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Abstract 

Distributed-memory parallel supercomputers are an important platform for the 

execution of high-performance parallel jobs. In order to submit a job for execution in 

most supercomputers, one has to specify the number of processors to be allocated to the 

job. However, most parallel jobs in production today are moldable. A job is moldable 

when the number of processors it needs to execute can vary, although such a number 

has to be fixed before the job starts executing. Consequently, users have to decide how 

many processors to request whenever they submit a moldable job. 

In this thesis, we show that the request that submits a moldable job can be 

automatically selected in a way that often reduces the job’s turn-around time. The 

turn-around time of a job is the time elapsed between the job’s submission and its com-

pletion.  

More precisely, we will introduce and evaluate SA, an application scheduler that 

chooses which request to use to submit a moldable job on behalf of the user. The user 

provides SA with a set of possible requests that can be used to submit a given moldable 

job. SA estimates the turn-around time of each request based on the current state of the 

supercomputer, and then forwards to the supercomputer the request with the smallest 

expected turn-around time. 

Users are thus relieved by SA of a task unrelated with their final goals, namely 

that of selecting which request to use. Moreover and more importantly, SA often im-

proves the turn-around time of the job under a variety of conditions. The conditions un-

der which SA was studied cover variations on the characteristics of the job, the state of 

the supercomputer, and the information available to SA. The emergent behavior gener-

ated by having most jobs using SA to craft their requests was also investigated.  
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1. Introduction 

Performance is a very important aspect of computer systems. This has been true 

since the very birth of modern computers, when computers were seen as calculators 

whose raison d’être was their ability to perform arithmetic operations faster than the 

human being. Today, performance remains a major concern for both industry and aca-

demia. 

A common approach to improve performance is parallelism. A parallel job (or 

simply job throughout this thesis) is composed by many tasks that execute simultane-

ously on multiple processors. By using more than processor, a parallel job can run faster 

than its sequential counterpart.  

1.1. Parallel Supercomputers 

Distributed-memory parallel supercomputers (or simply parallel supercomput-

ers or even supercomputers in this thesis) are high-end machines designed to support 

the execution of parallel jobs. A parallel supercomputer is composed of many proces-

sors, each with its own memory. The processors are interconnected by very fast internal 

networking. Some supercomputers implement distributed shared-memory schemes 

(e.g., the SGI Origin 2000). But this is only for the convenience of the application de-

veloper. Under the hood, shared-memory is implemented using message-passing (pos-

sibly followed by remapping memory pages).  

In order to promote the performance of parallel jobs whose tasks frequently 

communicate and synchronize, parallel supercomputers are typically space-shared. That 

is, jobs receive a dedicated partition to run for a pre-established amount of time. Note 

that having a dedicated partition greatly simplifies work distribution concerns. It re-

duces work distribution to balancing the load across the processors. Although this often 
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is a hard task by itself, it is surely easier than work distribution in a dynamically-

changing non-dedicated heterogeneous environment. 

Supercomputer Scheduling 

Since jobs have dedicated access to processors in a spaced-shared supercom-

puter, an arriving job may not find enough resources to execute immediately. When this 

happens, the arriving job waits until enough processors become available. More pre-

cisely, jobs that cannot start immediately are placed in a queue, which is controlled by 

the supercomputer scheduler. The supercomputer scheduler is the entity that receives 

requests to run jobs. It decides when jobs start and what processors they use. In particu-

lar, the supercomputer scheduler decides which job in the wait queue is the next to run. 

In order to make this decision, it typically requires each job to specify n, the number of 

processors it needs, and tr, the time requested for execution of the job. In the current 

practice, the supercomputer scheduler enforces the request time tr. That is, a job is 

killed if it exceeds its request time tr.  

Note that supercomputer scheduling is an on-line scheduling problem [44]. An 

on-line scheduler deals with jobs that continually arrive to the system. In contrast, an 

off-line scheduler assumes that all jobs are available from the outset. Off-line schedul-

ing is more amenable to analytical solutions and there is a great deal of research in the 

area [35]. However, the results of these investigations often cannot be applied to the on-

line problem. 

There are a handful of supercomputer schedulers currently in production. These 

include the Easy [66] [82], PBS [58], Maui [69], and LSF [74] schedulers. Unfortu-

nately, these schedulers can radically change their behavior depending on how they 

have been configured for a given system, which makes characterizing them a very com-

plex task. There are also numerous simulation-based studies on queue disciplines for 

supercomputer schedulers. For a nice survey on the area, we refer the reader to [40].  
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1.2. Job Moldability 

As we shall see in detail on Chapter 3, most parallel jobs in production today 

seem to be moldable. A moldable job can run on multiple partition sizes [40]. However, 

supercomputer schedulers accept only static requests. A static request can be character-

ized by the partition size n and the request time tr. In particular, the partition size n de-

termines unequivocally how many processors are allocated to the job being submitted. 

Since moldable jobs can use multiple partition sizes, there are multiple different re-

quests that can used to submit a given moldable job. In current practice, the users 

choose which request to use at the submission of their jobs, as illustrated by Figure 1.  

 

Figure 1 – Users selecting requests to submit their jobs 

The decision made by the user of which request to use is important because it af-

fects the job’s turn-around time. The turn-around time of a job is the time elapsed be-

tween the job’s submission and its completion. The turn-around time is a natural metric 

for the job performance because it captures the user’s view of how long a job takes to 

complete.  

n 
tr 
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In order to understand how the request used to submit a moldable job j affects its 

turn-around time, note that the turn-around time can be decomposed into wait time tw 

and execution time te. More precisely, tt = tw + te. Since jobs run in dedicated parti-

tions, it is feasible for the user to evaluate the effect of the partition size n on the execu-

tion time te (by benchmarking the job, for example). The execution time typically di-

minishes as n grows (up to some point, at least).  

However, the user cannot in general estimate the wait time tw because it de-

pends on n, tr, the supercomputer scheduler, and the current load of the system. Indeed, 

research efforts that aimed to forecast the supercomputer wait time found it difficult to 

obtain good predictions [31] [55] [84] [85]. And, with an estimate for the execution 

time te alone, the user is not able to identify which request will minimize job j’s turn-

around time tt.  

1.3. Thesis Summary 

We show in this thesis that the request that submits a moldable job can be 

automatically selected in a way that often reduces the job’s turn-around time. 

More precisely, we will introduce and evaluate SA, a scheduler that chooses the request 

used to submit a moldable job on behalf of the user. The user provides SA with a set of 

possible requests that can be used to submit a given moldable job j. SA estimates the 

turn-around time of each request based on the current state of the supercomputer, and 

then forwards to the supercomputer the request with the smallest expected turn-around 

time. Figure 2 illustrates the role of SA in the job submission process. 

SA stands for Supercomputer AppLeS. AppLeS (Applications-Level Schedul-

ers) are application schedulers developed by Fran Berman’s group at UCSD and Rich 

Wolski at University of Tennessee [9] [10] [83] [88] [89]. Application schedulers per-

form scheduling decisions for individual applications but do not control resources. They 

obtain access to resources by submitting requests to the appropriate resource schedulers. 

Resource schedulers do control the resources they schedule on. A supercomputer 

scheduler, for example, is a resource scheduler. One salient characteristic of resource 
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schedulers is that they receive requests from multiple users, and thus have to arbitrate 

among such users. Application schedulers, on the other hand, do not have to arbitrate 

among different users. Their goal is solely to improve the performance of the applica-

tions they serve. They can even limit themselves to schedule a single application (or a 

class of similar applications). By targeting a single application, application schedulers 

can rely on the application’s structure and characteristics to produce good schedules.  

 

Figure 2 – Request selection by SA 

Users are relieved by SA of a task unrelated with their final goals, namely that 

of selecting which request to use. Moreover and more importantly, SA often improves 

the turn-around time of the job under a variety of conditions. As we shall see in Chap-

ters 5 and 6, the conditions under which SA was studied cover variations on the charac-

teristics of the job, the state of the supercomputer, and the quality of the information 

available to SA.  

We also investigate the emergent behavior created by having multiple instances 

of SA in the system. This is indeed a very important issue because there is theoretical 

evidence that systems in which resource allocation is performed by many independent 

entities can exhibit performance degradation [71] and even chaotic behavior [59]. As 

n 
tr 

SA

SA

SA
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we shall see in Chapter 6, one emergent behavior resultant of using SA with many jobs 

is that the system as a whole becomes more competitive, making it harder for each in-

stance of SA to improve the performance of the job it schedules. On the other hand, the 

emergent behavior generated by SA also seems to reduce (i) the occurrence of very high 

load conditions, and (ii) the wait time of jobs that arrive when the supercomputer is ex-

periencing moderate to high load. In light load conditions, the increased competition 

caused by other instances of SA make the performance improvement obtained by an 

individual instance of SA to be smaller than when a single SA is present in the system. 

In moderate to high loads, however, the reduction in the wait times and in the occur-

rence of very high load scenarios seem to overcome the performance degradation 

caused by the increased competition for resources produced by the other instances of 

SA.  

1.4. Thesis Outline 

This thesis is organized in five parts. First, this chapter provides the introduction 

and presents our research scenario, setting the stage for the rest of the thesis. The sec-

ond part of the thesis consists of Chapter 2, which describes SA, our application sched-

uler for supercomputers. The third part discusses how to evaluate SA in order to deter-

mine its efficacy in improving jobs’ performance: Chapter 3 describes the workloads 

used for performance evaluations, and Chapter 4 discusses performance metrics. The 

fourth part of the thesis contains the results of such an evaluation: Chapter 5 focus on 

the performance of SA under current workload conditions, while Chapter 6 investigates 

the emergent behavior caused by multiple instances of SA and its impact on perform-

ance. The fifth and last part concludes the thesis: Chapter 7 reviews the literature for 

related research and also delineates directions for future work. Chapter 8 summarizes 

our contributions. 
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2. SA: The Supercomputer AppLeS 

This chapter describes SA, the Supercomputer AppLeS. SA is an application 

scheduler that adaptively selects the request that submits a moldable job to the super-

computer. A moldable job is one that can run on partitions of different sizes, although it 

cannot change the size of partition (i.e., gain and/or lose processors) during the execu-

tion [40]. Most parallel jobs in production today seem to be moldable (see Chapter 3).  

Note that current supercomputers schedulers typically accept static requests. A 

supercomputer request (or simply request) contains the job’s partition size n and re-

quest time tr. The semantics of a request is that the job executes over exactly n proces-

sors for no longer than tr time units. Since moldable jobs can run on multiple partition 

sizes, they can also be submitted using multiple distinct requests. Therefore, one has to 

choose which request to use when submitting a moldable job to a supercomputer. 

Nowadays, the user is the one whose chooses which request to use (as represented in 

Figure 1). 

SA acts on behalf of the user and selects the request that submits a moldable job 

j (as depicted in Figure 2). Users provide SA with a set of requests for job j. That is, the 

user submits a job j to SA by providing a set of requests, each of which can be used to 

submit job j to the supercomputer scheduler. As we shall see in more detail, SA esti-

mates the turn-around time of each request based on the current state of the supercom-

puter, and then forwards to the supercomputer the request with the smallest expected 

turn-around time.  

Note that SA requires no changes in the behavior of the supercomputer sched-

uler. From the viewpoint of the supercomputer scheduler, the request that comes from 

SA submitting job j is just like any other: it is a pair (n, tr) that specifies the size of the 

partition to be allocated to job j (n) and establishes an upper-bound for the execution 

time of j (tr). 
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SA has two versions: generic SA (SAg, described in Section 2.1) and SA for 

conservative backfilling supercomputer schedulers (SAcb, described in Section 2.2). 

Both versions of SA select exactly the same request (as we shall prove in Section 2.3). 

They differ with respect to their generality and speed. SAg makes no assumptions about 

the underlying supercomputer scheduler. SAg is therefore generic. But it can be slow 

because of the many simulations it needs to perform in order to schedule a job. If the 

behavior of the supercomputer scheduler is known, it may be possible to speed-up the 

execution of SA. We exemplify this by describing SAcb, a version of SA that assumes 

the supercomputer scheduler to be conservative backfilling.  

Since SAg and SAcb are equivalent, we simply use the term SA throughout 

most of this thesis. The terms SAg and SAcb are only used when it is important to make 

clear which version of SA we are referring to. 

2.1. Generic SA 

SA receives a set of requests r = (r[1], …, r[v]) that can be used to submit a job j. 

SA’s goal is to improve job j’s turn-around time by selecting the request to be sent to 

the supercomputer. The generic implementation of SA, which we denote by SAg, works 

without knowledge about the underlying supercomputer scheduler. SAg simulates the 

submission of all requests in r, and then selects the request r[s] that achieves the smallest 

turn-around time in the simulations. The request r[s] is then used to submit job j to the 

supercomputer. 

The simulation of the submission of job j by a given request r[i] starts from the 

current state of the supercomputer. SAg then provides the simulator of the supercom-

puter scheduler with all scheduling events until the completion of j. These scheduling 

events are jobs submissions and completions. Only one submission is provided: r[i], 

which submits job j. Completions are provided to all jobs in the system (including job 

j). The completions are calculated assuming that each job execute for their requested 

time tr. In summary, SA drives the simulation of request r[i] by (i) assuming no future 

job arrivals, and (ii) making te = tr for all jobs. 
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In reality, however, new jobs do arrive in the system after j. Besides, most jobs 

execute for less time than they request (as we will see in Section 3.3.4). Therefore, there 

are no guarantees that SA will select the request that will deliver the shortest turn-

around time. However, as shown in Chapters 5 and 6, the requests selected by SA sig-

nificantly improve the turn-around time over the requests selected by the user. 

The appeal of SAg is that it makes no assumptions on the behavior of the super-

computer scheduler. The supercomputer scheduler is treated as a black box to which 

SAg sends events representing arrivals and completions of jobs. Whereas this approach 

makes for a generic formulation of SA, it may also be a somewhat slow solution since 

each request r[i] must be simulated until the completion of j. If we know the characteris-

tics of the underlying supercomputer scheduler, we may be able to make SAg run faster, 

as exemplified in the following section. 

2.2. SA over Conservative Backfilling 

When the supercomputer scheduler is known, it may be possible to optimize SA 

by avoiding the simulation of each request r[i]. This section describes SAcb, a version of 

SA that assumes the supercomputer scheduler to be conservative backfilling [43]. Con-

servative backfilling was chosen as the target for a faster version of SA because it can 

be viewed as an idealized representative of today’s supercomputer schedulers. In prac-

tice the behavior of supercomputer schedulers varies from machine to machine. Even 

when the same scheduling software is used (e.g., Easy [66] [82], PBS [58], Maui [69], 

and LSF [74]), each site establishes its own policies, causing the behavior of their 

schedulers to differ. However, almost everywhere backfilling is used to reduce unneces-

sary idle time, making conservative backfilling a good representative of current practice 

in supercomputer scheduling.  

2.2.1. Conservative Backfilling 

Conservative backfilling uses an allocation list that maintains, for any given 

time, which processors are assigned to which jobs [43]. The allocation list can be im-
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plemented as a linked list whose nodes represent time periods in which all processors in 

system are allocated in the same way. Arriving jobs are processed using the first fit 

strategy, i.e. they are put in the first slot they fit. For example, Figure 3 depicts the sub-

mission of five requests in the following order: A, B, C, D, and E. Note that C is placed 

before B because, at time 1, the available resources cannot fulfill B, but they are enough 

for C. 

Figure 3 – Allocation list after the submission of five requests 

Whenever a job finishes using less time than it required, conservative backfilling 

traverses the queue (in submission order) and “promotes” the first job that fits in the 

just-made-available slot. Of course, this may create another available slot. Such a slot is 

backfilled in the same way. The process stops only when no more backfilling can be 

done. For example, Figure 4 shows what happens when A finishes at time 2: B is back-

filled to start immediately after C, D “follows” B, but E can finish before B starts and 

thus is backfilled all the way to start running immediately. 
 

Figure 4 – Allocation list after the backfilling initiated by A finishing at time 2 
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2.2.2. SA over Conservative Backfilling 

The state of a supercomputer controlled by conservative backfilling can be 

summarized by an availability list that contains the number of free processors per time 

period. For example, the availability list that describes the supercomputer state depicted 

in Figure 3 is [(from 1, to 4, 0 processors), (from 4, to 6, 2 processors), (from 6, to 8, 1 

processor), (from 8, to 9, 0 processors), (from 9, to 13, 4 processors), (from 13, to ∞, 6 

processors)]. 

SAcb uses the availability list to select which request to use without simulating 

each request (the procedure used by SAg). SAcb traverses the availability list searching 

for a slot big enough to accommodate one of the requests it can use to submit job j. 

When such a slot is found, SAcb determines the request with sooner completion time 

among the requests that fit in the slot. Such a request (and its completion time) is 

memorized. After traversing the availability list, SAcb compares the memorized re-

quests, selecting the request with the smallest completion time. The algorithm is: 
 

1. # SAcb pseudo-code

2.

3. for each time period f in the availability list

4.

5. let f = (s, e, n), where s is the start of the time period,
e is its end, and
n is the number of processors available

6.

7. # walk through the availability list to determine d, the last
# instant at which we can allocate n processors starting from s

8. let d = e

9. let g = (sg, eg, ne) be the time period succeeding f

10. while ne ≥ n

11. let d = eg
12. let g = (sg, eg, ne) be the time period succeeding g

13.

14. if the job can run on n processors in time (d - s)

15. let r be the request with smallest execution time among
those that can run in time (d - s)

16. memorize request r and its expected completion time

17.

18. choose the memorized request with the least completion time
 
 

Figure 5 – SAcb pseudo-code 
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For example, assume that SAcb is scheduling a job j that can run over 10, 20, or 

30 processors. Job j needs 5 time units when using 10 processors, 3 time units with 20 

processors, and 2 time units with 30 processors. Assume that the availability list is 

[(from 0, to 1, 5 processors), (from 1, to 5, 10 processors), (from 5, to 6, 0 processors), 

(from 6, to 7, 10 processors), (from 7, to 11, 20 processors), (from 11, to ∞, 40 proces-

sors)], as graphically shown by Figure 6. In this case, SA finds three candidate requests: 

(A) 10 processors starting at 6 and finishing at 11 (Figure 7), (B) 20 processors starting 

at 7 and finishing at 10 (Figure 8), and (C) 30 processors, starting at 12 and finishing at 

14 (Figure 9). Since B is expected to finish earlier, SA submits job j to the supercom-

puter by requesting 20 processors and 3 time units. 

