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Abstract—In this paper, a new cognitive radio (CR) scenario
called Multiple Primary Transmit Power (MPTP) is investigated
where the primary user (PU) could possibly work on more than
one discrete transmit power levels. Different from most existing
literatures where PU is assumed to operate with a constant
transmit power only, this new consideration well matches the
practical standards, e.g., IEEE 802.11 Series, GSM, LTE, LTE-A,
etc., as well as the adaptive powering concept that a user would
vary its transmit power under different situations. The primary
target of CR under MPTP may still be detecting the presence
of PU. However, there emerges a secondary target as to identify
the PU’s transmit power level. Compared to the existing sensing
strategy where the secondary user (SU) only detects the “on-off”
status of PU, recognizing the transmit power level of PU achieves
more “cognition” and makes the CR more intelligent. Meanwhile,
SU could utilize the power level information of PU and make the
subsequent design. We derive quite many closed-form results for
either the threshold expressions or the performance analysis in
this new CR scenario, from which many interesting points and
discussions are raised. We then study the cooperative sensing
schemes under MPTP and demonstrate their significant differ-
ences from traditional cooperative algorithms. Lastly, numerical
examples are provided to corroborate the proposed studies.
Index Terms—Cooperative sensing, majority decision, modified

multiple hypothesis testing, multiple primary transmit power
(MPTP), power-mask, spectrum sensing.

I. INTRODUCTION

C OGNITIVE RADIO (CR) has been recognized as a
promising solution to spectrum scarcity and spectrum

under-utilization [1] by allowing the secondary users (SUs) to
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access the spectrum of the primary user (PU) when the latter
is idle. In this context, spectrum sensing, which helps SU to
detect the occupancy status of a specific frequency band, forms
a key component of CR.
Popular spectrum sensing techniques include matched filter

detection [2], energy detection [3]–[9], and cyclostationary de-
tection [10], [11], among which energy detection has received
intensive attention because it requires the east prior knowledge
of PU and is very simple to implement. When SU is equipped
with multiple antennas, a promising sensing technology was de-
signed in [12] where the eigenvalues of the receive covariance
matrix are used to judge the status of PU. It is shown that the per-
formance of multiple antennas based spectrum sensing is much
better than that from a single antenna because the former fully
utilizes the correlation among antennas. On the other side, when
multiple antennas are not available due to the size limitation of
the wireless terminal, one can refer to the cooperative spectrum
sensing from more than one SUs to enhance the sensing perfor-
mance [13]–[16].
There are also quite a number of works discussing different

issues of CR over the past decade, for example, parameter
uncertainty based spectrum sensing [17], design with imper-
fect sensing [18], sensing throughput tradeoff [19], spectrum
sharing [20], as well as many other hybrid schemes between CR
and other technologies, e.g., games among SUs [21], sensing
in OFDM system [22], sensing in relay network [23], [24],
sensing with MAC layer protocol [25] and so on.
It is not difficult to notice that most existing spectrum sensing

techniques [2]–[16] as well as other related studies [17]–[24]
assume PU is either absent or transmits with a constant power
level. However, it can be easily known from the current stan-
dards, e.g., IEEE 802.11 series [26], GSM [27], and the future
standards, e.g., LTE [28], LTE-A [29] that the licensed users
could be working under different transmit power levels in order
to cope with different situations, e.g., environment, rate, etc.
A typical example is in CDMA [30] uplink scenario when the
users are subjected to power control in order to deal with the
near-far effects. Actually, varied transmit power has been ex-
tensively considered in many existing literatures studying the
power allocation problem [31], [32]. Therefore, the traditional
spectrum sensing techniques, which only deal with a constant
power level of PU, cannot adequately match the practical situa-
tions or the theoretical demands.
On the industry aspect, FCC has specified the interference

protection requirements for TV white space, and the require-
ments for different powered services, e.g., full-power digital TV,
full-power analog TV, low-power analog TV, low-power digital
TV, etc., are different [33]. It then enlightens us that by detecting
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the power levels of PU, SU may know PU’s protection require-
ment and then could adjust its transmission strategy accord-
ingly. On theoretical aspect, an important scheme that combines
spectrum sensing and spectrum sharing to further enhance the
spectrum efficiency was proposed recently [34]–[36], known as
sensing based sharing scheme. The key idea is that SU should
sense the presence of PU first and then transmit with full power
if PU is absent but with limited power if PU is present. When
PU has multiple transmit power levels, as usually the case, it
is possible that PU’s interference temperature could vary under
different transmit power levels. Hence, by detecting the power
levels of PU, SU may know PU’s interference temperature re-
quirement and could then adjust its transmit power accordingly.
A vivid example where SU could adjust its transmission strategy
according to different PU’s transmission power levels in order
to achieve certain optimal goal can be found in [37].
Therefore, the sensing target when PU has multiple power

