
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 10, OCTOBER 2000 1163

Test Scheduling for Core-Based Systems Using
Mixed-Integer Linear Programming

Krishnendu Chakrabarty, Member, IEEE

Abstract—We present optimal solutions to the test scheduling
problem for core-based systems. Given a set of tasks (test sets for
the cores), a set of test resources (e.g., test buses, BIST hardware)
and a test access architecture, we determine start times for the
tasks such that the total test application time is minimized. We
show that the test scheduling decision problem is equivalent to
the -processor open shop scheduling problem and is therefore
NP-complete. However, a commonly encountered instance of
this problem (= 2) can be solved in polynomial time. For
the general case (2), we present a mixed-integer linear
programming (MILP) model for optimal scheduling and apply
it to a representative core-based system using an MILP solver
available in the public domain. We also extend the MILP model to
allow optimal test set selection from a set of alternatives. Finally,
we present an efficient heuristic algorithm for handling larger
systems for which the MILP model may be infeasible.

Index Terms—Embedded core testing, open shop scheduling, re-
source constraints, system-on-a-chip test, test set selection, testing
time.

I. INTRODUCTION

EMBEDDED cores are increasingly being used in large
system-on-a-chip (SOC) designs [17]. In order to reduce

cost, the testing time for a core-based system must be min-
imized by carefully scheduling tests for cores at the system
level, and by designing an appropriate test access architecture.
Most of the previous research on core testing at the system
level has focussed on the latter problem, i.e., the design of
efficient test access architectures [5], [6], [10], [13], [15]. Test
scheduling for core-based systems has received much less
attention. Given a set of tasks (test sets for the cores), a set of
test resources such as test buses and built-in self-test (BIST)
logic, and a test access architecture, test scheduling refers to
the problem of determining start times for the tasks such that
the total test application time is minimized.

A number of scenarios are possible for core testing at the
system level. The embedded cores in an SOC may be tested
using BIST, external testing, or a combination of the two
methods. BIST offers at-speed test capability and is necessary
for detecting performance-related defects and nonmodeled

Manuscript received November 12, 1999; revised March 1, 2000 and May
25, 2000. This work was supported in part by the National Science Foundation
(NSF) under Grant CCR-9875324, in part by a contract from Delphi Delco Elec-
tronics Systems, and in part by an equipment grant from Sun Microsystems. A
preliminary version of this paper appeared inProc. Int. Conf. Computer-Aided
Design, pp. 391–394, San Jose, CA, Nov. 1999. This paper was recommended
by Associate Editor R. Aitken.

The author is with the Department of Electrical and Computer Engineering,
Duke University, 130 Hudson Hall, Box 90291, Durham, NC 27708 USA
(e-mail: krish@ee.duke.edu).

Publisher Item Identifier S 0278-0070(00)09150-8.

faults. However, it may be necessary to augment BIST with
external testing in order to detect modeled faults that are
random-pattern-resistant. For external testing, the test buses
that are used for test access may be shared among multiple
cores. If BIST is used, then a core may either be “BIST-ed,”
in which case it has dedicated BIST logic, or it may simply
be “BIST-ready” without containing BIST pattern generators
and response monitors. In the latter case, the core user (system
integrator) may design BIST logic that is shared by multiple
cores. In order to minimize the testing time, the test resources
in the system (test buses, BIST logic) should be carefully
allocated to the various cores, and the tests for the cores should
be optimally scheduled.

Sugiharaet al. [16] recently addressed the problem of se-
lecting a test set for each core from a set of test sets provided
by the core vendor and scheduling these tests in order to mini-
mize the testing time. (If a core is not BIST-ed, the core vendor
may provide external test sets augmenting various BIST pseudo-
random test lengths.) Each test set consists of a subset of patterns
for BIST (implicitly denoted by the pseudorandom test length
if the core is not BIST-ed) and a subset of patterns for external
testing. This requires the core vendor to provide multiple test
sets for each core, with the test sets containing varying propor-
tions of patterns for BIST and external testing. Test scheduling
is formulated in [16] as a combinatorial optimization problem,
which is then solved using a heuristic method. The authors make
two restrictive assumptions 1) every core has its own BIST logic,
i.e., the BIST components of the test sets for any two cores can
be assigned identical starting times, and 2) external testing can
be carried out for only one core at a time, i.e., there is only one
test access bus at the system level.

