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ABSTRACT

Identifying misbehaviors is an important challenge for monitoring,
fault diagnosis and intrusion detection in wireless sensor networks.
A key problem is how to minimise the communication overhead
and energy consumption in the network when identifying misbe-
haviors. Our approach to this problem is based on a distributed,
cluster-based anomaly detection algorithm. We minimise the com-
munication overhead by clustering the sensor measurements and
merging clusters before sending a description of the clusters to
the other nodes. In order to evaluate our distributed scheme, we
implemented our algorithm in a simulation based on the sensor
data gathered from the Great Duck Island project. We demon-
strate that our scheme achieves comparable accuracy compared to
a centralised scheme with a significant reduction in communica-
tion overhead.

1. INTRODUCTION

Wireless sensor networks comprise a large number of tiny sensor
nodes that have limited power, bandwidth, memory and computa-
tional capabilities [1]. These inherent limitations of sensor nodes
can make the network more vulnerable to faults and malicious at-
tacks [2]. A key challenge in identifying misbehaviors in wireless
sensor networks is to develop algorithms for detecting anomalies
in the network, such that these algorithms minimise their commu-
nication overhead and energy consumption in the network. In this
paper, we address this problem by presenting a distributed method
to identify misbehavior or anomalies in wireless sensor networks.

Misbehaviors in the network can be identified by analysing
the data from the sensor nodes. A node may show misbehaviors
whenever a fault occurs or due to malicious activity by compro-
mised sensors [3]. In both cases, misbehaviors can be identified
by analysing sensor or traffic measurements to discriminate nor-
mal behavior from anomalous behavior. Note that the underlying
distribution of these measurements may not be known a priori.
Therefore, anomaly detection in data with an unknown distribu-
tion is an important problem to be addressed in wireless sensor
networks. Our approach to this problem is to use a form of cluster-
based anomaly detection in a distributed environment.

Previous attempts to identify anomalies and perform distri-
buted data clustering can be found in the literature. Bandyopad-
hyay et al [4] have proposed a distributed k-means clustering algo-
rithm, but have not addressed the problem of anomaly detection.

Onat et al [5] have identified anomalies using a predefined statis-
tical model. Loo et al [3] have proposed an intrusion detection
scheme for identifying abnormal traffic patterns using fixed-width
clustering. However they have not considered co-operation be-
tween nodes.

Our approach to this problem is based on a distributed, non-
parametric anomaly detection algorithm to identify anomalous me-
asurements in nodes. Rather than communicating each individual
sensor measurement to a central node for analysis, we first clus-
ter the measurements. Sensor nodes can then report cluster sum-
maries, rather than individual measurements. Moreover, interme-
diate sensor nodes merge cluster summaries before communicat-
ing with other nodes. Using this approach, our distributed anomaly
detection scheme can minimise communication overhead, which is
a major source of energy consumption for sensor nodes.

In this paper, we demonstrate the effectiveness of our approach
based on sensor data gathered from the Great Duck Island project
[6]. In comparison to a centralised approach to anomaly detection,
we show that our distributed approach can achieve significant re-
ductions in communication overhead, while achieving comparable
accuracy. The rest of the paper is organised as follows. Section 2
formally introduces the problem of distributed anomaly detection.
Section 3 describes our distributed solution to the problem. The
evaluation results for our scheme are explained in Section 4.

2. PROBLEM STATEMENT

Our aim is to identify anomalies in the data gathered by sensor
nodes in a wireless sensor network. We consider a set of sensor
nodes S = {si : i = 1...n} having a hierarchical topology as
shown in Figure 1. The sensors are deployed in a homogeneous
environment, in which the measurements taken have the same un-
known distribution. All the sensor nodes are time synchronised.
At every time interval ∆k each sensor node si measures a feature
vector xi

k. Each feature vector is composed of features or attributes
vi

kj , where xi
k = {vi

kj : j = 1...d} and xi
k ∈ �d. After a window

of m measurements, each sensor si has collected a set of measure-
ments Xi = {xi

k : k = 1...m}. An outlier or anomaly in a set of
data is defined in [7] as an observation (or subset of observations)
that appears to be inconsistent with the remainder of that data set.
Our aim is to find the outliers O ⊂ X in the combined set of
measurements X =

⋃
i=1..n Xi.



