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covery of interesting association relationships amonghuge amounts of data will help marketing, decisionmaking, and business management. Therefore, min-ing association rules from large data sets has been afocused topic in recent research into knowledge discov-ery in databases [1, 2, 3, 9, 12, 14].Studies on mining association rules have evolvedfrom techniques for discovery of functional dependen-cies [10], strong rules [14], classi�cation rules [7, 15],causal rules [11], clustering [6], etc. to disk-based, ef-�cient methods for mining association rules in largesets of transaction data [1, 2, 3, 12]. However, previ-ous work has been focused on mining association rulesat a single concept level. There are applications whichneed to �nd associations at multiple concept levels.For example, besides �nding 80% of customers thatpurchase milk may also purchase bread, it could be in-formative to also show that 75% of people buy wheatbread if they buy 2% milk. The association relationshipin the latter statement is expressed at a lower conceptlevel but often carries more speci�c and concrete in-formation than that in the former. This requires pro-gressively deepening the knowledge mining process for�nding re�ned knowledge from data. The necessity formining multiple level association rules or using taxon-omy information at mining association rules has alsobeen observed by other researchers, e.g., [2].To con�ne the association rules discovered to bestrong ones, that is, the patterns which occur relativelyfrequently and the rules which demonstrate relativelystrong implication relationships, the concepts of min-imum support and minimum con�dence have been in-troduced [1, 2]. Informally, the support of a patternA in a set of transactions S is the probability thata transaction in S contains pattern A; and the con�-dence of A! B in S is the probability that pattern Boccurs in S if pattern A occurs in S. Page 1



For mining multiple-level association rules, concepttaxonomy should be provided for generalizing primi-tive level concepts to high level ones. In many appli-cations, the taxonomy information is either stored im-plicitly in the database, such as \Wonder wheat breadis a wheat bread which is in turn a bread", or computedelsewhere [7]. Thus, data items can be easily general-ized to multiple concept levels. However, direct appli-cation of the existing association rule mining methodsto mining multiple-level associations may lead to someundesirable results as presented below.First, large support is more likely to exist at highconcept levels, such as milk and bread, rather thanat low concept levels, such as a particular brand ofmilk and bread. Therefore, if one wants to �nd strongassociations at relatively low concept levels, the mini-mum support threshold must be reduced substantially.However, this may lead to the generation of many un-interesting associations, such as \toy ! 2% milk" be-fore the discovery of some interesting ones, such as\Dairyland 2% milk ! Wonder wheat bread", becausethe former may occur more frequently and thus havelarger support than the latter.Second, it is unlikely to �nd many strong associ-ation rules at a primitive concept level, such as theassociations among particular bar codes, because ofthe tiny average support for each primitive data itemin a very large item set. However, mining associationrules at high concept levels may often lead to the rulescorresponding to prior knowledge and expectations [9],such as \milk ! bread", or lead to some uninterestingattribute combinations, such as \toy ! milk".In order to remove uninteresting rules generatedin knowledge mining processes, researchers have pro-posed some measurements to quantify the \usefulness"or \interestingness" of a rule [13] or suggested to \puta human in the loop" and provide tools to allow hu-man guidance [4]. Nevertheless, automatic generationof relatively focused, informative association rules willbe obviously more e�cient than �rst generating a largemixture of interesting and uninteresting rules.These observations lead us to examining the meth-ods for mining association rules at multiple conceptlevels, which may not only discover rules at di�erentlevels but also have high potential to �nd nontrivial,informative association rules because of its exibilityat focusing the attention to di�erent sets of data andapplying di�erent thresholds at di�erent levels.In this study, issues for mining multiple-level asso-ciation rules from large databases are examined, witha top-down, progressive deepening method developedby extension of some existing algorithms for miningsingle-level association rules. The method �rst �ndslarge data items at the top-most level and then pro-

gressively deepens the mining process into their largedescendants at lower concept levels. Some data struc-tures and intermediate results generated at mininghigh level associations can be shared for mining lowerlevel ones, and di�erent sharing schemes lead to dif-ferent variant algorithms. The performance identi�esthe conditions that certain algorithms could be bestsuited for certain kinds of data distributions.The paper is organized as follows. In Section 2,the concepts related to multiple-level association rulesare introduced. In Section 3, a method for miningmultiple-level association rules in large data sets isstudied. In Section 4, a set of variant algorithms formining multiple-level association rules are introduced,with their relative e�ciency analyzed. In Section 5, aperformance study is conducted on di�erent kinds ofdata distributions, which identi�es the conditions forthe selection of algorithms. Section 6 is a discussionon mining \level-crossing" association rules and sev-eral other issues. The study is concluded in Section7.2 Multiple level association rulesTo study the mining of association rules from a largeset of transaction data, we assume that the databasecontains (1) a transaction data set, T , which consistsof a set of transactions hTi; fAp; : : : ; Aqgi, where Ti isa transaction identi�er, Ai 2 I (for i = p; : : : ; q), andI is the set of all the data items in the item data set;and (2) the description of the item data set, D, whichcontains the description of each item in I in the formof hAi; descriptionii, where Ai 2 I.Furthermore, to facilitate the management of largesets of transaction data, our discussion adopts anextended relational model which allows an attributevalue to be either a single or a set of values (i.e., innon-�rst-normal form). Nevertheless, the method de-veloped here is applicable (with minor modi�cations)to other representations of data, such as a data �le, arelational table, or the result of a relational expression.De�nition 2.1 A pattern, A, is one item Ai or aset of conjunctive items Ai ^ � � � ^ Aj, where Ai, : : : ,Aj 2 I. The support of a pattern A in a set S,�(A=S), is the number of transactions (in S) whichcontain A versus the total number of transactions inS. The con�dence of A! B in S, '(A! B=S), isthe ratio of �(A^B=S) versus �(A=S), i.e., the prob-ability that pattern B occurs in S when pattern Aoccurs in S.To �nd relatively frequently occurring patterns andreasonably strong rule implications, a user or an ex-pert may specify two thresholds: minimum support,Page 2