We formulate a generalized test scheduling problem that in-
cludes the problem addressed in [16] as a special case. We as-
sume that the test access architecture has been predetermined,
and the cores have been assigned to test buses. No restrictions
are placed either on the sharing of BIST logic between cores
or on the use of multiple test buses for external testing. We
address fundamental computational complexity issues for test
scheduling and develop a mixed-integer linear programming
(MILP) model for solving the scheduling problem. Our model
is easily able to handle the case where a test set for a core has
to be selected from a number of alternatives provided by the
core vendor. The main contributions of the paper are summa-
rized below.

• We relate the general problem of test scheduling for SOC’s
to the open shop scheduling problem [9], [11], and thereby
show that the test scheduling decision problem is NP-com-
plete.

0278–0070/00$10.00 © 2000 IEEE

1164 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 10, OCTOBER 2000

Fig. 1. An example of a generic core-based system with one external test bus, and shared and dedicated BIST logic for the cores.

• We relate a special case of the scheduling problem to open
shop scheduling with two processors, and present a poly-
nomial-time algorithm for it.

• Even though the scheduling problem is NP-complete, we
show that it can be solved exactly for realistic core-based
systems using MILP. The optimization problem is initially
formulated as a nonlinear mixed-integer program. We then
use linearization methods to obtain an MILP model.

• We evaluate the feasibility of the proposed MILP models
by solving them using a linear programming solver for
a representative core-based system. The experimental re-
sults demonstrate that optimal solutions to these important
design problems in SOC testing are indeed feasible.

• In order to efficiently solve the scheduling problem for
larger systems for which the MILP approach takes exces-
sive time, we present a heuristic “shortest-job-first” algo-
rithm.

The proposed test scheduling approach is best suited to hard
(IP) cores whose test sets (BIST and external) are determined
by the core vendor. However, it can also be applied to synthe-
sizable cores as long their tests are not modified after the cores
are inserted in the SOC and the overall SOC test schedule is de-
termined.

The organization of the paper is as follows. In Section II, we
study a special case of the test scheduling problem in which
a single BIST resource and a single test bus are shared by all
the cores. This arises when the core providers do not incorpo-
rate any BIST features and the system integrator, in addition to
using a test bus, adds BIST to the SOC. We show that this in-
stance of the scheduling problem is equivalent to the problem
of open shop scheduling with two processors, and present an
optimal, polynomial-time algorithm for it. We also present a
greedy, “one-at-a-time” scheduling algorithm to demonstrate
that significant savings in testing time can be achieved using op-
timal test schedules. For high-volume production, a small saving
in testing time can translate to enormous cost savings.

In Section III, we show that the test scheduling decision
problem is NP-complete by relating it to a general instance

of the open shop scheduling problem. We then review MILP
and develop MILP models for minimizing the testing time. We
solve the MILP model for a nontrivial core-based system using
the lpsolve software package from Eindhoven University of
Technology in the Netherlands [2]. We also present a heuristic
test scheduling algorithm that can easily handle larger sys-
tems for which the MILP model may not be computationally
feasible. In Section IV, we extend the MILP model to include
the problem of selecting a test set for each core from a set of
alternatives provided by the core vendor.

A generic example of a core-based system that we consider is
shown in Fig. 1. It consists of one external test bus and six cores.
For core , we assume that external test application takescy-
cles and BIST takes cycles. Core 5 is tested entirely using
BIST, while Core 6 is tested entirely using external patterns.
Note that in this generic example, Cores 1, 2, and 5 have dedi-
cated BIST circuitry while Cores 3 and 4 share BIST logic.

II. POLYNOMIAL -TIME ALGORITHM FORTESTSCHEDULING

In this section, we consider the special case in which the
core-based system has only one external bus and BIST logic
is shared by all the cores. As discussed in Section I, this arises
when the core providers do not incorporate any BIST features
and the system integrator, in addition to using a test bus, adds
BIST to the SOC. The test set for every core includes BIST and
external test components. Fig. 2 illustrates a system with four
cores; the test lengths for external testing and BIST are also
shown. For example, Core 1 requires 125 cycles for external
testing and 100 cycles for BIST.

We first show that the test scheduling problem for core-based
systems is equivalent to the open shop scheduling problem [9].
In the open shop scheduling problem, we are given ashopcon-
sisting of processors, a set of jobs, each job con-
sisting of tasks , , , (task must be ex-
ecuted on processor), and a length for each task.
Each processor can execute only one task at a time. A schedule
for an -shop is a set of processor schedules, one for each

CHAKRABARTY: TEST SCHEDULING FOR CORE-BASED SYSTEMS USING MILP 1165

Fig. 2. An example of a core-based system with one external test bus, and BIST logic shared by all the cores.