Fig. 1. Example of a Hierarchical Network Topology

3. ANOMALY DETECTION

Clustering is the process of finding groups of similar data points,
such that each group of data points is well separated [8]. We have
used Euclidean distance as the dissimilarity measure between pairs
of data [8]. The clustering algorithm we use here is based on fixed-
width clustering, used by Eskin et al [9] for anomaly detection.
Once the clusters are formed, outliers or anomalous clusters are
classified using an anomaly detection algorithm as detailed in Sec-
tion 3.4. This algorithm identifies the anomalous clusters based on
the nearest neighbor distance among clusters.

One way of detecting anomalies is to use a centralised ap-
proach. In this approach, at the end of every time window of mea-
surements, each sensor node si sends all its data to its gateway
node sg ∈ S. A gateway node is the root node in a hierarchical
topology of sensors. The gateway node sg combines its own data
Xg with the received data set XR =

⋃
i=1..n−1,i�=g Xi and forms

a combined data set X = XR ∪Xg . A clustering algorithm is run
on this data set X to form a set of clusters C = {cr : r = 1...c}.

Figure 2a shows an example of the centralised approach for
a single level hierarchical topology. Initially, the data vectors at
each node before the data transmission are shown in Figure 2a(i).
Once the leaf nodes S2, S3 and S4 transmit all their data to the
gateway node S1, the combined data vectors are shown in Figure
2a(ii). Then node S1 clusters the combined data set as shown in
Figure 2a(iii). Finally, the anomaly detection algorithm is run at
node S1 on those clusters. This centralised approach has several
drawbacks. First, a large volume of raw data is transmitted over the
network. This requires each sensor to be in active mode for com-
munication for a longer time duration than in sleep mode. This
communication overhead can significantly reduce the life time of
the network [10]. Second, there is a greater communication load in
the nodes that are in close proximity to the gateway node, which in
turn depletes the life time of the network. Therefore, there are two
challenges to overcome in the anomaly detection process. First, we
require a distributed anomaly detection scheme to detect anoma-
lies. Second, we need to minimise communication in order to max-
imise energy efficiency.

Our approach is to distribute the anomaly detection process to
all sensors in the network. In this approach, at every time window
of m measurements the following operations are performed.

• Each sensor node si ∈ S, performs the clustering operation
on its own local data Xi and produces the clusters
Ci = {ci

r : r = 1...l}. Note that the number of clusters l is
determined algorithmically.

• Sensor node si sends the sufficient statistics (see below) of
its clusters Ci to its immediate parent sp = Parent(si).
Each cluster ci

r ∈ Ci can be sufficiently represented by its
centroid and the number of data vectors it contains [11]. If

Fig. 2. Figure 2a. Centralised approach: a(i) Data vectors at in-
dividual nodes, a(ii) Combined data vectors at the gateway node
S1, a(iii) Clusters formed at node S1. Figure 2b. Distributed ap-
proach: b(i) Clusters formed at each node, b(ii) Clusters combined
at gateway node S1, b(iii) Clusters merged at node S1.

the number of data vectors in the cluster ci
r is N i

r ≤ m and
the set of data vectors contained in that cluster is
Xi

r = {xi
q : q = 1...N i

r}, then the linear sum of the data

vectors of that cluster can be defined as Li
r =

∑Ni
r

q=1 xi
q .

Hence, the centroid of the cluster can be expressed using the
above two quantities as Li

r/N
i
r . Therefore, the sufficient

statistics of a cluster ci
r are the number of data vectors N i

r

and the linear sum of the data vectors Li
r of that cluster.

• The parent node sp combines its clusters Cp with the clus-
ters C =

⋃
i∈children(sp) Ci from its immediate children

and forms a combined set of clusters Cc = C ∪ Cp.

• The parent node sp merges the combined cluster set Cc to
produce a merged cluster set Ch = {ch

r : r = 1...f},
where f ≤ |Cc| (Section 3.3).

• Then the parent node sp sends the sufficient statistics of the
merged clusters Ch to its immediate parent.

• This process continues recursively up to the gateway node
sg ∈ S, where an anomaly detection algorithm is applied
to its merged clusters Ch to identify the anomalous cluster
set Ca ⊂ Ch (Section 3.4).