levels should not only be detecting the “on-off” status of PU
but also to identify its power level, by which we can also
achieve more “cognition” and make the CR more intelligent,1
as originally desired in [1]. In fact, spectrum sensing under
multiple primary transmit power (MPTP) scenario has already
been presented in [39], where the authors briefly describe
the new sensing strategy but focused more on the optimal
power allocation of SU after power-level recognition. Unfor-
tunately, [39] does not fully addressed the fundamental issues
of spectrum sensing in MPTP, such as the necessary analysis in
sensing process, power-mask effect, and the detailed evaluation
framework. Moreover, [39] possesses some careless results like
the expression of the decision probability and the definition of
the discrimination probability.
In this paper, we provide a thorough investigation over

the spectrum sensing problem in MPTP scenario, where PU
randomly chooses a power level from a discrete power set
according to certain prior probability. We propose two dif-
ferent but relevant spectrum sensing strategies, i.e., detection
before recognition and recognition before detection, for local
secondary user, where the former applies a modified hypothesis
testing approach while the later relies on the standard hypoth-
esis testing approach. We fully discuss a power-mask effect that
is shown to be a unique phenomenon under MPTP scenario.
We derive closed-form expressions of decision regions and also
provide many remarks explaining the fundamental reasoning
behind the multiple hypothesis detection under MPTP. To
improve the sensing performance, we further propose two
cooperative sensing schemes, which exhibit critical differences
from the traditional cooperative binary sensing algorithms.
Moreover, the closed-form performance analysis of all these
sensing algorithms are derived, and various numerical exam-
ples are provided to corroborate the proposed studies.
The rest of this paper is organized as follows:

Section II presents the system model of MPTP scenario. In
Section III, we propose two spectrum sensing strategies with
different detection and recognition order, and analyze their
relationship. In Section IV, we investigate cooperative sensing
in MPTP scenario and derive two different algorithms based

1In some situations [38], it is assumed that multiple PUs each has constant
power level, while by detecting the power levels at SU side one may predict the
number of PUs that are present.

on the majority voting and the Bayes approach, respectively.
In Section V, we provide simulation results to evaluate
the designed algorithms. Finally, conclusions are drawn in
Section VI.

II. SYSTEM MODEL AND ASSUMPTIONS

Consider the classic CR model that consists of one PU and
one SU. As regulated in IEEE 802.11 series, GSM, LTE, and
LTE-A, PU could either be absent or operate under one transmit
power level from a predetermined set . It
is reasonable to assume that a power level, once being chosen,
will be used for a certain period during which SU could perform
sensing as well as the subsequent transmission.
Without loss of generality, we assume ,

and the th received sample at SU can be expressed as:

(1)

where denotes the hypothesis that PU is absent while in-
dicates PU is operating under transmit power ; is the th
symbol transmitted from PU, which is assumed to follow com-
plex Gaussian distribution with zero mean and unit variance,
i.e., ; is the channel gain and is the channel
phase; is the additive noise that follows for all
cases. Note that when , the signal model (1) reduces ex-
actly to the traditional binary spectrum sensing in [8], [15], [19].
If we define as the equivalent transmit power level

when PU is absent, then a unified distribution of can be ex-
pressed as

(2)

Interestingly, the unknown phase does not affect the signal
statistics.
Let us denote the prior probability of PU taking on each

power level as while denote the presence state of
PU as . Obviously, has the prior prob-
ability . Meanwhile, the absence
state of PU, denoted by , has the probability

.
As one of the first trial studies in MPTP scenario, we make

the following assumptions that has also been adopted in many
conventional binary spectrum sensing works [6], [8], [13]–[15],
[19], [39]:
Assumption 1: We assume that SU has the knowledge of

transmit power levels of PU as they are normally the determin-
istic values regulated by the standards. To make the discussion
more complete, we further assume that the corresponding priori
probabilities is known to SU.2
Assumption 2: We assume that the channel gain is known

at SU while the phase can be unknown.3

2Or, the user’s behavior can be statistically learned from a long run.
3Some energy detection algorithms [8], [19], [15] assume AWGN channel,

which is the equivalent to assuming . Nevertheless, a new result that
could release the necessities of channel information and PU’s power level in-
formation was recently published in [40].
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More considerable situations, e.g., power level uncertainty,
partially known channels, unknown channels, etc., could serve
as separate future research topics and will not be involved in this
paper.