Fig. 3. An optimal test scheduling algorithm for a system with one external test bus and one shared BIST resource.

processor in the shop. These processor schedules must be
such that no job is processed simultaneously on more than one
processor. Thefinish timeof a schedule is the latest comple-
tion time of the individual processor schedules. The objective
in open shop scheduling is to minimize the finish time.

In order to establish equivalence between test scheduling for
core-based systems and open shop scheduling, we view the test

sets for the cores as jobs. Each job consists of two tasks, cor-
responding to the external test and BIST components of the
test set, respectively. In the instance of the problem being con-
sidered in this section, 2, i.e., there are two processors
in the system, corresponding to the external test bus and the
BIST resource, respectively. An optimal schedule, i.e., one with
the least finish time, guarantees the shortest testing time for

1166 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 10, OCTOBER 2000

Fig. 4. An example of the execution of Procedure SCHEDULE: (a) Test data
(b) Iterations of SCHEDULE (c) An optimal schedule.

the core-based system. We can obtain efficient test schedules
by exploiting the fact that the 2-shop scheduling problem can
be solved efficiently using an algorithm, where is the
number of jobs (cores) [11]. Fig. 3 provides a pseudocode de-
scription of this algorithm. The external test schedule is denoted
by the list , while denotes the schedule for BIST. The
symbol “+” is used to denote the concatenation operation.

The algorithm proceeds by dividing the jobs into two groups,
say and [11], and it is adapted for test scheduling as follows.
The jobs in have while those in have . The
schedule is built from the “middle” with jobs from added on
at the right and those from added on at the left. (denotes
a “composite schedule” which is used later to derive schedules
for external testing and BIST.) Finally, some finishing touches
involving only the leftmost and rightmost jobs (pointed to by
and , respectively) are made, and this guarantees an optimal
schedule [11].

Fig. 4 illustrates the execution of the procedure for the core-
based system in Fig. 2. In the first iteration, since(125) ex-
ceeds both (100) and (0), we (implicitly) add job 1, i.e.,
core 1, from to the right of (). In the second iteration,

(200) exceeds both (200) and (0), hence job 2 from

gets (implicitly) added to the left of (). Next, in the third
iteration, the first job is (explicitly) added to the right of. This
process continues until all four iterations are completed. Finally,
the 0s in are deleted and the tasks denoted byand are added
to the BIST and external test schedules.

The schedules for external test and BIST are given by:
2134 and : 4213, respectively, and the optimal testing time
for this system is 825 cycles; see Fig. 4(c). Note that the BIST
schedule in Fig. 4 contains idle times. We define two types of
idle times: 1)explicit dead time, which arises due to resource
conflicts, and 2)implicit dead time, which may occur either at
the beginning or at the end of a schedule and is not caused by re-
source conflicts. The explicit and implicit dead times are marked
on the BIST schedule in Fig. 4(c).

A nonoptimal schedule using a greedy “one-at-a-time” sched-
uling algorithm is shown in Fig. 5. We assume that a fixed or-
dering is imposed on the cores and that the tests for the cores can
be scheduled in this order with the start times determined by the
availability of resources. This algorithm is therefore similar to
a priority-based scheduling algorithm.

The schedule shown in Fig. 5, was generated using the or-
dering (1, 2, 3, 4) with the additional restriction that theth test
set for the external test schedule is determined before theth
test set for the BIST schedule. The algorithm proceeds by first
scheduling the external test set for Core 1. It then schedules the
BIST test set for Core 2 since the BIST test set for Core 1 cannot
be scheduled at this time. Next, it successfully schedules the
external test set for Core 3. (The external test set for Core 2
cannot be scheduled before its BIST test session completes.).
Proceeding in this fashion, we generate a complete schedule,
noting that an explicit dead time of 75 cycles must be inserted
in the external test schedule after Core 2 is tested. This increase
the SOC testing time to 900 cycles.

