Heuristic Congestion Control for Message
Deletion in Delay Tolerant Network

Lertluck Leela-amornsin, Hiroshi Esaki

Graduate School of Information Science and Technology,
Information and Communication Engineering, The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
lertlove@hongo.wide.ad. jp,hiroshi@wide.ad. jp
http://www.hongo.wide.ad. jp

Abstract. Delay tolerant network (DTN) challenges on large delay of
communication, opportunistic and intermittent connectivity so that data
can be transferred over vulnerable network. Most routing protocols in
DTN basing on replicating routing work well over infinite buffer assump-
tion but the performance drops when using with finite buffer due to the
congestion problem. However, it is still lack of work on congestion control
in DTN. Since simple congestion control policies can cause uselessly loop-
ing problem and cannot maintain high performance when nodes buffer
become overflow, a new buffer management policy for DTN should be
considered. In this paper, we identify the looping problem caused by us-
ing simple buffer management policies and propose the Effective Looping
Control mechanism to solve such a problem. We also propose the Credit-
based Congestion Control as for heuristically deleting messages when the
buffer congested to retain high delivery rate with low number of replicas.

Key words: Buffer Management, Credit Dropping, Looping Control

1 Introduction

Delay tolerant network (DTN) is a network where communications may expe-
rience large delay, and the connectivity is often opportunistic and intermittent.
DTN’s characteristics are different from existing Internet leading to newly chal-
lenging issues as described in [3]. Many works have been studied, used and
deployed [1], [5], [6], [7], [12], [22] following the DTN architecture proposed in
RFC4838 [2] by overlaying the network with bundle layer to provide delay toler-
ant service. To construct a high performance system, most of the works [8], [9],
[10], [11], [12], [13] route messages in replicating way, and apply custody transfer
[4] that each DTN host needs to take action in carrying many of messages in the
non-volatile buffer [17] for a long period. These approaches can achieve high de-
livery rate but trade off with number of replicating messages. The performance
is high under infinite buffer and infinite bandwidth assumption, however, in real
situations, the performance is worse when the buffer and bandwidth are limited
due to the congestion control problem.

2 Lertluck Leela-amornsin, Hiroshi Esaki, The University of Tokyo

Although modern storage devices have large capacity in scale of gigabytes,
it may limit a part of memory for storing and forwarding DTN messages as de-
scribed in [21]. Some applications apply DTN to personal mobile devices, which
may contain any kinds of contents such as songs and videos. In cooperative
aspects, people normally share their resources greedily as few as they can. More-
over, some applications may generate large size messages, while other generate
smaller size but more frequently. All of these reasons can cause a diffusion of
congested traffic over the system.

Regarding replicating-based routing in DTN, buffer management policies for
congestion control in DTN attempts to drop insignificant messages subjecting
to improving the performance essentially to reduce the number of replicas in
the network while maintaining high delivery probability. Conventional policies
cannot maintain high performance, and some of them can cause uselessly looping
problem because of dropping some messages before they are expired. Therefore,
a buffer management mechanism for controlling message deletion is required to
maintain high performance for the system. We believe that the study of this
issue will give a great contribution to DTNs.

In this paper, we analyze the effect of various environments to buffer occu-
pancy of DTN nodes. After that, we study the buffer management policies in the
prospect of how we should delete the messages, and classify them into two types:-
the proactive policy, and the reactive policy. The proactive scheme deletes the
messages depending on the time-to-live (TTL) or feedback acknowledgment as
for definitely deleting. On the other hand, the reactive policy deletes some mes-
sages due to congestion in nodes’ buffer. Our work scopes in the reactive policy
to deal with congestion control yearning for high-performance message deletion
mechanism in DTN. Along our study, we identify the looping problem, which
is caused by using popular reactive policy, as a result of degradation in routing
performance. After that, we propose the Effective Looping Control mechanism to
prevent such a problem so that routing can achieve better performance in most
environments. Moreover, we propose a heuristic congestion control policy called
Credit-based Congestion Control (CCC), which pursues the low number of repli-
cation messages but still keep high delivery ratio, without using history-based
information. Finally, we validate our CCC policy comparing to other policies in
related works by performing extensive of the ONE simulation [19], which is the
popular DTN simulation.

