explore ways to compose target phrase translations from known unigram translations.

Both sets of exploratory experiments motivate the novel algorithm that we propose in

Section 7.2.2. We use features estimated over comparable corpora to rank candidate

target phrase translations in Section 7.2.3, using a method similar to the one we

developed in Chapter 4 for ranking unigram translations. Finally, in Section 7.3,

we present experiments using induced phrase translations in end-to-end SMT. This

chapter presents and extends the methods and experiments that we published in

Irvine and Callison-Burch (2014a).

7.1 Option 1: Fast Phrase Pair Filtering

One way to reduce the the set of N2 pairwise phrase comparisons is to do an

initial, fast pruning of the set, proposing only a subset for full monolingual similarity

scoring. We want the subsets of candidate phrase pairs to (i) include as many high

quality phrase pairs as possible, and (ii) be small enough so that it is feasible to

compute the monolingual similarity between all pairs in the set. That is, we would

like both recall and precision on the set to be high. There is a tradeoff between
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including as many good pairs as possible (emphasizing a high recall) and limiting the

size of the list (emphasizing a high precision), which we will discuss throughout our

experiments.

The main intuition behind our approach is the following: there are some charac-

teristics of given source phrases that may allow us to effectively and efficiently prune

the space of all possible target phrase translations to a much smaller subset. For

example, it may be true that source language bigrams are almost never translated as

trigrams in the target language. Or it may be true that the number of stop words in a

given source language phrase is usually the same as in its target language translation.

Or, perhaps, given that we have access to a bilingual dictionary of single word transla-

tions, translations of source phrases are likely to contain at least one word translation

that we already know about. Some filters, such as these, can be implemented effi-

ciently as inverted indices. Figure 1 shows a naive approach to constructing a phrase

table; all source language phrases are compared with all target language phrases. In

contrast, the algorithm in Figure 2, only compares each source language phrase with

target language phrases for which some given feature holds. In order to make filtering

efficient, we would only want to allow features which can be pre-computed and stored

in inverted indices. Doing so eliminates the need to iterate over the entire set of all

possible target phrases for each source phrase.

We may also want to allow the use of multiple features in order to prune the

space of target phrases. For example, Algorithm 3 sketches a pruning model that
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for src in srcPhrases do
for trg in trgPhrases do

compare(src,trg);
end

end
Algorithm 1: Unpruned comparison of src and trg source and target phrases.

for src in srcPhrases do
feat = getFeat(src);
for trg in featToTrgP[feat] do

compare(src,trg);
end

end
Algorithm 2: Pruning source and target phrase comparisons using features imple-
mented as inverted indices.

chooses the subset of target phrases that have feature number 1 or both features

2 and 3, or both. This model could, for example, correspond to the following: for

each source phrase, choose target phrases that contain a translation of at least one

word in the source phrase and/or that have the same length and the same number

of stop words. In this case, the function getFeat1 would return a set of all of the

target language translations of all unigrams in the source phrase, and the function

featToTrgP1 would, given a set of target language words, return a set of all phrases

that contain at least one of those words. Similarly, getFeat2 would return the length

of the input source phrase, and featToTrgP2 would return a set of all target phrases

with a given length. The inverted indices require a fixed amount of time to construct,

which depends on the number of target language phrases and the complexity of the

feature computation. Additionally, they have the potential to require large amounts of

memory if a given target phrase is associated with many feature values. For example,
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for src in srcPhrases do
feat1 = getFeat1(src);
feat2 = getFeat2(src);
feat3 = getFeat3(src);
for trg in union(featToTrgP1[feat1] , intersection(featToTrgP2[feat2],
featToTrgP3[feat3]) ) do

compare(src,trg);
end

end
Algorithm 3: Pruning source and target phrase comparisons using features imple-
mented as inverted indices.

the featToTrgP inverted index associates each target phrase with all translations of

each of its component unigrams. In this work, we largely ignore memory requirements

and aim to minimize time complexity. Computing the intersection of two sets, a and

b, requires O(min(len(a),len(b))) time. Therefore, we hope to only use intersected

features if at least one of them typically returns a relatively small set of target phrases.

In Appendix F we present a set of detailed experiments in which we automatically

learn filters for very quickly pruning the space of hypothesis target language phrase

translations. Fortunately, our experiments show that we can achieve both a high

accuracy and a high filtering rate with a small number of filters, all of which can

be implemented as inverted indices. Those experiments directly led to the algorithm

that we propose in Section 7.2.
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7.2 Option 2: Composing Phrase Trans-

lations

In Section 7.1, we cast the problem of reducing the number of pairwise compar-

isons necessary to induce a phrasal translation dictionary as one of filtering. In that

top-down approach, we started with a very large set of candidate English phrase

translations and learned ways to very quickly prune that space given some source

phrase that we were interested in translating. In this section, we present a bottom-up

approach where we begin with a source phrase and compose target language phrase

translations using what we know about how the unigrams in the source phrase trans-

late.

Our bottom-up, compositional method builds upon the notion that many phrase

translations can be composed from the translations of its component words and sub-

phrases. For example, Spanish la bruja verde translates into English as the green

witch. Each Spanish word corresponds to exactly one English word. The phrase pair

could be memorized and translated as a unit, or the English translation could be

composed from the translations of each Spanish unigram.

Zens et al. (2012) found that only 2% of phrase pairs in German-English, Czech-

English, Spanish-English, and French-English phrase tables consist of multi-word

source and target phrases and are non-compositional. That is, for these languages,

the vast majority of phrase pairs in a given phrase table could be composed from
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smaller units. That work defines compositionality strictly: a phrase pair is defined as

compositional if there exists a set of smaller phrase pairs that can be used together to

produce the same phrase translation. For example, if a model contains the translation

from Spanish gobierno to English government, from Spanish de to English of, and from

Spanish Francia to English France, then the larger phrase translation from Spanish

gobierno de Francia to English government of France could be composed. In contrast,

the English translation French government could not be composed unless there were

additional rules allowing, for example, de Francia to translate as French.

Our approach here takes advantage of the fact that many phrases can be trans-

lated compositionally. However, in order to achieve high recall in our set of hypothesis

translations, we explore looser definitions of compositionality than is typical. In par-

ticular, we experiment with ignoring stop words in both the source and target phrases

and using unigram prefix stem translations to allow for unseen suffixal variations.2

7.2.1 Motivating Experiments

We formulate several experiments to answer these research questions:

1. What percent of phrase translations could be correctly translated by composi-

tion, using known unigram translations (a bilingual dictionary)?

2E.g., if nuestros translates as our, we also consider our a translation of nuestras, since they share
the prefix nuest-.
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2. Would a low resource translation model benefit from composing its unigram

translations into phrases?

3. Would a low resource translation model benefit further from also composing

translations using a bilingual lexicon learned from monolingual texts?

We define the process of compositional translation as follows:

1. Given a source phrase, identify all known unigram translations of each source

word.

2. Enumerate all combinations of per-word dictionary translations.3

3. Enumerate all permutations of all combinations.4

Given this definition of compositional translation, we ask our first question: For a

given language pair, what percent of phrase translations could be correctly translated

by composition, using known unigram translations (bilingual dictionary)? That is,

if we only had access to unigram translations, what percent of phrases could we

translate correctly through composition? To answer this question, we use the same

sets of phrase translations extracted from manually aligned development set Spanish

and Hindi sentence pairs that we used in Appendix F.2 (500 sentence pairs each; see

Appendix C). There are about 6, 000 and 3, 000 bigram and trigram translations in

3e.g. If the first source word in a source bigram has two dictionary translations, t11 and t12,
and the second has three, t21, t22, and t23, then there are six combinations of unigram translations:
t11t21; t12t21; t11t22; t12t22; t11t23; and t12t23

4e.g. The pair t11t21 is permuted so that the final set of composed phrases contains both t11t21
and t21t11
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the Spanish and Hindi datasets, respectively. Here, we ask how many of the phrase

pairs could be generated by compositional translation using each of the following:

1. Unigram translations extracted from a seed bitext

2. Unigram translations extracted from a seed bitext, with optional stop word

insertion and deletion

3. Unigram translations extracted from a seed bitext and induced from comparable

corpora, with optional stop word insertion and deletion

For both dictionary types, we use five character prefix stems, and we use the top-

5 induced unigram translations for each source language word type in our induced

dictionary. We compute statistics using initial unigram translations extracted from

1, 000, 2, 000, 4, 000, and 8, 000 randomly sampled lines of the Spanish-English Eu-

roparl bitext and the Hindi-English parallel corpus as well as each complete corpus.

For comparison, we also compute the percent of test set phrase pairs that are reach-

able given each word aligned training corpus. Some pairs that are unreachable using

our composition technique and word alignment unigram dictionary may be reachable

under a different phrase pair extraction heuristic. For example, the grow-diag-final

heuristic that we use allows for null aligned words in extracted pairs. Table 7.1 shows

the compositionality statistics. Note that we only evaluate over multiword source

phrases up to length three (bigrams and trigrams).
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The results in Table 7.1 show that by adding composed phrase translations, we

may more than double the number of high quality phrase translations in our mod-

els. For very low resource conditions, the number of reachable phrase translations

increases from less than 10% to over 20%. For example, the Hindi-English base-

line model trained on 2, 000 sentence pairs contains only 5.3% of the test set phrase

translation pairs. However, when we use the phrase table and induced unigram trans-

lations to augment the baseline phrase table with compositional phrase translation,

that number increases to 22.5%. Recall that the translations used for evaluation

come from a manually word aligned held-out development set, not from the training

data used to build initial translation models. A 100% coverage would mean that all

translations for all phrases up to length three (defined as those which are consistent

with the word alignments) in the development set were contained in the phrase table.

Another interesting result in the motivating experiments presented in Table 7.1

is that the compositionality rates for Spanish and Hindi are very similar. One may

expect that because Spanish and English are more closely related, more phrases would

be translated compositionally. However, our results do not show that. It would be

interesting to do a similar analysis on a pair of completely unrelated languages (e.g.

a non-Indo-European language). Because we do not have manual word alignments

for such a language pair, we leave this for future work.

The composition algorithm that allows for stop word insertion and deletion and

which uses dictionaries derived from both the aligned parallel corpora and induced
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unigram translations (the last column in Table 7.1) is exactly equivalent to the sec-

ond decision tree presented in Appendix F.2. Originally, the algorithm was presented

as a top-down decision tree; here it has been presented as a bottom-up composi-

tional algorithm. In Section 7.2.2, we define the efficient version of the algorithm

formally, which uses inverted indexes as proposed in Section 7.1. However, we em-

phasize that the algorithm can be thought of either as a top-down filtering or as a

bottom-up composition. In fact, our filtering experiments directly informed the way

that we defined our composition algorithm. We showed in Appendix F.2 that filters

based on unigram translations were definitively more informative than those based

on phrase length, monolingual frequencies and frequency differences, and we designed

our algorithm for composing translations accordingly.

We now move to our second and third questions: Would an end-to-end low resource

translation model benefit from composing its unigram translations into phrases?

Would this be further improved by adding unigram translations that are learned from

monolingual texts? Prior research has found that allowing an MT model to memorize

longer translation units is crucial to achieving good performance. However, it’s not

clear how much of the observed performance gains are due to compositional phrase

translations. There are two reasons for the gains from memorizing longer translation

units; one involves compositional phrases and the other does not. First, memorizing

longer translation units allows for the memorization of lexical choice and reorder-

ing patterns, including within compositional translations. For example, ciudadanos
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cubanos translates as cuban citizens and centros electorales translates as polling sta-

tions. In these cases, the Spanish phrases are translated compositionally, but the

order of the two words is swapped in the English phrase. Additionally, the most

frequent translation of Spanish centros is actually centers, however, in the context

of electorales, stations is the preferred translation. Although these lexical choice and

reordering patterns could be recovered by a high quality lexicalized or syntactic re-

ordering model in combination with a language model, using longer translation units

reduces the risk of making lexical choice and reordering errors.

Figure 7.2 illustrates how compositional phrase translations can result in improved

translation quality. The baseline model is trained on a small amount of data, and

it typically translates individual words instead of phrases. In a system augmented

with compositional phrase translations, the translation was no one is composed from

habia nadie, since habia translates as was in the baseline model, nadie translates as

one, and no is a stop word. Similarly, the translation polling stations is composed

from individual translations: centros translates as stations, and electorales translates

as polling.

The second reason that memorizing longer translation units is beneficial is that

non-compositional phrase translations may be learned. For example, content words

may be left untranslated, as in productos qúımicos Ñ chemicals, rather than chemical

products. Similarly, centros electorales may be translated simply as polls. Or, more

interestingly, phrases may be idiomatic, such as maternidad remunerada Ñ maternity
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not having dependent on the centros electorales .

no was no one in the polling stations .

no había nadie en los centros electorales .

original composeable
from original

original composeable
from induced

original

Baseline:

Input:

Hallucination 
Oracle:

Figure 7.2: Example output from motivating experiment: a comparison of the base-
line and full oracle translations of Spanish no hab́ıa nadie en los centros electorales,
which translates correctly as there was nobody at the voting offices. The full oracle
is augmented with translations composed from the seed model as well as induced
unigram translations. The phrase was no one is composeable from hab́ıa nadie given
the seed model. In contrast, the phrase polling stations is composeable from centros
electorales using induced translations. For each translation, the phrase segmentations
used by the decoder are highlighted.

leave, where the unigram remunerada typically translates as paid, and the Spanish

phrase maternidad remunerada as well as the English phrase maternity leave mean,

idiomatically, ‘the period during which a new mother is allowed paid time off.’

We answer our second and third questions by starting with low-resource Spanish-

English and Hindi-English baselines trained from 2000 sentence pairs each (ă60k

words), and, for given sets of source phrases, augmenting each with (1) phrasal trans-

lations composed from its unigram translations, and (2) phrasal translations com-

posed of a mix of the baseline unigram translations plus the monolingually-induced

unigrams. We also add a set of monolingually-estimated feature functions.

For our motivating experiment we use oracle translations. Composed translations

were only added to the phrase table if they were contained in the reference. This
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eliminated the huge number of noisy translations that are created by taking all of the

permutations and combinations that arise when composing translations (we address

this issue without using an oracle in Section 7.2.3).

In Section 7.3.3, we describe the set of source language phrases for which we

compose translations. In the oracle experiments here, we augment a baseline model

with translations for the same set of source language phrases. We use GIZA++ to

word align our tuning and test sets. For both languages, we learn an alignment

over our tuning and test sets and complete parallel training sets, and use a standard

phrase pair extraction heuristic5 to identify oracle phrase translations. We add oracle

translations to each baseline model without bilingually estimated translation scores6

because such scores will not be available for our automatically induced translations.

Instead, as Section 7.2.3 details, we estimate 30 new phrase table features using

comparable corpora. Thus, in our oracle experiments, we also measure performance

using oracle phrase pairs scored with these features.

Table 7.2 shows the results of our oracle experiments. Augmenting the baselines

with the subset of oracle translations which are composed given the unigram transla-

tions in the baseline models themselves (i.e. in the small training sets) yields a BLEU

score improvement of about 1.4 points for Spanish and about 0.6 for Hindi. This

finding itself is noteworthy, and we investigated the reason for it. A representative

example of a compositional oracle translation that was added to the Spanish model

5grow-diag-final
6We use an indicator feature for distinguishing new composed translations from bilingually ex-

tracted phrase pairs.

190



CHAPTER 7. PHRASE TRANSLATION MINING

is para evitarlos, which translates as to prevent them. In the training corpus, para

translates far more frequently as for than to. Thus, it is useful for the translation

model to know that, in the context of evitarlos, para should translate as to and not

for. Additionally, evitarlos was observed only translating as the unigram prevent. The

small model fails to align the adjoined clitic los with its translation them. However,

our loose definition of compositionality allows the English stop word them to appear

anywhere in the target translation.

In the first result, composeable translations do not include those that contain

new, induced word translations. Using the baseline model and induced unigram

translations to compose phrase translations results in a 2 and 1.6 BLEU point gain

for Spanish and Hindi, respectively.

In Section 7.2.3, we describe the feature set that we use to rank hypothesized

English translations for each Spanish and Hindi phrase. The second column of Table

7.2 shows the results of augmenting the baseline models with the same oracle phrase

pairs as well as the new features estimated over all phrase pairs. Although the features

do not improve the performance of the baseline models, this diverse set of scores

improves performance dramatically when new, oracle phrase pairs are added. Adding

all oracle translations and the new feature set results in a total gain of about 2.6

BLEU points for Spanish and about 1.9 for Hindi. These gains are the maximum

that we could hope to achieve by augmenting models with our composed translations

and new feature set.
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To recap, we had asked the following motivating questions:

1. What percent of phrase translations could be correctly translated by composi-

tion, using known unigram translations (a bilingual dictionary)?

2. Would a low resource translation model benefit from composing its unigram

translations into phrases?

3. Would a low resource translation model benefit further from also composing

translations using a bilingual lexicon learned from monolingual texts?

In answer to the first question, we found that, for both Spanish and Hindi, between

about 20% and 30% of test set phrases could be translated by composition using

known unigram translations. The results vary depending on the initial bilingual dic-

tionary and the composition algorithm used. For the second question, we found that

low resource Spanish and Hindi models improved by 1.4 and 0.6 BLEU points, re-

spectively, when we augmented baselines with phrase translations composed from

unigrams contained in the baseline models themselves. When we also added phrase

translations composed from induced unigram translations (third question), we ob-

served BLEU score increases of 2 and 1.6 for Spanish and Hindi, respectively.

7.2.2 Phrase Composition Algorithm

We have motivated our approach to loosely composing phrasal translations from

the perspective of pruning the search space of all target phrases as well as from the
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perspective of composing translations from an existing unigram dictionary. Hence-

forth we will refer to our general approach as one of composition. A formal definition

of our algorithm for composing phrase translations is shown in Algorithm 4, and

an example translation is composed in Figure 7.3. Given a source language phrase,

our approach considers all combinations and all permutations of all unigram transla-

tions for each source phrase content word. We ignore stop words in the input source

phrase and allow any number of stop words anywhere in the output target phrase. As

discussed in Section 7.1, we pre-compute an inverted index that maps sorted target

language content words to sets of phrases containing those words in any order along

with, optionally, any number of stop words. Our algorithm for composing candidate

phrase translations is given in Algorithm 4, and an example translation is composed in

Figure 7.3. Although in our experiments we compose translations for source phrases

up to length three, the algorithm is generally applicable to any set of source phrases

of interest.

Algorithm 4 yields a set of target language translations for any source language

phrase for which all content unigrams have at least one known translation. As in

our filtering experiments in F.2, in an initial pruning step, we add a monolingual

frequency cutoff to the composition algorithm and only add target phrases that have

a frequency of at least θFreqT to the inverted index. Doing so eliminates improbable

target language constructions early on, for example house handsome her or cute a

house. The size of the set of output translations depends on θFreqT , the input phrase,
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and the unigram dictionaries.

7.2.3 Pruning Phrase Pairs Using Scores Derived

from Comparable Corpora

We further prune the large, noisy set of hypothesized phrase translations before

augmenting the seed translation model. To do so, we use a supervised setup very

similar to that used for inducing unigram translations in Chapter 4; we estimate a

variety of signals that indicate translation equivalence, including temporal, topical,

contextual, and string similarity. As we showed in Chapter 5, such signals are effective

for identifying phrase translations as well as unigram translations. In our experiments

here, we add ngram length, alignment, and unigram translation features that are

specific to our framework of phrase translation composition:

‚ Web crawl phrasal context similarity score
‚ Web crawl lexical context similarity score, averaged over aligned unigrams
‚ Web crawl phrasal temporal similarity score
‚ Web crawl lexical temporal similarity score, averaged over aligned unigrams
‚ Wikipedia phrasal context similarity score
‚ Wikipedia lexical context similarity score, averaged over aligned unigrams
‚ Wikipedia phrasal topic similarity score
‚ Wikipedia lexical topic similarity score, averaged over aligned unigrams
‚ Normalized edit distance, averaged over aligned unigrams
‚ Absolute value of difference between the logs of the source and target phrase
Wikipedia monolingual frequencies

‚ Log target phrase Wikipedia monolingual frequency
‚ Log source phrase Wikipedia monolingual frequency
‚ Indicator: source phrase is longer
‚ Indicator: target phrase is longer
‚ Indicator: source and target phrases same length
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Input: A set of source language phrases of interest, S, each consisting of a
sequence of words sm1 , s

m
2 , ...s

m
i ; A list of all target language phrases,

targetPhrases; Source and target stop word lists, Stopsrc and Stoptrg;
Set of unigram translations, tsmi , for all source language words
smi R Stopsrc; monolingual target language phrase frequencies, FreqT ;
Monolingual frequency threshold θFreqT

Output: @ Sm P S, a set of candidate phrase translations, Tm
1 , Tm

2 , ...Tm
k

Construct TargetInvertedIndex:
for T P targetPhrases do

if FreqT pT q ě θFreqT then
T 1 Ðwords tj P T if tj R Stoptrg
T 1
sorted Ð sortedpT 1q

append T to TargetInvertedIndex[T 1
sorted]

end

end

for Sm P S do
S 1 Ðwords smi P Sm if smi R Stopsrc
CombsS1 Ð ts1

1

Ś
ts1

2

Ś
...