As another example, we consider a representative core-based
system consisting of six embedded cores from the ISCAS
benchmarks [3], [4]. These benchmark circuits are known to
contain random-pattern-resistant faults, hence we use pseudo-
random patterns for BIST as well as deterministic patterns (ap-
plied externally) for the hard faults. Table I presents the test
data for each embedded core in this system. We assume that
the s5378 circuit contains four internal scan chains, while each
of the s1196 and s953 circuits contain a single internal scan
chain. We also assume without loss of generality that a 32-bit
external test bus is used. Finally, we use the parametertest width

, where () equals the number of inputs
(outputs) in core , to determine the external testing time for
each core.

The (external) testing time for coreis determined by its test
width and the width of the test bus. Let be the number of
(scan) patterns for core. Let be the number of external test
cycles required by core. If , then the width of the
test bus is insufficient for parallel loading of test data, and seri-
alization of the test data is necessary within the wrapper at the
inputs and/or outputs of core. In order to calculate the test time
due to serialization, we assume the interconnection strategy sug-
gested in [13] and used in [5], [6] for connecting core input–out-
puts (I/Os) to the test bus, namely, provide direct (parallel) con-
nection to core I/Os that transport more test data (Fig. 6). This

CHAKRABARTY: TEST SCHEDULING FOR CORE-BASED SYSTEMS USING MILP 1167

Fig. 5. A greedy, nonoptimal schedule generated using a one-at-a-time strategy.

TABLE I
TEST DATA FOR THE CORES INSYSTEM S

Fig. 6. Illustration of the serialization model.

strategy is effective for cores that have a small number of scan
I/Os but whose scan chains are long compared to the number
of functional I/Os. Note that the proposed SOC test scheduling
approach does not depend on the serialization strategy, hence al-
ternative serialization models can likewise be considered for cal-
culating the testing time for the individual cores. These testing
times can then be used as inputs to the test scheduling frame-
work.

If the width of bus is adequate, i.e., (for a 32-bit test
bus), then no serialization is necessary and corecan be tested
in exactly cycles. It can be easily seen that

if
if

For example, if we refer to the core in Fig. 6 as core, then
and the test bus is three bits wide. Hence

.
For the combinational cores, , the number of

scan test cycles is equal to the number of test patterns.

However, for the remaining three cores with internal scan,
, where core contains flip-flops and

internal scan chains [1]. The test patterns for all these circuits
were obtained by applying the Atalanta ATPG program [12] to
the hard faults.

Fig. 7 illustrates the scheduling algorithm for the core-based
system of Table I. We assume that the application of a BIST
pattern takes one clock cycle and external test application is ten
time slower than BIST pattern application. The values ofand

are shown as multiples of 10. For this example, the two lists
are : 612 345 and : 561234, respectively. This yields the
schedule shown in Fig. 7(c).

III. T EST SCHEDULING: GENERAL CASE

While the special case of the scheduling problem discussed in
Section II can be easily solved using a linear-time algorithm, the
general case of corresponding to more than one BIST
resource in the system is NP-complete [11]. In this section, we
develop MILP models to solve the test scheduling problem.

We first briefly review mixed-integer linear programming
using matrix notation [14]. The goal of MILP is to minimize
a linear objective function on a set of integer and/or real
variables, while satisfying a set of linear constraints. A typical
MILP model is described as follows:

minimize:

subject to:

where and are cost vectors, and are constraint ma-
trices, is a column vector of constants, is a vector of in-
teger variables, and is a vector of real variables. The MILP
models presented in this paper were derived after extensive ex-
perimentation, and they involve the linearization of a number of
nonlinear constraints. Efficient MILP solvers are now readily
available, both commercially and in the public domain. For our

1168 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 10, OCTOBER 2000

Fig. 7. (a) Test times (tasks) for the cores in SystemS (b) Execution of Procedure SCHEDULE (c) An optimal schedule.

experiments, we used thelpsolvepackage from Eindhoven Uni-
versity of Technology in the Netherlands [2].

We now address the test scheduling problem for a given core-
based system. In order to minimize the testing time, the start
times of the external and BIST test sets must be optimally de-
termined. Let denote the start times of
the set of test patterns (external and BIST) that must be applied
to the cores in the system. The start time of the external test
set for core is denoted by while the start time of the
BIST test set for core is denoted by . For notational con-
venience, we will also refer to these test sets by the subscripts
of the variables that denote their start times. For example, we
will interchangeably use and to refer to the external
component of the test set of core.1

1Note thate and2i � 1 refer to the external test set for corei while t

refers to the start time fore . Similarly, b and2i refer to the BIST test set for
corei while t refers to the start time forb .