The rest of this paper is organized as follows. We surveyed the related work
in section 2. We identify looping problem and propose Effective Looping Con-
trol to relieve such a problem in section 3. In section 4, we propose the new
congestion control scheme, Credit-based Congestion Control, which can improve
performance comparing to the existing policies. We verify our proposed policies
in section 5 with extensive simulation. Finally, we summarize this paper and
present our future work in section 6.

Heurictic Congestion Control in Delay Tolerant Network 3

2 Related Works

In recent years, DTN has been researched in various aspects to counter with
many newly challenging issues as described in [3]. However, the main issue in
DTN is to develop the routing strategy [18] to achieve high delivery probability
which is the ratio of delivered messages over the total generated messages. Since
legacy-forwarding scheme achieves very low delivery rate, many researchers de-
veloped their routing protocols in replicating-based approach. Epidemic [8] is
the common and simple replicating-based routing protocol. When two nodes get
contact, they exchange the information of messages that they are carrying, then
each node clones all of the messages another node does not have, and transfers.
Although epidemic can achieve high delivery ratio, the replicas are too many re-
sulting in consuming much bandwidth. Thus, other works attempted to reduce
the number of replicas, for instance, the Probabilistic ROuting Protocol using
History of Encounters and Transitivity, or PROPHET [10] reduces replicas by
using knowledge based of probability that a certain message can reach the desti-
nation. Spray and Wait [9] controls the maximum number of messages that can
be replicated to other nodes. In addition, other routing protocols such as RAPID
[12], PEAR [11], Bubble RAP [13] are using other knowledge based metrics to
achieve better performance.

Many routing algorithms work well under assumption that buffer is unlim-
ited, but still in doubt if they do work under buffer constraint that may lead
to congestion in certain environments. To prevent degrading in performance we
need to concern deeply when/which/where and how we should drop the mes-
sages to maintain higher performance for any routing protocol. There are many
buffer management policies had been proposed in [14], [15], [16], [23], and we
can classify into two groups, 1)proactive, and 2) reactive policy.

2.1 Proactive Policy

When DTN hosts update their status (generally in a time unit, or every activat-
ing cycle), they delete messages depending on

1. Time-Based TTL [14]: Time-based TTL initiates the time-to-live (TTL)
value and the value decreases a unit periodically every a certain amount
of time. DTN hosts will delete the messages whose TTLs are less than zero.

2. Hop-Based TTL [14]: Like time-based TTL, original message is implemented
with the maximum number of hops in two tuples, breadth and depth. Depth
value decreases by one per hop, and the relay node will no further forward
the message and keep carrying it for directly transmitting to the destination
if the depth value becomes zero. Each node can replicate the message only
b copies no more than breadth value, and deletes the message that has been
forwarded for b times.

3. Feedback Policy: The destination node broadcasts an acknowledge message
as a feedback policy, then, each relay node drops the carrying message cor-
responding to the acknowledge message.

4 Lertluck Leela-amornsin, Hiroshi Esaki, The University of Tokyo

2.2 Reactive Policy

DTN hosts delete the message when their buffers are congested. Many reactive
dropping schemes have been proposed in [15], [16], and [23].

1. Last-In First-Drop (LIFD): is a simple dropping scheme but very low perfor-
mance. A node just rejects any new coming message, if its buffer overflows.

2. First-In First-Drop (FIFD): drops the message stored in the buffer first.

3. Oldest-Drop or Least Remaining Life First-Drop: concerns about the amount
of remaining TTL to decide which message should be dropped. For Oldest-
drop, the message that has the least remaining TTL will be dropped first.

4. Youngest-Drop or Most Remaining Life First-Drop: on the other hand, Youngest-

Drop drops the message that has the most remaining TTL.

5. Most-Forwarded First-Drop (MOFD): the message that has been forwarded
the largest number of times is the first to be dropped, thus giving messages
forwarded less times produce more chances of getting forward.

6. Least-Forwarded First-Drop (LEFD): the message that has low delivery
probability and has not been forwarded for the fewest number of times is
the first to be dropped. This is because it has a little chance to reach the
destination.