Figure 6 – SAcb example: availability list 
 

Figure 7 – SAcb example: schedule A 
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Figure 8 – SAcb example: schedule B 

 

Figure 9 – SAcb example: schedule C 

Note that SA does not use any scheme to estimate the actual execution time of 

the jobs that are in the queue. It schedules as if all the jobs in the queue would take all 

the time they have requested. Nevertheless, it can obtain better turn-around times than 

traditional user-chosen requests (as we show in Chapters 5 and 6).  

2.3. Equivalence between the two Versions of SA 

Here we show that SAg and SAcb always select the same request r to submit the 

target job j. Of course, we assume the supercomputer scheduler to be conservative back-

filling (otherwise SAcb would not work). The proof follows. 

Time  

P
rocessors 

1 5 6 7 11 

10 

20 

30 

40 

0 

B 

Time  
P

rocessors 

1 5 6 7 11 

10 

20 

30 

40 

0 

C 



 

 

14

Theorem 1: Assuming that the supercomputer scheduler is conservative back-

filling, SAg and SAcb always select the same request. 

Proof: Note that there is no backfilling in the simulations of the conservative 

backfilling scheduler conducted by SAg. That is because SAg makes te = tr for all jobs 

in the system, and thus no job finishes before its requested time. This implies that con-

servative backfilling limits to first fit the arriving requests in the allocation list. Since 

SAg chooses the request with smallest completion time among all simulations, SAg 

over conservative backfilling selects the request r whose first fit in the allocation list 

results in the smallest completion time. 

SAcb, on the other hand, selects the request s whose fit in the allocation list re-

sults in the smallest completion time. The availability list represents the empty slots in 

conservative backfilling’s allocation list. For each slot, SAcb considers the request (if 

any) that finishes sooner if started in that slot (see Figure 5, line 15). All slots are con-

sidered and, in the end, SAcb picks the request that completes soonest (line 18).  

Note that the fit that results in the smallest completion time must be a first fit. 

Otherwise, the same request s could start sooner (in its first fit) and thus complete 

sooner. Therefore s is the request whose first fit in the allocation list produces the short-

est completion time. Consequently, r and s are the same request. 
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3. Workload Models  

The performance of a scheduling solution is influenced by the workload submit-

ted to the system [2] [44] [67] [90]. Realistic workloads are crucial to establish how 

scheduling solutions perform in practice. Therefore, in order to evaluate how SA is go-

ing to perform in practice, we need to determine the mix of moldable jobs that is likely 

to compose a supercomputer workload in real life. 

Workload logs can be obtained by recording all scheduling events that happen in 

a system. The logs can then be used to drive simulations that gauge the performance of 

competing scheduling solutions. Such logs capture the production use of a system and 

thus are undoubtfully realistic.  

Alas, supercomputer workload logs currently available contain only one request 

per job (namely, the request actually used by the user to submit the job). There is no 

information about the jobs’ moldability, which is essential for SA. Furthermore, we 

cannot easily vary characteristics of the workload log (e.g. the offered load) to investi-

gate how such a particular characteristic impacts on scheduling solutions. 

This chapter describes how we have dealt with this difficulty. Here we introduce 

our workload model for moldable jobs. Such a model was derived from statistical ob-

servations of four workload logs, and from the results of a survey we conducted among 

supercomputer users. The use of real-life data as the foundation for our model leads us 

to believe that it is likely to produce realistic workloads. 

3.1. Collecting Information 

Since a key goal here is to produce a realistic model, we need information on the 

workloads experienced by production supercomputers. Although there are a handful of 

submission logs available, such logs contain only one request per job. We ran a survey 
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among supercomputer users to complement the logs and provide us some insight on the 

characteristics a moldable workload would have in practice. 

Rigid Workload Logs 

We considered workload logs from different sources (from fellow researchers to 

supercomputer centers to the web [45] [56]). Our criteria for using a log as reference for 

our model were that (i) the log should come from a supercomputer that could receive 

arbitrary requests (not only requests for power-of-2 partitions), and (ii) the log should 

contain a minimum of information to be useful in building our model (i.e., submission 

time, partition size, requested time, and execution time). We were able to find four 

workloads that meet these criteria. Such workloads are summarized in Table 1. 
 

Name Machine Processors Jobs Period 

ANL Argonne National Labo-
ratory SP2 

120 7995 Oct 1996 
Dec 1996 

CTC Cornell Theory Center 
SP2  

430 79279 Jul 1996 
May 1997 

KTH Swedish Royal Institute 
of Technology SP2  

100 28479 Sep 1996 
Aug 1997 

SDSC  San Diego Super-
computer Center SP2 

128 16376 Jan 1999 
May 1999 

Table 1 – Workloads used in this research 

All four reference logs come from IBM SP2 machines. This is because they 

were the only ones that meet our criteria. In particular, many of the available logs miss 

the job request times. We believe that using SP2 logs does not bias our results in any 

way, as SP2s are typical representatives of the machines we target, namely distributed-

memory spaced-shared parallel supercomputers. 

User Survey 

A moldable job is, by definition, a parallel job that can use partitions of various 

sizes to run. Note, however, that this definition does not mean that a moldable job can 

run over partitions of arbitrary size. There may be a minimum and a maximum on the 



 

 

17

partition size that can be used. There may also be some algorithmic restriction on the 

size of the partition (e.g., some parallel algorithms require a power-of-2 partition). 

Moreover, the user might provide only a subset of all potential partition sizes a job 

could possibly use. Beyond restrictions in partition sizes, the reduction of execution 

time as the partition size grows varies across different jobs (i.e., different jobs exhibit 

different speed-up behaviors).  

We designed a user survey to understand how the aforementioned characteristics 

of moldable jobs are distributed in practice. The survey’s questionnaire can be found in 

Appendix A, and a summary of the responses is provided in Appendix B. The survey 

consisted of 12 multiple-choice questions, and was conducted on-line via email and the 

Web between 17 April and 31 May 2000. Electronic questionnaires were distributed 

among supercomputer users at NASA, NCSA, NERSC, NPACI, and elsewhere. An-

swering the survey was of course voluntary, which renders it a self-selected sampling. 

Multiple-choice questions were used because (i) they raise the number of responses 

when self-selected sampling is used, and (ii) they ease the analysis of the results [8]. We 

received 214 responses to our survey.  

3.2. Models Overview 

Our moldable workload model has two independent parts, namely the rigid 

workload model and the moldability model. The rigid workload model produces a 

stream of jobs, each with one known request. The moldability model generates alterna-

tive requests for a given job j, for which only one request in known. A moldable work-

load is obtained by using the rigid workload model to produce a stream of jobs, and 

then applying the moldability model to each of these jobs. The result is a stream of 

moldable jobs. Note that the rigid workload model and the moldability model can be 

used independently. In particular, the moldability model can be used over a workload 

log to provide alternative requests for the jobs in the log. 

Our reference workload logs were the basis from which we statistically derived 

the rigid workload model (although most jobs in the logs are probably moldable, there 
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is only one request available for each job, making the jobs appear rigid). The moldabil-

ity model was derived from the survey’s results. 

We should also point out that we tried to correlate the parameters that describe 

the workload logs, as well as the questions that compose the survey. We systematically 

calculated the correlation coefficient [29] of all pairs of workload parameters and all 

pairs of survey questions. All values above 0.5 (or below –0.5) were carefully investi-

gated, and the resulting findings are described below. The goal was to reproduce sig-

nificant correlations among the parameters of the model, making the model more realis-

tic.  

3.3. Rigid Workload Model 

A rigid workload is composed of a stream of jobs, each with one request. Each 

job j is characterized by its instant of arrival ia, partition size n, requested time tr, and 

execution time te. For the jobs that are cancelled by the user, we also want to know their 

instant of cancellation ic > ia.  

3.3.1. Instant of Arrival 

The pattern of job submission is affected by the work cycles of the supercom-

puter’s users [32] [39] [44]. For example, typically more jobs are submitted during the 

day than during the night, as seen in Figure 10 (which indicates how many jobs arrived 

by hour of the day for the reference workloads). For a workload model to better capture 

the dynamics of the system, such behavior must be represented. 
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Figure 10 – Histograms of arrival hour for our reference workloads 

Methodology 

As Figure 10 suggests, it is very hard to model the job arrival time through 

“common” distributions. In this work, we apply the methodology proposed by Cal-

zarossa and Serazzi [17] to numerically fit a polynomial to the job arrival rate λa. Al-

though the methodology was conceived to model the process arrival for a uniprocessor 

time-shared system, we found it to be applicable in our scenario, namely job arrivals for 

parallel supercomputers. 

In order to fit a polynomial to the arrival rate found in our reference workload 

logs, we must derive the arrival rate from the arrival instants (which are in the log). Fol-

lowing the methodology of Calzarossa and Serazzi [17], we smoothed out the arrival 

rate by using a moving average estimator. More precisely, for a given time m (in min-

utes), the arrival rate λa(m) is estimated using all arrivals in the 10 minute interval cen-
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tered on m. Also, in order to avoid numerical instabilities while fitting the data, we scale 

a given minute of the arrival m to the range [-0.5, +0.5] as follows: 

 m
m m m

m ms

max min

max min

=

-

-

-

2  

The polynomial fitting itself is done using the least square error estimator [29]. 

The degree d of the polynomial is chosen by incrementing d until the square error 

doesn’t decrease significantly over two successive increments [17].  

Eliminating Outliers 

The analysis of the data from the reference logs reveals that a few days strongly 

deviate from the normal submission pattern. For example, Figure 10 shows the arrival 

of jobs at SDSC to have a spike between 18:30 and 19:30, a phenomenon that is not 

present in any of the other workloads. It turns out that, on 7 February 1999, 592 jobs (of 

which 579 were from the same user) were submitted to the supercomputer between 

18:30 and 19:30. By not considering that single day, the spike in the graph disappears.  

Such “uncommon” days appear in all workloads. In effect, we fitted a polyno-

mial per day and ran a cluster analysis technique to classify the days in two groups. For 

all supercomputers, the clustering technique segregated a single day in one of the two 

groups. Since we want to model the common usage of a supercomputer, we eliminated 

the uncommon days that were clustered alone.  

More precisely, we ran a Z score [29] over the coefficients of the polynomials to 

make the magnitude of such coefficients unimportant, and regarded the results as a 

point in Rd. We then applied standard hierarchical cluster analysis (using the euclidian 

distance in Rd) to separate the days in two groups. If a group consists of a single day 

(i.e., all other days are closer to each other than to this day), it is considered an outlier 

and excluded from the data. The procedure is repeated until no day is clustered alone. 

Table 2 shows how many days were excluded from each supercomputer log. 
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Workload Days in the log Uncommon Days Excluded 

ANL 78 4 

CTC 339 3 

KTH 745 2 

SDSC 150 2 

Table 2 – Amount of days eliminated from the experimental data 

We also used cluster analysis to look for other patterns of day-to-day variations. 

In particular, we tried to establish a statistically valid differentiation between weekdays 

and weekends. However, we were not able to find a way to cluster the days into disjoint 

groups that could be explored to enhance the model. 

Fitting Arrival Rate 

The polynomial fitting per se was a straightforward task. ANL required a degree 

12 polynomial, CTC a degree 8 polynomial, KTH a degree 13 polynomial, and SDSC a 

degree 10 polynomial. Table 3 shows the coefficients of such polynomials. We suspect 

that ANL and KTH required higher-degreed polynomials to better model the small de-

crease in the job arrival rate verified around 12:00 (see Figure 10). The CTC and SDSC 

reference workloads do not present such a decrease. 

  The fitted polynomials are very different from one another. This suggests that 

there is no single model for the arrival time that works well across different sites. This 

is in agreement with the original work of Calzarossa and Serazzi, who warn against us-

ing the polynomial they found for alternative contexts [17]. Rather they highlight the 

importance of their work as a methodology.  
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Term ANL CTC KTH SDSC 
1 7166.5 254.04 -32683 -5499.6

ms 64174 -25.820 -61444 1527.0

ms
2 866.10 -258.51 32553 3015.9

ms
3 -45317 8.4442 49406 -951.95

ms
4 -2922.9 81.612 -12611 -573.08

ms
5 11761 -3.6628 -15113 199.32

ms
6 895.15 -9.6309 2380.9 48.583

ms
7 -1349.0 0.76455 2154.0 -15.611

ms
8 -93.266 0.56501 -221.65 -2.5879

ms
9 62.485 -134.82 0.36675

ms
10 2.2601 8.3039 0.21262

ms
11 -0.66152 1.9175

ms
12 0.17191 0.022406

ms
13 0.097106

Table 3 – Coefficients of the polynomials that model job arrival rate  

Figure 11 shows the observed arrival rate for each workload under considera-

tion, as well as the polynomials that fit them. It is important to point out that filtering 

out the outliers made it possible to model the workloads with simpler, lower-degree 

polynomials that avoided the uncommon behavior of a few days. More notably, the 

SDSC model avoids the one-day spike around 19:00 discussed above. 
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Figure 11 – Observed data and fitted model for arrival rate 

We should also mention that we tried to correlate arrival time with other pa-

rameters. For example, we expected large jobs to be submitted at night. However, this 

was not supported by the reference workload logs. The correlation coefficient between 

these two parameters was low (in the range [-0.1, 0.1]) for all reference workloads. 

More generally, we didn’t detect strong correlation between arrival instants and any 

other parameter. 

3.3.2. Cancelled Jobs 

Not all supercomputer jobs complete their execution. Some of them are can-

celled by the user. Cancelled jobs may affect the course of action of the scheduler, even 

when they are cancelled before they start. Cancellation may also make the load offered 

by a given workload to change depending on the scheduler being used. In fact, consider 

a scheduler s that finishes a job j before its cancellation arrives, and a scheduler r for 
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which the cancellation of j arrives before the job starts. Everything else being the same, 

scheduler s has to deal with a greater load than scheduler r. Consequently, due to its im-

pacts on scheduling, cancellation should be taken into account when modeling super-

computer workloads.  

We model cancelled jobs by providing a probability pc that a given job will be 

cancelled. Moreover, for each cancelled job, we also need to know the instant of cancel-

lation ic, or alternatively the cancellation lag lc = ic – ia (where ia is the instant of the 

arrival of the job in the system).  

We have information on cancellations only for CTC and SDSC. The ANL and 

KTH logs do not discriminate between completed and cancelled jobs. Table 4 displays 

the percentage of completed and cancelled for the CTC and SDSC reference workloads. 

Such values can be used to provide realistic estimates of the probability of cancellation 

pc. 
 

Workload Cancelled Jobs 

CTC 12.22%

SDSC 23.31%

Table 4 – Percentage of completed and cancelled jobs 

A visual inspection of the cancellation lag histograms for both CTC and SDSC 

show a fat-tailed distribution (see Figure 12). Although the cancellation lag can be as 

large as 10 days for the SDSC workload and over 2 months for the CTC workload, most 

cancellations happen shortly after the job’s submission. In fact, 54.65% of SDSC’s and 

24.73% of CTC’s cancellations happen less than 10 minutes after the job submission.  
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Figure 12 – Histograms of cancellation lag 

To build a realistic workload model, it is important to represent both the ag-

glomeration of short cancellation lags lc and the fat tail of the distribution. This behav-

ior can be effectively modeled using a uniform log distribution. In such a distribution, 

the logarithms of the values are uniformly distributed. More precisely, a uniform-log 

distribution is characterized by parameters χ and ρ, and has cumulative distribution 

function cdf x x( ) log ( )= ◊ +c r2  [31]. Since we deal with many distributions in this the-

sis, we index the distribution parameters with the variable they are modeling in order to 

avoid ambiguity. For example, the uniform-log parameters that model the cancellation 

lag lc are written as χlc and ρlc. 

Using the least-square linear regression technique, we fitted SDSC’s cancella-

tion lags obtaining χlc = 0.06442 and ρlc = -0.1498. For CTC, we obtained χlc = 0.06421 

and ρlc = -0.3180. The SDSC and CTC values for χlc and ρlc are similar, suggesting that 

the cancellation lag may not change significantly across workloads (unlike arrival rate). 

Figure 13 shows the data as well as the fitted uniform-log distributions for both CTC 

and SDSC. 
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Figure 13 – Cancellation Lag CDF 

3.3.3. Partition Size 

As first noticed by Downey [32] [33], the uniform-log distribution also provides 

a good fit for the partition sizes in a supercomputer workload log. This was the case for 

our four reference workloads. Table 5 shows the parameters obtained by fitting the ob-

served partition sizes to a uniform-log distribution via the method of least squared error. 

Figure 14 plots the observed partition sizes and the uniform-log distributions fitted to 

them. 
 

Workload χχχχn  ρρρρn 

ANL 0.1381 0.2163 

CTC 0.0709 0.5283 

KTH 0.0893 0.4764 

SDSC 0.1150 0.2537 

Table 5 – χχχχn and ρρρρn obtained by fitting partition size to a uniform-log distribution 
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Figure 14 – Uniform-log fit for partition size 

However, the uniform-log distribution alone does not capture a salient character-

istic of how partition sizes are distributed. As Table 6 and Figure 15 show, the distribu-

tion of partition sizes seems to be dominated by power-of-2 values. This is a relevant 

characteristic because the fraction of power-of-2 jobs in the workload strongly influ-

ences the performance of the system [67]. In general, the greater the fraction of power-

of-2 jobs in the workload, the better the performance of many scheduling solutions [67]. 

We independently confirmed this result. 
 

Workload Power-of-2 Jobs 

ANL 69.87%

CTC 83.16%

KTH 73.45%

SDSC 83.95%

Table 6 – Percentage of jobs with a power-of-2 partition size 
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Figure 15 – Histogram of partition sizes 

There has been some controversy on whether to incorporate the dominance of 

power-of-2 partitions into a workload model. Some researchers have accounted for the 

high incidence of power-of-2 jobs and modeled the partition size accordingly [42]. Oth-

ers, however, believe this is mainly due to old habits (the first parallel supercomputers 

required power-of-2 partition sizes) and the design of some submission interfaces 

(which “suggest” the submission of power-of-2 jobs) [32]. Based solely on the work-

load logs, it is impossible to decide whether the prevalence of power-of-2 jobs is due to 

the nature of the parallel jobs, or is an artifact of behavioral inertia and interface design.  

In the survey, we inquired about the constraints jobs have regarding partition 

size (question 7, see Appendix A). Figure 16 summarizes the responses. To our sur-

prise, the majority of the answers (69.4% of them, excluding “do not know”) described 

jobs that have no partition size restriction. This result suggests that the high incidence of 
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power-of-2 requests in the workload logs is not an intrinsic characteristic of the jobs. It 

might indeed be that the popularity of power-of-two partitions is due to behavioral iner-

tia and interface design. Moreover, we believe that the fact that the selection of partition 

size is made by humans also contributes for the prevalence of power-of-two partitions. 