�0, and minimum con�dence, '0. Notice that for �nd-ing multiple-level association rules, di�erent minimumsupport and/or minimum con�dence can be speci�edat di�erent levels.De�nition 2.2 A pattern A is large in set S at levell if the support of A is no less than its correspond-ing minimum support threshold �0l. The con�dence ofa rule \A! B=S" is high at level l if its con�denceis no less than its corresponding minimum con�dencethreshold '0l.De�nition 2.3 A rule \A! B=S" is strong if, for aset S, each ancestor (i.e., the corresponding high levelitem) of every item in A and B, if any, is large at itscorresponding level, \A^B=S" is large (at the currentlevel), and the con�dence of \A! B=S" is high (atthe current level).The de�nition indicates that if \A! B=S" isstrong, then (1) �(A^B=S) � �0, (and thus, �(A=S) ��0, and �(B=S) � �0), and (2) '(A! B=S) � '0, atits corresponding level. It also represents a �lteringprocess which con�nes the patterns to be examined atlower levels to be only those with large supports attheir corresponding high levels (and thus avoids thegeneration of many meaningless combinations formedby the descendants of the small patterns). For exam-ple, in a sales transaction data set, if milk is a largepattern, its lower level patterns such as 2% milk willbe examined; whereas if �sh is a small pattern, its de-scendants such as salmonwill not be examined further.Based on this de�nition, the idea of miningmultiple-level association rules is illustrated below.Example 2.1 Suppose that a shopping transactiondatabase consists of two relations: (1) a sales item(description) relation (Table 1), which consists of a setof attributes: bar code, category, brand, content, size,storage period, price, and (2) a sales transaction ta-ble (Table 2), which registers for each transaction thetransaction number and the set of items purchased.Let the query be to �nd multiple-level strong as-sociations in the database for the purchase patternsrelated to the foods which can only be stored for lessthan three weeks. The query can be expressed as fol-lows in an SQL-like data mining language [7].discover association rulesfrom sales transactions T, sales item Iwhere T.bar code = I.bar code and I.category =\food" and I.storage period < 21with interested attributes category, content, brandThe query is �rst transformed into a standard SQLquery which retrieves all the data items within the

bar code category brand content size storage pd price17325 milk Foremost 2% 1 (ga.) 14 (days) $3.89: : : : : : : : : : : : : : : : : : : : :Table 1: A sales item (description) relationtransaction id bar code set351428 f17325, 92108, 55349, 88157, : : : g982510 f92458, 77451, 60395, : : : g: : : f: : : , : : : gTable 2: A sales transaction table\food" category (covers high level concepts: beverage,fruit, vegetable, bread, milk, meat, �sh, cereal, etc.)and with the storage period less than 21 days.GID bar code set category content brand112 f17325, 31414, 91265g milk 2% Foremost141 f29563, 77454, 89157g milk skim Dairyland171 f73295, 99184, 79520g milk chocolate Dairyland212 f88452, 35672, 31205g bread wheat Wonder: : : f: : : , : : : g : : : : : : : : :711 f32514, 78152g fruit juice orange Minute maidTable 3: A generalized sales item description tableSince there are only three interested attributes, cat-egory, content, and brand in the query, the sales itemdescription relation is generalized into a generalizedsales item description table, as shown in Table 3, inwhich each tuple represents a generalized item whichis the merge of a group of tuples which share the samevalues in the interested attributes. For example, thetuples with the same category, content and brand inTable 1 are merged into one, with their bar codes re-placed by a bar code set. Each group is then treatedas an atomic item in the generation of the lowest levelassociation rules. For example, the association rulegenerated regarding to milk will be only in relevanceto (at the low concept levels) brand (such as Dairyland)and content (such as 2%) but not to size, producer, etc.The taxonomy information is provided implicitly inTable 3. Let category (such as \milk") represent the�rst-level concept, content (such as \2%") for the sec-ond level one, and brand (such as \Foremost") for thethird level one. The table implies a concept tree likeFigure 1.The process of mining association rules is expectedto �rst discover large patterns and strong associationrules at the top-most concept level. Let the mini-mum support at this level be 5% and the minimumcon�dence be 50%. One may �nd the following: aset of single large items (each called a large 1-itemset,with the support ratio in parentheses): \bread (25%),meat (10%), milk (20%), : : : , vegetable (30%)", a set ofpair-wised large items (each called a large 2-itemset):\hvegetable, bread (19%)i, hvegetable, milk (15%)i, : : : ,hmilk, bread (17%)i", etc. and a set of strong associa-tion rules, such as \bread ! vegetable (76%), : : : , milkPage 3
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chocolate