In addition, in [16] also proposed the history-based policy, which requires
history information to estimate an optimum utility for two popular metrics:
- maximizing the average delivery rate, and minimizing the average delivery
delay. However, it needs the beacon-updating message to learn the status of the
network, and needs much time for computation. Besides that, in [23] proposed
the mechanism to migrate the custody from congested node to other nodes where
still have some vacant rooms. However, this algorithm cannot work well if the
nodes congest at the same time, and if there is no encounter node at the time
such a node congests.

3 Effective Looping Control Mechanism

To delete messages in an effective way, we usually implement proactive policy
like global time-to-live as a final control to guarantee that the messages will be
deleted from the system eventually. In parallel, we use the reactive policy to con-
trol message deletion when the DTN buffer becomes congested. However, all of
reactive policies (except LIFD) generally drop the carrying messages before they
are expired, as a result that the same messages in other nodes can be looped back
to the DTN node that has just deleted such messages as illustrated in figure 1.
It may meet greater impact, if the DTN router inherits the simple-based routing
like Epidemic [8]. And even the DTN router uses knowledge-based routing such
as PROPHET [10], PEAR [11] and others, which may have less effect, but loop-
ing problem may still cause heavy damage in some situations where certain pair
nodes may uselessly loop some messages back-and-forth repeatedly. Although

Heurictic Congestion Control in Delay Tolerant Network 5

global TTL can eventually delete the message, there is no mechanism to esti-
mate TTL accurately for DTN’s application whose TTL is not fixed. Therefore,
we generally implement a large TTL value in term of days, weeks or longer
resulting in wasting amount of bandwidth if such useless looping occurs many
times and repeatedly. Hence, in this section, we propose the Effective Looping
Control, as shown in figure 2, to relieve the degradation in performance because
of looping problem.

e (8) ® ©

A encounters with B

If the buffer A is full,
A decides to drop the X-red
message and receive the
new coming Y-blue

A encounters with B again

Fig. 1. Looping problem due to congestion control policy leads to wasting of band-
width.

The key feature of this method is that, instead of keeping track of every
whole message, we save space by caching only header of the deleted message in
the entry named junk entry. And we denote clock down time in junk, as for, each
caching entry can stay in the junk within a time limit. A node that is receiving
any new message will check the junk entry list and ignore the message, if it is
listed in the junk. However, after the time in junk period, the node allows the
message to come into its buffer again. This soft policy is to relax in some incidents
that a message that has a better chance to reach the destination (depending on
routing scheme) should have a permission to be looped and replicated again. The
Effective Looping Control mechanism can be described in the following steps and
illustrated in figure 2.

1) Once any node has deleted the messages, it tracks the header of those
messages that can distinguish the messages (usually it is constructed by sequence
number of message and the node id the message originally generated from).

2) Each entry of deleted message will be listed in the junk until the time in
junk expired.

3) If a message loops back to any node that still has the entry of such a
message in the junk, that node will ignore and not request that message.

Although we can eventually delete the message via TTL, in DTN we usually
set TTL to very large value because no one knows the appropriate value of it.
This Effective Looping Control mechanism not only prevents the useless looping,
but also gives an option for the network to adjust whether it will allow the looping

6 Lertluck Leela-amornsin, Hiroshi Esaki, The University of Tokyo

Time
Buffer occupancy Replicating

message
bt -
N ’II

B [Ju]

E—

-]
- -
- Dropped message

I_C—I——

Time in Junk
4

Fig. 2. The Effective Looping Control.

again or not by setting the time in junk parameter. For instance, we can just
set the time in junk greater than the TTL of the message or infinite value, if we
desire loop-free network.

4 Credit-based Congestion Control (CCC) for Message
Deletion

As mentioned in section 2, the simple LIFD cannot achieve high performance, so
[15] has presented other congestion control policies to obtain better performance,
essentially to reduce the number of replicas. Although the history-based policy
in [16] has been studied, it focused on minimizing the delay metric, and needs
exchanging in updating message to estimate many parameters for predicting the
optimum value using for dropping the message. Another work in [23] attempted
to migrate the custody message from congested node to other nodes, but it is still
in doubt that if there is no other node at that time or if all nodes are congested,
the migration does not work leading dropping mechanism to come out and take
into account. Therefore, in this section, we propose the newly heuristic congestion
control policy called Credit-based Congestion Control (CCC) to maintain high
delivery probability and reduce the number of replicas as our target. CCC is
dynamic, independent, and isolated from history information, so there is no
need of beacon-updating.

