

i

Using Moldability to

Improve the Performance

of Supercomputer Jobs

PhD Thesis

Walfredo Cirne

ii

A Deus, por tudo.

À Zane, pelo amor.

À Helena, pelo futuro.

À Poema, pelo amor e doçura.

A Papai e Mamãe, pelo amor e dedicação.

To Fran, for not letting me get away with sloppy thinking.

À Capes e UFPB, pelo apoio.

iii

Abstract

Distributed-memory parallel supercomputers are an important platform for the

execution of high-performance parallel jobs. In order to submit a job for execution in

most supercomputers, one has to specify the number of processors to be allocated to the

job. However, most parallel jobs in production today are moldable. A job is moldable

when the number of processors it needs to execute can vary, although such a number

has to be fixed before the job starts executing. Consequently, users have to decide how

many processors to request whenever they submit a moldable job.

In this thesis, we show that the request that submits a moldable job can be

automatically selected in a way that often reduces the job’s turn-around time. The

turn-around time of a job is the time elapsed between the job’s submission and its com-

pletion.

More precisely, we will introduce and evaluate SA, an application scheduler that

chooses which request to use to submit a moldable job on behalf of the user. The user

provides SA with a set of possible requests that can be used to submit a given moldable

job. SA estimates the turn-around time of each request based on the current state of the

supercomputer, and then forwards to the supercomputer the request with the smallest

expected turn-around time.

Users are thus relieved by SA of a task unrelated with their final goals, namely

that of selecting which request to use. Moreover and more importantly, SA often im-

proves the turn-around time of the job under a variety of conditions. The conditions un-

der which SA was studied cover variations on the characteristics of the job, the state of

the supercomputer, and the information available to SA. The emergent behavior gener-

ated by having most jobs using SA to craft their requests was also investigated.

iv

Table of Contents

1. INTRODUCTION 1

1.1. PARALLEL SUPERCOMPUTERS 1

1.2. JOB MOLDABILITY 3

1.3. THESIS SUMMARY 4

1.4. THESIS OUTLINE 6

2. SA: THE SUPERCOMPUTER APPLES 7

2.1. GENERIC SA 8

2.2. SA OVER CONSERVATIVE BACKFILLING 9

2.2.1. CONSERVATIVE BACKFILLING 9

2.2.2. SA OVER CONSERVATIVE BACKFILLING 11

2.3. EQUIVALENCE BETWEEN THE TWO VERSIONS OF SA 13

3. WORKLOAD MODELS 15

3.1. COLLECTING INFORMATION 15

3.2. MODELS OVERVIEW 17

3.3. RIGID WORKLOAD MODEL 18

3.3.1. INSTANT OF ARRIVAL 18

3.3.2. CANCELLED JOBS 23

3.3.3. PARTITION SIZE 26

3.3.4. EXECUTION TIME AND REQUESTED TIME 32

3.4. MOLDABILITY MODEL 38

3.4.1. PARTITION SIZES 39

3.4.2. ACCURACY 42

v

3.4.3. REQUEST TIME 43

3.5. MODELS SUMMARY 50

4. PERFORMANCE METRICS FOR SA 55

4.1. GAUGING JOB PERFORMANCE 55

4.2. AGGREGATING EXPERIMENTS 55

5. THE PERFORMANCE OF SA 59

5.1. EXPERIMENTAL SET-UP 59

5.2. OVERALL PERFORMANCE 61

5.3. FACTORS THAT INFLUENCE SA 63

5.3.1. JOB CHARACTERISTICS 64

5.3.2. INFORMATION AVAILABLE TO SA 75

5.3.3. THE STATE OF THE SUPERCOMPUTER 77

5.4. VALIDATING THE RESULTS 82

6. EMERGENT BEHAVIOR OF MULTIPLE SAS 86

6.1. PERFORMANCE IMPACT OF EMERGENT BEHAVIOR 87

6.2. INCREASING THE OFFERED LOAD 95

6.2.1. DIRECT INCREASE OF THE OFFERED LOAD 96

6.2.2. LARGE-σ WORKLOADS 98

7. RELATED AND FUTURE WORK 101

7.1. RELATED WORK 101

7.1.1. SUPERCOMPUTER SCHEDULING 101

7.1.2. APPLICATION SCHEDULING 104

7.1.3. EMERGENT BEHAVIOR 110

7.2. FUTURE WORK 112

vi

8. SUMMARY 115

ACKNOWLEDGMENTS 119

A. SURVEY’S QUESTIONAIRE 120

B. SURVEY’S RESULTS 124

C. EMERGENT BEHAVIOR RESULTS 131

D. MOLDABLE BACKFILLING RESULTS 135

REFERENCES 139

vii

List of Figures

Figure 1 – Users selecting requests to submit their jobs...3

Figure 2 – Request selection by SA..5

Figure 3 – Allocation list after the submission of five requests......................................10

Figure 4 – Allocation list after the backfilling initiated by A finishing at time 210

Figure 5 – SAcb pseudo-code ...11

Figure 6 – SAcb example: availability list..12

Figure 7 – SAcb example: schedule A ..12

Figure 8 – SAcb example: schedule B ..13

Figure 9 – SAcb example: schedule C ..13

Figure 10 – Histograms of arrival hour for our reference workloads19

Figure 11 – Observed data and fitted model for arrival rate ...23

Figure 12 – Histograms of cancellation lag ..25

Figure 13 – Cancellation Lag CDF...26

Figure 14 – Uniform-log fit for partition size ...27

Figure 15 – Histogram of partition sizes...28

Figure 16 – Survey results for the constraints jobs face regarding partition size29

Figure 17 - Observed data and statistical model for partition size (ANL workload)......30

Figure 18 - Observed data and statistical model for partition size (CTC workload)30

Figure 19 - Observed data and statistical model for partition size (KTH workload)......31

Figure 20 - Observed data and statistical model for partition size (SDSC workload)....31

Figure 21 – Accuracy × Execution Time ..33

Figure 22 – Accuracy × Requested Time..34

Figure 23 – Distribution of the accuracy a for the completed jobs.................................35

viii

Figure 24 – Observed data and statistical model for accuracy36

Figure 25 – Observed data and statistical model for requested time38

Figure 26 – Survey results for minimum partition size ..40

Figure 27 – Survey results and model for the minimum partition size cmin40

Figure 28 – Survey results for number of requests used to submit a job........................41

Figure 29 – Survey results and statistic model for cu > 1 ...42

Figure 30 – Downey’s speed-up function S(n, A, σ) for different values of A44

Figure 31 – Downey’s speed-up function S(n, A, σ) for different values of σ44

Figure 32 – Survey results for efficient partition size seffic..46

Figure 33 – Distribution of seffic for the responses with smin in the [11,30] range47

Figure 34 – Joint CDF for seffic and smin...48

Figure 35 – Model CDF for the joint distribution of cmin and A48

Figure 36 – Distribution of the survey-based σ estimates ..49

Figure 37 – CDF for the survey based estimate of σ and the corresponding model50

Figure 38 – Distribution of relative turn-around time...63

Figure 39 – Turn-around time by the sequential execution time L65

Figure 40 – Execution time by the sequential execution time L67

Figure 41 – Wait time by the sequential execution time L ...68

Figure 42 – Turn-around time by average parallelism A ..69

Figure 43 – Execution time by average parallelism A ..69

Figure 44 – Turn-around time by σ ..70

Figure 45 – Turn-around time by minimum partition size cmin.......................................71

Figure 46 – Wait time by minimum partition size cmin ...72

Figure 47 – Turn-around time by maximum partition size cmax......................................73

Figure 48 – Execution time by maximum partition size cmax..73

Figure 49 – Turn-around time by kind of partition size ckind ..74

ix

Figure 50 – Turn-around time by accuracy a..76

Figure 51 – Turn-around time by number of requests v ...76

Figure 52 – Turn-around time by load per processor D..79

Figure 53 – Wait time by load per processor D ..80

Figure 54 – Execution time by load per processor D..80

Figure 55 – Requested computation time by load per processor D81

Figure 56 – Wait time over turn-around time as the load per processor grows..............82

Figure 57 – NAS results by kind of benchmark..85

Figure 58 – Requested computation time by load per processor D90

Figure 59 - Distribution of the load per processor D ..91

Figure 60 – Turn-around time by load per processor D..92

Figure 61 – Execution time by load per processor D..93

Figure 62 – Wait time by load per processor D ..93

Figure 63 – The effect of offered load ..97

Figure 64 – Distributions of σ...99

Figure 65 – Offered load as a function of κσ ..100

Figure 66 – The influence of the distribution of σ on the emergent behavior of SA ...100

Figure 67 – Different kinds of schedulers found in a computational grid106

Figure 68 – The structure of an AppLeS...107

x

List of Tables

Table 1 – Workloads used in this research ...16

Table 2 – Amount of days eliminated from the experimental data.................................21

Table 3 – Coefficients of the polynomials that model job arrival rate22

Table 4 – Percentage of completed and cancelled jobs ..24

Table 5 – χn and ρn obtained by fitting partition size to a uniform-log distribution.......26

Table 6 – Percentage of jobs with a power-of-2 partition size27

Table 7 – Percentages of different kinds of non-power-of-2 jobs32

Table 8 – Correlation coefficient between accuracy and execution time r(a,te) and

correlation coefficient between accuracy and requested time r(a,tr)......................32

Table 9 – αa and βa obtained by fitting accuracy to a gamma distribution36

Table 10 – χχχχtr and ρtr obtained by fitting requested time to a uniform-log distribution .37

Table 11 – Summary of the Rigid Workload Model ..52

Table 12 – Summary of the Moldability Model ...54

Table 13 – Overall results (in seconds)...61

Table 14 – How the adaptive requests impacted on the turn-around time......................61

Table 15 – NAS benchmarks used in the validation experiments83

Table 16 – Overall NAS results (in seconds)..84

Table 17 – Scenarios simulated in the emergent behavior experiments88

Table 18 – Overall results with SA scheduling all jobs (in seconds)89

1

1. Introduction

Performance is a very important aspect of computer systems. This has been true

since the very birth of modern computers, when computers were seen as calculators

whose raison d’être was their ability to perform arithmetic operations faster than the

human being. Today, performance remains a major concern for both industry and aca-

demia.

A common approach to improve performance is parallelism. A parallel job (or

simply job throughout this thesis) is composed by many tasks that execute simultane-

ously on multiple processors. By using more than processor, a parallel job can run faster

than its sequential counterpart.

1.1. Parallel Supercomputers

Distributed-memory parallel supercomputers (or simply parallel supercomput-

ers or even supercomputers in this thesis) are high-end machines designed to support

the execution of parallel jobs. A parallel supercomputer is composed of many proces-

sors, each with its own memory. The processors are interconnected by very fast internal

networking. Some supercomputers implement distributed shared-memory schemes

(e.g., the SGI Origin 2000). But this is only for the convenience of the application de-

veloper. Under the hood, shared-memory is implemented using message-passing (pos-

sibly followed by remapping memory pages).

In order to promote the performance of parallel jobs whose tasks frequently

communicate and synchronize, parallel supercomputers are typically space-shared. That

is, jobs receive a dedicated partition to run for a pre-established amount of time. Note

that having a dedicated partition greatly simplifies work distribution concerns. It re-

duces work distribution to balancing the load across the processors. Although this often

2

is a hard task by itself, it is surely easier than work distribution in a dynamically-

changing non-dedicated heterogeneous environment.

Supercomputer Scheduling

Since jobs have dedicated access to processors in a spaced-shared supercom-

puter, an arriving job may not find enough resources to execute immediately. When this

happens, the arriving job waits until enough processors become available. More pre-

cisely, jobs that cannot start immediately are placed in a queue, which is controlled by

the supercomputer scheduler. The supercomputer scheduler is the entity that receives

requests to run jobs. It decides when jobs start and what processors they use. In particu-

lar, the supercomputer scheduler decides which job in the wait queue is the next to run.

In order to make this decision, it typically requires each job to specify n, the number of

processors it needs, and tr, the time requested for execution of the job. In the current

practice, the supercomputer scheduler enforces the request time tr. That is, a job is

killed if it exceeds its request time tr.

Note that supercomputer scheduling is an on-line scheduling problem [44]. An

on-line scheduler deals with jobs that continually arrive to the system. In contrast, an

off-line scheduler assumes that all jobs are available from the outset. Off-line schedul-

ing is more amenable to analytical solutions and there is a great deal of research in the

area [35]. However, the results of these investigations often cannot be applied to the on-

line problem.

There are a handful of supercomputer schedulers currently in production. These

include the Easy [66] [82], PBS [58], Maui [69], and LSF [74] schedulers. Unfortu-

nately, these schedulers can radically change their behavior depending on how they

have been configured for a given system, which makes characterizing them a very com-

plex task. There are also numerous simulation-based studies on queue disciplines for

supercomputer schedulers. For a nice survey on the area, we refer the reader to [40].

3

1.2. Job Moldability

As we shall see in detail on Chapter 3, most parallel jobs in production today

seem to be moldable. A moldable job can run on multiple partition sizes [40]. However,

supercomputer schedulers accept only static requests. A static request can be character-

ized by the partition size n and the request time tr. In particular, the partition size n de-

termines unequivocally how many processors are allocated to the job being submitted.

Since moldable jobs can use multiple partition sizes, there are multiple different re-

quests that can used to submit a given moldable job. In current practice, the users

choose which request to use at the submission of their jobs, as illustrated by Figure 1.

Figure 1 – Users selecting requests to submit their jobs

The decision made by the user of which request to use is important because it af-

fects the job’s turn-around time. The turn-around time of a job is the time elapsed be-

tween the job’s submission and its completion. The turn-around time is a natural metric

for the job performance because it captures the user’s view of how long a job takes to

complete.

n
tr

4

In order to understand how the request used to submit a moldable job j affects its

turn-around time, note that the turn-around time can be decomposed into wait time tw

and execution time te. More precisely, tt = tw + te. Since jobs run in dedicated parti-

tions, it is feasible for the user to evaluate the effect of the partition size n on the execu-

tion time te (by benchmarking the job, for example). The execution time typically di-

minishes as n grows (up to some point, at least).

However, the user cannot in general estimate the wait time tw because it de-

pends on n, tr, the supercomputer scheduler, and the current load of the system. Indeed,

research efforts that aimed to forecast the supercomputer wait time found it difficult to

obtain good predictions [31] [55] [84] [85]. And, with an estimate for the execution

time te alone, the user is not able to identify which request will minimize job j’s turn-

around time tt.

1.3. Thesis Summary

We show in this thesis that the request that submits a moldable job can be

automatically selected in a way that often reduces the job’s turn-around time.

More precisely, we will introduce and evaluate SA, a scheduler that chooses the request

used to submit a moldable job on behalf of the user. The user provides SA with a set of

possible requests that can be used to submit a given moldable job j. SA estimates the

turn-around time of each request based on the current state of the supercomputer, and

then forwards to the supercomputer the request with the smallest expected turn-around

time. Figure 2 illustrates the role of SA in the job submission process.

SA stands for Supercomputer AppLeS. AppLeS (Applications-Level Schedul-

ers) are application schedulers developed by Fran Berman’s group at UCSD and Rich

Wolski at University of Tennessee [9] [10] [83] [88] [89]. Application schedulers per-

form scheduling decisions for individual applications but do not control resources. They

obtain access to resources by submitting requests to the appropriate resource schedulers.

Resource schedulers do control the resources they schedule on. A supercomputer

scheduler, for example, is a resource scheduler. One salient characteristic of resource

5

schedulers is that they receive requests from multiple users, and thus have to arbitrate

among such users. Application schedulers, on the other hand, do not have to arbitrate

among different users. Their goal is solely to improve the performance of the applica-

tions they serve. They can even limit themselves to schedule a single application (or a

class of similar applications). By targeting a single application, application schedulers

can rely on the application’s structure and characteristics to produce good schedules.

Figure 2 – Request selection by SA

Users are relieved by SA of a task unrelated with their final goals, namely that

of selecting which request to use. Moreover and more importantly, SA often improves

the turn-around time of the job under a variety of conditions. As we shall see in Chap-

ters 5 and 6, the conditions under which SA was studied cover variations on the charac-

teristics of the job, the state of the supercomputer, and the quality of the information

available to SA.

We also investigate the emergent behavior created by having multiple instances

of SA in the system. This is indeed a very important issue because there is theoretical

evidence that systems in which resource allocation is performed by many independent

entities can exhibit performance degradation [71] and even chaotic behavior [59]. As

n
tr

SA

SA

SA

6

we shall see in Chapter 6, one emergent behavior resultant of using SA with many jobs

is that the system as a whole becomes more competitive, making it harder for each in-

stance of SA to improve the performance of the job it schedules. On the other hand, the

emergent behavior generated by SA also seems to reduce (i) the occurrence of very high

load conditions, and (ii) the wait time of jobs that arrive when the supercomputer is ex-

periencing moderate to high load. In light load conditions, the increased competition

caused by other instances of SA make the performance improvement obtained by an

individual instance of SA to be smaller than when a single SA is present in the system.

In moderate to high loads, however, the reduction in the wait times and in the occur-

rence of very high load scenarios seem to overcome the performance degradation

caused by the increased competition for resources produced by the other instances of

SA.

1.4. Thesis Outline

This thesis is organized in five parts. First, this chapter provides the introduction

and presents our research scenario, setting the stage for the rest of the thesis. The sec-

ond part of the thesis consists of Chapter 2, which describes SA, our application sched-

uler for supercomputers. The third part discusses how to evaluate SA in order to deter-

mine its efficacy in improving jobs’ performance: Chapter 3 describes the workloads

used for performance evaluations, and Chapter 4 discusses performance metrics. The

fourth part of the thesis contains the results of such an evaluation: Chapter 5 focus on

the performance of SA under current workload conditions, while Chapter 6 investigates

the emergent behavior caused by multiple instances of SA and its impact on perform-

ance. The fifth and last part concludes the thesis: Chapter 7 reviews the literature for

related research and also delineates directions for future work. Chapter 8 summarizes

our contributions.

7

2. SA: The Supercomputer AppLeS

This chapter describes SA, the Supercomputer AppLeS. SA is an application

scheduler that adaptively selects the request that submits a moldable job to the super-

computer. A moldable job is one that can run on partitions of different sizes, although it

cannot change the size of partition (i.e., gain and/or lose processors) during the execu-

tion [40]. Most parallel jobs in production today seem to be moldable (see Chapter 3).

Note that current supercomputers schedulers typically accept static requests. A

supercomputer request (or simply request) contains the job’s partition size n and re-

quest time tr. The semantics of a request is that the job executes over exactly n proces-

sors for no longer than tr time units. Since moldable jobs can run on multiple partition

sizes, they can also be submitted using multiple distinct requests. Therefore, one has to

choose which request to use when submitting a moldable job to a supercomputer.

Nowadays, the user is the one whose chooses which request to use (as represented in

Figure 1).

SA acts on behalf of the user and selects the request that submits a moldable job

j (as depicted in Figure 2). Users provide SA with a set of requests for job j. That is, the

user submits a job j to SA by providing a set of requests, each of which can be used to

submit job j to the supercomputer scheduler. As we shall see in more detail, SA esti-

mates the turn-around time of each request based on the current state of the supercom-

puter, and then forwards to the supercomputer the request with the smallest expected

turn-around time.

Note that SA requires no changes in the behavior of the supercomputer sched-

uler. From the viewpoint of the supercomputer scheduler, the request that comes from

SA submitting job j is just like any other: it is a pair (n, tr) that specifies the size of the

partition to be allocated to job j (n) and establishes an upper-bound for the execution

time of j (tr).

8

SA has two versions: generic SA (SAg, described in Section 2.1) and SA for

conservative backfilling supercomputer schedulers (SAcb, described in Section 2.2).

Both versions of SA select exactly the same request (as we shall prove in Section 2.3).

They differ with respect to their generality and speed. SAg makes no assumptions about

the underlying supercomputer scheduler. SAg is therefore generic. But it can be slow

because of the many simulations it needs to perform in order to schedule a job. If the

behavior of the supercomputer scheduler is known, it may be possible to speed-up the

execution of SA. We exemplify this by describing SAcb, a version of SA that assumes

the supercomputer scheduler to be conservative backfilling.

Since SAg and SAcb are equivalent, we simply use the term SA throughout

most of this thesis. The terms SAg and SAcb are only used when it is important to make

clear which version of SA we are referring to.

2.1. Generic SA

SA receives a set of requests r = (r[1], …, r[v]) that can be used to submit a job j.

SA’s goal is to improve job j’s turn-around time by selecting the request to be sent to

the supercomputer. The generic implementation of SA, which we denote by SAg, works

without knowledge about the underlying supercomputer scheduler. SAg simulates the

submission of all requests in r, and then selects the request r[s] that achieves the smallest

turn-around time in the simulations. The request r[s] is then used to submit job j to the

supercomputer.

The simulation of the submission of job j by a given request r[i] starts from the

current state of the supercomputer. SAg then provides the simulator of the supercom-

puter scheduler with all scheduling events until the completion of j. These scheduling

events are jobs submissions and completions. Only one submission is provided: r[i],

which submits job j. Completions are provided to all jobs in the system (including job

j). The completions are calculated assuming that each job execute for their requested

time tr. In summary, SA drives the simulation of request r[i] by (i) assuming no future

job arrivals, and (ii) making te = tr for all jobs.

9

In reality, however, new jobs do arrive in the system after j. Besides, most jobs

execute for less time than they request (as we will see in Section 3.3.4). Therefore, there

are no guarantees that SA will select the request that will deliver the shortest turn-

around time. However, as shown in Chapters 5 and 6, the requests selected by SA sig-

nificantly improve the turn-around time over the requests selected by the user.

The appeal of SAg is that it makes no assumptions on the behavior of the super-

computer scheduler. The supercomputer scheduler is treated as a black box to which

SAg sends events representing arrivals and completions of jobs. Whereas this approach

makes for a generic formulation of SA, it may also be a somewhat slow solution since

each request r[i] must be simulated until the completion of j. If we know the characteris-

tics of the underlying supercomputer scheduler, we may be able to make SAg run faster,

as exemplified in the following section.

2.2. SA over Conservative Backfilling

When the supercomputer scheduler is known, it may be possible to optimize SA

by avoiding the simulation of each request r[i]. This section describes SAcb, a version of

SA that assumes the supercomputer scheduler to be conservative backfilling [43]. Con-

servative backfilling was chosen as the target for a faster version of SA because it can

be viewed as an idealized representative of today’s supercomputer schedulers. In prac-

tice the behavior of supercomputer schedulers varies from machine to machine. Even

when the same scheduling software is used (e.g., Easy [66] [82], PBS [58], Maui [69],

and LSF [74]), each site establishes its own policies, causing the behavior of their

schedulers to differ. However, almost everywhere backfilling is used to reduce unneces-

sary idle time, making conservative backfilling a good representative of current practice

in supercomputer scheduling.

2.2.1. Conservative Backfilling

Conservative backfilling uses an allocation list that maintains, for any given

time, which processors are assigned to which jobs [43]. The allocation list can be im-

10

plemented as a linked list whose nodes represent time periods in which all processors in

system are allocated in the same way. Arriving jobs are processed using the first fit

strategy, i.e. they are put in the first slot they fit. For example, Figure 3 depicts the sub-

mission of five requests in the following order: A, B, C, D, and E. Note that C is placed

before B because, at time 1, the available resources cannot fulfill B, but they are enough

for C.

Figure 3 – Allocation list after the submission of five requests

Whenever a job finishes using less time than it required, conservative backfilling

traverses the queue (in submission order) and “promotes” the first job that fits in the

just-made-available slot. Of course, this may create another available slot. Such a slot is

backfilled in the same way. The process stops only when no more backfilling can be

done. For example, Figure 4 shows what happens when A finishes at time 2: B is back-

filled to start immediately after C, D “follows” B, but E can finish before B starts and

thus is backfilled all the way to start running immediately.

Figure 4 – Allocation list after the backfilling initiated by A finishing at time 2

1 2 4 6 8 9 13
Time

Pr
oc

es
so

rs

A B

C

D

E

1

6

5
4

2
3

3

4

1 2 4 6 11
Time

Pr
oc

es
so

rs

B

C

D
E

1

6

5

2

11

2.2.2. SA over Conservative Backfilling

The state of a supercomputer controlled by conservative backfilling can be

summarized by an availability list that contains the number of free processors per time

period. For example, the availability list that describes the supercomputer state depicted

in Figure 3 is [(from 1, to 4, 0 processors), (from 4, to 6, 2 processors), (from 6, to 8, 1

processor), (from 8, to 9, 0 processors), (from 9, to 13, 4 processors), (from 13, to ∞, 6

processors)].

SAcb uses the availability list to select which request to use without simulating

each request (the procedure used by SAg). SAcb traverses the availability list searching

for a slot big enough to accommodate one of the requests it can use to submit job j.

When such a slot is found, SAcb determines the request with sooner completion time

among the requests that fit in the slot. Such a request (and its completion time) is

memorized. After traversing the availability list, SAcb compares the memorized re-

quests, selecting the request with the smallest completion time. The algorithm is:

1. # SAcb pseudo-code

2.

3. for each time period f in the availability list

4.

5. let f = (s, e, n), where s is the start of the time period,
e is its end, and
n is the number of processors available

6.

7. # walk through the availability list to determine d, the last
instant at which we can allocate n processors starting from s

8. let d = e

9. let g = (sg, eg, ne) be the time period succeeding f

10. while ne ≥ n

11. let d = eg
12. let g = (sg, eg, ne) be the time period succeeding g

13.

