
Proc. 25th Int. Symp. on Fault-Tolerant Computing, June 1995, to appear.

Reduced Overhead Logging for Rollback Recovery
in Distributed Shared Memory

Gaurav Suri Bob Janssens W. Kent Fuchs

AT&T Bell Laboratories Center for Reliable and High-Performance Computing
600 Mountain Avenue Coordinated Science Laboratory
Murray Hill, NJ 07974 University of Illinois

Urbana, IL 61801

Abstract

Rollback techniques that use message logging and de-
terministic replay can be used in parallel systems to re-
cover a failed node without involving other nodes. Distri-
buted shared memory (DSM) systems cannot directly ap-
ply message-passing logging techniques because they use
inherently nondeterministic asynchronous communication.
This paper presents new logging schemes that reduce the
typically high overhead for logging in DSM. Our algo-
rithm for sequentially consistent systems tracks rather than
logs accesses to shared memory. In an extension of this
method to lazy release consistency, the per-access overhead
of tracking has been completely eliminated. Measurements
with parallel applications show a significant reduction in
failure-free overhead.

1 Introduction

Distributed shared memory (DSM) provides the pro-
gramming advantages of a shared memory image in a
system with physically distributed processing nodes. DSM
maintains consistency between processing nodes in soft-
ware, using the virtual memory paging mechanism [15], or
in hardware, using directory-based cache coherence [14].
Since DSM systems typically execute long-running appli-
cations on physically independent nodes, it is useful to have
the ability to roll back to a previously saved state when a
node crashes or is otherwise unable to continue the com-
putation. Rollback techniques that use message logging
and deterministic replay can be used in message passing
systems to recover a failed node without involving other
nodes. However, DSM systems can not directly apply these

This research was supported in part by the Office of Naval Research
under grant N00014-91-J-1283, and by the National Aeronautics and
Space Administration (NASA) under grant NASA NAG 1-613, in coop-
eration with the Illinois Computer Laboratory for Aerospace Systems and
Software (ICLASS).

techniques, since DSM communication is inherently non-
deterministic. Typically a DSM system has to incur the
high overhead of logging all read accesses to implement de-
terministic replay.

This paper presents our implementation of reduced over-
head logging algorithms for recovery in DSM systems. Un-
like the only other logging scheme proposed for a gen-
eral page-based DSM, by Richard and Singhal [18], our
method does not need to log the contents of all accesses to
shared memory. Instead it simply keeps a count of these
accesses to maintain determinism. Furthermore, we show
that, by using a relaxed memory consistency model and
a multiple writer protocol, it is possible to eliminate all
nondeterministic communication, making the tracking of
shared accesses unnecessary. The algorithms have been in-
tegrated into a user-level software implementation of re-
coverable DSM on standard UNIX workstations. Measure-
ments using parallel scientific applications show that our
schemes reduce the failure-free overhead over the previ-
ous scheme [18] by more than an order of magnitude. Re-
execution time after rollback is also significantly reduced.

Most previous work on rollback recovery in shared me-
mory systems does not use logging; instead, checkpointing
and/or recovery is coordinated between nodes to enable
the system to roll back to a consistent state. The struc-
ture of shared memory simplifies recovery to a consistent
state; allowing some dependencies caused by messages
other than data transfers to be ignored [11]. Various early
schemes for shared memory use communication-induced
checkpointing, where data transfer induces the overhead of
a checkpoint, ensuring that a rollback never results in an in-
consistent state [1, 4, 10, 21]. Other schemes use consistent
checkpointing where all nodes coordinate checkpointing to
allow the system to always roll back to a consistent global
state [1, 2, 8, 9].

A large body of research exists on logging in message
passing systems. Logging allows a process to recover lo-
cally, and is therefore suited for environments where it is

1

impractical to involve other operational processes in re-
covery. Pure logging techniques that can tolerate an arbi-
trary number of failures need to log the contents and or-
dering of every message synchronously to stable storage
upon receipt [17]. Execution needs to be piecewise deter-
ministic, and a checkpoint has to be inserted for every non-
deterministic event, so the system can recover to the exact
state at the time of a failure by replaying the log after roll-
back. Asynchronous, or optimistic logging techniques re-
duce runtime overhead by grouping and delaying writes to
stable storage [20]. Since not-yet-logged messages may be
lost upon a failure, techniques ensuring rollback to a con-
sistent state have to be implemented in addition to logging.