Let denote the corresponding test
lengths (number of cycles) for the test sets. Note that if the
test set for core has no external test (BIST) component, then

and (and). Two test sets
and overlap if either 1) and , or

2) and . If there is only one external
test bus, the external test components for the cores in any valid
test schedule must not overlap; therefore, a lower bound on the
system testing time in this case is given by . Another
lower bound on the testing time is given by . Note
also that test setsand do not overlap if and only if either 1)

, or 2) .
Two test sets areconflicting if they cannot be applied to the

system at the same time. Test sets can be conflicting if 1) they
share an external test bus, or 2) they are BIST test sets for cores
that share a BIST resource, or 3) they are the external and BIST
components of a core’s test set. Clearly, there cannot be any
overlap between conflicting test sets.

CHAKRABARTY: TEST SCHEDULING FOR CORE-BASED SYSTEMS USING MILP 1169

Fig. 8. MILP model forP1.

The optimization problem that we address in this section is to
minimize the system testing time by optimally determining the
start times for the various test sets. The formal
statement of the problem is as follows.

• : Given a system with cores such that core
() has BIST test length and ex-
ternal test length , determine the start times

for the BIST and external test sets such
that 1) conflicting test sets do not overlap, and 2) the
overall system testing time, i.e., , is mi-
minized.

Let , , , be a 0-1 variable defined as follows:

if the test sets and are conflicting
otherwise.

We now develop an MILP model for . We first formulate
the model in terms of nonlinear constraints, and then linearize
it using standard techniques.

Objective: Minimize the cost function

The above minmax nonlinear cost function can easily be lin-
earized [14] by minimizing the (real) variableand adding the
constraints , . However, it is more diffi-
cult to linearize the nonlinear constraints containing the logical

construct. We introduce 0-1 “indicator” variables and
, , , to the set of constraints. The optimiza-

tion problem is now restated as:
Objective: Minimize the cost function subject to:

1) , ;
2) , ,

;
3) , , ;
4) 0 or 1, , .
The constraint 2) above is still nonlinear. We linearize it by re-

placing by the (real) variable and by the (real)
variable . Similarly, we replace by and by

. For each such substitution, we add three additional con-
straints. For example, for the substitution of by , we
add the following constraints:

1) ;
2) ;
3) ;

where is an upper bound on the value of,
. The resulting MILP model is shown in Fig. 8.

We applied the MILP model of Fig. 8 to the core-based
system described in Table I for several test scenarios corre-
sponding to varying amount of on-chip BIST resources. The
complexity of the MILP model depends on the number of cores
and the test resource conflicts, and is independent of the sizes of
the cores. As in Section II, we assumed that the application of a
BIST pattern takes one clock cycle and external test application
is ten time slower than BIST pattern application. We solved
the MILP models using thelpsolvesoftware package on a Sun
Ultra 10 workstation with a 300-MHz processor and 128 MB
memory. We were unable to obtain actual CPU times from
lpsolve; however, the user time was less than one minute in
each case. The optimum testing time for this system is 1152810
cycles. Fig. 9 shows optimal schedules when the cores share
BIST logic. The explicit and implicit dead times for these
optimal schedules are also shown.

It follows therefore that the lower bound of for the
system testing time is achieved only if the external test schedule
has no dead time. This is indeed the case in the schedule shown
in Figs. 4 and 9. However, we next show that this lower bound
is not always achieved, even with an optimal schedule.

Consider a smaller example consisting of four cores, namely
c7552, s953, s1196, and s5378. Assuming that each core has its
dedicated BIST logic and using the test data listed in Fig. 7(a),
we obtain an optimal test schedule shown in Fig. 10. The lower
bound for this system obtained from the external testing times
is 981 050 cycles; however, the optimum testing time is 996 190
cycles, the difference between these two figures is due to explicit
dead time in the external test schedule. The dead time can be
eliminated if the BIST patterns for s5378 are applied in two test
sessions. However, suchpreemptive schedulingcan complicate
the test controller and is therefore not considered in this paper.

We next develop an optimal test schedule for the system
of Table I when an additional core (the s13297 ISCAS 89
benchmark circuit) that is tested entirely using BIST is added to
it. The s13207 circuit is known to be random-pattern-testable.
We assume that 512K random patterns are applied to it in a
test-per-clock fashion, hence BIST for this circuit is assumed to
take 512K cycles. The optimum testing time for this system is
1 182 350 cycles, and an optimal schedule is shown in Fig. 11.
For this example, the optimum testing time is determined by
the BIST components of the core test sets. The external test
schedule contains both explicit and implicit dead times.