14. if the job can run on n processors in time (d - s)

15. let r be the request with smallest execution time among
those that can run in time (d - s)

16. memorize request r and its expected completion time

17.

18. choose the memorized request with the least completion time

Figure 5 – SAcb pseudo-code

12

For example, assume that SAcb is scheduling a job j that can run over 10, 20, or

30 processors. Job j needs 5 time units when using 10 processors, 3 time units with 20

processors, and 2 time units with 30 processors. Assume that the availability list is

[(from 0, to 1, 5 processors), (from 1, to 5, 10 processors), (from 5, to 6, 0 processors),

(from 6, to 7, 10 processors), (from 7, to 11, 20 processors), (from 11, to ∞, 40 proces-

sors)], as graphically shown by Figure 6. In this case, SA finds three candidate requests:

(A) 10 processors starting at 6 and finishing at 11 (Figure 7), (B) 20 processors starting

at 7 and finishing at 10 (Figure 8), and (C) 30 processors, starting at 12 and finishing at

14 (Figure 9). Since B is expected to finish earlier, SA submits job j to the supercom-

puter by requesting 20 processors and 3 time units.

Figure 6 – SAcb example: availability list

Figure 7 – SAcb example: schedule A

Time
P

rocessors

1 5 6 7 11

10

20

30

40

0

Free
Processors Free

Processors

Time

P
rocessors

1 5 6 7 11

10

20

30

40

0
A

13

Figure 8 – SAcb example: schedule B

Figure 9 – SAcb example: schedule C

Note that SA does not use any scheme to estimate the actual execution time of

the jobs that are in the queue. It schedules as if all the jobs in the queue would take all

the time they have requested. Nevertheless, it can obtain better turn-around times than

traditional user-chosen requests (as we show in Chapters 5 and 6).

2.3. Equivalence between the two Versions of SA

Here we show that SAg and SAcb always select the same request r to submit the

target job j. Of course, we assume the supercomputer scheduler to be conservative back-

filling (otherwise SAcb would not work). The proof follows.

Time

P
rocessors

1 5 6 7 11

10

20

30

40

0

B

Time
P

rocessors

1 5 6 7 11

10

20

30

40

0

C

14

Theorem 1: Assuming that the supercomputer scheduler is conservative back-

filling, SAg and SAcb always select the same request.

Proof: Note that there is no backfilling in the simulations of the conservative

backfilling scheduler conducted by SAg. That is because SAg makes te = tr for all jobs

in the system, and thus no job finishes before its requested time. This implies that con-

servative backfilling limits to first fit the arriving requests in the allocation list. Since

SAg chooses the request with smallest completion time among all simulations, SAg

over conservative backfilling selects the request r whose first fit in the allocation list

results in the smallest completion time.

SAcb, on the other hand, selects the request s whose fit in the allocation list re-

sults in the smallest completion time. The availability list represents the empty slots in

conservative backfilling’s allocation list. For each slot, SAcb considers the request (if

any) that finishes sooner if started in that slot (see Figure 5, line 15). All slots are con-

sidered and, in the end, SAcb picks the request that completes soonest (line 18).

Note that the fit that results in the smallest completion time must be a first fit.

Otherwise, the same request s could start sooner (in its first fit) and thus complete

sooner. Therefore s is the request whose first fit in the allocation list produces the short-

est completion time. Consequently, r and s are the same request.

15

3. Workload Models

The performance of a scheduling solution is influenced by the workload submit-

ted to the system [2] [44] [67] [90]. Realistic workloads are crucial to establish how

scheduling solutions perform in practice. Therefore, in order to evaluate how SA is go-

ing to perform in practice, we need to determine the mix of moldable jobs that is likely

to compose a supercomputer workload in real life.

Workload logs can be obtained by recording all scheduling events that happen in

a system. The logs can then be used to drive simulations that gauge the performance of

competing scheduling solutions. Such logs capture the production use of a system and

thus are undoubtfully realistic.

Alas, supercomputer workload logs currently available contain only one request

per job (namely, the request actually used by the user to submit the job). There is no

information about the jobs’ moldability, which is essential for SA. Furthermore, we

cannot easily vary characteristics of the workload log (e.g. the offered load) to investi-

gate how such a particular characteristic impacts on scheduling solutions.

This chapter describes how we have dealt with this difficulty. Here we introduce

our workload model for moldable jobs. Such a model was derived from statistical ob-

servations of four workload logs, and from the results of a survey we conducted among

supercomputer users. The use of real-life data as the foundation for our model leads us

to believe that it is likely to produce realistic workloads.

3.1. Collecting Information

Since a key goal here is to produce a realistic model, we need information on the

workloads experienced by production supercomputers. Although there are a handful of

submission logs available, such logs contain only one request per job. We ran a survey

16

among supercomputer users to complement the logs and provide us some insight on the

characteristics a moldable workload would have in practice.

Rigid Workload Logs

We considered workload logs from different sources (from fellow researchers to

supercomputer centers to the web [45] [56]). Our criteria for using a log as reference for

our model were that (i) the log should come from a supercomputer that could receive

arbitrary requests (not only requests for power-of-2 partitions), and (ii) the log should

contain a minimum of information to be useful in building our model (i.e., submission

time, partition size, requested time, and execution time). We were able to find four

workloads that meet these criteria. Such workloads are summarized in Table 1.

Name Machine Processors Jobs Period

ANL Argonne National Labo-
ratory SP2

120 7995 Oct 1996
Dec 1996

CTC Cornell Theory Center
SP2

430 79279 Jul 1996
May 1997

KTH Swedish Royal Institute
of Technology SP2

100 28479 Sep 1996
Aug 1997

SDSC San Diego Super-
computer Center SP2

128 16376 Jan 1999
May 1999

Table 1 – Workloads used in this research

All four reference logs come from IBM SP2 machines. This is because they

were the only ones that meet our criteria. In particular, many of the available logs miss

the job request times. We believe that using SP2 logs does not bias our results in any

way, as SP2s are typical representatives of the machines we target, namely distributed-

memory spaced-shared parallel supercomputers.

User Survey

A moldable job is, by definition, a parallel job that can use partitions of various

sizes to run. Note, however, that this definition does not mean that a moldable job can

run over partitions of arbitrary size. There may be a minimum and a maximum on the

17

partition size that can be used. There may also be some algorithmic restriction on the

size of the partition (e.g., some parallel algorithms require a power-of-2 partition).

Moreover, the user might provide only a subset of all potential partition sizes a job

could possibly use. Beyond restrictions in partition sizes, the reduction of execution

time as the partition size grows varies across different jobs (i.e., different jobs exhibit

different speed-up behaviors).

We designed a user survey to understand how the aforementioned characteristics

of moldable jobs are distributed in practice. The survey’s questionnaire can be found in

Appendix A, and a summary of the responses is provided in Appendix B. The survey

consisted of 12 multiple-choice questions, and was conducted on-line via email and the

Web between 17 April and 31 May 2000. Electronic questionnaires were distributed

among supercomputer users at NASA, NCSA, NERSC, NPACI, and elsewhere. An-

swering the survey was of course voluntary, which renders it a self-selected sampling.

Multiple-choice questions were used because (i) they raise the number of responses

when self-selected sampling is used, and (ii) they ease the analysis of the results [8]. We

received 214 responses to our survey.

3.2. Models Overview

Our moldable workload model has two independent parts, namely the rigid

workload model and the moldability model. The rigid workload model produces a

stream of jobs, each with one known request. The moldability model generates alterna-

tive requests for a given job j, for which only one request in known. A moldable work-

load is obtained by using the rigid workload model to produce a stream of jobs, and

then applying the moldability model to each of these jobs. The result is a stream of

moldable jobs. Note that the rigid workload model and the moldability model can be

used independently. In particular, the moldability model can be used over a workload

log to provide alternative requests for the jobs in the log.

Our reference workload logs were the basis from which we statistically derived

the rigid workload model (although most jobs in the logs are probably moldable, there

18

is only one request available for each job, making the jobs appear rigid). The moldabil-

ity model was derived from the survey’s results.

We should also point out that we tried to correlate the parameters that describe

the workload logs, as well as the questions that compose the survey. We systematically

calculated the correlation coefficient [29] of all pairs of workload parameters and all

pairs of survey questions. All values above 0.5 (or below –0.5) were carefully investi-

gated, and the resulting findings are described below. The goal was to reproduce sig-

nificant correlations among the parameters of the model, making the model more realis-

tic.

3.3. Rigid Workload Model

A rigid workload is composed of a stream of jobs, each with one request. Each

job j is characterized by its instant of arrival ia, partition size n, requested time tr, and

execution time te. For the jobs that are cancelled by the user, we also want to know their

instant of cancellation ic > ia.

3.3.1. Instant of Arrival

The pattern of job submission is affected by the work cycles of the supercom-

puter’s users [32] [39] [44]. For example, typically more jobs are submitted during the

day than during the night, as seen in Figure 10 (which indicates how many jobs arrived

by hour of the day for the reference workloads). For a workload model to better capture

the dynamics of the system, such behavior must be represented.

19

0 5 10 15 20
0

50

100

150

200

250

300

350
ANL

Arrival Hour

N
um

be
r

of
 J

ob
s

0 5 10 15 20
0

500

1000

1500

2000

2500

3000

3500
CTC

Arrival Hour

N
um

be
r

of
 J

ob
s

0 5 10 15 20
0

200

400

600

800

1000

1200

1400
KTH

Arrival Hour

N
um

be
r

of
 J

ob
s

0 5 10 15 20
0

100

200

300

400

500

600

700
SDSC

Arrival Hour

N
um

be
r

of
 J

ob
s

Figure 10 – Histograms of arrival hour for our reference workloads

Methodology

As Figure 10 suggests, it is very hard to model the job arrival time through

“common” distributions. In this work, we apply the methodology proposed by Cal-

zarossa and Serazzi [17] to numerically fit a polynomial to the job arrival rate λa. Al-

though the methodology was conceived to model the process arrival for a uniprocessor

time-shared system, we found it to be applicable in our scenario, namely job arrivals for

parallel supercomputers.

In order to fit a polynomial to the arrival rate found in our reference workload

logs, we must derive the arrival rate from the arrival instants (which are in the log). Fol-

lowing the methodology of Calzarossa and Serazzi [17], we smoothed out the arrival

rate by using a moving average estimator. More precisely, for a given time m (in min-

utes), the arrival rate λa(m) is estimated using all arrivals in the 10 minute interval cen-

20

tered on m. Also, in order to avoid numerical instabilities while fitting the data, we scale

a given minute of the arrival m to the range [-0.5, +0.5] as follows:

 m
m m m

m ms

max min

max min

=

-

-

-

2

The polynomial fitting itself is done using the least square error estimator [29].

The degree d of the polynomial is chosen by incrementing d until the square error

doesn’t decrease significantly over two successive increments [17].

Eliminating Outliers

The analysis of the data from the reference logs reveals that a few days strongly

deviate from the normal submission pattern. For example, Figure 10 shows the arrival

of jobs at SDSC to have a spike between 18:30 and 19:30, a phenomenon that is not

present in any of the other workloads. It turns out that, on 7 February 1999, 592 jobs (of

which 579 were from the same user) were submitted to the supercomputer between

18:30 and 19:30. By not considering that single day, the spike in the graph disappears.

Such “uncommon” days appear in all workloads. In effect, we fitted a polyno-

mial per day and ran a cluster analysis technique to classify the days in two groups. For

all supercomputers, the clustering technique segregated a single day in one of the two

groups. Since we want to model the common usage of a supercomputer, we eliminated

the uncommon days that were clustered alone.

More precisely, we ran a Z score [29] over the coefficients of the polynomials to

make the magnitude of such coefficients unimportant, and regarded the results as a

point in Rd. We then applied standard hierarchical cluster analysis (using the euclidian

distance in Rd) to separate the days in two groups. If a group consists of a single day

(i.e., all other days are closer to each other than to this day), it is considered an outlier

and excluded from the data. The procedure is repeated until no day is clustered alone.

Table 2 shows how many days were excluded from each supercomputer log.

21

Workload Days in the log Uncommon Days Excluded

ANL 78 4

CTC 339 3

KTH 745 2

SDSC 150 2

Table 2 – Amount of days eliminated from the experimental data

We also used cluster analysis to look for other patterns of day-to-day variations.

In particular, we tried to establish a statistically valid differentiation between weekdays

and weekends. However, we were not able to find a way to cluster the days into disjoint

groups that could be explored to enhance the model.

Fitting Arrival Rate

The polynomial fitting per se was a straightforward task. ANL required a degree

12 polynomial, CTC a degree 8 polynomial, KTH a degree 13 polynomial, and SDSC a

degree 10 polynomial. Table 3 shows the coefficients of such polynomials. We suspect

that ANL and KTH required higher-degreed polynomials to better model the small de-

crease in the job arrival rate verified around 12:00 (see Figure 10). The CTC and SDSC

reference workloads do not present such a decrease.

 The fitted polynomials are very different from one another. This suggests that

there is no single model for the arrival time that works well across different sites. This

is in agreement with the original work of Calzarossa and Serazzi, who warn against us-

ing the polynomial they found for alternative contexts [17]. Rather they highlight the

importance of their work as a methodology.

22

Term ANL CTC KTH SDSC
1 7166.5 254.04 -32683 -5499.6

ms 64174 -25.820 -61444 1527.0

ms
2 866.10 -258.51 32553 3015.9

ms
3 -45317 8.4442 49406 -951.95

ms
4 -2922.9 81.612 -12611 -573.08

ms
5 11761 -3.6628 -15113 199.32

ms
6 895.15 -9.6309 2380.9 48.583

ms
7 -1349.0 0.76455 2154.0 -15.611

ms
8 -93.266 0.56501 -221.65 -2.5879

ms
9 62.485 -134.82 0.36675

ms
10 2.2601 8.3039 0.21262

ms
11 -0.66152 1.9175

ms
12 0.17191 0.022406

ms
13 0.097106

Table 3 – Coefficients of the polynomials that model job arrival rate

Figure 11 shows the observed arrival rate for each workload under considera-

tion, as well as the polynomials that fit them. It is important to point out that filtering

out the outliers made it possible to model the workloads with simpler, lower-degree

polynomials that avoided the uncommon behavior of a few days. More notably, the

SDSC model avoids the one-day spike around 19:00 discussed above.

23

0 5 10 15 20
0

5

10

15

20

25

30

35

Arrival Hour

N
um

be
r

of
 J

ob
s

ANL

Observed values
Fitted Distribution

0 5 10 15 20
0

50

100

150

200

250

300

Arrival Hour

N
um

be
r

of
 J

ob
s

CTC

Observed values
Fitted Distribution

0 5 10 15 20
−20

0

20

40

60

80

100

120

Arrival Hour

N
um

be
r

of
 J

ob
s

KTH

Observed values
Fitted Distribution

0 5 10 15 20
0

10

20

30

40

50

60

70

Arrival Hour

N
um

be
r

of
 J

ob
s

SDSC

Observed values
Fitted Distribution

Figure 11 – Observed data and fitted model for arrival rate

We should also mention that we tried to correlate arrival time with other pa-

rameters. For example, we expected large jobs to be submitted at night. However, this

was not supported by the reference workload logs. The correlation coefficient between

these two parameters was low (in the range [-0.1, 0.1]) for all reference workloads.

More generally, we didn’t detect strong correlation between arrival instants and any

other parameter.

3.3.2. Cancelled Jobs

Not all supercomputer jobs complete their execution. Some of them are can-

celled by the user. Cancelled jobs may affect the course of action of the scheduler, even

when they are cancelled before they start. Cancellation may also make the load offered

by a given workload to change depending on the scheduler being used. In fact, consider

a scheduler s that finishes a job j before its cancellation arrives, and a scheduler r for

24

which the cancellation of j arrives before the job starts. Everything else being the same,

scheduler s has to deal with a greater load than scheduler r. Consequently, due to its im-

pacts on scheduling, cancellation should be taken into account when modeling super-

computer workloads.

We model cancelled jobs by providing a probability pc that a given job will be

cancelled. Moreover, for each cancelled job, we also need to know the instant of cancel-

lation ic, or alternatively the cancellation lag lc = ic – ia (where ia is the instant of the

arrival of the job in the system).

We have information on cancellations only for CTC and SDSC. The ANL and

KTH logs do not discriminate between completed and cancelled jobs. Table 4 displays

the percentage of completed and cancelled for the CTC and SDSC reference workloads.

Such values can be used to provide realistic estimates of the probability of cancellation

pc.

Workload Cancelled Jobs

CTC 12.22%

SDSC 23.31%

Table 4 – Percentage of completed and cancelled jobs

A visual inspection of the cancellation lag histograms for both CTC and SDSC

show a fat-tailed distribution (see Figure 12). Although the cancellation lag can be as

large as 10 days for the SDSC workload and over 2 months for the CTC workload, most

cancellations happen shortly after the job’s submission. In fact, 54.65% of SDSC’s and

24.73% of CTC’s cancellations happen less than 10 minutes after the job submission.

25

0 2 4 6 8

x 10
6

0

1000

2000

3000

4000

5000

6000

7000

8000
CTC

Cancelation Lag (seconds)

N
um

be
r

of
 J

ob
s

0 2 4 6 8 10

x 10
5

0

500

1000

1500

2000

2500

3000
SDSC

Cancelation Lag (seconds)

N
um

be
r

of
 J

ob
s

Figure 12 – Histograms of cancellation lag

To build a realistic workload model, it is important to represent both the ag-

glomeration of short cancellation lags lc and the fat tail of the distribution. This behav-

ior can be effectively modeled using a uniform log distribution. In such a distribution,

the logarithms of the values are uniformly distributed. More precisely, a uniform-log

distribution is characterized by parameters χ and ρ, and has cumulative distribution

function cdf x x() log ()= ◊ +c r2 [31]. Since we deal with many distributions in this the-

sis, we index the distribution parameters with the variable they are modeling in order to

avoid ambiguity. For example, the uniform-log parameters that model the cancellation

lag lc are written as χlc and ρlc.

Using the least-square linear regression technique, we fitted SDSC’s cancella-

tion lags obtaining χlc = 0.06442 and ρlc = -0.1498. For CTC, we obtained χlc = 0.06421

and ρlc = -0.3180. The SDSC and CTC values for χlc and ρlc are similar, suggesting that

the cancellation lag may not change significantly across workloads (unlike arrival rate).

Figure 13 shows the data as well as the fitted uniform-log distributions for both CTC

and SDSC.

26

32 1024 32768 1048576
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CTC

Cancelation Lag (seconds)

P
ro

ba
bi

lit
y

Observed values
Fitted Distribution

32 1024 32768 1048576
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SDSC

Cancelation Lag (seconds)

P
ro

ba
bi

lit
y

Observed values
Fitted Distribution

Figure 13 – Cancellation Lag CDF

3.3.3. Partition Size

As first noticed by Downey [32] [33], the uniform-log distribution also provides

a good fit for the partition sizes in a supercomputer workload log. This was the case for

our four reference workloads. Table 5 shows the parameters obtained by fitting the ob-

served partition sizes to a uniform-log distribution via the method of least squared error.

Figure 14 plots the observed partition sizes and the uniform-log distributions fitted to

them.

Workload χχχχn ρρρρn

ANL 0.1381 0.2163

CTC 0.0709 0.5283

KTH 0.0893 0.4764

SDSC 0.1150 0.2537

Table 5 – χχχχn and ρρρρn obtained by fitting partition size to a uniform-log distribution

27

2 8 32
0.2

0.4

0.6

0.8

1
ANL

Partition Size

C
D

F

Observed values
Fitted Distribution

2 8 32 128
0.4

0.5

0.6

0.7

0.8

0.9

1
CTC

Partition Size

C
D

F

Observed values
Fitted Distribution

2 8 32
0.2

0.4

0.6

0.8

1
KTH

Partition Size

C
D

F

Observed values
Fitted Distribution

2 8 32
0.2

0.4

0.6

0.8

1
SDSC

Partition Size

C
D

F
Observed values
Fitted Distribution

Figure 14 – Uniform-log fit for partition size

However, the uniform-log distribution alone does not capture a salient character-

istic of how partition sizes are distributed. As Table 6 and Figure 15 show, the distribu-

tion of partition sizes seems to be dominated by power-of-2 values. This is a relevant

characteristic because the fraction of power-of-2 jobs in the workload strongly influ-

ences the performance of the system [67]. In general, the greater the fraction of power-

of-2 jobs in the workload, the better the performance of many scheduling solutions [67].

We independently confirmed this result.

Workload Power-of-2 Jobs

ANL 69.87%

CTC 83.16%

KTH 73.45%

SDSC 83.95%

Table 6 – Percentage of jobs with a power-of-2 partition size

28

20 40 60 80
0

500

1000

1500

2000

2500
ANL

Partition Size

N
um

be
r

of
 J

ob
s

20 40 60 80
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4 CTC

Partition Size

N
um

be
r

of
 J

ob
s

20 40 60 80
0

2000

4000

6000

8000

10000
KTH

Partition Size

N
um

be
r

of
 J

ob
s

20 40 60 80
0

500

1000

1500

2000

2500

3000

3500
SDSC

Partition Size

N
um

be
r

of
 J

ob
s

Figure 15 – Histogram of partition sizes

There has been some controversy on whether to incorporate the dominance of

power-of-2 partitions into a workload model. Some researchers have accounted for the

high incidence of power-of-2 jobs and modeled the partition size accordingly [42]. Oth-

ers, however, believe this is mainly due to old habits (the first parallel supercomputers

required power-of-2 partition sizes) and the design of some submission interfaces

(which “suggest” the submission of power-of-2 jobs) [32]. Based solely on the work-

load logs, it is impossible to decide whether the prevalence of power-of-2 jobs is due to

the nature of the parallel jobs, or is an artifact of behavioral inertia and interface design.

In the survey, we inquired about the constraints jobs have regarding partition

size (question 7, see Appendix A). Figure 16 summarizes the responses. To our sur-

prise, the majority of the answers (69.4% of them, excluding “do not know”) described

jobs that have no partition size restriction. This result suggests that the high incidence of

29

power-of-2 requests in the workload logs is not an intrinsic characteristic of the jobs. It

might indeed be that the popularity of power-of-two partitions is due to behavioral iner-

tia and interface design. Moreover, we believe that the fact that the selection of partition

size is made by humans also contributes for the prevalence of power-of-two partitions.

When no constraint exists, humans tend to pick “round” numbers, and powers of two

are many people’s idea of “round number” when they deal with computers.

Rigid Square Cube Power of 2 Other None Don’t Know
0

10

20

30

40

50

60

70

Constraint

P
er

ce
nt

ag
e

of
 A

ns
w

er
s

Figure 16 – Survey results for the constraints jobs face regarding partition size

In short, it seems that supercomputers workloads do not have to be dominated

by power-of-2 jobs, but in practice they are. We believe that the high percentage of

power-of-2 jobs is related to fact that the user is the one who chooses the partition sizes.

Since we expect the user to keep playing this role, our model for partition size has a bias

in favor of power-of-two partitions.

More precisely, we define the probability pb of a job been a power-of-2 partition

size. Table 6 shows values pb assumed for our reference workloads. We start by using a

uniform-log distribution to generate the partition size. The resulting partition size then

has a probability pb of being changed to its closest power-of-2 value. Figure 17 through

30

Figure 20 display the observed values for partition side by side with the fitted model for

our reference workloads.

10 20 30 40 50 60 70 80
0

5

10

15

20

25

30
ANL − Observed Values

Partition Size

P
er

ce
nt

ag
e

of
 J

ob
s

10 20 30 40 50 60 70 80
0

5

10

15

20

25
ANL − Fitted Model

Partition Size
P

er
ce

nt
ag

e
of

 J
ob

s

Figure 17 - Observed data and statistical model for partition size (ANL workload)

10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

45
CTC − Observed Values

Partition Size

P
er

ce
nt

ag
e

of
 J

ob
s

10 20 30 40 50 60 70 80
0

10

20

30

40

50

60
CTC − Fitted Model

Partition Size

P
er

ce
nt

ag
e

of
 J

ob
s

Figure 18 - Observed data and statistical model for partition size (CTC workload)

31

10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35
KTH − Observed Values

Partition Size

P
er

ce
nt

ag
e

of
 J

ob
s

10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

45

50
KTH − Fitted Model

Partition Size

P
er

ce
nt

ag
e

of
 J

ob
s

Figure 19 - Observed data and statistical model for partition size (KTH workload)

10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

18

20
SDSC − Observed Values

Partition Size

P
er

ce
nt

ag
e

of
 J

ob
s

10 20 30 40 50 60 70 80
0

5

10

15

20

25

30
SDSC − Fitted Model

Partition Size

P
er

ce
nt

ag
e

of
 J

ob
s

Figure 20 - Observed data and statistical model for partition size (SDSC workload)

We also checked for high incidence of square, even, multiple-of-4, and multiple-

of-10 jobs among the jobs that are not power-of-2. As can be seen in Table 7, our four

reference workloads do not exhibit a concentration of such jobs that is large enough to

be explored in the model.

32

Workload Square Even Multiple-of-4 Multiple-of-10

ANL 9.55% 28.27% 5.56% 9.92%

CTC 10.35% 49.53% 19.14% 24.05%

KTH 17.88% 36.93% 15.84% 16.91%

SDSC 6.09% 61.49% 37.67% 30.75%

Table 7 – Percentages of different kinds of non-power-of-2 jobs

3.3.4. Execution Time and Requested Time

Execution time te and requested time tr are obviously related (te ≤ tr). In order

to capture the relationship between te and tr in the model, we define the request accu-

racy a as the fraction of the requested time that was indeed used by a job. That is,

a = te / tr. Since jobs cannot run longer than the amount of time they request, a is al-

ways a number between 0 and 1.