Old Mills Wonder

wheatFigure 1: A taxonomy for the relevant data items! bread (85%)".At the second level, only the transactions whichcontain the large items at the �rst level are exam-ined. Let the minimum support at this level be 2%and the minimum con�dence be 40%. One may �ndthe following large 1-itemsets: \lettuce (10%), wheatbread (15%), white bread (10%), 2%milk (10%), chicken(5%), : : : , beef (5%)", and the following large 2-itemsets: \h2% milk, wheat bread (6%)i, hlettuce, 2%milk (4%)i, hchicken, beef (2.1%)i", and the strong as-sociation rules: \2% milk ! wheat bread (60%), : : : ,beef ! chicken (42%)", etc.The process repeats at even lower concept levelsuntil no large patterns can be found. 23 A method for mining multiple-levelassociation rulesA method for mining multiple-level association rulesis introduced in this section, which uses a hierarchy-information encoded transaction table, instead of theoriginal transaction table, in iterative data mining.This is based on the following considerations. First,a data mining query is usually in relevance to only aportion of the transaction database, such as food in-stead of all the items. It is bene�cial to �rst collect therelevant set of data and then work repeatedly on thetask-relevant set. Second, encoding can be performedduring the collection of task-relevant data, and thusthere is no extra \encoding pass" required. Third, anencoded string, which represents a position in a hier-archy, requires less bits than the corresponding object-identi�er or bar-code. Moreover, encoding makes moreitems to be merged (or removed) due to their identicalencoding, which further reduces the size of the encodedtransaction table. Thus it is often bene�cial to use anencoded table although our method does not rely onthe derivation of such an encoded table because theencoding can always be performed on the y.To simplify our discussion, an abstract examplewhich simulates the real life example of Example 2.1is analyzed as follows.Example 3.1 As stated above, the taxonomy infor-mation for each (grouped) item in Example 2.1 is en-

coded as a sequence of digits in the transaction tableT [1] (Table 4). For example, the item `2% Foremostmilk' is encoded as `112' in which the �rst digit, `1',represents `milk' at level-1, the second, `1', for `2%(milk)' at level-2, and the third, `2', for the brand`Foremost' at level-3. Similar to [2], repeated items(i.e., items with the same encoding) at any level willbe treated as one item in one transaction.TID ItemsT1 f111, 121, 211, 221gT2 f111, 211, 222, 323gT3 f112, 122, 221, 411gT4 f111, 121gT5 f111, 122, 211, 221, 413gT6 f211, 323, 524gT7 f323, 411, 524, 713gTable 4: Encoded transaction table: T [1]The derivation of the large item sets at level 1 pro-ceeds as follows. Let the minimum support be 4 trans-actions (i.e., minsup[1] = 4). (Notice since the to-tal number of transactions is �xed, the support is ex-pressed in an absolute value rather than a relative per-centage for simplicity). The level-1 large 1-itemset ta-ble L[1; 1] can be derived by scanning T [1], registeringsupport of each generalized item, such as 1��, : : : , 4��,if a transaction contains such an item (i.e., the itemin the transaction belongs to the generalized item 1��,: : : , 4��, respectively), and �ltering out those whoseaccumulated support count is lower than the minimumsupport. L[1; 1] is then used to �lter out (1) any itemwhich is not large in a transaction, and (2) the trans-actions in T [1] which contain only small items. Thisresults in a �ltered transaction table T [2] of Figure 2.Moreover, since there are only two entries in L[1,1], thelevel-1 large-2 itemset table L[1,2] may contain only 1candidate item f1��, 2��g, which is supported by 4transactions in T [2].Level-1 minsup = 4Level-1 large 1-itemsets:L[1,1]Itemset Supportf1��g 5f2��g 5Level-1 large 2-itemsets:L[1,2]Itemset Supportf1��, 2��g 4 Filtered transaction table:T [2]TID ItemsT1 f111, 121, 211, 221gT2 f111, 211, 222gT3 f112, 122, 221gT4 f111, 121gT5 f111, 122, 211, 221gT6 f211gFigure 2: Large item sets at level 1 and �ltered trans-action table: T [2]According to the de�nition of ML-association rules,Page 4



Level-2 minsup = 3Level-2 large 1-itemsets:L[2,1]Itemset Supportf11�g 5f12�g 4f21�g 4f22�g 4Level-2 large 2-itemsets:L[2,2]Itemset Supportf11�, 12�g 4f11�, 21�g 3f11�, 22�g 4f12�, 22�g 3f21�, 22�g 3
Level-2 large 3-itemsets:L[2,3]Itemset Supportf11�, 12�, 22�g 3Level-3 minsup = 3Level-3 large 1-itemsets:L[3,1]Itemset Supportf111g 4f211g 4f221g 3Level-3 large 2-itemsets:L[3,2]Itemset Supportf111, 211g 3Figure 3: Large item sets at levels 2 and 3only the descendants of the large items at level-1 (i.e.,in L[1,1]) are considered as candidates in the level-2large 1-itemsets. Let minsup[2] = 3. The level-2 large1-itemsets L[2,1] can be derived from the �ltered trans-action table T [2] by accumulating the support countand removing those whose support is smaller than theminimum support, which results in L[2,1] of Figure 3.Similarly, the large 2-itemset table L[2,2] is formed bythe combinations of the entries in L[2,1], together withthe support derived from T [2], �ltered using the cor-responding threshold. The large 3-itemset table L[2,3]is formed by the combinations of the entries in L[2,2](which has only one possibility f11�, 12�, 22�g), anda similar process.Finally, L[3,1] and L[3,2] at level 3 are computed ina similar process, with the results shown in Figure 3.The computation terminates since there is no deeperlevel requested in the query. Note that the derivationalso terminates when an empty large 1-itemset tableis generated at any level. 2The above discussion leads to the following algo-rithm for mining strong ML-association rules.Algorithm 3.1 (ML T2L1)Find multiple-level large item sets for mining strongML association rules in a transaction database.Input: (1) T [1], a hierarchy-information-encoded andtask-relevant set of transaction database, in theformat of hTID; Itemseti, in which each itemin the Itemset contains encoded concept hierar-chy information, and (2) the minimum supportthreshold (minsup[l]) for each concept level l.Output: Multiple-level large item sets.