CCC bases on the concepts that the message that is obsolete should be
deleted first as in oldest-drop, which performs high performance by using the
time-dependent credit. However, we also added the merit of most-forwarded first-
drop that the message has been forwarded many times should be dropped first
by applying the refilling and refunding technique when pair nodes get contact
and exchange their messages. Besides that, different applications or even in one
application may have different priorities for different messages, which need to
be standardized and is still an open issue. No matter how, getting along priority

Heurictic Congestion Control in Delay Tolerant Network 7

aspect we can easily rule the priority by adjusting the initial value of credit as
high and low for higher and lower priority, respectively. The DTN router along
these credit-based policies will drop the message that has the least credit (can
be negative) when the buffer becomes full to allocate vacant space for the new
coming message. CCC can be described as follows.

Once a message is generated from any DTN node, it will carry maximum
amount of credit as its initial value. In consequence of that, host generating
the message can set how much credit should be initiated for different priorities
depending on various applications. Later, one credit will be decreased at every
time unit similar to age decreasing. However, the key technique of this policy is
refilling and refunding amount of credit when pair nodes encounter at any point
of transmission. We can construct function for refilling and refunding methods
in many approaches, however, in this paper, we propose an additive approach
called Simple CCC and Half-Twice CCC as a multiplicative one.

4.1 Simple Credit-based Congestion Control (S-CCC)

Simple Credit-based Congestion Control policy manages amount of refill and
refund as follows. When two nodes get contact, they exchange the messages
depending on applied routing protocol. After that, each node refunds the sent
message’s credit for amount of value named penalty at the sender side, and refills
the received message’s (the same id, but the replicated one) credit for amount of
value named reward at the receiver. As a result, such a message that has been
replicated will have lower credit in sender host, but higher credit in receiver one.
We can easily formulate it into equation 1,

Csender(t + 1) = maz (Csender (t) — "penalty” , minimum_value) (1a)

Creceiver (t + 1) = min (Csender (t) + "reward” | initial _value) (1b)

where Csenger 18 the credit of message in sender side, Creceiver 1S the credit
of replicated message in receiver side, before (time=t) and after (time=t+1)
pair nodes encounter. However, the credit after refill cannot exceed the initially
maximum value, and in practical, the credit should eventually equal to a certain
minimum value depending on the number of bits using as a header, or manually
configure.

4.2 Half-Twice Credit-based Congestion Control (HT-CCC)

For S-CCC, we proposed the additive approach; however, HT-CCC on the other
hand applies multiplicative function to adjust refunding and refilling credit. With
this policy, it defines the multiplicative scheme following equation 2. The func-
tions in equation 2 are constructed similarly from the sense of nature so-called
half-life theory. However, the complexity of equation 2 is because the credit value

8 Lertluck Leela-amornsin, Hiroshi Esaki, The University of Tokyo

Credit

ALE | reward

encourter

B&C o i‘reward

encoul Iaena‘w

| reward

enal
by Messagefdropped

MNode A MNode B Mode C Mode D

B&D |
encounter

Fig. 3. The Simple Credit-based Congestion Control (S-CCC)

can be negative. Allowing credit to be negative can slow down the rate of refilling
and refunding when the credit of the message is near zero and decrease rapidly
when the credit is negative, which means that this message has no credit and
is going to be in debt so we should ignore it. Whenever pair nodes get contact
and completely replicate the message, the credit of the message at the sender is
refunded as a half of credit before replicating but no less than a certain value,
which is limited by the number of bits we use as a header or we may manually
configure. In contrast, the credit of the message at the receiver becomes twice
but no more than maximum value, which equals to the initial credit. Both poli-
cies can maintain high delivery probability, at the same time, they can decrease
the replica ratio as we validate in the next section.