When no constraint exists, humans tend to pick “round” numbers, and powers of two 

are many people’s idea of “round number” when they deal with computers. 
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Figure 16 – Survey results for the constraints jobs face regarding partition size 

In short, it seems that supercomputers workloads do not have to be dominated 

by power-of-2 jobs, but in practice they are. We believe that the high percentage of 

power-of-2 jobs is related to fact that the user is the one who chooses the partition sizes. 

Since we expect the user to keep playing this role, our model for partition size has a bias 

in favor of power-of-two partitions. 

More precisely, we define the probability pb of a job been a power-of-2 partition 

size. Table 6 shows values pb assumed for our reference workloads. We start by using a 

uniform-log distribution to generate the partition size. The resulting partition size then 

has a probability pb of being changed to its closest power-of-2 value. Figure 17 through 
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Figure 20 display the observed values for partition side by side with the fitted model for 

our reference workloads. 
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Figure 17 - Observed data and statistical model for partition size (ANL workload) 
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Figure 18 - Observed data and statistical model for partition size (CTC workload) 
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Figure 19 - Observed data and statistical model for partition size (KTH workload) 
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Figure 20 - Observed data and statistical model for partition size (SDSC workload) 

We also checked for high incidence of square, even, multiple-of-4, and multiple-

of-10 jobs among the jobs that are not power-of-2. As can be seen in Table 7, our four 

reference workloads do not exhibit a concentration of such jobs that is large enough to 

be explored in the model.   
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Workload Square Even Multiple-of-4 Multiple-of-10 

ANL 9.55% 28.27% 5.56% 9.92%

CTC 10.35% 49.53% 19.14% 24.05%

KTH 17.88% 36.93% 15.84% 16.91%

SDSC 6.09% 61.49% 37.67% 30.75%

Table 7 – Percentages of different kinds of non-power-of-2 jobs 

3.3.4. Execution Time and Requested Time  

Execution time te and requested time tr are obviously related (te ≤ tr). In order 

to capture the relationship between te and tr in the model, we define the request accu-

racy a as the fraction of the requested time that was indeed used by a job. That is, 

a = te / tr. Since jobs cannot run longer than the amount of time they request, a is al-

ways a number between 0 and 1.  

Note that we only need to model two parameters out of te, tr, and a. The third 

parameter can be derived from the others (by using the relation a = te / tr). We would 

prefer to use two parameters that are not strongly related. This simplifies the model be-

cause it eliminates the need to account for any correlation: Two parameters that are not 

related can be modeled independently. As mentioned above, te and tr are related. This 

leaves us with a and either te or tr as the parameters to model. 

The analysis of the reference workloads reveals accuracy to have a much greater 

correlation with execution time than with requested time. For all workloads, the correla-

tion coefficient between accuracy and execution time is considerably greater than the 

correlation coefficient between accuracy and requested time, as shown in Table 8. 

Workload r(a,te) r(a,tr) 

ANL 0.5273 0.0772 

CTC 0.7024 0.2651 

KTH 0.5010 0.2098 

SDSC 0.7398 0.3985 

Table 8 – Correlation coefficient between accuracy and execution time r(a,te) and 
correlation coefficient between accuracy and requested time r(a,tr) 
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Figure 21 shows the accuracy a as a function of the execution time te. The figure 

groups the completed jobs in 100 equally-sized “buckets” according to their execution 

time. The jobs in a bucket have their accuracies averaged to produce the values plotted 

in Figure 21. Of course there is high variance in the execution time of the jobs grouped 

in a given bucket, but the average shows a trend for accuracy to grow with execution 

time. On the other hand, plotting accuracy a as a function of requested time tr (see 

Figure 22) doesn’t reveal much correlation between these two parameters. 
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Figure 21 – Accuracy ×××× Execution Time 
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Figure 22 – Accuracy ×××× Requested Time 

We believe that the correlation between execution time and accuracy is related 

to the fact that jobs often fail, and thus execute for much less than the user expected. In 

other words, we believe failed jobs to have in general poorer accuracy a than successful 

jobs. Unfortunately the logs do not contain information on whether a completed job 

failed or succeeded. But it is reasonable to imagine the longer the execution time, the 

more likely it is that the job succeeds. In fact, many failures happen at the beginning of 

the execution, while the job is setting up its environment. For example, many jobs open 

files in the beginning of their execution, and a misspelled filename could cause a fail-

ure. This argument would also help to explain the large number of jobs with very low 

accuracy (as we soon shall see, there are many jobs with poor accuracy in all reference 

workloads). 

Since requested time shows little correlation to accuracy, we model these pa-

rameters independently. Execution time is then derived by using te = tr ⋅ a. As a side 
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note, we should also mention that requested time was easier to model (i.e., it yielded a 

better fit) than execution time. Although this was not our primary reason, it provided 

additional support to our choice of deriving execution time from the explicitly modeled 

accuracy and requested time. 

Accuracy 

Figure 23 shows how accuracy is distributed in the workload logs. Only com-

pleted jobs are considered. The figure groups the completed jobs in 100 equally-sized 

“buckets” according to their accuracy, and plots the fraction of jobs in each bucket. It is 

somewhat surprising to see how bad accuracy can be. The ANL workload, for example, 

has 27.82% of the requests with accuracy below 0.01 (i.e., these jobs used less than 1% 

of their requested time). 
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Figure 23 – Distribution of the accuracy a for the completed jobs 
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The number of jobs with low accuracy decreases as accuracy a grows (leveling 

off at around a = 0.3). This suggests the use of a distribution that favors small values 

and quickly decreases. We use the gamma distribution [29] to model such behavior. 

Table 9 shows the parameters obtained by fitting the observed accuracy to a gamma dis-

tribution through the method of maximum likelihood [29]. Figure 24 presents the ob-

served distribution of accuracy and the corresponding model for all four reference 

workloads. 
 

Workload ααααa  ββββa  

ANL 0.3779 1.0599 

CTC 0.6743 0.7808 

KTH 0.6153 1.0635 

SDSC 0.5898 0.5793 

Table 9 – ααααa and ββββa obtained by fitting accuracy to a gamma distribution 
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Figure 24 – Observed data and statistical model for accuracy 
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The gamma distribution parameters obtained by fitting the accuracy to the four 

reference workloads are somewhat similar to one another. ANL exhibits the smallest α 

value. This is because ANL presents a much higher number of jobs with very poor ac-

curacy. Such a fact indicates that the distribution of accuracy can vary somewhat from 

site to site in practice. 

Requested Time 

For all reference workloads, the uniform-log distribution provides a very good 

fit for request times, and thus it is the distribution used in our model. We use least-

square linear regression to find χtr and ρtr for the different reference workloads. Table 

10 displays such values and Figure 25 plots the observed requested times against the 

model. The similarity of the values obtained for χtr and ρtr across all four reference 

workloads suggests that the requested time doesn’t vary widely across workloads. 
 

Workload χχχχtr  ρρρρtr 

ANL 0.1146 -0.8579 

CTC 0.0941 -0.7256 

KTH 0.1035 -0.7313 

SDSC 0.1032 -0.7027 

Table 10 – χtr and ρρρρtr obtained by fitting requested time to a uniform-log distribution 
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Figure 25 – Observed data and statistical model for requested time  

3.4. Moldability Model 

In our model, moldable jobs are an extension of rigid jobs. Recall that a job j is 

said to be moldable when it can run on partitions of different sizes. Therefore the input 

of the moldability model is a job j for which one request (partition size n, requested 

time tr, accuracy a) is known. Let v be number of partition sizes on which j can execute. 

The moldability model uses n, tr, and te to produce the v requests that can be used to 

submit job j. That is, the moldability model produces the v-tuples n = (n[1] …, n[v]), tr = 

(tr[1], …, tr[v]), a = (a[1], …, a[v]) that describe v requests for job j. The question is then 

how to generate realistic values for such v-tuples. 
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3.4.1. Partition Sizes 

Some moldable jobs cannot run over a partition of arbitrary size. Factors such as 

memory requirements, amount of parallelism, and algorithmic constraints restrict the 

partition size that can be used by a given moldable job j. For example, memory re-

quirements can establish a minimum partition size on which a job can run, a factor we 

model as cmin. Similarly, the amount of parallelism determines the maximum partition 

size a job can use, a factor we model as cmax. Some parallel algorithms also have con-

straints on the set of partition sizes they can use. We don’t model algorithmic con-

straints directly because the user choices for partition size seem to provide strong re-

striction than the algorithm constraints themselves, as discussed in Section 3.3.3. 

Regarding user behavior, we cannot expect that the user will in general craft all 

possible requests, one for each possible partition size that can possibly be used by the 

user’s job. We define cu to be the number of choices that the user is willing to provide. 

That is, cu establishes an upper bound on how many alternative requests can be used to 

run job j. The cu partition sizes are uniformly chosen between cmin and cmax. However, a 

chosen partition size is turned into its closest power-of-2 with probability pb. This is to 

mimic how users choose partition sizes (see Section 3.3.3). 

In order to provide a realistic model, we must determine how cmin and cu are dis-

tributed in practice. cmax can be uniquely determined by other parameters of our model 

(as we shall see shortly) and hence does not need to be modeled directly. Since the dis-

tribution of cmin and cu cannot be derived from the reference workload logs, we rely on 

the survey for establishing realistic models for these distributions.  

Minimum Partition Size (cmin) 

Figure 26 displays the results for the survey question that asked for the mini-

mum partition size that can be used to run the respondent’s job (question 4). Note that 

most jobs can run sequentially, but some really need larger partitions. These characteris-

tics suggest the use of the uniform-log distribution to model cmin. Using the method of 

the least squared error, we obtained χcmin = 0.06920 and ρcmin = 0.6279, and a very good 

fit, as shown in Figure 27.   
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Figure 26 – Survey results for minimum partition size 
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Figure 27 – Survey results and model for the minimum partition size cmin 
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Number of Requests Provided by the User (cu) 

Our model for cu is also based on our survey. Figure 28 shows how many differ-

ent partition sizes users have requested for their jobs (question 8). Such results indicate 

how many requests the users can currently use to submit their jobs, and thus are the 

natural estimate for cu. It may be that such values increase when schedulers like SA 

make it more advantageous for the user to determine more alternative requests, but we 

take a conservative approach and model cu after the current practice.  

In order to better match the survey results, we use a two-stage model, segregat-

ing the probability that cu = 1 from the probability that cu > 1. The survey indicates that 

around 5% of the jobs have cu = 1. We thus make Pr[cu = 1] = 0.05 and Pr[cu > 1] = 

0.95. Note that by making cu = 1 for 5% of the jobs, we also address the fact that part of 

the workload is formed by rigid jobs (about 2% of the jobs seem to be rigid, see Figure 

16). Here again, the user behavior in choosing the partition size seems to exhibit 

stronger restrictions than the algorithmic constraints exhibited by some jobs. 
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Figure 28 – Survey results for number of requests used to submit a job 
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For cu > 1, we use a uniform-log distribution to determine which value cu as-

sumes. By fitting the survey results through the least squared error method, we deter-

mined the parameters χcu = 0.1918 and ρcu = 0.1876. Figure 29 shows the model of the 

distribution when cu > 1, as well as the plot of the corresponding survey results. 
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Figure 29 – Survey results and statistic model for cu > 1 

3.4.2. Accuracy 

Because today’s supercomputers receive a static request, there is no data on the 

accuracy of different choices for a given job. However, the accuracy a measures how 

well a user is able to estimate the execution time of the job. Therefore, we hypothesize 

the accuracies of the multiple requests for a given moldable job to be similar. Following 

this rationale, we assume the accuracy a to remain the same for all choices of a given 

job j. That is, a[1] = … = a[v] = a. Recall that the accuracy a is chosen using the statisti-

cal model described in Section 3.3.4.  



 

 

43

3.4.3. Request Time 

We use Downey’s model of the speedup of parallel jobs [30] to derive the re-

quested times of the choices tr = (tr[1], …, tr[v]). Speed-up measures how much faster a 

job j that uses n processors executes in comparison to j’s execution using only one 

processor. Symbolically: S(n) = te(1) / te(n). Downey’s speedup model uses two pa-

rameters: A (the average parallelism) and σ (an approximation of the coefficient of 

variance in parallelism). The speed-up of a job is then given by: 
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Intuitively speaking, A establishes the maximum speedup a job can achieve. The 

larger the value of A, the greater the speedup a job can achieve. Figure 30 exemplifies 

how A affects the speed-up of a job. It fixes σ = 1 and shows speed-up curves for differ-

ent values of A.  

σ, on the other hand, determines how fast a job achieves its maximum speed-up 

(A). That is, σ determines how close to linear the speed-up is. The smaller the σ, the 

faster the job reaches its maximum speedup, and hence the closer to linear the speed-up 

curve is. Figure 31 explores the effect of σ on the speed-up behavior. It fixes A = 60 and 

displays speed-up curves for different values of σ. 
 



 

 

44

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Number of Processors

S
pe

ed
−

up

Downey’s speed−up for different values of A (σ = 1)

A = 100
A = 80 
A = 60 
A = 40 
A = 20 

 

Figure 30 – Downey’s speed-up function S(n, A, σσσσ) for different values of A 
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Figure 31 – Downey’s speed-up function S(n, A, σσσσ) for different values of σσσσ 
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Using the model for rigid jobs described in Section 3.3, we generate n, tr and a 

and then derive te = tr ⋅ a. Note that tr and te are respectively the requested time and 

execution time for the job j running over n processors. But A, σ, n, and te uniquely de-

termine the sequential execution time L of the job: L = te(1) = te S n A◊ ( , , )s . L repre-

sents how “large” a job is. The greater the L, the more processing is required to com-

plete the job. 

With A, σ and L, we can determine the execution time of the job running over an 

arbitrary partition size ¢n  by te n L
S n A

( )
( , , )

¢ =
¢ s

. In particular, we generate te = (te[1], 

…, te[v]) by evaluating te n( )¢  at the partition sizes n = (n[1], …, n[v]). From te and a, we 

calculate tr = (tr[1], …, tr[v]) = (te[1] / a, …, te[v] / a).  

In order to complete the moldability model, we need to establish how A and σ 

are distributed. Unfortunately A and σ cannot be directly modeled from the survey. We 

felt that asking a direct question about the average in parallelism (A) or its coefficient of 

variance (a close approximation to σ) would be too technical for most users. Instead we 

indirectly inferred A and σ based on the survey’s questions about the minimum, effi-

cient and maximum partition sizes (questions 4, 6, and 5, respectively). 

Modeling A 

We use the survey’s efficient partition size seffic as an estimate for the average 

parallelism A. The efficient partition size seffic was defined in the survey as “the partition 

size beyond which additional processors do not reduce the application’s execution time 

enough to make it worth requesting them” (see question 6 at Appendix A). The intuition 

is that seffic represents the “knee” in the speed-up curve, i.e. the point that maximizes the 

benefit/cost ratio (benefit meaning “lower execution time” and cost meaning “use of 

more processors”). This concept is in consonance with a more formal analysis of speed-

up behavior by Eager et al [36]. Eager et al found that (i) the knee k of the speed-up 

curve must satisfy A k A
2

2 1£ £ - , and (ii) adding more processors when the partition 

size is smaller than A has much greater impact on the execution time than when the par-
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tition size is greater than A  [36]. These results provide the rationale for modeling A af-

ter the efficient partition size seffic.  
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Figure 32 – Survey results for efficient partition size seffic 

Figure 32 displays how the efficient partition size seffic was distributed among 

the survey respondents. Alas modeling A directly after seffic can introduce a bias in the 

model. This is because seffic and the minimum partition size smin are correlated. Since  

smin ≤ seffic, the distribution of seffic skews towards larger values as smin grows. For exam-

ple, Figure 33 presents the distribution of seffic for the survey responses that had smin in 

the [11, 30] range. Since we are already using smin to model cmin, we should take this 

correlation into consideration when modeling A. 
 



 

 

47

1−4 5−10 11−30 31−50 51−100 >100 Don’t Know
0

10

20

30

40

50

60

70

Efficient Request

P
er

ce
nt

ag
e 

of
 A

ns
w

er
s

 

Figure 33 – Distribution of seffic for the responses with smin in the [11,30] range 

To understand how smin and seffic interact, consider their joint distribution of 

probability [29], whose CDF is shown in Figure 34. Note that the Figure’s axes are in 

log scale, which suggests that a generalization of the uniform-log distribution might 

provide an adequate fit for this joint distribution. Note also that the CDF slope is more 

accentuated for large values of smin (compared with small values of smin). That is be-

cause when smin is large, seffic must also be large, as exemplified in Figure 33.  

We are able to capture this behavior by using a joint uniform-log distribution, 

which is a generalization of the uniform-log distribution. The joint uniform-log distribu-

tion is determined by parameters ϕ, γ, η and ρ, and has cumulative distribution function 

cdf x y x y x y( , ) log ( ) log ( ) log ( ) log ( )= ◊ ◊ + ◊ + ◊ +j g h r2 2 2 2 . Making x = smin and y = 

seffic, we found ϕA = 0.009548, γA = -0.01877, ηA = 0.07468, and ρA = -0.009198 via 

least squares fit. The fit was very good, with correlation coefficient of 0.974. The result-

ing joint uniform-log distribution for A and cmin can be seen in Figure 35. 
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Figure 34 – Joint CDF for seffic and smin 
 

1
2

4
8

16
32

4

16

64

256

0

0.2

0.4

0.6

0.8

1

c
min

A

 

Figure 35 – Model CDF for the joint distribution of cmin and A 
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Modeling σσσσ  

As discussed above, σ cannot be directly modeled after a question asked in the 

survey. Instead we indirectly infer σ based on the relation between the efficient partition 

size seffic and the maximum partition size smax. The idea is that when the seffic and smax are 

close, the speedup is close to linear, and thus the job has small σ. Conversely, when seffic 

and smax are far apart, the speedup should be strongly sublinear, and hence the job has 

large σ. Figure 31 contains a more graphical representation of this phenomenon. 