In DSM systems, the state of the computation on a node
depends on the exact arrival times, with respect to the lo-
cal computation, of request messages from other nodes.
Therefore, the message-passing logging techniques cannot
be used, since the arrival of every message would have to
be considered a nondeterministic event and checkpointed.
Fuchi and Tokoro propose solving this problem by im-
plementing special hardware that pinpoints and logs the
time of arrival of a message at clock cycle granularity [7].
This approach requires a modification of the microproces-
sor CPU hardware. Richard and Singhal avoid the nonde-
terminism of message arrivals by logging a copy of a shared
page whenever a node reads it [18]. Since only the shared
part of memory is directly affected by messages in a DSM,
this scheme allows deterministic replay after rollback.

In this paper we present an improved algorithm for syn-
chronous logging in DSM. A node logs a shared page to
volatile storage every time it is obtained from another node.
Logs are flushed to stable storage before exposing a modi-
fied page to another node. The non-determinism caused by
request messages is avoided by tracking accesses to shared
memory. Recovery is accomplished by rolling back the
failed node to the last checkpoint and replaying its execu-
tion with the help of the logs.

Programmers of shared memory machines usually view
the system as being sequentially consistent [13]. For most
programs, however, it is possible to relax the system’s
consistency requirements while maintaining a sequentially
consistent view for the programmer. By using relaxed con-
sistency, and eliminating false sharing between nodes, it
is possible to make all page transfers in DSM determinis-
tic. Neves et al. use logging to implement recovery in an
entry consistent memory model in an object-based DSM
[16]. Since data is transferred at object rather than page
granularity, and all objects are protected by associated syn-
chronization variables, all data transfers can be performed
at accesses to synchronization variables. Since synchroni-
zation accesses occur at deterministic times, it suffices to
log object data transfers without tracking shared memory

accesses. Feeley et al. use a similar consistency model
in a recoverable transactional DSM [6]. All accesses con-
sist of transactions, which are logged by commonly used
database logging methods. A log-based coherency scheme
is used where updates to shared data occur when local logs
are flushed to other nodes at transaction commit time.

The relaxed consistency logging methods just described
are not general enough to apply to a traditional DSM where
the unit of data transfer is a fixed cache block or memory
page. We present a logging method that uses release con-
sistency with multiple writers [12] to eliminate nondeter-
ministic data transfer in such systems. Since the tracking
overhead for every shared access is eliminated, this method
further reduces the logging overhead over our sequentially
consistent scheme.

No measurements of the overhead of checkpointing
and/or logging for actual implementations of recoverable
DSM exist in the literature. Feeley et al. present per-
formance data from a prototype implementation of their
log-based coherency scheme for transaction processing [6].
However, since in this scheme logging is also needed to
maintain coherence of the shared address space, it is not
possible to measure the overhead of supplying recoverabil-
ity. While most the communication-induced and consistent
checkpointing schemes for shared memory have been eval-
uated by trace-driven simulation, none of the other logging
schemes have been quantitatively evaluated. The measure-
ments in this paper constitute the first performance over-
head numbers for logging-based recoverableDSM that runs
general scientific code. They also constitute the first re-
sults for an actual prototype implementation of a recover-
able DSM for scientific programming.

2 Logging and Rollback in DSM Systems

The aim of logging with independent checkpointing is
to provide local recovery capability in the event of a node
failure. Local recovery means that the node that failed can
recover to its pre-failure state without involving the other
nodes in the system in the recovery process. Our schemes
are designed to recover from transient stopping failures of
nodes in a DSM system. The network is assumed to be
fault-free and the disks reliable. Node failures are detected
via timeouts or some other detection mechanism. The exe-
cution on every node is piecewise deterministic [20], so that
a failed node’s state can be rebuilt by rolling back to a previ-
ous checkpoint and replaying execution from the log. Since
our aim is to provide recovery from multiple failures with-
out inter-node coordination, we use synchronous logging to
stable storage.

In synchronous logging in message passing systems,
every node maintains a log of the messages it received from
other nodes and, during recovery, the receipt of a message

6

writable x
transferred

local INV

R(x)

1
M 2

M 3

M 4

M
M 5

x transferred
Read only

writable x
transferred

local INV

W(x)

W(x)

M
owner(x)

Node A

Node B

Node C

R(x)

7M

Inv x

W(x)R(x) R(x)

Figure 1: Shared data access patterns in DSM.

is satisfied from this log. Since the receipt of a message
is explicitly specified in the program, the ordering of the
messages in the log suffices to apply the log entries to the
correct receipt at the correct time. In DSM systems, how-
ever, a remote node may send a message at any time, which
is then asynchronously received, possibly changing the lo-
cal state. During recovery, without any additional informa-
tion, it is not possible to determine when to apply the next
receive in the log.