1170 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 10, OCTOBER 2000

Fig. 9. Test schedules for the core-based system of Table I when cores share BIST resources: (a) BIST logic is shared between s1196 and c7552, and between
s953 and s5378; (b) BIST logic is shared between s953, c7552, s5378, and s1196.

Fig. 10. An example showing that an optimal test schedule may contain explicit dead times for external testing.

Since the test scheduling problem is NP-complete, the
amount of time required to generate and solve the ILP models
for significantly larger core-based systems may be excessive.

In order to handle such systems, we now present a shortest-
task-first heuristic scheduling algorithm. This algorithm first
initializes the start times of the test sets (tasks) to zero. It then

CHAKRABARTY: TEST SCHEDULING FOR CORE-BASED SYSTEMS USING MILP 1171

Fig. 11. An optimal test schedule for the system with seven cores.

Fig. 12. The shortest-task-first procedure.

iteratively checks for a valid schedule by examining all pairs
of test sets that are conflicting, i.e., they share test resources
and overlap. If a conflict is detected, i.e., OVERLAP
1 and 1, the task that completes later is re-scheduled
such that it starts after the completion of the task with the
earlier completion time. In this way, the procedure schedules
shorter tasks first and iteratively updates the start times until
all resource conflicts are eliminated.

A pseudocode description of this algorithm is provided in
Fig. 12. The worst-case time complexity of the algorithm is

, where is the number of tasks. This can be explained

as follows. In each iteration of thewhile loop, at most oper-
ations are performed corresponding to the twofor loops. Also,
in iteration of thewhile loop, the start times of at most
tasks are updated. This implies that the start times settle after at
most iterations of thewhile loop.

The shortest-task-first algorithm yields a testing time of
1 213 330 cycles for the system of Table I when s13207 is
added, and s953, s7552, s5378, and s13207 share BIST logic.
This is only 2.6% greater than the optimum testing time ob-
tained using the MILP model. For this example, four iterations
are sufficient to determine the start times (Table II). The fourth

1172 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 10, OCTOBER 2000

TABLE II
START TIMES OBTAINED USING THE SHORTEST-TASK-FIRST ALGORITHM

iteration is not shown in Table II since it does not update any
of the start times; it is only necessary to satisfy the algorithm’s
termination criterion.

IV. TESTSCHEDULING WITH MULTIPLE TEST SETS

In this section, we develop an MILP model for the scheduling
problem that was introduced by Sugiharaet al. [16]. The goal
here is to select test sets for the cores from a set of alternatives
with a varying proportion of BIST and external test patterns,
and determine their start times such that the system testing time
is minimized. As described in [16], these alternatives allow the
system integrator to reduce testing time by optimizing the usage
of shared test resources. For example, it may be possible to test
the SOC in fewer cycles if an appropriate BIST (external) test
set is used which can be accomodated in an available slot in the
BIST (external) test schedule.

While Sugiharaet al. provide a heuristic solution and
make the restrictive assumption that the cores do not share
BIST logic, our general MILP model allows sharing of BIST
resources among cores and provides an exact solution. The
extension of the MILP model of Section III to this problem also
demonstrates its expressive power.

Suppose we have alternative test sets for corein the
system. These test sets may contain varying proportion of BIST
patterns. We denote the test lengths for the BIST patterns for
core by , , . Similarly, we denote the test
lengths for the external patterns for coreby , ,
, . If the th test set is chosen for core, then it consists
of cycles for BIST and cycles for external testing.

We use the parameter and the variables , , and
(,) as defined in the MILP model for . In
addition, we use a 0-1 indicator variable (,

), which is set to 1 if the th test set (consisting
of BIST and external test patterns) is selected for core. The
formal statement of the optimization problem is as follows.

• : Given a system with cores such that corehas
test sets, its th test set () has BIST

test length and external test length ,
select a test set for each core, and determine the start times

for the BIST and external parts of the test
sets such that 1) conflicting test sets do not overlap, and
2) the overall system testing time is miminized.