Note that we only need to model two parameters out of te, tr, and a. The third

parameter can be derived from the others (by using the relation a = te / tr). We would

prefer to use two parameters that are not strongly related. This simplifies the model be-

cause it eliminates the need to account for any correlation: Two parameters that are not

related can be modeled independently. As mentioned above, te and tr are related. This

leaves us with a and either te or tr as the parameters to model.

The analysis of the reference workloads reveals accuracy to have a much greater

correlation with execution time than with requested time. For all workloads, the correla-

tion coefficient between accuracy and execution time is considerably greater than the

correlation coefficient between accuracy and requested time, as shown in Table 8.

Workload r(a,te) r(a,tr)

ANL 0.5273 0.0772

CTC 0.7024 0.2651

KTH 0.5010 0.2098

SDSC 0.7398 0.3985

Table 8 – Correlation coefficient between accuracy and execution time r(a,te) and
correlation coefficient between accuracy and requested time r(a,tr)

33

Figure 21 shows the accuracy a as a function of the execution time te. The figure

groups the completed jobs in 100 equally-sized “buckets” according to their execution

time. The jobs in a bucket have their accuracies averaged to produce the values plotted

in Figure 21. Of course there is high variance in the execution time of the jobs grouped

in a given bucket, but the average shows a trend for accuracy to grow with execution

time. On the other hand, plotting accuracy a as a function of requested time tr (see

Figure 22) doesn’t reveal much correlation between these two parameters.

32 1024 32768
0

0.2

0.4

0.6

0.8

1
ANL

Execution Time (seconds)

M
ea

n
A

cc
ur

ac
y

32 1024 32768
0

0.2

0.4

0.6

0.8

1
CTC

Execution Time (seconds)

M
ea

n
A

cc
ur

ac
y

32 1024 32768
0

0.2

0.4

0.6

0.8

1
KTH

Execution Time (seconds)

M
ea

n
A

cc
ur

ac
y

32 1024 32768
0

0.2

0.4

0.6

0.8

1
SDSC

Execution Time (seconds)

M
ea

n
A

cc
ur

ac
y

Figure 21 – Accuracy ×××× Execution Time

34

1024 32768
0

0.2

0.4

0.6

0.8

1
ANL

Requested Time (seconds)

M
ea

n
A

cc
ur

ac
y

1024 32768
0

0.2

0.4

0.6

0.8

1
CTC

Requested Time (seconds)

M
ea

n
A

cc
ur

ac
y

1024 32768
0

0.2

0.4

0.6

0.8

1
KTH

Requested Time (seconds)

M
ea

n
A

cc
ur

ac
y

1024 32768
0

0.2

0.4

0.6

0.8

1
SDSC

Requested Time (seconds)

M
ea

n
A

cc
ur

ac
y

Figure 22 – Accuracy ×××× Requested Time

We believe that the correlation between execution time and accuracy is related

to the fact that jobs often fail, and thus execute for much less than the user expected. In

other words, we believe failed jobs to have in general poorer accuracy a than successful

jobs. Unfortunately the logs do not contain information on whether a completed job

failed or succeeded. But it is reasonable to imagine the longer the execution time, the

more likely it is that the job succeeds. In fact, many failures happen at the beginning of

the execution, while the job is setting up its environment. For example, many jobs open

files in the beginning of their execution, and a misspelled filename could cause a fail-

ure. This argument would also help to explain the large number of jobs with very low

accuracy (as we soon shall see, there are many jobs with poor accuracy in all reference

workloads).

Since requested time shows little correlation to accuracy, we model these pa-

rameters independently. Execution time is then derived by using te = tr ⋅ a. As a side

35

note, we should also mention that requested time was easier to model (i.e., it yielded a

better fit) than execution time. Although this was not our primary reason, it provided

additional support to our choice of deriving execution time from the explicitly modeled

accuracy and requested time.

Accuracy

Figure 23 shows how accuracy is distributed in the workload logs. Only com-

pleted jobs are considered. The figure groups the completed jobs in 100 equally-sized

“buckets” according to their accuracy, and plots the fraction of jobs in each bucket. It is

somewhat surprising to see how bad accuracy can be. The ANL workload, for example,

has 27.82% of the requests with accuracy below 0.01 (i.e., these jobs used less than 1%

of their requested time).

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
ANL

a (Accuracy)

F
ra

ct
io

n
of

 C
om

pl
et

ed
 J

ob
s

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12
CTC

a (Accuracy)

F
ra

ct
io

n
of

 C
om

pl
et

ed
 J

ob
s

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12
KTH

a (Accuracy)

F
ra

ct
io

n
of

 C
om

pl
et

ed
 J

ob
s

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12
SDSC

a (Accuracy)

F
ra

ct
io

n
of

 C
om

pl
et

ed
 J

ob
s

Figure 23 – Distribution of the accuracy a for the completed jobs

36

The number of jobs with low accuracy decreases as accuracy a grows (leveling

off at around a = 0.3). This suggests the use of a distribution that favors small values

and quickly decreases. We use the gamma distribution [29] to model such behavior.

Table 9 shows the parameters obtained by fitting the observed accuracy to a gamma dis-

tribution through the method of maximum likelihood [29]. Figure 24 presents the ob-

served distribution of accuracy and the corresponding model for all four reference

workloads.

Workload ααααa ββββa

ANL 0.3779 1.0599

CTC 0.6743 0.7808

KTH 0.6153 1.0635

SDSC 0.5898 0.5793

Table 9 – ααααa and ββββa obtained by fitting accuracy to a gamma distribution

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1
ANL

a (Accuracy)

C
D

F

Observed values
Fitted Distribution

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
CTC

a (Accuracy)

C
D

F

Observed values
Fitted Distribution

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
KTH

a (Accuracy)

C
D

F

Observed values
Fitted Distribution

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
SDSC

a (Accuracy)

C
D

F

Observed values
Fitted Distribution

Figure 24 – Observed data and statistical model for accuracy

37

The gamma distribution parameters obtained by fitting the accuracy to the four

reference workloads are somewhat similar to one another. ANL exhibits the smallest α

value. This is because ANL presents a much higher number of jobs with very poor ac-

curacy. Such a fact indicates that the distribution of accuracy can vary somewhat from

site to site in practice.

Requested Time

For all reference workloads, the uniform-log distribution provides a very good

fit for request times, and thus it is the distribution used in our model. We use least-

square linear regression to find χtr and ρtr for the different reference workloads. Table

10 displays such values and Figure 25 plots the observed requested times against the

model. The similarity of the values obtained for χtr and ρtr across all four reference

workloads suggests that the requested time doesn’t vary widely across workloads.

Workload χχχχtr ρρρρtr

ANL 0.1146 -0.8579

CTC 0.0941 -0.7256

KTH 0.1035 -0.7313

SDSC 0.1032 -0.7027

Table 10 – χtr and ρρρρtr obtained by fitting requested time to a uniform-log distribution

38

32 1024 32768 1048576
0

0.2

0.4

0.6

0.8

1
ANL

Requested Time (seconds)

C
D

F

Observed values
Fitted Distribution

32 1024 32768 1048576
0

0.2

0.4

0.6

0.8

1
CTC

Requested Time (seconds)

C
D

F

Observed values
Fitted Distribution

32 1024 32768 1048576
0

0.2

0.4

0.6

0.8

1
KTH

Requested Time (seconds)

C
D

F

Observed values
Fitted Distribution

32 1024 32768 1048576
0

0.2

0.4

0.6

0.8

1
SDSC

Requested Time (seconds)

C
D

F

Observed values
Fitted Distribution

Figure 25 – Observed data and statistical model for requested time

3.4. Moldability Model

In our model, moldable jobs are an extension of rigid jobs. Recall that a job j is

said to be moldable when it can run on partitions of different sizes. Therefore the input

of the moldability model is a job j for which one request (partition size n, requested

time tr, accuracy a) is known. Let v be number of partition sizes on which j can execute.

The moldability model uses n, tr, and te to produce the v requests that can be used to

submit job j. That is, the moldability model produces the v-tuples n = (n[1] …, n[v]), tr =

(tr[1], …, tr[v]), a = (a[1], …, a[v]) that describe v requests for job j. The question is then

how to generate realistic values for such v-tuples.

39

3.4.1. Partition Sizes

Some moldable jobs cannot run over a partition of arbitrary size. Factors such as

memory requirements, amount of parallelism, and algorithmic constraints restrict the

partition size that can be used by a given moldable job j. For example, memory re-

quirements can establish a minimum partition size on which a job can run, a factor we

model as cmin. Similarly, the amount of parallelism determines the maximum partition

size a job can use, a factor we model as cmax. Some parallel algorithms also have con-

straints on the set of partition sizes they can use. We don’t model algorithmic con-

straints directly because the user choices for partition size seem to provide strong re-

striction than the algorithm constraints themselves, as discussed in Section 3.3.3.

Regarding user behavior, we cannot expect that the user will in general craft all

possible requests, one for each possible partition size that can possibly be used by the

user’s job. We define cu to be the number of choices that the user is willing to provide.

That is, cu establishes an upper bound on how many alternative requests can be used to

run job j. The cu partition sizes are uniformly chosen between cmin and cmax. However, a

chosen partition size is turned into its closest power-of-2 with probability pb. This is to

mimic how users choose partition sizes (see Section 3.3.3).

In order to provide a realistic model, we must determine how cmin and cu are dis-

tributed in practice. cmax can be uniquely determined by other parameters of our model

(as we shall see shortly) and hence does not need to be modeled directly. Since the dis-

tribution of cmin and cu cannot be derived from the reference workload logs, we rely on

the survey for establishing realistic models for these distributions.

Minimum Partition Size (cmin)

Figure 26 displays the results for the survey question that asked for the mini-

mum partition size that can be used to run the respondent’s job (question 4). Note that

most jobs can run sequentially, but some really need larger partitions. These characteris-

tics suggest the use of the uniform-log distribution to model cmin. Using the method of

the least squared error, we obtained χcmin = 0.06920 and ρcmin = 0.6279, and a very good

fit, as shown in Figure 27.

40

1 2−4 5−10 11−30 >30 Don’t Know
0

10

20

30

40

50

60

Minimum Request

P
er

ce
nt

ag
e

of
 A

ns
w

er
s

Figure 26 – Survey results for minimum partition size

1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Minimum partition size c
min

C
D

F

Observed values
Fitted Distribution

Figure 27 – Survey results and model for the minimum partition size cmin

41

Number of Requests Provided by the User (cu)

Our model for cu is also based on our survey. Figure 28 shows how many differ-

ent partition sizes users have requested for their jobs (question 8). Such results indicate

how many requests the users can currently use to submit their jobs, and thus are the

natural estimate for cu. It may be that such values increase when schedulers like SA

make it more advantageous for the user to determine more alternative requests, but we

take a conservative approach and model cu after the current practice.

In order to better match the survey results, we use a two-stage model, segregat-

ing the probability that cu = 1 from the probability that cu > 1. The survey indicates that

around 5% of the jobs have cu = 1. We thus make Pr[cu = 1] = 0.05 and Pr[cu > 1] =

0.95. Note that by making cu = 1 for 5% of the jobs, we also address the fact that part of

the workload is formed by rigid jobs (about 2% of the jobs seem to be rigid, see Figure

16). Here again, the user behavior in choosing the partition size seems to exhibit

stronger restrictions than the algorithmic constraints exhibited by some jobs.

1 2−3 4−5 6−10 >10 Don’t Know
0

5

10

15

20

25

30

35

Number of Different Partition Sizes Requested

P
er

ce
nt

ag
e

of
 A

ns
w

er
s

Figure 28 – Survey results for number of requests used to submit a job

42

For cu > 1, we use a uniform-log distribution to determine which value cu as-

sumes. By fitting the survey results through the least squared error method, we deter-

mined the parameters χcu = 0.1918 and ρcu = 0.1876. Figure 29 shows the model of the

distribution when cu > 1, as well as the plot of the corresponding survey results.

2 4 8 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
u

C
D

F

Observed values
Fitted Distribution

Figure 29 – Survey results and statistic model for cu > 1

3.4.2. Accuracy

Because today’s supercomputers receive a static request, there is no data on the

accuracy of different choices for a given job. However, the accuracy a measures how

well a user is able to estimate the execution time of the job. Therefore, we hypothesize

the accuracies of the multiple requests for a given moldable job to be similar. Following

this rationale, we assume the accuracy a to remain the same for all choices of a given

job j. That is, a[1] = … = a[v] = a. Recall that the accuracy a is chosen using the statisti-

cal model described in Section 3.3.4.

43

3.4.3. Request Time

We use Downey’s model of the speedup of parallel jobs [30] to derive the re-

quested times of the choices tr = (tr[1], …, tr[v]). Speed-up measures how much faster a

job j that uses n processors executes in comparison to j’s execution using only one

processor. Symbolically: S(n) = te(1) / te(n). Downey’s speedup model uses two pa-

rameters: A (the average parallelism) and σ (an approximation of the coefficient of

variance in parallelism). The speed-up of a job is then given by:

 S n A

An
A n

n A

An
A n

A n A

A n A
nA

n A A
n A A

A n A A

(, ,)

() /
() ()

(/) (/)
() ()

() ()
()

()
() ()

() ()

σ

σ
σ

σ σ
σ

σ
σ

σ
σ σ σ

σ σ σ

=

+ -
£ Ÿ £ £

- + -
£ Ÿ £ £ -

£ Ÿ ≥ -

+

+ - +
≥ Ÿ £ £ + -

≥ Ÿ ≥ + -

R

S

|||||

T

|||||

1 2
1 1

1 2 1 2
1 2 1

1 2 1
1

1
1 1

1

Intuitively speaking, A establishes the maximum speedup a job can achieve. The

larger the value of A, the greater the speedup a job can achieve. Figure 30 exemplifies

how A affects the speed-up of a job. It fixes σ = 1 and shows speed-up curves for differ-

ent values of A.

σ, on the other hand, determines how fast a job achieves its maximum speed-up

(A). That is, σ determines how close to linear the speed-up is. The smaller the σ, the

faster the job reaches its maximum speedup, and hence the closer to linear the speed-up

curve is. Figure 31 explores the effect of σ on the speed-up behavior. It fixes A = 60 and

displays speed-up curves for different values of σ.

44

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Number of Processors

S
pe

ed
−

up

Downey’s speed−up for different values of A (σ = 1)

A = 100
A = 80
A = 60
A = 40
A = 20

Figure 30 – Downey’s speed-up function S(n, A, σσσσ) for different values of A

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

Number of Processors

S
pe

ed
−

up

Downey’s speed−up for different values of σ (A = 60)

sigma = 0
sigma = 0.5
sigma = 1
sigma = 2
sigma = ∞

Figure 31 – Downey’s speed-up function S(n, A, σσσσ) for different values of σσσσ

45

Using the model for rigid jobs described in Section 3.3, we generate n, tr and a

and then derive te = tr ⋅ a. Note that tr and te are respectively the requested time and

execution time for the job j running over n processors. But A, σ, n, and te uniquely de-

termine the sequential execution time L of the job: L = te(1) = te S n A◊ (, ,)s . L repre-

sents how “large” a job is. The greater the L, the more processing is required to com-

plete the job.

With A, σ and L, we can determine the execution time of the job running over an

arbitrary partition size ¢n by te n L
S n A

()
(, ,)

¢ =
¢ s

. In particular, we generate te = (te[1],

…, te[v]) by evaluating te n()¢ at the partition sizes n = (n[1], …, n[v]). From te and a, we

calculate tr = (tr[1], …, tr[v]) = (te[1] / a, …, te[v] / a).

In order to complete the moldability model, we need to establish how A and σ

are distributed. Unfortunately A and σ cannot be directly modeled from the survey. We

felt that asking a direct question about the average in parallelism (A) or its coefficient of

variance (a close approximation to σ) would be too technical for most users. Instead we

indirectly inferred A and σ based on the survey’s questions about the minimum, effi-

cient and maximum partition sizes (questions 4, 6, and 5, respectively).

Modeling A

We use the survey’s efficient partition size seffic as an estimate for the average

parallelism A. The efficient partition size seffic was defined in the survey as “the partition

size beyond which additional processors do not reduce the application’s execution time

enough to make it worth requesting them” (see question 6 at Appendix A). The intuition

is that seffic represents the “knee” in the speed-up curve, i.e. the point that maximizes the

benefit/cost ratio (benefit meaning “lower execution time” and cost meaning “use of

more processors”). This concept is in consonance with a more formal analysis of speed-

up behavior by Eager et al [36]. Eager et al found that (i) the knee k of the speed-up

curve must satisfy A k A
2

2 1£ £ - , and (ii) adding more processors when the partition

size is smaller than A has much greater impact on the execution time than when the par-

46

tition size is greater than A [36]. These results provide the rationale for modeling A af-

ter the efficient partition size seffic.

1−4 5−10 11−30 31−50 51−100 >100 Don’t Know
0

5

10

15

20

25

30

35

40

Efficient Request

P
er

ce
nt

ag
e

of
 A

ns
w

er
s

Figure 32 – Survey results for efficient partition size seffic

Figure 32 displays how the efficient partition size seffic was distributed among

the survey respondents. Alas modeling A directly after seffic can introduce a bias in the

model. This is because seffic and the minimum partition size smin are correlated. Since

smin ≤ seffic, the distribution of seffic skews towards larger values as smin grows. For exam-

ple, Figure 33 presents the distribution of seffic for the survey responses that had smin in

the [11, 30] range. Since we are already using smin to model cmin, we should take this

correlation into consideration when modeling A.

47

1−4 5−10 11−30 31−50 51−100 >100 Don’t Know
0

10

20

30

40

50

60

70

Efficient Request

P
er

ce
nt

ag
e

of
 A

ns
w

er
s

Figure 33 – Distribution of seffic for the responses with smin in the [11,30] range

To understand how smin and seffic interact, consider their joint distribution of

probability [29], whose CDF is shown in Figure 34. Note that the Figure’s axes are in

log scale, which suggests that a generalization of the uniform-log distribution might

provide an adequate fit for this joint distribution. Note also that the CDF slope is more

accentuated for large values of smin (compared with small values of smin). That is be-

cause when smin is large, seffic must also be large, as exemplified in Figure 33.

We are able to capture this behavior by using a joint uniform-log distribution,

which is a generalization of the uniform-log distribution. The joint uniform-log distribu-

tion is determined by parameters ϕ, γ, η and ρ, and has cumulative distribution function

cdf x y x y x y(,) log () log () log () log ()= ◊ ◊ + ◊ + ◊ +j g h r2 2 2 2 . Making x = smin and y =

seffic, we found ϕA = 0.009548, γA = -0.01877, ηA = 0.07468, and ρA = -0.009198 via

least squares fit. The fit was very good, with correlation coefficient of 0.974. The result-

ing joint uniform-log distribution for A and cmin can be seen in Figure 35.

48

1
2

4
8

16
32

4

16

64

256

0

0.2

0.4

0.6

0.8

1

Minimum Partition SizeEfficient Partition Size

Figure 34 – Joint CDF for seffic and smin

1
2

4
8

16
32

4

16

64

256

0

0.2

0.4

0.6

0.8

1

c
min

A

Figure 35 – Model CDF for the joint distribution of cmin and A

49

Modeling σσσσ

As discussed above, σ cannot be directly modeled after a question asked in the

survey. Instead we indirectly infer σ based on the relation between the efficient partition

size seffic and the maximum partition size smax. The idea is that when the seffic and smax are

close, the speedup is close to linear, and thus the job has small σ. Conversely, when seffic

and smax are far apart, the speedup should be strongly sublinear, and hence the job has

large σ. Figure 31 contains a more graphical representation of this phenomenon.

More specifically, assuming seffic = A, smax = cmax, and using the equations that

define the Downey model, we have that (i) s seffic max= ¤ =s 0, and (ii)

s s≥ fi =
-

-
1

1
s s

s
max effic

effic

. Since s =

-

-

s s
s

max effic

effic 1
 is a generalization of both equations (i)

and (ii), we use it as the estimate for σ. Figure 36 displays how these estimates for σ are

distributed in the survey’s results. Note that the discontinuities in the graph are due to

the fact that the survey used multiple-choice questions, therefore creating an artificial

discretization for seffic and smax.

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

σ estimate

P
er

ce
nt

ag
e

of
 A

ns
w

er
s

Figure 36 – Distribution of the survey-based σσσσ estimates

50

We use a normal distribution to model σ. It provides a good fit for the σ esti-

mates derived from the survey, especially when we consider that the discontinuities in

the distribution of such estimates are an artifact of the survey. Using maximum likeli-

hood fitting, we obtained parameters µσ = 1.209 and σσ = 1.132. Figure 37 shows the

CDF of the model and the observed estimates.

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

C
D

F

Observed estimates
Fitted Distribution

Figure 37 – CDF for the survey based estimate of σσσσ and the corresponding model

3.5. Models Summary

As discussed in this chapter, we generate synthetic moldable workloads by com-

bining two models: the rigid workload model and the moldability model. The rigid

workload model produces a stream of jobs, each with one known request. The moldabil-

ity model generates alternative requests for a given job j, for which only one request in

known. Synthetic moldable workloads are obtained by using the rigid workload model

to produce a stream of jobs, and then applying the moldability model to the jobs that are

to be moldable. Such synthetic workloads are used for performance evaluation through-

out this thesis.

51

This section has three purposes. First, it summarizes the rigid workload model

and the moldability model, providing a concise reference that the reader might find use-

ful. Second, it reviews the values we use for each parameter in the models. Third, it de-

lineates how the synthetic workloads are used for performance evaluation.

Rigid Workload Model

A synthetic workload consists of a sequence of jobs. Each job j arrives at the

system at a given instant ia. In our model, the jobs’ arrival times vary according to the

hour of the day. Fitting jobs’ arrival times revealed little commonality among the arrival

patterns of our four reference workloads (see Section 3.3.1). This leads us to believe

that no single model is appropriate to capture the different arrival patterns found in real

life. In our model, we employ all four polynomials that fit the arrival rate of our refer-

ence workloads (see Table 3) as representatives of the arrivals patterns one might find

in practice. Every time a synthetic workload is generated, one of these four polynomials

is randomly chosen to provide the arrival rate.

Note that the selected polynomial must be multiplied by P / O, where P is the

number of processors of the supercomputer to which the synthetic workload is going to

be submitted, and O is the number of processors in the supercomputer the originated the

polynomial (O = 120 for ANL, O = 430 for CTC, O = 100 for KTH, and O = 128 for

SDSC, as shown in Table 1). This normalizes the arrival pattern to the size of the target

supercomputer. Not doing so would result in lighter-than-reality loads when P > O (un-

changed arrival rate applied to a larger supercomputer), and in heavier-than-reality

loads when P < O (unchanged arrival rate applied to a smaller supercomputer).

Each job in the synthetic workload has a probability of being cancelled pc =

0.15 (see Section 3.3.2). If a job j is cancelled, the cancellation lag lc determines the

time elapsed between the arrival of j and its cancellation. Cancellation lags are uniform

log distributed with parameters χlc = 0.065 and ρlc = -0.32 (see Section 3.3.2). A can-

celled job is removed from the system, whether it is running or waiting in the queue.

Each job is the rigid workload is characterized by its partition size n, request

time tr, and accuracy a. The partition size n is initially drawn from a uniform log distri-

52

bution with parameters χn = 0.12 and ρn = 0.20, but with probability pb = 0.75 the re-

sulting partition size is changed to the closest power-of-2 value (see Section 3.3.3). The

requested time tr is uniform log distributed with parameters χtr = 0.10 and ρtr = -0.75

(see Section 3.3.4). The accuracy a is gamma distributed with parameters αa = 0.6 and

βa = 0.6 (see Section 3.3.4). Note that the execution time te is determined by te = tr ⋅ a.

Table 11 summarizes the rigid workload model, listing the distributions used

and their parameters.

Characteristic Model Parameters
Arrival Time ia Polynomial (P/O) · λa(ms)

describes the arrival rate
within a day

The coefficients for the
four different λa(ms) are
displayed in Table 3

Cancellation Probability pc pc = 0.15

Cancellation Lag lc Uniform-log distributed χlc = 0.065; ρlc = -0.32

Partition Size n Uniform-log distributed χn = 0.12; ρn = 0.20

Power-of-2 Partition Size Probability pb pb = 0.75

Request Time tr Uniform-log distributed χtr = 0.10; ρtr = -0.75

Accuracy a Gamma distributed αa = 0.6; βa = 0.6

Table 11 – Summary of the Rigid Workload Model

We also define a load multiplier κL that multiplies the arrival rate and the re-

quest time generated by the model. The load multiplier κL allows us to alter the load of-

fered to the supercomputer, and thus investigate how scheduling solutions behave under

different load conditions. By multiplying both the arrival rate and the request time we

keep the characteristics of the workload. In particular, this approach does not shorten

the daylong arrival cycle, as does compressing the arrival time [34] [44].

Moldability Model

The moldability model generates v requests for a job j with one known request

(partition size n, request time tr, and accuracy a). That is, the moldability model pro-

duces the v-tuples n = (n[1] …, n[v]), tr = (tr[1], …, tr[v]) , a = (a[1], …, a[v]) that describe v

53

requests for job j. The modeling of a is straightforward: a[1], …, a[v] = a (see Section

3.4.2).

As described in Section 3.4.1, v is no greater than the number of requests the

user is willing to provide cu. We have that Pr[cu = 1] = 0.05 and Pr[cu > 1] = 0.95. If cu

> 1, its value if uniform-log distributed with parameters χcu = 0.1918 and ρcu = 0.1876.