We illustrate the problem of logging asynchronous re-
ceives in DSM with the help of an example. The system
consists of a number of processing nodes which can cache
copies of the shared variables they access. A part of each
node’s address space is dedicated to shared pages. The
fixed distributed manager protocol for software DSM [15]
is used to maintain coherence. Each page has a home,
which manages the ownership rights for that page. More
than one node may have a read only copy of a page as long
as there is no one writing to the page. There may be only
one node writing to a page at any given time, and at that
time no one else can access the page. When a node tries
to access a page for which it does not have access rights, a
page fault occurs and a fault handler is invoked which ser-
vices the fault and retrieves an up-to-date copy of the page.
In case of a write fault, invalidate messages are sent to all
nodes that currently hold copies of the page.

Figure 1 shows an example of DSM shared page access
patterns using one shared page and three nodes. Initially,
node A owns page x along with exclusive write access, so
its first two accesses to the page do not cause a fault. When
node B tries to write page x, a page fault occurs, the fault
handler obtains a copy of the page from the ownerA, andB
becomes the new owner. A sets its access to invalid, caus-
ing its next read to fault and ask the owner B for a copy.
Node B downgrades its access to read-only, and adds A
to the copyset for page x. Finally, Node C requests write

access to pagex, causing nodeB to invalidate its local copy
and send the page and its copyset to C. Node C then uses
the copyset to invalidate the readable copy in node A.

Assume that now node A rolls back to a checkpoint at
the beginning of the diagram. If we could record the exact
instance at which messages are received, it could recover
by replaying these messages at the correct time. However,
consider what happens when node A starts recovery. The
first entry in the log is the write request message M1 from
node B. For deterministic re-execution it is necessary to
apply the resulting invalidate between the second and third
accesses to x. However, unless additional timing informa-
tion is logged, the log has no knowledge that the request ac-
tually occurred between these accesses.

One solution to this problem is to model communica-
tion as occurring between the application process and the
global shared memory system. In this model every read
access causes a message with the data contents to be re-
ceived from the shared memory, and therefore needs to be
logged. Richard and Singhal’s scheme uses this model, log-
ging a copy of a shared page whenever it is read [18]. We
will refer to this scheme as shared-read logging. A better
solution is to maintain enough ordering information in the
log so that all accesses to shared memory can be correctly
replayed. In our scheme, the only data logged are the con-
tents of the pages received in response to a read or write re-
quest. All shared memory accesses are tracked, and a count
is maintained of the number of accesses made between in-
validates.

With access tracking, in the example of Figure 1, nodeA increments a counter whenever it accesses page x dur-
ing normal execution, and logs and resets the counter when
that page is invalidated. After the rollback, the first entry in
the log now states that there will be two accesses before the
first invalidate, so the read and write to x are re-executed
and the page is invalidated before the next read of x. Then
when that read occurs, a page fault causes the node to con-
sult the next entry of the log, which has the contents of pagex that were sent during normal execution. Next, the log will
contain another record that xwas accessed twice before the
next invalidation, so the message from node C is also ap-
plied at the correct time.

From the example just described, it is clear that log-
ging only the data transfers and tracking shared memory
accesses to correctly log invalidate messages can reduce the
amount of data logged considerably compared to schemes
that log all accesses to shared data. The reduced size of
the log also ensures faster recovery because the number
of accesses to stable storage during recovery is greatly re-
duced.

Read Fault Handler Write Fault Handlerif (in recovery) if (in recovery)read next page from page log; read next page from log;copy page to address for the copy page to address for thepage in memory; page in memory;set permission for page to read only; set permission for page to read-write;else elsesend page request to manager of page; send page request to manager of page;get page from current owner; get page from current owner;set permission for page to read only; set permission for page to read-write;log page to volatile log; send invalidates to all members of copyset;endif log page to volatile log;endif
Read Request Server Write Request Serverif (in recovery) if (in recovery)put request in pending queue; put request in pending queue;else elselog change in permission with log invalidate with inv ctrinv ctr to volatile log; to volatile log;inv ctr = 0; inv ctr = 0;flush log to stable storage; flush log to stable storage;send page to requesting node; send page to requesting node;set permission for page to read only; set permission for page to invalid;add requesting node to copyset; endifendif
Invalidate Request Server Shared Memory Access Trackingif (in recovery) if (in recovery)put request in pending queue; inv ctr++;else if (inv ctr == next invalidate)invalidate page; invalidate page = pagenum fromlog invalidate with inv ctr invalidate log;to volatile log; read next invalidate frominv ctr = 0; invalidate log;endif inv ctr = 0;endifelseinv ctr++;endif

Figure 2: Pseudo-code for logging.