We now develop the MILP model for .
Objective: Minimize the cost function

1) , ;
2) If and refer to the same core (and is even),

then , ;
3) , ;
4)

;
5) or 1, , .
Note that constraint 4) above is derived from the MILP model

for . Once again, the minmax nonlinear cost function can
easily be linearized [14] by minimizing the (real) variable
and adding the constraints

In order to linearize constraint 4) above, we replace the product
of 0-1 variables by and by , ,

. We also need to add the following contraints [14]:

1) , , , ;
2) , , , ;
3) , , , ;
4) , , , ;
5) , , , ;
6) , , , .

This yields the MILP model for shown in Fig. 13.
We next apply the MILP model for to an example of con-

sisting of four 16-bit multiplier cores used in [16]. These cores

CHAKRABARTY: TEST SCHEDULING FOR CORE-BASED SYSTEMS USING MILP 1173

Fig. 13. MILP model forP2.

TABLE III
TESTSDATA FOR THE FOUR MULTIPLIER CORES[16]

Fig. 14. An optimal test set selection for the multiplier cores (the selected test
sets are highlighted) obtained using the MILP model forP2.

are described in detail in [16]; Table III presents the relevant test
data. For each core, we consider three different sets of BIST and
external test patterns. The heuristic approach in [16] was applied
to cores with a large number of alternative test sets. However,
this may be an impractical scenario—core providers may pro-
vide a few alternative test sets, but it is unrealistic to expect a
large number of alternatives. Therefore, we restrict the number
of alternatives to three for the case study.

We also assume that Core 2 and Core 3 share BIST logic.
Fig. 14 shows an optimal selection of test sets for these cores;
an optimal test schedule for this example is shown in Fig. 15.
The testing time is significantly higher if alternative test sets are
not provided to the system integrator. For example, if only the
first pair of test sets (nine cycles for external testing and 235

Fig. 15. An optimal schedule obtained using the MILP model forP2 for the
system described by Table III.

cycles for BIST) is available for Core 1, the system testing time
is at least 244 cycles.

V. CONCLUSION

We have presented optimal solutions to the test scheduling
problem for core-based systems. Given a set of tasks (test sets
for the cores), a set of test resources and a test access architec-
ture, our scheduling methods provide start times for the tasks
such that the total test application time is minimized. We have

1174 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 10, OCTOBER 2000

shown that the test scheduling decision problem is equivalent
to the -processor open shop scheduling problem and is there-
fore NP-complete. However, a commonly encountered instance
of this problem (2) can be solved in polynomial time. This
corresponds to the case in which all the cores in the system share
BIST logic, e.g., when the core providers do not incorporate any
BIST features and the system integrator, in addition to using a
test bus, adds BIST to the SOC. For the general case (),
we have presented a MILP model for optimal scheduling and
applied it to a representative core-based system using an MILP
solver available in the public domain. We have also extended
the MILP model to allow optimal test set selection from a set of
alternatives. In this way, our work improves upon the heuristic
algorithm for test set selection described in [16]. Finally, we
have presented an efficient heuristic scheduling algorithm for
handling larger systems for which the MILP model may be in-
feasible.

Our initial results give rise to a number of new directions for
further research. These are summarized below.

• The scheduling methods described in the paper make the
implicit assumption that the test access architecture has
been predetermined, and the cores have been assigned to
test buses. We can expect more effective test schedules
if the cores can be optimally assigned to test buses. This
issue is currently being investigated. We are also including
power constraints in the MILP model for test scheduling.

• The ILP model descriptions that we have used in our ex-
periments are problem-specific, i.e., they are described in
a format specific to the problem instance and to thelpsolve
program. This is a cumbersome process. It is far more con-
venient to use high-level languages such as AMPL [7] and
GAMS [8] that allow the model to be described in apa-
rameterized formthat is independent of the ILP solver and
the input data used for a specific instance of the model.

• Significant advances have been made in recent
years in solving nonlinear integer programs, and
a number of these solvers are now readily avail-
able, e.g., through the Argonne National Laboratory
(http://www.mcs.anl.gov/otc/Server/neos.html). We are
examining the feasibility of using such nonlinear solvers
for optimal test scheduling.

• Finally, we are investigating the use of preemptive sched-
uling for reducing the testing time further. We are also
studying the shortest-time-first heuristic in more detail to
determine how far it is from optimal.

ACKNOWLEDGMENT

The author would like to thank M. Sugihara of Kyushu Uni-
versity, and H. Date of the Institute of Systems & Information
Technologies, Kyushu, Japan, for providing test data for the
multiplier cores. He would also like to thank E. J. Marinissen
of Philips Research Laboratories for valuable comments on an
earlier version of this manuscript.