III. SPECTRUM SENSING STRATEGIES
In MPTP scenario, we define the primary target of spectrum

sensing as detecting the presence of PU, while define the sec-
ondary target as recognizing the power-level of PU.
Sensing Strategy-I: Detection Before Recognition: To

achieve the primary task first, we may verify the hypothesis
. Once is detected, then the next step is to

recognize which is true.
Suppose SU receives a total number of samples during the

sensing period, denoted as . The ratio
of the posterior probabilities between two hypothesis can be
written as

(3)

It is easily seen that is strictly increasing over
, i.e., the received energy, and the decision can

be alternatively made through

(4)

where is a pre-determined threshold. Hence, the optimal de-
tector is the energy detector and we may re-represent as

. The parameter is used to control the detection perfor-
mance. For example if is used to control the false alarm prob-
ability, then the detection follows Neyman-Pearson rule; If is
set such that , then the detection follows the maximum
a posterior (MAP) rule.
The probability density functions (pdf) of conditioned on

and can be derived as

(5)

(6)

where denotes the gamma function.
Similar to the conventional CR, we could resort to the false

alarm probability and the detection probability to describe the
performance of the detection, separately calculated as

(7)

(8)

where represents the detection result, and denotes
the upper incomplete gamma function.
In the following part, we use to denote the decision

threshold for the “on-off” status of PU. Moreover, we prefer to
compute according to MAP criterion for the consistency
with the later power recognition part. From (3), we know that

can be obtained from and is equivalent to the
root of , where is simplified from (3) and has the
expression

(9)

Remark 1: It can be easily checked that and
as long as is sufficiently large. Hence is

strictly increasing over and the solution that makes
(i.e., ) must exist and is definitely unique as well.
If the received energy satisfies , then PU is

claimed to be present and the next step is to recognize which
power-level of PU is in use. A natural approach is to formulate
multiple hypothesis testing [41] and apply the optimal MAP
detection, where for a hypothesis pair , ,
beats if

(10)

Here, we use to denote that the presence detection has been
made already.4 From Bayes rule, there is

(11)

Let us define the equivalent region of to as
, and equivalently represent as . Then (11)

can be rewritten as

(12)

Note that the following equality holds from the definition of-
probability density function

(13)

4Please note the difference between and .
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which is used to derive (12).We place in (13) to represent
that (13) holds only for domain .
Therefore, the MAP detection (10) is simplified to

(14)

Remark 2: From (14), we know theMAP detection for power
levels is not related with how is detected, i.e., we can apply
either MAP detection or Neyman-Pearson to check the presence
of PU without affecting (14). Nevertheless, the way to detect the
presence of PU will affect the value of as seen
from (12).
Hence, the MAP detection of the power level can be simply

described as

(15)

Let us then define the ratio

(16)

Obviously, is purely determined by the energy
(other variables are constants). Hence, the

energy detector is again optimal when recognizing the power
levels of PU, and we can represent by . Since
is an increasing function of when , one can easily
know that the decision region of , denoted as , must
be a continuous region of , and must stay on the right
side of if .
Theorem 1: The decision regions of hypothesis

are computed as in (17), shown at the bottom of
the page, where is a constant defined as

(18)

Proof: Substituting (16) into (14) yields

If , i.e., , then there is

If , i.e., , then there is

Then for , the lower bound of should
be and the upper bound should be

. Moreover, the MAP detection is defined on the
domain , i.e., , so all decision regions of
non-zero power should stay in . Bearing in mind
that may be greater than for some , the
proof is completed.
Remark 3: The decision region of , i.e., the absence of PU

can be expressed in a unified way as

(19)

To further unify our discussion, let us use
to denote the threshold between and

. Besides, let us also define , for
completeness, and for consistence.
Remark 4: Compared to the traditional binary sensing that

has only one threshold, the new scenario MPTP needs multiple
thresholds to separate different power levels, as shown in Fig. 1.
The result is generally simple to understand while one contribu-
tion of this work lies in deriving the closed-form solutions of all
thresholds.
To characterize the performance of the spectrum sensing in

MPTP, purely resorting to and cannot be adequate.

(17)
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Fig. 1. Multiple power levels detection from multiple thresholds.

We should calculate all the probabilities when SU makes the
decision as hypothesis while PU is actually transmitting with
, that is

(20)

which is also defined as decision probability in this paper.
Then, and can also be easily obtained from the sum-

mations of the corresponding ’s, i.e.,

For this new MPTP scenario, we would also introduce a new
performance metric

(21)

named as discrimination probability, to describe the recognition
capability of our strategy.