More specifically, assuming seffic = A, smax = cmax, and using the equations that 

define the Downey model, we have that (i) s seffic max= ¤ =s 0, and (ii) 

s s≥ fi =
-

-
1

1
s s

s
max effic

effic

. Since s =

-

-

s s
s

max effic

effic 1
 is a generalization of both equations (i) 

and (ii), we use it as the estimate for σ. Figure 36 displays how these estimates for σ are 

distributed in the survey’s results. Note that the discontinuities in the graph are due to 

the fact that the survey used multiple-choice questions, therefore creating an artificial 

discretization for seffic and smax. 
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Figure 36 – Distribution of the survey-based σσσσ estimates 
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We use a normal distribution to model σ. It provides a good fit for the σ esti-

mates derived from the survey, especially when we consider that the discontinuities in 

the distribution of such estimates are an artifact of the survey. Using maximum likeli-

hood fitting, we obtained parameters µσ = 1.209 and σσ = 1.132. Figure 37 shows the 

CDF of the model and the observed estimates. 
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Figure 37 – CDF for the survey based estimate of σσσσ and the corresponding model 

3.5. Models Summary 

As discussed in this chapter, we generate synthetic moldable workloads by com-

bining two models: the rigid workload model and the moldability model. The rigid 

workload model produces a stream of jobs, each with one known request. The moldabil-

ity model generates alternative requests for a given job j, for which only one request in 

known. Synthetic moldable workloads are obtained by using the rigid workload model 

to produce a stream of jobs, and then applying the moldability model to the jobs that are 

to be moldable. Such synthetic workloads are used for performance evaluation through-

out this thesis.  
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This section has three purposes. First, it summarizes the rigid workload model 

and the moldability model, providing a concise reference that the reader might find use-

ful. Second, it reviews the values we use for each parameter in the models. Third, it de-

lineates how the synthetic workloads are used for performance evaluation. 

Rigid Workload Model 

A synthetic workload consists of a sequence of jobs. Each job j arrives at the 

system at a given instant ia. In our model, the jobs’ arrival times vary according to the 

hour of the day. Fitting jobs’ arrival times revealed little commonality among the arrival 

patterns of our four reference workloads (see Section 3.3.1). This leads us to believe 

that no single model is appropriate to capture the different arrival patterns found in real 

life. In our model, we employ all four polynomials that fit the arrival rate of our refer-

ence workloads (see Table 3) as representatives of the arrivals patterns one might find 

in practice. Every time a synthetic workload is generated, one of these four polynomials 

is randomly chosen to provide the arrival rate. 

Note that the selected polynomial must be multiplied by P / O, where P is the 

number of processors of the supercomputer to which the synthetic workload is going to 

be submitted, and O is the number of processors in the supercomputer the originated the 

polynomial (O = 120 for ANL, O = 430 for CTC, O = 100 for KTH, and O = 128 for 

SDSC, as shown in Table 1). This normalizes the arrival pattern to the size of the target 

supercomputer. Not doing so would result in lighter-than-reality loads when P > O (un-

changed arrival rate applied to a larger supercomputer), and in heavier-than-reality 

loads when P < O (unchanged arrival rate applied to a smaller supercomputer). 

Each job in the synthetic workload has a probability of being cancelled pc = 

0.15 (see Section 3.3.2). If a job j is cancelled, the cancellation lag lc determines the 

time elapsed between the arrival of j and its cancellation. Cancellation lags are uniform 

log distributed with parameters χlc = 0.065 and ρlc = -0.32 (see Section 3.3.2). A can-

celled job is removed from the system, whether it is running or waiting in the queue. 

Each job is the rigid workload is characterized by its partition size n, request 

time tr, and accuracy a. The partition size n is initially drawn from a uniform log distri-
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bution with parameters χn = 0.12 and ρn = 0.20, but with probability pb = 0.75 the re-

sulting partition size is changed to the closest power-of-2 value (see Section 3.3.3). The 

requested time tr is uniform log distributed with parameters χtr = 0.10 and ρtr = -0.75 

(see Section 3.3.4). The accuracy a is gamma distributed with parameters αa = 0.6 and 

βa = 0.6 (see Section 3.3.4). Note that the execution time te is determined by te = tr ⋅ a. 

Table 11 summarizes the rigid workload model, listing the distributions used 

and their parameters.  
 

Characteristic Model Parameters 
Arrival Time ia Polynomial (P/O) · λa(ms) 

describes the arrival rate 
within a day  

The coefficients for the 
four different λa(ms) are 
displayed in Table 3  

Cancellation  Probability pc pc = 0.15 

Cancellation Lag lc Uniform-log distributed χlc = 0.065; ρlc = -0.32 

Partition Size n Uniform-log distributed χn = 0.12; ρn = 0.20 

Power-of-2 Partition Size Probability pb pb = 0.75 

Request Time tr Uniform-log distributed χtr = 0.10; ρtr = -0.75 

Accuracy a Gamma distributed αa = 0.6; βa = 0.6 

Table 11 – Summary of the Rigid Workload Model 

We also define a load multiplier κL that multiplies the arrival rate and the re-

quest time generated by the model. The load multiplier κL allows us to alter the load of-

fered to the supercomputer, and thus investigate how scheduling solutions behave under 

different load conditions. By multiplying both the arrival rate and the request time we 

keep the characteristics of the workload. In particular, this approach does not shorten 

the daylong arrival cycle, as does compressing the arrival time [34] [44]. 

Moldability Model 

The moldability model generates v requests for a job j with one known request 

(partition size n, request time tr, and accuracy a). That is, the moldability model pro-

duces the v-tuples n = (n[1] …, n[v]), tr = (tr[1], …, tr[v]) , a = (a[1], …, a[v]) that describe v 
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requests for job j. The modeling of a is straightforward: a[1], …, a[v] = a (see Section 

3.4.2). 

As described in Section 3.4.1, v is no greater than the number of requests the 

user is willing to provide cu. We have that Pr[cu = 1] = 0.05 and Pr[cu > 1] = 0.95. If cu 

> 1, its value if uniform-log distributed with parameters χcu = 0.1918 and ρcu = 0.1876. 

Additionally, the partition sizes generated by the moldability model n[1], …, n[v] are in 

the [cmin, cmax] range. The minimum partition size cmin is uniform-log distributed with 

parameters χcmin = 0.06920 and ρcmin = 0.6279. As explained in Section 3.4.3, the 

maximum partition size cmax is determined using c
A
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As discussed in Section 3.4.3, the request time for a given partition size ′n  is 

calculated by tr n L
S n A a

( )
( , , )

′ =
′ ⋅σ

. A is jointly uniform-log distributed together with 

cmin, using parameters ϕA = 0.009548, γA = -0.01877, ηA = 0.07468, and  

ρA = -0.009198. σ is uniformly distributed with parameters µσ = 1.209 and σσ = 1.132.  
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Table 12 condenses the essential information about the moldability model, list-

ing the distributions used and their parameters. 
 

Characteristic Model Parameters 
Minimum Partition Size cmin Uniform-log distributed χcmin = 0.06920; 

ρcmin = 0.6279 

Number of Requests Pro-
vided by the User cu 

Probability determines 
whether cu = 1. Uniform-log 
distributed for cu > 1. 

Pr[cu = 1] = 0.05; 
Pr[cu > 1] = 0.95; 
χcu = 0.1918; 
ρcu = 0.1876 

Downey’s A Jointly uniform-log distrib-
uted with the minimum parti-
tion size cmin 

ϕA = 0.009548; 
γA = -0.01877; 
ηA = 0.07468; 
ρA = -0.009198 

Downey’s σ  Normally distributed µσ = 1.209;  
σσ = 1.132 

Table 12 – Summary of the Moldability Model 

Using the Workload Models 

The separation of our moldable workload model into two independent parts al-

lows us to investigate the performance of SA on current workload conditions. This is 

done by using the moldability model on a single job in the rigid workload, and repeating 

this experiment multiple times to understand the performance of such a moldable job 

(see Chapter 5). 

Of course the performance of SA scheduling many jobs is also of interest. We 

also investigate this scenario by using the moldability model on all jobs generated by 

the rigid workload model. That is the focus of Chapter 6. 
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4. Performance Metrics for SA 

The metric used to compare competing solutions is a key aspect of performance 

evaluation. Since the use of inappropriate metrics can result in misleading conclusions 

[34] [44], one wants to find a metric that is unbiased and that captures our intuition of 

good performance for the target scenario.  

SA aims to improve the performance of one job. Therefore, our performance 

metric should capture our intuitive notion of individual job performance. This chapter 

discusses how to gauge job performance, and how multiple experiments can be statisti-

cally aggregated without biasing the results. 

4.1. Gauging Job Performance  

Job performance should be evaluated from the user’s point of view. After all, a 

job exists to produce results to its user. Turn-around time captures the user’s view of 

how long the system takes to run a job. The turn-around time1 tt of a job j is the time 

elapsed between j’s submission and its completion. That is: tt = tw + te, where tw is the 

queue wait time, and te is the execution time of the job. We use turn-around time 

throughout this thesis to measure the performance of a job. 

4.2. Aggregating Experiments 

As we shall see in Chapters 5 and 6, the evaluation of SA is based on experi-

ments on which a target job j is submitted using different requests, such as the tradi-

tional static request provided by the user and the request chosen by SA. Since each ex-

periment focuses on one target job j, it is straightforward to use the turn-around time to 

measure the performance obtained by the different requests that compose an experi-
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ment. However, in order to draw statistically valid conclusions, we need to perform ex-

periments in a variety of circumstances. Consequently, we need a way to summarize 

multiple turn-around times in a single value. 

Note that any method of combining multiple turn-around times in a single value 

can serve as a performance metric for supercomputer scheduling. However, the opposite 

is not necessary true. Some metrics used to evaluate supercomputer schedulers, such as 

makespan, throughput, and system utilization, are not directly based on job perform-

ance. One can always argue that a system with good performance according to one of 

these metrics probably provides good service for the jobs that formed the evaluation 

workload, and conclude that these resource-centric metrics could thus be used to gauge 

job performance. However, the jobs used to gauge the performance of SA do not neces-

sarily come from the same workload. In many of our experiments, the target jobs come 

from different workloads. Moreover, it has been shown that makespam, system utiliza-

tion, and throughput are not appropriate metrics for on-line schedulers (such as super-

computer schedulers) because they are strongly influenced by the job arrival and the job 

requirements, which are out of control of the scheduler [44].  

Of course, there are metrics for supercomputer scheduling that are based on job 

performance. In fact, two of these metrics – mean turn-around time and mean slowdown 

– are popular ways to determine the performance of supercomputer schedulers [44]. As 

we shall see, however, these metrics are not appropriate for our research scenario be-

cause they bias towards long jobs [34] [44] and/or reward performance-poor scheduling 

strategies for moldable jobs. We will argue that the geometric mean of turn-around 

times is an appropriate performance metric for our research scenario.  

Mean Turn-Around Time 

Since turn-around time provides a good metric for a single job, many research-

ers have used the arithmetic mean mean( ,..., ) ...x x x x
nn

n
1

1= + +  to combine the turn-

                                                                                                                                               
1 Turn-around time is also referred to as service time or response time. 
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around times of all jobs in the workload into a metric for the supercomputer scheduler 

[1] [44] [64]. The mean has the advantage of being easily understood and widely used 

to combine multiple experiments into a single value. For example, the arithmetic mean 

is a sensible choice for establishing the “true” value of physical measurements because 

measurement errors are reduced by repeating the same trial and averaging the results.  

However, a set of turn-around times of different jobs cannot be considered a 

number of measurements of the same trial. In typical supercomputer workload, jobs dif-

fer widely in execution time (and thus in turn-around time), as seen in Section 3.3.4. 

The problem this causes is that mean turn-around time can be dominated by long jobs 

[34] [44]. For example, the mean turn-around time for 100 one-hour jobs and 1 one-

week job is 2.7 hours. For another example, improving a job’s turn-around time from 

20000 seconds to 18000 seconds (a 10% improvement) reduces the mean turn-around 

time by 2000 / J, while improving another job’s turn-around time from 200 seconds to 

100 seconds (a 50% improvement) reduces the mean only by 100 / J, where J is the to-

tal number of jobs in the evaluation workload. 

The dominance of long jobs on the mean turn-around time is an undesirable 

property for a performance metric because short jobs are most common in today’s 

workloads (see Section 3.3 and [44]). Therefore a scheduler can be ranked superior 

even if it increases the turn-around time of most jobs (the short ones). 

Mean Slowdown and its Derivatives 

Some authors have addressed this problem by using the slowdown2 s = tt / te in-

stead of the turn-around time [43] [44] [107]. Slowdown provides a measure that is 

normalized by the job’s execution time and hence long jobs are not overemphasized in 

the mean slowdown.  

A problem with slowdown is that jobs with extremely short execution time incur 

very large slowdown. For example, a one-second job that waits 10 minutes in the queue 

has a slowdown of 600. The standard solution for this problem is to establish a lower 

                                                 
2 Slowdown is also referred to as expansion factor. 
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bound for the execution time, typically 10 seconds [43] [44] [107]. More precisely, the 

performance of the workload is measured by the mean bounded slowdown, where 

bounded slowdown bs tt
te

=

max( , )10
. Returning to the example, a one-second job that 

waits for 10 minutes to run has bounded slowdown of 60. 

However, slowdown and its derivatives are not appropriate for moldable jobs 

because the execution time of a moldable job depends on the partition size it uses. For 

moldable jobs, one can often improve the slowdown by increasing the execution time 

te, which can be accomplished by selecting the smallest possible partition size. Since 

s tt
te

te tw
te

= =
+ , increasing te often leads to a small slowdown s. The problem is that 

such a strategy can (and often does) increase the turn-around time. 

Geometric Mean of Turn-Around Times 

The geometric mean geomean( ,..., ) ...x x x xn n
n

1 1= ⋅ ⋅ equally rewards the im-

provement in the turn-around time of any job in the workload. In fact, it is clear from 

the definition of geometric mean that geomean
geomean

( ,..., )
( ,..., )
x x
y y

n

n

1

1

 = geomean( ,..., )x
y

x
y

n

n

1

1

. 

Therefore, unlike the arithmetic mean, the geometric mean does not favor long jobs. For 

this very reason, the geometric mean is used to aggregate the execution time of the pro-

grams that compose the Spec benchmark [87].  

A criticism of the geometric mean is that it doesn’t indicate the processing time 

of the workload [73]. However, we are not using the performance metric for this pur-

pose here. Instead, we use the performance metric to compare alternative scheduling 

solutions. For this goal, the geometric mean is a good way to aggregate multiple turn-

around times because it equally considers the improvement in performance of any job. 

Hence we use the geometric mean of the turn-around times throughout this thesis to 

evaluate the performance of a set of experiments. 
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5. The Performance of SA 

SA seeks to reduce the turn-around time of a moldable job j by adaptively 

selecting the request that submits j to the supercomputer. But SA does not always select 

the best request because (i) the execution times of the jobs in the system are not known 

(request times are used as estimates), and (ii) future arrivals can affect jobs already in 

the system (see Chapter 2). This Chapter investigates the performance SA delivers 

in current real-life scenarios. More precisely, this chapter addresses three important 

research questions regarding the effectiveness of SA: 

i) What performance improvement can SA deliver in real-life scenarios? 

ii) Which factors influence SA’s performance? 

iii) What is the maximum performance improvement attainable by adaptively 

selecting the request that submits a moldable job? How close does SA get to 

such a maximum? 

This chapter is organized as follow. Section 5.1 describes the experiments we 

conducted to answer the research questions stated above. Section 5.2 analyzes the re-

sults of the experiments as a whole, establishing the average performance improvement 

that SA is expected to deliver in real-life conditions. Section 5.3 considers how the re-

sults of the experiments are influenced by parameters that describe the job, the system, 

and the information available to SA. Finally, validation for the experimental set-up is 

provided in Section 5.4. 

5.1. Experimental Set-up  

We conducted 360000 experiments to investigate the performance SA delivers 

in current real-life conditions. Each experiment targets a single job j and establishes (i) 

the turn-around time of j when it is submitted using the user request, (ii) the turn-around 

time obtained using SA to determine a request for j, and (iii) the best turn-around time 
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among all requests that were available to SA. Each experiment focuses on a single job j 

because the characteristics of the workload can change when many jobs are scheduled 

by SA (as we shall see in Chapter 6). By using SA on a single job, we do not signifi-

cantly alter current real-life conditions.  

The large number of experiments (360000) was necessary because jobs vary 

widely in many aspects (see Chapter 3), and therefore statistics that express the behav-

ior of a set of jobs converge slowly [44]. This is the case for the geometric mean of 

turn-around times (the performance metric employed in this thesis, see Chapter 4). For 

our experiments, the geometric mean of turn-around times stabilized at around 30000 

trials. Since we group experiments into deciles to investigate the effect some parameters 

have on SA (as we shall see in Section 5.3), we had to assure that each decile would 

have more than 30000 experiments. 

For each experiment, we generated a 10000-job workload using the workload 

model described in Section 3.5. The simulated supercomputer for our experiments had 

500 processors and was scheduled with conservative backfilling (see Section 2.2.1). The 

target job j is randomly selected and has v requests created by the moldability model 

(Section 3.4). This generates v + 1 workloads that differ only regarding job j. One work-

load has j as a moldable job, with v alternative requests. The other v workloads have j as 

a rigid job: there is one workload with j as a rigid job for each request j can use (includ-

ing the original user request). Each of these workloads is then simulated, with SA being 

used only for the workload that has j as a moldable job.  

Note that the request with smallest turn-around time among all v static requests 

is the best request that could be chosen by any application scheduler that adaptively se-

lects the request the submits job j. The best request thus provides a bound to the per-

formance improvement that can be achieved with SA. As we shall see in Sections 5.2 

and 5.3, the request selected by SA and the best request exhibit similar behavior in most 

circumstances. This creates the need to often refer to “the SA request and the best re-

quest” throughout the rest of this thesis. Since the best request can be thought as a per-
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fect application scheduler that adaptively selects a request for a moldable job, we define 

the term adaptive requests to mean “the SA request and the best request”. 

5.2. Overall Performance 

Table 13 shows the overall results for the 360000 experiments described in Sec-

tion 5.1. The experiments show substantial improvement in adaptively selecting super-

computer requests. The turn-around time of the best request is in general about 44% of 

the turn-around time obtained by the user request. In addition, SA is able to deliver 

turn-around times that are close to the best request (SA’s turn-around times are only 

13% greater than those attained by the best request). In our experiments, SA is able to 

reduce the turn-around time to about half of that obtained by the user request.  
 

 Best SA User 

Geometric Mean of the  

Turn-Around Time  

1264 1429 2878 

Table 13 – Overall results (in seconds) 

Table 13 conveys a notion of “average” performance. It is also interesting to un-

derstand the how often SA improves an individual job’s turn-around time. Table 14 par-

titions the jobs in those whose turn-around times improved, remained the same, and 

worsen with the adaptive requests. Of course no job has the turn-around time worsen by 

the best request.  
 