Method: A top-down, progressively deepening pro-cess which collects large item sets at di�erent con-cept levels as follows.Starting at level 1, derive for each level l, the largek-items sets, L[l; k], for each k, and the large item set,LL[l] (for all k's), as follows (in the syntax similar toC and Pascal, which should be self-explanatory).(1) for (l := 1; L[l; 1] 6= ; and l < max level; l++) do f(2) if l = 1 then f(3) L[l; 1] := get large 1 itemsets(T [1]; l);(4) T [2] := get filtered t table(T [1];L[1;1]);(5) g(6) else L[l; 1] := get large 1 itemsets(T [2]; l);(7) for (k := 2; L[l; k � 1] 6= ;; k++) do f(8) Ck := get candidate set(L[l; k� 1]);(9) foreach transaction t 2 T [2] do f(10) Ct := get subsets(Ck; t);(11) foreach candidate c 2 Ct do c.support++;(12) g(13) L[l; k] := fc 2 Ck jc:support �minsup[l]g(14) g(15) LL[l] :=Sk L[l; k];(16) g 2Explanation of Algorithm 3.1.According to Algorithm 3.1, the discovery of largesupport items at each level l proceeds as follows.1. At level 1, the large 1-itemsets L[l; 1] is derivedfrom T [1] by \get large 1 itemsets(T [1]; l)". Atany other level l, L[l; 1] is derived from T [2] by\get large 1 itemsets(T [2]; l)", and notice thatwhen l > 2, only the item in L[l � 1; 1] will beconsidered when examining T [2] in the derivationof the large 1-itemsets L[l; 1]. This is implementedby scanning the items of each transaction t in T [1](or T [2]), incrementing the support count of anitem i in the itemset if i's count has not beenincremented by t. After scanning the transac-tion table, �lter out those items whose supportis smaller than minsup[l].2. The �ltered transaction table T [2] is derived by\get filtered t table(T [1];L[1; 1])", which usesL[1,1] as a �lter to �lter out (1) any item whichis not large at level 1, and (2) the transactionswhich contain no large items.3. The large k (for k > 1) item set table at level l isderived in two steps:(a) Compute the candidate set fromL[l; k�1], asdone in the apriori candidate generation al-gorithm [2], apriori-gen, i.e., it �rst generatesa set Ck in which each item set consists of kitems, derived by joining two (k � 1) itemsPage 5



in L[l; k] which share (k�2) items, and thenremoves a k-itemset c from Ck if there existsa c's (k�1) subset which is not in L[l; k�1].(b) For each transaction t in T [2], for each of t'sk-item subset c, increment c's support countif c is in the candidate set Ck. Then collectinto L[l; k] each c (together with its support)if its support is no less than minsup[l].4. The large itemsets at level l, LL[l], is the unionof L[l; k] for all the k's. 2After �nding the large itemsets, the set of associ-ation rules for each level l can be derived from thelarge itemsets LL[l] based on the minimumcon�denceat this level, minconf [l]. This is performed as follows[2]. For every large itemset r, if a is a nonempty subsetof r, the rule \a! r � a" is inserted into rule set[l]if support(r)=support(a) � minconf [l], where min-conf [l] is the minimum con�dence at level l.Algorithm ML T2L1 inherits several important op-timization techniques developed in previous studiesat �nding association rules [1, 2]. For example,get candidate set of the large k-itemsets from theknown large (k�1)-itemsets follows apriori-gen of Al-gorithm Apriori [2]. Function get subsets(Ck ; t) is im-plemented by a hashing technique from [2]. Moreover,to accomplish the new task of mining multiple-levelassociation rules, some interesting optimization tech-niques have been developed, as illustrated below.1. Generalization is �rst performed on a given itemdescription relation to derive a generalized itemtable in which each tuple contains a set of itemidenti�ers (such as bar codes) and is encoded withconcept hierarchy information.2. The transaction table T is transformed into T [1]with each item in the itemset replaced by its cor-responding encoded hierarchy information.3. A �ltered transaction T [2] which �lters out smallitems at the top level of T [1] using the large 1-itemsets L[1,1] is derived and used in the deriva-tion of large k-items for any k (k > 1) at level-1and for any k (k � 1) for level l (l > 1).4. From level l to level (l + 1), only large items atL[l; 1] are checked against T [2] for L[l + 1; 1].Notice that in the processing, T [1] needs to be scannedtwice, whereas T [2] needs to be scanned p times wherep =Pl kl � 1, and kl is the maximum k such that thek-itemset table is nonempty at level l.

4 Variations of the Algorithm for po-tential performance improvementPotential performance improvements of AlgorithmML T2L1 are considered by exploration of the shar-ing of data structures and intermediate results andmaximally generation of results at each database scan,etc. which leads to the following variations of the algo-rithm: (1) ML T1LA: using only one encoded trans-action table (thus T1) and generating L[l; 1] for all thelevels at one database scan (thus LA), (2) ML TML1:using multiple encoded transaction tables and gener-ating L[l; 1] for one corresponding concept level, and(3) ML T2LA: using two encoded transaction tables(T [1] and T [2]) and generating L[l; 1] for all the levelsat one database scan.4.1 Algorithm ML T1LAThe �rst variation is to use only one encoded transac-tion table T [1], that is, no �ltered encoded transactiontable T [2] will be generated in the processing.At the �rst scan of T [1], large 1-itemsets L[l; 1] forevery level l can be generated in parallel, because thescan of an item i in each transaction t may increasethe count of the item in every L[l; 1] if its has not beenincremented by t. After the scanning of T [1], each itemin L[l; 1] whose parent (if l > 1) is not a large item inthe higher level large 1-itemsets or whose support islower than minsup[l] will be removed from L[l; 1].After the generation of large 1-itemsets for eachlevel l, the candidate set for large 2-itemsets for eachlevel l can be generated by the apriori-gen algorithm[2]. The get subsets function will be processed againstthe candidate sets at all the levels at the same time byscanning T [1] once, which calculates the support foreach candidate itemset and generates large 2-itemsetsL[l; 2]. Similar processes can be processed for step-by-step generation of large k-item-sets L[l; k] for k > 2.This algorithm avoids the generation of a new en-coded transaction table. Moreover, it needs to scanT [1] once for generation of each large k-itemset table.Since the total number of scanning of T [1] will be ktimes for the largest k-itemsets, it is a potentially ef-�cient algorithm. However, T [1] may consist of manysmall items which could be wasteful to be scanned orexamined. Also, it needs a large space to keep all C[l]which may cause some page swapping.Example 4.1 The execution of the same task as Ex-ample 3.1 using AlgorithmML T1LA will generate thesame large item sets L[l; k] for all the l's and k's butin di�erence sequences (without generating and usingT [2]). It �rst generates large 1-itemsets L[l; 1] for allthe l's from T [1]. Then it generates the candidate setsPage 6