A. Power-Mask Effect of Sensing Strategy-I

In MPTP scenario, an interesting and special phenomenon
happens when the computed lower bound of a specific decision
region is greater than the upper bound, i.e.,

(22)

holds for some specific . Once this happens, the
decision region will be empty and the corresponding
power level can never be detected. We call this new phe-
nomenon in MPTP as power-mask effect. Hence in Fig. 1, the
number of the thresholds may be less than or equal to . More-
over, if cannot be detected, we will set so
that the corresponding decision region is empty. By
doing this, the power-mask effect will have no influence over
our previous discussions (20) to (21).
The reasons of power-mask effect may vary a lot, and some

intuitive explanations are provided here. First note that the

bounds in the decision region are affected by many pa-
rameters, i.e., , , . If the priori probability
is very small, i.e., the power level is seldom used by PU.
Then may easily be “ignored” by SU and is then masked.
Another example is that, if is close to and , and
if is relatively large, then it is very likely that will be
masked by or due to the large uncertainty caused
by the noise.
We have the following observations about power-mask

effect:
• If ,
then is masked from left by ;

• If ,
then is masked from both sides by and ;

• The leftmost level and the rightmost level cannot
be masked and are always detectable.

Remark 5: Due to the effect of power-mask, it is
then of great interest to check whether the decision re-
gions for ’s are continuously connected for two con-
secutively detectable indices ,
i.e., for those not masked power level check whether

holds.
Unfortunately, due to the discrete nature of the power-mask
effect, we cannot mathematically prove this property. Never-
theless, it can be easily known that, for any , there is always a
corresponding decision according to the MAP detection (15).
Hence, there should be no gap between any two consecutive
decision regions.
A special case that affects the power-mask effect appears

when .
Lemma 1: If holds for

, then is not related to and is
an increasing function over for any .

Proof: In this case, the partial derivative of over
can be computed as

(23)

Redefining , it can be easily known
that for any . We then obtain

It is also clear that for . Hence,
holds5 for all possible and is an in-

creasing function over .
According to Lemma 1, when

there is

(24)

5Note that for the value of is obtained from Hospital’s rule as
.
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Fig. 2. Illustration for power-mask effect, decision thresholds and decision re-
gions in Sensing Strategy-I.

Therefore, the non-zero power levels cannot mask each other,
while the power-mask effect may only happen when mask
the power levels on its right side.
We here present one example to illustrate power-mask effect

in Fig. 2. Three power levels , , are used and the corre-
sponding priori probabilities , 1, 2, 3 are taken as
0.4, 0.3, 0.1, 0.2. The decision regions for each hypothesis, i.e.

, 2, 3 are demonstrated in the figure. It can be seen that
due to the power-mask effect, cannot be detected. As men-
tioned earlier, when is masked, we set the threshold
so that the decision region is empty.
Remark 6: When power-mask happens for a specific , it

means that the cannot beat any other
but could still possess non-zero value. Hence, it

is possible to design some sophisticated approach which con-
siders this “soft” information and removes the power-mask ef-
fect. Nevertheless, the corresponding study is out of the scope
of this paper and will be left for future research.

B. Sensing Strategy-II: Recognition Before Detection

Another reasonable approach is to directly detect the power
level of PU (including the zero power level) from standard mul-
tiple hypothesis testing approach if one treats as an equiva-
lent power level as other non-zero . The presence or the
absence can be immediately found after the power level index
is detected.
FromMAP based multiple hypothesis testing, the optimal de-

tection can be stated as

(25)
Since the expression of (25) is, mathematically, the same as

(15) but includes one more index 0, the previous results can be

immediately modified here. For example, the decision region is
computed as

(26)
where is given in (18). Hence, the power-mask effect
also exists if for
some . Let us use to represent the thresholds separating

and in sensing strategy-II. Then the decision
probability is given in (20) with being replaced by .
Due to the similarity between the decision regions of the

two sensing approaches, i.e., (17) and (26), one natural and in-
teresting question arises: are all the thresholds or parts of the
thresholds the same in these two sensing approaches? Of all the
thresholds, the first one that separates the absence decision and
presence decision is of particular importance. We then provide
the following lemma.
Lemma 2: Let be the threshold between “ab-

sence” and “presence” of PU in sensing strategy-II. There is
.