Ś
ts1

k

T Ð r s
for cs1 P CombsS1 do

cs1
sorted

Ð sortedpcs1q
T Ð T`TargetInvertedIndexpcs1

sorted
q

end
Tm “ T

end

Algorithm 4: Computing a set of candidate compositional phrase translations for
each source phrase in the set S. An inverted index of target phrases is constructed
that maps sorted lists of content words to phrases that contain those content words,
as well as optionally any stop words, and have a frequency of at least θFreqT . Then,
for a given source phrase Sm, stop words are removed from the phrase. Next, the
cartesian product of all unigram translations is computed. Each element in the
product is sorted and any corresponding phrases in the inverted index are added to
the output.
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‚ Number of source content words higher than target
‚ Number of target content words higher than source
‚ Number of source and target content words same
‚ Number of source stop words higher than target
‚ Number of target stop words higher than source
‚ Number of source and target stop words same
‚ Percent of source words aligned to at least one target word
‚ Percent of target words aligned to at least one source word
‚ Percent of source content words aligned to at least one target word
‚ Percent of target content words aligned to at least one source word
‚ Percent of aligned word pairs aligned in bilingual training data
‚ Percent of aligned word pairs in induced dictionary
‚ Percent of aligned word pairs in stemmed induced dictionary

As we did for inducing unigram translations in Chapter 4, we learn a log-linear

model for combining the features into a single score for predicting the quality of a given

phrase pair. We extract training data from our baseline translation models trained

on our small parallel corpora. We rank hypothesis translations for each source phrase

using classification scores and keep the top-k. We found that using a score threshold

sometimes improves precision. However, as experiments below show, the recall of

the set of phrase pairs is more important, and we did not observe improvements in

translation quality when we used a threshold.
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7.3 End-to-end SMT with Induced Phrase

Translations

7.3.1 Experimental Setup

In our SMT experiments here, we assume our typical data setting of having access

to only a small parallel corpus. For our Spanish experiments, we randomly sample

2, 000 sentence pairs (about 57, 000 Spanish words) from the Spanish-English Europarl

v5 parallel corpus (Koehn, 2005). For our Hindi experiments, we use the parallel

corpora released by Post et al. (2012). Again, we randomly sample 2, 000 sentence

pairs from the training corpus (about 39, 000 Hindi words). Additionally, we use

approximately 2, 500 and 1, 000 single-reference parallel sentences each for tuning

and testing our Spanish and Hindi models, respectively. Spanish tuning and test

sets are newswire articles taken from the 2010 WMT shared task (Callison-Burch

et al., 2010).7 We use the Hindi development and testing splits released by Post et al.

(2012).

7.3.2 Unigram Translations

Of the 16, 269 unique unigrams in the source side of our Spanish MT tuning

and test sets, 73% are OOV with respect to our training corpus. 21% of unigram

7news-test2008 plus news-syscomb2009 for tuning and newstest2009 for testing.
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tokens are OOV. For Hindi, 61% of the 8, 137 unique unigrams in the tuning and test

sets are OOV with respect to our training corpus, and 18% of unigram tokens are

OOV. However, because automatic word alignments estimated over the small parallel

training corpora are noisy, we use bilingual lexicon induction to induce translations

for all unigrams. We use our Wikipedia and online news web crawls comparable

corpora to estimate similarity scores. Together, the two datasets contain about 900

million words of Spanish data and about 50 million words of Hindi data. For both

languages, we limit the set of hypothesis target unigram translations to those that

appear at least 10 times in our comparable corpora.

We use 3, 000 high probability word translation pairs extracted from each parallel

corpus as positive supervision and 9, 000 random word pairs as negative supervision.

We use Vowpal Wabbit8 for learning. The top-5 induced translations for each source

language word are used as both a baseline set of new translations (Section 7.3.5.3)

and for composing phrase translations.

7.3.3 Composing and Pruning Phrase Translations

There are about 183 and 66 thousand unique bigrams and trigrams in the Spanish

and Hindi tuning and test sets, respectively. However, many of these phrases do not

demand new hypothesis translations. We do not translate those which contain num-

bers or punctuation. Additionally, for Spanish, we exclude names, which are typically

8http://hunch.net/~vw/, version 6.1.4. with standard learning parameters
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translated identically between Spanish and English.9 We exclude phrases which are

sequences of stop words only. Additionally, we exclude phrases that appear more than

100 times in the small training corpus because our seed phrase table likely already

contains high quality translations for them. Finally, we exclude phrases that appear

fewer than 20 times in our comparable corpora as our comparable-corpora based fea-

tures are unreliable when estimated over so few tokens. We hypothesize translations

for the approximately 15, 000 and 6, 000 Spanish and Hindi phrases, respectively,

which meet these criteria. Our approach for inducing translations straightforwardly

generalizes to any set of source phrases.

In defining loosely compositional phrase translations, we use both the induced un-

igram dictionary and the dictionary extracted from the word aligned parallel corpus.

We expand these dictionaries further by mapping unigrams to their five-character

word prefixes. We use our Wikipedia comparable corpora to construct stop word

lists, containing the most frequent 300 words in each language, and indexes of mono-

lingual phrase frequencies. Recall that there are about 83 and 38 million unique

phrases up to length three in the English sides of the Spanish and Hindi comparable

corpora. However, we use a target monolingual frequency filter and ignore those tar-

get phrases that appear fewer than twenty times in the Spanish set and fewer than

ten times in the Hindi set, reducing the size of each to 1.3 and 1.1 million English

phrases, respectively. On average, our Spanish model yields 7, 986 English transla-

9Our names list comes from page titles of Spanish Wikipedia pages about people. We iterate
through years, beginning with 1AD, and extract names from Wikipedia ‘born in’ category pages,
e.g. ‘2013 births,’ or ‘Nacidos en 2013.’
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tions for each Spanish bigram, and 9, 231 for each trigram, or less than 0.1% of all

possible candidate English phrases. Our Hindi model yields even fewer candidate

English phrases, 826 for each bigram and 1, 113 for each trigram, on average.

We use the features enumerated in Section 7.2.3 to rerank candidate target trans-

lations for each source phrase. We extract supervision from the seed translation

models by first identifying phrase pairs with multi-word source strings, that appear

at least three times in the training corpus, and that are composeable using unigram

translations in the models and induced dictionaries. Then, for each language pair,

we use the 3, 000 that have the highest ppf |eq scores as positive supervision. We

randomly sample 9, 000 compositional phrase pairs from those not in each phrase

table as negative supervision. As with inducing unigram translations, we use Vowpal

Wabbit for learning a log linear model to score any phrase pair and rerank candidate

target translations by their classification scores.

7.3.4 MT Experimental Setup

We use GIZA++ to word align each training corpus. We use the Moses SMT

framework (Koehn et al., 2007) and the standard phrase-based MT feature set, in-

cluding phrase and lexical translation probabilities and a lexicalized reordering model.

When we augment our models with new translations, we use the average reordering

scores over all bilingually estimated phrase pairs. We tune all models using batch

MIRA (Cherry and Foster, 2012). We average results over three tuning runs and use
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approximate randomization to measure statistical significance (Clark et al., 2011).

For Spanish, we use a 5-gram language model trained on the English side of the

complete Europarl corpus and for Hindi a 5-gram language model trained on the

English side of the complete training corpus released by Post et al. (2012). We train

our language models using SRILM with Kneser-Ney smoothing. Our baseline models

use a phrase limit of three, and we augment them with translations of phrases up to

length three in our experiments.

7.3.5 Results

7.3.5.1 Unigram Translations

Table 7.3 shows examples of top ranked translations for several Spanish words.

Although performance is generally quite good, we do observe some instances of false

cognates, for example the top ranked translation for aburridos, which translates cor-

rectly as bored, is burritos. Using automatic word alignments as a reference, we find

that 44% of Spanish tuning set unigrams have a correct translation in their top-10

ranked lists and 62% in the top-100. For Hindi, 31% of tuning set unigrams have a

correct translation in their top-10 ranked lists and 43% in the top-100. These results

are slightly lower than those reported in Chapter 4, where we observed a 43% top-10

and 60% top-100 accuracy. The difference is likely due to the lower frequency and

burstiness of the average word type in the tuning data.
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7.3.5.2 Composed Phrase Pairs

Before moving to end-to-end SMT experiments, we evaluate the goodness of the

composed and pruned phrase pairs themselves. In order to do so, we use the same

set of oracle phrase translations described in Section 7.2.1.10

Table 7.4 shows the top three English translations for several Spanish phrases

along with their model scores. Common, loose translations of some phrases are scored

higher than less common but literal translations. For example, very obvious scores

higher than very evident as a translation of Spanish muy evidentes. Similarly, dutch

minister is scored higher than netherlands minister as a translation for ministro neer-

landès.

We use model scores to rerank candidate translations for each source phrase and

keep the top-k translations. Figure 7.4 shows the precision and type-based recall (the

percent of source phrases for which at least one correct translation is generated) as

we vary k for each language pair. At k “ 1, precision and recall are about 27% for

Spanish and about 25% for Hindi.11 At k “ 100, recall increases to 57% for Spanish

and precision drops to 2%. For Hindi, recall increases to 40% and precision drops to

1%.

Moving from k “ 1 to k “ 100, precision drops at about the same rate for the

two source languages. However, recall increases less for Hindi than for Spanish. We

10We do not use our manually aligned sets here because we only have annotations for a subset of
the development and test sets.

11Since we are computing type-based recall, and at k=1, we produce exactly one translation for
each source phrase, precision and recall are the same.
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attribute this to two things. First, our oracle experiments in Section 7.2.1 showed

that there is less to gain in composing phrase translations for Hindi than for Spanish.

Second, the accuracy of our induced unigram translations is lower for Hindi than it is

for Spanish. Without accurate unigram translations, we are unable to compose high

quality phrase translations.

Because we composed translations for source phrases that appear in the training

data up to 100 times, our baseline model includes some of the oracle phrase trans-

lations. Not surprisingly, the bilingually extracted phrase pairs have high precision

(81% and 40% for Spanish and Hindi, respectively) and low recall (6% and 15% for

Spanish and Hindi, respectively).

7.3.5.3 End-to-End Translation

Table 7.5 shows end-to-end translation BLEU score results. Our first baseline

SMT models are trained using only 2, 000 parallel sentences and no new translation

model features. Our Spanish baseline achieves a BLEU score of 13.47 and our Hindi

baseline a BLEU score of 8.49. When we add the 30 new feature functions estimated

over comparable monolingual corpora, performance is slightly lower, 13.35 for Spanish

and 8.26 for Hindi. Our third baselines augment the second with unigram translations

for all OOV tuning and test set source words. We append the top-5 translations for

each,12 score both the original and the new phrase pairs with the new feature set, and

12The same set used for composing phrase translations.
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retune. With these additional unigram translations, performance increases to 14.01

for Spanish and 8.31 for Hindi.

We append the top-k composed translations for the source phrases described in

Section 7.3.1 to the third baseline models. Both original and new phrase pairs are

scored using the new feature set. BLEU score results are shown at different values

of k along the precision-recall plots for each language pair in Figure 7.4 as well as

in Table 7.5. We would expect that higher precision and higher recall would benefit

end-to-end SMT. As usual, a tradeoff exists between precision and recall, however, in

this case, improvements in recall outweigh the risk of a lower precision. As k increases,

precision decreases but both recall and BLEU scores increase. For both Spanish and

Hindi, BLEU score gains start to taper off at k values over 25.

In additional experiments, we found that without the new features the same sets

of composed phrase pairs hurt performance slightly in comparison with the baseline

augmented with unigram translations, and results don’t change as we vary k.13 Thus,

the translation models are able to effectively use the higher recall sets of new phrase

pairs because we also augmented the models with 30 new feature functions, which

help them distinguish good from bad translations.

13For all values of k between 1 and 100, without the new features, BLEU scores are about 13.70
for Spanish
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7.3.6 Discussion

Our results showed that including a high recall set of composed translations in our

augmented phrase table successfully improved the quality of our machine translations.

The algorithm that we proposed for hypothesizing translations is flexible, and in

future work we plan to modify it slightly to output even more candidate translations.

For example, we could retrieve target phrases which contain at least one source word

translation instead of all. Alternatively, we could identify candidates using entirely

different information, for example the monolingual frequency of a source and target

word, instead of unigram translations. This type of inverted index may improve recall

in the set of hypothesis phrase translations at the cost of generating a much bigger

set for reranking.

Our new phrase table features were informative in distinguishing correct from

incorrect phrase translations, and they allowed us to make use of noisy but high

recall supplemental phrase pairs. This is a critical result for research on identifying

phrase translations from non-parallel text. We also believe that using fairly strong

target (English) language models contributed to our models’ ability to discriminate

between good and bad composed phrase pairs. We leave research on the influence of

the language model in our setting to future work.

In this work, we experimented with two language pairs, Spanish-English and

Hindi-English. While Spanish and English are very closely related, Hindi and En-

glish are less related. Our oracle experiments showed potential for composing phrase
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translations for both language pairs, and, indeed, in our experiments using composed

phrase translations we saw significant translation quality gains for both. We ex-

pect that improving the quality of induced unigram translations will yield even more

performance gains.

The vast majority of prior work on low resource MT has focused on Spanish-

English (Haghighi et al., 2008; Ravi and Knight, 2011; Klementiev et al., 2012; Dou

and Knight, 2012; Ravi, 2013; Dou and Knight, 2013). Although such experiments

serve as important proofs of concept, we believe it is important to also experiment

with a more truly low resource language pair. The success of our approach that we

have seen for Spanish and Hindi suggests that it is worth pursuing such directions for

other even less related and resourced language pairs. In addition to language pair,

text genre and the degree of looseness or literalness of given parallel corpora may also

affect the amount of phrase translation compositionality.
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Reachable via Reachable via
Test Data Training Data Composition Total

Bitext Src Total In Training Aligned + Stop + Induced Reachable
Size Phrases Translations Bitext Training Ins/Del Trans

Spanish

1k

5623 6468

5.0% 8.0% 10.6% 18.6% 21.7%
2k 7.1% 9.5% 13.7% 20.6% 24.6%
4k 10.0% 11.0% 16.6% 22.7% 28.1%
8k 12.8% 12.9% 19.9% 25.1% 31.6%
Full 40.5% 17.7% 28.5% 30.8% 51.0%

Hindi

1k

2423 2841

2.8% 7.2% 11.0% 17.7% 19.1%
2k 5.3% 9.4% 14.9% 19.9% 22.5%
4k 7.7% 12.4% 18.5% 23.2% 27.0%
8k 11.3% 13.9% 21.4% 25.0% 30.4%
Full 18.2% 16.4% 25.0% 27.8% 36.7%

Table 7.1: Percent of bigram and trigram translations that could be composed from
unigram translations. Corpus size is given in number of sentence pairs and determines
the phrase table from which initial unigram translations are extracted. The first col-
umn of results gives the percent of test phrase pairs that are reachable using the
training text alone, without composing any additional translations. The next set of
results show the percent of phrase pairs that are reachable via compositional transla-
tion. The first column shows results using only the unigram translations in the phrase
table for composition. The second column also allows for stop words to be deleted
from the source (e.g. Given Spanish ‘la paz en,’ the ‘la’ can be ignored and ‘peace
in’ qualifies as a compositional translation) or inserted in the English (e.g. Spanish
‘negociación,’ English ‘negotiation’ can be generated compositionally and ‘the’ can be
inserted, giving ‘the negotiation.’). The third column also uses unigram translations
induced using our supervised bilingual lexicon induction technique. The final column
of results shows the total percent of test set phrase pairs that could be covered by
both standard extraction from training data and via translation composition.
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Experiment
BLEU

Baseline Monolingually
Features Estimated Feats.

Spanish

Low Resource Baseline 13.47 13.35

+ Oracle compositional trans. from training 14.90 15.18

+ Oracle compositional trans. from training and induced 15.47 15.94

Hindi

Low Resource Baseline 8.49 8.26

+ Oracle compositional trans. from training 9.12 9.54

+ Oracle compositional trans. from training and induced 10.09 10.19

Table 7.2: Motivating Experiment: BLEU results using the baseline SMT model and
composeable oracle translations with and without induced unigram translations.

Spanish abdominal abejorro abril aburridos accionista aceite actriz

Top 5
English
Trans.

abdominal bumblebees april burritos actionists adulterated actress
abdomen bombus march boredom actionist iooc actor
bowel xylocopa june agatean telmex olive award

appendicitis ilyitch july burrito shareholder milliliters american
acute bumble december poof antagonists canola singer

Table 7.3: Top five induced translations for several source words. Correct translations
are bolded. aceite translates as oil.
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casa house

linda pretty

linda cute

linda handsome

la casa linda

stop words removed

casa linda
Cartesian product
of unigram translations

cute, house 
handsome, house 
house, pretty

Inverted Index lookups

pretty house 
the pretty house 
a pretty house 
cute house 
house and handsome

Bilingual Dictionary:

Input Phrase:

A

B

C

D

Figure 7.3: Example of loosely composed translations for the Spanish input in A,
la casa linda. In B, we remove the stop word la. Then, in C, we enumerate the
cartesian product of all unigram translations in the bilingual dictionary and sort the
words within each alphabetically. Finally, we look up each list of words in C in the
inverted index, and corresponding target phrases are enumerated in D. The inverted
index contains all phrasal combinations and permutations of the word lists in C which
also appear monolingually with some frequency and with, optionally, any number of
stop words.
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Spanish English Score

ambos partidos
two parties 5.72
both parties 5.31
and parties 3.16

televisión estatal
state television and 8.12
state television 7.13
television interview 4.24

muy poderoso
very powerful 3.50
powers were 1.77
were powered 1.61

hab́ıa apoyado
were supported 4.80
were members 4.52

had supported 4.39

ministro neerlandès
finnish minister 4.76
finnish ministry 2.77
dutch minister 1.31

unas cuantas semanas
over a week 4.30
a few weeks 3.72
few weeks 3.22

muy evidentes
very obvious 1.88
very evident 1.87
obviously very 1.84

prácticamente imposible
almost impossible 5.43

almost all 3.52
almost impossible to 2.22

Table 7.4: Top three compositional translations for several source phrases and their
scores generated by our supervised discriminative model. Correct translations are
bolded.
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Figure 7.4: Precision and recall curve with BLEU scores for the top-k scored composed
translations. k varies from 1 to 200. Baseline model performance is shown with a red
triangle..
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Experiment
BLEU

Spanish Hindi

Baseline 13.47 8.49
+ Mono. Scores 13.35 8.26
+ Mono. Scores & OOV Trans 14.01 8.31
+ Phrase Trans, k=1 13.90 8.16
+ Phrase Trans, k=2 14.07 8.86*
+ Phrase Trans, k=5 14.30* 8.89*
+ Phrase Trans, k=25 14.50* 9.00*
+ Phrase Trans, k=200 14.57* 9.04*

Table 7.5: Experimental results. First, the baseline models are augmented with
monolingual phrase table features and then also with the top-5 induced translations
for all OOV unigrams. Then, we append the top-k composed phrase translations to
the third baseline models. BLEU scores are averaged over three tuning runs. We
measure the statistical significance of each +Phrase Trans model in comparison with
the highest performing (bolded) baseline for each language; * indicates statistical
significance with p ă 0.01 over the baseline performance.
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Chapter 8

From Low Resource MT to

Domain Adapted MT

In this chapter, we apply several of our techniques for improving the performance

of machine translation for low resource language pairs to low resource text domains.

We present and extend the approaches and results that we published in Irvine and

Callison-Burch (2014b). Domain adaptation in machine translation is known to be

a challenging research problem that has substantial real-world application. In this

setting, we have access to training data in some old-domain of text but very little or

no training data in the domain of the text that we wish to translate. For example,

we may have a large corpus of parallel newswire training data but no training data

in the medical domain, resulting in low quality translations at test time due to the

mismatch.
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In Section 3.4 and, originally, in Irvine et al. (2013a), we introduced a taxonomy

for classifying machine translation errors related to lexical choice as well as two tech-

niques, WADE and TETRA, for measuring the impact of each error type. Recall that

our ‘S4’ taxonomy includes seen, sense, score, and search errors. In Section 8.2,

we present WADE and TETRA error analyses in a domain shift setting. We conclude

that seen and sense errors are the most frequent but that there is also room for

improving errors due to inaccurate translation model scores.

In this chapter, we use comparable corpora to reduce the number of seen and

score errors in a domain adaptation setting. In Carpuat et al. (2013), we defined the

SenseSpotting task, where the goal is to identify words in a new-domain monolingual

text that appeared in the old-domain text but which have a new, previously unseen

sense. Although some sense shifts do not demand new translations, many do. If we

could reliably identify words with new senses in new-domain text, then it may be

possible to use our bilingual lexicon induction techniques to learn new translations

for them and reduce SMT sense errors. We leave this for future work.

We assume the setting where we have an old-domain parallel training corpus but

no new domain training corpus.1 We do, however, have access to a mixed-domain

comparable corpus. We identify new-domain text within our comparable corpus and

use that data to (1) estimate new translation features on the translation models ex-

tracted from old-domain training data, and (2) induce translations for unseen words.

1Some prior was has referred to old-domain and new-domain corpora as out-of-domain and in-
domain, respectively.

214



CHAPTER 8. FROM LOW RESOURCE MT TO DOMAIN ADAPTED MT

Specifically, we focus on the French-English language pair because carefully curated

datasets exist in several domains for tuning and evaluation. Following our prior work,

we use the Canadian Hansard parliamentary proceedings as our old-domain and adapt

models to both the medical and the science domains. At over 8 million sentence pairs,

the Canadian Hansard dataset is one of the largest publicly available parallel corpora

and provides a very strong baseline. In Irvine et al. (2013a), we showed that, unlike

the newswire domain, the medical and science domains are very different from the

parliamentary proceedings domain.

We give details about each dataset in Section 8.1. In Section 8.2, we present an

error analysis of what goes wrong when we shift domains. Finally, in Sections 8.4 and

8.5, we describe novel methods for reducing, first, the number of score errors and,

then, seen errors in a domain adaptation setting.

8.1 Domain Adaptation Data

We assume that the following data is available in our translation setting:

‚ Large old-domain parallel corpus for training

‚ Small new-domain parallel corpora for tuning and testing

‚ Large new-domain English monolingual corpus for language modeling and iden-

tifying new-domain-like comparable corpora
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Corpus Source Words Target Words

Training
Canadian Hansard 161.7 m 144.5 m

Tune-1 / Tune-2 / Test
Medical 53k / 43k / 35k 46k / 38k / 30k
Science 92k / 120k / 120k 75k / 101k / 101k

Language Modeling and Comparable Corpus Selection
Medical - 5.9 m
Science - 3.6 m

Table 8.1: Summary of the size of each corpus of text used in this chapter in terms
of the number of source and target word tokens.