from L[l; 1], and then derives large 2-itemsets L[l; 2] bypassing the candidate sets through T [1] to obtain thesupport count and �lter those smaller than minsup[l].This process repeats to �nd k-itemsets for larger k un-til all the large k-itemsets have been derived. 24.2 Algorithm ML TML1The second variation is to generate multiple encodedtransaction tables T [1], T [2], : : : , T [max l+1], wheremax l is the maximal level number to be examined inthe processing.Similar to Algorithm ML T2L1, the �rst scan ofT [1] generates the large 1-itemsets L[1; 1] which thenserves as a �lter to �lter out from T [1] any small itemsor transactions containing only small items. T [2] isresulted from this �ltering process and is used in thegeneration of large k-itemsets at level 1.Di�erent from Algorithm ML T2L1, T [2] is not re-peatedly used in the processing of the lower levels. In-stead, a new table T [l+1] is generated at the process-ing of each level l, for l > 1. This is done by scan-ning T [l] to generate the large 1-itemsets L[l; 1] whichserves as a �lter to �lter out from T [l] any small itemsor transactions containing only small items and resultsin T [l+1] which will be used for the generation of largek-itemsets (for k > 1) at level l and table T [l + 2] atthe next lower level. Notice that as an optimization,for each level l > 1, T [l] and L[l; 1] can be generatedin parallel (i.e., at the same scan).The algorithm derives a new �ltered transaction ta-ble, T [l + 1], at the processing of each level l. This,though seems costly at generating several transactiontables, may save a substantial amount of processing ifonly a small portion of data are large items at eachlevel. Thus it may be a promising algorithm in thiscircumstance. However, it may not be so e�ective ifonly a small number of the items will be �ltered outat the processing of each level.Example 4.2 The execution of the same task as Ex-ample 3.1 using AlgorithmML TML1 will generate thesame large itemsets L[l; k] for all the l's and k's but indi�erence sequences, with the generation and help ofthe �ltered transaction tables T [2], : : : , T [max l+ 1],where max l is the maximum level explored in the al-gorithm. It �rst generates the large 1-itemsets L[1; 1]for level 1. Then for each level l (initially l = 1), itgenerates the �ltered transaction table T [l + 1] andthe level-(l+1) large 1-itemsets L[l+1; 1] by scanningT [l] using L[l; 1], and then generates the candidate2-itemsets from L[l; 1], calculates the supports usingT [l+1], �lters those with support less than minsup[l],and derives L[l; 2]. The process repeats for the deriva-tion of L[l; 3], : : : , L[l; k]. 2

4.3 Algorithm ML T2LAThe third variation uses the same two encoded trans-action tables T [1] and T [2] as in Algorithm ML T2L1but it integrates some optimization techniques consid-ered in the algorithm ML T1LA.The scan of T [1] �rst generates large 1-itemsetsL[1; 1]. Then one more scan of T [1] using L[1; 1] willgenerate a �ltered transaction table T [2] and all thelarge 1-itemset tables for all the remaining levels, i.e.,L[l; 1] for 1 < l � max l by incrementing the countof every L[l; 1] at the scan of each transaction andremoving small items and the items whose parent issmall from L[l; 1] at the end of the scan of T [1].Then the candidate set for the large 2-itemsets ateach level l can be generated by the apriori-gen algo-rithm [2], and the get subsets routine will extract thecandidate sets for all the level l (l � 1) at the sametime by scanning T [2] once. This will calculate thesupport for each candidate itemset and generate large2-item-sets L[l; 2] for l � 1.Similar processes proceed step-by-step which gener-ates large k-item-sets L[l; k] for k > 2 using the sameT [2].This algorithm avoids the generation of a group ofnew �ltered transaction tables. It scans T [1] twiceto generate T [2] and the large 1-itemset tables for allthe levels. Then it scans T [2] once for the generationof each large k-itemset, and thus scans T [2] in totalk � 1 times for the generation of all the k-itemsets,where k is the largest such k-itemsets available. Sincek-itemsets generation for k > 1 is performed on T [2]which may consist of much less items than T [1], thealgorithm could be a potentially e�cient one.Example 4.3 The execution of the same task as Ex-ample 3.1 using AlgorithmML T2LA will generate thesame large itemsets L[l; k] for all the l's and k's. It �rstgenerates large 1-itemsets L[l; 1] from T [1], then T[2]and all the large 1-itemsets L[2; 1], : : : , L[max l; 1],where max l is the maximum level to be explored.Then it generates the candidate sets from L[l; 1], andderives large 2-itemsets L[l; 2] by testing the candidatesets against T [2] to obtain the support count and �lterthose with count smaller than minsup[l]. This processrepeats to �nd k-itemsets for larger k until all the largek-itemsets have been derived. 25 Performance studyTo study the performance of the proposed algorithms,all the four algorithms: ML T2L1, ML T1LA,ML TML1, and ML T2LA, are implemented andtested on a SUN/SPARC-2 workstation with 16megabytes of main memory. Page 7