Additionally, the partition sizes generated by the moldability model n[1], …, n[v] are in

the [cmin, cmax] range. The minimum partition size cmin is uniform-log distributed with

parameters χcmin = 0.06920 and ρcmin = 0.6279. As explained in Section 3.4.3, the

maximum partition size cmax is determined using c
A

A A
max =

-

+ -

£

≥

R
S|
T|

2 1 1

1s s

s

s

()

()
.

As discussed in Section 3.4.3, the request time for a given partition size ′n is

calculated by tr n L
S n A a

()
(, ,)

′ =
′ ⋅σ

. A is jointly uniform-log distributed together with

cmin, using parameters ϕA = 0.009548, γA = -0.01877, ηA = 0.07468, and

ρA = -0.009198. σ is uniformly distributed with parameters µσ = 1.209 and σσ = 1.132.

54

Table 12 condenses the essential information about the moldability model, list-

ing the distributions used and their parameters.

Characteristic Model Parameters
Minimum Partition Size cmin Uniform-log distributed χcmin = 0.06920;

ρcmin = 0.6279

Number of Requests Pro-
vided by the User cu

Probability determines
whether cu = 1. Uniform-log
distributed for cu > 1.

Pr[cu = 1] = 0.05;
Pr[cu > 1] = 0.95;
χcu = 0.1918;
ρcu = 0.1876

Downey’s A Jointly uniform-log distrib-
uted with the minimum parti-
tion size cmin

ϕA = 0.009548;
γA = -0.01877;
ηA = 0.07468;
ρA = -0.009198

Downey’s σ Normally distributed µσ = 1.209;
σσ = 1.132

Table 12 – Summary of the Moldability Model

Using the Workload Models

The separation of our moldable workload model into two independent parts al-

lows us to investigate the performance of SA on current workload conditions. This is

done by using the moldability model on a single job in the rigid workload, and repeating

this experiment multiple times to understand the performance of such a moldable job

(see Chapter 5).

Of course the performance of SA scheduling many jobs is also of interest. We

also investigate this scenario by using the moldability model on all jobs generated by

the rigid workload model. That is the focus of Chapter 6.

55

4. Performance Metrics for SA

The metric used to compare competing solutions is a key aspect of performance

evaluation. Since the use of inappropriate metrics can result in misleading conclusions

[34] [44], one wants to find a metric that is unbiased and that captures our intuition of

good performance for the target scenario.

SA aims to improve the performance of one job. Therefore, our performance

metric should capture our intuitive notion of individual job performance. This chapter

discusses how to gauge job performance, and how multiple experiments can be statisti-

cally aggregated without biasing the results.

4.1. Gauging Job Performance

Job performance should be evaluated from the user’s point of view. After all, a

job exists to produce results to its user. Turn-around time captures the user’s view of

how long the system takes to run a job. The turn-around time1 tt of a job j is the time

elapsed between j’s submission and its completion. That is: tt = tw + te, where tw is the

queue wait time, and te is the execution time of the job. We use turn-around time

throughout this thesis to measure the performance of a job.

4.2. Aggregating Experiments

As we shall see in Chapters 5 and 6, the evaluation of SA is based on experi-

ments on which a target job j is submitted using different requests, such as the tradi-

tional static request provided by the user and the request chosen by SA. Since each ex-

periment focuses on one target job j, it is straightforward to use the turn-around time to

measure the performance obtained by the different requests that compose an experi-

56

ment. However, in order to draw statistically valid conclusions, we need to perform ex-

periments in a variety of circumstances. Consequently, we need a way to summarize

multiple turn-around times in a single value.

Note that any method of combining multiple turn-around times in a single value

can serve as a performance metric for supercomputer scheduling. However, the opposite

is not necessary true. Some metrics used to evaluate supercomputer schedulers, such as

makespan, throughput, and system utilization, are not directly based on job perform-

ance. One can always argue that a system with good performance according to one of

these metrics probably provides good service for the jobs that formed the evaluation

workload, and conclude that these resource-centric metrics could thus be used to gauge

job performance. However, the jobs used to gauge the performance of SA do not neces-

sarily come from the same workload. In many of our experiments, the target jobs come

from different workloads. Moreover, it has been shown that makespam, system utiliza-

tion, and throughput are not appropriate metrics for on-line schedulers (such as super-

computer schedulers) because they are strongly influenced by the job arrival and the job

requirements, which are out of control of the scheduler [44].

Of course, there are metrics for supercomputer scheduling that are based on job

performance. In fact, two of these metrics – mean turn-around time and mean slowdown

– are popular ways to determine the performance of supercomputer schedulers [44]. As

we shall see, however, these metrics are not appropriate for our research scenario be-

cause they bias towards long jobs [34] [44] and/or reward performance-poor scheduling

strategies for moldable jobs. We will argue that the geometric mean of turn-around

times is an appropriate performance metric for our research scenario.

Mean Turn-Around Time

Since turn-around time provides a good metric for a single job, many research-

ers have used the arithmetic mean mean(,...,) ...x x x x
nn

n
1

1= + + to combine the turn-

1 Turn-around time is also referred to as service time or response time.

57

around times of all jobs in the workload into a metric for the supercomputer scheduler

[1] [44] [64]. The mean has the advantage of being easily understood and widely used

to combine multiple experiments into a single value. For example, the arithmetic mean

is a sensible choice for establishing the “true” value of physical measurements because

measurement errors are reduced by repeating the same trial and averaging the results.

However, a set of turn-around times of different jobs cannot be considered a

number of measurements of the same trial. In typical supercomputer workload, jobs dif-

fer widely in execution time (and thus in turn-around time), as seen in Section 3.3.4.

The problem this causes is that mean turn-around time can be dominated by long jobs

[34] [44]. For example, the mean turn-around time for 100 one-hour jobs and 1 one-

week job is 2.7 hours. For another example, improving a job’s turn-around time from

20000 seconds to 18000 seconds (a 10% improvement) reduces the mean turn-around

time by 2000 / J, while improving another job’s turn-around time from 200 seconds to

100 seconds (a 50% improvement) reduces the mean only by 100 / J, where J is the to-

tal number of jobs in the evaluation workload.

The dominance of long jobs on the mean turn-around time is an undesirable

property for a performance metric because short jobs are most common in today’s

workloads (see Section 3.3 and [44]). Therefore a scheduler can be ranked superior

even if it increases the turn-around time of most jobs (the short ones).

Mean Slowdown and its Derivatives

Some authors have addressed this problem by using the slowdown2 s = tt / te in-

stead of the turn-around time [43] [44] [107]. Slowdown provides a measure that is

normalized by the job’s execution time and hence long jobs are not overemphasized in

the mean slowdown.

A problem with slowdown is that jobs with extremely short execution time incur

very large slowdown. For example, a one-second job that waits 10 minutes in the queue

has a slowdown of 600. The standard solution for this problem is to establish a lower

2 Slowdown is also referred to as expansion factor.

58

bound for the execution time, typically 10 seconds [43] [44] [107]. More precisely, the

performance of the workload is measured by the mean bounded slowdown, where

bounded slowdown bs tt
te

=

max(,)10
. Returning to the example, a one-second job that

waits for 10 minutes to run has bounded slowdown of 60.

However, slowdown and its derivatives are not appropriate for moldable jobs

because the execution time of a moldable job depends on the partition size it uses. For

moldable jobs, one can often improve the slowdown by increasing the execution time

te, which can be accomplished by selecting the smallest possible partition size. Since

s tt
te

te tw
te

= =
+ , increasing te often leads to a small slowdown s. The problem is that

such a strategy can (and often does) increase the turn-around time.

Geometric Mean of Turn-Around Times

The geometric mean geomean(,...,) ...x x x xn n
n

1 1= ⋅ ⋅ equally rewards the im-

provement in the turn-around time of any job in the workload. In fact, it is clear from

the definition of geometric mean that geomean
geomean

(,...,)
(,...,)
x x
y y

n

n

1

1

 = geomean(,...,)x
y

x
y

n

n

1

1

.

Therefore, unlike the arithmetic mean, the geometric mean does not favor long jobs. For

this very reason, the geometric mean is used to aggregate the execution time of the pro-

grams that compose the Spec benchmark [87].

A criticism of the geometric mean is that it doesn’t indicate the processing time

of the workload [73]. However, we are not using the performance metric for this pur-

pose here. Instead, we use the performance metric to compare alternative scheduling

solutions. For this goal, the geometric mean is a good way to aggregate multiple turn-

around times because it equally considers the improvement in performance of any job.

Hence we use the geometric mean of the turn-around times throughout this thesis to

evaluate the performance of a set of experiments.

59

5. The Performance of SA

SA seeks to reduce the turn-around time of a moldable job j by adaptively

selecting the request that submits j to the supercomputer. But SA does not always select

the best request because (i) the execution times of the jobs in the system are not known

(request times are used as estimates), and (ii) future arrivals can affect jobs already in

the system (see Chapter 2). This Chapter investigates the performance SA delivers

in current real-life scenarios. More precisely, this chapter addresses three important

research questions regarding the effectiveness of SA:

i) What performance improvement can SA deliver in real-life scenarios?

ii) Which factors influence SA’s performance?

iii) What is the maximum performance improvement attainable by adaptively

selecting the request that submits a moldable job? How close does SA get to

such a maximum?

This chapter is organized as follow. Section 5.1 describes the experiments we

conducted to answer the research questions stated above. Section 5.2 analyzes the re-

sults of the experiments as a whole, establishing the average performance improvement

that SA is expected to deliver in real-life conditions. Section 5.3 considers how the re-

sults of the experiments are influenced by parameters that describe the job, the system,

and the information available to SA. Finally, validation for the experimental set-up is

provided in Section 5.4.

5.1. Experimental Set-up

We conducted 360000 experiments to investigate the performance SA delivers

in current real-life conditions. Each experiment targets a single job j and establishes (i)

the turn-around time of j when it is submitted using the user request, (ii) the turn-around

time obtained using SA to determine a request for j, and (iii) the best turn-around time

60

among all requests that were available to SA. Each experiment focuses on a single job j

because the characteristics of the workload can change when many jobs are scheduled

by SA (as we shall see in Chapter 6). By using SA on a single job, we do not signifi-

cantly alter current real-life conditions.

The large number of experiments (360000) was necessary because jobs vary

widely in many aspects (see Chapter 3), and therefore statistics that express the behav-

ior of a set of jobs converge slowly [44]. This is the case for the geometric mean of

turn-around times (the performance metric employed in this thesis, see Chapter 4). For

our experiments, the geometric mean of turn-around times stabilized at around 30000

trials. Since we group experiments into deciles to investigate the effect some parameters

have on SA (as we shall see in Section 5.3), we had to assure that each decile would

have more than 30000 experiments.

For each experiment, we generated a 10000-job workload using the workload

model described in Section 3.5. The simulated supercomputer for our experiments had

500 processors and was scheduled with conservative backfilling (see Section 2.2.1). The

target job j is randomly selected and has v requests created by the moldability model

(Section 3.4). This generates v + 1 workloads that differ only regarding job j. One work-

load has j as a moldable job, with v alternative requests. The other v workloads have j as

a rigid job: there is one workload with j as a rigid job for each request j can use (includ-

ing the original user request). Each of these workloads is then simulated, with SA being

used only for the workload that has j as a moldable job.

Note that the request with smallest turn-around time among all v static requests

is the best request that could be chosen by any application scheduler that adaptively se-

lects the request the submits job j. The best request thus provides a bound to the per-

formance improvement that can be achieved with SA. As we shall see in Sections 5.2

and 5.3, the request selected by SA and the best request exhibit similar behavior in most

circumstances. This creates the need to often refer to “the SA request and the best re-

quest” throughout the rest of this thesis. Since the best request can be thought as a per-

61

fect application scheduler that adaptively selects a request for a moldable job, we define

the term adaptive requests to mean “the SA request and the best request”.

5.2. Overall Performance

Table 13 shows the overall results for the 360000 experiments described in Sec-

tion 5.1. The experiments show substantial improvement in adaptively selecting super-

computer requests. The turn-around time of the best request is in general about 44% of

the turn-around time obtained by the user request. In addition, SA is able to deliver

turn-around times that are close to the best request (SA’s turn-around times are only

13% greater than those attained by the best request). In our experiments, SA is able to

reduce the turn-around time to about half of that obtained by the user request.

 Best SA User

Geometric Mean of the

Turn-Around Time

1264 1429 2878

Table 13 – Overall results (in seconds)

Table 13 conveys a notion of “average” performance. It is also interesting to un-

derstand the how often SA improves an individual job’s turn-around time. Table 14 par-

titions the jobs in those whose turn-around times improved, remained the same, and

worsen with the adaptive requests. Of course no job has the turn-around time worsen by

the best request.

 Best SA

Jobs with better turn-around time 53.9% 45.8%

Jobs with same turn-around time 46.1% 45.3%

Jobs with worse turn-around time -------- 8.8%

Table 14 – How the adaptive requests impacted on the turn-around time

62

Note that the distribution of v, i.e. the number of requests offered to SA (see

Section 3.4.1), defines the percentage of jobs for which an adaptive request is the same

as the user request. In fact, for a job with a single request (v = 1), it is clear that an adap-

tive request and the user request are always the same. When v = 2, there is a 50%

chance that an adaptive request equals the user request, and so on. Therefore, the frac-

tion of jobs for which an adaptive request and the user request are expected to coincide

in our experiments is

1

0 448
v

J
jj

Â
= . , where vj is the number of requests available for

job j, and J is the number of jobs in the workload.

Figure 38 provides a more detailed view on how jobs had their turn-around

times improved, unchanged, and worsen by the adaptive requests. It shows the distribu-

tion of the relative turn-around time for SA and the best request. The relative turn-

around time of an adaptive request is the ratio of the turn-around achieved by such

adaptive request to the turn-around time obtained by the corresponding user request.

Relative turn-around time expresses the performance SA and the best request achieved

as a fraction of the turn-around time of the user request. Therefore, relative turn-around

times smaller than 1 imply that the adaptive request delivered a turn-around time

smaller than the one obtained by the user request. Conversely, a relative turn-around

time greater than 1 denotes that the user request had smaller turn-around time than the

corresponding adaptive request. Of course, the relative turn-around time of the best re-

quest cannot be greater than 1. In our experiments, this happens for SA 8.8% percent of

the time, as shown in Table 14.

63

1/32768 1/1024 1/32 1 32 1024
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Relative Turn−Around Time

Best request
SA

Figure 38 – Distribution of relative turn-around time

5.3. Factors that Influence SA

The performance of SA can be influenced by (i) the characteristics of the target

job j, (ii) the information available to SA about job j, and (iii) the load of the supercom-

puter at the moment SA schedules job j. In this section, we investigate how these factors

impact the adaptive requests: the SA request and the best request (which corresponds to

the maximum possible performance that can be achieved by any of the v possible re-

quests).

Our initial expectation is that the larger and more diverse the set of possible re-

quests, the better the performance SA and the best request should attain. The rationale is

that a large and diverse set of requests gives more latitude in finding a good request to

use. The results confirmed such expectation, and also revealed other characteristics of

the behavior of SA and the best request, as we will see next.

64

5.3.1. Job Characteristics

Jobs vary regarding size (i.e., the amount of computation they need to com-

plete), speed-up characteristics, and restrictions on which partition sizes they can use.

We use the sequential execution time L as a measure for job size. Note that we cannot

employ the computation time ce = te ⋅ n actually used by a job as a measure for job size

because such a variable depends on SA3. SA selects the partition size n that a job uses,

therefore affecting ce = te ⋅ n.

The parameters of the Downey model can be used to characterize the speed-up

behavior of a moldable job j. Recall that Downey’s parameters are the average parallel-

ism A and an approximation to the coefficient of variance in the parallelism σ. A indi-

cates how many processors j can effectively use, and σ denotes the slope of j’s speed-up

(the closer σ is to 0, the closer to linear the speed-up is)4.

The partition size constraints are tracked through three parameters: the minimum

partition size cmin, the maximum partition size cmax, and the kind of partition size ckind.

The kind of partition size ckind differentiates between power-of-2 and non-power-of-2

jobs. Recall that there is a probability pb = 0.75 that the partition size is a power of two.

This requirement captures the current practice for partition size selection and seems to

be stronger than intrinsic algorithmic constraints (see Section 3.3.3).

Sequential execution time L

Figure 39 shows the results of the experiments described in Section 5.1 as a

function of the sequential execution time L. More precisely, Figure 39a displays the re-

sults directly as geometric mean of turn-around times, whereas Figure 39b presents the

same results using relative turn-around times. Recall that the relative turn-around time

of an adaptive request is the ratio of the turn-around time of the adaptive request to the

turn-around time of the corresponding user request. Relative turn-around time is useful

3 Recall that te is job’s execution time and n is its partition size.
4 See Section 3.4.3 for a thorough description of the Downey model.

65

in assessing the impact of the sequential execution time L on the adaptive requests be-

cause L and the turn-around time tt are correlated: Larger jobs in general have a greater

turn-around time because they take longer to execute. Relative turn-around time

normalizes the turn-around time of the adaptive requests with respect to the user

request. Consequently, it factors out the correlation between the parameter being

studied (in this case, the sequential execution time L) and the turn-around time.

In Figure 39, the experiments are grouped in deciles according to L. Since we

conducted 360000 experiments (see Section 5.1), each data point in the graph averages

around 36000 experiments. The values of L on the x-axis show the boundaries of the

deciles5. That is, the values that surround a given data point denote the range averaged

by such a point. For example, the first data point represents the jobs with L ∈ [0, 92),

the second data corresponds to the jobs with L ∈ [92, 348), and so on. Unless stated

otherwise, the following graphs use this same convention.

0 92 348 897 2063 9822 55046 16790161
0

1

2

3

4

5

6

7

8

9
x 10

4

Sequential Execution Time L

G
eo

m
et

ric
 M

ea
n

of
 T

ur
n−

A
ro

un
d

T
im

e

(a)

Best request
SA request
User request

0 92 348 897 2063 9822 55046 16790161
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Sequential Execution Time L

R
el

at
iv

e
T

ur
n−

A
ro

un
d

T
im

e

(b)

Best request
SA request

Figure 39 – Turn-around time by the sequential execution time L

5 Some values in the x-axis (i.e. deciles boundaries) are omitted due to space constraints.

66

As can be seen in Figure 39a, the larger the L (i.e., the more computation a job

carries), the greater the turn-around time. This is because large jobs naturally have long

execution times (see Figure 40a), and a long execution time contributes to an increase in

the turn-around time. The increase in turn-around time with the growth of L makes it

hard to visualize other patterns in Figure 39a.

The relative turn-around time graph (Figure 39b) provides a more insightful pic-

ture. The relative turn-around time increases as L grows, meaning that the improvement

in the turn-around time delivered by the adaptive requests decreases with L. The behav-

ior of the best request (which is closely followed by SA) indicates that there is less

room for performance improvement as L grows.

Decomposing the turn-around time into execution time (Figure 40) and wait

time (Figure 41) helps in understanding why large jobs gain less from the adaptive re-

quests. L does not seem to exert a clear influence on the relative execution time (see

Figure 40b). On the other hand, the relative wait time clearly grows with L (see Figure

41b). In fact, for large values of L, the adaptive requests incur wait times greater than

the ones obtained by the user requests (see Figure 41a). Nevertheless, the turn-around

time of the adaptive requests is better than that obtained by the user request even for

large jobs (see Figure 39a). This implies that, for large jobs, the reduction in execution

time is greater than the increase in wait time. However, for small jobs, adaptive requests

are able to simultaneously reduce the execution time (see Figure 40b) and the wait time

(see Figure 41b), which translates into a greater improvement in the turn-around time.

We believe that the large wait times faced by large jobs when using the adaptive

requests are due to the inability of large jobs to use small holes in the supercomputer

schedule. Recall that SA works by searching for a “good” hole in the supercomputer

schedule, picking the hole that gives the job being scheduled the soonest expected finish

time. Similarly, the best requests can be thought of as an scheduler that always finds the

hole in the supercomputer schedule that delivers the earliest expected finish time for the

job being scheduled. We conjecture that the holes that exist in the beginning of the su-

percomputer schedule (i.e., the ones that incur small wait time) are small because re-

67

quests are placed in the supercomputer schedule using first fit (see Section 2.2.1). Since

a job with large L can only by placed in large holes, it seems to be more likely for such

a job to be placed towards the end of the supercomputer schedule, which results in a

large wait time. As we shall see soon, jobs with large values for the minimum partition

size cmin also seem to experience the same phenomenon, reinforcing our conjecture that

the ability to use small holes in the supercomputer schedule is key for achieving small

wait times.

0 92 348 897 2063 9822 55046 16790161
0

0.5

1

1.5

2

2.5

3
x 10

4

Sequential Execution Time L

G
eo

m
et

ric
 M

ea
n

of
 E

xe
cu

tio
n

T
im

e

(a)

Best request
SA request
User request

0 92 348 897 2063 9822 55046 16790161
0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

Sequential Execution Time L

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

(b)

Best request
SA request

Figure 40 – Execution time by the sequential execution time L

68

0 92 348 897 2063 9822 55046 16790161
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Sequential Execution Time L

G
eo

m
et

ric
 M

ea
n

of
 W

ai
t T

im
e

(a)

Best request
SA request
User request

0 92 348 897 2063 9822 55046 16790161
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Sequential Execution Time L

R
el

at
iv

e
W

ai
t T

im
e

(b)

Best request
SA request

Figure 41 – Wait time by the sequential execution time L

Note that Figure 40 presents the results directly as execution time and also as

relative execution time. The relative execution time of an adaptive request (the SA re-

quest or the best request) is the ratio of the execution time of the adaptive request to the

execution time of the corresponding user request. Likewise, Figure 41 displays the re-

sults directly as wait time and also as relative wait time. The relative wait time of an

adaptive request is the ratio of the wait time experienced by such an adaptive request to

the wait time of the user request. As it happens with the turn-around time, both wait

time and execution time are correlated with parameters whose effect on the adaptive

requests we intend to investigate (in this case, the sequential execution time L). Relative

measures for wait time and execution time address this issue because they eliminate the

correlation between the parameter being studied and both wait time and execution time.

Average parallelism A

Figure 42 shows the impact of the average parallelism A on the turn-around time

of the target job j. The relative turn-around time graph (Figure 42b) indicates that the

adaptive requests are less effective in reducing the job’s turn-around time for small val-

ues of A. Since A determines the maximum speed-up that can be achieved by job j (see

Section 3.4.3), the possible requests for jobs with small A do not vary in execution time

69

as much as the requests for jobs with large A. Requests with similar execution time give

less latitude for SA and the best request in reducing the job’s execution time (see Figure

43b), making it harder for the adaptive requests to improve the job’s turn-around time.

0 2.9 6.5 15 33 75 170 390 920 2900 12000
500

1000

1500

2000

2500

3000

3500

Average Parallelism A

G
eo

m
et

ric
 M

ea
n

of
 T

ur
n−

A
ro

un
d

T
im

e

(a)

Best request
SA request
User request

0 2.9 6.5 15 33 75 170 390 920 2900 12000
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Average Parallelism A

R
el

at
iv

e
T

ur
n−

A
ro

un
d

T
im

e

(b)

Best request
SA request

Figure 42 – Turn-around time by average parallelism A

0 2.9 6.5 15 33 75 170 390 920 2900 12000
300

400

500

600

700

800

900

1000

Average Parallelism A

G
eo

m
et

ric
 M

ea
n

of
 E

xe
cu

tio
n

T
im

e

(a)

Best request
SA request
User request

0 2.9 6.5 15 33 75 170 390 920 2900 12000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Average Parallelism A

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

(b)

Best request
SA request

Figure 43 – Execution time by average parallelism A

70

Note also that the decrease of the relative turn-around time of the adaptive re-

quests appears to taper at around A = 100 (Figure 42b). This suggests that a job does not

need high average parallelism A in order to fully benefit from SA.

σσσσ

Figure 44 presents the effect of σ on the turn-around time of target job j in the

experiments. Somewhat surprisingly, variations in σ show very little impact on the per-

formance of either SA or the best request. A large σ implies that the job’s speed-up is

strongly sublinear. Therefore, the possible requests for a large-σ job vary considerably

in their computation time (ce = n ⋅ te). The results of the experiments indicate that such

a variance in the computation time is not very important for the adaptive requests. It

seems that having multiple distinct requests to choose from is the key enabling feature

to improve the job’s turn-around time by adaptively selecting which request to use.

0 0 0.4 0.7 1 1.3 1.5 1.8 2.2 2.7 6.3
1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

σ

G
eo

m
et

ric
 M

ea
n

of
 T

ur
n−

A
ro

un
d

T
im

e

(a)

Best request
SA request
User request

0 0 0.4 0.7 1 1.3 1.5 1.8 2.2 2.7 6.3

0.44

0.46

0.48

0.5

0.52

σ

R
el

at
iv

e
T

ur
n−

A
ro

un
d

T
im

e

(b)

Best request
SA request

Figure 44 – Turn-around time by σσσσ

However, if many jobs with large values of σ have their requests adaptively cho-

sen (not the case addressed in this chapter), it is possible for the system as a whole to

exhibit poor emergent behavior. Poor emergent behavior can arise if most of the se-

lected requests are large. Multiple large requests boost the supercomputer load, which

71

typically increases the turn-around time of most jobs in the system. Section 6.2.2 inves-

tigates this issue.