‚ Large mixed-domain comparable corpus, which includes some text from the

new-domain

These data conditions are typical for many real-world uses of machine translation. A

summary of the size of each corpus is given in Table 8.1, and brief descriptions of the

parallel datasets are below. In all cases, we use publicly available training, tuning,

and test sets.2

Hansard: Canadian parliamentary proceedings, consists of manual transcriptions

and translations of meetings of Canada’s House of Commons and its committees from

2001 to 2009. Discussions cover a wide variety of topics, and speaking styles range

from prepared speeches by a single speaker to more interactive discussions. It is

significantly larger than Europarl, the common source of old domain data (Foster

and Kuhn (2007), Koehn and Schroeder (2007), and Haddow and Koehn (2012),

among others).

2http://www.umiacs.umd.edu/~hal/damt/
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Medical: Medical documents from the European Medicines Agency (EMEA),

made available with the OPUS corpora collection (Tiedemann, 2009). This corpus

primarily consists of drug usage guidelines, which use boilerplate sentences that are

often repeated across documents.

Science: Parallel abstracts from scientific publications in many disciplines includ-

ing physics, biology, and computer science. The data was collected from two distinct

sources: (1) Canadian Science Publishing made available translated abstracts from

their journals which span many research disciplines; (2) parallel abstracts from PhD

theses in Physics and Computer Science collected from the HAL public repository

(Lambert et al., 2012).

Parallel corpora are not available for the vast majority of text domain and language

pair combinations in quantities large enough to train domain-specific models. In this

chapter, we do not use any new-domain parallel data for training; we assume that we

only have enough for tuning and testing. However, we do use the English side of the

new-domain training corpora for language modeling and for identifying new-domain-

like comparable corpora from our mixed domain comparable corpus. We address how

we select new-domain comparable corpora in Section 8.3.
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8.2 WADE and TETRA Analyses

Before applying our techniques for using comparable corpora to improve machine

translation performance, we analyze what types of errors are made when we use

a translation model trained on old domain data to translation text in some new

domain. We extract a phrase-based model with a phrase limit of seven from the

full Hansard parallel dataset. We use the standard phrase-based SMT feature set,

including forward and backward phrase and lexical translation probabilities as well

as a standard lexicalized reordering model. For each domain, we use two 5-gram

language models: one estimated over the English side of the Hansard data and the

other estimated over the English side of the domain-specific parallel corpus. In later

experiments, we also use the English side of the parallel corpora to identify new-

domain like comparable corpora (see Section 8.3). We tune the models using batch

MIRA (Cherry and Foster, 2012) and development sets in each domain and then use

the models to translate each test set.

In our experiments below, we do not make use of the French side of the new-

domain parallel corpora at all. However, for the purposes of our comparison analyses

here, we train a single model on the combination of all old-domain and all new-

domain parallel training data. Recall that the key idea behind TETRA is to enhance

a baseline translation model, in this case, OLD, an MT system trained on old domain

parallel text, to compare the impact of potential sources of improvement. We use

parallel new domain data to propose enhancements to the OLD system. This provides
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Domain
% Correct % Seen Errors % Sense Errors % Score Errors

OLD MIXED %Δ OLD MIXED %Δ OLD MIXED %Δ OLD MIXED %Δ
Medical 55.97 62.60 +12% 9.28 4.01 -56% 16.16 13.76 -15% 18.59 19.63 + 6%
Science 56.20 61.50 +9% 10.22 5.63 -45% 13.58 13.11 - 3% 20.00 19.77 - 1%

Table 8.2: WADE: Percent correct, percent seen errors, percent sense errors, and
percent score errors. The changes (%Δ) from OLD to MIXED are also given; here,
negative changes are good (error reduction).

a realistic measure of what could be achieved if one had access to parallel data in the

new domain. The specific system we build, called MIXED, is a linear interpolation

of a translation model trained only on old domain data and a model trained only on

new domain data (Foster and Kuhn, 2007). The mixing weights are selected via grid

search on a tuning set, selecting for BLEU. We also present WADE analyses on the

MIXED system, which, again, provides insight into the potential impact of targeting

improvements in each error category.

Table 8.2 shows the results of a WADE analysis on the machine translated test

set in each domain. As in Section 3.4, we assume that search is not a major

source of error. In both domains, the WADE analysis shows that just over 50% of the

alignment links between test set sentences and their references are translated correctly

by the old-domain model, and the percent of total correct alignment links increases by

about 5% under MIXED. For both domains, most of the errors analyzed by WADE

are score errors, followed by sense and then seen. The number of seen errors

goes down dramatically when moving from the OLD model to the MIXED. This is

somewhat less true for sense errors. At first glance, it appears that the MIXED
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Correct Incorrect
Total

Cor Seen Score Seen Sense
Medical
Cor 48.3 0.0 3.1 0.0 0.0 51.5
Seen-C 1.6 2.8 0.1 0.0 0.0 4.5
Score 5.3 0.0 13.3 0.0 0.0 18.6
Seen-I 2.3 0.0 0.5 4.0 2.5 9.3
Sense 2.3 0.0 2.6 0.0 11.3 16.2
Total 59.8 2.8 19.6 4.0 13.8 100
Science
Cor 49.8 0.0 3.6 0.0 0.0 53.3
Seen-C 1.4 1.4 0.0 0.0 0.0 2.9
Score 5.8 0.0 14.2 0.0 0.0 20.0
Seen-I 1.8 0.0 0.3 5.6 2.5 10.2
Sense 1.4 0.0 1.6 0.0 10.6 13.6
Total 60.1 1.4 19.8 5.6 13.1 100

Table 8.3: Percent of WADE annotation changes moving from OLD (rows) to MIXED
(columns) models, for each domain. Non-zero off-diagonals are bolded. Seen-C indi-
cates Freebies, and Seen-I indicates unseen words that were mistranslated.

model is worse in terms of score errors according to WADE. However, recall that in

our WADE analysis, many errors that used to be seen and sense errors in the OLD

model may become score errors in the new domain.

To see the full picture, we must look at how the different error categories change

from the OLD system to the MIXED system in WADE. This is shown in Table 8.3.

In this table, the rightmost column contains the total percentage of errors in the OLD

systems; the rows labeled Total show the total percentage of errors in the MIXED

systems; the remaining cells these errors changing from OLD to MIXED. For the

medical domain, the OLD system has 18.6% score errors. Of those, 5.3% are fixed

in the MIXED system.
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Domain OLD OLD +seen OLD +sense OLD +score MIXED
Medical 28.69 31.02 (+ 8%) 30.59 (+ 7%) 30.21 (+ 5%) 36.60
Science 26.13 27.72 (+ 6%) 27.29 (+ 4%) 28.68 (+10%) 32.23

Table 8.4: TETRA results on science and medical domains using OLD and MIXED
models (first and last columns), OLD enhanced with seen translations (second), sense
translations (third), and scores (fourth), together with percent improvements in terms
of BLEU score. Here, positive improvements are good (higher BLEU scores).

For our two domains of interest, addressing seen errors can be substantially help-

ful, in terms of both BLEU score and the fine-grained distinctions considered by

WADE. The more interesting conclusion, however, is that simply bringing in new

words isn’t enough. Table 8.3 shows that in these two domains there are a substan-

tial number of errors that transition from being SEEN-Incorrect to SENSE-Incorrect.

This indicates that besides observing a new word, we must also observe it with all of

its correct translations.

Likewise, there is a lot to be gained in BLEU by correcting new sense translation

errors (essentially the same percentage as for seen). But this is harder to solve. We

can see in Table 8.3 that from the sense errors of the OLD system, half become

correct but the other half become score errors. So giving appropriate scores to the

new senses is a challenge. This makes sense: these new sense are now “competing”

with old ones, and getting the interpolation right between old and new domain tables

is difficult.

Table 8.4 shows the results of our TETRA analysis, which is largely consistent

with what we see in the WADE analysis. That is, for both domains, fixing seen
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errors can be substantially helpful in terms of BLEU score as well as the finer-grained

distinctions considered by WADE. The same is true to a lesser degree for sense errors.

The more interesting conclusion, however, is that simply translating new words is not

enough; we must also observe a new word with all of its correct translations and

translation scores.

In Irvine et al. (2013a), we concluded that that majority of the difference between

the performance of the old-domain model and each of the mixed-domain models,

which are trained using both old and new domain parallel data, is due to seen and

sense errors. Old-domain models also make many score errors. However, they can

be difficult to correct, even given some new domain parallel training data, because

manipulating scores can hurt as often as it helps. In our experiments in Section 8.3,

rather than manipulate the existing OLD model scores, we augment a model with

new features estimated using new-domain comparable corpora.

8.3 New-Domain Comparable Corpora

We once again use Wikipedia as a source of comparable corpora. There are over

half a million pairs of inter-lingually linked French and English Wikipedia documents.3

We assume that we have enough monolingual new-domain data in one language to

rank Wikipedia pages according to how new-domain-like they are. In particular, in

3We limit our set to those pages that are at least 500 words long, avoiding pages with only small
amounts of natural language content.
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our experiments here, we use our new-domain English language modeling data to

measure new-domain-likeness. We could have targeted our learning even more by

using our new-domain French test sets to select comparable corpora. Doing so may

increase the similarity between our test data and comparable corpora. However, to

avoid overfitting any particular test set, we use our large English new-domain LM

corpus instead.

For each inter-lingually linked pair of French and English Wikipedia documents,

we compute the percent of English phrases up to length four that are observed in the

English monolingual new-domain corpus and rank document pairs by the geometric

mean of the four overlap measures. More sophisticated ways to identify new-domain-

like Wikipedia pages (e.g. Moore and Lewis (2010)) may yield additional performance

gains, but, qualitatively, the ranked Wikipedia pages seem reasonable for the purposes

of generating a large set of top-k new-domain document pairs. The top-10 ranked

pages for each domain are listed in Table 8.5. The top ranked science domain pages

are primarily related to concepts from the field of physics but also include computer

science and chemistry topics. The top ranked medical domain pages are nearly all

prescription drugs, which makes sense given the content of the EMEA medical corpus.

In our experiments in Section 8.4, we explore the effect of varying the number of

comparable document pairs used to estimate the new feature scores.
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Science Medical
Diagnosis (artificial intelligence) Pregabalin

Absorption spectroscopy Cetuximab
Spectral line Fluconazole

Chemical kinetics Calcitonin
Mahalanobis distance Pregnancy category

Dynamic light scattering Trazodone
Amorphous solid Rivaroxaban

Magnetic hyperthermia Spironolactone
Photoelasticity Anakinra

Galaxy rotation curve Cladribine

Table 8.5: Top 10 Wikipedia articles ranked by their similarity to a new-domain
English corpus.

8.4 Using Comparable Corpora to Score

Phrase Tables for Domain Adaptation

We begin with a scored phrase table estimated using our old-domain (Hansard)

parallel training corpus. Then, we use the methods described in Chapter 5 to supple-

ment the baseline model with additional translation scores estimated over new-domain

comparable corpora. We rank English Wikipedia documents according to how new-

domain-like they are and use the top-k pages to estimate the following additional

phrase table features: (1) phrasal context similarity, (2) lexical context similarity, (3)

phrasal topic similarity, (4) lexical topic similarity, and (5) lexical string similarity.

The details of each feature function are given in Chapter 5.

These similarity metrics all allow for scores of zero, which can be problematic
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for our log-linear translation models. We use our second tuning sets4 to tune a

minimum threshold parameter for our new features. We measure performance in

terms of BLEU score on the second tuning set as we vary the new feature threshold

between 1e´07 and 0.5 for each domain. A threshold of 0.01, for example, means that

we replace all feature with values less than 0.01 with 0.01. For both new-domains,

performance drops when we use thresholds lower than 0.01 and higher than 0.25. We

use a minimum threshold of 0.1 for all experiments presented below for both domains.

We word align our old-domain training corpus using GIZA++ and use the Moses

SMT toolkit (Koehn et al., 2007) to extract a phrase table. Our baseline models use

a phrase limit of seven and the standard phrase-based SMT feature set, including

forward and backward phrase and lexical translation probabilities. Additionally, we

use the standard lexicalized reordering model. We experiment with three 5-gram

language models trained using SRILM with Kneser-Ney smoothing on (1) the English

side of the Hansard training corpus, (2) the relevant new-domain monolingual English

corpus, and (3) the English side of our comparable corpora. We use the top 50, 000

most new-domain-like English Wikipedia documents (about 60 million words for each

domain) to train our comparable corpora language models.5 We experiment with

different language model combinations to measure how much performance varies with

our access to monolingual new-domain language modeling data.

4test2 datasets released by Irvine et al. (2013a)
5We experimented with language models estimated over varying numbers of top-k new-domain-

like English documents and did not observe any significant difference in performance; none of the
LMs improve translation quality.
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Our first comparison system augments the standard feature set with the ortho-

graphic similarity feature, which is not based on comparable corpora. Our second

comparison system uses both the orthographic feature and the contextual and topic

similarity features estimated over a random set of comparable document pairs. The

third system estimates contextual and topic similarity using new-domain-like compa-

rable corpora. We tune our phrase table feature weights for each model separately

using batch MIRA (Cherry and Foster, 2012) and new-domain tuning data. Results

are averaged over three tuning runs, and we use the implementation of approximate

randomization released by Clark et al. (2011) to measure whether the output of each

feature-augmented model is statistically significantly different from the baseline model

that uses the same language model.

Table 8.6 presents a summary of our results on the test set in each domain.6 We

compare (1) a baseline SMT model, (2) our baseline augmented with features esti-

mated over 5 thousand randomly selected pairs of Wikipedia pages, (3) our baseline

augmented with features estimated over 5 thousand pairs of Wikipedia pages selected

for their similarity with our new-domain target language corpus.

Using only the old-domain LM, our baselines yield BLEU scores of 22.70 and 21.29

on the medical and science test sets, respectively. When we add the orthographic

similarity feature, BLEU scores increase significantly, by about 0.4 on the medical

data and 0.6 on science. Adding the contextual and topic features estimated over

6The slight differences between baseline BLEU scores and those presented in Table 8.4 are due
only to variation in tuning. In each table we presented those published in our prior work, Irvine
et al. (2013a) and Irvine and Callison-Burch (2014b).
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Language Model(s) Medical Science

Old

Baseline 22.70 21.29
+ Orthographic Feature 23.09* (`0.4) 21.86* (`0.6)

+ Orthographic & Random CC Features 23.22* (`0.5) 21.88* (`0.6)
+ Orthographic & New-domain CC Features 23.98* (`1.3) 22.55* (`1.3)

Old+New

Baseline 28.82 26.18
+ Orthographic Feature 29.02 (`0.2) 26.40* (`0.2)

+ Orthographic & Random CC Features 28.86 (`0.0) 26.52* (`0.3)
+ Orthographic & New-domain CC Features 29.16* (`0.3) 26.50* (`0.3)

Old+CC

Baseline 22.70 21.71
+ Orthographic Feature 23.14* (`0.4) 22.05* (`0.3)

+ Orthographic & Random CC Features 23.23* (`0.5) 22.40* (`0.7)
+ Orthographic & New-domain CC Features 23.62* (`0.9) 22.96* (`1.3)

Table 8.6: Comparison between the performance of baseline old-domain translation
models and domain-adapted models in translating science and medical domain text.
We experiment with different combinations of three language models: old, trained
on the English side of our Hansard old-domain training corpus, new, trained on the
English side of the parallel training data in each new domain, and cc, trained on
the English side of our comparable corpora. We use comparable corpora of 5, 000 (1)
random, and (2) the most new-domain-like document pairs to score phrase tables. All
results are averaged over three tuning runs, and we perform statistical significance
testing comparing each system augmented with additional features with the baseline
system that uses the same LMs. * indicates that the BLEU scores are statistically
significantly different to a p-value of less than 0.01 compared with the baselines.

a random selection of comparable document pairs improves BLEU scores slightly in

both domains. Finally, using the most new-domain like document pairs to estimate

the contextual and topic features yields a 1.3 BLEU score improvement over the

baseline in both domains. For both domains, this result is a statistically significant

improvement7 over each of the first three systems.

In both domains, the new-domain language models contribute substantially to

translation quality. Baseline BLEU scores increase by about 6 and 5 BLEU scores

7p-value ă 0.01
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points in the medical and science domains, respectively, when we add the new-domain

LMs. In the medical domain, neither the orthographic feature nor the orthographic

feature in combination with contextual and topic features estimated over random

document pairs results in a significant BLEU score improvement. However, using

the orthographic feature and the contextual and topic features estimated over new-

domain document pairs yields a small but significant improvement of 0.3 BLEU. In

the science domain, in contrast, all three augmented models perform statistically

significantly better than the baseline. Contextual and topic features yield only a

slight improvement above the model that uses only the orthographic feature, but the

difference is statistically significant. For the science domain, when we use the new

domain language model, there is no difference between estimating the contextual and

topic features over random comparable document pairs and those chosen for their

similarity with new-domain data.

In the medical domain, the language model trained on 50, 000 English documents

in our comparable corpora does not improve performance above the baseline that uses

only the old domain LM. In contrast, with the new language model, BLEU scores

increase by about 0.4 in the science domain in all experimental conditions. Differences

across domains may be due to the fact that the medical domain corpora are much

more homogenous, containing the often boilerplate text of prescription drug labels,

than the science domain corpora. The science domain corpora, in contrast, contain

abstracts from several different scientific fields; because that data is more diverse, a
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randomly chosen mixed-domain set of comparable corpora may still be relevant and

useful for adapting a translation model.

Figure 8.1 shows learning curves over a varying number of comparable document

pairs for each domain. The simple baseline uses only the standard bilingual phrase

table features estimated over the old-domain parallel training corpus and both the

old and new LMs. Our proposed approach orders comparable document pairs by how

new-domain-like they are and augments models with the orthographic feature as well

as the contextual and topic features estimated over the top-k document pairs. As a

result, using more comparable document pairs means that there is more data from

which to estimate signals, but it also means that the data is less new-domain like

overall.

In the medical domain, we do not observe additional performance gains by us-

ing more than just a few thousand comparable document pairs to estimate the new

features. In fact, performance drops when 10, 000 or more document pairs are used.

Again, we attribute this to the homogeneity of the medical data; only a small set of

documents in our comparable corpora are in the same domain of text. In contrast,

BLEU scores improve very slightly as we add more comparable document pairs in the

science domain. These gains are not statistically significant, however.

The two major findings in the experiments presented here are as follows: (1) Doing

domain adaptation by using new-domain comparable corpora to score a phrase table

estimated over old-domain data can significantly improve translation quality, and
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(2) Results are highly dependent on the type and size of the initial mixed-domain

comparable corpus as well as the homogeneity of the text domain of interest.

8.5 Using Comparable Corpora to Trans-

late Unseen Words for Domain Adap-

tation

In Section 8.4, we used new-domain comparable corpora to reduce the number of

score errors in a domain adaptation SMT setting. Here, we use comparable corpora

to reduce the number of seen errors. As was the case for low resource SMT, there

is a lot to be gained in terms of translation quality from identifying translations for

previously unseen, or OOV, words. As in Chapter 6, we use the bilingual lexicon

induction technique introduced in Chapter 4 to identify new unigram translations, in

this case for unknown and low frequency words in our new-domain tuning and test

sets. Table 8.7 gives the rate of OOV and low frequency words for each domain’s

tuning set with respect to the full Hansard corpus.

8.5.1 Bilingual Lexicon Induction Model

We train a bilingual lexicon induction model on 3, 000 unigram translations taken

from the word-aligned Hansard old-domain corpus. As in Chapter 4, we use three
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Training Data Percent of Words
Word Frequency Medical Science

Tokens
0 (OOV)

7.3% 5.8%
Type 23.5% 27.8%
Tokens ď 5

9.6% 7.7%
Type 30.4% 35.3%
Tokens ď 10

10.7% 8.6%
Type 32.9% 38.32%

Table 8.7: Type and token-based OOV rate on the tuning set for each new domain,
with respect to the full Hansard corpus.

times as many randomly chosen word pairs as examples of non-translations. Here,

we only use features extracted from Wikipedia data. Our feature set includes the

following, a subset of those used in Chapter 4:

1. Orthographic Similarity

2. Wikipedia Contextual Similarity

3. Wikipedia Topic Similarity

4. Wikipedia Frequency Similarity

5. Wikipedia IDF Similarity

6. Wikipedia Burstiness Similarity

7. String Identity

8. Inverse Log of Target Wikipedia Frequency

We test our model on a held-out set of 2, 000 translations from our old domain

data. Our French BLI models achieve top-1 and top-10 accuracies of 44% and 63%,

respectively.
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Domain Comparable Corpus Top-1 Accuracy Top-10 Accuracy

Medical

Random 5k 4.1 6.0
Top 5k Medical 29.7 42.5
Top 50k Medical 27.5 42.5

Science

Random 5k 6.0 9.0
Top 5k Science 21.0 31.6
Top 50k Science 24.9 38.9

Table 8.8: Performance of bilingual lexicon induction on tuning set words in each
domain that appear 10 or fewer times in the old-domain training data. Accuracies give
the percent of source words for which a correct target language translation appears
in its top-k ranked list of induced translations.

8.5.2 Evaluation of Induced Translations

We identify all new-domain words that appear ten or fewer times in our old-domain

training data. Using the model learned over old-domain word pairs, we induce a top-k

list of translations for each word in our new-domain list. We allow all English words

that appear three or more times in our comparable corpora as candidate translations.

As usual, before moving to end-to-end SMT experiments, we measure the quality of

our induced translations intrinsically. Table 8.8 shows the top-1 and top-10 accuracies

of induced translations for the OOV and low frequency words in each domain’s tuning

set using several different comparable corpora. Overall, performance is substantially

lower than what we observed over our held out old-domain test set. However, here,

the unigrams for which we would like to induce translations are low frequency. As

we showed in Chapter 4, the performance of our bilingual lexicon induction models

tends to be lower on lower frequency words.