The testbed consists of a set of synthetic transac-tion databases generated using a randomized item setgeneration algorithm similar to that described in [2].The following are the basic parameters of the gen-erated synthetic transaction databases: (1) the totalnumber of items, I, is 1000; (2) the total numberof transactions is 100,000; and (3) 2000 potentiallylarge itemsets are generated and put into the transac-tions based on some distribution. Table 5 shows thedatabase used, in which S is the average size (# ofitems in a potential large itemset) of these itemsets,and T is the average size (# of items in a transaction)of a transaction.Database S T # of transactions Size(MBytes)DB1 2 5 100,000 2.7MBDB2 4 10 100,000 4.7MBTable 5: Transaction databasesEach transaction database is converted into an en-coded transaction table, denoted as T [1], accordingto the information about the generalized items in theitem description (hierarchy) table. The maximal levelof the concept hierarchy in the item table is set to4. The number of the top level nodes keeps increas-ing until the total number of items reaches 1000. Thefan-outs at the lower levels are selected based on thenormal distribution with mean value being M2, M3,and M4 for the levels 2, 3, and 4 respectively, and avariance of 2.0. These parameters are summarized inTable 6.Item Table # nodes at level-1 M2 M3 M4I1 8 5 5 5I2 15 6 3 4Table 6: Parameters settings of the item description(hierarchy) tablesThe testing results presented in this section are ontwo synthetic transaction databases: one, T10 (DB2),has an average transaction size (# of item in a transac-tion) of 10; while the other, T5 (DB1), has an averagetransaction size of 5.Two item tables are used in the testing: the �rstone, I1, has 8, 5, 5 and 5 branches at the levels 1, 2,3, and 4 respectively; whereas the second, I2, has 15,6, 3 and 4 branches at the corresponding levels.Figure 4 shows the running time of the four algo-rithms in relevance to the number of transactions inthe database. The test uses the database T10 andthe item set I1, with the minimum support thresholdsbeing (50; 10; 4; 2), which indicates that the minimumsupport of level 1 is 50%, and that of levels 2, 3 and 4are respectively 10%, 4%, and 2%.

The four curves in Figure 4 show that ML T2LAhas the best performance, while the ML T1LA hasthe worst among the four algorithms under the cur-rent threshold setting. This can be explained as fol-lows. Since the �rst threshold �lters out many small1-itemsets at level 1 which results in a much smaller�ltered transaction table T [2], but the later �lter isnot so strong and parallel derivation of L[l; k] withoutderivation of T [3] and T [4] is more bene�cial, thusleads ML T2LA to be the best algorithm. On theother hand, ML T1LA is the worst since it consults alarge T [1] at every level.
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Figure 4: Threshold (50, 10, 4, 2)Figure 5 shows that ML T1LA is the best whereasML TML1 the worst among the four algorithms un-der the setting: a di�erent test database T5, the sameitem set I1, and with the minimum support thresh-olds: (20; 8; 2; 1). This is because the �rst threshold�lters out few small 1-itemsets at level 1 which re-sults in almost the same sized transaction table T [2].The generation of multiple �ltered transaction tablesis largely wasted, which leads the worst performance ofML TML1. Thus parallel derivation of L[l; k] withoutderivation of any �ltered transaction tables applied inML T1LA leads to the best performance.Figure 6 shows that ML T2L1 and ML TML1 areclosely the best whereas ML T2LA and ML T1LAthe worst under the setting: a test database T10, anitem set I2, and with the minimumsupport thresholds:(50; 10; 5; 2). This is because the �rst threshold �ltersout relatively more 1-itemsets at level 1 which resultsin small transaction table T [2]. Thus the generation ofmultiple �ltered transaction tables is relatively bene�-cial. Meanwhile, the generation of multiple level large1-itemsets may not save much because one may stillobtain reasonably good sized itemsets in the currentsetting, which leads ML T2L1 to be the best perfor-Page 8
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Figure 6: Threshold (50, 10, 5, 2)Figure 7 shows thatML TML1 is the best whereasML T1LA the worst under the setting: a testdatabase T5, an item set I2, and with the minimumsupport thresholds: (30; 15; 5; 2). This is because ev-ery threshold �lters out relatively many 1-itemsets ateach level which results in much smaller transactiontables at each level. Thus the generation of mul-tiple �ltered transaction tables is bene�cial, whichleads to ML TML1 is the best, and then ML T2L1,ML T2LA and ML T1LA in sequence.The above four �gures show two interesting fea-tures. First, the relative performance of the four algo-rithms under any setting is relatively independent ofthe number of transactions used in the testing, whichindicates that the performance is highly relevant tothe threshold setting (i.e., the power of a �lter at each
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Figure 7: Threshold (30, 15, 5, 2)level). Thus based on the e�ectiveness of a threshold, agood algorithm can be selected to achieve good perfor-mance. Second, all the algorithms have relatively good\scale-up" behavior since the increase of the number oftransactions in the database will lead to approximatelythe linear growth of the processing time, which is desir-able in the processing of large transaction databases.Figure 8 shows the running time of the four algo-rithms in relevance to the minimum support thresh-olds. The test uses the database T10 and the item setI2, with a sequence of threshold settings: thre1, : : : ,thre6. The setting of thre1 is (60; 15; 5; 2) (with thesame notational convention). The remaining thresh-old settings are as follows: thre2: (55; 15; 5; 2), thre3:(55; 10; 5; 2), thre4: (50; 10; 5; 2), thre5: (50; 10; 5; 1),thre6: (50; 5; 2; 1). The value-decreasing sequence ofminimum support thresholds indicates that weaker �l-tering mechanism is applied to the later portion of thesequence.The relative performance of the four algorithmsshows the interesting trends of growth as indicated bythe four curves in Figure 8. The stronger the �lter-ing mechanism, the more 1-itemsets are �ltered out ateach level, and the smaller large 1-itemsets are resultedin. Thus ML TML1, which generates a sequence of�ltered transaction tables, has the lowest cost at thre1,thre2 and also (but marginally) thre3, but the highestcost at thre5 and thre6 (since few items are �lteredout). On the contrary, ML T1LA, which uses onlyone encoded transaction table but generates the large1-itemsets for each level at the beginning has the high-est cost at thre1, thre2 and thre3, but the lowest costat thre6. The other two algorithms stand in the middlewith ML T2LA performs the best at thre5 when thethreshold is reasonable small, especially at the lowerlevels, and ML T2L1 performs the best at thre4 whenPage 9