3 The Sequential Consistency Algorithm

The three important components of our algorithm for se-
quential consistency are the logging of shared pages dur-
ing failure-free operation, periodic checkpointing of pro-
cess state, and local recovery of the failed node with the
help of the log maintained on stable storage. This section
describes the components in detail.

3.1 Logging

In our algorithm, logging is integrated with the memory
coherence mechanism. The system maintains two kinds of
logs: one for shared pages and one for the invalidate re-
quests serviced during failure-free operation. The page log
consists of two fields, the page number and the page it-
self. The invalidate log has two fields: inv ctr, which is the
number of shared accesses before the next invalidate and
page num, the page number to be invalidated.

Pseudo-code for the logging algorithm integrated into
the fixed distributed manager DSM algorithm is given in
Figure 2. The shared access tracking procedure is invoked
every time a shared access occurs. The read or write fault
handler is called when a node tries to access a page for
which it does not have read or write permission. The fault
handler contacts the node that owns the page, which causes
the respective request server to be called there. The write
fault handler may also send invalidate messages, which
are processed by invalidate servers on the receiving nodes.
Once the page request has been serviced and the node has
the page, it logs the page to its volatile log.

In order to ensure that the node can recover to a con-
sistent state during recovery, the volatile logs are flushed
to stable storage before a node grants a page request and
transfers a page to another node [18]. Thus, the stable logs
will always have sufficient data to reconstruct the process
state to beyond a point where modifications that it made to
shared data have been made visible to other nodes.

3.2 Checkpointing

The scheme allows for nodes to checkpoint indepen-
dently. Checkpoints are taken periodically so that the logs
do not grow without bound and, in case of failure, the node
does not lose too much computation. A checkpoint consists
of the complete processing node state including its shared
pages and its pagetable. At the time of checkpointing, a
node also flushes the contents of its volatile log to sta-
ble storage. Once the checkpoint has been completed and
saved to stable storage, the previous checkpoint and the sta-
ble log for the node are discarded.

3.3 Recovery

When a node failure is detected, recovery is initiated by
restarting its computation on the failed node from its most
recent checkpoint. The in recovery flag is set and execution
starts from the restored state. All the page fault requests
on the recovering node during this period are serviced from
the page log. The invalidate log is used to invalidate shared
pages at appropriate times so that the execution is a deter-
ministic reconstruction of the pre-failure execution. While
the node is recovering, it blocks all service requests from
other nodes. This prevents operational nodes from access-
ing stale data from the recovering node. The recovery pro-
cess is completed when the entire log is consumed. The
node then unsets the in recovery flag, unblocks service of
requests from other nodes and resumes normal execution.
The details of the recovery algorithm are included in the
pseudo-code presented in Figure 2.

There is a possibility that a node initiates a rollback af-
ter it has received a request for a page, but before it sends
the page. In this case, the requester will never receive the
page, so it resends the request if it does not receive a reply
after a specified timeout period. Duplicate requests are de-
tected by using sequence numbers [3]. There is also a pos-
sibility that a node rolls back after acquiring ownership of
a page, but before the volatile log is saved to stable stor-
age. In this case the page manager has incorrect owner-
ship information. To tolerate this, ownership information is
maintained redundantly by using an ownership timestamp
on every node for every page [11]. The owner of a page is
guaranteed to have the largest ownership timestamp. If a
node receives a request to a page it does not own, it deter-
mines the correct owner by requesting and comparing own-
ership timestamps from each node.

4 Relaxed Consistency

One of the main disadvantages of our logging algorithm
is that it needs to keep a count of all read and write accesses
to a shared page. In a software implementation, this means
that for every shared access some code has to be inserted
to update a counter. The only way to avoid this overhead
for every access to shared data is to eliminate asynchronous
requests that change access permissions to a local page.