In Section 8.4, we compared the impact of augmenting a baseline SMT model
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with new features estimated over a random set of comparable document pairs and

those estimated over new-domain comparable document pairs. We perform similar

experiments here and compare the accuracy of induced unigram translations when

we estimate features over (1) a general corpus of comparable document pairs, and (2)

new-domain comparable document pairs. In all experiments, we use the same trained

model for ranking candidate translations and only vary how we estimate features over

our test sets. Because we have assumed that we do not have access to a new-domain

parallel training corpus or dictionary, we do not train a domain-specific model of

bilingual lexicon induction. For both the medical and the science domain, estimating

features over the 5, 000 most new-domain document pairs dramatically outperforms

doing so over a random set of 5, 000 document pairs. In the medical domain, top-1

accuracy increases from 4% to 30% when we move from random documents to new-

domain document pairs, and in the science domain it increases from 6% to 21%.

When we use the 50, 000 instead of the 5, 000 most new-domain-like document pairs

to estimate features, we observe only slight performance increases for science and

no additional gains on the medical data. This is consistent with our experiments

estimating new phrase table features; using more data is slightly helpful in the science

domain but not in the medical domain. Again, we attribute this to the relative

heterogeneity of the science domain corpora in comparison with the medical domain

corpora.
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8.5.3 Integrating Translations into End-to-End SMT

Table 8.9 shows the results of our end-to-end SMT experiments where we do

domain adaptation by (1) adding new features estimated over new-domain comparable

corpora (Section 8.4), improving score errors, (2) adding new translations induced

from new-domain comparable corpora, improving seen errors, and (3) adding both

new scores and new translations. As before, we compare the impact of estimating

features and identifying new translations using a random set of comparable document

pairs with using new-domain comparable document pairs. We present results using

the old-domain language model only as well as both the old and new domain language

models. In all experiments, we add the top-1 ranked translation for each OOV and

low frequency word as well as accent-stripped identity translations, which we showed

to be useful in our prior work (Irvine et al., 2013b).

In general, the results show that augmenting models with translations of OOV

and low frequency words does not improve performance in most cases. The one

exception is in the medical domain using both the old and new domain LMs; BLEU

scores increase by about 0.2 in comparison with the model augmented with scores

alone. We attribute this negative result to two things. First, because our old-domain

Hansard training corpus is so large, OOV rates are fairly low even in our domain

adaptation setting. As Table 8.7 shows, only about 7% and 6% of word tokens in

the medical and science tuning sets, respectively, are OOV, which corresponds to

about two words per sentence in the science data and about one word per sentence
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Domain
Comparable

SMT Model
Language Model

Corpus Old Old + New

Medical

Baseline 22.70 28.82

Random 5k
` Scores 23.22* (`0.5) 28.86 (`0.0)
` Induced Translations 22.12* (´0.6) 28.27* (´0.6)
` Scores & Induced Translations 22.46 (´0.2) 28.26* (´0.6)

Top 5k Medical
` Scores 23.98* (`1.3) 29.16* (`0.3)
` Induced Translations 22.32 (´0.4) 28.88 (`0.1)
` Scores & Induced Translations 23.62* (`0.9) 29.35* (`0.5)

Science

Baseline 21.29 26.18

Random 5k
` Scores 21.88* (`0.6) 26.52 (`0.3)
` Induced Translations 20.20* (´1.1) 25.39* (´1.1)
` Scores & Induced Translations 21.02* (´0.3) 25.69* (´0.8)

Top 5k Science
` Scores 22.55* (`1.3) 26.50 (`0.3)
` Induced Translations 20.39* (´0.9) 25.90* (´0.3)
` Scores & Induced Translations 21.45 (`0.2) 26.29 (`0.1)

Table 8.9: BLEU score results applying our methods for scoring a phrase table (`
Scores), inducing translations for OOV and low frequency words (` Induced Trans-
lations), and both (` Scores & Induced Translations) in a domain adaptation SMT
setting. The highest BLEU scores for each domain and LM condition are highlighted.

in the medical data.8 Secondly, our top-1 accuracies are only about 30% and 20%

on the medical and science data, respectively. Because OOV rates are low and our

lexicon induction accuracy is modest, our efforts to improve seen errors yield small

or no gains. Although there are more low frequency words than OOV words, unlike

the low resource language pair setting that we explored in Chapter 6, because our

old-domain baselines are trained on such a large corpus, there are likely to be many

fewer alignment errors, and, hence, our models are more likely to contain accurate

translations for low frequency items.

In our prior work in Irvine et al. (2013b), we used an alternate approach to in-

8Sentences in the science data are much longer, about 32 words on average, than those in the
medical data, which are about 16 words long on average.

235



CHAPTER 8. FROM LOW RESOURCE MT TO DOMAIN ADAPTED MT

ducing translations for OOV and low frequency words in a domain adaptation setting

and saw substantial gains in BLEU scores. However, in that work, we limited our

old-domain training set to every 32nd line in the original set, making the baseline

model much weaker and easier to improve. We would likely see more gains from aug-

menting models with induced translations using the methods presented here if our

initial baselines were also weaker.

8.5.4 Conclusion

In this chapter, we applied our methods for using comparable corpora to score

an existing phrase table and induce translations to the domain adaptation setting.

We showed that using comparable corpora selected for their new-domain-likeness

to score a phrase table resulted in statistically significant improvements in French-

English translation quality above very strong baseline systems for both the science

and medical domains. We also presented one negative result; using our methods

for inducing translations for OOV words and augmenting models in the same domain

adaptation setting did not result in improvements in translation quality. We attribute

this primarily to the strength of our baseline models, which have low OOV rates.
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(a) Medical

(b) Science

Figure 8.1: Translation performance in terms of BLEU score as we vary the number
of comparable document pairs used for scoring. Our approach ranks comparable
document pairs by how new-domain-like they are, so, as the number increases, we
estimate features over a larger amount of data, but the data is less homogeneous.
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Conclusion

The performance of statistical machine translation models is heavily dependent

upon the amount and type of parallel data used for training. For some language

pairs and domains of text, for example French-English newswire or parliamentary

proceedings, very large amounts of parallel data are available and the quality of

machine translation has improved dramatically in the past two decades as methods

for learning models from such data have matured. However, for many language pairs

and domains of text, very little or no parallel data is available. Without parallel

data, we are unable to use standard methods to estimate high quality statistical

translation model parameters and, thus, are unable to generate high quality machine

translations. In this thesis, we used comparable corpora to improve the performance

of SMT models trained using little or no parallel data. In particular, in this thesis

we used comparable corpora to identify new word and phrase translations and to
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estimate translation probabilities. Many of our techniques were taken from prior

work in bilingual lexicon induction; one of the major contributions of this thesis is

the application of such techniques to end-to-end SMT.

In Chapter 3 we presented dictionaries and comparable corpora that we have

collected for over 150 human languages. Our dictionaries come from a variety of

sources, including scanned paper dictionaries and through crowdsourcing efforts. Al-

though some dictionaries were publicly available already, others were not, and the

compilation of new and existing dictionaries is a valuable resource for ongoing re-

search in multilingual natural language processing. Our comparable corpora come

from Wikipedia and crawls of online news websites. Wikipedia is freely available for

download and has been used extensively in prior NLP research. One small contribu-

tion of this thesis is the release of Wikipedia data for 142 foreign languages which

has already been extracted from the original source HTML, preprocessed, and paired

with inter-lingually linked English pages. The comparable news data that we release

is a result of a multi-year web crawl effort. Unlike the Wikipedia data, our news crawl

data is a novel resource. Like the Wikipedia data, we release preprocessed datasets

for over 100 languages.

This thesis presents two novel error analysis techniques and makes use of both

throughout. In Chapter 3, we presented Table Enhancement for Translation Analysis

(TETRA) and Word Alignment Driven Evaluation (WADE), which are two methods

for measuring different types of lexical choice errors. In Irvine et al. (2013a), we
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released code for running both types of analysis. In Section 6.4.4.2, we expanded

our original WADE definition to take advantage of multiple reference translations.

Sections 3.4.2 and 8.2 gave the results of our analyses over outputs produced by low

resource models trained on small amounts of parallel data and those produced by

models trained on old-domain data, respectively. In both settings, the results of our

analyses showed the major sources of error result from unseen source language words

and unseen translations. In Sections 6.4.4.2 and 8.2, we showed that augmenting

models with new translations is not enough; we must also score them accurately.

In Chapter 4 we presented a new supervised discriminative approach to inducing

word translations. We defined and used a variety of features estimated over com-

parable corpora and a small number of example translations to learn a model for

classifying word pairs as translations or non-translations. We provided an extensive

analysis of the effectiveness of the following signals, most of which we estimated us-

ing comparable corpora: contextual, temporal, orthographic, topic, frequency, and

burstiness similarity. Most features had been used in prior work on bilingual lexicon

induction. The one exception is our topic feature, which we defined and which proved

to be one of the most valuable signals for predicting translations. Using a diverse fea-

ture set, we observed gains on the bilingual lexicon induction task of greater than

100% over an unsupervised rank-combination baseline using the same feature set.

We also observed gains of greater than 60% over a previously state-of-the-art model

(Haghighi et al., 2008) using the same feature subset as the prior work. When we
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used our full feature set, we saw improvements of over 180% above the Haghighi et al.

(2008) baseline. We showed that our proposed model is robust to the amount and

type of training data; high quality models may even be learned using supervision from

a different language pair. Additional experiments showed that bursty, frequent words

are easier to translate than less bursty, infrequent words. Throughout our bilingual

lexicon induction experiments, we presented results inducing English translations for

source words in 24 foreign languages, emphasizing the general applicability of our

approach.

In Chapter 5, we adapted our techniques for estimating signals of translation

equivalence for pairs of words in order to score pairs of phrases. In our experiments,

we showed that, given a high-quality but noisy phrase table, our new comparable

corpora-based feature functions did a good job of distinguishing high quality from

low quality phrase pairs. When we dropped all of the bilingually estimated features

from a phrase table and replaced them with our monolingual equivalents, we were

able to regain 56% of the loss in our Spanish-English setting and 36% of the loss in

our Urdu-English experiments. These experiments demonstrated the strength of the

features estimated over comparable corpora.

In Chapter 6, we dropped the Chapter 5 assumption that we were given a set of

high quality phrase pairs. Instead, we assumed a more realistic setting in which we

had access to a small amount of parallel text from which to estimate a baseline SMT

model. We augmented the low resource SMT models with both new translations iden-
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tified using our discriminative bilingual lexicon induction model (Chapter 4) and new

phrase pair features estimated over comparable corpora (Chapter 5). We found that

improvements resulting from new translations and new features are nearly additive,

and we observed total BLEU score gains of up to 1.5 points for the following truly low

resource languages: Bengali, Hindi, Malayalam, Tamil, Telugu, and Urdu. Although

the gains in BLEU score were substantial, the gains in terms of the readability of

the output machine translations were dramatic. This was largely due to our models

translating previously unknown words. Additional experiments showed that each of

the following can also improve performance: augmenting models with more than a

single translation for source words, inducing translations for low frequency source

words as well as OOV words, and using as much comparable corpora as possible to

estimate new feature functions.

Chapter 6 mainly presents experimental results building upon the novel ideas

developed in Chapters 4 and 5. However, the Chapter 6 experiments are a valuable

result in that they bridge prior work on bilingual lexicon induction with end-to-

end machine translation. Although prior work on bilingual lexicon induction has

typically pointed to machine translation as an application, very little prior work has

actually incorporated induced bilingual lexicons into SMT models. In fact, a lot of

prior work only induced translations for frequent nouns (e.g. Haghighi et al. (2008)),

and it remained to be seen if inducing translations for, for example, OOV words

and augmenting SMT models with the new phrase pairs would improve translation
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quality. We showed that induced translations integrated into end-to-end SMT can

improve machine translations and measured their effect in a variety of experimental

conditions. Also unlike prior work, we found it important and valuable to experiment

with truly low resource languages.

In Chapter 7, we proposed a method for composing phrase translations from mul-

tiple unigram translations. The composition algorithm that we defined and used is

more flexible than prior definitions of compositionality. That is, it generates more

translation candidates for source phrases than more strict definitions. We provided a

rigorous analysis of the tradeoffs between generating high-precision, lower recall sets

of composed phrase translations and generating low-precision, higher recall sets. We

deliberately chose a fairly high-recall algorithm for composing translations and then

used features estimated over comparable corpora to prune and rank large sets of hy-

pothesis composed phrase translations. For both Spanish-English and Hindi-English

translation, we observed improvements in translation quality of over half a BLEU

point above baselines augmented with induced unigram translations and monolingual

features.

In Chapter 8 we used comparable corpora to tackle the domain shift problem in

machine translation, which is closely related to that of working with low resource

language pairs. In this setting, we have large amounts of parallel training data in

some old domain of text but not enough training data in the new domain to train

a high quality SMT model. We experimented with French to English translation
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of medical and scientific text given large amounts of parliamentary proceedings old-

domain parallel text because large, public datasets exist for that language pair and

those domains. We used our methods for inducing new translations and scoring

existing phrase pairs to augment baseline models and observed gains in translation

quality of up to 1.3 BLEU points over very strong French-English baselines. As was

the case for low resource language pairs, our approaches improve translation quality

more than BLEU scores may suggest because we target and translate previously

unknown words, which contribute substantially to readability. Like the results in

Chapter 6, Chapter 8 largely presents experimental results employing the techniques

developed in previous chapters. However, these experimental results provide valuable

insight into the potential for using comparable corpora to augment SMT models in

a variety of settings. In particular, like Chapter 6, Chapter 8 presents novel results

applying bilingual lexicon induction to end-to-end SMT.

We believe that making use of alternative data resources is critical for expanding

the applicability of statistical machine translation beyond the few language pairs

and domains for which large parallel datasets exist. In this thesis, we have taken

advantage of one such data resource, comparable corpora. In particular, we have

improved and applied previous approaches to bilingual lexicon induction to end-to-

end SMT. Our experiments show that augmenting baseline SMT systems with new

translations and features estimated over comparable corpora can improve translation

performance significantly for truly low resource language pairs.
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Language Set

Language Family Location Word
Order

Affixing

Afrikaans Indo-European South Africa - -
Albanian Indo-European Albania, Serbia, Mon-

tenegro
SVO Strongly suffixing

Alemannic Ger-
man

Indo-European Switzerland, Germany,
Austria, etc.

None Strongly suffixing

Amharic Afro-Asiatic Ethiopia SOV Weakly suffixing
Ao Sino-Tibetan India SOV Weakly suffixing
Arabic Afro-Asiatic Africa, Middle East, etc. VSO Strongly suffixing
Aragonese Indo-European Spain - -
Armenian Indo-European Armenia None Strongly suffixing
Assamese Indo-European India SOV Strongly suffixing
Asturian Indo-European Spain - -
Azeri Altaic Azerbaijani SOV Strongly suffixing
Bashkir Altaic Russia SOV Strongly suffixing
Basque Basque France, Spain SOV Equal
Belarusian Indo-European Belarus None Strongly suffixing
Bengali Indo-European Bangladesh, India SOV -
Bihari Indo-European India - -
Bishnupriya
Manipuri

Indo-European India, Bangladesh,
Myanmar

- -

Bosnian Indo-European Bosnia-Herzegovina - -
Breton Indo-European France SVO Weakly suffixing
Buginese Austronesian Indonesia SVO -
Bulgarian Indo-European Bulgaria SVO Strongly suffixing
Burmese Sino-Tibetan Myanmar SOV Strongly suffixing
Catalan Indo-European Spain SVO -
Cebuano Austronesian Philippines VSO -
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Table A.1 – continued from previous page
Language Family Location Word

Order
Affixing

Central Bi-
colano

Austronesian Philippines - Little affixation

Chinese (Man-
darin)

China Sino-Tibetan SVO Strongly suffixing

Chuvash Altaic Russia SOV Strongly suffixing
Croatian Indo-European Croatia SVO Strongly suffixing
Czech Indo-European Czech Republic SVO Weakly suffixing
Danish Indo-European Denmark SVO Strongly suffixing
Dari Indo-European Afghanistan - -
Dhivehi Indo-European Maldives - -
Dutch Indo-European Netherlands None Strongly suffixing
Esperanto Constructed - - -
Estonian Uralic Estonia SVO Strongly suffixing
Faroese Indo-European Denmark - -
Farsi Indo-European Iran SOV Weakly suffixing
Finnish Uralic Finland SVO Strongly suffixing
French Indo-European France, Switzerland SVO Strongly suffixing
Galician Indo-European Spain - -
Georgian Kartvelian Georgia SOV Weakly suffixing
German Indo-European Austria, Germany,

Switzerland
None Strongly suffixing

Gilbertese (Kiri-
bati)

Austronesian Kiribati VOS Equal

Goan Konkani Indo-European India - -
Greek Indo-European Greece None Strongly suffixing
Gujarati Indo-European India SOV -
Haitian Other (Creole) Haiti - -
Hebrew Afro-Asiatic Israel SVO Weakly suffixing
Hindi Indo-European India SOV Strongly suffixing
Hungarian Uralic Hungary None Strongly suffixing
Icelandic Indo-European Iceland SVO Strongly suffixing
Ido Constructed - - -
Ilokano Austronesian Philippines VSO -
Indonesian Austronesian Indonesia SVO Strongly suffixing
Irish Indo-European Ireland VSO Equal
Italian Indo-European Italy, Switzerland SVO Strongly suffixing
Japanese Japanese Japan SOV Strongly suffixing
Javanese Austronesian Indonesia - -
Kalaallisut
(West Green-
landic)

Eskimo-Alteut Greenland SOV Strongly suffixing

Kannada Dravidian India SOV Strongly suffixing
Kapampangan Austronesian Philippines - -
Kashmiri Indo-European India, Pakistan SVO -
Kazakh Altaic Kazakhstan - -
Khasi Austro-Asiatic India SVO Little affixation
Khmer Austro-Asiatic Cambodia SVO Little affixation
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Table A.1 – continued from previous page
Language Family Location Word

Order
Affixing

Kinyarwanda Niger-Congo Rwanda SVO -
Korean Korean North Korea, South Ko-

rea
SOV Strongly suffixing

Kurdish Indo-European Iran, Iraq SOV Weakly suffixing
Kyrgyz Altaic Kyrgyzstan - Strongly suffixing
Lao Tai-Kadai Laos, Thailand SVO Little affixation
Latin Indo-European - - -
Latvian Indo-European Latvia SVO Weakly suffixing
Lithuanian Indo-European Lithuania SVO Strongly suffixing
Lombard Indo-European Italy, Switzerland - -
Low Saxon Indo-European Germany - -
Luganda Niger-Congo Uganda - Strongly prefixing
Luxembourgish Indo-European Luxembourg - -
Macedonian Indo-European Macedonia SVO -
Malagasy Austronesian Madagascar VOS Little affixation
Malayalam Dravidian India SOV -
Malaysian Austronesian Malaysia - -
Marathi Indo-European India SOV Strongly suffixing
Maltese Afro-Asiatic Malta - -
Maori Austronesian New Zealand VSO Little affixation
Mizo Sino-Tibetan Bangladesh, India SOV Little affixation
Mongolian
(Khalkha)

Altaic Mongolia SOV Strongly suffixing

Montenegrin Indo-European Montenegro SVO Strongly suffixing
Neapolitan Indo-European Italy - -
Nepali Indo-European Nepal SOV Strongly suffixing
Newar / Napal
Bhasa

Sino-Tibetan Nepal SOV Strongly suffixing

Norwegian Indo-European Norway SVO Strongly suffixing
Norwegian
(nynorsk)

Indo-European Norway SVO Strongly suffixing

Occitan Indo-European France - -
Oriya Indo-European India SOV Strongly suffixing
Pangasinan Austronesian Philippines VSO -
Panjabi Indo-European India, Pakistan SOV Strongly suffixing
Papiamento Other (Creole) Netherlands, Antilles - -
Pashto Indo-European Afghanistan, Pakistan SOV Strongly suffixing
Piedmontese Indo-European Italy - -
Polish Indo-European Poland SVO Strongly suffixing
Portuguese Indo-European Portugal SVO Strongly suffixing
Quechua Quechuan Peru, Bolivia, Equador SOV Strongly suffixing
Romani Indo-European United Kingdom None Strongly suffixing
Romanian Indo-European Romania SVO Strongly suffixing
Romansh Indo-European Switzerland - -
Russian Indo-European Russia SVO Strongly suffixing
Sami Uralic Finland, Norway, Swe-

den
SVO Strongly suffixing
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Table A.1 – continued from previous page
Language Family Location Word

Order
Affixing

Sanskrit Indo-European India - -
Serbian Indo-European Serbia SVO Strongly suffixing
Serbo-Croatian Indo-European Bosnia-Herzegovina,

Croatia, Serbia, and
Montenegro

SVO Strongly suffixing

Shona Niger-Congo Zimbabwe SVO Strongly prefixing
Sicilian Indo-European Italy - -
Sindhi Indo-European India, Pakistan - -
Sinhalese Indo-European Sri Lanka SOV -
Slovak Indo-European Slovakia - -
Slovenian Indo-European Slovenia SVO Strongly suffixing
Somali Afro-Asiatic Somalia SOV Strongly suffixing
Spanish Indo-European Spain SVO Strongly suffixing
Sundanese Austronesian Indonesia SVO Little affixation
Swahili Niger-Congo Tanzania SVO Weakly prefixing
Swedish Indo-European Finland, Sweden SVO Strongly suffixing
Tagalog Austronesian Philippines VSO Little affixation
Tajik Indo-European Tajikistan SOV Weakly suffixing
Tamil Dravidian India, Sri Lanka SOV Strongly suffixing
Tatar Altaic Russia SOV Strongly suffixing
Telugu Dravidian India SOV Strongly suffixing
Tetum Austronesian East Timor SVO Little affixation
Thai Tai-Kadai Thailand SVO Little affixation
Tibetan Sino-Tibetan China SOV -
Tigre Afro-Asiatic Eritrea SOV Weakly suffixing
Tigrinya Afro-Asiatic Eritrea, Ethiopia SOV -
Tongan Austronesian Tonga VSO/VOSLittle affixation
Tok Pisin Other (Pidgin) Papua New Guinea - -
Turkish Altaic Turkey SOV Strongly suffixing
Turkmen Altaic Turkmenistan SOV -
Uighur Altaic China SOV Strongly suffixing
Ukrainian Indo-European Ukraine SVO Strongly suffixing
Urdu Indo-European Pakistan SOV Strongly suffixing
Uzbek Altaic Afghanistan, Uzbekistan SOV Strongly suffixing
Valencian Indo-European Spain - -
Vietnamese Austro-Asiatic Vietnam SVO Little affixation
Volapk Constructed - - -
Walloon Indo-European Belgium, France - -
Waray-Waray Austronesian Philippines - -
Welsh Indo-European United Kingdom VSO Strongly suffixing
Western Pan-
jabi