 Best SA  

Jobs with better turn-around time 53.9% 45.8% 

Jobs with same turn-around time 46.1% 45.3% 

Jobs with worse turn-around time -------- 8.8% 

Table 14 – How the adaptive requests impacted on the turn-around time 
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Note that the distribution of v, i.e. the number of requests offered to SA (see 

Section 3.4.1), defines the percentage of jobs for which an adaptive request is the same 

as the user request. In fact, for a job with a single request (v = 1), it is clear that an adap-

tive request and the user request are always the same. When v = 2, there is a 50% 

chance that an adaptive request equals the user request, and so on. Therefore, the frac-

tion of jobs for which an adaptive request and the user request are expected to coincide 

in our experiments is 

1

0 448
v

J
jj

Â
= . , where vj is the number of requests available for 

job j, and J is the number of jobs in the workload.  

Figure 38 provides a more detailed view on how jobs had their turn-around 

times improved, unchanged, and worsen by the adaptive requests. It shows the distribu-

tion of the relative turn-around time for SA and the best request. The relative turn-

around time of an adaptive request is the ratio of the turn-around achieved by such 

adaptive request to the turn-around time obtained by the corresponding user request. 

Relative turn-around time expresses the performance SA and the best request achieved 

as a fraction of the turn-around time of the user request. Therefore, relative turn-around 

times smaller than 1 imply that the adaptive request delivered a turn-around time 

smaller than the one obtained by the user request. Conversely, a relative turn-around 

time greater than 1 denotes that the user request had smaller turn-around time than the 

corresponding adaptive request. Of course, the relative turn-around time of the best re-

quest cannot be greater than 1. In our experiments, this happens for SA 8.8% percent of 

the time, as shown in Table 14. 
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Figure 38 – Distribution of relative turn-around time 

5.3. Factors that Influence SA 

The performance of SA can be influenced by (i) the characteristics of the target 

job j, (ii) the information available to SA about job j, and (iii) the load of the supercom-

puter at the moment SA schedules job j. In this section, we investigate how these factors 

impact the adaptive requests: the SA request and the best request (which corresponds to 

the maximum possible performance that can be achieved by any of the v possible re-

quests).  

Our initial expectation is that the larger and more diverse the set of possible re-

quests, the better the performance SA and the best request should attain. The rationale is 

that a large and diverse set of requests gives more latitude in finding a good request to 

use. The results confirmed such expectation, and also revealed other characteristics of 

the behavior of SA and the best request, as we will see next. 
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5.3.1. Job Characteristics 

Jobs vary regarding size (i.e., the amount of computation they need to com-

plete), speed-up characteristics, and restrictions on which partition sizes they can use. 

We use the sequential execution time L as a measure for job size. Note that we cannot 

employ the computation time ce = te ⋅ n actually used by a job as a measure for job size 

because such a variable depends on SA3. SA selects the partition size n that a job uses, 

therefore affecting ce = te ⋅ n. 

The parameters of the Downey model can be used to characterize the speed-up 

behavior of a moldable job j. Recall that Downey’s parameters are the average parallel-

ism A and an approximation to the coefficient of variance in the parallelism σ. A indi-

cates how many processors j can effectively use, and σ denotes the slope of j’s speed-up 

(the closer σ is to 0, the closer to linear the speed-up is)4.  

The partition size constraints are tracked through three parameters: the minimum 

partition size cmin, the maximum partition size cmax, and the kind of partition size ckind. 

The kind of partition size ckind differentiates between power-of-2 and non-power-of-2 

jobs. Recall that there is a probability pb = 0.75 that the partition size is a power of two. 

This requirement captures the current practice for partition size selection and seems to 

be stronger than intrinsic algorithmic constraints (see Section 3.3.3). 

Sequential execution time L 

Figure 39 shows the results of the experiments described in Section 5.1 as a 

function of the sequential execution time L. More precisely, Figure 39a displays the re-

sults directly as geometric mean of turn-around times, whereas Figure 39b presents the 

same results using relative turn-around times. Recall that the relative turn-around time 

of an adaptive request is the ratio of the turn-around time of the adaptive request to the 

turn-around time of the corresponding user request. Relative turn-around time is useful 

                                                 
3 Recall that te is job’s execution time and n is its partition size. 
4 See Section 3.4.3 for a thorough description of the Downey model. 
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in assessing the impact of the sequential execution time L on the adaptive requests be-

cause L and the turn-around time tt are correlated: Larger jobs in general have a greater 

turn-around time because they take longer to execute. Relative turn-around time 

normalizes the turn-around time of the adaptive requests with respect to the user 

request. Consequently, it factors out the correlation between the parameter being 

studied (in this case, the sequential execution time L) and the turn-around time. 

In Figure 39, the experiments are grouped in deciles according to L. Since we 

conducted 360000 experiments (see Section 5.1), each data point in the graph averages 

around 36000 experiments. The values of L on the x-axis show the boundaries of the 

deciles5. That is, the values that surround a given data point denote the range averaged 

by such a point. For example, the first data point represents the jobs with L ∈ [0, 92), 

the second data corresponds to the jobs with L ∈ [92, 348), and so on. Unless stated 

otherwise, the following graphs use this same convention. 
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Figure 39 – Turn-around time by the sequential execution time L 

                                                 
5 Some values in the x-axis (i.e. deciles boundaries) are omitted due to space constraints. 
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As can be seen in Figure 39a, the larger the L (i.e., the more computation a job 

carries), the greater the turn-around time. This is because large jobs naturally have long 

execution times (see Figure 40a), and a long execution time contributes to an increase in 

the turn-around time. The increase in turn-around time with the growth of L makes it 

hard to visualize other patterns in Figure 39a.  

The relative turn-around time graph (Figure 39b) provides a more insightful pic-

ture. The relative turn-around time increases as L grows, meaning that the improvement 

in the turn-around time delivered by the adaptive requests decreases with L. The behav-

ior of the best request (which is closely followed by SA) indicates that there is less 

room for performance improvement as L grows.  

Decomposing the turn-around time into execution time (Figure 40) and wait 

time (Figure 41) helps in understanding why large jobs gain less from the adaptive re-

quests. L does not seem to exert a clear influence on the relative execution time (see 

Figure 40b). On the other hand, the relative wait time clearly grows with L (see Figure 

41b). In fact, for large values of L, the adaptive requests incur wait times greater than 

the ones obtained by the user requests (see Figure 41a). Nevertheless, the turn-around 

time of the adaptive requests is better than that obtained by the user request even for 

large jobs (see Figure 39a). This implies that, for large jobs, the reduction in execution 

time is greater than the increase in wait time. However, for small jobs, adaptive requests 

are able to simultaneously reduce the execution time (see Figure 40b) and the wait time 

(see Figure 41b), which translates into a greater improvement in the turn-around time.  

We believe that the large wait times faced by large jobs when using the adaptive 

requests are due to the inability of large jobs to use small holes in the supercomputer 

schedule. Recall that SA works by searching for a “good” hole in the supercomputer 

schedule, picking the hole that gives the job being scheduled the soonest expected finish 

time. Similarly, the best requests can be thought of as an scheduler that always finds the 

hole in the supercomputer schedule that delivers the earliest expected finish time for the 

job being scheduled. We conjecture that the holes that exist in the beginning of the su-

percomputer schedule (i.e., the ones that incur small wait time) are small because re-
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quests are placed in the supercomputer schedule using first fit (see Section 2.2.1). Since 

a job with large L can only by placed in large holes, it seems to be more likely for such 

a job to be placed towards the end of the supercomputer schedule, which results in a 

large wait time. As we shall see soon, jobs with large values for the minimum partition 

size cmin also seem to experience the same phenomenon, reinforcing our conjecture that 

the ability to use small holes in the supercomputer schedule is key for achieving small 

wait times.  
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Figure 40 – Execution time by the sequential execution time L 
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Figure 41 – Wait time by the sequential execution time L 

Note that Figure 40 presents the results directly as execution time and also as 

relative execution time. The relative execution time of an adaptive request (the SA re-

quest or the best request) is the ratio of the execution time of the adaptive request to the 

execution time of the corresponding user request. Likewise, Figure 41 displays the re-

sults directly as wait time and also as relative wait time. The relative wait time of an 

adaptive request is the ratio of the wait time experienced by such an adaptive request to 

the wait time of the user request. As it happens with the turn-around time, both wait 

time and execution time are correlated with parameters whose effect on the adaptive 

requests we intend to investigate (in this case, the sequential execution time L). Relative 

measures for wait time and execution time address this issue because they eliminate the 

correlation between the parameter being studied and both wait time and execution time.  

Average parallelism A 

Figure 42 shows the impact of the average parallelism A on the turn-around time 

of the target job j. The relative turn-around time graph (Figure 42b) indicates that the 

adaptive requests are less effective in reducing the job’s turn-around time for small val-

ues of A. Since A determines the maximum speed-up that can be achieved by job j (see 

Section 3.4.3), the possible requests for jobs with small A do not vary in execution time 
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as much as the requests for jobs with large A. Requests with similar execution time give 

less latitude for SA and the best request in reducing the job’s execution time (see Figure 

43b), making it harder for the adaptive requests to improve the job’s turn-around time. 
 

0 2.9 6.5 15 33 75 170 390 920 2900 12000
500

1000

1500

2000

2500

3000

3500

Average Parallelism A

G
eo

m
et

ric
 M

ea
n 

of
 T

ur
n−

A
ro

un
d 

T
im

e

(a)

Best request
SA request  
User request

0 2.9 6.5 15 33 75 170 390 920 2900 12000
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Average Parallelism A

R
el

at
iv

e 
T

ur
n−

A
ro

un
d 

T
im

e

(b)

Best request
SA request  

 

Figure 42 – Turn-around time by average parallelism A 
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Figure 43 – Execution time by average parallelism A 
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Note also that the decrease of the relative turn-around time of the adaptive re-

quests appears to taper at around A = 100 (Figure 42b). This suggests that a job does not 

need high average parallelism A in order to fully benefit from SA. 

σσσσ  

Figure 44 presents the effect of σ on the turn-around time of target job j in the 

experiments. Somewhat surprisingly, variations in σ show very little impact on the per-

formance of either SA or the best request. A large σ implies that the job’s speed-up is 

strongly sublinear. Therefore, the possible requests for a large-σ job vary considerably 

in their computation time (ce = n ⋅ te). The results of the experiments indicate that such 

a variance in the computation time is not very important for the adaptive requests. It 

seems that having multiple distinct requests to choose from is the key enabling feature 

to improve the job’s turn-around time by adaptively selecting which request to use. 
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Figure 44 – Turn-around time by σσσσ  

However, if many jobs with large values of σ have their requests adaptively cho-

sen (not the case addressed in this chapter), it is possible for the system as a whole to 

exhibit poor emergent behavior. Poor emergent behavior can arise if most of the se-

lected requests are large. Multiple large requests boost the supercomputer load, which 
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typically increases the turn-around time of most jobs in the system. Section 6.2.2 inves-

tigates this issue. 

Minimum partition size cmin  

The impact of the minimum partition size cmin on the adaptive requests and the 

user request can be seen on Figure 45. Note that Figure 45 has only 5 data points, 

whereas the previous figures have 10 data points. This is because cmin = 1 for 62.6% of 

the experiments (see Section 3.4.1 for the distribution of cmin). Therefore, the first data 

point roughly represents the six first deciles of the distribution. 
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Figure 45 – Turn-around time by minimum partition size cmin 

As can be seen in Figure 45b, the effectiveness of the adaptive requests de-

creases as cmin increases. A large cmin implies that there are no requests with small parti-

tion size n available to be selected. Small partition sizes allow the use of small holes in 

the supercomputer schedule. As discussed in the analysis of the results with respect to 

the sequential execution time L, it seems that the ability to use small holes in supercom-

puter schedule is essential to reduce the wait time. In fact, as can be seen in Figure 46, 

the wait time of the adaptive requests grows with cmin, even surpassing the wait time of 

the user request for cmin > 13. Such a lack of ability to reduce wait time seems to com-
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promise the capacity of the adaptive requests to improve the turn-around time, as ob-

served for jobs with large cmin and large L. 
 

0 1 3 6 13 42
50

60

70

80

90

100

110

120

Minimum Partition Size c
min

G
eo

m
et

ric
 M

ea
n 

of
 W

ai
t T

im
e

(a)

Best request
SA request  
User request

0 1 3 6 13 42
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Minimum Partition Size c
min

R
el

at
iv

e 
W

ai
t T

im
e

(b)

Best request
SA request  

 

Figure 46 – Wait time by minimum partition size cmin 

Maximum partition size cmax  

Figure 47 shows the effect of the maximum partition size cmax on the turn-

around time. Up to certain point (around cmax = 100), the performance improvement 

generated by the adaptive requests grows as cmax grows. After that point, the perform-

ance improvement practically levels off.  

It appears that the restriction introduced by a small cmax reduces the capability of 

the adaptive requests to reduce the job’s execution time. Small execution times often 

require the use of many processors and cmax poses an upper bound on how many proces-

sors a job can use. That is, jobs with small cmax cannot use many processors. This seems 

to preclude SA and the best request from improving the job’s turn-around time by re-

ducing its execution time. The behavior of the execution time as cmax varies (shown in 

Figure 48) supports this explanation. 
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Figure 47 – Turn-around time by maximum partition size cmax 
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Figure 48 – Execution time by maximum partition size cmax 

Note that the effect of the maximum partition size cmax on the turn-around time 

is similar to the effect caused by the average parallelism A. This may not be a coinci-

dence. Both cmax and A pose restrictions on the speed-up behavior of a job: cmax repre-
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sents the partition size n after which the speed-up curve levels off, whereas A denotes 

the speed-up value after which the speed-up curve levels off. 

Kind of partition size ckind 

In our model, 75% of the jobs use power-of-2 partition sizes. This enables us to 

capture the current practice for partition size selection, which seems to be stronger than 

intrinsic algorithmic constraints (see Section 3.3.3). Figure 49 segregates the power-of-

2 jobs from the non-power-of-2 jobs. Non-power-of-2 jobs experience greater turn-

around time than power-of-2 jobs. Moreover, the performance improvement obtained 

by SA and the best request is smaller for non-power-of-2 jobs.  
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Figure 49 – Turn-around time by kind of partition size ckind 

Since the majority of the jobs in the workloads used on the experiments are 

power-of-2, we believe that it is easier for the resource scheduler to “pack” another 

power-of-2 job into the schedule than to find an appropriate hole for a job with arbritary 

partition size. This phenomenon is in consonance with results showing that workloads 

with high percentage of power-of-2 jobs exhibit better performance under a variety of 

supercomputer schedulers [67]. 
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5.3.2. Information Available to SA 

The information made available to SA varies regarding v, the number of re-

quests that is available to SA, and a, the accuracy of such requests. Recall that the accu-

racy a is defined as a = te / tr, and therefore a small value of a implies that the request 

asked for much more time than the job actually used.  

Accuracy a 

As can be seen in Figure 50a, the turn-around time tt grows with the accuracy a. 

However, we believe this is an artifact of the coupling between accuracy and execution 

time as represented in our model (see Section 3.3.4). The jobs with smaller accuracy 

tend to run for less time, thus reducing their turn-around time. 

The relative turn-around time (see Figure 50b) provides a better evaluation of 

the impact of accuracy over the adaptive requests. It is interesting to see that the best 

request delivers a greater performance improvement for low accuracy jobs. SA, on the 

other hand, seems to be almost unaffected by the accuracy of the requests (in conso-

nance with other studies that have found inaccurate user’s estimates not to significantly 

hurt performance [43] [107]).  

Another way to phrase this phenomenon is to say that the gap in performance 

improvement between the best request and SA is greater for small values of a (say a < 

0.1). The best request is identified through the simulation of all possible requests: After 

all requests are simulated, the one with smallest turn-around time is named the best re-

quest. Since the best request is identified a posteriori, it is immune to the accuracy of 

the request. However, SA is not omniscient. Poor accuracy makes SA request much 

more cycles than the job is actually going to use. This precludes SA from using some 

holes in the schedule that would actually be enough to fit job j. 
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Figure 50 – Turn-around time by accuracy a 

Number of requests v  

As shown in Figure 51, the performance improvement achieved by the adaptive 

requests increases with the number of requests v. This result seems intuitive. The more 

requests that are available, the greater the flexibility the adaptive requests have in lever-

aging the holes in the supercomputer schedule.  
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Figure 51 – Turn-around time by number of requests v 
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Note that the increase in the turn-around time for v > 8 is due to the fact that 

there are no power-of-2 jobs with v > 9. Recall that the simulated supercomputer has 

500 processors and thus power-of-2 jobs cannot have more than 9 requests (1, 2, 4, 8, 

16, 32, 64, 128, and 256). In particular, the power-of-2 jobs that would otherwise have 

more than 9 requests must remain with 9 requests. Therefore, the data point for v > 8 in 

Figure 51 contains mainly non-power-of-2 jobs. Since jobs with non-power-of-2 parti-

tion sizes exhibit poorer performance (as discussed in the previous section), there is an 

increase in the turn-around time for v > 8. 

Note also that Figure 51 only has 7 data points (instead of 10, as most of the 

previous figures). This is because v = 2 for 37.1% of the experiments (see Section 3.4.1 

for the distribution of v). The second data point therefore represents almost four deciles 

of the experiments. 

5.3.3. The State of the Supercomputer 

SA is an application scheduler and, as such, makes decisions based on the state 

of the supercomputer. In this section, we investigate how the load of the supercomputer 

at the moment job j arrives in the system influences the performance improvement 

achieved by SA and the best request. We expect that the more work the system already 

has, the greater the queue wait time for an incoming job typically will be. Of course, a 

large queue wait time contributes to a large turn-around time.  

We use the load per processor D to gauge the load of the supercomputer at the 

moment SA schedules a job. This measure weights the amount of computation the su-

percomputer has to perform to finish all jobs currently in the system against the super-

computer size. Since a larger supercomputer will be able to deal with more load and 

more jobs than a smaller one, consideration of the supercomputer size enables us to 

compare results across supercomputers of different sizes. More precisely, the load per 

processor D is defined as: 

D
n tr i i

P

j j now j
j

=

◊ - -Â ( ( ))
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where: 

nj is the number of processors requested by job j 

trj is the execution time requested by job j 

inow is the current time instant 

ij is the time instant j started running (if j hasn’t started yet, then ij = inow) 

P is the number of processors in the supercomputer 

Figure 52 shows the effect of the load per processor D on the turn-around time 

of the SA request, the best request, and the user request. As expected, the turn-around 

time grows with the load per processor (see Figure 52a). This is because, as expected, 

the more load there is in the system, the longer an arriving job has to wait in the queue 

(as can be seen in Figure 53a).  