To eliminate asynchronous requests, it is necessary to re-
lax the memory consistency model. In the usual sequen-
tial consistency model, memory accesses are seen by all
nodes in program order [13]. Release consistency allows
accesses between synchronization points to be seen in any
order, allowing the sending of invalidation messages to be
delayed [12]. The only ordering between accesses on dif-
ferent nodes is enforced by pairs of release (unlock) and ac-
quire (lock) accesses to synchronization variables. For ex-

Read Fault Handler Read Request Serverif (in recovery) if (in recovery)read diffs from log; put request in pending queue;apply diffs to local page; elseset permission for page to read only; flush log to stable storage;else create diffs from twinned pages;send page request to any node send diffs to requesting node;with a valid copy; set permission for page to read only;get page from that node; endifget diffs from other writers;log diffs to volatile log;apply diffs to local page;set permission for page to read only;endif
Write Fault Handlercreate twin of page;set permission for page to read-write;
Acquire Acquire Serverif (in recovery) if (in recovery)read write notices from log; put request in pending queue;apply write notices to invalidate pages; elseelse flush log to stable storage;send acquire request to lock manager; wait until lock is released;receive write notices from last acquirer; send write notices to requester;log write notices to volatile log; endifapply write notices to invalidate pages;endif

Figure 3: Pseudo-code for logging with lazy release consistency.

ample, if node A unlocks lock variable s and node B later
locks s, then all data accesses before the unlock onA are or-
dered before all data accesses after the lock on B. As long
as the application programmer ensures that the program
does not have any data races, a release consistent system is
indistinguishable from a sequentially consistent system. A
data race occurs when two data operations access the same
memory location, they are not both reads, and they are not
ordered by an acquire-release pair.

Lazy release consistency attempts to reduce the number
of messages needed to maintain coherence in software im-
plementations of DSM [12]. It delays propagation of mod-
ifications made to data protected by a synchronization vari-
able until the acquire of the variable by another node. At
that time, the last releaser sends a set of write notices to the
acquirer. These write notices describe the modifications to

shared pages that precede the acquire. The acquiring node
then invalidates all pages for which it has an out-of-date
copy. A multiple writer protocol is used to avoid messag-
ing overhead due to false sharing of variables in the same
page. A node that receives write permission for a page cre-
ates a twin copy of the page to which it makes modifica-
tions. When another node requests access to that page, the
original and twin are compared to create a diff record which
is sent to the requester. The requester then applies the diffs
to its copy of the page before accessing it.

The important feature of lazy release consistency for
logging purposes is that all changes to the access permis-
sions of pages occur at deterministic points. Invalidations
are delayed until a node acquires a lock and requests the
write notices. The multiple writer protocol allows all nodes
that have write permission to a page to keep that permis-

sion even if another node wants access. Therefore, it suf-
fices to log the messages received during all acquires and
access misses during normal execution. When the log is
replayed, the correct invalidations are applied at acquire
points, and the access misses occur at the correct shared
memory accesses, ensuring deterministic re-execution to
the state that existed right before the failure. Figure 3 con-
tains the pseudo-code for the logging algorithm with lazy
release consistency. It is similar to the sequential consis-
tency case, except that shared memory accesses are not
tracked. Instead invalidations are logged and replayed in
the acquire handler, which is called every time an acquire
of a lock succeeds.

5 Performance Overhead Results

To verify the correctness of our approach, and to
measure overhead for real applications, we developed,
a user-level implementation of DSM under UNIX and
implemented Richard and Singhal’s shared-read logging
scheme [18] and our sequential consistency scheme. For
these two schemes, both error-free overhead and recovery
performance were measured. In addition, measurements
were taken on the error-free overhead of logging if accesses
are not tracked, which would be the case in the lazy release
consistency algorithm.

5.1 Implementation of the prototype

The recoverable DSM testbed runs under both BSD and
Solaris versions of SunOs on Sun Microsystems worksta-
tions. The implementation is wholly in user space; the
kernel is involved only in handling system calls, passing
messages, and passing on interrupts to the user application.
The system consists of a library that is linked to a user appli-
cation. Each node in the system runs its own copy of the ap-
plication. At initialization, a user-specified area of virtual
memory is designated shared and protected to disallow read
and write accesses.

During execution, the application accesses memory as
usual, but when a protection violation is detected by the
kernel, an interrupt handler is called. The interrupt han-
dler uses the address of the access to index into a page ta-
ble containing the page handler for the affected page. The
page handler then communicates through the kernel with
the other nodes and changes its internal state. If neces-
sary it receives a new copy of the page and stores it at the
correct virtual memory address. Finally, it tells the kernel
to modify the protections so the application can access the
page. When a request for access to a page arrives from an-
other node, the kernel interrupts the application and calls
the interrupt handler to index into the pagetable. The cor-
responding page handler performs the required action. It

might need to ask the kernel to change access permission
to the page, or it might need to send a copy of the page to
the requesting node. Then the system returns to executing
the application.