C (t+1) = max (| Csender (t) + 2| ,minimum_value) ; if Csepder(t) >0
sender - max (Csender (t) X 2 ,minimum_value) 5 if Csender (t) <0
(2a)
Chvoiver(t+1) = mz:n (Csender(t) x 2 ,in?tile._value) ; ?f Cisender(t) > 0
min (Lcsender (t) - 2J ,antwl_value)) if Cyender (t) <0
(2b)

5 Simulation and Evaluation

In this paper, we use the ONE simulator [19], NetLab, Helsinki University, which
is the simulator for DTN supporting GUI and providing many of libraries for
movement models, routing protocols, but no buffer management policies. Hence,
we implement relating buffer management policies, our Effective Looping Control
and including our Credit-based Congestion Control into the simulator. Later, we

Heurictic Congestion Control in Delay Tolerant Network 9

L:s0 WFIFD noEntry
070 EFIFD TimelnJunk3600
EIFIFD TimelnJunk43200
= 0.60 BFIFD TimelnJunk172800
5 ELEFDnoEntry
g 0.50 EILEFD Tim eln Junk3600
& EILEFD Tim elnJunk43200
& 040 ELEFD Tim elnJunk172800
qS 020 W MOFD noEntry
T EMOFD Timelnd unk3600
a 020 [§MOFD Timelnd unk432 00
B MOFD Timelnd unk172500
0.10 W OldesthropH oEntry
EOldestDropTim elndunk 3600
0.oo ®OldestDropTim elndunk 43200
g8 32 128 256 1024 BO0MesthropTimelnJunk 172200
Buffer Size(VB)
=0 BEFIFD noEntry
BFIFD Time InJ unk3600
25000 EFIFD Time Ind unk43 200
BEFIFD Time InJ unk17 2300
2 20000 BLEFDRoEnty
§ EILEFD Tim elnJunk 2600
S 15000 B LEFD Tim elnJunk 43200
= : ELEFD Tim elndunk 172800
§- W MOFD noEntry
X 10000 EMOFD Time Ind unk2800
OMOFD Time Ind unk43200
5000 B MOFD Time Ind unk17 2500
W OldesthropM o Entry
B OldestDropTimelnJunk 3600
0.oa MOldesthropTim elndunk 43200
8 32 128 286 1024 E0ldestDropTimelndunk 172200
Buffer Size(MB)

Fig. 4. Performance of Effective Looping Control.

use the random waypoint movement model for 100 nodes over 1 km x 1 km world
size, for 2 days simulation time. Each node has 10-meter transmitting range, 2-
Mbps bandwidth, and moves with speed uniformly random from 0 km/h to 5
km/h. Besides that, we create message by using MessageEventGenerator class
attached in the ONE simulator to randomly generate the source and destination
nodes for a 500 kB to 1 MB message every 1 to 30 seconds interval, uniformly.
Since we are focusing on the reactive message deletion control, thus we assume
the TTL value is equal to the observation time, 172800 seconds (2 days).

5.1 Evaluation in Effective Looping Control Mechanism

In this section, we compare most standing out policies to those policies them-
selves but applying our heuristic mechanism, effective looping control. We also
compare the difference of time in junk parameters ranging from 3600 seconds
(1 hour), 43200 seconds (12 hours) to 172800 seconds (2 days). Then, we show

10 Lertluck Leela-amornsin, Hiroshi Esaki, The University of Tokyo

the relationship among the delivery probability, replica ratio and the buffer size
ranging from 8MB, 32MB, 128MB, 256MB to 1024MB, as shown in figure 4.
From figure 4, we can see that when using Effective Looping Control to Epi-
demic routing we could increase the delivery rate of FIFD for any buffer size,
even we changed the time in junk parameter. In addition, other policies also
obtained higher delivery probability in most cases, but not much different in
oldest-drop.

However, the replica ratio when applying effective looping policy is reduced
in all cases, compared to the cases without this mechanism. Especially, when the
traffic is very congested (many messages are generated or small buffer size of a
node), our looping control could help reducing replicas up to 70% for LEFD, 65%
for MOFD, around 15% for FIFD, and also, 15% for oldest-drop when buffer is
very congested. Although the delivery ratio drops in some environments, it is
less than 2% comparing to the replica ratio we can reduce. Corresponding to our
assumption, we could maintain high delivery probability and reduce the number
of replicas for most of all reactive policies. However, the performance is the same
for all when the buffer is large enough (1024MB). This is because the network
is not congested, so there is no message loss in the network. Remark that, the
delivery probability is not equal to one because there are still some messages just
generated and may reach the destination out of range of our observation time.
In this sense, the Effective Looping Control can relieve such kind of problem by
adjusting proper time in junk parameter to that system.