The relative turn-around time provides a more useful measure because it factors 

out the impact of the load per processor D on the turn-around time tt. The relative turn-

around graph (see Figure 52b) indicates that the performance improvement achieved by 

SA decreases with the load per processor D until around D = 200000, when it seems to 

level off. Note that SA performs better for lightly loaded systems in two distinct ways. 

First and more obviously, the improvement delivered by SA is greater for lightly loaded 

systems. Second and maybe more interestingly, the gap between SA and the best re-

quest is smaller for lightly loaded systems.  
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Figure 52 – Turn-around time by load per processor D 

The fact that lightly loaded systems provide a more favorable environment for 

the adaptive requests can be better understood by decomposing the turn-around time 

into wait time (shown in Figure 53) and execution time (shown in Figure 54). Note that 

the “strategy” used by the adaptive requests varies depending on the load. For lightly 

loaded supercomputers, the adaptive requests seem to focus on reducing the execution 

time (see Figure 54) by selecting large requests (see Figure 55), even if such requests 

bear a slightly greater wait time than the user request (see Figure 53). This approach 

produces good results because, for lightly loaded supercomputer, the wait time is often 

very small anyways, thus having minimum impact on the turn-around time (see Figure 

56 for the fraction of the turn-around time that is due to the wait time).  

For heavily loaded supercomputers, on the other hand, the wait time corresponds 

to a sizable fraction of the turn-around time (see Figure 56). The adaptive requests then 

start to focus on reducing the wait time (see Figure 53), even when this requires select-

ing smaller requests (see Figure 55) that increase the execution time (see Figure 54). 

This seems to be a good approach to reduce the turn-around time in heavily loaded sys-

tems, although it does not achieve the same kind of performance improvement that is 

possible in lightly load supercomputers. 
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As for the increase in the gap between SA and the best request as the load 

grows, we believe it is due to the lower level of uncertainty SA faces on lightly loaded 

systems (compared to heavily loaded systems). Recall that SA uses the request time of 

the jobs already in the system as estimates for their execution time. Fewer jobs in the 

system thus reduce the overall error associated with these estimates. 
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Figure 53 – Wait time by load per processor D 
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Figure 54 – Execution time by load per processor D 
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Figure 55 – Requested computation time by load per processor D 

Note that Figure 55 measures the size of requests directly as requested computa-

tion time cr = tr ⋅ n (where tr is job’s request time and n is its partition size) and also as 

relative requested computation time. The relative requested computation time of an 

adaptive request (the SA request or the best request) is ratio of the requested computa-

tion time of the adaptive request to the requested computation time of the corresponding 

user request.  
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Figure 56 – Wait time over turn-around time as the load per processor grows 

5.4. Validating the Results 

Simulations are an important research tool [105]. They allow us to explore is-

sues that are not tractable analytically or experimentally. However, they can produce 

invalid results due to a number of reasons, from poor modeling of reality to undetected 

bugs in the simulator. Consequently, it is important to double-check the results obtained 

via simulations.  

In this section, we show that the models introduced in Chapter 3 indeed capture 

real supercomputer scenarios with reasonable accuracy. We do so by running experi-

ments with real workloads and real jobs’ speed-ups. Instead of using synthetic work-

loads as we have done in the rest of this chapter, we use our four reference workloads 

directly (see Section 3.1 for a description of the reference workloads). Instead of using 

the moldability model of Section 3.4, we use NAS benchmarks as the jobs to be sched-

uled by SA (see http://www.nas.nasa.gov/Software/NPB/ for the speed-up behavior of 

NAS benchmarks). 

http://science.nas.nasa.gov/Software/NPB/
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We use five NAS benchmarks whose execution times are available for the SP2 

on a variety of partition sizes: MG, LU, SP, BT, and EP. MG and LU require a power-

of-two partition size and thus are the most constrained jobs. For the SP2, http://www. 

nas.nasa.gov/Software/NPB/ contains execution time information for MG and LU over 

8, 16, 32, 64, 128, and 256 processors. Consequently, SA has 4 to 6 choices of request 

for MG and LU, depending on the number of processors of the supercomputer being 

used (see Table 1). SP and BT require perfect-square partition sizes. There is data on 

their execution time for 9, 16, 25, 36, 64, 121, and 256 processors; thus providing 5 to 7 

requests to SA. There are no restrictions for EP. It can run over any number of proces-

sors and thus there are as many requests as processors in the supercomputer (see Table 

1). Table 15 summarizes the characteristics of the NAS benchmarks used in our valida-

tion experiments. 
 

Benchmark Partition size constraint Number of requests 

MG power of 2 4, 5, or 6 

LU power of 2 4, 5, or 6 

SP perfect square 5, 6, or 7 

BT perfect square 5, 6, or 7 

EP unrestricted 100, 120, 128, or 430 

Table 15 – NAS benchmarks used in the validation experiments 

For each experiment, we randomly select a target job j whose partition size is 

compatible with the NAS benchmark b we want to introduce into the workload. For ex-

ample, we look for perfect-square jobs when we introduce the BT benchmark. The tar-

get job j is then replaced by the NAS benchmark b. As before, each experiments con-

sists of v + 1 simulations, where v is the number of requests that can be used to submit 

the NAS benchmark b to the supercomputer. One simulation uses SA to select which 

request submits b. Moreover, there is one simulation for each of the v requests that can 

be used for b. We performed 40000 experiments in total: 8000 per NAS benchmark. 

http://science.nas.nasa.gov/Software/NPB/
http://science.nas.nasa.gov/Software/NPB/
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Table 16 shows the overall results of the experiments based on NAS bench-

marks. NAS benchmarks obtained much smaller turn-around times than synthetic jobs 

in the experiments based on our workload models (see Table 13). This is an expected 

outcome because NAS benchmarks are relatively small jobs (the largest sequential exe-

cution time L among all NAS benchmarks is 21190 seconds). As shown in Figure 39, 

the turn-around time for small jobs is much smaller than the overall results of our previ-

ous experiments.  
 

 Best  SA  User  

Geometric Mean of the 

Turn-Around Time  

429 543 1478 

Table 16 – Overall NAS results (in seconds) 

Relatively speaking, however, the results found with NAS benchmarks are simi-

lar to those found with our workload models (see Table 13). As before, SA is close to 

results obtained by the best request. Furthermore, the turn-around times obtained by SA 

correspond to 37% of those obtained by the user request, a result even better than the 

one achieved using our workload model.  

We attribute this better performance to the fact that EP can use any partition size 

(and all these possibilities are provided to SA). This seems to create the opportunity for 

an even greater improvement in performance. Indeed, consider Figure 57, which groups 

the turn-around times by the restriction on partition size posed by the NAS benchmarks. 

Note that SA delivers impressive performance improvement for EP: It reduces the turn-

around time for a little more than 15% of the user request. Note also that SA is still able 

remain close to the maximum improvement for EP, which suggests that increasing the 

number of choices does not make it harder for SA to find a near optimal request. 
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Figure 57 – NAS results by kind of benchmark 

In short, the NAS benchmarks differ from our model in two important ways. 

First, NAS benchmarks are small jobs, whereas our model covers the wide distribution 

of job sizes found in practice: from small to very large. Second, the EP benchmark of-

fers many more requests to SA than any job in our model. Although it is conceivable 

that embarrassingly parallel jobs will provide SA with a multitude of requests in prac-

tice, we took a more conservative approach and modeled the number of requests avail-

able to SA after the current practice, as discussed in Section 3.4.1. Taking into account 

the differences between NAS benchmarks and moldable jobs generated with our model, 

the results found with both of them are very similar. We therefore believe that the re-

sults based on NAS benchmarks validate the set-up used in our simulations (described 

in Section 5.1) and the conclusions based on such results (presented in Sections 5.2 and 

5.3). 

This chapter has investigated the performance of SA scheduling one job in cur-

rent workload conditions. However, such conditions may change as a result of having 

SA scheduling many jobs in the workload, as we shall see in the next chapter.  



 

 

86

6. Emergent Behavior of Multiple SAs 

The previous chapter examined how SA performs in current real-life conditions. 

However, the widespread use of SA may change such current conditions. When many 

SAs are scheduling jobs on one supercomputer, the decision made by one SA affects the 

state of the system, therefore impacting other instances of SA. The global behavior of 

the system thus comes from the emergent behavior of all SAs. 

This is a very important issue because there is theoretical evidence that systems 

in which resource allocation is performed by many independent entities can exhibit per-

formance degradation [71] and even chaotic behavior [59]. There are two basic con-

cerns about a system in which many entities make decisions independently. First: Is the 

system as a whole stable, or does it oscillate in some thrashing cycle? Second: What is 

the impact of multiple SAs on the performance attained by each of them? 

In our environment, the stability of the system is not a problem. Stability is a 

problem for systems formed by multiple independent entities when such entities can 

keep prompting each other to make decisions in an endless feedback cycle [59]. When 

this happens, the system as whole never stabilizes. If the entities in an unstable system 

are making scheduling decisions, the overhead of carrying on the constant flow of deci-

sions is likely to preclude the system from performing much useful work. We thus say 

that such a system is in a thrashing cycle. Since SA makes only one decision, there is no 

chance for a feedback behavior to occur. A supercomputer on which multiple instances 

of SA schedule jobs is always stable. 

On the other hand, having multiple SAs in the system can have a performance 

impact on the system as whole and on each instance of SA in particular. A way to think 

about SA is that it leverages inefficiencies of the supercomputer schedule. By consider-

ing multiple requests, SA searches for a “good” hole in the supercomputer schedule, 

picking the hole on which the job being scheduled is expected to finish earlier. We 

therefore expect the performance improvement obtained by an instance of SA to be 
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smaller when most jobs use SA. Section 6.1 investigates this hypothesis. In this chapter, 

we also investigate how the increase in the total load submitted to the supercomputer 

affects SA (see Section 6.2). 

6.1. Performance Impact of Emergent Behavior 

SA selects the request that is expect to deliver the smallest turn-around time by 

searching the supercomputer schedule for holes that fit the possible requests (see Chap-

ter 2). Having many SAs searching for holes in the supercomputer schedule is likely to 

make the supercomputer schedule more compact, with less “big” holes. While a more 

compact schedule makes the system as a whole more efficient, it also makes harder for 

each instance of SA to find a hole that delivers a large performance improvement. In 

short, we expect the competition for resources to become tougher with multiple SAs, 

and this tough competition to reflect on the performance improvement attained by each 

SA individually.  

Experimental Set-up 

We conducted a number of experiments to investigate the emergent behavior of 

SA. The experimental set-up used here is similar to the one used in the previous chapter 

(see Section 5.1). As before, we conduced 360000 experiments. A 10000-job synthetic 

workload is generated for each experiment, which targets a randomly chosen job j. The 

simulated supercomputer has 500 processors, and the supercomputer scheduler is con-

servative backfilling. This time, however, the moldability model is applied to all jobs. 

This enables us to use SA with multiple jobs, therefore creating the emergent behavior 

we want to examine. 

Each experiment consists of four simulations. All four simulations use the same 

workload. They vary in whether (i) the target job j uses SA or the user request, and (ii) 

all the other jobs use SA or the user request. When most jobs in the workload use SA, 

we say that the workload is adaptive. When most jobs are submitted through the user 

request, we say that we have a static workload. Therefore, when all jobs use SA, the 

turn-around time of job j represents the performance SA achieves within adaptive work-
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loads. When job j is scheduled by SA but all the other jobs use the user request, the 

simulation determines the performance of SA in static workloads. When job j is submit-

ted through the user request and all other jobs use SA, we have the performance the user 

request achieves in adaptive workloads. When all jobs are submitted through the user 

request, job j represents the performance of the user request in static workloads (the cur-

rent supercomputer usage scenario). Table 17 summarizes the four scenarios simulated 

in the experiments. 
 

Performance of Target job j uses Other jobs use 

SA in adaptive workloads SA request SA request 

SA in static workloads SA request User request 

User request in adaptive workloads User request SA request 

User request in static workloads User request User request 

Table 17 – Scenarios simulated in the emergent behavior experiments 

Note that the notion of best request is not well-defined for an environment with 

multiple instances of SA. Since the turn-around time of a job j can be affected by a job 

g that arrives after j, we cannot determine the best request for job j without knowing 

which request job g is going to use. And, of course, we cannot determine the best re-

quest for g without knowing which request j is going to use (because the request of j 

contributes to determine the state of system encountered by g).  

Overall Results 

Table 18 displays the results obtained from the experiments just described, i.e., 

Table 18 shows how SA and the user request behave within static and adaptive work-

loads. Recall that the turn-around times obtained in the 360000 experiments are summa-

rized by the geometric mean statistic (as explained in Chapter 4). 
 

Request used for job j SA User 

Workload Static Adaptive Static Adaptive 
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Geometric mean of the 

turn-around time  

1429 1357 2878 2721 

Table 18 – Overall results with SA scheduling all jobs (in seconds) 

To our surprise, both SA and the user request have slightly smaller turn-around 

times when in adaptive workloads then when in static workloads. As we shall see in 

more detail, it turns out that the emergent behavior of many instances of SA reduces (i) 

the occurrence of very high load conditions, and (ii) the wait time of jobs submitted to 

systems experiencing moderate to high load. In moderate to high load situations, these 

reductions in load and wait time seem to overcome any performance degradation poten-

tially cause by the increased competition for resources from other instances of SA. In 

low load scenarios, however, both SA and the user request achieve smaller turn-around 

times when in a static workload, as we initially expected.  

Reduction of Very High Load Conditions 

Recall from Section 5.3.3 that, when within static workloads, SA uses small re-

quests under heavy load conditions. This approach reduces the queue wait time, al-

though it in general increases the execution time. Since heavily loaded systems generate 

large wait times, such an approach is effective in reducing the job’s turn-around time, 

the final goal of SA. As shown in Figure 58, the tendency of SA to reduce the size of 

the request as the load grows remains the same when it is in adaptive workloads. This is 

the expected behavior because SA only considers the job it schedules, without worrying 

about the performance of other jobs. 
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Figure 58 – Requested computation time by load per processor D  

Since SA tends to favor small requests as the load grows, the emergent behavior 

generated by having many SAs in the system reduces the occurrence of very high load 

conditions. Consider Figure 59 for the distribution of the load per processor D at the 

moment the target job j arrives in the system. For approximately 60% of the experi-

ments, job j does not experience much difference in the system load whether the previ-

ous jobs used SA (adaptive workload) or the users requests (static workload). These are 

the 60% of the experiments on which job j found the supercomputer to be less loaded 

(D < 500000). For the other 40% of the experiments, job j found smaller load in the su-

percomputer when the previous jobs used SA (i.e., the adaptive workload scenario). 

These 40% of the experiments are the ones on which the supercomputer was more 

loaded at the moment of the arrival of job j (D > 500000). 
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Figure 59 - Distribution of the load per processor D  

Reduction of Wait Time in Moderate to High Load Conditions 

Besides reducing the chance that the system experiences heavy loads, the emer-

gent behavior of SA also appears to reduce the job’s wait time in moderate to heavy 

load conditions. See Figure 60 for the influence of the load per processor D on the turn-

around time of SA and the user request within both adaptive and static workloads. For 

D > 110000, both SA and the user request experience smaller turn-around times when 

they are in adaptive workloads.  

It is interesting to note that the execution times of jobs using the user request do 

not seem to be affected by whether the workload is adaptive or static (see Figure 61). 

On the other hand, for jobs using SA, the execution time follows a pattern similar to the 

one experienced by the turn-around time: In lightly loaded conditions, jobs using SA 

have better execution time in static workloads. From moderate to high load, the execu-

tion time of jobs using SA is better in adaptive workloads. 
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The wait time (shown in Figure 62) shows the same trend for jobs using the user 

request and SA. The wait time is small under light loads. For moderate to high loads, 

jobs using both SA and the user request have smaller wait times in adaptive workloads. 
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Figure 60 – Turn-around time by load per processor D  
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Figure 61 – Execution time by load per processor D  
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Figure 62 – Wait time by load per processor D  



 

 

94

We conjecture that the smaller wait time jobs experience when D > 110000 and 

the workload is adaptive happens because the emergent behavior of SA causes better 

packing in the supercomputer schedule. SA exploits existing holes in the supercomputer 

schedule to improve the job’s performance. The overall effect of having all jobs using 

SA therefore appears to be that the supercomputer schedule becomes more compact, 

with fewer big holes. The fact that SA prefers small requests as the load grows provides 

extra support for this conjecture because smaller requests are easier to pack.  

When the user request is used in adaptive workloads, a better packing in the su-

percomputer schedule translates in general into a smaller wait time. Since the user re-

quest is static, the wait time experienced by the job is determined mainly by the state of 

the supercomputer schedule. Therefore, everything else being the same, a job using the 

user request will in general experience a smaller wait time when encountering a better 

packed supercomputer schedule. 

When SA is used in adaptive workloads, it is less clear that a better packing is 

responsible for a smaller wait time. After all, SA leverages holes in the supercomputer 

schedule to improve better performance. However, recall from Section 5.3.3 that SA 

achieves smaller improvement in the turn-around time under high-load conditions. The 

fact that the system as a whole is more efficient (i.e., the supercomputer schedule is 

more compact) seems to be more beneficial than the small improvements SA would 

achieve on average with a less compact schedule. Moreover, with a more compact 

schedule, SA does not have to sacrifice the execution time so severely in order to reduce 

the wait time, as it does in a static workload (see Figure 61). 

Increased Competition in Lightly Loaded Systems 

As can be seen in Figure 60, SA in static workloads performs better than SA in 

adaptive workloads when the supercomputer is lightly loaded. This suggests that adap-

tive workload indeed increases the competition for resources, making it harder for SA to 

find a good request to use, as we initially expected.  

Note that this explanation is consistent with the fact that, under moderate to high 

loads (in our experiments, for D > 110000), the performance of SA in adaptive work-
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loads exceeds the performance of SA in static workloads. We credit the better perform-

ance SA achieves within adaptive workloads under moderate to high load to emergent 

behaviors that reduce the occurrence of high loads conditions and the wait time of the 

job. Since such emergent behaviors appear to come from the tendency of individual SA 

to select small requests as the load grows, they are negligible for light load conditions. 

Other Factors 

Whether the workload SA is static or adaptive seem to have little impact on the 

behavior of SA as a function of the parameters that describe the job’s characteristics 

(sequential execution time L, average parallelism A, σ, minimum partition size cmin, 

maximum partition size cmax, and kind of partition size ckind) and the information 

available to SA (accuracy a, and number of requests v). These results can be found in 

Appendix C.  