The advantage of implementing the system in user space
is that it can run on any Sun workstation, without modifica-
tions to the kernel. The disadvantage is that the interrupt
handling and communication mechanism is slow. Since
we do not have a high-speed network available, we ran
our experiments for this paper on a four-processor shared
memory SPARCsystem-600 server. The system spawns
four processes and lets the operating system schedule them.
Communication is through sockets which are in turn imple-
mented on top of the physically shared memory. The page
size for the Sun virtual memory architecture and therefore
the page size used in our prototype is 4 kilobytes.

5.2 Experimental setup

Our results are based on 4-node execution of three par-
allel applications: water, SOR, and prefix. Water, obtained
from the SPLASH suite [19], is a molecular dynamics sim-
ulation. SOR implements successive overrelaxation. Pre-
fix uses successive matrix matrix multiplications to perform
the prefix product on an array of matrices.

We implemented logging using both the shared-read
logging scheme and our shared access tracking scheme.
Shared-read logging logs a copy of every shared page that
is read to volatile storage, detecting exact duplicate copies
of a logged page to save space. The volatile log is flushed to
disk before a node grants a page request. Our shared access
tracking scheme is implemented exactly as described in
Section 3. We ran two sets of experiments, one to mea-
sure failure-free overhead of the logging schemes, and one
to measure the time it takes to recover after the system has
rolled back. Due to the large disk space requirements for
the shared-read logging scheme, it is not possible to run the
recovery overhead measurements for very large datasets.
Hence, the inputs to the benchmarks were varied between
the two sets of experiments. The inputs used for the various
benchmarks for experiments are presented in Table 1.

For the failure-free measurements, five different exper-
iments were performed using the three benchmarks. Since
the goal was to measure the overhead of logging, no check-
pointing was done in the experiments. We ran the applica-
tion without logging, with the shared-read logging scheme,
and with our shared access tracking scheme. Three vari-
ations of our access tracking scheme were implemented.
In the first variation, access tracking is performed using
a function call. To reduce overhead, the second variation
inlines access tracking into the application’s code. In the
third variation, access tracking is not performed at all. This
third variation allows us to measure the overhead that could

Table 1: Inputs used for benchmarks.

Benchmark Description Failure-free Recovery
input input

water molecular dynamics 8 steps of 216 molecules 8 steps of 27 molecules
SOR successive overrelaxation 300 iter., 5122 entries 100 iter., 5122 entries
prefix matrix prefix 15 100x100 matrices 5 20x20 matrices

Table 2: Failure-free overhead measurements for prefix.
Total number of shared memory accesses is 56.3 million.

Logging Exec. % pages no. of
Scheme time (s) overh. logged flushes

None 70.6 - - -
Shared-read logging 67560.4 95600 14.32M 20046
Func. call tracking 99.2 40.6 5845 4836
Inlined tracking 77.0 9.04 5845 4836
No tracking 76.0 7.62 5845 4836

Table 3: Failure-free overhead measurements for SOR. To-
tal number of shared memory accesses is 391.028 million.

Logging Exec. % pages no. of
Scheme time (s) overh. logged flushes

None 72.4 - - -
Shared-read logging 900.6 1140 82718 2434
Func. call tracking 197.6 173 4424 2441
Inlined tracking 94.2 30.0 4424 2441
No tracking 85.4 17.9 4424 2441

be reduced by the lazy release consistency model, where
access tracking is not performed.

For the recovery time measurements, the same two log-
ging schemes were evaluated, but the three variations for
the access tracking scheme were not introduced. The re-
covery time for a failed node depends on how recently a
checkpoint has been taken. To obtain a measure of recovery
overhead independent of checkpointing frequency, our re-
covery experiment runs the parallel application completely
to the end, then rolls back node 0 to the beginning of the par-
allel part of the application, and re-executes it completely
from the log.

5.3 Experimental results

Tables 2, 3 and 4 show the data for the failure-free over-
heads in terms of actual execution time, percentage over-
head with respect to the normal execution times of the pro-
grams, the total number of pages logged, and the number

Table 4: Failure-free overhead measurements for Water.
Total number of shared memory accesses is 33.832 million.

Logging Exec. % pages no. of
Scheme time (s) overh. logged flushes

None 409.9 - - -
Shared-read logging 11579.0 2730 2.538M 73015
Func. call tracking 546.3 33.3 62150 56012
Inlined tracking 511.6 24.8 62150 56012
No tracking 496.7 21.2 62150 56012

of times the volatile log was flushed to stable storage. The
number of pages logged is an indication of the disk space
the log requires, while the number of flushes gives a mea-
sure of how frequently disk accesses need to be made.