the threshold is reasonable small but the lowest levelis not as small as thre5. Since ML T2LA scans T [1]twice and needs to maintain all large itemsets L[l; k]at the same time, it is outperformed by ML T2L1when the thresholds are big enough so that a substan-tial amount of T [1] is cut and the maximal length oflarge itemsets at each level is small. Moreover, onemay observe the signi�cant performance degradationfrom thre4 to thre5. This, based on our speculation,is because of the limited size of main memory whichmay cause substantial page swapping when the sup-port threshold is dropped signi�cantly.
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"TML1"Figure 8: Di�erent thresholds6 Discussion6.1 More about concept hierarchiesIn our discussions, we have assumed desired concepthierarchies exist and are presented in the form of re-lational tables (e.g., sales item in Table 1). However,there are often cases that portions of concept hierar-chies do not exist. For example, the hierarchy rela-tionships, such as \peanuts, pistachios, : : : , walnuts �nuts", may not be stored in the sales item relation.Therefore, it is often necessary for experts or usersto specify portions of hierarchies to facilitate miningmultiple-level association rules. Speci�ed hierarchiescan be mapped into relations with the paths fromhigh-level general concepts to low-level speci�c onesregistered in tuples. Null values should be allowed inthe mapped relational entries if there exist unbalancednodes in a hierarchy.Notice that there may often exist more than onepossible way of mapping a relation into a concept hi-erarchy. For example, \2% Foremost milk � 2% milk� milk" and \2% Foremost milk � Foremost milk �milk" are both meaningful hierarchies, but \2% Fore-

most milk � 2% Foremost � Foremost" may not be.An expert or a user may provide mapping rules atthe schema level (i.e., meta-rules) to indicate mean-ingful or desired mappings, such as \fcontent, brand,categoryg � fcontent, categoryg � category", etc.Concept hierarchies may not exist for numerical val-ued attributes but can be automatically generated ac-cording to data distribution statistics [8, 5]. For ex-ample, a hierarchy for the price range of sales itemscan be generated based on the distribution of pricevalues. Moreover, a given concept hierarchy for nu-merical or nonnumerical data can be dynamically ad-justed based on data distribution [8]. For example,if there are many distinct country names in the at-tribute \place made", countries can be grouped intocontinents, such as Asia, Europe, South America, etc.Moreover, if most fresh food products are from B.C.and Northwest America, the geographic hierarchy canbe automatically adjusted to reect this distributionwhen studying fresh food products [8].6.2 Generation of exible association rulesOur study has been con�ned to mining association re-lationships level-by-level in a �xed hierarchy. How-ever, it is often necessary or desirable to �nd exibleassociation rules not con�ned to a strict, pre-arrangedconcept hierarchies.First, one may wish to �nd associations among theconcepts associated with alternative, multiple hier-archies. For example, following the hierarchy givenin Example 2.1, one may �nd relationships like \2%milk ! wheat bread". Alternatively, one may like to�nd \Foremost milk ! Wonder bread" or \2% milk! Wonder bread", which may require alternative con-cept hierarchy structures. It seems to be challengingto explore so many alternatives since there may existonly a small number of �xed hierarchies in a database.However, the algorithms presented in this study can bemodi�ed minorly to meet the challenge since the newrequirement essentially associates the patterns in somealternative generalized forms, such as hf1�2g, f2�1gi,hf12�g, f2�1gi, etc.Second, one may relax the restriction of miningstrong associations among the concepts at the samelevel of a hierarchy to allow the exploration of \level-crossing" association relationships. This relaxationmay lead to the discovery of associations like \2%Foremost milk! Wonder bread" in which the two con-cepts are at di�erent levels of a hierarchy. This canbe achieved by minorlymodifying our algorithms sincethe new requirement associates the patterns like hf112,2�1gi, as demonstrated in the example below.Example 6.1 For the same transaction tables andPage 10