Minimum partition size cmin

The impact of the minimum partition size cmin on the adaptive requests and the

user request can be seen on Figure 45. Note that Figure 45 has only 5 data points,

whereas the previous figures have 10 data points. This is because cmin = 1 for 62.6% of

the experiments (see Section 3.4.1 for the distribution of cmin). Therefore, the first data

point roughly represents the six first deciles of the distribution.

0 1 3 6 13 42
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Minimum Partition Size c
min

G
eo

m
et

ric
 M

ea
n

of
 T

ur
n−

A
ro

un
d

T
im

e

(a)

Best request
SA request
User request

0 1 3 6 13 42
0.4

0.45

0.5

0.55

0.6

0.65

Minimum Partition Size c
min

R
el

at
iv

e
T

ur
n−

A
ro

un
d

T
im

e

(b)

Best request
SA request

Figure 45 – Turn-around time by minimum partition size cmin

As can be seen in Figure 45b, the effectiveness of the adaptive requests de-

creases as cmin increases. A large cmin implies that there are no requests with small parti-

tion size n available to be selected. Small partition sizes allow the use of small holes in

the supercomputer schedule. As discussed in the analysis of the results with respect to

the sequential execution time L, it seems that the ability to use small holes in supercom-

puter schedule is essential to reduce the wait time. In fact, as can be seen in Figure 46,

the wait time of the adaptive requests grows with cmin, even surpassing the wait time of

the user request for cmin > 13. Such a lack of ability to reduce wait time seems to com-

72

promise the capacity of the adaptive requests to improve the turn-around time, as ob-

served for jobs with large cmin and large L.

0 1 3 6 13 42
50

60

70

80

90

100

110

120

Minimum Partition Size c
min

G
eo

m
et

ric
 M

ea
n

of
 W

ai
t T

im
e

(a)

Best request
SA request
User request

0 1 3 6 13 42
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Minimum Partition Size c
min

R
el

at
iv

e
W

ai
t T

im
e

(b)

Best request
SA request

Figure 46 – Wait time by minimum partition size cmin

Maximum partition size cmax

Figure 47 shows the effect of the maximum partition size cmax on the turn-

around time. Up to certain point (around cmax = 100), the performance improvement

generated by the adaptive requests grows as cmax grows. After that point, the perform-

ance improvement practically levels off.

It appears that the restriction introduced by a small cmax reduces the capability of

the adaptive requests to reduce the job’s execution time. Small execution times often

require the use of many processors and cmax poses an upper bound on how many proces-

sors a job can use. That is, jobs with small cmax cannot use many processors. This seems

to preclude SA and the best request from improving the job’s turn-around time by re-

ducing its execution time. The behavior of the execution time as cmax varies (shown in

Figure 48) supports this explanation.

73

0 6 15 35 81 186 418 955 2291 68208
500

1000

1500

2000

2500

3000

3500

Maximum Partition Size c
max

G
eo

m
et

ric
 M

ea
n

of
 T

ur
n−

A
ro

un
d

T
im

e

(a)

Best request
SA request
User request

0 6 15 35 81 186 418 955 2291 68208
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Maximum Partition Size c
max

R
el

at
iv

e
T

ur
n−

A
ro

un
d

T
im

e

(b)

Best request
SA request

Figure 47 – Turn-around time by maximum partition size cmax

0 6 15 35 81 186 418 955 2291 68208
300

400

500

600

700

800

900

1000

Maximum Partition Size c
max

G
eo

m
et

ric
 M

ea
n

of
 E

xe
cu

tio
n

T
im

e

(a)

Best request
SA request
User request

0 6 15 35 81 186 418 955 2291 68208
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Maximum Partition Size c
max

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

(b)

Best request
SA request

Figure 48 – Execution time by maximum partition size cmax

Note that the effect of the maximum partition size cmax on the turn-around time

is similar to the effect caused by the average parallelism A. This may not be a coinci-

dence. Both cmax and A pose restrictions on the speed-up behavior of a job: cmax repre-

74

sents the partition size n after which the speed-up curve levels off, whereas A denotes

the speed-up value after which the speed-up curve levels off.

Kind of partition size ckind

In our model, 75% of the jobs use power-of-2 partition sizes. This enables us to

capture the current practice for partition size selection, which seems to be stronger than

intrinsic algorithmic constraints (see Section 3.3.3). Figure 49 segregates the power-of-

2 jobs from the non-power-of-2 jobs. Non-power-of-2 jobs experience greater turn-

around time than power-of-2 jobs. Moreover, the performance improvement obtained

by SA and the best request is smaller for non-power-of-2 jobs.

Power of 2 Other
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Partition Size

G
eo

m
et

ric
 M

ea
n

of
 T

ur
n−

A
ro

un
d

T
im

e

(a)

Best request
SA request
User request

Power of 2 Other
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Partition Size

R
el

at
iv

e
T

ur
n−

A
ro

un
d

T
im

e

(b)

Best request
SA request

Figure 49 – Turn-around time by kind of partition size ckind

Since the majority of the jobs in the workloads used on the experiments are

power-of-2, we believe that it is easier for the resource scheduler to “pack” another

power-of-2 job into the schedule than to find an appropriate hole for a job with arbritary

partition size. This phenomenon is in consonance with results showing that workloads

with high percentage of power-of-2 jobs exhibit better performance under a variety of

supercomputer schedulers [67].

75

5.3.2. Information Available to SA

The information made available to SA varies regarding v, the number of re-

quests that is available to SA, and a, the accuracy of such requests. Recall that the accu-

racy a is defined as a = te / tr, and therefore a small value of a implies that the request

asked for much more time than the job actually used.

Accuracy a

As can be seen in Figure 50a, the turn-around time tt grows with the accuracy a.

However, we believe this is an artifact of the coupling between accuracy and execution

time as represented in our model (see Section 3.3.4). The jobs with smaller accuracy

tend to run for less time, thus reducing their turn-around time.

The relative turn-around time (see Figure 50b) provides a better evaluation of

the impact of accuracy over the adaptive requests. It is interesting to see that the best

request delivers a greater performance improvement for low accuracy jobs. SA, on the

other hand, seems to be almost unaffected by the accuracy of the requests (in conso-

nance with other studies that have found inaccurate user’s estimates not to significantly

hurt performance [43] [107]).

Another way to phrase this phenomenon is to say that the gap in performance

improvement between the best request and SA is greater for small values of a (say a <

0.1). The best request is identified through the simulation of all possible requests: After

all requests are simulated, the one with smallest turn-around time is named the best re-

quest. Since the best request is identified a posteriori, it is immune to the accuracy of

the request. However, SA is not omniscient. Poor accuracy makes SA request much

more cycles than the job is actually going to use. This precludes SA from using some

holes in the schedule that would actually be enough to fit job j.

76

0 .01 .04 .09 .15 .23 .33 .47 .66 .92 1
0

2000

4000

6000

8000

10000

12000

Accuracy a

G
eo

m
et

ric
 M

ea
n

of
 T

ur
n−

A
ro

un
d

T
im

e

(a)

Best request
SA request
User request

0 .01 .04 .09 .15 .23 .33 .47 .66 .92 1
0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

Accuracy a

R
el

at
iv

e
T

ur
n−

A
ro

un
d

T
im

e

(b)

Best request
SA request

Figure 50 – Turn-around time by accuracy a

Number of requests v

As shown in Figure 51, the performance improvement achieved by the adaptive

requests increases with the number of requests v. This result seems intuitive. The more

requests that are available, the greater the flexibility the adaptive requests have in lever-

aging the holes in the supercomputer schedule.

0 1 2 3 4 5 8 19
500

1000

1500

2000

2500

3000

3500

4000

4500

Number of Requests v

G
eo

m
et

ric
 M

ea
n

of
 T

ur
n−

A
ro

un
d

T
im

e

(a)

Best request
SA request
User request

0 1 2 3 4 5 8 19
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Requests v

R
el

at
iv

e
T

ur
n−

A
ro

un
d

T
im

e

(b)

Best request
SA request

Figure 51 – Turn-around time by number of requests v

77

Note that the increase in the turn-around time for v > 8 is due to the fact that

there are no power-of-2 jobs with v > 9. Recall that the simulated supercomputer has

500 processors and thus power-of-2 jobs cannot have more than 9 requests (1, 2, 4, 8,

16, 32, 64, 128, and 256). In particular, the power-of-2 jobs that would otherwise have

more than 9 requests must remain with 9 requests. Therefore, the data point for v > 8 in

Figure 51 contains mainly non-power-of-2 jobs. Since jobs with non-power-of-2 parti-

tion sizes exhibit poorer performance (as discussed in the previous section), there is an

increase in the turn-around time for v > 8.

Note also that Figure 51 only has 7 data points (instead of 10, as most of the

previous figures). This is because v = 2 for 37.1% of the experiments (see Section 3.4.1

for the distribution of v). The second data point therefore represents almost four deciles

of the experiments.

5.3.3. The State of the Supercomputer

SA is an application scheduler and, as such, makes decisions based on the state

of the supercomputer. In this section, we investigate how the load of the supercomputer

at the moment job j arrives in the system influences the performance improvement

achieved by SA and the best request. We expect that the more work the system already

has, the greater the queue wait time for an incoming job typically will be. Of course, a

large queue wait time contributes to a large turn-around time.

We use the load per processor D to gauge the load of the supercomputer at the

moment SA schedules a job. This measure weights the amount of computation the su-

percomputer has to perform to finish all jobs currently in the system against the super-

computer size. Since a larger supercomputer will be able to deal with more load and

more jobs than a smaller one, consideration of the supercomputer size enables us to

compare results across supercomputers of different sizes. More precisely, the load per

processor D is defined as:

D
n tr i i

P

j j now j
j

=

◊ - -Â (())

78

where:

nj is the number of processors requested by job j

trj is the execution time requested by job j

inow is the current time instant

ij is the time instant j started running (if j hasn’t started yet, then ij = inow)

P is the number of processors in the supercomputer

Figure 52 shows the effect of the load per processor D on the turn-around time

of the SA request, the best request, and the user request. As expected, the turn-around

time grows with the load per processor (see Figure 52a). This is because, as expected,

the more load there is in the system, the longer an arriving job has to wait in the queue

(as can be seen in Figure 53a).

The relative turn-around time provides a more useful measure because it factors

out the impact of the load per processor D on the turn-around time tt. The relative turn-

around graph (see Figure 52b) indicates that the performance improvement achieved by

SA decreases with the load per processor D until around D = 200000, when it seems to

level off. Note that SA performs better for lightly loaded systems in two distinct ways.

First and more obviously, the improvement delivered by SA is greater for lightly loaded

systems. Second and maybe more interestingly, the gap between SA and the best re-

quest is smaller for lightly loaded systems.

79

0 48268 104330 446602 1344050 3495180
0

1000

2000

3000

4000

5000

6000

7000

8000

Load per Processor D

G
eo

m
et

ric
 M

ea
n

of
 T

ur
n−

A
ro

un
d

T
im

e

(a)

Best request
SA request
User request

0 48268 104330 446602 1344050 3495180
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Load per Processor D

R
el

at
iv

e
T

ur
n−

A
ro

un
d

T
im

e

(b)

Best request
SA request

Figure 52 – Turn-around time by load per processor D

The fact that lightly loaded systems provide a more favorable environment for

the adaptive requests can be better understood by decomposing the turn-around time

into wait time (shown in Figure 53) and execution time (shown in Figure 54). Note that

the “strategy” used by the adaptive requests varies depending on the load. For lightly

loaded supercomputers, the adaptive requests seem to focus on reducing the execution

time (see Figure 54) by selecting large requests (see Figure 55), even if such requests

bear a slightly greater wait time than the user request (see Figure 53). This approach

produces good results because, for lightly loaded supercomputer, the wait time is often

very small anyways, thus having minimum impact on the turn-around time (see Figure

56 for the fraction of the turn-around time that is due to the wait time).

For heavily loaded supercomputers, on the other hand, the wait time corresponds

to a sizable fraction of the turn-around time (see Figure 56). The adaptive requests then

start to focus on reducing the wait time (see Figure 53), even when this requires select-

ing smaller requests (see Figure 55) that increase the execution time (see Figure 54).

This seems to be a good approach to reduce the turn-around time in heavily loaded sys-

tems, although it does not achieve the same kind of performance improvement that is

possible in lightly load supercomputers.

80

As for the increase in the gap between SA and the best request as the load

grows, we believe it is due to the lower level of uncertainty SA faces on lightly loaded

systems (compared to heavily loaded systems). Recall that SA uses the request time of

the jobs already in the system as estimates for their execution time. Fewer jobs in the

system thus reduce the overall error associated with these estimates.

0 48268 104330 446602 1344050 3495180
0

200

400

600

800

1000

1200

1400

1600

Load per Processor D

G
eo

m
et

ric
 M

ea
n

of
 W

ai
t T

im
e

(a)

Best request
SA request
User request

0 48268 104330 446602 1344050 3495180
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Load per Processor D

R
el

at
iv

e
W

ai
t T

im
e

(b)

Best request
SA request

Figure 53 – Wait time by load per processor D

0 48268 104330 446602 1344050 3495180
200

300

400

500

600

700

800

900

1000

Load per Processor D

G
eo

m
et

ric
 M

ea
n

of
 E

xe
cu

tio
n

T
im

e

(a)

Best request
SA request
User request

0 48268 104330 446602 1344050 3495180
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Load per Processor D

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

(b)

Best request
SA request

Figure 54 – Execution time by load per processor D

81

0 48268 104330 446602 1344050 3495180
3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2
x 10

4

Load per Processor D

G
eo

m
et

ric
 M

ea
n

of
 R

eq
ue

st
ed

 C
om

pu
ta

tio
n

T
im

e

(a)

Best request
SA request
User request

0 48268 104330 446602 1344050 3495180
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Load per Processor D

R
el

at
iv

e
R

eq
ue

st
ed

 C
om

pu
ta

tio
n

T
im

e

(b)

Best request
SA request

Figure 55 – Requested computation time by load per processor D

Note that Figure 55 measures the size of requests directly as requested computa-

tion time cr = tr ⋅ n (where tr is job’s request time and n is its partition size) and also as

relative requested computation time. The relative requested computation time of an

adaptive request (the SA request or the best request) is ratio of the requested computa-

tion time of the adaptive request to the requested computation time of the corresponding

user request.

82

0 48268 104330 446602 1344050 3495180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Load per Processor D

M
ea

n
of

 tw
 /

tt

Best request
SA request
User request

Figure 56 – Wait time over turn-around time as the load per processor grows

5.4. Validating the Results

Simulations are an important research tool [105]. They allow us to explore is-

sues that are not tractable analytically or experimentally. However, they can produce

invalid results due to a number of reasons, from poor modeling of reality to undetected

bugs in the simulator. Consequently, it is important to double-check the results obtained

via simulations.

In this section, we show that the models introduced in Chapter 3 indeed capture

real supercomputer scenarios with reasonable accuracy. We do so by running experi-

ments with real workloads and real jobs’ speed-ups. Instead of using synthetic work-

loads as we have done in the rest of this chapter, we use our four reference workloads

directly (see Section 3.1 for a description of the reference workloads). Instead of using

the moldability model of Section 3.4, we use NAS benchmarks as the jobs to be sched-

uled by SA (see http://www.nas.nasa.gov/Software/NPB/ for the speed-up behavior of

NAS benchmarks).

http://science.nas.nasa.gov/Software/NPB/

83

We use five NAS benchmarks whose execution times are available for the SP2

on a variety of partition sizes: MG, LU, SP, BT, and EP. MG and LU require a power-

of-two partition size and thus are the most constrained jobs. For the SP2, http://www.

nas.nasa.gov/Software/NPB/ contains execution time information for MG and LU over

8, 16, 32, 64, 128, and 256 processors. Consequently, SA has 4 to 6 choices of request

for MG and LU, depending on the number of processors of the supercomputer being

used (see Table 1). SP and BT require perfect-square partition sizes. There is data on

their execution time for 9, 16, 25, 36, 64, 121, and 256 processors; thus providing 5 to 7

requests to SA. There are no restrictions for EP. It can run over any number of proces-

sors and thus there are as many requests as processors in the supercomputer (see Table

1). Table 15 summarizes the characteristics of the NAS benchmarks used in our valida-

tion experiments.

Benchmark Partition size constraint Number of requests

MG power of 2 4, 5, or 6

LU power of 2 4, 5, or 6

SP perfect square 5, 6, or 7

BT perfect square 5, 6, or 7

EP unrestricted 100, 120, 128, or 430

Table 15 – NAS benchmarks used in the validation experiments

For each experiment, we randomly select a target job j whose partition size is

compatible with the NAS benchmark b we want to introduce into the workload. For ex-

ample, we look for perfect-square jobs when we introduce the BT benchmark. The tar-

get job j is then replaced by the NAS benchmark b. As before, each experiments con-

sists of v + 1 simulations, where v is the number of requests that can be used to submit

the NAS benchmark b to the supercomputer. One simulation uses SA to select which

request submits b. Moreover, there is one simulation for each of the v requests that can

be used for b. We performed 40000 experiments in total: 8000 per NAS benchmark.

http://science.nas.nasa.gov/Software/NPB/
http://science.nas.nasa.gov/Software/NPB/

84

Table 16 shows the overall results of the experiments based on NAS bench-

marks. NAS benchmarks obtained much smaller turn-around times than synthetic jobs

in the experiments based on our workload models (see Table 13). This is an expected

outcome because NAS benchmarks are relatively small jobs (the largest sequential exe-

cution time L among all NAS benchmarks is 21190 seconds). As shown in Figure 39,

the turn-around time for small jobs is much smaller than the overall results of our previ-

ous experiments.

 Best SA User

Geometric Mean of the

Turn-Around Time

429 543 1478

Table 16 – Overall NAS results (in seconds)

Relatively speaking, however, the results found with NAS benchmarks are simi-

lar to those found with our workload models (see Table 13). As before, SA is close to

results obtained by the best request. Furthermore, the turn-around times obtained by SA

correspond to 37% of those obtained by the user request, a result even better than the

one achieved using our workload model.

We attribute this better performance to the fact that EP can use any partition size

(and all these possibilities are provided to SA). This seems to create the opportunity for

an even greater improvement in performance. Indeed, consider Figure 57, which groups

the turn-around times by the restriction on partition size posed by the NAS benchmarks.

Note that SA delivers impressive performance improvement for EP: It reduces the turn-

around time for a little more than 15% of the user request. Note also that SA is still able

remain close to the maximum improvement for EP, which suggests that increasing the

number of choices does not make it harder for SA to find a near optimal request.

85

LU/MG BT/SP EP
0

500

1000

1500

2000

2500

NAS Benchmark

G
eo

m
et

ric
 M

ea
n

of
 T

ur
n−

A
ro

un
d

T
im

e
Best request
SA request
User request

LU/MG BT/SP EP
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

NAS Benchmark

R
el

at
iv

e
T

ur
n−

A
ro

un
d

T
im

e

Best request
SA request

Figure 57 – NAS results by kind of benchmark

In short, the NAS benchmarks differ from our model in two important ways.

First, NAS benchmarks are small jobs, whereas our model covers the wide distribution

of job sizes found in practice: from small to very large. Second, the EP benchmark of-

fers many more requests to SA than any job in our model. Although it is conceivable

that embarrassingly parallel jobs will provide SA with a multitude of requests in prac-

tice, we took a more conservative approach and modeled the number of requests avail-

able to SA after the current practice, as discussed in Section 3.4.1. Taking into account

the differences between NAS benchmarks and moldable jobs generated with our model,

the results found with both of them are very similar. We therefore believe that the re-

sults based on NAS benchmarks validate the set-up used in our simulations (described

in Section 5.1) and the conclusions based on such results (presented in Sections 5.2 and

5.3).

This chapter has investigated the performance of SA scheduling one job in cur-

rent workload conditions. However, such conditions may change as a result of having

SA scheduling many jobs in the workload, as we shall see in the next chapter.

86

6. Emergent Behavior of Multiple SAs

The previous chapter examined how SA performs in current real-life conditions.

However, the widespread use of SA may change such current conditions. When many

SAs are scheduling jobs on one supercomputer, the decision made by one SA affects the

state of the system, therefore impacting other instances of SA. The global behavior of

the system thus comes from the emergent behavior of all SAs.

This is a very important issue because there is theoretical evidence that systems

in which resource allocation is performed by many independent entities can exhibit per-

formance degradation [71] and even chaotic behavior [59]. There are two basic con-

cerns about a system in which many entities make decisions independently. First: Is the

system as a whole stable, or does it oscillate in some thrashing cycle? Second: What is

the impact of multiple SAs on the performance attained by each of them?

In our environment, the stability of the system is not a problem. Stability is a

problem for systems formed by multiple independent entities when such entities can

keep prompting each other to make decisions in an endless feedback cycle [59]. When

this happens, the system as whole never stabilizes. If the entities in an unstable system

are making scheduling decisions, the overhead of carrying on the constant flow of deci-

sions is likely to preclude the system from performing much useful work. We thus say

that such a system is in a thrashing cycle. Since SA makes only one decision, there is no

chance for a feedback behavior to occur. A supercomputer on which multiple instances

of SA schedule jobs is always stable.

On the other hand, having multiple SAs in the system can have a performance

impact on the system as whole and on each instance of SA in particular. A way to think

about SA is that it leverages inefficiencies of the supercomputer schedule. By consider-

ing multiple requests, SA searches for a “good” hole in the supercomputer schedule,

picking the hole on which the job being scheduled is expected to finish earlier. We

therefore expect the performance improvement obtained by an instance of SA to be

87

smaller when most jobs use SA. Section 6.1 investigates this hypothesis. In this chapter,

we also investigate how the increase in the total load submitted to the supercomputer

affects SA (see Section 6.2).

6.1. Performance Impact of Emergent Behavior

SA selects the request that is expect to deliver the smallest turn-around time by

searching the supercomputer schedule for holes that fit the possible requests (see Chap-

ter 2). Having many SAs searching for holes in the supercomputer schedule is likely to

make the supercomputer schedule more compact, with less “big” holes. While a more

compact schedule makes the system as a whole more efficient, it also makes harder for

each instance of SA to find a hole that delivers a large performance improvement. In

short, we expect the competition for resources to become tougher with multiple SAs,

and this tough competition to reflect on the performance improvement attained by each

SA individually.

Experimental Set-up

We conducted a number of experiments to investigate the emergent behavior of

SA. The experimental set-up used here is similar to the one used in the previous chapter

(see Section 5.1). As before, we conduced 360000 experiments. A 10000-job synthetic

workload is generated for each experiment, which targets a randomly chosen job j. The

simulated supercomputer has 500 processors, and the supercomputer scheduler is con-

servative backfilling. This time, however, the moldability model is applied to all jobs.

This enables us to use SA with multiple jobs, therefore creating the emergent behavior

we want to examine.

Each experiment consists of four simulations. All four simulations use the same

workload. They vary in whether (i) the target job j uses SA or the user request, and (ii)

all the other jobs use SA or the user request. When most jobs in the workload use SA,

we say that the workload is adaptive. When most jobs are submitted through the user

request, we say that we have a static workload. Therefore, when all jobs use SA, the

turn-around time of job j represents the performance SA achieves within adaptive work-

88

loads. When job j is scheduled by SA but all the other jobs use the user request, the

simulation determines the performance of SA in static workloads. When job j is submit-

ted through the user request and all other jobs use SA, we have the performance the user

request achieves in adaptive workloads. When all jobs are submitted through the user

request, job j represents the performance of the user request in static workloads (the cur-

rent supercomputer usage scenario). Table 17 summarizes the four scenarios simulated

in the experiments.

Performance of Target job j uses Other jobs use

SA in adaptive workloads SA request SA request

SA in static workloads SA request User request

User request in adaptive workloads User request SA request

User request in static workloads User request User request

Table 17 – Scenarios simulated in the emergent behavior experiments

Note that the notion of best request is not well-defined for an environment with

multiple instances of SA. Since the turn-around time of a job j can be affected by a job

g that arrives after j, we cannot determine the best request for job j without knowing

which request job g is going to use. And, of course, we cannot determine the best re-

quest for g without knowing which request j is going to use (because the request of j

contributes to determine the state of system encountered by g).

Overall Results

Table 18 displays the results obtained from the experiments just described, i.e.,

Table 18 shows how SA and the user request behave within static and adaptive work-

loads. Recall that the turn-around times obtained in the 360000 experiments are summa-

rized by the geometric mean statistic (as explained in Chapter 4).

Request used for job j SA User

Workload Static Adaptive Static Adaptive

89

Geometric mean of the

turn-around time

1429 1357 2878 2721

Table 18 – Overall results with SA scheduling all jobs (in seconds)

To our surprise, both SA and the user request have slightly smaller turn-around

times when in adaptive workloads then when in static workloads. As we shall see in

more detail, it turns out that the emergent behavior of many instances of SA reduces (i)

the occurrence of very high load conditions, and (ii) the wait time of jobs submitted to

systems experiencing moderate to high load. In moderate to high load situations, these

reductions in load and wait time seem to overcome any performance degradation poten-

tially cause by the increased competition for resources from other instances of SA. In

low load scenarios, however, both SA and the user request achieve smaller turn-around

times when in a static workload, as we initially expected.

Reduction of Very High Load Conditions

Recall from Section 5.3.3 that, when within static workloads, SA uses small re-

quests under heavy load conditions. This approach reduces the queue wait time, al-

though it in general increases the execution time. Since heavily loaded systems generate

large wait times, such an approach is effective in reducing the job’s turn-around time,

the final goal of SA. As shown in Figure 58, the tendency of SA to reduce the size of

the request as the load grows remains the same when it is in adaptive workloads. This is

the expected behavior because SA only considers the job it schedules, without worrying

about the performance of other jobs.