Figure 4 shows a comparison of the failure-free over-
head calculated as a percentage of normal execution time
for the shared-read logging scheme, and the three varia-
tions of our access tracking scheme described earlier. The
plot clearly shows that the tracking scheme outperforms the
shared-read logging scheme by more than an order of mag-
nitude. This is expected since only a small fraction of all
accesses actually lead to page transfers between nodes and
thus the tracking scheme logs a much smaller number of
pages. The overhead for shared-read logging for Prefix is
much higher than the other two programs. The shared me-
mory access pattern for Prefix is such that it causes a page to
be modified and thus logged again almost once every four
accesses, leading to high overhead. The overhead with in-
lined tracking is significantly less than the overhead with
tracking as a procedure call, and the overhead with no track-
ing is even less. This shows that the tracking overhead is
a significant portion of the total. Though the exact con-
tribution of the tracking overhead varies from program to
program and depends on the relative frequency of page
faults in the program, it is clear that any scheme that does
not need tracking will suffer from lower overheads. Our
scheme for lazy release consistency does not need tracking
to ensure correct recovery and can thus be expected to have
a lower overhead than the one for strict consistency.

One of the factors that will determine the checkpointing
frequency for a DSM system with logging is the space taken

SOR

11
40

17
3

30
.0

17
.9

100

1000

2000

P
er

ce
nt

ag
e

O
ve

rh
ea

d

3000

WATER

27
30

33
.3

24
.8

21
.2

PREFIX

40
.6

9.
04

7.
62

95
,6

00

AVG.

15
.6

21
.3

82
.2

33
,2

00

Func. call tracking

Inlined tracking

No tracking

Shared-read logging

Figure 4: Failure free overhead as a percentage of execution
time with no logging.

by the log. If the disk space available for the log is ex-
hausted, it is necessary to take a checkpoint and remove the
log. Plots of the checkpointing frequency needed to limit
the size of the log to 25 megabytes per node are given in
Figure 5. The checkpoint frequency is given in number of
checkpoints per minute of the normal execution time of the
programs, i.e., the execution time with no logging or check-
pointing.

The checkpointing frequency for the shared-read log-
ging approach is higher than the tracking scheme in a pro-
portion similar to the failure-free overheads. This is natu-
ral, since when there are more pages needing to be logged,
the the frequency of logging is higher, and hence the log
reaches the bound and is forced to checkpoint much sooner.

Figure 6 shows a plot of the recovery times for the three
programs as a percentage of the normal execution times for
the rolled back portion of the programs. This gives a mea-
sure of the additional overhead involved in recovering from
an error, as a percentage of the runtime of the portion of the
execution that was rolled back. As the graph shows, our
schemes re-execute the rolled back code faster after roll-
back than originally before rollback for two of the bench-
marks. This is because of the fact that a page fault, which
resulted in network communication to get a copy of the
page is now replaced by a disk read, which is a cheaper op-
eration in most cases since the log is kept on the local disk
of the workstation. Shared-read logging does not benefit

C
he

ck
po

in
ts

 p
er

 m
in

ut
e

SOR WATER PREFIX AVG.

2.68

0.143

14.5

1

5

10

15

0.356 0.194 0.231

164476Shared-read logging
Logging with tracking

Figure 5: No. of checkpoints per minute of normal execu-
tion time for a bounded log size of 25 Megabytes.

100

500

1000

131

962

9.74

SOR WATER

924

362

5.01

PREFIX

749

48.5

AVG.

Shared-read logging

shared access tracking
Logging with

R
ec

ov
er

y
ti

m
e

as
 %

 o
f

no
rm

al
 e

xe
cu

ti
on

 t
im

e

Figure 6: Recovery time as a percentage of normal execu-
tion time for the rolled back code.

from the same phenomenon because the number of pages
that it logs is much larger than the number of page faults
in the failure-free execution, and hence they have to make
a correspondingly greater number of disk reads during re-
covery.

6 Summary and Conclusions

Logging and deterministic replay is a common tech-
nique used in parallel systems to allow recovery from errors
during execution. The overhead of logging is high com-
pared to coordinated checkpointing [5]. Therefore, logging
is generally used only when local recovery of processing
nodes is desired.

This paper has presented results on reducing the over-
head of logging in DSM systems. A significant reduction
was achieved by tracking rather than logging all accesses
to shared data. The results show that tracking is still a sig-
nificant proportion of the logging overhead. Lazy release
consistency can be used to eliminate tracking of shared
accesses altogether, restricting overhead to the logging of
actual page transfers.

Acknowledgements

We thank the other members of our research group, es-
pecially Nuno Neves and Sujoy Basu, for their comments.