concept hierarchies given in Example 3.1, we examinethe mining of strong multiple-level association ruleswhich includes nodes at di�erent levels in a hierarchy.Let minimum support at each level be: minsup = 4at level-1, and minsup = 3 at levels 2 and 3.The derivation of the large itemsets at level 1 pro-ceeds in the same way as in Example 3.1, which gener-ates the same large itemsets tables L[1; 1] and L[1; 2]at level 1 and the same �ltered transaction table T [2],as shown in Figure 2.The derivation of level-2 large itemsets generatesthe same large 1-itemsets L[2; 1] as shown in Figure 9.However, the candidate items are not con�ned to pair-ing only those in L[2; 1] because the items in L[2; 1]can be paired with those in L[1; 1] as well, such asf11�, 1��g (for potential associations like \milk! 2%milk"), or f11�, 2��g (for potential associations like\2% milk! bread"). These candidate large 2-itemsetswill be checked against T [2] to �nd large items (for thelevel-mixed nodes, the minimum support at a lowerlevel, i.e., minsup[2], can be used as a default). Sucha process generates the large 2-itemsets table L[2,2] asshown in Figure 9.Notice that the table does not include the 2-itempairs formed by an item with its own ancestor such ashf11�, 1��g, 5i since its support must be the same asits corresponding large 1-itemset in L[2,1], i.e., hf11�g,5i, based on the set containment relationship: anytransaction that contains f11�g must contain f1��gas well.Similarly, the level 2 large 3-itemsets L[2; 3] can becomputed, with the results shown in Figure 9. Also,the entries which pair with their own ancestors arenot listed here since it is contained implicitly in theircorresponding 2-itemsets. For example, hf11�, 12�g,4i in L[2,2] implies hf11�, 12�, 1��g, 4i in L[2,3].Level-2 minsup = 3Level-2 large 1-itemset:L[2,1]Itemset Supportf11�g 5f12�g 4f21�g 4f22�g 4 Level-2 large 2-itemset:L[2,2]Itemset Supportf11�, 12�g 4f11�, 21�g 3f11�, 22�g 4f12�, 22�g 3f21�, 22�g 3f11�, 2��g 4f12�, 2��g 3f21�, 1��g 3f22�, 1��g 4Level-2 large 3-itemset:L[2,3]Itemset Supportf11�, 12�, 22�g 3f21�, 22�, 1��g 3Figure 9: Large Item Sets at Level 2Finally, the large 1-itemset table at level 3, L[3,1],should be the same as Figure 3. The large 2-itemset

table includes more itemsets since these items can bepaired with higher level large items, which leads to thelarge 2-itemsets L[3, 2] and large 3-itemsets L[3, 3] asshown in Figure 10. Similarly, the itemsets f111, 11�gand f111, 1��g have the same support as f111g in L[3,1] and are thus not included in L[3,2].Since the large k-itemset (for k > 1) tables do notexplicitly include the pairs of items with their own an-cestors, attention should be paid to include them atthe generation of association rules. However, since theexistence of a special item always indicates the exis-tence of an item in that class, such as \2% milk! milk(100%)", such trivial rules should be eliminated. Thus,only nontrivial implications, such as \milk ! 2% milk(70%)", will be considered in the rule generation. 2Level-3 minsup = 3Level-3 large 1-itemset:L[3,1]Itemset Supportf111g 4f211g 4f221g 3 Level-3 large 2-itemset:L[3,2]Itemset Supportf111, 211g 3f111, 21�g 3f111, 22�g 3f111, 2��g 4f11�, 211g 3f1��, 211g 3Level-3 large 3-itemset:L[3,3]Itemset Supportf111, 21�, 22�g 3Figure 10: Large Item Sets at Level 36.3 User interface for mining association rulesIn many applications, users may be only interested inthe associations among a subset of items in a largedatabase (e.g., associations among foods but not be-tween foods and tires). It is important to provide aexible interface for users to specify their interestedset of data, adjust the thresholds, and interactivelydiscover interesting association relationships.The query in Example 2.1 is an example of speci-fying association rule mining tasks. Besides a generalclaim of mining association rules, a user may also liketo specify the discovery of associations among or be-tween speci�c groups of data. For example, the follow-ing query indicates that the user is interested only indiscovering the association relationships between milkand bread.discover association rulesbetween I.category = \milk" and I.category =\bread"from sales transactions T, sales item Iwhere T.bar code = I.bar codewith interested attributes category, content, brandSince the query requires to �nd multiple-level largePage 11



2-itemsets only, the rule mining algorithm needs tobe modi�ed accordingly, however, it will preserve thesame spirit of sharing structures and computationsamong multiple levels.Graphical user interface is recommended for dy-namic speci�cation and adjustment of a mining taskand for level-by-level, interactive, and progressive min-ing of interesting relationships. Moreover, graphicaloutputs, such as graphical representation of discoveredrules with the corresponding levels of the concept hi-erarchies may substantially enhance the clarity of thepresentation of multiple-level association rules.7 ConclusionsWe have extended the scope of the study of miningassociation rules from single level to multiple conceptlevels and studied methods for mining multiple-levelassociation rules from large transaction databases. Atop-down progressive deepening technique is devel-oped for mining multiple-level association rules, whichextends the existing single-level association rule min-ing algorithms and explores techniques for sharingdata structures and intermediate results across levels.Based on di�erent sharing techniques, a group of algo-rithms, notably, ML T2L1, ML T1LA, ML TML1 andML T2LA, have been developed. Our performancestudy shows that di�erent algorithms may have thebest performance for di�erent distributions of data.Related issues, including concept hierarchy han-dling, methods for mining exible multiple-level as-sociation rules, and adaptation to di�erence miningrequests are also discussed in the paper. Our studyshows that miningmultiple-level association rules fromdatabases has wide applications, and e�cient algo-rithms can be developed for discovery of interestingand strong such rules in large databases.Extension of methods for mining single-level knowl-edge rules to multiple-level ones poses many new is-sues for further investigation. For example, with therecent developments on mining single-level sequentialpatterns [3] and metaquery guided data mining [16],mining multiple-level sequential patterns and meta-query guided mining of multiple-level association rulesare two interesting topics for future study.References[1] R. Agrawal, T. Imielinski, and A. Swami. Mining asso-ciation rules between sets of items in large databases.In Proc. 1993 ACM-SIGMOD Int. Conf. Managementof Data, pp. 207{216, Washington, D.C., May 1993.[2] R. Agrawal and R. Srikant. Fast algorithms for miningassociation rules. In Proc. 1994 Int. Conf. Very LargeData Bases, pp. 487{499, Santiago, Chile, Sept. 1994.
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