90

0 48675 111919 439122 1224765 3495180
3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4
x 10

4

Load per Processor D

G
eo

m
et

ric
 M

ea
n

of
 R

eq
ue

st
ed

 C
om

pu
ta

tio
n

T
im

e

SA in static workload
SA in adaptive workload
User in static workload
User in adaptive workload

Figure 58 – Requested computation time by load per processor D

Since SA tends to favor small requests as the load grows, the emergent behavior

generated by having many SAs in the system reduces the occurrence of very high load

conditions. Consider Figure 59 for the distribution of the load per processor D at the

moment the target job j arrives in the system. For approximately 60% of the experi-

ments, job j does not experience much difference in the system load whether the previ-

ous jobs used SA (adaptive workload) or the users requests (static workload). These are

the 60% of the experiments on which job j found the supercomputer to be less loaded

(D < 500000). For the other 40% of the experiments, job j found smaller load in the su-

percomputer when the previous jobs used SA (i.e., the adaptive workload scenario).

These 40% of the experiments are the ones on which the supercomputer was more

loaded at the moment of the arrival of job j (D > 500000).

91

0 0.5 1 1.5 2 2.5 3

x 10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Load per Processor D

Static workload
Adaptive workload

Figure 59 - Distribution of the load per processor D

Reduction of Wait Time in Moderate to High Load Conditions

Besides reducing the chance that the system experiences heavy loads, the emer-

gent behavior of SA also appears to reduce the job’s wait time in moderate to heavy

load conditions. See Figure 60 for the influence of the load per processor D on the turn-

around time of SA and the user request within both adaptive and static workloads. For

D > 110000, both SA and the user request experience smaller turn-around times when

they are in adaptive workloads.

It is interesting to note that the execution times of jobs using the user request do

not seem to be affected by whether the workload is adaptive or static (see Figure 61).

On the other hand, for jobs using SA, the execution time follows a pattern similar to the

one experienced by the turn-around time: In lightly loaded conditions, jobs using SA

have better execution time in static workloads. From moderate to high load, the execu-

tion time of jobs using SA is better in adaptive workloads.

92

The wait time (shown in Figure 62) shows the same trend for jobs using the user

request and SA. The wait time is small under light loads. For moderate to high loads,

jobs using both SA and the user request have smaller wait times in adaptive workloads.

0 48675 111919 439122 1224765 3495180
0

1000

2000

3000

4000

5000

6000

7000

Load per Processor D

G
eo

m
et

ric
 M

ea
n

of
 T

ur
n−

A
ro

un
d

T
im

e

SA in static workload
SA in adaptive workload
User in static workload
User in adaptive workload

Figure 60 – Turn-around time by load per processor D

93

0 48675 111919 439122 1224765 3495180
200

300

400

500

600

700

800

900

1000

Load per Processor D

G
eo

m
et

ric
 M

ea
n

of
 E

xe
cu

tio
n

T
im

e

SA in static workload
SA in adaptive workload
User in static workload
User in adaptive workload

Figure 61 – Execution time by load per processor D

0 48675 111919 439122 1224765 3495180
0

500

1000

1500

Load per Processor D

G
eo

m
et

ric
 M

ea
n

of
 W

ai
t T

im
e

SA in static workload
SA in adaptive workload
User in static workload
User in adaptive workload

Figure 62 – Wait time by load per processor D

94

We conjecture that the smaller wait time jobs experience when D > 110000 and

the workload is adaptive happens because the emergent behavior of SA causes better

packing in the supercomputer schedule. SA exploits existing holes in the supercomputer

schedule to improve the job’s performance. The overall effect of having all jobs using

SA therefore appears to be that the supercomputer schedule becomes more compact,

with fewer big holes. The fact that SA prefers small requests as the load grows provides

extra support for this conjecture because smaller requests are easier to pack.

When the user request is used in adaptive workloads, a better packing in the su-

percomputer schedule translates in general into a smaller wait time. Since the user re-

quest is static, the wait time experienced by the job is determined mainly by the state of

the supercomputer schedule. Therefore, everything else being the same, a job using the

user request will in general experience a smaller wait time when encountering a better

packed supercomputer schedule.

When SA is used in adaptive workloads, it is less clear that a better packing is

responsible for a smaller wait time. After all, SA leverages holes in the supercomputer

schedule to improve better performance. However, recall from Section 5.3.3 that SA

achieves smaller improvement in the turn-around time under high-load conditions. The

fact that the system as a whole is more efficient (i.e., the supercomputer schedule is

more compact) seems to be more beneficial than the small improvements SA would

achieve on average with a less compact schedule. Moreover, with a more compact

schedule, SA does not have to sacrifice the execution time so severely in order to reduce

the wait time, as it does in a static workload (see Figure 61).

Increased Competition in Lightly Loaded Systems

As can be seen in Figure 60, SA in static workloads performs better than SA in

adaptive workloads when the supercomputer is lightly loaded. This suggests that adap-

tive workload indeed increases the competition for resources, making it harder for SA to

find a good request to use, as we initially expected.

Note that this explanation is consistent with the fact that, under moderate to high

loads (in our experiments, for D > 110000), the performance of SA in adaptive work-

95

loads exceeds the performance of SA in static workloads. We credit the better perform-

ance SA achieves within adaptive workloads under moderate to high load to emergent

behaviors that reduce the occurrence of high loads conditions and the wait time of the

job. Since such emergent behaviors appear to come from the tendency of individual SA

to select small requests as the load grows, they are negligible for light load conditions.

Other Factors

Whether the workload SA is static or adaptive seem to have little impact on the

behavior of SA as a function of the parameters that describe the job’s characteristics

(sequential execution time L, average parallelism A, σ, minimum partition size cmin,

maximum partition size cmax, and kind of partition size ckind) and the information

available to SA (accuracy a, and number of requests v). These results can be found in

Appendix C.

This comes as no surprise. Emergent behaviors cannot affect the characteristics

of the job being scheduled by SA or the information offered to SA about such a job.

Multiple instances of SA can only affect the state of the supercomputer, and they do so,

generating the emergent behaviors we have described herein.

6.2. Increasing the Offered Load

Up to this point, we have used workloads that reflect either current real-life con-

ditions or conditions we expect to see as a result of the widespread utilization of SA.

However, it is also of interest to understand how SA behaves under other conditions. In

particular, how schedulers behave as the offered load increases is of great theoretical

and practical interest. The offered load is the aggregated computation time needed to

process an input workload. More precisely, the load offered by a workload W (or simply

offered load) is defined as cej
j WŒ
Â , where j is a job in the workload W, cej = nj ⋅ tej is the

computation time used by job j, nj is the number of processors allocated to job j, and tej

is the execution time of job j.

96

Note that the concepts of offered load and the load when SA schedules a job are

distinct. The load of the system when SA makes a scheduling decision is a snapshot of

the system condition. Such a concept has been measured in this thesis through the load

per processor D. On the other hand, the offered load corresponds to the total amount of

computation carried by the workload as a whole. That is, the offered load is a measure

for the workload as a whole, whereas the system load when SA makes a decision varies

from job to job in the same workload. Of course, as the offered load increases, SA will

more likely schedule a job in heavy load conditions.

The load offered to the supercomputer can increase for several reasons. More

jobs and/or larger jobs increase the load offered to a system (assuming everything else

is kept constant). We investigate this direct increase on the offered load via the load

multiplier κL. Recall from Section 3.5 that the load multiplier κL multiplies both the ar-

rival rate and the request time generated by our workload model.

There is also the possibility that the offered load changes due to the decisions

made by SA. This can happen because SA selects which request to use out of a set of

requests that typically vary regarding the computation time ce needed to complete the

job. For example, SA tends to use small requests in heavy load conditions, as seen in

the previous section. We examine here the impact of the variation on the computation

time ce needed by the possible requests of a job. More precisely, we increase the distri-

bution of σ. A workload formed by jobs with large σ can generate a greater load to the

system if large requests are often selected by SA.

6.2.1. Direct increase of the offered load

The load multiplier κL changes the total workload load by multiplying both the

arrival rate and the request time generated by our workload model (see Section 3.5). For

example, κL = 2 implies that the supercomputer receives a load 4 times greater (twice

the arrival rate and twice the request time) than loads currently found in practice. Of

course, κL = 1 represents the load conditions currently found in practice.

97

By varying κL, we can investigate how SA behaves as the offered load grows.

Figure 63 shows the overall performance of SA scheduling all jobs in the workload for

κL = 0.5, 1.0, 1.5, …, 4.0. Each data point in the graph aggregates the results of 400000

jobs. More precisely, 40 10000-job experiments were run for each data point. The re-

sults of all jobs are considered (i.e., these experiments do not focus on a single target

job). Each 10000-job workload was simulated twice, one time using SA and the other

time using the user request, in both cases for all jobs in the workload.

1 2 3 4
0

1

2

3

4

5

6
x 10

4 (a)

Load multiplier κ
L

G
eo

m
et

ric
 M

ea
n

of
 T

ur
n−

A
ro

un
d

T
im

e

User request for all job
SA request for all jobs

1 2 3 4
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65
(b)

Load multiplier κ
L

R
el

at
iv

e
T

ur
n−

A
ro

un
d

T
im

e

SA request for all jobs

Figure 63 – The effect of offered load

As expected, the performance of the system as a whole degrades with the in-

crease in the load (see Figure 63a). More interesting here is how the load impacts on

SA, an issue better tracked by the relative turn-around time (Figure 63b). Notice that SA

performs extremely well (relative turn-around time = 0.27) when very little load is of-

fered to the supercomputer (κL = 0.5). This is in consonance with the finding the SA

works better in lightly loaded conditions (see Section 5.3.3). Possibly more important is

the observation that the performance improvement achieved by SA degrades slowly as

the load increases. Even for extremely high loads (κL = 4.0), SA still achieves consid-

erably smaller turn-around time than the user request.

98

6.2.2. Large-σσσσ workloads

The value of σ (which determine how close to linear the job speed-up is) seems

to have little effect on the performance of SA (see Section 5.3.1). However, the distribu-

tion of σ may influence the emergent behavior of a system with multiple instances of

SA. If large values of σ are common, it might happen that SA increases the load offered

to the supercomputer, therefore reducing the overall performance of the system. This is

because the requests SA choose from normally vary with respect to the computation

time ce needed to complete the job. Large values of σ accentuate such a variance, creat-

ing the potential for multiple SAs to select requests that demand large amounts of com-

putation to complete the jobs, increasing therefore the load submitted to the supercom-

puter. The focus of this section is to establish whether such possible emergent behavior

indeed appears, and, if so, to determine the extent of its impact on the performance

achieved by SA.

In order to investigate our hypothesis, we artificially change the distribution of σ

to make the occurrence of large values more common. Recall that σ is modeled via a

normal distribution (see Section 3.4.3). We multiply the mean of such a distribution µσ

by a constant κσ. This allows us to raise the values of σ without changing the shape of

the distribution. Figure 64 shows distributions of σ for κσ varying from 1 to 4. Note that

κσ = 1 is the original distribution, which we believe represents the values found in cur-

rent workloads (see Section 3.4.3).

99

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

C
D

F

κσ = 1

κσ = 2

κσ = 3

κσ = 4

Figure 64 – Distributions of σσσσ

We conducted experiments that are almost identical to the ones discussed in the

pervious section (Section 6.2.1). The difference is that here we varied κσ from 0.5 to 4.0

in 0.5 steps (instead of varying κL, as before). As conjectured, the offered load increases

as the distribution of σ grows when SA is used (see Figure 65). As a result, the turn-

around time of SA grows as the distribution of σ increases (see Figure 66a). Since the

user request is not affected by σ in our model (see Figure 66a), the performance im-

provement delivered by SA decreases as the distribution of σ grows (see Figure 66b).

However, SA is still able to improve over the user request even for workloads with very

high values of σ (κσ = 4).

100

1 2 3 4
5.6

5.7

5.8

5.9

6

6.1

6.2

6.3
x 10

10

κσ

O
ffe

re
d

Lo
ad

User request for all jobs
SA request for all jobs

Figure 65 – Offered load as a function of κκκκσσσσ

1 2 3 4
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000
(a)

κσ

G
eo

m
et

ric
 M

ea
n

of
 T

ur
n−

A
ro

un
d

T
im

e

User request for all jobs
SA request for all jobs

1 2 3 4
0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58
(b)

κσ

R
el

at
iv

e
T

ur
n−

A
ro

un
d

T
im

e

SA request for all jobs

Figure 66 – The influence of the distribution of σσσσ on the emergent behavior of SA

101

7. Related and Future Work

No research happens in a vacuum. Research simultaneously draws from previ-

ous efforts and opens new possibilities to be explored. This chapter covers these con-

nections between our own research and other efforts. We start by describing related

work available in the literature. We then move on to sketch research ideas that are the

natural “next steps” to the work described herein.

7.1. Related Work

This section surveys the state-of-art in the three areas that are most relevant for

our research: supercomputer scheduling, application scheduling, and the emergent be-

havior of systems on which resource allocation is performed by multiple independent

entities.

7.1.1. Supercomputer Scheduling

Scheduling distributed-memory parallel supercomputers is an instance of the

more general problem of scheduling multiprocessor computers. The features that par-

ticularize scheduling parallel supercomputers are (i) the continuous arrival of jobs to the

system, and (ii) the high cost of task migration.

Other Multiprocessor Scheduling Problems

A scheduler that deals with jobs that continually arrive to the system is called an

on-line scheduler [44]. In contrast, an off-line scheduler assumes that all jobs are avail-

able when the scheduler starts. Off-line scheduling is more amenable to analytical solu-

tions and there is a great deal of research done in this area [35]. However, the results of

these investigations often cannot be applied to the on-line problem.

Likewise, much of the work in scheduling shared-memory multiprocessors does

not apply directly to distributed-memory parallel computers. In principle, on-line

102

schedulers designed for shared-memory machines [5] [13] [15] [86] can execute on dis-

tributed-memory supercomputers. However, migrating a task is much cheaper in

shared-memory multiprocessors than on distributed-memory machines. For shared-

memory machines, the cost of restarting a task is roughly independent to the processor

assigned to the task. In a distributed-memory supercomputer, on the other hand, restart-

ing a task on different processor involves transferring (at least part of) the address space

of the task, an expensive operation. Since most scheduling solutions for shared-memory

do take advantage of the relative low cost of task migration to improve performance,

these solutions incur prohibitively high overhead when used on distributed-memory

machines.

Preemption Capabilities

Assumptions about the supercomputer vary mainly regarding preemption capa-

bilities6. Supercomputers can support (i) no preemption capabilities (i.e., jobs run to

completion or until a time limit), (ii) local preemption (i.e., preemption within the

threads in a processor), and (iii) preemption over parallel jobs as a whole (a.k.a. gang

scheduling). Most supercomputers currently run jobs until completion. This makes no-

preemptive policies of great interest for researchers in supercomputing scheduling [1]

[2] [24] [32] [43] [66] [67] [69] [82] [90]. Local preemption seems to be of little value

for supercomputer scheduling due to their negative impact on the performance of tightly

coupled parallel jobs [38]. Gang scheduling has been shown to improve performance

under a variety of scenarios [42] [54] [79] [81] [106]. However, the interaction between

gang scheduling and job’s characteristics such as I/O patterns [65] and memory con-

sumption [6] make gang scheduling somewhat complex in practice.

Characteristics of the Job

Assumptions about the job vary regarding job flexibility and the knowledge the

supercomputer scheduler has about jobs6. Job flexibility describes how many processors

a job will be able to use throughout its execution. A rigid job uses a fixed and pre-

6 This classification is based on the work of Feitelson et al [40].

103

established number of processors. A moldable job uses a fixed number of processors

during its execution, but that number can be chosen from a set of possible partition sizes

before the job starts. A malleable job can change its partition size during the execution.

In current practice, supercomputer schedulers accept rigid jobs [58] [66] [69] [74] [82]

and thus much of the research available in the literature assume jobs to be rigid [1] [2]

[43] [55] [67] [78] [85] [90]. However, there is evidence that performance can be im-

proved by allowing jobs to be moldable [24] [32], as in this thesis, or even malleable

[76].

Despite such evidence, we do not know of any supercomputer in production that

supports non-rigid jobs. We believe that this is due to the difficulty in proving that a

given scheduling solution for moldable or malleable jobs will work in practice. Critics

question the degree to which production jobs are moldable or malleable. The very lack

of a production system that supports non-rigid jobs makes it very hard to answer this

question. We have addressed this issue (regarding moldable jobs, at least) in this thesis.

The results of the survey we conducted among supercomputer users (see Chapter 3 and

Appendices A and B) lead us to believe that (i) most jobs current in production are

moldable, and (ii) we can model the characteristics of their moldability, as discussed in

Section 3.4.

The knowledge the supercomputer scheduler has about jobs’ execution time can

be (i) none, (ii) user-provided, (iii) statistical, and (iv) complete. Since Lifka et al

showed that user-provided information can improve the supercomputer utilization and

decrease the jobs’ turn-around time by reducing fragmentation [66] [82], little effort has

been dedicated to supercomputer schedulers that know nothing about the jobs. Schedul-

ers based on user provided information now constitute standard practice [66] [69] [74]

[82], and therefore are a natural target for many research endeavors [24] [43] [107]. In

recent years, there has been considerable work on statistically deriving information

from the past behavior of jobs [31] [84] and applying such information (sometimes

combined with user provided information) to improve supercomputer scheduling [32]

[55] [85]. Although complete knowledge is assumed by some researchers [1] [2] [67]

[90], perfect knowledge cannot be achieved in practice for a general purpose system.

104

However, schedulers that assume perfect knowledge are often useful in providing an

upper bound for scheduling performance (as “the best request” used in Chapter 5, for

example).

Workload Models

Since the performance of a computer system depends on the workload to which

such a system is submitted [18] [21] [44] [67], workload modeling plays a vital role in

performance evaluation. A workload model enables the researcher to explore the per-

formance of the system in a multitude of scenarios. As with any model, a key issue with

supercomputer workload models is how well they represent reality. This motivates the

derivation of models from workload logs.

Parallel supercomputers are relatively recent artifacts, and thus good workload

logs are just appearing [39] [45] [56] [61]. The availability of such logs has prompted

great activity in supercomputer workload modeling in recent years [21] [30] [33] [34]

[40] [44] [60]. However, modeling workloads is challenging [34]. In particular, there

are many important aspects of the supercomputer workloads that have not been mod-

eled, or that have being modeled only incipiently [34].

This situation had a strong impact on our research because SA targets moldable

jobs, and moldability is one of the aspects of the supercomputer workload that has not

been sufficiently studied in the literature. Such a situation impelled us towards an exten-

sive modeling effort (as described in Chapter 3).

Other Factors in Scheduling

Much of the research available in the literature focuses on scheduling proces-

sors. In practice, however, other resources (e.g., disk, memory, communication

infrastructure) may also need to be considered. There is some research in multi-resource

scheduling [6] [15] [70], but it still remains a largely unexplored issue.

7.1.2. Application Scheduling

Application schedulers are an essential component of scheduling solutions for

computational grids. Computational grids are platforms for the execution of parallel

105

jobs that are composed by geographically dispersed resources that may be under the

control of multiple entities [53]. Since grid resources are geographically dispersed and

often in different administrative domains, it is not feasible for a single scheduler to

oversee the entire system.

In a computational grid, groups of resources are independently controlled by dif-

ferent resource schedulers. Resource schedulers control the resources they schedule.

One salient characteristic of resource schedulers is that they receive requests from mul-

tiple users, and thus must arbitrate among such users. Therefore, in order to use re-

sources controlled by multiple resource schedulers, one has to (i) select the resources to

use, (ii) partition the work across the selected resources, and (iii) submit requests to the

appropriated resource schedulers to have the selected resources carry out the work as-

signed to them. This is the task of the application scheduler. Application schedulers do

not control the resources they use. They obtain access to resources by submitting re-

quests to the appropriate resource schedulers. Figure 67 illustrates the relationship be-

tween the different kinds of schedulers in a grid.

106

Figure 67 – Different kinds of schedulers found in a computational grid

AppLeS: An Example of an Application Scheduler

As an example of application schedulers, let us look at AppLeS (Application-

Level Schedulers) [9]. AppLeS are application schedulers developed by Fran Berman’s

group at UCSD and Rich Wolski at the University of Tennessee [9] [10] [27] [83] [88]

[89]. Figure 68 shows the general structure of an AppLeS. A typical AppLeS is part of

the application it schedules. It starts by obtaining information about the environment.

After this, the AppLeS uses heuristics to select feasible sets of resources to be evalu-

ated. It then generates a schedule for each of these sets of resources often using dynamic

predictions of resource availability provided by the NWS to parameterize a performance

model. The schedule with best expected performance is chosen and then deployed over

grid resources.

...

Application
Scheduler

Application
Scheduler

Resource
Scheduler

...

...

Resource
Scheduler

Resource
Scheduler

...

107

Figure 68 – The structure of an AppLeS

State of Art in Application Scheduling

There has been a great deal of interest in application scheduling in recent years

[11]. As with any evolving area, there seems to be reasonable agreement on some as-

pects of application scheduling, but not on others. Perhaps the point that is most com-

monly agreed upon is that application scheduling improves when good information

about the system is available. In particular, using the last measured value of the system

state doesn’t seem to be enough to accurately predict its future behavior [9] [19] [68]

[77] [80] [88] [89] [100] [104]. This observation has motivated the appearance of sys-

tems that probe grid resources and forecast their availability, as with NWS [101] [102],

Komodo [77], and Remos [68].

Although sometimes it is possible to formulate a scheduling problem in a way

that can be solved in polynomial time [3], most instances of scheduling are NP-Hard.

Therefore, most application schedulers use heuristics to navigate through the space of

possible schedules. The main components of such heuristics are (i) how two schedules

are compared, and (ii) how the space of schedules is traversed.

Grid
InfrastructureNWS

Schedule
Deployment

Resource
Discovery

Resource
Selection

Schedule
Planning

and
Performance

Modeling

Decision
Model

accessible
resources

feasible
resource sets

evaluated
schedules

“best”
schedule

AppLeS + application
= self-scheduling

application

Resources

Grid
InfrastructureNWS

Schedule
Deployment

Resource
Discovery

Resource
Selection

Schedule
Planning

and
Performance

Modeling

Decision
Model

Schedule
Deployment

Resource
Discovery

Resource
Selection

Schedule
Planning

and
Performance

Modeling

Decision
Model

accessible
resources

feasible
resource sets

evaluated
schedules

“best”
schedule

AppLeS + application
= self-scheduling

application

Resources

108

Most application schedulers use a performance model to compare two possible

schedules [3] [4] [9] [19] [77] [80] [89] [99]. Others have devised a mechanism to rank

schedules without actually estimating the application’s performance [68] [104]. Since

application schedulers that rely on performance models provide an estimate on the ap-

plication’s execution time, they can be more easily used as a component by another ap-

plication scheduler. This ability makes for compositional and scalable solutions and

hence is important for large systems [100]. On the other hand, performance models are

hard to build. It might be that ranking-based application schedulers are easier to deploy

because they do not require detailed knowledge about the application structure.

There are situations in which the space of possible schedules is small. For ex-

ample, selecting the best server from among a small number of possibilities. In these

cases, application schedulers can simply perform an exhaustive search [4] [19] [77] [89]

[104]. When the number of possible schedules is non-trivial, heuristics can be used to

search such space. Sometimes a polynomial-time optimal solution for part of the prob-

lem is used as a component of the heuristic. For example, there are application schedul-

ers that heuristically select the resources to be used, and then perform the work distribu-

tion via time balancing [9] [27] [80] [99].

Resources Used by Application Schedulers

Most application schedulers developed so far target time-shared resources [4]

[9] [19] [80] [88] [89] [99]. This is a very reasonable starting point because time-shared

resources are the most common ones today. However, there are very interesting applica-

tions that demand access to other kinds of resources, such as instruments or large dis-

tributed-memory supercomputers [83].

Unfortunately it is not trivial to extend an application scheduler to deal with a

new kind of resource scheduler. In order for an application scheduler to make good de-

cisions, it needs to know how long a resource scheduler is going to take to process a

given request. The problem is that obtaining such information currently requires de-

tailed knowledge about the underlying resource schedulers. For example, application

schedulers that use time-shared resources estimate the execution time of a given request

109

by combining resources’ forecasted availability with applications’ benchmarks [4] [9]

[19] [80] [88] [89] [99].

Consider now a parallel supercomputer. Availability cannot be directly applied

to such machines. In most of them, requests have dedicated CPU when they are execut-

ing, but might have to wait idle until the requested resources are available. Therefore,

an application scheduler that uses a parallel supercomputer cannot use the same tech-

nique as the ones that target time-shared computers. Sadly, efforts to predict the super-

computer’s queue wait time have not delivered techniques that are accurate enough for

application scheduling [31] [55] [84] [85].

This open problem is addressed by this thesis. In Chapter 2, we described SA,

the Supercomputer AppLeS. In its more general formulation, SA performs application

scheduling for supercomputer jobs by simulating multiple possible requests, and then

submitting the one that is expected to yield the smallest turn-around time. As seen in

Chapters 5 and 6, such a simple strategy results in considerable performance gains in a

variety of circumstances.

Predictability in Resource Scheduling

As discussed above, good information about the underlying resource schedulers

is important for application scheduling. Currently most application schedulers obtain

such information from systems that monitor resources and forecast their availability. An

alternative approach would be to make resource schedulers predictable by design.