REFERENCES

[1] J. Aerts and E. J. Marinissen, “Scan chain design for test time reduction
in core-based ICs,” inProc. Int. Test Conf., 1998, pp. 448–457.

[2] lpsolve (version 3.0). Eindhoven Univ. Technology, Design Au-
tomation Section, Eindhoven, The Netherlands. [Online]. Available:
ftp://ftp.ics.ele.tue.nl/pub/lp_solve

[3] F. Brglez and H. Fujiwara, “A neutral netlist of ten combinational bench-
mark circuits and a target simulator in Fortran,” inProc. 1985 Int. Symp.
Circuits and Systems, 1985, pp. 695–698.

[4] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of se-
quential benchmark circuits,” inProc. 1989 Int. Symp. Circuits and Sys-
tems, 1989, pp. 1929–1934.

[5] K. Chakrabarty, “Design of system-on-a-chip test access architectures
using integer linear programming,” inProc. 2000 IEEE VLSI Test Symp.,
2000, pp. 127–134.

[6] , “Design of system-on-a-chip test access architectures under
place-and-route and power constraints,” inProc. 2000 IEEE/ACM
Design Automation Conf., pp. 432–437.

[7] R. Fourer, D. M. Gay, and B. W. Kernighan,AMPL: A Modeling Lan-
guage for Mathematical Programming. South San Francisco, CA: Sci-
entific, 1993.

[8] GAMS Development Corporation,GAMS: A User’s Guide. Boston,
MA: Boyd and Fraser, 1993.

[9] M. R. Garey and D. S. Johnson,Computer and Intractability: A Guide
to the Theory of NP-Completeness. New York: Freeman, 1979.

[10] I. Ghosh, N. K. Jha, and S. Dey, “A low overhead design for testability
and test generation technique for core-based systems,” inProc. 1997 Int.
Test Conf., 1997, pp. 50–59.

[11] T. Gonzales and S. Sahni, “Open shop scheduling to minimize finish
time,” J. Assoc. Computing Machinery, vol. 23, pp. 665–679, Oct. 1976.

[12] H. K. Lee and D. S. Ha, “On the generation of test patterns for combina-
tional circuits,” Dept. of Electrical Eng., Virginia Polytechnic Institute
and State University, Tech. Rep. 12_93, Dec. 1993.

[13] E. J. Marinissen, R. Arendsen, G. Bos, H. Dingemanse, M. Lousberg,
and C. Wouters, “A structured and scalable mechanism for test access to
embedded reusable cores,” inProc. Int. Test Conf., 1998, pp. 130–143.

[14] H. P. Williams, Model Building in Mathematical Programming, 2nd
ed. New York: Wiley, 1985.

[15] P. Varma and S. Bhatia, “A structured test re-use methodology core-
based system chips,” inProc. Int. Test Conf., 1998, pp. 294–302.

[16] M. Sugihara, H. Date, and H. Yasuura, “A novel test methodology for
core-based system LSI’s and a testing time minimization problem,” in
Proc. Int. Test Conf., 1998, pp. 465–472.

[17] Y. Zorian, E. J. Marinissen, and S. Dey, “Testing embedded-core based
system chips,” inProc. Int. Test Conf., 1998, pp. 130–143.

Krishnendu Chakrabarty (S’92–M’96) received
the B.Tech. degree from the Indian Institute of
Technology, Kharagpur, in 1990, and the M.S.E.
and Ph.D. degrees from the University of Michigan,
Ann Arbor, in 1992 and 1995, respectively, all in
computer science and engineering.

He is now Assistant Professor of Electrical and
Computer Engineering at Duke University, Durham,
NC. His current research projects (supported
by NSF, DARPA and industrial sponsors) are in
system-on-a-chip test, real-time operating systems,

distributed sensor networks, thermal management in integrated circuits, and
architectural optimization of microelectrofluidic systems. He has published
over 40 papers in archival journals and refereed conference proceedings, and
he holds a US patent in built-in self-test.

Dr Chakrabarty is a recipient of the National Science Foundation (NSF) Early
Faculty (CAREER) award, and a Mercator Professor award from the Deutsche
Forschungsgemeinschaft, Germany, for carrying out research at the University
of Potsdam during 2000–2001. He is a member of Sigma Xi, serves as Vice
Chair of Technical Activities in IEEE’s Test Technology Technical Council, and
is a member of the program committees of several IEEE/ACM conferences and
workshops.