References

[1] R. E. Ahmed, R. C. Frazier, and P. N. Marinos,
“Cache-aided rollback error recovery (CARER) algo-
rithms for shared-memory multiprocessor systems,”
Proc. 20th Int. Symp. on Fault-Tolerant Computing,
1990, pp. 82–88.

[2] M. Banâtre, A. Gefflaut, P. Joubert, P. Lee, and
C. Morin, “An architecture for tolerating processor
failures in shared-memory multiprocessors,” Tech.
Report 707, IRISA, Rennes, France, Mar. 1993.

[3] J. Bartlett et al., “Fault tolerance in Tandem computer
systems,” in D. P. Siewioriek and R. S. Swarz, Reli-
able Computer Systems, Bedford, MA: Digital Press,
1982, pp. 586–648.

[4] P. A. Bernstein, “Sequoia: a fault-tolerant tightly cou-
pled multiprocessor for transaction processing,” Com-
puter, Vol. 21, No. 2, Feb. 1988, pp. 37–45.

[5] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel,
“The performance of consistent checkpointing,” Proc.
11th Symp. on Reliable Distributed Systems, 1992, pp.
39–47.

[6] M. J. Feeley, J. S. Chase, V. Narasayya, and
H. M. Levy, “Integrating coherency and recovery
in distributed systems,” Proc. Symp. on Operating
Systems Design and Implementation, 1994, pp. 215–
227.

[7] T. Fuchi and M. Tokoro, “A mechanism for recov-
erable shared virtual memory,” manuscript, U. of
Tokyo, 1994.

[8] A. Gefflaut, C. Morin, and M. Banâtre, “Tolerating
node failures in cache only memory architectures,”
Proc. Supercomputing ’94, 1994, pp. 370–379.

[9] G. Janakiraman and Y. Tamir, “Coor-
dinated checkpointing-rollbackerror recovery for dis-
tributed shared memory multicomputers,” Proc. 13th
Symp. on Reliable Distributed Systems, 1994, pp. 42–
51.

[10] B. Janssens and W. K. Fuchs, “Relaxing consistency
in recoverable distributed shared memory,” Proc. 23rd
Int. Symp. on Fault-Tolerant Computing, 1993, pp.
155-163.

[11] B. Janssens and W. K. Fuchs, “Reducing Interproces-
sor Dependence in Recoverable Distributed Shared
Memory,” Proc. 13th Symp. on Reliable Distributed
Systems, Oct. 1994, pp. 34–41.

[12] P. Keleher, A. L. Cox, and W. Zwaenepoel, “Lazy re-
lease consistency for software distributed shared me-
mory,” Proc. 19th Int. Symp. on Computer Architec-
ture, 1992, pp. 13–21.

[13] L. Lamport, “How to make a multiprocessorcomputer
that correctly executes multiprocess programs,” IEEE
Trans. on Computers, Vol C-28, No. 9, Sep. 1979, pp.
690–691.

[14] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta,
J. Hennessy, “The directory-based cache coherence
protocol for the DASH multiprocessor,” Proc. 17th
Int. Symp on Computer Architecture, 1990, pp. 148–
159.

[15] K. Li and P. Hudak, “Memory coherence in shared
virtual memory systems,” ACM Trans. on Computer
Systems, Vol. 7, No. 4, Nov. 1989, pp. 321–359.

[16] N. Neves, M. Castro, P. Guedes, “A checkpoint pro-
tocol for an entry consistent shared memory system,”
Proc. 13th ACM Symp. on Principles of Distributed
Computing, 1994, pp. 121–129.

[17] M. L. Powell and D. L. Presotto, “Publishing: a reli-
able broadcast communication mechanism,” Proc. 9th
ACM Symp. on Operating Systems Principles, 1983,
pp. 100–109.

[18] G. G. Richard III and M. Singhal, “Using logging
and asynchronous checkpointing to implement recov-
erable distributed shared memory,” Proc. 12th Symp.
on Reliable Distributed Systems, 1993, pp 58–67.

[19] J. P. Singh, W.-D. Weber, and A. Gupta, “SPLASH:
Stanford parallel applications for shared-memory,”
Tech. Report CSL-TR-91-469, Stanford U., Apr.
1991.

[20] R. E. Strom and S. Yemeni, “Optimistic recovery
in distributed systems,” ACM Trans. on Computer
Systems, Vol. 3, No. 3, Aug. 1985, pp. 204–226.

[21] K.-L. Wu and W. K. Fuchs, “Recoverable distributed
shared virtual memory,” IEEE Trans. on Computers,
Vol. 39, No. 4, Apr. 1990, pp. 460–469.