This comes as no surprise. Emergent behaviors cannot affect the characteristics 

of the job being scheduled by SA or the information offered to SA about such a job. 

Multiple instances of SA can only affect the state of the supercomputer, and they do so, 

generating the emergent behaviors we have described herein. 

6.2. Increasing the Offered Load 

Up to this point, we have used workloads that reflect either current real-life con-

ditions or conditions we expect to see as a result of the widespread utilization of SA. 

However, it is also of interest to understand how SA behaves under other conditions. In 

particular, how schedulers behave as the offered load increases is of great theoretical 

and practical interest. The offered load is the aggregated computation time needed to 

process an input workload. More precisely, the load offered by a workload W (or simply 

offered load) is defined as cej
j WŒ
Â , where j is a job in the workload W, cej = nj ⋅ tej is the 

computation time used by job j, nj is the number of processors allocated to job j, and tej 

is the execution time of job j. 
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Note that the concepts of offered load and the load when SA schedules a job are 

distinct. The load of the system when SA makes a scheduling decision is a snapshot of 

the system condition. Such a concept has been measured in this thesis through the load 

per processor D. On the other hand, the offered load corresponds to the total amount of 

computation carried by the workload as a whole. That is, the offered load is a measure 

for the workload as a whole, whereas the system load when SA makes a decision varies 

from job to job in the same workload. Of course, as the offered load increases, SA will 

more likely schedule a job in heavy load conditions.  

The load offered to the supercomputer can increase for several reasons. More 

jobs and/or larger jobs increase the load offered to a system (assuming everything else 

is kept constant). We investigate this direct increase on the offered load via the load 

multiplier κL. Recall from Section 3.5 that the load multiplier κL multiplies both the ar-

rival rate and the request time generated by our workload model.  

There is also the possibility that the offered load changes due to the decisions 

made by SA. This can happen because SA selects which request to use out of a set of 

requests that typically vary regarding the computation time ce needed to complete the 

job. For example, SA tends to use small requests in heavy load conditions, as seen in 

the previous section. We examine here the impact of the variation on the computation 

time ce needed by the possible requests of a job. More precisely, we increase the distri-

bution of σ. A workload formed by jobs with large σ can generate a greater load to the 

system if large requests are often selected by SA. 

6.2.1. Direct increase of the offered load 

The load multiplier κL changes the total workload load by multiplying both the 

arrival rate and the request time generated by our workload model (see Section 3.5). For 

example, κL = 2 implies that the supercomputer receives a load 4 times greater (twice 

the arrival rate and twice the request time) than loads currently found in practice. Of 

course, κL = 1 represents the load conditions currently found in practice. 
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By varying κL, we can investigate how SA behaves as the offered load grows. 

Figure 63 shows the overall performance of SA scheduling all jobs in the workload for 

κL = 0.5, 1.0, 1.5, …, 4.0. Each data point in the graph aggregates the results of 400000 

jobs. More precisely, 40 10000-job experiments were run for each data point. The re-

sults of all jobs are considered (i.e., these experiments do not focus on a single target 

job). Each 10000-job workload was simulated twice, one time using SA and the other 

time using the user request, in both cases for all jobs in the workload. 
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Figure 63 – The effect of offered load  

As expected, the performance of the system as a whole degrades with the in-

crease in the load (see Figure 63a). More interesting here is how the load impacts on 

SA, an issue better tracked by the relative turn-around time (Figure 63b). Notice that SA 

performs extremely well (relative turn-around time = 0.27) when very little load is of-

fered to the supercomputer (κL = 0.5). This is in consonance with the finding the SA 

works better in lightly loaded conditions (see Section 5.3.3). Possibly more important is 

the observation that the performance improvement achieved by SA degrades slowly as 

the load increases. Even for extremely high loads (κL = 4.0), SA still achieves consid-

erably smaller turn-around time than the user request. 
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6.2.2. Large-σσσσ workloads 

The value of σ (which determine how close to linear the job speed-up is) seems 

to have little effect on the performance of SA (see Section 5.3.1). However, the distribu-

tion of σ may influence the emergent behavior of a system with multiple instances of 

SA. If large values of σ are common, it might happen that SA increases the load offered 

to the supercomputer, therefore reducing the overall performance of the system. This is 

because the requests SA choose from normally vary with respect to the computation 

time ce needed to complete the job. Large values of σ accentuate such a variance, creat-

ing the potential for multiple SAs to select requests that demand large amounts of com-

putation to complete the jobs, increasing therefore the load submitted to the supercom-

puter. The focus of this section is to establish whether such possible emergent behavior 

indeed appears, and, if so, to determine the extent of its impact on the performance 

achieved by SA. 

In order to investigate our hypothesis, we artificially change the distribution of σ 

to make the occurrence of large values more common. Recall that σ is modeled via a 

normal distribution (see Section 3.4.3). We multiply the mean of such a distribution µσ 

by a constant κσ. This allows us to raise the values of σ without changing the shape of 

the distribution. Figure 64 shows distributions of σ for κσ varying from 1 to 4. Note that 

κσ = 1 is the original distribution, which we believe represents the values found in cur-

rent workloads (see Section 3.4.3). 
 



 

 

99

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

C
D

F

κσ = 1

κσ = 2

κσ = 3

κσ = 4

 

Figure 64 – Distributions of σσσσ  

We conducted experiments that are almost identical to the ones discussed in the 

pervious section (Section 6.2.1). The difference is that here we varied κσ from 0.5 to 4.0 

in 0.5 steps (instead of varying κL, as before). As conjectured, the offered load increases 

as the distribution of σ grows when SA is used (see Figure 65). As a result, the turn-

around time of SA grows as the distribution of σ increases (see Figure 66a). Since the 

user request is not affected by σ in our model (see Figure 66a), the performance im-

provement delivered by SA decreases as the distribution of σ grows (see Figure 66b). 

However, SA is still able to improve over the user request even for workloads with very 

high values of σ (κσ = 4).   
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Figure 65 – Offered load as a function of κκκκσσσσ 
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Figure 66 – The influence of the distribution of σσσσ on the emergent behavior of SA 
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7. Related and Future Work 

No research happens in a vacuum. Research simultaneously draws from previ-

ous efforts and opens new possibilities to be explored. This chapter covers these con-

nections between our own research and other efforts. We start by describing related 

work available in the literature. We then move on to sketch research ideas that are the 

natural “next steps” to the work described herein. 

7.1. Related Work 

This section surveys the state-of-art in the three areas that are most relevant for 

our research: supercomputer scheduling, application scheduling, and the emergent be-

havior of systems on which resource allocation is performed by multiple independent 

entities. 

7.1.1. Supercomputer Scheduling 

Scheduling distributed-memory parallel supercomputers is an instance of the 

more general problem of scheduling multiprocessor computers. The features that par-

ticularize scheduling parallel supercomputers are (i) the continuous arrival of jobs to the 

system, and (ii) the high cost of task migration. 

Other Multiprocessor Scheduling Problems 

A scheduler that deals with jobs that continually arrive to the system is called an 

on-line scheduler [44]. In contrast, an off-line scheduler assumes that all jobs are avail-

able when the scheduler starts. Off-line scheduling is more amenable to analytical solu-

tions and there is a great deal of research done in this area [35]. However, the results of 

these investigations often cannot be applied to the on-line problem. 

Likewise, much of the work in scheduling shared-memory multiprocessors does 

not apply directly to distributed-memory parallel computers. In principle, on-line 
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schedulers designed for shared-memory machines [5] [13] [15] [86] can execute on dis-

tributed-memory supercomputers. However, migrating a task is much cheaper in 

shared-memory multiprocessors than on distributed-memory machines. For shared-

memory machines, the cost of restarting a task is roughly independent to the processor 

assigned to the task. In a distributed-memory supercomputer, on the other hand, restart-

ing a task on different processor involves transferring (at least part of) the address space 

of the task, an expensive operation. Since most scheduling solutions for shared-memory 

do take advantage of the relative low cost of task migration to improve performance, 

these solutions incur prohibitively high overhead when used on distributed-memory 

machines. 

Preemption Capabilities 

Assumptions about the supercomputer vary mainly regarding preemption capa-

bilities6. Supercomputers can support (i) no preemption capabilities (i.e., jobs run to 

completion or until a time limit), (ii) local preemption (i.e., preemption within the 

threads in a processor), and (iii) preemption over parallel jobs as a whole (a.k.a. gang 

scheduling). Most supercomputers currently run jobs until completion. This makes no-

preemptive policies of great interest for researchers in supercomputing scheduling [1] 

[2] [24] [32] [43] [66] [67] [69] [82] [90]. Local preemption seems to be of little value 

for supercomputer scheduling due to their negative impact on the performance of tightly 

coupled parallel jobs [38]. Gang scheduling has been shown to improve performance 

under a variety of scenarios [42] [54] [79] [81] [106]. However, the interaction between 

gang scheduling and job’s characteristics such as I/O patterns [65] and memory con-

sumption [6] make gang scheduling somewhat complex in practice.  

Characteristics of the Job 

Assumptions about the job vary regarding job flexibility and the knowledge the 

supercomputer scheduler has about jobs6. Job flexibility describes how many processors 

a job will be able to use throughout its execution. A rigid job uses a fixed and pre-

                                                 
6 This classification is based on the work of Feitelson et al [40]. 
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established number of processors. A moldable job uses a fixed number of processors 

during its execution, but that number can be chosen from a set of possible partition sizes 

before the job starts. A malleable job can change its partition size during the execution. 

In current practice, supercomputer schedulers accept rigid jobs [58] [66] [69] [74] [82] 

and thus much of the research available in the literature assume jobs to be rigid [1] [2] 

[43] [55] [67] [78] [85] [90]. However, there is evidence that performance can be im-

proved by allowing jobs to be moldable [24] [32], as in this thesis, or even malleable 

[76].  

Despite such evidence, we do not know of any supercomputer in production that 

supports non-rigid jobs. We believe that this is due to the difficulty in proving that a 

given scheduling solution for moldable or malleable jobs will work in practice. Critics 

question the degree to which production jobs are moldable or malleable. The very lack 

of a production system that supports non-rigid jobs makes it very hard to answer this 

question. We have addressed this issue (regarding moldable jobs, at least) in this thesis. 

The results of the survey we conducted among supercomputer users (see Chapter 3 and 

Appendices A and B) lead us to believe that (i) most jobs current in production are 

moldable, and (ii) we can model the characteristics of their moldability, as discussed in 

Section 3.4. 

The knowledge the supercomputer scheduler has about jobs’ execution time can 

be (i) none, (ii) user-provided, (iii) statistical, and (iv) complete. Since Lifka et al 

showed that user-provided information can improve the supercomputer utilization and 

decrease the jobs’ turn-around time by reducing fragmentation [66] [82], little effort has 

been dedicated to supercomputer schedulers that know nothing about the jobs. Schedul-

ers based on user provided information now constitute standard practice [66] [69] [74] 

[82], and therefore are a natural target for many research endeavors [24] [43] [107]. In 

recent years, there has been considerable work on statistically deriving information 

from the past behavior of jobs [31] [84] and applying such information (sometimes 

combined with user provided information) to improve supercomputer scheduling [32] 

[55] [85]. Although complete knowledge is assumed by some researchers [1] [2] [67] 

[90], perfect knowledge cannot be achieved in practice for a general purpose system. 
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However, schedulers that assume perfect knowledge are often useful in providing an 

upper bound for scheduling performance (as “the best request” used in Chapter 5, for 

example). 

Workload Models 

Since the performance of a computer system depends on the workload to which 

such a system is submitted [18] [21] [44] [67], workload modeling plays a vital role in 

performance evaluation. A workload model enables the researcher to explore the per-

formance of the system in a multitude of scenarios. As with any model, a key issue with 

supercomputer workload models is how well they represent reality. This motivates the 

derivation of models from workload logs. 

Parallel supercomputers are relatively recent artifacts, and thus good workload 

logs are just appearing [39] [45] [56] [61]. The availability of such logs has prompted 

great activity in supercomputer workload modeling in recent years [21] [30] [33] [34] 

[40] [44] [60]. However, modeling workloads is challenging [34]. In particular, there 

are many important aspects of the supercomputer workloads that have not been mod-

eled, or that have being modeled only incipiently [34].  

This situation had a strong impact on our research because SA targets moldable 

jobs, and moldability is one of the aspects of the supercomputer workload that has not 

been sufficiently studied in the literature. Such a situation impelled us towards an exten-

sive modeling effort (as described in Chapter 3).  

Other Factors in Scheduling 

Much of the research available in the literature focuses on scheduling proces-

sors. In practice, however, other resources (e.g., disk, memory, communication 

infrastructure) may also need to be considered. There is some research in multi-resource 

scheduling [6] [15] [70], but it still remains a largely unexplored issue. 

7.1.2. Application Scheduling 

Application schedulers are an essential component of scheduling solutions for 

computational grids. Computational grids are platforms for the execution of parallel 
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jobs that are composed by geographically dispersed resources that may be under the 

control of multiple entities [53]. Since grid resources are geographically dispersed and 

often in different administrative domains, it is not feasible for a single scheduler to 

oversee the entire system.  

In a computational grid, groups of resources are independently controlled by dif-

ferent resource schedulers. Resource schedulers control the resources they schedule. 

One salient characteristic of resource schedulers is that they receive requests from mul-

tiple users, and thus must arbitrate among such users. Therefore, in order to use re-

sources controlled by multiple resource schedulers, one has to (i) select the resources to 

use, (ii) partition the work across the selected resources, and (iii) submit requests to the 

appropriated resource schedulers to have the selected resources carry out the work as-

signed to them. This is the task of the application scheduler. Application schedulers do 

not control the resources they use. They obtain access to resources by submitting re-

quests to the appropriate resource schedulers. Figure 67 illustrates the relationship be-

tween the different kinds of schedulers in a grid. 
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Figure 67 – Different kinds of schedulers found in a computational grid 

AppLeS: An Example of an Application Scheduler  

As an example of application schedulers, let us look at AppLeS (Application-

Level Schedulers) [9]. AppLeS are application schedulers developed by Fran Berman’s 

group at UCSD and Rich Wolski at the University of Tennessee [9] [10] [27] [83] [88] 

[89]. Figure 68 shows the general structure of an AppLeS. A typical AppLeS is part of 

the application it schedules. It starts by obtaining information about the environment. 

After this, the AppLeS uses heuristics to select feasible sets of resources to be evalu-

ated. It then generates a schedule for each of these sets of resources often using dynamic 

predictions of resource availability provided by the NWS to parameterize a performance 

model. The schedule with best expected performance is chosen and then deployed over 

grid resources. 
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Figure 68 – The structure of an AppLeS  

State of Art in Application Scheduling 

There has been a great deal of interest in application scheduling in recent years 

[11]. As with any evolving area, there seems to be reasonable agreement on some as-

pects of application scheduling, but not on others. Perhaps the point that is most com-

monly agreed upon is that application scheduling improves when good information 

about the system is available. In particular, using the last measured value of the system 

state doesn’t seem to be enough to accurately predict its future behavior [9] [19] [68] 

[77] [80] [88] [89] [100] [104]. This observation has motivated the appearance of sys-

tems that probe grid resources and forecast their availability, as with NWS [101] [102], 

Komodo [77], and Remos [68]. 

Although sometimes it is possible to formulate a scheduling problem in a way 

that can be solved in polynomial time [3], most instances of scheduling are NP-Hard. 

Therefore, most application schedulers use heuristics to navigate through the space of 

possible schedules. The main components of such heuristics are (i) how two schedules 

are compared, and (ii) how the space of schedules is traversed. 

Grid 
InfrastructureNWS

Schedule 
Deployment

Resource 
Discovery

Resource 
Selection

Schedule
Planning

and 
Performance

Modeling

Decision
Model

accessible 
resources

feasible 
resource sets

evaluated
schedules

“best” 
schedule

AppLeS + application
= self-scheduling 

application

Resources

Grid 
InfrastructureNWS

Schedule 
Deployment

Resource 
Discovery

Resource 
Selection

Schedule
Planning

and 
Performance

Modeling

Decision
Model

Schedule 
Deployment

Resource 
Discovery

Resource 
Selection

Schedule
Planning

and 
Performance

Modeling

Decision
Model

accessible 
resources

feasible 
resource sets

evaluated
schedules

“best” 
schedule

AppLeS + application
= self-scheduling 

application

Resources



 

 

108

Most application schedulers use a performance model to compare two possible 

schedules [3] [4] [9] [19] [77] [80] [89] [99]. Others have devised a mechanism to rank 

schedules without actually estimating the application’s performance [68] [104]. Since 

application schedulers that rely on performance models provide an estimate on the ap-

plication’s execution time, they can be more easily used as a component by another ap-

plication scheduler. This ability makes for compositional and scalable solutions and 

hence is important for large systems [100]. On the other hand, performance models are 

hard to build. It might be that ranking-based application schedulers are easier to deploy 

because they do not require detailed knowledge about the application structure.  

There are situations in which the space of possible schedules is small. For ex-

ample, selecting the best server from among a small number of possibilities. In these 

cases, application schedulers can simply perform an exhaustive search [4] [19] [77] [89] 

[104]. When the number of possible schedules is non-trivial, heuristics can be used to 

search such space. Sometimes a polynomial-time optimal solution for part of the prob-

lem is used as a component of the heuristic. For example, there are application schedul-

ers that heuristically select the resources to be used, and then perform the work distribu-

tion via time balancing [9] [27] [80] [99].  

Resources Used by Application Schedulers 

Most application schedulers developed so far target time-shared resources [4] 

[9] [19] [80] [88] [89] [99]. This is a very reasonable starting point because time-shared 

resources are the most common ones today. However, there are very interesting applica-

tions that demand access to other kinds of resources, such as instruments or large dis-

tributed-memory supercomputers [83]. 

Unfortunately it is not trivial to extend an application scheduler to deal with a 

new kind of resource scheduler. In order for an application scheduler to make good de-

cisions, it needs to know how long a resource scheduler is going to take to process a 

given request. The problem is that obtaining such information currently requires de-

tailed knowledge about the underlying resource schedulers. For example, application 

schedulers that use time-shared resources estimate the execution time of a given request 
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by combining resources’ forecasted availability with applications’ benchmarks [4] [9] 

[19] [80] [88] [89] [99].  

Consider now a parallel supercomputer. Availability cannot be directly applied 

to such machines. In most of them, requests have dedicated CPU when they are execut-

ing, but might have to wait idle until the requested resources are available. Therefore, 

an application scheduler that uses a parallel supercomputer cannot use the same tech-

nique as the ones that target time-shared computers. Sadly, efforts to predict the super-

computer’s queue wait time have not delivered techniques that are accurate enough for 

application scheduling [31] [55] [84] [85].  