Indo-European India, Pakistan - -

West Frisian Indo-European Netherlands - -
Wolof Niger-Congo Gambia, Senegal SVO Little affixation
Yoruba Niger-Congo Benin, Nigeria SVO Little affixation
Zazaki Indo-European Turkey SOV -
Zulu Niger-Congo South Africa SVO Strongly prefixing
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Table A.1 – continued from previous page
Language Family Location Word

Order
Affixing

Table A.1: List of 151 languages for which we release language packs, with linguistic
annotations taken from WALS. Blanks indicate missing WALS feature values. Loca-
tions are places where a given language is spoken canonically. In some cases, a given
language is spoken much more widely than indicated, for example Spanish is spoken
not only in Spain but throughout Latin America. If there is no dominant word order,
”None” is listed.
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Data Resources

Thousands of Thousands of
Language Native Speakers Parallel Tokens

Afrikaans 4949 700
Albanian 7436 21240
Amharic 21811 232
Arabic 223010 452840
Armenian 5924 9
Assamese 12828 21
Asturian 110 100
Basque 657 1502
Belarusian 7818 313
Bengali 193263 1579
Berber 10000 200
Bosnian 2216 14416
Breton 1200 300
Bulgarian 6795 143589
Catalan 7220 2391
Chinese 1197392 1156726
Crimean Tatar 475 10
Croatian 5533 110104
Czech 9469 229625
Danish 5592 206182
Dutch 22984 320001
Estonian 1078 72515
Farsi 56645 8907
Finnish 4994 161035
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Table B.1 – continued from previous page

Thousands of Thousands of
Language Native Speakers Parallel Tokens

French 68458 1725721
Gaelic 63 2
Galician 3185 1119
Georgian 4237 88
German 83812 353575
Greek 13068 247447
Gujarati 46633 400
Hausa 24988 3
Hebrew 5302 88383
Hindi 260302 1816
Hungarian 12319 159166
Icelandic 243 7456
Ido 0 10
Indonesian 23200 8281
Irish 106 3401
Italian 61068 318102
Japanese 122072 15312
Kalmyk 360 1
Kannada 37739 371
Kashubian 100 100
Kazakh 8077 308
Khmer 14224 800
Kinyarwanda 7189 600
Korean 66418 7224
Kurdish 29960 83
Latvian 1472 37030
Lithuanian 3130 38621
Luxembourgish 320 30
Macedonian 1710 11151
Maithili 32800 100
Malay 59418 17500
Malayalam 33534 774
Maltese 429 19701
Marathi 71780 62
Mongolian 5753 1
Nepali 14410 421
Northern Sami 20 200
Norwegian 4741 35918
Occitan 2048 103
Oriya 50137 29
Panjabi 93171 500
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Table B.1 – continued from previous page

Thousands of Thousands of
Language Native Speakers Parallel Tokens

Pashto 26940 208
Pedi 4101 1
Polish 39042 105115
Portuguese 202468 297147
Pushto 26940 8
Quechua 9062 1
Romanian 23623 218135
Russian 161727 207119
Serbian 9262 92433
Sinhala 15577 896
Slovak 5007 56337
Slovene 1906 104119
Somali 16559 318
Spanish 405638 779585
Swedish 8381 144733
Tagalog 24216 23
Tajik 4479 400
Tamil 68763 2167
Tatar 5407 1
Telugu 74049 1353
Thai 20421 6600
Turkish 50733 128300
Uighur 8791 17
Ukrainian 36028 2930
Upper Sorbian 13 88
Urdu 63431 3846
Uzbek 21930 100
Vietnamese 67762 5815
Walloon 600 200
Welsh 536 357
Western Frisian 467 200
Xhosa 7817 300

Table B.1: Thousands of native speakers and thousands of parallel text (paired with
English) for each of 96 languages.
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Language Scr
Scanned Paper Electronic Crowdsourced All Dicts
Source Total Source Total Source Total Source Total
Words Trans. Words Trans. Words Trans. Words Trans.

Afrikaans r - - - - 8, 223 8, 247 8, 223 8, 247
Albanian r - - 44, 245 104, 608 9, 109 9, 127 51, 351 112, 241
Amharic o 8, 051 8, 093 8, 051 8, 093
Arabic a - - 75, 911 149, 054 10, 103 10, 144 83, 138 157, 886
Aragonese r - - - - 2, 502 2, 518 2, 502 2, 518
Armenian o - - - - 1, 806 1, 876 1, 806 1, 876
Asturian r - - - - 6, 202 6, 214 6, 202 6, 214
Azeri r 2, 047 2, 263 225, 756 225, 808 9, 356 9, 367 236, 442 237, 051
Basque r - - 828 880 9, 017 9, 031 9, 440 9, 726
Belarusian c - - - - 9, 884 9, 894 9, 884 9, 894

Bengali
r - - 1, 073 1, 161 - - 1, 073 1, 161
o - - 408 444 10, 127 10, 155 10, 364 10, 494

Bosnian r 9, 643 15, 093 - - 9, 241 9, 305 17, 428 23, 388
Breton r - - - - 2, 086 2, 089 2, 086 2, 089

Bulgarian
r - - 5, 057 7, 514 - - 5, 057 7, 514
c - - 67, 663 152, 016 10, 241 10, 287 77, 904 162, 303

Catalan r - - - - 8, 827 8, 852 8, 827 8, 852
Cebuano r - - - - 6, 338 6, 637 6, 338 6, 637
Chinese o - - 54, 164 82, 080 3, 512 3, 963 57, 294 85, 833
Czech r - - 69, 659 180, 496 9315 9329 75, 788 187, 474
Danish r - - - - 8, 092 8, 101 8, 092 8, 101
Dutch r - - 54, 519 122, 323 7, 797 8, 120 58, 141 127, 513

Farsi
r 5, 412 6, 663 - - - - 5, 412 6, 663
a - - 96, 208 172, 722 2, 907 2, 926 98, 448 175, 160

Finnish r - - - - 8, 535 8, 550 8, 535 8, 550
French r - - 45, 041 103, 267 7, 792 8, 299 49, 030 108, 625
Galician r - - - - 8, 726 8, 738 8, 726 8, 738
Georgian o - - - - 5, 837 5, 897 5, 837 5, 897
German r - - 54, 039 140, 818 8, 020 8, 093 58, 015 146, 135
Greek o - - 42, 921 82, 069 10, 173 10, 185 53, 094 92, 254
Gujarati o - - - - 9, 977 19, 795 9, 977 19, 795
Haitian r - - - - 5, 620 5, 663 5, 620 5, 663
Hebrew o - - - - 8, 460 8, 491 8, 460 8, 491

Hindi
r - - 25, 305 58, 179 - - 25, 305 58, 179
o - - - - 9, 681 9, 824 9, 681 9, 824

Hungarian r - - 138, 585 258, 304 8, 679 8, 771 143, 407 264, 519
Icelandic r - - - - 7, 172 7, 177 7, 172 7, 177
Ilokano r - - - - 4, 318 4, 411 4, 318 4, 411
Indonesian r 31, 799 64, 900 1, 388 2, 143 7, 383 7, 440 35, 442 71, 685
Irish r - - 831 887 8, 369 8, 373 8, 769 9, 012
Italian r - - 36, 663 84, 951 7, 964 8, 056 40, 569 89, 616
Japanese o - - - - 8, 366 8, 516 8, 366 8, 516
Javanese r - - - - 7, 138 7, 358 7, 138 7, 358
Kannada o - - - - 10, 017 10, 192 10, 017 10, 192
Kapampangan r - - 911 1, 000 2, 036 2, 092 2, 750 2, 942
Kazakh r 1, 979 2, 261 137, 403 138, 300 30 30 139, 303 140, 526
Korean o - - 66, 384 88, 717 7, 486 7, 506 72, 279 95, 676
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Table B.2 – continued from previous page

Language Scr
Scanned Paper Electronic Crowdsourced All Dicts
Source Total Source Total Source Total Source Total
Words Trans. Words Trans. Words Trans. Words Trans.

Kurdish r - - 4, 159 6, 632 33 35 4, 186 6, 665
Kyrgyz r 1, 897 2, 164 67, 727 67, 773 - - 69, 547 69, 890
Latin r - - 6, 853 18, 884 - - 6, 853 18, 884
Latvian r - - 33, 486 74, 936 9, 722 9, 746 40, 647 83, 024
Lithuanian r - - - - 9, 692 9, 706 9, 692 9, 706
Low Saxon r - - - - 5, 600 5, 651 5, 600 5, 651
Luxembourgish r - - - - 4, 610 4, 617 4, 610 4, 617
Macedonian c - - - - 9, 961 9, 968 9, 961 9, 968
Malagasy r - - - - 159 159 159 159
Malayalam o - - - - 10, 127 10, 199 10, 127 10, 199
Malaysian r - - 5, 986 9, 438 7, 661 7, 704 11, 292 15, 851
Marathi o - - - - 10, 041 10, 254 10, 041 10, 254
Maltese r - - 5, 395 7, 574 - - 5, 395 7, 574
Maori r - - 13, 566 27, 965 - - 13, 566 27, 965
Mongolian r - - 612 948 - - 612 948

Nepali
r 4, 771 6, 074 - - - - 4, 771 6, 074
o - - - - 9, 899 9, 942 9, 899 9, 942

Newar / Nepal
Bhasa

o - - - - 4, 915 4, 921 4, 915 4, 921

Norwegian r - - - - 8, 050 8, 057 8, 050 8, 057

Panjabi
r - - 13, 342 24, 758 - - 13, 342 24, 758
o 5, 641 18, 549 15, 783 32, 538 9, 765 10, 060 28, 224 58, 844

Pashto a - - - - 382 411 382 411
Polish r - - 56, 233 133, 036 9, 050 9, 096 63, 007 140, 534
Portuguese r - - 790 840 8, 457 8, 469 9, 046 9, 204
Romanian r - - 48, 088 130, 458 8, 560 8, 597 54, 305 137, 470
Russian c - - 89, 785 213, 073 870 874 90, 655 213, 947
Serbian r - - 55, 349 122, 710 10, 022 10, 077 65, 166 132, 638
Serbo-
Croatian

r - - - - 9, 438 9, 465 9, 438 9, 465

Sindhi a - - - - 331 345 331 345
Slovak r - - 48, 683 122, 015 9, 315 9, 328 55, 477 129, 485
Slovenian r - - - - 9, 111 9, 115 9, 111 9, 115
Somali r - - 227 230 6, 912 6, 946 7, 055 7, 116
Spanish r - - 73, 589 204, 754 8, 647 8, 690 77, 465 209, 810
Sundanese r - - - - 4, 537 4, 559 4, 537 4, 559
Swahili r - - - - 7, 328 7, 357 7, 328 7, 357
Swedish r - - 58, 012 116, 784 8, 098 8, 122 62, 593 122, 770
Tagalog r 78, 081 155, 170 24, 498 62, 505 7, 854 7, 964 96, 476 213, 419
Tamil o 58, 236 161, 754 - - 10, 119 10, 212 66, 242 171, 228

Tatar
r 1, 642 1, 862 - - - - 1, 642 1, 862
c - - 3, 795 4, 818 - - 3, 795 4, 818

Telugu o - - - - 10, 064 10, 177 10, 064 10, 177
Thai o - - 6, 517 14, 170 4, 594 4, 713 10, 640 18, 732
Tibetan r - - 25, 145 55, 520 - - 25, 145 55, 520
Tigrinya r - - 55 56 - - 55 56
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Table B.2 – continued from previous page

Language Scr
Scanned Paper Electronic Crowdsourced All Dicts
Source Total Source Total Source Total Source Total
Words Trans. Words Trans. Words Trans. Words Trans.

Turkish r 114, 826 231, 795 397, 863 572, 847 9, 073 9, 602 493, 571 776, 089
Turkmen r 1, 824 1, 978 68, 050 76, 282 - - 69, 007 77, 528
Uighur r 1, 880 2, 131 3, 827 4, 774 - - 5, 480 6, 723

Ukrainian
r - - 8, 324 14, 056 - - 8, 324 14, 056
c - - - - 10, 005 10, 013 10, 005 10, 013

Urdu
r - - 15, 208 33, 832 - - 15, 208 33, 832
a - - - - 10 10 10 10

Uzbek r 1, 964 2, 222 124, 280 154, 991 4, 342 4, 481 128, 420 160, 177
Vietnamese r - - - - 4, 117 4, 270 4, 117 4, 270
Waray-Waray r - - - - 5, 033 5, 282 5, 033 5, 282
Welsh r - - 14, 586 25, 832 7, 166 7, 176 19, 124 31, 259
West Frisian r - - - - 4, 411 4, 437 4, 411 4, 437
Wolof r - - - - 36 36 36 36
Yoruba r - - - - 1, 810 1, 855 1, 810 1, 855

Table B.2: Data statistics for all dictionaries. The number of unique source sides
in each dictionary is given along with the total number of translations. The second
column indicates whether the primary script used in the dictionary is Roman (r),
Cyrillic (c), Arabic (a), or other (o).
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Language
Web Crawls Wikipedia

Total High Preci-
sion

Words Pages

Words Words

Afrikaans 2, 204, 061 2, 074, 212 7, 296, 726 18, 904
Albanian 9, 127, 415 8, 958, 410 6, 388, 669 19, 860
Alemannic German* 0 0 4, 447, 599 9, 759
Amharic 619, 349 562, 065 414, 578 3, 073
Ao* 19, 701 - 0 0
Arabic 18, 919, 351 15, 434, 228 38, 805, 091 115, 624
Aragonese 2, 676, 458 2, 339, 692 2, 685, 326 15, 078
Armenian 3, 161, 317 3, 049, 295 5, 912, 883 30, 046
Assamese* 413 0 828, 350 1, 061
Asturian 329, 080 119, 837 2, 177, 174 8, 616
Azeri 3, 842, 179 3, 769, 223 6, 747, 026 26, 896
Bashkir* 7, 425, 473 0 818, 838 5, 112
Basque 7, 135, 032 7, 115, 461 24, 033, 895 93, 890
Belarusian 10, 570, 854 9, 632, 568 9, 726, 774 41, 657
Bengali 8, 295, 164 8, 159, 086 4, 998, 454 18, 603
Bihari* 0 0 68, 093 2, 250
Bishnupriya Manipuri* 954, 790 0 1, 394, 021 14, 986
Bosnian 8, 647, 129 2, 627, 513 7, 515, 961 19, 981
Breton 0 0 7, 962, 606 30, 732
Buginese* 0 0 264, 962 13, 152
Bulgarian 34, 042, 882 32, 684, 588 33, 926, 577 88, 436
Burmese* 4, 190, 851 4, 111, 818 1, 660, 176 3, 639
Catalan 4, 067, 627 3, 956, 588 81, 185, 339 182, 412
Cebuano 1, 886, 463 1, 180, 374 2, 755, 209 52, 026
Central Bicolano* 0 0 343, 513 4, 330
Chinese 2, 067, 024 59, 997 49, 808, 610 288, 528
Chuvash* 0 0 1, 259, 044 6, 534
Croatian* 4, 509, 460 4, 476, 599 26, 242, 455 58, 328
Czech 1, 553, 645 1, 539, 509 61, 572, 889 136, 353
Danish 6, 807, 398 6, 652, 405 13, 908, 104 40, 832
Dari* 3, 607, 320 - 0 0
Dhivehi* 2, 544, 804 2, 351, 921 383, 263 1, 967
Dutch 24, 186, 602 23, 784, 141 89, 235, 296 299, 329
Esperanto* 1, 216, 714 1, 081, 055 17, 182, 282 78, 997
Estonian* 5, 765, 919 5, 605, 449 14, 626, 071 50, 777
Faroese* 678, 443 483, 512 925, 705 4, 691
Farsi 703, 507, 414 699, 678, 151 34, 957, 979 145, 609
Finnish 5, 607, 541 5, 132, 451 43, 164, 766 166, 371
French 131, 582, 433 111, 885, 989 340, 158, 674 575, 923
Galician 1, 511, 284 1, 349, 748 24, 948, 863 52, 645
Georgian 3, 889, 908 3, 771, 502 8, 762, 070 42, 447
German 58, 381, 197 51, 519, 965 314, 275, 796 488, 360
Gilbertese* 311, 488 - 0 0
Goan Konkani* 2, 360, 130 - 0 0
Greek 13, 523, 704 13, 326, 526 29, 680, 446 52, 724
Gujarati 1, 084, 719 1, 035, 840 3, 958, 031 3, 909
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Table B.3 – continued from previous page

Language
Web Crawls Wikipedia

Total High Preci-
sion

Words Pages

Words Words
Haitian 49, 855 49, 845 1, 055, 107 28, 247
Hebrew 10, 917, 090 10, 840, 597 52, 719, 531 83, 317
Hindi 31, 123, 091 30, 202, 526 16, 198, 183 25, 078
Hungarian 542, 736 523, 814 69, 695, 400 127, 406
Icelandic 1, 161, 186 1, 156, 491 4, 457, 412 17, 469
Ido* 0 0 3, 364, 125 14, 509
Ilokano 0 0 658, 476 4, 714
Indonesian 5, 067, 534 4, 797, 560 26, 769, 690 83, 274
Irish 1, 594, 775 1, 581, 142 2, 849, 017 16, 924
Italian 16, 875, 295 14, 134, 178 212, 715, 388 452, 758
Japanese 79, 015 51, 278 117, 633, 625 296, 243
Javanese 0 0 3, 469, 927 14, 105
Kalaallisut (West Green-
landic)*

7, 936 0 68, 255 1, 386

Kannada 1, 036, 132 1, 001, 895 8, 248, 416 6, 134
Kapampangan 0 0 520, 096 5, 233
Kashmiri* 0 0 3, 077 84
Kazakh 3, 213, 297 0 9, 001, 990 71, 874
Khasi* 2, 538, 370 - 0 0
Khmer* 16, 453, 655 16, 212, 496 813, 036 1, 638
Kinyarwanda* 0 0 88, 369 1, 263
Korean 5, 589, 281 5, 571, 812 37, 776, 582 132, 629
Kurdish 4, 892, 227 392, 812 1, 348, 330 6, 351
Kyrgyz 6, 335, 216 0 974, 905 3, 237
Lao* 3, 674, 166 3, 674, 166 98, 824 826
Latin 0 0 9, 546, 651 68, 134
Latvian 36, 156, 391 35, 663, 711 9, 432, 914 33, 024
Lithuanian 2, 854, 697 2, 783, 953 18, 865, 990 68, 942
Lombard* 0 0 2, 717, 835 20, 604
Low Saxon 0 0 4, 700, 093 13, 106
Luganda* 3, 019, 265 0 4, 844 112
Luxembourgish 1, 650, 310 991, 132 5, 132, 551 21, 735
Macedonian 2, 084, 421 2, 047, 306 15, 443, 536 39, 669
Malagasy 0 0 8, 089, 089 34, 431
Malayalam 4, 056, 931 3, 998, 017 5, 080, 980 17, 009
Malaysian 1, 057, 879 751, 874 14, 064, 735 112, 780
Marathi 28, 215, 299 0 2, 453, 664 21, 931
Maltese 1, 114, 480 1, 076, 440 1, 255, 312 1, 857
Maori 0 0 144, 200 2, 188
Mizo* 11, 189, 501 - 0 0
Mongolian 1, 188, 640 0 1, 991, 844 8, 211
Montenegrin* 909, 499 - 0 0
Neapolitan* 0 0 599, 295 6, 654
Nepali 3, 489, 101 0 1, 878, 168 5, 854
Newar / Nepal Bhasa 0 0 810, 380 12, 505
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Table B.3 – continued from previous page

Language
Web Crawls Wikipedia

Total High Preci-
sion

Words Pages

Words Words
Norwegian 10, 575, 063 0 26, 372, 263 84, 347
Norwegian (nynorsk)* 0 0 12, 720, 136 52, 542
Occitan* 0 0 11, 401, 942 58, 717
Oriya* 109, 020 0 411, 392 2, 344
Pangasinan* 0 0 36, 697 832
Panjabi 1, 955, 959 1, 919, 939 1, 019, 519 5, 382
Papiamento* 1, 409, 987 1, 270, 770 167, 483 757
Pashto 6, 820, 583 0 936, 001 2, 281
Piedmontese* 0 0 3, 075, 850 40, 796
Polish 10, 433, 634 9, 891, 731 136, 151, 261 471, 136
Portuguese 21, 206, 449 19, 116, 752 129, 161, 465 404, 826
Quechua* 0 0 1, 040, 087 9, 492
Romani* 3, 902, 611 109, 324 39, 965 445
Romanian 17, 608, 197 16, 090, 347 34, 672, 327 135, 874
Romansh* 3, 479, 519 3, 168, 779 511, 959 2, 575
Russian 1, 555, 264, 838 1, 386, 337, 881 210, 652, 169 400, 797
Sami* 383, 959 239, 705 172, 007 3, 692
Sanskrit* 4, 617, 096 0 768, 072 4, 534
Serbian 15, 194, 828 8, 654, 008 37, 575, 834 131, 854
Serbo-Croatian 0 0 22, 695, 385 57170
Shona* 2, 933, 420 2, 828, 187 92, 205 1, 121
Sicilian* 0 0 1, 501, 971 15, 454
Sindhi 1, 365, 512 0 48, 095 134
Sinhalese* 1, 472, 454 1, 363, 578 1, 814, 948 2775
Slovak 113, 163, 058 42, 560, 917 23, 477, 764 107, 958
Slovenian 2, 735, 189 2, 712, 060 20, 259, 361 57, 218
Somali 3, 250, 014 1, 937, 974 267, 383 1, 470
Spanish 913, 465, 084 861, 256, 956 232, 437, 776 374, 651
Sundanese 0 0 1, 286, 508 6, 810
Swahili 4, 276, 643 3, 523, 452 2, 714, 133 16, 362
Swedish 11, 307, 825 11, 199, 464 70, 923, 386 274, 152
Tagalog 3, 966, 447 3, 229, 425 434, 511 7, 298
Tajik* 4, 012, 768 0 885, 687 12, 851
Tamil 3, 928, 554 3, 852, 001 9, 154, 660 23, 468
Tatar 12, 082, 366 407 1, 535, 849 8, 410
Telugu 3, 254, 373 3, 220, 910 8, 769, 259 8, 841
Tetum* 66, 742 24, 598 54, 292 385
Thai 219, 210 219, 012 7, 431, 040 48, 679
Tibetan 6, 374, 651 6, 362, 553 643, 850 2, 516
Tigre* 5, 350, 042 - 0 0
Tigrinya 0 0 5, 621 106
Tongan* 3, 033, 770 1, 934, 709 58, 127 405
Tok Pisin* 2, 701, 541 0 35, 249 968
Turkish 14, 409, 942 13, 432, 854 30, 385, 844 89, 577
Turkmen 0 0 265, 073 1, 425
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Language
Web Crawls Wikipedia