Figure 2b shows an example of our distributed approach for a
single level hierarchical topology with child nodes S2, S3 and S4
and gateway node S1. Initially, all nodes perform the clustering
operation on their own local data (Figure 2b(i)). Then the nodes
S2, S3 and S4 send the sufficient statistics of the clusters to their
parent node S1. S1 combines the received cluster set with its own
clusters (Figure 2b(ii)) and then merges the clusters and produces
merged clusters Ch (Figure 2b(iii)). Finally, node S1 identifies the
anomalous clusters Ca from the merged clusters Ch.

Better load balancing is achieved by distributing the clustering
process between all the nodes. Also the communication overhead
is reduced by only sending the merged clusters, rather than the raw
data. This also helps to extend the lifetime of the network. In the
centralised case, the gateway node has complete information about



the data in the network, whereas in the distributed case, the gate-
way node only has the merged cluster information of the nodes.
Therefore there may be a slight reduction in the detection accu-
racy in the distributed case compared to the centralised case. In
the following sections, we describe our approach in more detail.

3.1. Data Conditioning

Data conditioning transforms the data vectors from sensor mea-
surements to a suitable form for use in distance based clustering.
We use the commonly used Euclidean distance D(x1, x2) as our
distance measure between data vectors x1 and x2 [8].

Data features of a sensor node often lie within different dy-
namic ranges. In order to alleviate the effect of this on distance
calculations, each data feature vkj , k = 1...m is transformed [12]
via their respective mean and variance as ukj = (vkj −µvj )/σvj ,
where µvj and σvj are the mean and the standard deviation of the
features vkj , ∀k respectively, and ukj is the transformed feature.
The resulting transformed feature ukj will have zero mean and unit
variance.

Further, each feature is normalised [8] to a range [0,1] as
ūkj = (ukj − minuj )/(maxuj − minuj ), where minuj and
maxuj are the smallest and the largest value of the transformed
data feature respectively.

In the centralised detection scenario, all the data vectors from
all the nodes are transmitted and available at the gateway node.
Therefore the data conditioning can be performed at the gateway
node on all the data. In the distributed case, the data condition-
ing is done at the local nodes using their own local data using the
parameters (Mean, Standard deviation, Minimum and Maximum)
calculated on their local data. However, the resulting normalised
data will not exactly match that of the centralised case. We use the
following procedure to find the global data conditioning parame-
ters and to normalise the local data.

• Each sensor node si computes the following information on
its local data vectors Xi.

◦ Linear sum LLSi =
∑m

k=1 xi
k and the linear sum

of squares LLSSi =
∑m

k=1(x
i
k)2 of the local data

vectors.

◦ Number of local data vectors LNi = |Xi| = m.

◦ Vector of maximum xi
max and minimum xi

min values
for each attribute of the local data Xi.

• Each sensor node si sends the above information
(LLSi, LLSSi, LNi, xi

max, xi
min) to the gateway

node sg .

• Gateway node sg collects the above local information from
the children nodes and computes the global data condition-
ing parameters as follows.

◦ Total data points in the network NG =
∑n

i=1 LNi.

◦ Global mean µG = 1
NG

∑n
i=1 LLSi and varance

σ2
G = 1

NG

∑n
i=1 LLSSi − µ2

G.

◦ Global data maximum xG
max = maximum(xi

max)
and minimum xG

min = minimum(xi
min), where

i = 1...n.

• Gateway node sg , then sends the global conditioning pa-
rameters (µG, σG, xG

max, xG
min) to all children.

• Each local node si uses these global conditioning parame-
ters to condition its local data.

3.2. Clustering Algorithm

Our clustering algorithm is based on the fixed-width clustering al-
gorithm used in [9, 3]. Fixed width clustering creates a set of clus-
ters of fixed radius (width) w. Here the width w is a parameter to
be specified by the user. First, a data vector is taken and used as
the centroid (center) of the first cluster with radius w. Then for
each subsequent data vector the Euclidean distance between the
centroid of the current clusters and this data vector is computed. If
the distance to the closest cluster center from the data vector is less
than the radius w, the data vector is added into that cluster and the
centroid of that cluster is adjusted to the mean of the data vectors
it contains. If the distance to the closest cluster center is more than
the radius w, then a new cluster is formed with that data vector as
the centroid. This operation produces a set of disjoint, fixed width
(radius of w) clusters in the feature space. The principle advantage
of this simple approach is that only one pass is required, thus min-
imising storage and energy consumption. This efficiency is traded
against the loss of flexibility and possible accuracy engendered by
using a single threshold to determine all the clusters.