This open problem is addressed by this thesis. In Chapter 2, we described SA, 

the Supercomputer AppLeS. In its more general formulation, SA performs application 

scheduling for supercomputer jobs by simulating multiple possible requests, and then 

submitting the one that is expected to yield the smallest turn-around time. As seen in 

Chapters 5 and 6, such a simple strategy results in considerable performance gains in a 

variety of circumstances. 

Predictability in Resource Scheduling 

As discussed above, good information about the underlying resource schedulers 

is important for application scheduling. Currently most application schedulers obtain 

such information from systems that monitor resources and forecast their availability. An 

alternative approach would be to make resource schedulers predictable by design.  

This might be a promising approach because there has been considerable effort 

to make resource scheduling more predictable within the operating systems community 

[48] [91] [95] [96]. Many of these efforts primarily aim to provide a fine level of con-

trol on how the resources are shared among their users. Predictability comes as a result 

of this fine level of control. 

To a lesser degree, some researchers have started exploring the predictability of 

resource scheduling as a way to enable multiple schedulers to coexist [20] [23] [57]. 

These results are naturally more oriented to grid computing. The focus here is on where 

to draw the line dividing the responsibility of resource and application schedulers, and 
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what interface should one export to the other. Predictability appears as a requisite for 

good application scheduling. 

More closely related with our research, there has been considerable interest in 

enhancing supercomputer schedulers to provide advance reservations [52]. These ef-

forts address the need for resource schedulers to be predictable in the grid computing 

environment. However, reservation is not a complete solution. One also needs informa-

tion that empowers application schedulers in discovering which reservation to ask for. 

A trial-and-error strategy (as suggested in [52]) would likely result in slow and poor ap-

plication scheduling. 

7.1.3. Emergent Behavior 

In order to enable the wide deployment of application scheduling technology, a 

fundamental issue that needs to be addressed is the determination of the emergent be-

havior caused by multiple application schedulers in the same system, an issue also 

known as the Bushel of AppLeS problem [10]. This is indeed a very important matter 

because there is theoretical evidence that systems in which resource allocation is per-

formed by many independent entities can exhibit performance degradation [71] and 

even chaotic behavior [59].  

It has been very difficult to investigate the Bushel of AppLeS question under re-

alistic scenarios because of the difficulty in building experimental testbeds. In addition, 

there has not been that many application schedulers in production use for any emergent 

behavior to have appeared in current systems. However, the Bushel of AppLeS problem 

is a particular instance of the more general problem of determining the emergent behav-

ior of systems with multiple decision makers. In a Bushel of AppLes, it just happens 

that the decisions are limited to be scheduling decisions. This suggests that we might 

find useful results from Economics, an area in which systems with co-existing inde-

pendent decision-makers are commonplace. For example, economic regulations can be 

seen as mechanisms to control systemic problems by reducing the freedom of the deci-

sion-makers [14].  
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As a matter of fact, there has been research on how economic principles can be 

used to provide innovative solutions for computer science problems [22] [25] [57] [72] 

[92] [93] [94]. Of particular interest to us are those papers that, assuming the agents to 

implement a particular strategy, address emergent characteristics of the system as a 

whole, such as convergence and stability [97] [98]. Computational markets seem to be a 

natural scenario to explore the stability and performance of systems with multiple inde-

pendent decision-makers.  

Although small, there is some literature on the Bushel of AppLeS problem per 

se. Some fundamental work has already been done by Hogg and Huberman [59] and 

Mitzenmacher [71]. They highlight the importance of diversity for the stability and per-

formance of systems with independent decision-makers. Intuitively, when all decision-

makers employ very similar strategies, there is a greater the chance for “herd behavior” 

to happen. Diverse systems are in general more robust, a fact that is starting to be ex-

plored in Computer Science (e.g., in security [49]).  

More strongly related to our research, Downey found that choosing the partition 

size that minimizes the expected turn-around time of each job leads to better global per-

formance than many proposed system-centric strategies [32]. This result did not employ 

application schedulers per se and was obtained under conditions and assumptions that 

are different from our own research. However, it suggests that multiple application 

schedulers might create a positive emergent behavior.  

In fact, we also found the emergent behavior caused by multiple instances of SA 

to be benefitial. As discussed in Chapter 6, the emergent behavior generated by SA 

seems to reduce (i) the occurrence of very high-load conditions, and (ii) the wait time of 

jobs that arrive in systems experiencing moderate to high load. This is a remarkable re-

sult and one of the first attempts to characterize the performance impact the Bushel of 

AppLeS problem has on application scheduling. 
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7.2. Future Work 

Research is learning without a textbook. And, as with any learning activity, re-

search has no end. In particular, the research presented in this thesis leaves many open 

questions to be explored. Two of these open questions seem to be the natural “next 

steps” for this thesis: (i) deploying and following up SA, and (ii) extending SA to deal 

with multiple supercomputers. 

Deploying SA in Real Systems 

The results presented in this thesis were obtained using rigorous scientific meth-

odologies. Care was taken to model the intricacies of real-life supercomputer usage, and 

we are confident SA will improve the job’s turn-around time in practice. But there is 

more to learn. Deploying SA in a real production system will give us feedback that we 

could not obtain otherwise. In particular, deploying SA will enable us to refine our 

moldability model and possibly the scheduling strategy itself. 

Multiple Supercomputers  

Since SA is an application scheduler, there is no intrinsic reason to restrict the 

job submission to one supercomputer. After all, an early motivation for our work was to 

better integrate supercomputers into the computational grid environment. By targeting 

multiple supercomputers, SA in principle would have more opportunities to improve the 

performance of a job. Moreover, it is conceivable that multiple instances of SA would 

provide load balancing among multiple supercomputers by avoiding the most loaded 

machines.  

However, extending SA to deal with multiple supercomputers raises some non-

trivial questions. First of all, does SA simply submit the job to all possible supercom-

puters (and cancel all submissions but the first one to start running), or does it select the 

supercomputer with best expected performance? The former approach will likely give a 

better performance improvement from the viewpoint of one job, but might also generate 

negative emergent behavior due to the large increase in cancellations throughout the 

entire system. If negative emergent behavior really arises, an interesting research goal is 



 

 

113

devising a supercomputer scheduling policy (e.g. assigning cost to submissions) that 

dissuades this strategy of replicating a job to all possible supercomputers. 

Also, should SA try to split the job across multiple supercomputers? This is 

clearly harder than running a job on one supercomputer because of the need to consider 

(i) the supercomputer-to-supercomputer network performance, and (ii) the transfer of 

input from and output to the “home” supercomputer. Moreover, network performance 

and input/output sizes have to be carefully modeled to enable the proper evaluation of 

such coallocation schemes. On the other hand, the performance improvement can poten-

tially be much greater because unprecedented levels of parallelism can be achieved. 

Another important issue regarding coallocation across multiple supercomputers 

is whether the supercomputer scheduler can provide some additional service to ease 

coallocation. Advance reservations and availability lists make it possible for an applica-

tion scheduler to devise the requests to be sent to multiple supercomputers in order to 

coallocate a set of resources. However, the backfilling of these requests would happen 

independently from one another, probably breaking the coallocation.  

There is the straightforward solution of marking requests as non-backfillable, 

but not benefiting from backfilling would probably hurt the job’s turn-around time. 

Such a simple solution might render coallocation uncompetitive compared with using a 

single supercomputer (where backfilling can be used with no problem). 

Perhaps there is a way to enhance the interface provided by the supercomputer 

scheduler to better support coallocation. An idea would be to make backfilling condi-

tional (i.e., you do not lose your original time slot). The idea behind conditional back-

filling is that a job gets two (or maybe more) allocation slots, but you can use only one. 

The application scheduler would have to release the slots that the job is not going to 

use. 

The sketch of these two research topics is not meant to suggest that these are the 

only research efforts that would refine the results presented herein. Deploying SA and 

extending it to multiple supercomputers are just natural next steps in our research. Be-

yond them, there is much more to explore in leveraging moldability to improve the per-
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formance of supercomputer jobs and better integrating distributed-memory supercom-

puters in the computational grid. 
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8. Summary 

Our thesis statement is that the request that submits a moldable job can be 

automatically selected in a way that often reduces the job’s turn-around time. We 

support this claim by (i) describing SA, the Supercomputer AppLeS, an application 

scheduler that automatically selects the request that submits a moldable job, (ii) intro-

ducing metrics and models that allow us to evaluate SA, and finally (iii) using such met-

rics and models to show that SA indeed improves the job’s turn-around time over the 

user-selected request on a large variety of scenarios. 

The main contribution of this thesis is the demonstration that application sched-

ulers can use job moldability to improve the performance of supercomputer jobs, i.e. 

that our thesis statement holds true. But this is not our only contribution. This thesis 

also contains two other important contributions to the areas of application scheduling 

and supercomputer scheduling. First, we conducted the first study that we are aware of 

on the emergent behavior of application schedulers in real-life scenarios. Second, our 

workload model is novel and provides a solid basis for evaluating scheduling strategies 

that leverage moldability to improve performance.  

Exploiting Moldability to Improve Turn-Around Time 

With the impressive performance of commodity processors, parallelism has be-

come a key approach to achieve superior performance. Parallel supercomputers provide 

an important platform for parallel jobs, especially for those jobs that demand intensive 

communication and synchronization. Unfortunately, such supercomputers are expensive 

and thus have to shared among multiple users.  

The problem is that sharing the supercomputer results in queue delays that can 

jeopardize the performance gains of parallelism. Exploiting moldability to reduce a 

job’s turn-around time addresses this problem. We introduce SA to show how job 

moldability can be used to reduce a job’s turn-around time. As explained in Chapter 2, 
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SA receives from the user a set of requests that can be used to submit the user’s job. SA 

analysis the supercomputer schedule and selects one of the requests to submit the job.  

Using the evaluation criteria established in Chapters 3 and 4, we show in Chap-

ters 5 and 6 that moldable jobs that use the request selected by SA often achieve smaller 

turn-around times than those jobs submitted through the user selected request. More-

over, SA is shown to be close (within 10%) to the performance achieved by the best re-

quest among those it can chose from. In practice, no application scheduler can always 

select the best request because this would require perfect knowledge about the jobs’ 

execution times and future arrivals.  

We also investigate the impact on SA of parameters that gauge the characteris-

tics of the job, the information available to SA, and the state of the supercomputer. Fi-

nally, the emergent behavior of a system on which many jobs have their requests se-

lected by SA is also studied (more on that below). 

Note also that most jobs are already moldable (see Chapter 3). This makes solu-

tions that explore moldability to improve performance (such as SA) immediately appli-

cable in practice. This immediate applicability of SA is reinforced by the fact that SA is 

an application scheduler and thus can be deployed without changes in the current soft-

ware infrastructure that control supercomputers (e.g., operating system, scheduler, ac-

count manager). 

Emergent Behavior 

Application scheduling is a key technology for scheduling in grid computing 

environments. However, there is concern that undesirable global behavior can emerge 

from systems with multiple application schedulers [10]. Such an issue has not yet been 

properly addressed, mainly because application scheduling is a new approach and so 

systems with multiple application schedulers are not yet common in practice.  

In this thesis, we do address this question for SA, an application scheduler that 

selects which request submits a moldable job to a supercomputer. To the best of our 

knowledge, this is the first study of the emergent behavior of real-life application 

schedulers. As explained in Chapter 6, there are at least three different emergent behav-
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iors that arise from using SA with all jobs in the system. More precisely, the emergent 

behavior generated by SA seems to (i) increase the competition for resources, making it 

somewhat harder for each instance of SA to improve performance, (ii) reduce the occur-

rence of very high load conditions, and (iii) reduce the wait time of jobs that arrive in 

systems experiencing moderate to high load. Overall, the emergent behaviors (ii) and 

(iii) seem to overcome the emergent behavior (i), making the performance of SA in 

emergent behavior conditions to be slightly better than when a single SA is present in 

the system. Although we cannot generalized our results to the emergent behavior of ap-

plication schedulers as a whole, it is certainly encouraging that the first in-depth inves-

tigation of this issue brought positive results. 

Workload Model 

Researchers in supercomputer scheduling have long debated whether perform-

ance could be improved by allowing more flexibility in the job model than a fixed parti-

tion size [32] [40] [44]. The proponents of less strict job models have maintained that 

the scheduler would gain flexibility in resource allocation, and that this flexibility 

would translate into better performance. The critics, on the other hand, have suggested 

that parallel jobs are actually rigid, and hence strategies that rely on non-rigid jobs 

would not be effective in practice. Furthermore, critics have raised doubts on some 

scheduling solutions for non-rigid jobs because of non-realistic models used in their 

evaluation. 

A key result of the survey we conducted among supercomputer users was the 

evidence that most jobs are already moldable (see Chapter 3 and Appendices A and B). 

Although moldability is not the most flexible job model, it can be exploited to substan-

tially improve the scheduling of supercomputer jobs, as exemplified by SA. 

Furthermore, our moldable job model makes it possible to evaluate with good 

accuracy scheduling solutions that assume jobs to be moldable. The model captures im-

portant characteristics that moldable jobs display in practice. These include memory 

constraints, maximum parallelism, algorithmic constraints on partition size, user behav-

ior in generating requests, and job speedup behavior.  
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Our workload model is not only novel with respect to moldability, it also cap-

tures two other important aspects of a supercomputer workload: job cancellation and 

request accuracy. Job cancellation is valuable for realistic modeling because cancella-

tions impact the scheduler behavior. Request accuracy may be even more critical for a 

good modeling. Practically all current supercomputer schedulers use backfilling to re-

claim time that was requested but not used. However, part of the literature does not 

model request time and assumes the scheduler to have perfect knowledge of the job’s 

execution times [1] [2] [67] [90]. This is unfortunate because very often the user’s esti-

mates are not good, making the ability of the scheduler in dealing with unused alloca-

tions a vital feature. 

Final Remarks 

We have shown that moldability can be used to improve the turn-around time of 

supercomputer jobs by enabling an application scheduler to select the request that sub-

mits a moldable job to a supercomputer. The need to provide solid basis for the evalua-

tion of our solution led us to develop a novel moldable workload model. We also inves-

tigated the emergent behavior that arises when multiple jobs use our solution, in one the 

first efforts to characterize the emergent behavior of application schedulers. The results 

within this thesis contribute substantively towards more performance-efficient and envi-

ronment-sensitive supercomputer scheduling and form an important building block in 

the pursuit of performance for supercomputer job.  
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A. Survey’s Questionaire 

1 - Which organization’s parallel supercomputers do you use? Mark all that apply.  
• NASA  
• NCSA  
• NERSC  
• NPACI  
• Other  

2 - How many runs do you perform per month?  
• 1 - 10  
• 11 - 30  
• 31 - 50  
• 51 – 100 
• More than 100  

3 - How many processors do you usually request?  
• 1 - 4  
• 5 - 10  
• 11 - 30  
• 31 - 50  
• 51 - 100  
• More than 100 
• Do not know  

4 - What is the minimum number of processors your application needs to run?  
• 1  
• 2 - 4  
• 5 - 10  
• 11 - 30  
• More than 30  
• Do not know  
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5 - What is the maximum number of processors your application can benefit from? Such 
a maximum is the number after which adding more processors doesn't reduce the appli-
cation’s execution time.  

• 1 - 10  
• 11 - 30  
• 31 - 50  
• 51 - 100  
• 101 - 200  
• More than 200  
• Do not know  

6 - How many processors can your application efficiently use? This number represents a 
trade-off. Beyond it, additional processors do not reduce the application’s execution 
time enough to make it worth requesting them.  

• 1 - 4  
• 5 - 10  
• 11 - 30  
• 31 - 50  
• 51 - 100  
• More than 100  
• Do not know  

7 - Besides a minimum and maximum, does your application require:  
• A particular number of processors (i.e., it cannot run with a different number 

of processors)  
• A perfect-square number of processors  
• A perfect-cube number of processors  
• A power-of-two number of processors  
• Has some other constraint on the number of processors  
• Poses no particular restriction on the number of processors it uses  
• Do not know  
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8 - How many different numbers of processors have you requested for your application? 
For example, if you have run your application with 8, 16, and 32 processors, the answer 
would be 3.  

• 1  
• 2 - 3  
• 4 - 5  
• 6 - 10  
• More than 10  
• Do not know  

9 - What is the combined size of your input and output?  
• Less than 100KB  
• 100KB - 1MB  
• 1MB - 10MB  
• 10MB - 100MB  
• More than 100MB  
• Do not know  

10 - For your application, is the interprocess communication?  
• Low; the processes run almost independently  
• Moderate  
• Heavy; it has noticeable impact on the performance of the application  
• Do not know  

11 - How often does your application "fail" (i.e., you have to resubmit it)? The failure 
"cause" is not important here. It can be due to a bug, an invalid input, a system shut-
down, or anything else.  

• 0 - 20%  
• 21 - 40%  
• 41 - 60%  
• 61 - 80%  
• 81 - 100%  
• Do not know  
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12 - What priority do you normally use when submitting you application?  
• Low  
• Normal  
• High  
• Do not know 
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B. Survey’s Results 

1 - Which organization’s parallel supercomputers do you use? Multiple answers were 
allowed here.  
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2 - How many runs do you perform per month?  

 

3 - How many processors do you usually request?  

 

 



 

 

126

4 - What is the minimum number of processors your application needs to run?  

 

5 - What is the maximum number of processors your application can benefit from? Such 
a maximum is the number after which adding more processors doesn't reduce the appli-
cation’s execution time.  
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6 - How many processors can your application efficiently use? This number represents a 
trade-off. Beyond it, additional processors don't reduce the application’s execution time 
enough to make it worth requesting them.  

 

7 - Besides a minimum and maximum, does your application require a partition size that 
is:  
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8 - How many different numbers of processors have you requested for your application? 
For example, if you have run your application with 8, 16, and 32 processors, the answer 
would be 3.  

 

9 - What is the combined size of your input and output?  
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11 - For your application, is the interprocess communication? Low communication 
means that the processes run almost independently. Heavy communication has notice-
able impact on the performance of the application.  

 

11 - How often does your application "fail" (i.e., you have to resubmit it)? The failure 
"cause" is not important here. It can be due to a bug, an invalid input, a system shut-
down, or anything else.  
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12 - What priority do you normally use when submitting you application?  
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C. Emergent Behavior Results 
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Power of 2 Other
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D. Moldable Backfilling Results 
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