Total High Preci-
sion

Words Pages

Words Words
Uighur 1, 200, 333 0 325, 025 1, 938
Ukrainian 21, 836, 916 20, 383, 329 72, 135, 536 208, 915
Urdu 286, 461, 259 284, 998, 217 3, 266, 533 15, 347
Uzbek 8, 304, 074 1, 087, 171 5, 368, 879 71, 081
Valencian* 599, 617 - 0 0
Vietnamese 2, 468, 179 2, 466, 133 53, 471, 136 194, 374
Volapuk* 0 0 15, 308, 318 97, 588
Walloon* 0 0 627, 486 3, 123
Waray-Waray 0 0 2, 858, 127 102, 823
Welsh 6, 573, 628 6, 565, 494 4, 414, 153 28, 066
Western Panjabi* 0 0 1, 598, 223 19, 589
West Frisian 1, 766, 944 0 5, 014, 518 13, 978
Wolof 0 0 230, 337 943
Yoruba 0 0 473, 264 23, 006
Zazaki* 0 0 255, 262 2, 380
Zulu* 530, 705 427, 748 23, 095 433

Table B.3: Amount of monolingual online newspaper crawls and Wikipedia data,
by language, after tokenization and pairing with English comparable corpus. The
high precision web crawl data contains only text identified by an automatic language
identification system as a particular language. High precision dataset statistics are
omitted for languages for which no language ID system was available. Languages
marked with a * indicate those for which we do not have a bilingual dictionary.
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Appendix C

WADE Analysis: Comparison of

the use of Automatic and Manual

Word Alignments

For our WADE analyses, incorrect word alignments over our test sets are also

problematic because the analysis is based entirely upon them. That is, if a word, fi,

in a sentence in our test set is incorrectly aligned with a word, ej, in the corresponding

reference sentence, WADE will incorrectly indicate an error in the output machine

translation if the decoder does not produce word ej from fi. In order to estimate

the effect of incorrect test-reference alignments on our WADE analyses, we manually

align a subset of our test sets.1 We then compare the result of a WADE analysis

1We also use these manual word alignments in Chapter 7.
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using manual alignments versus alignments estimated using a high resource and low

resource automatic alignment model.

We use MTurk to gather manual word alignment annotations for a subset of our

Spanish and Hindi test sets. We began by manually aligning 10 Spanish-English and

Hindi-English sentence pairs ourselves and used this small set of gold alignments as

a means to identify qualified MTurk workers who provide high quality annotations.

Two local native Hindi speakers each annotated ten Hindi-English sentence pairs.

Following previous work (Melamed (1998); Kruijff-Korbayová et al. (2006); Graça

et al. (2008), among others), we measure agreement as follows, where A1 are the

alignments given by the first annotator and A2 are the alignments given by the second

annotator:

Agreement “ 2 ¨ |A1 X A2|
|A1| ` |A2|

Our two Hindi annotators achieved 91.5% average agreement, and we used the union

of their alignments as a gold standard. For Spanish, we used a single set of gold

standard alignment annotations.

Because manual word alignment is a difficult task (Melamed, 1998), we only an-

notate sentence pairs for which both the source and target are no more than 20 words

long. Following Och and Ney (2003), we allow workers to indicate both ‘sure’ and

‘possible’ alignments. Sure alignments indicate a direct correspondence and possi-

ble alignments ambiguous or loose correspondences. We provide workers with initial

sure and possible word alignments based on intersection alignments and the grow-

261



APPENDIX C. WADE ANALYSIS: COMPARISON OF THE USE OF
AUTOMATIC AND MANUAL WORD ALIGNMENTS

diag-final heuristic, respectively, and ask them to correct the alignment links. To

generate the initial alignments, we concatenate full training sets with our test sets

and run GIZA++ in both directions. For the purposes of evaluating the quality of

a worker’s alignments compared to our gold set, we measure alignment precision, re-

call, and F-measure using the union of annotators’ alignments. We measure each as

follows, where G is the set of gold alignments and A is the set of workers’ annotated

alignments:

recall “ A X G

|G| precision “ A X G

|A| FMeasure “ 2 ¨ precision ¨ recall
precision ` recall

In comparison with the small set of Spanish-English gold word-aligned sentence pairs,

the average precision, recall, and F-measure of the initial (GIZA++ and grow-diag-

final) alignment set are 79.5%, 81.8%, and 80.3%, respectively. For Hindi, the average

precision, recall, and F-measure are 74.4%, 78.8%, and 76.0%, respectively. We give

these initial alignments to workers to correct. We expect that good annotators will

have a higher agreement with our gold annotations than the automatic alignments

do.

For both Spanish and Hindi, we post word alignment HITs for the ten sentence

pairs with gold standard annotations and ask up to 25 workers to complete them.

For Hindi, the mean F-measure of the 250 annotations was 0.81 with a standard

deviation of 0.17. For Spanish, the mean F-measure of the 250 annotations was
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0.76 with a standard deviation of 0.19. We identified those 12 Hindi-English and 6

Spanish-English workers who annotated at least five sentence pairs and achieved an

average F-Measure score of at least 0.7 and approved those workers to do additional

word alignment tasks. Our final set of annotations contains manual alignments for 500

Hindi-English sentence pairs and 500 Spanish-English sentence pairs. We paid workers

$0.35 per alignment task and had each sentence pair annotated by two workers. The

total cost of annotation, including the HITs used only to identify reliable workers,

was $962.50. We paid an effective hourly wage of $8.34 and $6.77 and workers spent,

on average, 3 minutes and 2.5 minutes for the Hindi and Spanish HITs, respectively.

Across all 500 Hindi-English HITs, the average agreement (defined above) between

each pair of manual alignments is 86.2%, which is only slightly less than the average

agreement, 91.5%, between our two expert, local annotators over the set of ten gold

aligned sentences. For the Spanish-English HITs, the average agreement is 87.5%.

We rerun several WADE analyses using the subset of test data with manual align-

ments and compare the following:

1. Test-Reference word alignments using a low resource (LR) alignment model

estimated over 1, 000 sentence pairs

2. Test-Reference word alignments using a high resource (HR) alignment model

estimated using our full training sets for each language.

3. Manually annotated test-reference word alignments gathered on MTurk.
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Table C.1 shows the results. First, we note that the WADE Hindi-English analysis

based on low resource does not vary by much in comparison with that based on

high resource test-reference word alignments. Similarly, there is little difference

between the analysis based on manual word alignments and those based on

automatic alignments. Although the percent of automatic alignment links that are

marked as correct by WADE when using an automatic word alignment between the

test and reference sets is higher than when considering manually annotated alignment

links, there are about 8% more manual alignment links than automatic. Thus, the

raw number of alignments which are annotated by WADE as correct is actually higher

under the set of manual links. The main observation, however, is that the general

trends gleaned from each set of analyses is consistent: for Hindi-English translation,

most of the mistakes are of type seen or sense, and many fewer score errors are

made. This is reassuring and indicates that, even if we do not have enough parallel

data from which to estimate a high quality automatic word alignment model, a WADE

analysis based on noisy word alignments yields a reliable perspective on the types of

errors that exist in a set of machine translations.

The discrepancies between the WADE analyses using different alignments are

larger for Spanish-English than Hindi-English. However, the major trends are consis-

tent, whether we rely upon manual or automatic alignments: seen and sense errors

are a big source of error, and there are fewer score errors. When moving from lower

quality (low resource automatic) to higher quality (manual) alignments, the number
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Total Number
Correct Freebie Seen Sense Score of Alignments

Hindi

Automatic (LR) Test Set Alignments 31.4 0.4 29.7 30.6 7.9 5, 450
Automatic (HR) Test Set Alignments 32.5 0.4 30.4 28.2 8.5 5, 372
Manual Test Set Alignments 31.2 0.4 28.0 31.2 9.3 5, 827

Spanish

Automatic (LR) Test Set Alignments 34.9 3.7 27.7 24.9 8.7 8, 001
Automatic (HR) Test Set Alignments 37.7 4.1 23.7 23.5 11.1 7, 492
Manual Test Set Alignments 33.8 3.7 20.7 31.7 10.0 8, 419

Table C.1: A comparison of WADE results over a subset of the test sets for which we
have both automatic and manual word alignments. For both Spanish and Hindi, the
analysis is done over 500 sentence pairs.

of alignments classified as seen errors decreases, as expected. At the same time,

the number of alignments classified as sense errors increases as many previous seen

errors become sense errors under a more accurate set of word alignments. As we

found in the Hindi experiments, there are more manual word alignment links than

automatic.
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Bilingual Lexicon Induction

D.1 Contextual Vector Projection Dictio-

naries

Throughout the experiments in Chapter 4, we assumed access to some bilingual

dictionary, which we used to project source language contextual vectors into the

space of target language contextual vectors before scoring contextual similarity. In

this section, we compare using a probabilistic dictionary for projection with using a

non-probabilistic dictionary.

One of the data scenarios which we are most interested in is the case where

we have access to a modest amount of parallel training data, and we wish to use

monolingual resources to improve our statistical MT model. In this situation, we can
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use automatic word alignments to extract a dictionary. Along the way, we can also

collect counts of how many times each source and target word pair are aligned and

use relative frequencies to estimate conditional probabilities, pptrg|srcq. We can then

probabilistically project each context vector. For example, say we have the following

context vector for some Spanish word: [blanco: 2, casa: 1, bueno: 2]. Our probabilistic

dictionary may tell us that blanco translates as English white with probability 1.0, but

casa translates as home with probability 0.25 and house with probability 0.75 and,

similarly, bueno translates as good with probability 0.6 and as ok with probability 0.4.

Our probabilistically projected context vector would then be: [white: 2, home: 0.25,

house: 0.75, good: 1.2, ok: 0.8]. Using a non-probabilistic dictionary, the resulting

context vector would be: [white: 2, home: 1, house: 1, good: 2, ok: 2]. Intuitively,

using a probabilistic dictionary for projection should allow us to give less credit to

infrequent translations and also to avoid projecting too much mass for source words

with many target translations.

For this set of experiments, we use the Indian languages corpora described in

Post et al. (2012). In particular, we use the parallel training sets for Tamil, Bengali,

and Hindi to extract probabilistic dictionaries. We compare using intersection and

grow-diag-final GIZA++ alignments (Och and Ney, 2003). In all cases, we extract

contextual vectors from both crawled data and Wikipedia data and project them

separately, using the given projection dictionary. We then train and use a reranker

based on only the two contextual feature vectors. As a result, top-k accuracies are
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much lower than when we use more complete feature sets. However, by isolating

the contextual similarity features, we may make comparisons across context vector

projection dictionaries.

Table D.1 shows results using several different contextual vector projection dictio-

naries. In general, it’s clear that using both the original Mechanical Turk dictionaries

and those derived from the word aligned training data is better than either either

alone. Additionally, intersection alignments tend to result in higher top-1 perfor-

mance than using the less precise but higher recall grow-diag-final alignments. Con-

versely, the grow-diag-final alignments yield higher top-10 and top-100 performances.

Using probabilistic projections tends to slightly hurt performance, at least for this

low resource condition.

D.2 Comparison of Temporal Signatures

In Section 4.2.1.2, we described our method for estimating and comparing the

temporal signatures of a pair of words. In our bilingual lexicon induction experiments,

we found temporal similarity to be a weak but useful signal of translation equivalence.

Here, we compare two methods for measuring the similarity between a pair of

temporal signatures. Recall that word w’s temporal signature is an M -dimensional

vector of counts of the number of times w appears in each of M time periods, and

each count is normalized by the sum of all counts. In our web crawl data, we have
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dates associated with articles and each time period corresponds to a single day. In

the experiments presented above, we used a simple dot product to estimate similarity.

However, this metric may not be ideal. For example, it may be the case that an event

is covered extensively in news stories in one language on a particular day or week but

that same event is not picked up in the newspapers of another language until some

time after. We have attempted to account for such a temporal shift by using a sliding

window of three days when populating temporal signatures, but the sliding window

would not be able to smooth over longer shifts, which would result in poorly aligned

temporal signatures.

Here, we compare the performance of using temporal signatures based on normal-

ized raw frequency counts with a more sophisticated transformation of the signatures.1

In order to account for temporal shifts, or imperfectly aligned time series, we compute

the discrete Fourier transform (DFT), FpXq, of each M -dimensional series X:

FpXqk “
M´1ÿ

m“0

xme
´i2πmk{M

where k is an index over the output transformed vector.2 The Fourier transform

assumes a series of equally spaced samples. In our datasets, however, we frequently

don’t have data for every day in the range of a given time series, particularly for lower

resourced languages. In the experiments here, we simply ignore days with missing

1In all experiments here, we use the same three-day sliding window that was used in earlier
experiments.

2Thanks to Mike Carlin for, after all those years, teaching me about discrete Fourier transforms.

269



APPENDIX D. BILINGUAL LEXICON INDUCTION

data. However, we experiment with low as well as high resource languages, for which

there are very few missing samples.

The Fourier transform is an equivalent representation of our original time series

as a sum of complex sinusoids. Such a representation is common in signal processing

for characterizing slow versus fast modulations in the original time series. In par-

ticular, the magnitude of the DFT, X̂k| :“ FpXkq|, quantifies the strength of these

modulations regardless of any time shifts in the original time series. It is this tempo-

ral phase-invariance of the DFT magnitude that makes it useful for comparing pairs

of time series that may have similar overall temporal structure but may be shifted

versions of one another. Therefore, to compare pairs of temporal signatures, we use

a the dot product of the DFT magnitudes, i.e.:

simtempdft “ F̂ ¨ Ê
||F̂ ||||Ê||

where F̂ “ |FpF q| k´1
2

1 and Ê “ |FpEq| k´1
2

1 , ignoring the DC terms.

We experiment with three language pairs, Spanish-English, Indonesian-English,

and Cebuano-English, to test the effect of using Fourier transforms in measuring

temporal similarity. Spanish-English is a high-resource language pair, and we have

nearly a billion words of Spanish time-stamped web crawls. Indonesian-English is

a medium-resource language pair; we have about five million words of web crawled

data. In contrast, we have only about one million words of Cebuano web crawled

data.
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In order to compare the effectiveness of using standard temporal signatures versus

their Fourier transforms, we experiment only with words for which we have reason-

ably strong temporal signatures. That is, our estimates of the temporal signatures

of words that appear in our comparable corpora infrequently are sparse and unlikely

to be meaningful whether we use Fourier transforms or not. Therefore, for each lan-

guage pair, we collect temporal signatures for only those source and target language

words that have a monolingual frequency of at least 300 in our comparable corpora.

We then prune the source language words to those which, given our bilingual dictio-

naries, have a known translation in the set of frequent English words. This results

in a test set of 26, 349 Spanish, 741 Indonesian, and 202 Cebuano words. We fur-

ther prune the Spanish set by randomly sampling 1, 000 words. For both raw and

Fourier transformed temporal signatures, we estimate the similarity between a pair

of temporal signatures using dot product. We compare each source language word

with each English candidate translation. There are about 20, 18, and 4 thousand

candidate English translations in the search space for our Spanish, Indonesian, and

Cebuano experiments, respectively. We rank these English candidate translations by

their similarity scores with test source word and evaluate using mean rank and top-k

accuracy.

Before considering aggregate results over each set of test source language words,

we spot check the impact of using Fourier transforms on several example word pairs.

Figure D.1 show histograms of the similarities between a given source language word
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and the English candidate translations. The similarity between the source word and

the highest ranked correct English translation is given on each subfigure. Note that we

normalize similarity scores by the sum of all scores and plot the scores times 1, 000

for readability. We sample three Spanish words of varying burstiness: terremoto

(earthquake), which is has a high burstiness, aventurero (adventurer), which has an

average burstiness, and riqueza (riches), which has a low burstiness. The pairs of

similarity histograms, in general, look similar. The Spanish words terremoto and

riqueza have very low similarity scores with their correct English translations, quake or

earthquake and riches. However, the Spanish word aventurero has very high similarity,

5.07, with its English translation adventurer using raw frequency-based temporal

signatures. The similarity score using Fourier transformed vectors is 0.90. Although

this value is high, it is not as discriminating.

Figure D.2 provides an additional illustration for comparing pairs of raw fre-

quency based temporal signatures and their Fourier transforms. The top two figures,

(a) and (b), show the raw frequency and Fourier transformed signatures, respectively,

of terremoto paired with its correct translation, earthquake. Both pairs of signatures

show similarities. Note that the lower dimensions of the Fourier transformed signa-

tures have higher magnitudes than the higher dimensions, indicating the presence of

stronger, slower modulations over time. The bottom two figures, (c) and (d), show

the raw frequency and Fourier transformed signatures, respectively, of the same word

paired with an incorrect, though, in some contexts, topically related, English can-
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(a) Raw Frequency Temporal Signatures (b) Fourier Transformed Temporal Signa-
tures

(c) Raw Frequency Temporal Signatures (d) Fourier Transformed Temporal Signa-
tures

(e) Raw Frequency Temporal Signatures (f) Fourier Transformed Temporal Signatures

Figure D.1: Histograms of similarity scores between several Spanish test set words
and all English candidate translations. Similarity scores are shown on the x-axis and
the frequency of different scores is shown on the y-axis. Frequency-based temporal
signatures are used to compute similarity scores in the histograms on the left (green)
and their Fourier transforms are used to compute similarity scores in the histograms
on the right (blue). The Spanish word terremoto, which means earthquake or quake,
is the source language test word in (a) and (b). In (c) and (d), it is riqueza, which
means riches or wealth, and in (e) and (f) it is alcanzaron, which means reached.
On each plot, we give the similarity between the source language test word and the
highest scoring correct English translation.
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(a) Raw Frequency Temporal Signatures (b) Fourier Transformed Temporal Signatures

(c) Raw Frequency Temporal Signatures (d) Fourier Transformed Temporal Signatures

Figure D.2: Comparison of temporal signatures for the Spanish word terremoto. Both
raw and Fourier transformed signatures are compared with both a correct, earthquake,
and incorrect, strength, English candidate translation.

didate translation, strength. Although both pairs of signature show less similarity

than was present for the correct English translation, the raw frequency signature

shows even less than the pairs of Fourier transformed signatures, which is the desired

behavior.

Table D.2 shows aggregate results across our entire test sets of our experiments

measuring the impact of computing Fourier transforms of our frequency-based signa-

tures before measuring temporal similarity. For our task and datasets, using Fourier

transforms hurts performance slightly. For all language pairs, correct English transla-

tions are ranked higher in the set of all ranked candidates when we use raw temporal

signatures than when we use their Fourier transforms. As expected, performance is

higher for Spanish-English than the other language pairs. Because our web crawls a
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much larger for that language pair than the others, the temporal signatures that we

estimate are more complete and meaningful. However, given the general unpromising

results presented here, we do not use Fourier transforms of our temporal vectors in

place of raw frequency-based vectors as a feature in our bilingual lexicon induction

models.
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Dictionary Probabilistic
Including OOV Accuracy
MTurk Top-1 Top-10 Top-100

Tamil

MTurk No Yes 5.50 13.61 28.02
Intersection Alignments-Based No No 6.71 17.53 34.61
Intersection Alignments-Based No Yes 8.10 20.64 37.28
Intersection Alignments-Based Yes No 3.73 10.60 26.42
Intersection Alignments-Based Yes Yes 4.62 12.29 28.44
Grow-diag-final Alignments-Based No No 7.28 22.36 40.15
Grow-diag-final Alignments-Based No Yes 7.77 23.01 40.67
Grow-diag-final Alignments-Based Yes No 4.90 13.17 30.39
Grow-diag-final Alignments-Based Yes Yes 5.22 13.92 30.78

Bengali

MTurk No Yes 7.05 17.45 35.45
Intersection Alignments-Based No No 9.36 22.79 41.76
Intersection Alignments-Based No Yes 11.19 25.61 44.53
Intersection Alignments-Based Yes No 6.29 15.44 33.03
Intersection Alignments-Based Yes Yes 8.20 18.88 37.23
Grow-diag-final Alignments-Based No No 6.61 27.76 49.06
Grow-diag-final Alignments-Based No Yes 7.09 28.73 49.92
Grow-diag-final Alignments-Based Yes No 7.49 19.74 39.80
Grow-diag-final Alignments-Based Yes Yes 8.97 21.89 41.25

Hindi

MTurk No Yes 7.01 17.80 39.15
Intersection Alignments-Based No No 13.44 30.25 54.40
Intersection Alignments-Based No Yes 14.42 31.51 55.58
Intersection Alignments-Based Yes No 7.13 18.60 39.63
Intersection Alignments-Based Yes Yes 8.47 20.95 43.06
Grow-diag-final Alignments-Based No No 6.96 23.85 54.47
Grow-diag-final Alignments-Based No Yes 7.08 24.58 54.85
Grow-diag-final Alignments-Based Yes No 8.24 21.45 44.87
Grow-diag-final Alignments-Based Yes Yes 8.95 23.37 46.91

Table D.1: Comparison of dictionaries used to project context vectors. Evaluation is
over all source language words in the MT development set. Gold standard translations
are taken from the automatically word aligned development set and its reference
translations as well as all of our available bilingual dictionaries for each language. If
any gold standard English translation is found in the top-k ranking for a given source
word, we consider that source word to be accurate in the top-k.
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Signatures
Source Target Candidate Mean Mean Rank Accuracy

Test Words Translations Rank Percentile Top-10 Top-100

Cebuano
Norm Frequencies

202 4, 452
2, 055 46.2% 0% 2.5%

DFT of Norm Frequencies 3, 148 70.7% 0% 1.0%

Indonesian
Norm Frequencies

741 18, 376
6, 608 36.0% 0% 0.3%

DFT of Norm Frequencies 11, 225 61.1% 0% 0%

Spanish
Norm Frequencies

1, 000 20, 050
5, 272 26.3% 1% 3.4%

DFT of Norm Frequencies 7, 583 37.8% 0% 0%

Table D.2: Translating ranking performance using temporal signatures comprised of
normalized frequency counts versus their Discrete Fourier Transforms.
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Zero-Parallel Data Translations

Table E.1 gives translations of the first 4-5 sentences of foreign language Wikipedia

pages on Barack Obama. A blue word indicates a dictionary translation, red indicates

a transliteration, and green indicates an induced translation. Black words are induced

translations that turn out to have exactly the same string as the input. Orange

indicates that a word was both the best transliteration and in the top-10 induced

translations.