5.2 [Evaluation in Credit-based Congestion Control

For evaluating the CCC, we compare among simple congestion control poli-
cies and our CCC policies with different initial credit values 3600 credits (HT-
Credit3600), 43200 credits (HTCredit43200), and 172800 credits (HT Credit172800)
for Half- Twice CCC, and at 172800 credits for simple version fixing 10 credits
for both penalty and reward. While, the minimum credit value in this simulation

is set to the minimum value of integer (for Java programming = —23!). We show
the performance results in table 1 for different buffer sizes 8 MB, 32 MB, and
256 MB, which easily congest, through Epidemic [8] and Prophet [10] routing.

Table 1. Comparison of Replica Ratio among Reactive Buffer Management Policies.

Epidemic Routing Prophet Routing
Delivery Probability Replica Ratio Delivery Probability Replica Ratio
Buffer Size (MB) | 8 | 32 [256 8 [32 [256 8 [32 [256 8 [32 [256
FIFD 0.1362 0.3111 0.6664| 52.4140 28.4857 12.6230(0.1667 0.3718 0.7033| 34.9224 22.1443 11.6573
MOFD 0.0444 0.1288 0.6339(201.6181 70.0129 13.3065|0.0676 0.1647 0.6441|117.1928 54.3162 13.1769

OldestDrop 0.1712 0.4848 0.7249| 51.5952 17.7563 11.5215|0.1797 0.5056 0.7301| 44.9874 16.7499 11.2092
SimpleCredit172800(0.1777 0.4833 0.7334| 41.6650 17.6398 11.3637|0.1834 0.5051 0.7422 31.3373 15.9291 10.9750
HTCredit3600 |0.1788 0.4874 0.7313| 41.3886 17.4339 11.4217|0.1842 0.5079 0.7413| 31.3349 15.8285 10.9874
HTCredit43200 [0.1814 0.5335 0.7322| 43.5313 15.8513 11.3993]0.1854 0.5449 0.7446| 33.7201 14.7224 10.9486
HTCredit172800 |0.1810 0.5200 0.7331| 43.6944 16.2970 11.3530(0.1847 0.5226 0.7439| 33.9030 15.5421 10.9617

Heurictic Congestion Control in Delay Tolerant Network 11

We evaluated our algorithm and obtained the result as shown in table 1. Both
S-CCC and HT-CCC could maintain high delivery probability, while reduce the
number of replicas up to 20% for Epidemic routing, and to 10% for Prophet
routing, respectively to the best existing policy of each case. Even if we need to
add some information into header of the message to provide the current credit
field and initial credit value, it is very small comparing to whole message in DTN
whose size can be up to 1 MB. Therefore, it is worth to trade off some field in
header to many large replication messages those we can reduce. Although the
performance of CCC is close to the oldest-drop policy since its credit behaves
like an age of the message, it makes use of the advantage of refilling credit to
enhance a chance for replicated message in the next-hop node, and refunding
credit to devalue the message at present node, as a result that it can reduce
useless replicas but still keep high delivery rate not only in Epidemic routing
but also in Prophet routing. In addition, in the Half-Twice approach also gave
the same tendency. This means that we can control the different priorities of
messages corresponding to the initial credit values, and get high performance,
concurrently.

6 Conclusion and Future work

In this paper, we investigated the problem of congestion control in DTN. Since,
some reactive buffer management policies have mined the looping problem, we
proposed the Effective Looping Control to prevent uselessly looping. We also
propose the congestion control policies in the heuristic way. Hence, our param-
eters used in our work need to be studied and standardized before using in the
real system for any general and/or any particular environment following the
heuristic process. However, this work presents an intuitive idea but reasonable
as a prototype to control message deletion when buffer congests so that we can
achieve high performance via reducing overhead without decreasing in delivery
rate. Therefore, in the future, we will apply this credit-based policy by refund-
ing and refilling with respect to other resource values and/or knowledge metrics
such as remaining buffer, number of forwarded, etc., based on game theory and
will further expand to real world implementation.