3.3. Merging of Clusters

We use a cluster merging technique to combine a pair of similar
clusters into a single cluster. A pair of clusters c1 and c2 are similar
if the inter-cluster distance d(c1, c2) between their centers is less
than the width w. If c1 and c2 are similar, then a new cluster c3

is produced whose center is the mean of the centers of c1 and c2

and whose number of data vectors is the sum of those in c1 and
c2. In our system, the merging procedure compares each cluster ci

with clusters {ci+1, ci+2, ...}, and merges ci with the first cluster
cj such that d(ci, cj) < w and j > i, should such a cj exist.

3.4. Anomaly Detection Algorithm

The anomaly detection algorithm classifies clusters as either nor-
mal or anomalies. We use the average inter-cluster distance of the
K nearest neighbor (KNN) clusters [13] to identify the anomalous
clusters. The algorithm is as follows.

• For each cluster ci in the cluster set C, a set of inter cluster
distances Dci = {d(ci, cj) : j = 1...(|C| − 1), j �= i} is
computed. Here d(ci, cj) is the Euclidean distance between
centroids of ci and cj , and |C| is the number of clusters in
the cluster set C.

• Among the set of inter-cluster distances Dci for cluster ci,
the shortest K (parameter of KNN) distances are selected
and using those, the average inter-cluster distance ICDi of
cluster ci is computed as follows,

ICDi =




1
K

K∑
j=1,�=i

d(ci, cj) K ≤ |C| − 1

1
|C|−1

|C|−1∑
j=1,�=i

d(ci, cj) K > |C| − 1

Our average inter-cluster distance computation differs from
the one proposed by Chan et al [14] in the following way.
Chan et al have used the whole cluster set C to compute
the average inter-cluster distance ICDi for a cluster ci,
whereas we have used the K nearest neighbor clusters of
the cluster ci to compute the average inter-cluster distance



ICDi. The advantage of our approach is that clusters at the
edge of a dense region are not overly penalised compared
to clusters in the center of the region.

• A cluster is identified as anomalous if its average inter-
cluster distance ICDi is more than one standard devia-
tion of the inter-cluster distance SD(ICD) from the mean
inter-cluster distance AV G(ICD), i.e., a set of anomalous
clusters Ca ⊂ C are defined as
Ca = {ci ∈ C|ICDi > AV G(ICD) + SD(ICD)},
where ICD is the set of average inter-cluster distances.

3.5. Complexity Analysis

Here we analyse the communication overhead, memory and com-
putational complexity of the algorithms in more detail.

The data conditioning algorithm involves two types of com-
munication overhead. First, each sensor node has to communicate
once to the gateway node with the tuple <LLSi, LLSSi, LNi,
xi

max, xi
min>. Second, the gateway node has to communicate

with all the children nodes once with the tuple <µG, σG, xG
max,

xG
min >. In practice, collection of global data conditioning pa-

rameters can be performed in the previous time window of mea-
surements. Hence each sensor node incurs a computational and
memory complexity of O(m) to keep the normalised data, where
m is the number of measurements during the time window.

The fixed-width clustering algorithm we use requires a single
pass over the data. For each data vector, it computes the distance
to each existing cluster. Hence the computational complexity is
O(mNc), where Nc(<< m) is the number of clusters. The mem-
ory complexity for each sensor node is O(Nc), since each cluster
requires a fixed length record.

The cluster merging operation compares cluster pairs with
computational complexity O(N2

c ). The anomaly detection algo-
rithm compares each cluster to all other clusters in the cluster set
C to find the K nearest neighbors with computational complexity
O(N2

c ).
In summary, each sensor node requires memory to keep

O(Nc) clusters and does not need to keep all data measurements in
memory. Each sensor incurs O(mNc) computational complexity.

4. EVALUATION

Our aim is to evaluate the accuracy of the anomaly detection pro-
cess using the centralised and the proposed distributed scheme.
For our evaluation we consider a three-level hierarchical topology
as shown in Figure 1.