This might be a promising approach because there has been considerable effort

to make resource scheduling more predictable within the operating systems community

[48] [91] [95] [96]. Many of these efforts primarily aim to provide a fine level of con-

trol on how the resources are shared among their users. Predictability comes as a result

of this fine level of control.

To a lesser degree, some researchers have started exploring the predictability of

resource scheduling as a way to enable multiple schedulers to coexist [20] [23] [57].

These results are naturally more oriented to grid computing. The focus here is on where

to draw the line dividing the responsibility of resource and application schedulers, and

110

what interface should one export to the other. Predictability appears as a requisite for

good application scheduling.

More closely related with our research, there has been considerable interest in

enhancing supercomputer schedulers to provide advance reservations [52]. These ef-

forts address the need for resource schedulers to be predictable in the grid computing

environment. However, reservation is not a complete solution. One also needs informa-

tion that empowers application schedulers in discovering which reservation to ask for.

A trial-and-error strategy (as suggested in [52]) would likely result in slow and poor ap-

plication scheduling.

7.1.3. Emergent Behavior

In order to enable the wide deployment of application scheduling technology, a

fundamental issue that needs to be addressed is the determination of the emergent be-

havior caused by multiple application schedulers in the same system, an issue also

known as the Bushel of AppLeS problem [10]. This is indeed a very important matter

because there is theoretical evidence that systems in which resource allocation is per-

formed by many independent entities can exhibit performance degradation [71] and

even chaotic behavior [59].

It has been very difficult to investigate the Bushel of AppLeS question under re-

alistic scenarios because of the difficulty in building experimental testbeds. In addition,

there has not been that many application schedulers in production use for any emergent

behavior to have appeared in current systems. However, the Bushel of AppLeS problem

is a particular instance of the more general problem of determining the emergent behav-

ior of systems with multiple decision makers. In a Bushel of AppLes, it just happens

that the decisions are limited to be scheduling decisions. This suggests that we might

find useful results from Economics, an area in which systems with co-existing inde-

pendent decision-makers are commonplace. For example, economic regulations can be

seen as mechanisms to control systemic problems by reducing the freedom of the deci-

sion-makers [14].

111

As a matter of fact, there has been research on how economic principles can be

used to provide innovative solutions for computer science problems [22] [25] [57] [72]

[92] [93] [94]. Of particular interest to us are those papers that, assuming the agents to

implement a particular strategy, address emergent characteristics of the system as a

whole, such as convergence and stability [97] [98]. Computational markets seem to be a

natural scenario to explore the stability and performance of systems with multiple inde-

pendent decision-makers.

Although small, there is some literature on the Bushel of AppLeS problem per

se. Some fundamental work has already been done by Hogg and Huberman [59] and

Mitzenmacher [71]. They highlight the importance of diversity for the stability and per-

formance of systems with independent decision-makers. Intuitively, when all decision-

makers employ very similar strategies, there is a greater the chance for “herd behavior”

to happen. Diverse systems are in general more robust, a fact that is starting to be ex-

plored in Computer Science (e.g., in security [49]).

More strongly related to our research, Downey found that choosing the partition

size that minimizes the expected turn-around time of each job leads to better global per-

formance than many proposed system-centric strategies [32]. This result did not employ

application schedulers per se and was obtained under conditions and assumptions that

are different from our own research. However, it suggests that multiple application

schedulers might create a positive emergent behavior.

In fact, we also found the emergent behavior caused by multiple instances of SA

to be benefitial. As discussed in Chapter 6, the emergent behavior generated by SA

seems to reduce (i) the occurrence of very high-load conditions, and (ii) the wait time of

jobs that arrive in systems experiencing moderate to high load. This is a remarkable re-

sult and one of the first attempts to characterize the performance impact the Bushel of

AppLeS problem has on application scheduling.

112

7.2. Future Work

Research is learning without a textbook. And, as with any learning activity, re-

search has no end. In particular, the research presented in this thesis leaves many open

questions to be explored. Two of these open questions seem to be the natural “next

steps” for this thesis: (i) deploying and following up SA, and (ii) extending SA to deal

with multiple supercomputers.

Deploying SA in Real Systems

The results presented in this thesis were obtained using rigorous scientific meth-

odologies. Care was taken to model the intricacies of real-life supercomputer usage, and

we are confident SA will improve the job’s turn-around time in practice. But there is

more to learn. Deploying SA in a real production system will give us feedback that we

could not obtain otherwise. In particular, deploying SA will enable us to refine our

moldability model and possibly the scheduling strategy itself.

Multiple Supercomputers

Since SA is an application scheduler, there is no intrinsic reason to restrict the

job submission to one supercomputer. After all, an early motivation for our work was to

better integrate supercomputers into the computational grid environment. By targeting

multiple supercomputers, SA in principle would have more opportunities to improve the

performance of a job. Moreover, it is conceivable that multiple instances of SA would

provide load balancing among multiple supercomputers by avoiding the most loaded

machines.

However, extending SA to deal with multiple supercomputers raises some non-

trivial questions. First of all, does SA simply submit the job to all possible supercom-

puters (and cancel all submissions but the first one to start running), or does it select the

supercomputer with best expected performance? The former approach will likely give a

better performance improvement from the viewpoint of one job, but might also generate

negative emergent behavior due to the large increase in cancellations throughout the

entire system. If negative emergent behavior really arises, an interesting research goal is

113

devising a supercomputer scheduling policy (e.g. assigning cost to submissions) that

dissuades this strategy of replicating a job to all possible supercomputers.

Also, should SA try to split the job across multiple supercomputers? This is

clearly harder than running a job on one supercomputer because of the need to consider

(i) the supercomputer-to-supercomputer network performance, and (ii) the transfer of

input from and output to the “home” supercomputer. Moreover, network performance

and input/output sizes have to be carefully modeled to enable the proper evaluation of

such coallocation schemes. On the other hand, the performance improvement can poten-

tially be much greater because unprecedented levels of parallelism can be achieved.

Another important issue regarding coallocation across multiple supercomputers

is whether the supercomputer scheduler can provide some additional service to ease

coallocation. Advance reservations and availability lists make it possible for an applica-

tion scheduler to devise the requests to be sent to multiple supercomputers in order to

coallocate a set of resources. However, the backfilling of these requests would happen

independently from one another, probably breaking the coallocation.

There is the straightforward solution of marking requests as non-backfillable,

but not benefiting from backfilling would probably hurt the job’s turn-around time.

Such a simple solution might render coallocation uncompetitive compared with using a

single supercomputer (where backfilling can be used with no problem).

Perhaps there is a way to enhance the interface provided by the supercomputer

scheduler to better support coallocation. An idea would be to make backfilling condi-

tional (i.e., you do not lose your original time slot). The idea behind conditional back-

filling is that a job gets two (or maybe more) allocation slots, but you can use only one.

The application scheduler would have to release the slots that the job is not going to

use.

The sketch of these two research topics is not meant to suggest that these are the

only research efforts that would refine the results presented herein. Deploying SA and

extending it to multiple supercomputers are just natural next steps in our research. Be-

yond them, there is much more to explore in leveraging moldability to improve the per-

114

formance of supercomputer jobs and better integrating distributed-memory supercom-

puters in the computational grid.

115

8. Summary

Our thesis statement is that the request that submits a moldable job can be

automatically selected in a way that often reduces the job’s turn-around time. We

support this claim by (i) describing SA, the Supercomputer AppLeS, an application

scheduler that automatically selects the request that submits a moldable job, (ii) intro-

ducing metrics and models that allow us to evaluate SA, and finally (iii) using such met-

rics and models to show that SA indeed improves the job’s turn-around time over the

user-selected request on a large variety of scenarios.

The main contribution of this thesis is the demonstration that application sched-

ulers can use job moldability to improve the performance of supercomputer jobs, i.e.

that our thesis statement holds true. But this is not our only contribution. This thesis

also contains two other important contributions to the areas of application scheduling

and supercomputer scheduling. First, we conducted the first study that we are aware of

on the emergent behavior of application schedulers in real-life scenarios. Second, our

workload model is novel and provides a solid basis for evaluating scheduling strategies

that leverage moldability to improve performance.

Exploiting Moldability to Improve Turn-Around Time

With the impressive performance of commodity processors, parallelism has be-

come a key approach to achieve superior performance. Parallel supercomputers provide

an important platform for parallel jobs, especially for those jobs that demand intensive

communication and synchronization. Unfortunately, such supercomputers are expensive

and thus have to shared among multiple users.

The problem is that sharing the supercomputer results in queue delays that can

jeopardize the performance gains of parallelism. Exploiting moldability to reduce a

job’s turn-around time addresses this problem. We introduce SA to show how job

moldability can be used to reduce a job’s turn-around time. As explained in Chapter 2,

116

SA receives from the user a set of requests that can be used to submit the user’s job. SA

analysis the supercomputer schedule and selects one of the requests to submit the job.

Using the evaluation criteria established in Chapters 3 and 4, we show in Chap-

ters 5 and 6 that moldable jobs that use the request selected by SA often achieve smaller

turn-around times than those jobs submitted through the user selected request. More-

over, SA is shown to be close (within 10%) to the performance achieved by the best re-

quest among those it can chose from. In practice, no application scheduler can always

select the best request because this would require perfect knowledge about the jobs’

execution times and future arrivals.

We also investigate the impact on SA of parameters that gauge the characteris-

tics of the job, the information available to SA, and the state of the supercomputer. Fi-

nally, the emergent behavior of a system on which many jobs have their requests se-

lected by SA is also studied (more on that below).

Note also that most jobs are already moldable (see Chapter 3). This makes solu-

tions that explore moldability to improve performance (such as SA) immediately appli-

cable in practice. This immediate applicability of SA is reinforced by the fact that SA is

an application scheduler and thus can be deployed without changes in the current soft-

ware infrastructure that control supercomputers (e.g., operating system, scheduler, ac-

count manager).

Emergent Behavior

Application scheduling is a key technology for scheduling in grid computing

environments. However, there is concern that undesirable global behavior can emerge

from systems with multiple application schedulers [10]. Such an issue has not yet been

properly addressed, mainly because application scheduling is a new approach and so

systems with multiple application schedulers are not yet common in practice.

In this thesis, we do address this question for SA, an application scheduler that

selects which request submits a moldable job to a supercomputer. To the best of our

knowledge, this is the first study of the emergent behavior of real-life application

schedulers. As explained in Chapter 6, there are at least three different emergent behav-

117

iors that arise from using SA with all jobs in the system. More precisely, the emergent

behavior generated by SA seems to (i) increase the competition for resources, making it

somewhat harder for each instance of SA to improve performance, (ii) reduce the occur-

rence of very high load conditions, and (iii) reduce the wait time of jobs that arrive in

systems experiencing moderate to high load. Overall, the emergent behaviors (ii) and

(iii) seem to overcome the emergent behavior (i), making the performance of SA in

emergent behavior conditions to be slightly better than when a single SA is present in

the system. Although we cannot generalized our results to the emergent behavior of ap-

plication schedulers as a whole, it is certainly encouraging that the first in-depth inves-

tigation of this issue brought positive results.

Workload Model

Researchers in supercomputer scheduling have long debated whether perform-

ance could be improved by allowing more flexibility in the job model than a fixed parti-

tion size [32] [40] [44]. The proponents of less strict job models have maintained that

the scheduler would gain flexibility in resource allocation, and that this flexibility

would translate into better performance. The critics, on the other hand, have suggested

that parallel jobs are actually rigid, and hence strategies that rely on non-rigid jobs

would not be effective in practice. Furthermore, critics have raised doubts on some

scheduling solutions for non-rigid jobs because of non-realistic models used in their

evaluation.

A key result of the survey we conducted among supercomputer users was the

evidence that most jobs are already moldable (see Chapter 3 and Appendices A and B).

Although moldability is not the most flexible job model, it can be exploited to substan-

tially improve the scheduling of supercomputer jobs, as exemplified by SA.

Furthermore, our moldable job model makes it possible to evaluate with good

accuracy scheduling solutions that assume jobs to be moldable. The model captures im-

portant characteristics that moldable jobs display in practice. These include memory

constraints, maximum parallelism, algorithmic constraints on partition size, user behav-

ior in generating requests, and job speedup behavior.

118

Our workload model is not only novel with respect to moldability, it also cap-

tures two other important aspects of a supercomputer workload: job cancellation and

request accuracy. Job cancellation is valuable for realistic modeling because cancella-

tions impact the scheduler behavior. Request accuracy may be even more critical for a

good modeling. Practically all current supercomputer schedulers use backfilling to re-

claim time that was requested but not used. However, part of the literature does not

model request time and assumes the scheduler to have perfect knowledge of the job’s

execution times [1] [2] [67] [90]. This is unfortunate because very often the user’s esti-

mates are not good, making the ability of the scheduler in dealing with unused alloca-

tions a vital feature.

Final Remarks

We have shown that moldability can be used to improve the turn-around time of

supercomputer jobs by enabling an application scheduler to select the request that sub-

mits a moldable job to a supercomputer. The need to provide solid basis for the evalua-

tion of our solution led us to develop a novel moldable workload model. We also inves-

tigated the emergent behavior that arises when multiple jobs use our solution, in one the

first efforts to characterize the emergent behavior of application schedulers. The results

within this thesis contribute substantively towards more performance-efficient and envi-

ronment-sensitive supercomputer scheduling and form an important building block in

the pursuit of performance for supercomputer job.

119

Acknowledgments

We also want to express our gratitude to Alan Su and Jim Hayes for always be-

ing available for to give us a second opinion. Many thanks to Victor Hazlewood, Dror

Feitelson and the people who made their workloads available at the Parallel Workloads

Archive [45]. Thanks also to the members of the AppLeS group, Keith Marzullo, Rich

Wolski, Allen Downey, and Warren Smith for the insightful discussions and valuable

suggestions.

We thank our supporters: CAPES grant DBE2428/95-4, DoD Modernization

contract 9720733-00, NPACI/NSF award ASC-9619020, and NSF grant ASC-9701333.

120

A. Survey’s Questionaire

1 - Which organization’s parallel supercomputers do you use? Mark all that apply.
• NASA
• NCSA
• NERSC
• NPACI
• Other

2 - How many runs do you perform per month?
• 1 - 10
• 11 - 30
• 31 - 50
• 51 – 100
• More than 100

3 - How many processors do you usually request?
• 1 - 4
• 5 - 10
• 11 - 30
• 31 - 50
• 51 - 100
• More than 100
• Do not know

4 - What is the minimum number of processors your application needs to run?
• 1
• 2 - 4
• 5 - 10
• 11 - 30
• More than 30
• Do not know

121

5 - What is the maximum number of processors your application can benefit from? Such
a maximum is the number after which adding more processors doesn't reduce the appli-
cation’s execution time.

• 1 - 10
• 11 - 30
• 31 - 50
• 51 - 100
• 101 - 200
• More than 200
• Do not know

6 - How many processors can your application efficiently use? This number represents a
trade-off. Beyond it, additional processors do not reduce the application’s execution
time enough to make it worth requesting them.

• 1 - 4
• 5 - 10
• 11 - 30
• 31 - 50
• 51 - 100
• More than 100
• Do not know

7 - Besides a minimum and maximum, does your application require:
• A particular number of processors (i.e., it cannot run with a different number

of processors)
• A perfect-square number of processors
• A perfect-cube number of processors
• A power-of-two number of processors
• Has some other constraint on the number of processors
• Poses no particular restriction on the number of processors it uses
• Do not know

122

8 - How many different numbers of processors have you requested for your application?
For example, if you have run your application with 8, 16, and 32 processors, the answer
would be 3.

• 1
• 2 - 3
• 4 - 5
• 6 - 10
• More than 10
• Do not know

9 - What is the combined size of your input and output?
• Less than 100KB
• 100KB - 1MB
• 1MB - 10MB
• 10MB - 100MB
• More than 100MB
• Do not know

10 - For your application, is the interprocess communication?
• Low; the processes run almost independently
• Moderate
• Heavy; it has noticeable impact on the performance of the application
• Do not know

11 - How often does your application "fail" (i.e., you have to resubmit it)? The failure
"cause" is not important here. It can be due to a bug, an invalid input, a system shut-
down, or anything else.

• 0 - 20%
• 21 - 40%
• 41 - 60%
• 61 - 80%
• 81 - 100%
• Do not know

123

12 - What priority do you normally use when submitting you application?
• Low
• Normal
• High
• Do not know

124

B. Survey’s Results

1 - Which organization’s parallel supercomputers do you use? Multiple answers were
allowed here.

125

2 - How many runs do you perform per month?

3 - How many processors do you usually request?

126

4 - What is the minimum number of processors your application needs to run?

5 - What is the maximum number of processors your application can benefit from? Such
a maximum is the number after which adding more processors doesn't reduce the appli-
cation’s execution time.

127

6 - How many processors can your application efficiently use? This number represents a
trade-off. Beyond it, additional processors don't reduce the application’s execution time
enough to make it worth requesting them.

7 - Besides a minimum and maximum, does your application require a partition size that
is:

128

8 - How many different numbers of processors have you requested for your application?
For example, if you have run your application with 8, 16, and 32 processors, the answer
would be 3.

9 - What is the combined size of your input and output?

129

11 - For your application, is the interprocess communication? Low communication
means that the processes run almost independently. Heavy communication has notice-
able impact on the performance of the application.

11 - How often does your application "fail" (i.e., you have to resubmit it)? The failure
"cause" is not important here. It can be due to a bug, an invalid input, a system shut-
down, or anything else.

130

12 - What priority do you normally use when submitting you application?

131

C. Emergent Behavior Results

0 2.9 6.51 14.5 33.3 75.3 170 387 924 2860 11700
1000

1500

2000

2500

3000

3500

Average Parallelism A

G
eo

m
et

ric
 M

ea
n

of
 T

ur
n−

A
ro

un
d

T
im

e
SA in static workload
SA in adaptive workload
User in static workload
User in adaptive workload

0 .01 .04 .09 .15 .23 .33 .47 .66 .92 1
0

2000

4000

6000

8000

10000

12000

Accuracy a

G
eo

m
et

ric
 M

ea
n

of
 T

ur
n−

A
ro

un
d

T
im

e

SA in static workload
SA in adaptive workload
User in static workload
User in adaptive workload

132

Power of 2 Other
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Partition Size

G
eo

m
et

ric
 M

ea
n

of
 T

ur
n−

A
ro

un
d

T
im

e

SA in static workload
SA in adaptive workload
User in static workload
User in adaptive workload

0 6 15 35 81 186 418 955 2291 68208
1000

1500

2000

2500

3000

3500

Maximum Partition Size c
max

G
eo

m
et

ric
 M

ea
n

of
 T

ur
n−

A
ro

un
d

T
im

e

SA in static workload
SA in adaptive workload
User in static workload
User in adaptive workload

133

0 1 3 6 10 40
1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Minimum Partition Size c
min

G
eo

m
et

ric
 M

ea
n

of
 T

ur
n−

A
ro

un
d

T
im

e
SA in static workload
SA in adaptive workload
User in static workload
User in adaptive workload

0 92 348 897 2063 9822 55046 16790161
0

1

2

3

4

5

6

7

8

9
x 10

4

Sequential Execution Time L

G
eo

m
et

ric
 M

ea
n

of
 T

ur
n−

A
ro

un
d

T
im

e

SA in static workload
SA in adaptive workload
User in static workload
User in adaptive workload

134

0 1 2 3 4 5 8 20
500

1000

1500

2000

2500

3000

3500

4000

4500

Number of Requests v

G
eo

m
et

ric
 M

ea
n

of
 T

ur
n−

A
ro

un
d

T
im

e

SA in static workload
SA in adaptive workload
User in static workload
User in adaptive workload

0 0 0.4 0.7 1 1.3 1.5 1.8 2.2 2.7 6.3
1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

σ

G
eo

m
et

ric
 M

ea
n

of
 T

ur
n−

A
ro

un
d

T
im

e

SA in static workload
SA in adaptive workload
User in static workload
User in adaptive workload

135

D. Moldable Backfilling Results

0 3 6 10 30 70 200 400 900 3000 10000
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

Average Parallelism A

G
eo

m
et

ric
 M

ea
n

of
 T

ur
n−

A
ro

un
d

T
im

e

MB
SA
User

0 .01 .04 .08 .14 .21 .31 .44 .63 .92 1
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Accuracy a

G
eo

m
et

ric
 M

ea
n

of
 T

ur
n−

A
ro

un
d

T
im

e

MB
SA
User

136

Power of 2 Other
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Partition Size

G
eo

m
et

ric
 M

ea
n

of
 T

ur
n−

A
ro

un
d

T
im

e

MB
SA
User

0 6 15 35 81 185 419 950 2317 68316
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

Maximum Partition Size c
max

G
eo

m
et

ric
 M

ea
n

of
 T

ur
n−

A
ro

un
d

T
im

e

MB
SA
User

137

0 1 3 6 10 40
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

Minimum Partition Size c
min

G
eo

m
et

ric
 M

ea
n

of
 T

ur
n−

A
ro

un
d

T
im

e

MB
SA
User

0 85 312 796 1800 8469 47782 22183297
0

1

2

3

4

5

6

7

8
x 10

4

Sequential Execution Time L

G
eo

m
et

ric
 M

ea
n

of
 T

ur
n−

A
ro

un
d

T
im

e

MB
SA
User

138

0 1 2 3 4 5 8 20
500

1000

1500

2000

2500

3000

3500

4000

Number of Requests v

G
eo

m
et

ric
 M

ea
n

of
 T

ur
n−

A
ro

un
d

T
im

e

MB
SA
User

0 0 0.4 0.7 1 1.3 1.6 1.9 2.2 2.7 6.6
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

σ

G
eo

m
et

ric
 M

ea
n

of
 T

ur
n−

A
ro

un
d

T
im

e

MB
SA
User

139

References

[1] Kento Aida, Hironori Kasahara, and Seinosuke Narita. Job Scheduling Scheme for
Pure Space Sharing among Rigid Jobs. In Job Scheduling Strategies for Parallel
Processing, Springer-Verlag, Lecture Notes in Computer Science Vol. 1459, 1988.

[2] Kento Aida. Effect of Job Size Characteristics on Job Scheduling Performance. In
Job Scheduling Strategies for Parallel Processing, Dror Feitelson and Larry
Rudolph (Eds.), Springer-Verlag, Lecture Notes in Computer Science vol. 1911,
2000.

[3] Alessandro Amoroso, Keith Marzullo, and Aleta Ricciardi. Wide-Area Nile: A
Case Study of a Wide-Area Data-Parallel Application. ICDCS’98 – International
Conference on Distributed Computing Systems. May 1998.

[4] D. Andresen, Tao Yang, O. Ibarra, and O. Egecioglu. Adaptive partitioning and
scheduling for enhancing WWW application performance. Journal of Parallel and
Distributed Computing, vol.49, (no.1), Academic Press, 25 Feb. 1998. p.57-85.

[5] Nimar Arora, Robert Blumofe, and C. Greg Plaxton. Thread Scheduling for Mul-
tiprogrammed Multiprocessors. In Proceedings of the Tenth Annual ACM Sym-
posium on Parallel Algorithms and Architectures (SPAA), Puerto Vallarta, Mex-
ico, June 28 - July 2, 1998.
http://www.cs.utexas.edu/users/rdb/papers.html

[6] Anat Batat and Dror Feitelson. Gang Scheduling with Memory Considerations.
IPDPS’2000, International Parallel and Distributed Processing Symposium, pp.
109-114, May 2000.
http://www.cs.huji.ac.il/~feit/pub.html

[7] O. Babaoglu, A. Bartoli, G. Dini. Enriched View Synchrony: a Programming
Paradigm for Partitionable Asynchronous Distributed Systems. IEEE Transac-
tions on Computers, vol.46, (no.6), IEEE, June 1997.

[8] Earl Babbie. Survey Research Methods. Wadsworth Publishing Company, 2nd edi-
tion, 1990.

[9] Fran Berman, Richard Wolski, Silvia Figueira, Jennifer Schopf, and Gary Shao.
Application-Level Scheduling on Distributed Heterogeneous Networks. Super-
computing’96.
http://www-cse.ucsd.edu/groups/hpcl/apples/hetpubs.html

140

[10] Fran Berman and Rich Wolski. The AppLeS Project: A Status Report. In Proceed-
ings of the 8th NEC Research Symposium, Berlin, Germany, May 1997.
http://www.cs.ucsd.edu/groups/hpcl/apples/hetpubs.html

[11] Fran Berman. High-Performance Schedulers. In [53]. 1999.

[12] Prashant Bhat, Viktor Prasanna, and C. Raghavendra. Adaptive Communication
Algorithms for Distributed Heterogeneous Systems. Seventh IEEE International
Symposium on High Performance Distributed Computing (HPDC’98). Chicago,
Illinois, USA. July 1998.

[13] Robert Blumofe, Christopher Joerg, Bradley Kuszmaul, Charles Leiserson, Keith
Randall, and Yuli Zhou. Cilk: An Efficient Multithreaded Runtime System. In The
Journal of Parallel and Distributed Computing, 37(1), pages 55-69, August, 1996.
http://www.cs.utexas.edu/users/rdb/papers.html

[14] Dieter Bos. Pricing and Price Regulation: An Economic Theory for Public Enter-
prise and Public Utilities. Elsevier Science, 1994.

[15] Timothy Brecht. An Experimental Evaluation of Processor Pool-Based Schedul-
ing for Shared-Memory NUMA Multiprocessors. In Job Scheduling Strategies for
Parallel Processing, Springer-Verlag, Lecture Notes in Computer Science Vol.
1291, Dror Feitelson and Larry Rudolph (eds.), 1997.

[16] R. B. Bunt. Scheduling Techniques for Operating Systems. Computer. October
1976.