References

1. S. Burleigh, A. Hooke, L. Torgerson, K. Fall, V. Cerf, and et. al, Delay-tolerant net-
working: an approach to interplanetary internet, IEEE Communications Magazine,
pages 128-136, 2003.

2. RF(C4838 : Delay-Tolerant Networking Architecture, IRTF DTN Research Group,
2007.

3. K. Fall, A delay-tolerant network architecture for challenged internets, Conference
on Applications, Technologies, Architectures, and Protocols for Computer Commu-
nications, pages 27-34, 2003.

12 Lertluck Leela-amornsin, Hiroshi Esaki, The University of Tokyo

4. K. Fall, W. Hong, and S. Madden, Custody transfer for reliable delivery in delay
tolerant networks, Technical Report IRB-TR-03-030,Intel Research, Berkeley, Cali-
fornia, 2003.

5. P. Juang, H. Oki, and et. al, Energy-efficient computing for wildlife tracking: Design
tradeoffs and early experiences with ZebraNet, ACM SIGOPS Operating Systems
Review, pages 96-107, 2002.

6. T. Small, Z.J. Haas, and et. al, A sensor network for biological data acquisition,
Sensor Networks.

7. S. Carrilho and H. Esaki, A Pub/Sub message distribution architecture for dis-
ruption tolerant networks, IEICE transactions on Information and Systems, page
1888-1896, 2009.

8. A. Vahdat and D. Becker, Epidemic routing for partially connected ad hoc networks,
2000.

9. T. Spyropoulos, K. Psounis, and C.S. Raghavendra, Spray and wait: an efficient
routing scheme for intermittently connected mobile networks, ACM SIGCOMM
workshop on Delay-tolerant Networking, page 259, 2005.

10. A. Lindgren, A. Doria, and et. al, Probabilistic routing in intermittently connected
networks, Computer Communication Review volume 7, pages 19-20, 2003.

11. H. Ochiai and H. Esaki, Mobility entropy and message routing in community-
structured delay tolerant networks, The 4th Asian Conference on Internet Engi-
neering, pages 93-102, 2004.

12. A. Balasubramanian, B. Levine, and A. Venkataramani, DTN routing as a resource
allocation problem, Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, page 384, 2007.

13. P. Hui, J. Crowcroft, and E. Yoneki, Bubble rap: Social-based forwarding in de-
lay tolerant networks, The 9th ACM International Symposium on Mobile Ad Hoc
Networking and Computing, pages 241-250, 2008.

14. W.H. Yuen and H. Schulzrinne, Performance evaluation of time-based and hop-
based TTL schemes in partially connected ad hoc networks, IEEE ICC’06, 2006.
15. A. Lindgren and K.S. Phanse, Evaluation of queuing policies and forwarding strate-
gies for routing in intermittently connected networks, IEEE COMSWARE, 2006.
16. A. Krifa, C. Barakat, and T. Spyropoulos, Optimal buffer management policies for

delay tolerant networks, IEEE SECON, 2008.

17. M. Seligman, Storage usage of custody transfer in delay tolerant networks with
intermittent connectivity, ICWN, 2006.

18. E.P. Jones and P.A. Ward, Routing strategies for delay-tolerant networks, ACM
Computer Communication Review (CCR), 2006.

19. A. Keranen, J. Ott, and T. Karkkainen, The ONE simulator for DTN protocol
evaluation, The 2nd International Conference on Simulation Tools and Techniques,
page 55, 2009.

20. S. Jain, K. Fall, and R. Patra, Routing in a Delay Tolerant Network Conference
on Applications, Technologies, Architectures, and Protocols for Computer Commu-
nications, pages 145-158, 2004.

21. M.J. Pitkanen and J. Ott, Enabling opportunistic storage for mobile DTNs Perva-
sive and Mobile Computing, pages 579-594, 2008.

22. S.B. Eisenman, N.D. Lane, and et. al, Metrosense project: People-centric sensing
at scale, First Workshop on World-Sensor-Web, 2006.

23. M. Seligman, K. Fall, and P. Mundur, Alternative custodians for congestion con-
trol in delay tolerant networks, Proceedings of the 2006 SIGCOMM workshop on
Challenged networks, page 236, 2006.