Our test data were the sensor measurements collected by the
Great Duck Island Project [6]. In every five minute interval, each
sensor node recorded light, temperature, humidity, and pressure
readings. For our evaluation, we selected data from 7 nodes, nam-
ely nodes 101, 109, 111, 116, 118, 122 and 123, within a 24 hour
period on 1st July 2003. We selected three features: humidity,
temperature and pressure readings from each sensor node. We
have plotted the scatter plots for all the data from the 7 nodes
and cleaned them by removing spurious or erroneous data. The
cleaned data were labeled as Normal and used for our evalua-
tion purposes. The hierarchical topology was formed with these 7
nodes as shown in Figure 1. Node 101 is used as the gateway node,
nodes 109 and 111 are used as the intermediate parent nodes and
the other nodes are used as leaf nodes. A uniformly distributed,
randomly generated set of anomalous data (of 20 data vectors for

each node) were introduced into the tails of the distribution of each
feature for two of the nodes (nodes 118 and 123). These introduced
anomalous data measurements were labeled as Anomalies.

We implemented our centralised and distributed algorithms in
a C++ simulation based on the real data. We used K = 4 as the
KNN parameter in our simulations. The above process was re-
peated for different cluster width values w ranging from 0.02 to
2.02 in 0.04 intervals. For each of these results, the false posi-
tive rate and the false negative rates were calculated. A false posi-
tive occurs when a normal measurement is identified as anomalous
by the algorithm, and a false negative occurs when an anomalous
measurement is identified as normal by the algorithm. The false
positive rate is the ratio between false positives and the actual nor-
mal measurements, and the false negative rate is the ratio between
false negatives and the actual anomalous measurements. Also dur-
ing the evaluation, the number of data vectors and the number of
clusters communicated were recorded to compute the reduction in
communication overhead. We have evaluated the system perfor-
mance by analysing the sensitivity of detection accuracy by vary-
ing the cluster width and keeping the K value fixed. Evaluation of
the distributed detection scheme for varying K values will be the
subject of future work.

Figure 3 shows a graph of the false positive rate and the false
negative rate as a function of the cluster width for the centralised
scheme. Figure 4 shows the similar graph for the distributed sc-
heme. It can be observed that in the lower cluster widths (0.02),
the false negative rate is higher. This is because at lower cluster
widths, a large number of clusters is produced for the data set, in
which some of the clusters may even be singletons. Therefore,
there is a greater chance of the anomalous data being divided into
multiple clusters in close proximity. This may result in the average
inter-cluster distances being smaller for the anomalous data, so
that it is not detected by our anomaly detector. Similarly at higher
cluster widths (≥ 0.38) false negative rate again increases while
the false positive rate becomes zero. This is because, at larger
cluster widths, a small number of large clusters are produced for
the data set. Hence there is a higher chance of the anomalous data
being included in the large clusters which have been identified as
normal by the detector. Hence, there is a range of threshold values
(cluster width w) within the two extremes in which the system
performs better. In this case, in the cluster width range from 0.06
to 0.38, the system provides better detection performance for both
the centralised and distributed cases. This shows that the cluster
width (w) is an important parameter for achieving better detection
performance. In practice a proper cluster width can be selected by
training the system before deployment.

Further, the average false positive rate for the distributed case
is around 4%, while for the centralised case is around 3%. Hence
the distributed scheme achieves a comparable accuracy to that of
the centralised case. This is achieved with a huge reduction in
the communication overhead in the network in the distributed case
compared to the centralised case. Figure 5 shows that the dis-
tributed approach, when compared to the centralised case, realises
savings in communication overhead that ranges from 85% to 98%
over the cluster width range 0.06 to 0.38, i.e., upto a 50 fold reduc-
tion in communication overhead.

5. CONCLUSION

In this paper, we have presented a distributed anomaly detection
algorithm based on data clustering to identify misbehavior in a



Fig. 3. Centralised scheme: False positive rate (FPR) and False
negative rate (FNR) (%) Vs Cluster width (w). The graph in the
inset is the expanded view of the same graph for the cluster width
range from 0.06 to 0.34.

Fig. 4. Distributed scheme: False positive rate (FPR) and False
negative rate (FNR) (%) Vs Cluster width (w). The graph in the
inset is the expanded view of the same graph for the cluster width
range from 0.06 to 0.34.

wireless sensor network. We have evaluated the scheme in a hi-
erarchical topology, using a simulator on real data gathered from
Great Duck Island. Our evaluation has shown that our distributed
approach achieves comparable performance with the centralised
case, while achieving a significant reduction in communication
overhead. Our future research includes extending our evaluation
to multiple KNN parameters. We will also simulate different kinds
of known sensor network attacks and evaluate the accuracy of our
approach in detecting these attacks.
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