Language Translation Output
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Language Translation Output
Nepali senator barack obama ( birth : 4 august , 1961 america ) ryan washington is — he this

country first folio ( african americans ) washington is . he 20 january , 2009 for day
position newly shy take is done . senator barack personnel herald senate and 2008
in america blamed for viewing parties democratic candidate was . senator barack
l aung san in 1991 graduate formed , where he barack obama l slaves first african
president also was . 1997 from presidential senator senate transcript three complete
to do before communal senator obama in the form of work done and citizens authority
responded in the form of spherical did . 1992 from presidential upto he harvard law
university constitutional law amendment work also did san . 2000 in american house
af representatives vargas get for doing unsuccessful in 2003 after january his sight born
obama was . away seats in primary victory achieved in 2003 and did not directly for
elected was . 109 n trinidad democratic blank oval in the form of traditional he hat-
htiarmathi control and federal treasury in use more public than doing support plans in
making coperation . did he eastern europe , middle east and africa royal journey also .
went 110 n trinidad and tobago change change , climate change , climate change and
tobago defeat nepalese closely related welfare vidheyk-nirmana-ma he did coperation
. world war important contribution did want delivered year graduate 2009 for nobel
prize exchange

Somali barack obama it is a man of juvenile and you to cargo many mediation between and
usa indiana it is 47 . old the he was born hawaii in the region last month 27 juli seeds
, year 1961 dii. the birth just father people black is from came from nairobi of kenya
and mother of white people is from , watch region areas of country america him and
ladies barack obama , the have the two girls and with with called mail and sasha the
father the from he left him and two years of old to the he studied from give leads the
osaka harvard . adding the the after he returned to the land from came from of kenya
. illinois after , senator obama the mother is she married a man from came from the
country indonesia. and then they to have moved from srilanka are mostly migrants
and is in nominee while to he stayed out-it in the one 1971dii until 1969 . obama ,
when the after to , he returned hawaii region of the mother in the end it was , the
there with avoiding lived in mother he was born of was white .

Uzbek senator barack obama ii ( pronunciation nava : barak obama ; a second time 1961-yili
4-avgust ) the united states 44- as well as of the present presidents . buganda chicago
maine task list senator bavaria . 2009-yil 9-oktabrida totalitarian policy for nobel
prize by thailand . all open barack obama says president barack obama , white it

Azeri barak huseyn barack ( . ing barack obama ii keyes ; 4 august 1961 ) - congress
the united presidency 44th president . 2009-cu in nobel peace award said . vital 4
august 1961-ci in hawaii hilo born the barak huseyn barack obama father also ordinary
huseyn barack obama ( father ) , cowboys his mother ordinary the puck carey obama
imam . obama the his father with obama the the mother hawaii university am were .
barak barack 1983-c in colombia radcliffe he graduated from the and 1985-ci in obama
salinas in that place obama and oldenburg obama obama living conditions improve
for hasan the caucasian koller started to work . 1991-ci in barack harvard law school
nights .
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Language Translation Output
Tamil guo barack obama ( bezos barack obama , transcribe : baptismal immerse baptisms

, born : august 4 , 1961 ) , of america 2008 republic leader elections mls democracy
party baptisms . now he submersion obama state support younger as members . those
who are america allawi africa america race from first republic leader in manjrekar ,
and sent house fifth abraick-amerike native in manjrekar for them present . colombia
immerse harvard leber immerse slam received obama politics world insead in front of
obama south in society obama ( page opinion ) public law obama numb . 1997il obama
state basu unctad 2004 time in power he was there . 1992 first 2004 time chicago
university leber college ito numb . 2000il america lobbyists elections defeat to get 2003
disclosures obama aacsb obama begins . obama in the state legislative as members
will be cipher , 2004l democracy party national obama he did obama national level
attention baptisms . after november 2004 from that year america parliment elections
70 % immerse greatness obama joined . 2004il democracy party fers aru were period
in power obama bashir . central government weapons control akbar law tupac . 2006il
democratic party isga layne later on election fraud , climate bitmap , blix extremism
, before immerse orphanages likewise automaker related laws was written by february
. 2007il republic leader election competition declare obama iraq war adrs audacity
, power freedom delusions , outside aacsb politicians on effect reduced , to everyone
hygienic program as own important principles that said .

Albanian barack obama downturn hussein obama ( born on 4 august 1961 in honolulu , hawaii
) is president of 44-t to him to united states of america . barack obama is winner
of price in behalf of nobel prizes in year 2009 . he is president first afro-american
. ¡p¿ in year 2004 he was elected in american satin in illinois . candidature such as
president in campaign of elections and declared in 10 in a word 2007 in wheelchair (
illinois ) . on 3 june 2008 obama reached , in accordance with of data to cnn , derive
and necessary to vote for to nominated as candidate for president , within party that
his , by left at thereby lugar and mcmillan americans , wife of old to us president bill
clinton . in 27 august 2008 barack obama was moria on way out of official to epp and
democratic party such as obama for president .

Bengali barack obama hussain , junior ( english language : spoken spoken prize , jr ) . (
births 4th august , 1961 ) nobel peace reward winner and united states joyner obama
. president he democratic of the party member . of before he united states quang
illinois province selected representative or senator responsibility celebrate did . obama
2008 of the year 4th november was held united states joyner mckinney in the election
winner was and 2009 of the year 20th january oath did receive . october 9 , 2009 date
obama in peace nobel prize give do is . primary life barack obama united states joyner
hawaii province capital honolulu birth did . his father in kenia isolates nation barack
obama hussain cinri ( spoken spoken prize , ) sr. was one economist and his mother
ann obama ( windus reelected ) was united states obama ( mainly english o irish ) .
obama howai-manoa father of university to read during the time an unsatisfied with
his identity o marriage is . 2 obama year in age his baba-mayer jolie happen . mother
obama after indonesian lolo dunham ( javanese : obama ) interracial marriage did .
obama many of childhood time span indonesia . 10 year in age he his obama nana-
nanir near came came . in the next obama harvard university from in law degree gain
did
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Language Translation Output
Welsh barack hussein obama ii is 44ain president the united states . a ’n member of ’r

democratic party . the was obama in senator from illinois from 2004 to 2008 . was
elect its presidential election in november 2008 against john mccain . the was oprah
winfrey and ted kennedy in his support . he is ’r african american first available in
order to elect its president in the united states . took in university and columbia
university the law , harvard . at after published her that for stand for the presidency
in february 2007 , published also its edmund in order to see his soldiers country in
pull out of iraq and yan . its history early born obama on 4 august 1961 in honolulu
, hawaii ; in son in order to barack obama , high , black man from napa muscat
dunham in kenya and ann dunham , americans skin jones of wichita , kansas . met
her parents while they in hawaii university .

Bosnian nobel hage biden i ( fon . hound khatib biden i ; born 4. august 1961 in honolulu ,
hawaii , now - ) is american politician and 44 . president united american country ,
therefore former member american senate ( representative country illini ) . biden is
was candidate in front of democratic parties to elections for president united american
country , which were are rune november 4. 2008. years , on which is won republicans
john mccain . biography born from marriage keyes father and american mothers ,
most its own life translated by is in honolulu , to hawaiians . in period since 1967
. - 1971. years lived is from mother and specter in jakarta , indonesia , where is
elementary and school . graduated is right at harvard university and columbia .

Latvian biden hussein obama , youngest ( , born ) is forty fourth , as well as current u.s.
president . he is first peachtree , which is interprets this post . out of 2005. annual
by ratzinger presidential nominee obama was illinois state senator . barrack obama
inauguration ceremony was . obama is hiatus columbia university and harvard obama
school ( harvard law school ) , a he was first harvard law api beyonce president . when
obama was public employee chicago , where he mission as well practice that human
rights lawyer . out of 1997. as 2004. the obama on three presidents was elected
barack obama . he as well out of 1992. as 2004. the chicago university obama school
press pcf constitutionalist right . 2000. year he ballon place u.s. higher vichy , but
2004. year november obama was elected u.s. senate .

Indonesian onyango hussein obama ( ii ; ) there was president american union which these days
to hold and to form president america the union ke-44 . onyango to become since 20
january 2009 to succeed george walker bush . before he is junior senator from illinois
and then to win in election president 2008 to 4 november 2008 . he went home and
brought his title with him by 2009 , obama announced such as winner gift from god
honor peace prize due to conduct of the relations of one state with another by peaceful
means to promote international to to solve masalah-masalah international . obama
is descent afrika-amerika the first president to be the american union after previously
to form descent afrika-amerika the first which yudhoyono by a political party and
definitions which can be used as a principle for the whole processing of the language
matter large american to to be president . columbia university graduate and school
unwritten law in as it is based on custom harvard university ; in there he to hold such
as president harvard law review , obama to work such as coordinator society and to
hold such as civil rights lawyer to be appointed before senate chicago as long as three
times to start 1997 until 2004 .
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Language Translation Output
Romanian barack obama second dcp ( pronounced in english / churchman obama obama / ; n

. 4 august 1961 , honolulu , hawaii , the son of senator barack obama , sr. born
in province kenyans obama , with ethnic group luo and al by ann obama born in
wichita , kansas ) there is al 44-lea chairman al the states united ( first afro-american
high in this position ) , for of the elections held on 4 november 2008 , by the side of
envy obama as to vice-president ) . was has been investing acting on 20 january 2009
and l-a changed by his predecessor george w. bush . the son of one kenyans , barack
hussein obama , sr. and al of a u.s. , ann obama alex , obama was spent a large part
of childhood in honolulu , hawaii . in six as far as decade of lived in jakarta , with
his mother and father with the object of cruel , indonesia . graduate al graduated
columbia and al faculty of right leg from harvard , to a run for the sake of entrance
into harta public so as to join a al the senate state illinois between 1997 and 2004 ,
obama was wrought such as conciliator tce , docent university and such as solicitor
specialized in the defense rights leaders .

Serbian barack hussein obama - ( ii ) - ( , born august 4. 1961 in honolulu , on jiao , in sad )
is current american president , chosen on elections year 2008. . member is democratic
party . of 2005. to 2008. was is younger senator from illinois . born is in honolulu
on jiao , as child molestation and carjacker . grown is on different places . bigger
part own childhood spent is on jiao , and four year in youth is spent in indonesia .
graduated is political science on columbia university , and the title lustig usurper (
- ( j.d. ) - ) acquired is on harvard . before but which is became senator in senate
states illinois ( between 1997. and year 2004. ) , dealt with is social work and grillo
, in areas civil rights . their campaign for entry in american senate is started 2003.
year . on elections is won republican alan , see also gatsby with great majority of 70
% votes . in process presidential campaign , obama is promised , that will in case his
win on elections seen to significant changes in washington and that will to him one of
priorities to be retreat american troops from iraq .

Turkish barack obama def ( , birth . 4 august 1961 ) the united states of ’nin state bond
presidency . 4 november 2008’de being made the us 2008 presidential elections ’nde
major ’nin 44. president elect and 20 january 2009 history such acts as a george w.
bush ’tan obrador . the us history the multiracial state bond presidency . life the us
’nin hawaii rochelle in the city of mauna obama medicine center of gravity ’nde the
world was . with self as much as name carrying father kenya ’nn nairobi region ’ndeki
ruhr naga obama residential district in was born and brought up in the lap of luxury
any obama . the refrain from obama of muslim when ( in private muslim ) sexist all
the next world and valdes to cause has been . on the other hand the view muslims
obama or obama fairness to cause has been his mother ann yeats in that case kansas
state wiccans in the city of was born and brought up in the lap of luxury any olmos
. obama ’nn old lady and father , his father’s foreign student in that hawaii ’de met
and got married . new married obama binary 2 years old divorce . father boston ’a
step by step cambridge university ’nde doctorate degree to make and 1965 in kenya
’ya back . returned to his mother in that case once again any foreign student one
cadres obama sanya ’yla second any marriage to make .
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Language Translation Output
Ukrainian baranov obama k. in obata ma ( ; writer . 4 august 1961 ) & the ; - american poet

, 44-i president usa , former senator from illinois state in congress usa . first was
elected to senate state illinois in 1996 . in november 2004 with when bmx barack
obama hinojosa political opponents on elections - and was reelected congress united
states america , after assassination attempt obama in parliament representatives usa
in 2000 . in democratic party got nomination on incumbent president and 23 august
2008 r. announced the choice candidacies joe biden on obama vice-presidenta . for
results elections 4 november 2008 gained r. victory above augment candidate jon
obama and 20 january year 2009 was first in history country president tryout usa
. biography barack obama born in honolulu , hawaii state , in his barack hussein
obamy-starshogo that anna oremans . joho father origins with settlement allegory
province nyanza republic kenya , and have with place wichita american state kansas .
father chaplin under hour training in cochlea university , where obama-starshi later
as dozens student . when obama two years ago joho father at first mullis , and
afterwards officially lakota divorce . joho father began training in pedagogical in
harvard university , where he gained blasts degree doctor that returned to kenya .
have obama married marry yanukovych , this time for indonesian students inhabiting
acu , from which in being born daughter .

Hindi barack hussein obama ( birth : august , 1961 ) america of chatrier president of a
nation is . they the country its first saharan ( african american ) president of a nation
is . they 20 january , 2009 ko president of a nation post of oath lee . obama biden
region from smallest gaylord and 2008 among america of president of a nation post
of for godot morcha its candidate was . obama harvard lo school from 1991 among
graduate became , where they harvard lo voight of before african american adarsh
also stay . 1997 from ussr biden normand among three complete zemin does its east
obama ne aquatic organiser of shape among work did is and citizens rights advocates
of shape among behaviorists of is . 1992 from ussr tk they chicago law solan among
constitutional law and order ka wile also did . mizrahi 2000 among american house
of representatives among seat nor does among amnesia even after its january 2003
among they american normand ka stance did and march ussr among bandages career
goals of . number 2003 among normand of for selected went . trinamool congress
among tuc lieberman member of shape among they traditional weapons on control
and federal dictionary of use among more entire corporate ka support to do biden of
build among cooperation had . they east europe , middle east and africa of royal travel
on also went . trinamool congress among tuc and of elections , worldcom environment
of change , nuclear terrorism and war from quit okay soldiers of ripe from associated
biden of build among they cooperation had . kuban among notable contribution of
for barack obama ko year 2009 of nobell peace prize of for selected made is .
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Language Translation Output
Bulgarian barack hussein obama ii ( ) e 44-iat and urged president of sast out of democratic

party elected e on 4 november 2008 as well g. resting in place on 20 january year 2009
. barack obama e the first slur in history , which e elected in this position . elected
e for the sake of nobel laureate for the sake of peace for the sake of year 2009 . early
years barack obama e home in honolulu , hawaii in the 1961 winter . his parents is
zapata during lem one there . father is barack obama-sthe-elder e out of kenya , a
mother is an obama e white ohno in wichita , kansas . they is divided , when he e
in 2 years and later on is divorced . guv in obama is back in kenya and managed to
see its son just over before cabinet in car crash in 1982 . after divorce their mother
to him is princess for the sake of lolo obama as well all family is move in homeland
is part , indonesia . there obama visit schools in jakarta , realizes as long as 10 years
. after obama is back in honolulu , where live with parents in mother one as far as
graduation in its secondary education in the 1979 .

Slovak rodham tymoschuk votes ( * 4. august 1961 , oahu , hawaii ) is former senator united
states in return for state illinois and by 20. january 2009 44 . president united states
, who won in delong presidential elections in the 2008 . is in order piety bluford ,
who himself has become american reelected . so is first lugar president united states
. childhood barack obama himself born on oahu for windsurfer barack obama acu st.
out of of baguio sigler lugar out of kenya and ann dunham , comanche hazelwood
city out of miron in armory . his parents the meet in the 1960 by studies at tufts
university in city obama , that was his father insures students . pair the 2. zombie
february 1961 , sinatra himself as had barack obama two years and in the 1964 the
divorced . obama father himself returned to kenya and just his son again before than
died in the course of farina talked during the 1982 .

Urdu mark obama new hampshire i turkey mission ke during barack hussein obama anis so
calgary i american state hawaii i born have . who 2 february 1961w his marriage did
. who ke father of relationship kenya is that is why mother of hawaii is was . parents
did meeting during talib knowledgeable hawaii university i happen where on an ke
father obama on read came have them . obama did umar two year folger when an ke
parents i separation is were . divorce ke after obama mine mother ke with america
and some of period ke for indonesia i flow are because an ke step father of relationship
indonesia is was . they of columbia university and harvard university law school is
education get did and harvard university man he harvard no ke first batch black cover
american president make . they of chicago i first biden social man and then special
counsel work what . he eight year till state rodham did politics i are active and year
two thousand four man he american senate ke for selected have . obama did wife
michelle apes also chaudhry there and yale and harvard did read happen that . who
did two daughters but which did obama nine and six year that . barack obama of last
year february i american presidential selection did race i but occur of announcement
what was . he of iraq from military back dating of promise did he and bush ke against
iraq on army decay and iraq war ke ke against one american gathering mi but have
and promise did ke if he president selected have then he iran is also war without fight
went but some also country is without fight went . barack obama of barack clinton
his soon de and mine obama of announcement do give and he america first ke obama
cover president that . 4 november 2008 his obama sworn i sharif is gone but who did
obama this precinct did obama did munich he one day first do death were were .
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Language Translation Output

Table E.1: Translations of the first 4-5 sentences of foreign language Wikipedia pages
on Barack Obama. A blue word indicates a dictionary translation, red indicates a
transliteration, and green indicates an induced translation. Black words are induced
translations that turn out to have exactly the same string as the input. Orange
indicates that a word was both the best transliteration and in the top-10 induced
translations.
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Appendix F

Fast Phrase Pair Filtering

In Section 7.1 we introduced the idea of using filters implemented as inverted

indices to very quickly prune the set of target phrases which should be considered

hypothesis translations for a given source phrase. Here, we provide a detailed set of

experiments in which we automatically learn and then evaluate a variety of filters.

The results found here inspired the algorithm based on compositionality presented in

7.2.2.

F.1 Exploratory Experiments in Learning

Effective, Efficient Filters

We take a supervised approach to learning how to filter the space of all target

phrases, given a source phrase. We use high probability (details below) phrase trans-
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Figure F.1: Example of decision tree, which could be implemented as shown in the
algorithm in Figure 3. Feature tests are shown in boxes and decisions in circles.

lation pairs as positive supervision and random phrase pairs as negative supervision

to learn a decision tree classifier that makes the following binary prediction: a given

pair of phrases should be maintained as hypothesis translations (correct) or should

be filtered out (incorrect). Unlike many other models of classification, decision trees

are learned by greedily choosing the feature which most effectively splits the data for

making accurate label predictions. Because we want to filter the set of target phrases

using as few phrase pair features as possible, decision trees are an appropriate way to

model pruning; we can stop learning after some maximum number of decision nodes,

or filters, have been constructed. Figure F.1 shows a decision tree that corresponds

to the example given in Figure 3.

We begin by choosing the feature on which to split the data using information gain,
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a standard measure for building decision trees using supervised data. Information

gain is defined as the reduction in entropy, Hpq, of the labeled training data, D, when

feature f is known:

IGpD, fq “ HpDq ´ HpD|fq

We use an information gain cutoff of θIG and do not split a given branch of the

decision tree further if IG is not at least θIG. Given supervision in the form of phrase

pairs with a binary correct or incorrect label, we can learn a decision tree that predicts

whether any arbitrary phrase pair is correct or incorrect.

We experiment with Spanish and Hindi. These languages are diverse yet we

have access not only to parallel training data for each but also sizable collections of

manual word alignments, which we use to extract clean sets of phrase translations for

evaluation (see Section F.2). For each language, we extract a phrase translation table

from parallel training data using a phrase limit of three. For Spanish, we use the

Europarl parallel corpus(Koehn, 2005), and, for Hindi, the corpora released by Post

et al. (2012). We identify all phrase pairs for which the phrasal and lexical translation

probabilities in both directions are at least 0.1 and label them as correct. All possible

pairs of source and target phrases which are not in the correct set are assumed to be

incorrect. Using the sets of all source and target phrases in the phrase table and their

labels, we sample 2, 000 and 20, 000 correct and incorrect phrase pairs, respectively,

and use half of each for training and half for testing. In end-to-end MT settings,
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we expect the positive-negative ratio to be much smaller. That is, a single source

phrase may have a handful of correct translations and the remaining tens of millions

of target language phrases are incorrect. We address this empirically in Section F.2.