[17] M. Calzarossa and G. Serazzi. A characterization of the variation in time of work-
load arrival patterns. IEEE Transactions on Computers, vol. C-34, (no.2), Feb.
1985. p.156-62.

[18] M. Calzarossa and G. Serazzi. Workload Characterization: A Survey. Proceedings
of the IEEE, vol. 81, no. 8, pp. 1136-1150, August 1993.

[19] Henri Casanova and Jack Dongarra. NetSolve: A Network Server for Solving
Computational Science Problems. Supercomputing’96, 1996.
http://www.netlib.org/utk/people/JackDongarra/papers.html

[20] Steve Chapin. Distributed Scheduling Support in the Presence of Autonomy. Pro-
ceedings of the 4th Heterogeneous Computing Workshop, pp. 22-29, Santa Bar-
bara, CA, April 1995.
http://www.cs.virginia.edu/~chapin/papers/hcw95.ps

[21] Steve Chapin, Walfredo Cirne, Dror Feitelson, James Jones, Scott Leutenegger,
Uwe Schwiegelshohn, Warren Smith, and David Talby. Benchmarks and Stan-
dards for the Evaluation of Parallel Job Schedulers. In Job Scheduling Strategies

141

for Parallel Processing, D. Feitelson and Larry Rudolph (Eds.) Springer-Verlag,
Lecture Notes in Computer Science, vol. 1659, pp. 66-89, 1999.
http://www-cse.ucsd.edu/users/walfredo/resume.html#publications

[22] John Cheng and Michael Wellman. The WALRAS algorithm: A Convergent Dis-
tributed Implementation of General Equilibrium Outcomes. Computational Eco-
nomics, 12:1-24, 1998.
http://ai.eecs.umich.edu/people/wellman/Publications.html#MOP

[23] Walfredo Cirne and Keith Marzullo. The Computational Co-op: Gathering Clus-
ters into a Metacomputer. In Proceeding of IPPS/SPDP’99, April 1999.
http://www-cse.ucsd.edu/users/walfredo/resume.html#publications

[24] Walfredo Cirne and Francine Berman. Adaptive Selection of Partition Size for Su-
percomputer Requests. In Job Scheduling Strategies for Parallel Processing, Dror
Feitelson and Larry Rudolph (Eds.), Springer-Verlag, Lecture Notes in Computer
Science vol. 1911, 2000.
http://www-cse.ucsd.edu/users/walfredo/resume.html#publications

[25] Scott Clearwater (editor). Market-Based Control: A Paradigm for Distributed Re-
source Allocation. World Scientific. 1996.

[26] K. Czajkowski, I. Foster, C. Kesselman, N. Karonis, S. Martin, W. Smith, and S.
Tuecke. A Resource Management Architecture for Metacomputing Systems. In Job
Scheduling Strategies for Parallel Processing, Dror Feitelson and Larry Rudolph
(Eds.), Springer-Verlag, Lecture Notes in Computer Science vol. 1459, 1998.
http://www-fp.globus.org/documentation/papers.html

[27] Holly Dail, Graziano Obertelli, Francine Berman, Rich Wolski, and Andrew
Grimshaw. Application-Aware Scheduling of a Magnetohydrodynamics Applicati-
on in the Legion Metasystem. Proceedings of the 9th Heterogeneous Computing
Workshop, May 2000.
http://apples.ucsd.edu/hetpubs.html

[28] Peter Dinda, D. O'Hallaron. An Evaluation of Linear Models for Host Load Pre-
diction. Proceedings of the 8th IEEE Symposium on High-Performance Distrib-
uted Computing (HPDC-8), Redondo Beach, CA, August 1999.
http://www.cs.cmu.edu/afs/cs/usr/pdinda/html/papers.html

[29] Jay Devore. Probability and Statistics for Engineering and the Sciences. Fourth
Edition, Wadsworth Publishing Company, 1995.

[30] Allen Downey. A model for speedup of parallel programs. U.C. Berkeley Techni-
cal Report CSD-97-933, January 1997.

http://ai.eecs.umich.edu/people/wellman/Publications.html#MOP

142

http://www.sdsc.edu/~downey/model/

[31] Allen Downey. Predicting queue times on space-sharing parallel computers. 11th
International Parallel Processing Symposium (IPPS’97), Geneva, Switzerland,
April 1997.
http://www.sdsc.edu/~downey/predicting/

[32] Allen Downey. Using Queue Time Predictions for Processor Allocation. In Job
Scheduling Strategies for Parallel Processing, Springer-Verlag, Lecture Notes in
Computer Science Vol. 1291, Dror Feitelson and Larry Rudolph (eds.), 1997.
http://www.sdsc.edu/~downey/predalloc/

[33] Allen Downey. A parallel workload model and its implications for processor allo-
cation. 6th IEEE International Symposium on High Performance Distributed
Computing (HPDC’97), August 1997.
http://www.sdsc.edu/~downey/allocation/

[34] Allen Downey and Dror Feitelson. The elusive goal of workload characterization.
Perf. Eval. Rev. 26(4), pp. 14-29, March 1999.
http://www.cs.huji.ac.il/~feit/pub.html

[35] M. Drozdowski. Scheduling Multiprocessor Tasks: An Overview. European Jour-
nal of Operational Research 94, pp. 215-230, 1996.

[36] Derek Eager, John Zahorjan, and Edward Lazowska. Speedup Versus Efficiency in
Parallel Systems. IEEE Transactions on Computers, vol. 38, no. 3, March 1989.

[37] Graham Fagg, Keith Moore, Jack Dongarra, and Al Geist. Scalable Networked
Information Processing Environment (SNIPE). Supercomputing ’97. San Jose,
CA, USA. 1997.
http://www.supercomp.org/sc97/proceedings/TECH/MOORE/INDEX.HTM

[38] Dror Feitelson and Larry Rudolph. Gang Scheduling Performance Benefits for
Fine-Grain Synchronization. Journal of Parallel and Distributed Computing (16)
306-318, 1992.

[39] Dror Feitelson and Bill Nitzberg. Job characteristics of a production parallel sci-
entific workload on the NASA Ames iPSC/860. In Job Scheduling Strategies for
Parallel Processing, Dror Feitelson and Larry Rudolph (Eds.), Lecture Notes in
Computer Science Vol. 949, pp. 337-360, Springer-Verlag, 1995.
http://www.cs.huji.ac.il/~feit/pub.html

[40] Dror Feitelson, Larry Rudolph, Uwe Schweigelshohn, Kenneth Sevcik, and Park-
son Wong. Theory and Practice in Parallel Job Scheduling. 3rd Workshop on Job

http://www.sdsc.edu/~downey/model/
http://www.sdsc.edu/~downey/allocation/
http://www.cs.huji.ac.il/~feit/pub.html

143

Scheduling Strategies for Parallel Processing, Springer-Verlag Lecture Notes in
Computer Science, vol. 1291, pp. 1-34, April 1997.
http://www.cs.huji.ac.il/~feit/parsched/parsched97.html

[41] Dror Feitelson. Packing schemes for gang scheduling. In Job Scheduling Strate-
gies for Parallel Processing, Lecture Notes in Computer Science vol. 1162, Dror
Feitelson and Larry Rudolph (eds.), pp. 89-110, Springer-Verlag, 1996.
http://www.cs.huji.ac.il/~feit/pub.html

[42] Dror Feitelson and Morris Jette. Improved Utilization and Responsiveness with
Gang Scheduling. In Job Scheduling Strategies for Parallel Processing, Dror
Feitelson and Larry Rudolph (Eds.), pp. 238-261, Lecture Notes in Computer Sci-
ence Vol. 1291, Springer-Verlag, 1997.
http://www.cs.huji.ac.il/~feit/pub.html

[43] Dror Feitelson and A. Mu'alem Weil. Utilization and predictability in scheduling
the IBM SP2 with backfilling. In 12th Intl. Parallel Processing Symp., pp. 542-546,
Apr 1998.
http://www.cs.huji.ac.il/~feit/pub.html

[44] Dror Feitelson and Larry Rudolph. Metrics and Benchmarking for Parallel Job
Scheduling. In Job Scheduling Strategies for Parallel Processing, Dror Feitelson
and Larry Rudolph (Eds.), pp. 1-24, Springer-Verlag, Lecture Notes in Computer
Science vol. 1459, 1998.

[45] Dror Feitelson. The Parallel Workloads Archive.
http://www.cs.huji.ac.il/labs/parallel/workload/

[46] Adam Ferrari et al. A Flexible Security System for Metacomputing Environments.
Technical Report CS-98-36, Department of Computer Science, University of Vir-
ginia.
http://www.cs.virginia.edu/~legion/papers.html

[47] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, S. Tuecke. A
Directory Service for Configuring High-Performance Distributed Computations.
6th IEEE Symposium on High-Performance Distributed Computing, pg. 365-375,
1997.
http://www-fp.globus.org/documentation/papers.html

[48] Liana Fong and Mark Squillante. Time-Function Scheduling: A General Apporach
to Controllable Resource Management. Technical Report RC 20155 (89194),
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY
10598, August 1995.

http://www.cs.huji.ac.il/~feit/pub.html

144

http://domino.watson.ibm.com/library/cyberdig.nsf/a3807c5b4823c53f852565610
06324be/05a54a208d1f0f6a852565930072576a?OpenDocument

[49] Stephanie Forrest et al. Building Diverse Computer Systems. Proceeding of the 6th
Workshop on Hot Topics in Operating Systems, pp. 67-72. 1997.
ftp://ftp.cs.unm.edu/pub/forrest/hotos-97.ps

[50] I. Foster, J. Geisler, C. Kesselman, S. Tuecke. Managing Multiple Communication
Methods in High-Performance Networked Computing Systems. Journal of Parallel
and Distributed Computing, 40:35-48, 1997.
http://www-fp.globus.org/documentation/papers.html

[51] I. Foster, C. Kesselman, G. Tsudik, S. Tuecke. A Security Architecture for
Computational Grids. Proc. 5th ACM Conference on Computer and
Communications Security Conference, pg. 83-92, 1998.
http://www-fp.globus.org/documentation/papers.html

[52] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, A. Roy. A Distributed
Resource Management Architecture that Supports Advance Reservations and Co-
Allocation. International Workshop on Quality of Service, 1999.
http://www-fp.globus.org/documentation/papers.html

[53] Ian Foster and Carl Kesselman (editors). The Grid: Blueprint for a New Comput-
ing Infrastructure. Morgan Kaufmann Publishers. July 1998.

[54] Gaurav Ghare and Scott Leutenegger. The Effect of Correlating Quantum Alloca-
tion and Job Size for Gang Scheduling. In Job Scheduling Strategies for Parallel
Processing, D. Feitelson and Larry Rudolph (Eds.) Springer-Verlag, Lecture
Notes in Computer Science, vol. 1659, pp. 66-89, 1999.

[55] Richard Gibbons. A Historical Application Profiler for Use by Parallel Schedul-
ers. Lecture Notes in Computer Science, vol. 1297, 58-75, Springer-Verlag, 1997.

[56] Victor Hazlewood. NPACI JobLog Repository.
http://joblog.npaci.edu/

[57] Kieran Harty and David Cheriton. A Market Approach to Operating System Mem-
ory Allocation. In [25], 1996.
ftp://ftp.dsg.stanford.edu/pub/papers/memmarket.ps.Z

[58] Robert Henderson. Job Scheduling Under the Portable Batch System. In Job
Scheduling Strategies for Parallel Processing, Dror Feitelson and Larry Rudolph
(Eds.), Lecture Notes in Computer Science Vol. 949, pp. 337-360, Springer-
Verlag, 1995.

ftp://ftp.cs.unm.edu/pub/forrest/hotos-97.ps

145

[59] Tad Hogg and Bernardo Huberman. Controlling Chaos in Distributed Systems.
IEEE Transactions on Systems, Man, and Cybernetics, vol. 21, no. 6, Novem-
ber/December 1991.

[60] Joefon Jann, Pratap Pattnaik, Hubertus Franke, Fang Wang, Joseph Skovira, and
Joseph Riordan. Modeling of Workload in MPPs. In Job Scheduling Strategies for
Parallel Processing, Springer-Verlag, Lecture Notes in Computer Science Vol.
1291, Dror Feitelson and Larry Rudolph (eds.), 1997.

[61] James Jones and Bill Nitzberg. Scheduling for Parallel Supercomputing: A His-
torical Perspective of Achievable Utilization. In Job Scheduling Strategies for
Parallel Processing, Springer-Verlag, Lectures Notes in Compututer Science vol.
1659, 1999.

[62] John Karpovich. Support for Object Placement in Wide Area Heterogeneous Dis-
tributed Systems. UVa CS Technical Report CS-96-03. January 1996.
http://www.cs.virginia.edu/~legion/papers.html

[63] Nirav Kapadia, José Fortes, and Carla Brodley. Predictive Application-
Performance Modeling in a Computational Grid Environment. Eighth IEEE Sym-
posium on High-Performance Distributed Computing, July 1999.

[64] Jochen Krallmann, Uwe Schwiegelshohn, and Ramin Yahyapour. On the Design
and Evaluation of Job Scheduling Algorithms. In Job Scheduling Strategies for
Parallel Processing, Springer-Verlag, Lectures Notes in Compututer Science vol.
1659, 1999.

[65] Walter Lee, Matthew Frank, Victor Lee, Kenneth Mackenzie, and Larry Rudolph.
Implications of I/O for Gang Scheduled Workloads. In Job Scheduling Strategies
for Parallel Processing, Springer-Verlag, Lecture Notes in Computer Science Vol.
1291, Dror Feitelson and Larry Rudolph (eds.), 1997.

[66] David Lifka. The ANL/IBM SP Scheduling System. In Job Scheduling Strategies
for Parallel Processing, Dror Feitelson and Larry Rudolph (Eds.), Springer-
Verlag, Lecture Notes in Computer Science Vol. 949, 1995.
http://www.tc.cornell.edu/UserDoc/SP/Batch/what.html

[67] V. Lo, J. Mache, and K. Windisch. A comparative study of real workload traces
and synthetic workload models for parallel job scheduling. In Job Scheduling
Strategies for Parallel Processing, Dror Feitelson and Larry Rudolph (eds.), pp.
25-46, Springer Verlag, Lect. Notes Comput. Sci. vol. 1459, 1998.

146

[68] B. Lowekamp, N. Miller, D. Sutherland, T. Gross, P. Steenkiste, and J. Subhlok. A
Resource Query Interface for Network-Aware Applications. Seventh IEEE Sym-
posium on High-Performance Distributed Computing, July 1998.
http://www.cs.cmu.edu/~cmcl/remulac/papers.html

[69] Maui High Performance Computing Center. The Maui Scheduler Web Page.
http://wailea.mhpcc.edu/maui/

[70] C. McCann and J. Zahorjan. Scheduling Memory Constrained Jobs on Distribu-
ted-Memory Parallel Computers. In SIGMETRICS Conference on Measurement
and Moldeling of Computer Systems, pp. 208-291, May 1995.

[71] Michael Mitzenmacher. How Useful is Old Information? PODC 97. 1997.
http://www.research.digital.com/SRC/personal/michaelm/WORK/papers.html

[72] Tracy Mullen and Michael Wellman. Market-based negotiation for digital library
services. Second USENIX Workshop on Electronic Commerce. November 1996.
ftp://ftp.eecs.umich.edu/people/wellman/usenix96.ps.Z

[73] David Patterson, John Hennessy, and David Goldberg. Computer Architecture: A
Quantitative Approach. Second Edition, Morgan Kaufmann Publishing, 1996.

[74] Platform Computing Corp. Load Sharing Facility Web Page.
http://www.platform.com/platform/platform.nsf/webpage/LSF?OpenDocument

[75] Fabio Previato, Michael Ogg, and Aleta Ricciardi. Experience with Distributed
Replicated Objects: The Nile Project. European Research Seminar in Advanced
Distributed Systems Zinal, Switzerland, 17-21 March 1997.
http://www.nile.utexas.edu/Nile/conferences/papers/

[76] J. Pruyne and M. Livny. Parallel Processing on Dynamic Resources with Carmi.
In Job Scheduling Strategies for Parallel Processing, Dror Feitelson and Larry
Rudolph (Eds.), Lecture Notes in Computer Science Vol. 949, pp. 337-360, S-
pringer-Verlag, 1995.

[77] M. Ranganathan, A. Acharya, and J. Saltz. Distributed Resource Monitor for Mo-
bile Objects. IWOOOS'96.
http://www.cs.umd.edu/users/acha/publications.html

[78] Kostadis Roussos, Nawaf Bitar, and Robert English. Deterministic Batch Schedu-
ling without Static Partitioning. In Job Scheduling Strategies for Parallel Process-
ing, D. Feitelson and Larry Rudolph (Eds.) Springer-Verlag, Lecture Notes in
Computer Science, vol. 1659, pp. 66-89, 1999.

[79] Uwe Schewiegelshohn and Ramin Yahyapour. Improving First-Come-First-Serve
Job Scheduling by Gang Scheduling. In Job Scheduling Strategies for Parallel

http://www.research.digital.com/SRC/personal/michaelm/WORK/papers.html
ftp://ftp.eecs.umich.edu/people/wellman/usenix96.ps.Z

147

Processing, Dror Feitelson and Larry Rudolph (Eds.), Springer-Verlag, Lecture
Notes in Computer Science vol. 1459, 1998.

[80] Gary Shao, Rich Wolski, and Fran Berman. Predicting the Cost of Redistribution
in Scheduling. In Proceedings of the 8th SIAM Conference on Parallel Processing
for Scientific Computing, 1997.
http://www.cs.ucsd.edu/groups/hpcl/apples/hetpubs.html

[81] Fabrício Silva and Isaac Scherson. Improving Parallel Job Scheduling Using Run-
time Measurements. In Job Scheduling Strategies for Parallel Processing, Dror
Feitelson and Larry Rudolph (Eds.), Springer-Verlag, Lecture Notes in Computer
Science vol. 1911, 2000.
http://www.cs.huji.ac.il/~feit/parsched/parsched00.html

[82] Joseph Skovira, Waiman Chan, Honbo Zhou, and David Lifka. The EASY-
LoadLeveler API project. 2nd Workshop on Job Scheduling Strategies for Parallel
Processing, Springer-Verlag Lecture Notes in Computer Science, vol. 1162, pp.
41-47, April 1996.
http://www.tc.cornell.edu/UserDoc/SP/Batch/what.html

[83] Shava Smallen, Walfredo Cirne, Jaime Frey, Francine Berman, Rich Wolski, Mei-
Hui Su, Carl Kesselman, Steve Young, and Mark Ellisman. Combining Worksta-
tions and Supercomputers to Support Grid Applications: The Parallel Tomogra-
phy Experience. Proceedings of HCW’2000 – Heterogeneous Computing Work-
shop, May 2000.
http://www-cse.ucsd.edu/users/walfredo/resume.html#publications

[84] W. Smith, I. Foster, and V. Taylor. Predicting Application Run Times Using His-
torical Information. Lecture Notes in Computer Science, 1459:122-142, Spring-
Verlag, 1998.
http://www-fp.mcs.anl.gov/~wsmith/papers.html

[85] W. Smith, V. Taylor, and I. Foster. Using Run-Time Predictions to Estimate
Queue Wait Times and Improve Scheduler Performance. In Proceedings of the
IPPS/SPDP’99 Workshop on Job Scheduling Strategies for Parallel Processing,
1999.
http://www-fp.mcs.anl.gov/~wsmith/papers.html

[86] Allan Snavely and Dean Tullsen. Symbiotic Jobscheduling for a Simultaneous
Multithreading Architecture. In Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems, November, 2000
http://www-cse.ucsd.edu/users/tullsen/research.html

148

[87] Standard Performance Evaluation Corporation. The SPEC web page.
http://www.spec.org/

[88] Neil Spring and Rich Wolski. Application Level Scheduling of Gene Sequence
Comparison on Metacomputers. 12th ACM International Conference on Super-
computing, Melbourne, Australia, July, 1998.
http://www-cse.ucsd.edu/groups/hpcl/apples/hetpubs.html

[89] Alan Su, Francine Berman, Richard Wolski, and Michelle Strout. Using AppLeS
to Schedule Simple SARA on the Computational Grid. In International Journal of
High Performance Computing Applications, vol. 13, 1999.
http://www.cs.ucsd.edu/groups/hpcl/apples/hetpubs.html

[90] Jaspal Subhlok, Thomas Gross, and Takashi Suzuoka. Impact of Job Mix on Op-
timizations for Space Sharing Schedulers. Supercomputing’96, 1996.
http://www.supercomp.org/sc96/proceedings/SC96PROC/TTITLES.HTM

[91] Ion Stoica et al. A Proportional Share Resource Allocation for Real-Time, Time-
Shared Systems. 17th Real-Time Systems Symposium, Washington DC, p. 288-
299, December 1996.
http://www.cs.odu.edu/~stoica/pubs.html

[92] Michael Stonebraker et al. Mariposa: A Wide-Area Distributed Database System.
VLDB Journal 5, 1, p. 48-63, January 1996.
http://epoch.cs.berkeley.edu:8000/mariposa/papers.html

[93] Paul Tucker and Fran Berman. On Market Mechanisms as a Software Technique.
UCSD Technical Report #CS96-513.
http://www.cs.ucsd.edu/groups/hpcl/apples/hetpubs.html#Miscellaneous

[94] Carl Waldspurger et al. Spawn: A Distributed Computational Economy. IEEE
Transactions on Software Engineering, vol. 18, no. 2, pp. 103-17. February 1992.
http://www.research.digital.com/SRC/personal/caw/papers.html

[95] Carl Waldspurger and William Weihl. Lottery Scheduling: Flexible Proportional-
Share Resource Management. In Proceedings of the First Symposium on Operat-
ing Systems Design and Implementation (OSDI '94), pages 1-11, Monterey, Cali-
fornia, November 1994.
http://www.research.digital.com/SRC/personal/caw/papers.html

[96] Carl Waldspurger and William Weihl. Stride Scheduling: Deterministic Propor-
tional-Share Resource Mangement. Technical Memorandum MIT/LCS/TM-528,
MIT Laboratory for Computer Science, June 1995.
http://www.research.digital.com/SRC/personal/caw/papers.html

http://epoch.cs.berkeley.edu:8000/mariposa/papers.html
http://www.research.digital.com/SRC/personal/caw/papers.html
http://www.research.digital.com/SRC/personal/caw/papers.html
http://www.research.digital.com/SRC/personal/caw/papers.html

149

[97] William Walsh and Michael Wellman. A market protocol for decentralized task
allocation. Extended version of a paper in Proceedgins of the Third International
Conference on Multiagent Systems, July 1998.
http://ai.eecs.umich.edu/people/wellman/Publications.html

[98] William Walsh and Michael Wellman. Efficiency and equilibrium in task alloca-
tion economies with hierarchical dependencies. In Sixteenth International Joint
Conference on Artificial Intelligence, pages 520-526, August 1999.
http://ai.eecs.umich.edu/people/wellman/Publications.html

[99] Jon Weissman and Andrew Grimshaw. A Framework for Partitioning Parallel
Computations in Heterogeneous Environments. Concurrency: Practice and Ex-
perience, Vol. 7, No. 5, August 1995.
http://ringer.cs.utsa.edu/faculty/weissman.html/pub.html

[100] Jon Weissman. Gallop: The Benefits of Wide-Area Computing for Parallel Proc-
essing. Journal of Parallel and Distributed Computing, Vol. 54(2), November
1998.
http://ringer.cs.utsa.edu/faculty/weissman.html/pub.html

[101] Rich Wolski. Dynamically Forecasting Network Performance Using the Network
Weather Service. In Journal of Cluster Computing, 1998.
http://www.cs.ucsd.edu/groups/hpcl/apples/hetpubs.html#NWS

[102] Rich Wolski, Neil Spring, and Jim Hayes. The Network Weather Service: A Dis-
tributed Resource Performance Forecasting Service for Metacomputing. To ap-
pear in the Journal of Future Generation Computing Systems, 1999.
http://www.cs.ucsd.edu/groups/hpcl/apples/hetpubs.html#NWS

[103] Rich Wolski, Neil Spring and Jim Hayes. Predicting the CPU Availability of
Time-shared Unix Systems on the Computational Grid. 8th International Sympo-
sium on High Performance Distributed Computing (HPDC’99), Redondo Beach,
California, USA, 3-6 Aug 1999.
http://www-cse.ucsd.edu/~rich/publications.html

[104] Huican Zhu et al. Adaptive Load Sharing for Clustered Digital Library Servers.
Seventh IEEE International Symposium on High Performance Distributed Com-
puting, Chicago, Illinois, July, 1998.
http://www.alexandria.ucsb.edu/~zheng/publications.html

[105] Bernard Zeigler, Herbert Praehofer, and Tao Gon Kim. Theory of Modeling and
Simulation. Second Edition. Academic Press. 2000.

150

[106] Yanyong Zhang, Anand Sivasubramaniam, Hubertus Franke, and José Moreira.
Improving Parallel Job Scheduling by Combining Gang Scheduling and Backfill-
ing Techniques. IPDPS’2000, International Parallel and Distributed Processing
Symposium, Cancun, Mexico, May 1-5, 2000.

[107] D. Zotkin and P. Keleher. Job-Length Estimation and Performance in Backfilling
Schedulers. 8th International Symposium on High Performance Distributed Com-
puting (HPDC’99), Redondo Beach, California, USA, 3-6 Aug 1999.

	Survey’s Questionaire
	Survey’s Results
	Emergent Behavior Results
	Moldable Backfilling Results