In our exploratory experiments here, we learn a variety of decision tree filters and

measure the effectiveness of each. In truly low resource conditions, we are unlikely

to have enough parallel training data to accurately estimate word alignments and

extract a clean set of phrase pair translations to use as supervision. However, this

supervision is only used in the exploratory experiments presented here. Our goal is

to gain a general understanding of what types of filters are effective in pruning the

space of candidate target phrase translations. We don’t intend to learn language-

specific decision tree filters in low resource SMT conditions. Rather, the hope is learn

and analyze decision tree filters for several languages and then develop a general,

language-independent approach to filtering.

In contrast, the features that we use to do filtering do not assume access to large

language resources; our language-independent filtering algorithm will take advantage

of the features that we define and analyze here and we want to be able to estimate

them for any language pair. To this end, we use the following set of external resources

to define features:

1. ‘Initial’ unigram dictionary. Our ‘initial’ dictionaries consist of unigram trans-

lations extracted from random samples of 2, 000 lines of word-aligned parallel

training data in each language.
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2. Induced dictionary of unigram translations. We use the initial dictionaries and

the lightly supervised bilingual lexicon induction technique presented in Chapter

4 to induce top-5 translations for all words in the development, and test sets

for each language.

3. Stop word lists. We use the most frequent 300 unigrams in the Wikipedia of

each language as stop word lists.

4. Monolingual phrase frequencies. We precompute the frequencies of all unigrams,

bigrams, and trigrams in the monolingual Wikipedia corpus for each language.

These resources are consistent with our definition of low resource conditions.

Given the above resources, we define the following binary features over source

phrase s, target phrase t, and dictionary D:

‚ Length-based features

– lenpsq ““ lenptq : Source and target are same length

– lenpsq ą lenptq : Source is longer than target

– lenpsq ą lenptq : Target is longer than source

– lenpsstopq ““ lenptstopq : Source and target have same number of stop

words

– lenpscontentq ““ lenptcontentq : Source and target have same number of

content words
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‚ Dictionary-based features

– lenpstransq ““ lenpsq : All source words have translations from the dictio-

nary in the target words.

– lenpscontenttransq ““ lenpscontentq : All content source words have transla-

tions in the target content words.

– lenpsstoptransq ““ lenpsstopq : All stop source words have translations in

the target words.

– lenpstransq ą 0 : At least one source word has translation in the target

words.

– lenpscontenttransq ą 0 : At least one source content word has translation in

target words.

– lenpsstoptransq ą 0 : At least one source stop word has translation in target

words.

‚ Monolingual frequency-based features

– |log2pfreqsq ´ log2pfreqtq| ă 3 : The difference between the logs of the

frequencies of the source and target is less than 3.

– |log2pfreqsq ´ log2pfreqtq| ă 10 : The difference between the logs of the

frequencies of the source and target is less than 10.

– |log2pfreqsq ´ log2pfreqtq| ă 20 : The difference between the logs of the
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frequencies of the source and target is less than 20.

– |log2pfreqsq ´ log2pfreqtq| ă 50 : The difference between the logs of the

frequencies of the source and target is less than 50.

– |log2pfreqsq ´ log2pfreqtq| ă 100 : The difference between the logs of the

frequencies of the source and target is less than 100.

– freqt ą 5 : Target phrase monolingual frequency is greater than 5.

– freqt ą 10 : Target phrase monolingual frequency is greater than 10.

– freqt ą 20 : Target phrase monolingual frequency is greater than 20.

– freqt ą 50 : Target phrase monolingual frequency is greater than 50.

– freqt ą 100 : Target phrase monolingual frequency is greater than 100.

sstop and tstop refer to the stop words in s and t, respectively, and scontent and tcontent

refer to the non-stop words in s and t, respectively. Dictionary-based features are

templates; we use features where the dictionary corresponds to (1) the initial dictio-

nary, (2) the stemmed initial dictionary, (3) the initial and induced dictionaries, (4)

the stemmed initial and stemmed induced dictionaries. We use a five character prefix

for stemming. There are 24 dictionary-based features in all. lenpstransq refers to the

total number of words in s that are translated in t, lenpscontenttransq refers to the total

number of words in scontent that are translated in tcontent, and lenpsstoptrans
q is defined

analogously. freqs and freqt refer to the monolingual frequencies of s and t. These

39 features are available as splitting points in learning decision trees.
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It should be noted that some of our features subsume others. For example, if

translations for all source words appear in the target phrase, then it is also true

that translations of all content source words appear in the target phrase. In some

instances, we may learn decision trees that can be simplified by taking advantage of

these feature hierarchies. Simplifying trees is useful not only for human intelligibility

but also from the perspective of filter efficiency.

Given the decision tree learning algorithm described above, training data con-

sisting of labeled correct and incorrect phrase translation pairs, and our 39 features,

we construct several decision trees for each source language. Figure F.2 shows trees

learned for filtering Hindi-English phrase pairs with θIG “ 0.05 and θIG “ 0.10 and

for filtering Spanish-English phrase pairs with θIG “ 0.15 and θIG “ 0.20. All trees

use a dictionary-based feature for splitting on the first node.

The Hindi decision tree with an information gain threshold of 0.05 filters (predicts

the ‘Incorrect’ label) all target language phrases that do not either (1) contain trans-

lations of all source content words, given the stemmed initial and induced dictionaries,

or (2) contain translations of all source content words, given the initial dictionary.

Note that this learned decision tree is an example of one that could be simplified.

The first decision node splits on the feature that checks whether all source words have

translations in the target phrase, given the stemmed initial and induced dictionaries.

However, any phrase that would pass one of the next two filters would necessarily

pass the first; the first decision node could be removed without changing any output
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labels.

We define test set accuracy as the percent of all phrase pairs that are labeled

correctly and define precision and recall as usual:

precision “ truecorrect X predictedcorrect
predictedcorrect

recall “ truecorrect X predictedcorrect
truecorrect

Recall that both our training and our testing datasets have a 1 : 10 ratio of positive

to negative examples. Baseline accuracy, therefore, is 91%, which is what we would

achieveby labeling all pairs as incorrect. With this strategy, precision is undefined

because no instances are labeled as correct, and recall is 0%. For this task, we are also

interested in true negatives, or the number of incorrect phrase pairs correctly labeled

as incorrect. A higher true negative rate means that we are effectively pruning more

incorrect pairs, which will speed up processing without resulting in any missed correct

translations. We define filtered as the percent of all true negatives that are correctly

labeled as incorrect (essentially recall on ‘incorrect’ labels):

filtered “ trueincorrect X predictedincorrect
trueincorrect

Table F.1 shows the train and test accuracies, precision, recall, and filtered rate

of (1) the baseline strategies, which maximize accuracy, (2) the Hindi and Spanish

learned decision trees shown in Figure F.2, and (3) several additional results for each
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(a) Hindi, θIG “ 0.05 (b) Hindi, θIG “ 0.10

(c) Spanish, θIG “ 0.15 (d) Spanish, θIG “ 0.20

Figure F.2: Hindi ((a)-(b)) and Spanish ((c)-(d)) phrase pair decision trees using in-
formation gain as a splitting criterion. Feature tests are shown in boxes and decisions
in circles. The accuracies of each tree are shown in Table F.1.
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θIG Num Attr.
Train Test

Acc Prec Rec Filt Acc Prec Rec Filt

Hindi
Baseline 0 91 - 0 100 91 - 0 100
0.01 27 99.5 99.9 96.8 99.9 98.5 97.7 91.4 99.6
0.02 18 99.5 99.6 96.8 99.9 98.5 97.7 91.4 99.6
0.05 3 99.1 99.6 94.3 99.9 98.6 99.6 90.4 99.9
0.10 1 98.9 98.1 94.3 99.7 98.6 99.6 90.4 99.9

Spanish
Baseline 0 91 - 0 100 91 - 0 100
0.01 67 99.2 99.6 91.6 100.0 98.8 98.4 87.7 99.9
0.05 27 98.5 100.0 83.2 100.0 98.1 99.3 80.0 99.9
0.10 24 98.5 100.0 83.1 100.0 98.1 99.4 79.9 100.0
0.15 6 98.3 97.2 83.2 99.8 98.1 97.7 81.2 99.8
0.20 1 98.1 94.9 83.3 99.6 98.0 95.6 81.3 99.6

Table F.1: Varying information gain (IG) threshold: Accuracies, precision, recall, and
filtering rate of several learned decision trees over train and test data for each source
language. The baseline strategy, which maximizes accuracy, is to label everything
as incorrect. Num Attr. indicates the total number of decision point nodes in the
tree. The best result for each metric on the test data is highlighted for each source
language.

language pair with varying θIG values.

The first thing to note in the table is that, as expected, as the information gain

threshold, θIG increases, the trees become less complex, as indicated by the number of

decision tree splitting nodes (Num Attr.). In general, trees with fewer splitting nodes

will filter our very large search space of target language phrases faster than those

with more splitting nodes, or lower IG thresholds. In particular, fewer splitting nodes

will result in fewer union and intersection operations like those illustrated in Figure

3. The second thing to note is that there is a clear tradeoff between tree complexity

and accuracy. The most complex Spanish filtering tree, with θIG “ 0.01, has 67 tree
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Figure F.3: Precision and recall as we vary F-measure β from 0.01 to 10. For both
Spanish and Hindi phrase pairs, we learn decision trees with an F-measure splitting
threshold of 0.15.

decision nodes and achieves 98.4% and 87.7% precision and recall, respectively, on

the test data. In contrast, the least complex Spanish filtering tree, with θIG “ 0.20,

has only 1 decision node. It achieves a lower precision, 95.6%, and recall, 81.3%. In

general, the results in Table F.1 demonstrate that most of the filtering can be done

with just a couple levels in the tree while still achieving a fairly high recall.

A higher complexity tree does not necessarily result in higher accuracy because

the learner’s objective is information gain, not precision or recall. We have also

experimented with choosing splitting points based on weighted F-measure instead of

information gain. This allows us to specify a parameter, β, that indicates the desired
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tradeoff between maintaining a higher recall (larger β) or higher precision (smaller

β):

Fβ “ p1 ` β2q precision ¨ recall
β2 ¨ precision ` recall

Figure F.3 shows how different values of β affect precision and recall for Hindi. In

those experiments, we use an F-measure threshold of 0.15 for both languages, which

limits the learned trees to those that are relatively simple; none of the trees in the

results shown in Figure F.3 have more than six decision nodes. The Spanish trees

change as we vary β more than the Hindi trees do, which achieve generally higher

recall and precision. The high precision (β “ 0.01) and high recall (β “ 10) learned

decision trees for both Spanish and Hindi are shown in Figure F.5. The high precision

trees for each language turn out to be the same and filter using the single feature

that indicates if all source words in the source phrase have a translation in the target

phrase under the initial dictionary. This feature makes sense as a high precision

indicator of translation equivalence. The high recall trees are slightly different for

the two languages but both use the stemmed initial and induced dictionaries; the

Hindi tree checks whether all content source words have translations in the target

phrase, and the Spanish tree checks whether at least one source word of any type has

a translation in the target phrase. Both of these features use not only the highest

recall dictionary among the four dictionaries, but they also only check that a subset

of source words have translations in the target, not all source words. As was the

case with the information gain decision trees shown in Figure F.2, dictionary-based
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features are preferred as a first splitting node. In Section F.2, we experiment with

using all of the single node decision trees shown in Figure F.5 in combination with

target language monolingual frequency filters to further reduce the size of the English

candidate search spaces.

F.2 Scaling Up

In our exploratory experiments above, we used a random sample of target phrases

as negative examples for training and evaluation. However, when we scale up our

filtering algorithms to induce phrase translations for machine translation, we must

filter all target phrases. In our experiments here, we use decision trees to filter all

target phrases that appear in our target language monolingual data. When moving

from ten thousand incorrect target translations to ten million, using a filter with high

precision becomes critical. For example, consider the case where, for each source

phrase, our search space consists of ten million target phrases, of which only a few,

at most, are correct translations. A filter that achieves 99% precision will fail to

filter away 100, 000 incorrect target phrases. Although this would be a considerable

reduction from the original search space of all target phrases, a full comparison using

more sophisticated features, for example based on large comparable corpora, would

still be quite computationally expensive.

In this section, we explore the feasibility and effectiveness of using some of the
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filters identified automatically in Section F.1 to filter the search space of all target

language phrases for each input source phrase. For each language pair, our target

phrase search space consists of all ungirams, bigrams, and trigrams appearing in the

English side of each Wikipedia comparable corpus. Table F.2 shows some statistics

about the number of ngrams observed in the English side of each comparable corpus.

There are 83 and 38 million unique English phrases in the documents on the En-

glish side of the Spanish-English and Hindi-English Wikipedia comparable corpora,

respectively, nearly 80% of which are singletons for both sets. We make an assump-

tion that the translation of any Hindi phrase will appear in the English side of the

Hindi-English comparable corpus and likewise for Spanish. This is certainly not cor-

rect (as results in Table F.3 will show), however it is, practically, the best that we

can do in our experimental framework. Later, we will use our comparable corpora

to rank candidate phrase translations. Therefore, if a given English phrase doesn’t

appear in those comparable corpora, our comparable corpora-based features will be

zero-valued and our models won’t have any evidence to rank those candidates highly.

For testing, we extract1 a new, held-out set of translated phrase pairs from sets

of manually aligned Spanish and Hindi sentence pairs in our SMT development sets

(500 sentence pairs each; see Section C). There are about 6 and 3 thousand bigram

and trigram translations in the Spanish and Hindi sets, respectively, that we use for

testing here. For each source phrase, we filter the entire set of 83 and 38 million

1We use the grow-diag-final phrase pair extraction heuristic.
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Lang
Unigrams Bigrams Trigrams All

All Singletons All Singletons All Singletons All Singletons

Spanish
Spanish 2.7 1.5 27.0 18.7 83.4 66.8 113.1 87.0
English 1.7 1.0 19.4 13.2 61.9 50.1 83.0 64.4

Hindi
Hindi 0.6 0.3 4.2 3.1 9.8 8.4 14.5 11.9
English 0.9 0.5 9.4 6.5 27.9 23.0 38.3 29.9

Table F.2: Data statistics about the number of phrases in the Spanish and Hindi
comparable Wikipedia corpora. All numbers are in millions.

target language phrases for Spanish and Hindi, respectively. The goal is to reduce

the search space as much as possible for each source phrase while maintaining correct

target translations in the filtered sets.

Table F.3 presents results using baseline methods that filter on target language

monolingual frequency only. Some correct English translations don’t appear in the

Wikipedia target phrases at all, so the maximum recall, without pruning, is 81.6%

and 72.3% for Spanish and Hindi, respectively. Examples of correct target language

phrase translations in the Spanish test set that do not appear in the English side

of the Spanish-English Wikipedia comparable corpus include whole manufacturing

industry, seventh american alert, and on ordinary headphones. Seventy-two percent

of these unobserved correct translations are trigrams; only one percent are unigrams,

which are mostly proper nouns, including beckstein, siviglian, and coach-in-chief.

The simple frequency-based filters demonstrate again the tradeoff between main-

taining a high recall and reducing the set of possible target phrases. For example,
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Language
Minimum

Recall
Thousands of Translations

Target Frequency per Source Phrase

Spanish

ě 100 49.55 263
ě 50 55.0 520
ě 25 60.3 1, 031
ě 10 66.7 2, 590
ě 5 71.6 5, 478
ě 1 81.6 83, 024

Hindi

ě 100 39.42 107
ě 50 44.8 216
ě 25 49.6 423
ě 10 56.7 1, 098
ě 5 61.8 2, 445
ě 1 72.3 38, 251

Table F.3: Comparison of filters that use only target phrase monolingual frequen-
cies for pruning. Recall is measured over all pairs of source and target translations
extracted from a subset of our manually aligned SMT development sets. The final
column gives the thousands of target phrases that are not filtered away by a given
frequency filter and, as a result, are maintained as possible translations for all source
phrases.

the Hindi baseline that filters all target phrases that appear fewer than five times

in monolingual data results in 61.8% recall and reduces the space of possible target

phrases by 94%, but going further, the baseline that filters target phrases that ap-

pear fewer than 25 times results in only 49.6% recall but reduces the space of possible

target phrases by 99%. It is also important to note that unless source and target

phrases appear at least a few times in monolingual data, we likely will not be able

to estimate high-quality features for them using our comparable corpora and, cor-

respondingly, likely will not be able to identify correct translations. Therefore, we

implement decision tree based filters in combination with target frequency threshold

baselines.
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We implement the three decision trees shown in Figure F.5 as inverted index

lookups. The decision trees each filter using a single feature:

1. At least one source word has a translation in the target phrase, given the

stemmed initial and induced dictionaries.

2. All source content words have translations in the target phrase, given the

stemmed initial and induced dictionaries.

3. All source words have translations in the target phrase, given the initial dictio-

nary.

We refer to these as trees 1, 2, and 3 and compare their performance with that based

on target monolingual frequency alone (Table F.3). Additionally, we experiment

with using target monolingual frequency filters in combination with each decision

tree. We compute precision-recall curves by varying the minimum target monolingual

frequency. A good filtering technique would achieve high recall but also dramatically

reduce the candidate translation search space.

Figure F.4 shows the results. Instead of precision, which is extremely small in all

cases, we plot recall versus the average size of the filtered set per source phrase in the

test set. Recall is measured over all pairs of source and target phrase translations in

the test sets. As expected, the monolingual frequency-based filters achieve high recall

at the cost of very large numbers of candidate translations per source phrase. The

goal of the other filters is to reduce that space further in a source phrase specific way
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without compromising recall. Moving from the first decision tree to the second and

from the second to the third, both recall and the average number of translations per

source phrase decrease. For example, using a frequency threshold of 10, the Spanish

filter based on target monolingual frequency alone achieves 67% recall but maintains

about 2.6 million candidate target phrase translations per source phrase. At the

same frequency threshold, the first decision tree achieves 44% recall and reduces the

average number of candidate target phrase translations much further, to about 200

thousand. The second decision tree achieves 24% recall and reduces the search space

to about 2 thousand, on average. The most precise decision tree achieves only 9.7%

recall but also maintains only 4 target translations per source phrase, on average.

Recall that the size of our original unfiltered set of candidate English phrase trans-

lations was 83 million for Spanish. If we were interested in inducing translations for,

for example, 20 thousand source language phrases, comparing each with the unfiltered

set of target phrases would take about 1.5 quadrillion pairwise comparisons. Using

a target monolingual frequency filter of 10 would reduce the number of comparisons

to about 52 trillion. The three filters that are source phrase dependent would reduce

the space even further to 4 billion, 40 million, and 80 thousand, respectively. The

second filter appears to provide a happy medium; recall is fairly high and the average

number of candidate target phrase translations per source phrase is manageable.
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Figure F.4: Tradeoff between recall and the average size of the filtered set across the
test sets of source phrases, for several filters. The bottom right corner is best: high
recall and small sets of candidate target translations.
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(a) Hindi, β “ 0.01 (b) Hindi, β “ 10

(c) Spanish, β “ 0.01 (d) Spanish, β “ 10

Figure F.5: Hindi ((a)-(b)) and Spanish ((c)-(d)) phrase pair decision trees using F-
Measure as a splitting criterion, with a threshold of 0.15. Feature tests are shown in
boxes and decisions in circles. Trees correspond to the highest precision and highest
recall decision trees for each language shown in Figure F.3.
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(2006). The JRC-Acquis: A multilingual aligned parallel corpus with 20+ lan-

guages. In Proceedings of the International Conference on Language Resources and

Evaluation (LREC).

Su, F. and Babych, B. (2012). Measuring comparability of documents in non-parallel

corpora for efficient extraction of (semi-)parallel translation equivalents. In Pro-

ceedings of the EACL Joint Workshop on Exploiting Synergies Between Information

Retrieval and Machine Translation (ESIRMT) and Hybrid Approaches to Machine

Translation (HyTra).

Talbot, D. and Osborne, M. (2006). Modelling lexical redundancy for machine trans-

lation. In Proceedings of the Conference of the Association for Computational Lin-

guistics (ACL).

Tamura, A., Watanabe, T., and Sumita, E. (2012). Bilingual lexicon extraction from

comparable corpora using label propagation. In Proceedings of the Joint Conference

333



BIBLIOGRAPHY

on Empirical Methods in Natural Language Processing and Computational Natural

Language Learning (EMNLP/CoNLL).

Tiedemann, J. (2009). News from OPUS - A collection of multilingual parallel corpora

with tools and interfaces. In N. Nicolov, K. Bontcheva, G. Angelova, and R. Mitkov,

editors, Recent Advances in Natural Language Processing (RANLP).

Tillman, C. (2004). A unigram orientation model for statistical machine translation.

In Proceedings of the Conference of the North American Chapter of the Association

for Computational Linguistics (NAACL).

Tillmann, C. (2003). A projection extension algorithm for statistical machine transla-

tion. In Proceedings of the Conference on Empirical Methods in Natural Language

Processing (EMNLP).

Tsvetkov, Y., Dyer, C., Levin, L., and Bhatia, A. (2013). Generating english deter-

miners in phrase-based translation with synthetic translation options. In Proceed-

ings of the Workshop on Statistical Machine Translation (WMT).

Tsvetkov, Y., Metze, F., and Dyer, C. (2014). Augmenting translation models with

simulated acoustic confusions for improved spoken language translation. In Proceed-

ings of the Conference of the European Association for Computational Linguistics

(EACL).

334



BIBLIOGRAPHY

Turney, P. D. and Pantel, P. (2010). From frequency to meaning: Vector space models

of semantics. Journal of Artificial Intelligence Research (JAIR), 37, 141–188.

Vandeghinste, V., Dirix, P., Schuurman, I., Markantonatou, S., Sofianopoulos, S.,

Vassiliou, M., Yannoutsou, O., Badia, T., Melero, M., Boleda, G., Carl, M., and

Schmidt, P. (2008). Evaluation of a machine translation system for low resource

languages: METIS-II. In Proceedings of the International Conference on Language

Resources and Evaluation (LREC).

Venugopal, A., Vogel, S., and Waibel, A. (2003). Effective phrase translation extrac-

tion from alignment models. In Proceedings of the Conference of the Association

for Computational Linguistics (ACL).

Vilar, D., Peter, J.-T., and Ney, H. (2007). Can we translate letters? In Proceedings

of the Workshop on Statistical Machine Translation (WMT).
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