Proof: In sensing strategy-II, can be computed
from where is the index of the first
non-zero power that is not masked. From (16), we can derive
a unique

(27)
Let us then compute from (9), which yields

Since and is an increasing function over
, it is obvious that .
Remark 7: Since we treat as an equal state as other non-

zero ’s in sensing strategy-II, the discrimination probability
here could also be defined as

(28)

which is the value of correct detection and will be maximized
by the MAP based multiple hypothesis testing [41].

C. Power-Mask Effect of Sensing Strategy-II
Lemma 2 suggests that sensing strategy-II claims more ab-

sence of PU than sensing strategy-I. In fact, when we compare
(26) and (17), it is easy to note that may be
greater than if is bigger than other
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Fig. 3. Illustration for power-mask effect, decision thresholds and decision re-
gions in Sensing Strategy-II.

for a specific . When this happens, it
also means that masks all power levels smaller than
in sensing strategy-II. Hence, the lower bound of in
sensing strategy-II is while the lower bound of
in sensing strategy-I is .
Combining Lemma 2, it is then clear that the lower bound of

in sensing strategy-II is bigger than that of sensing
strategy-I. Nevertheless, when is not the dominant one
in , i.e., is not the biggest among
all , then the thresholds for the two sensing strategies
are the same.
Remark 8: In sensing strategy-II, once again, both and

cannot bemasked and are always detectable. Also, a special case
happens when . In this situation, (24)
holds and is not related with . Hence, except for

and , all the other thresholds from both sensing
strategies are the same, i.e., where is the first
power level that is not masked by .
We then present another example to demonstrate the power

mask effect of sensing strategy-II in Fig. 3, where all the set-
tings are the same as those in Fig. 2. Since we directly plot

, the cross points of different curves will be
immediately. Again, the power-level is masked. However,
the decision region of , i.e., in sensing strategy-II is
larger than that in sensing strategy-I, which matches Lemma 2
well. Meanwhile, there is , which matches our previous
analysis.

D. Fundamental Rationale Behind Two Spectrum Sensing
Strategies

After presenting two different spectrum sensing approaches,
both seemingly reasonable, a natural and interesting question
arises: which one is better and why? Let us answer from MAP
detection point of view.

When MAP detection is applied in the first step of sensing
strategy-I, the so obtained is optimal in terms of mini-
mizing the following error

(29)

On the other side, applying MAP in sensing strategy-II that
directly detects the power level is optimal in terms of mini-
mizing the following error

(30)

Therefore, sensing strategy-I does not count in the errors
, i.e., the errors among non-zero power

levels, when detecting the presence of PU. On the other hand,
sensing strategy-II takes into account of all error probabilities

all at once. Hence, the two strategies are, in
fact, applied for different criteria and thus are incomparable,
although look very similar.
In general, if identifying the presence of PU is a more

important target than discriminating the power levels of PU,
then sensing strategy-I is preferable. However, for sensing
based sharing CR scheme where the penalty due to the wrong
interference protection is very high, then sensing strategy-II
could be preferable.
Remark 9: In fact, both the strategies falls into the Baye’s

Risk based multiple hypothesis test where the optimization cri-
terion is to minimize

(31)

where is the price or the cost for detecting when
is true. Obviously, the value of should be set according
to practical requirements and can be different in different
applications.

IV. COOPERATIVE SPECTRUM SENSING SCHEMES

Now assume that there are SUs that cooperative to detect
the presence of PU as well as the power levels. After performing
the local spectrum sensing, either with sensing strategy-I or
sensing strategy-II, SU- makes its own decision as and
then forwards the index to the fusion center who combines
these results into a vector . Note
that, the “on-off” information of PU is automatically embedded
in the index and does not need separate feedback. The prob-
ability of any specific can be easily computed as

(32)

where the superscript represents the user index, while the
total number of possible can be calculated as .
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Unlike the conventional cooperative spectrum sensing
[13]–[16] where PU is assumed to have only “on-off” status,
the cooperative sensing in MPTP scenario exhibits many dif-
ferences, for which the existing Logic-AND (LA), Logic-OR
(LR) and their general form k-out-of-N (KON) based fusion
rules are no longer applicable. For example, assuming PU
has two power levels and the local detection results from five
SUs are {0,0,1,1,2}. In this case, AND and OR rule cannot be
used since they are defined over binary states. Similarly, the
k-out-of-N rule cannot be applied either. Say, if , then
both 0 and 1 get two votes and the final decision cannot be
made. While if is used, then no decision can be made
because no power level (including 0 power) gets 3 votes.
Hence, it is necessary to design new cooperative sensing

schemes for MPTP scenario. We here propose two different
fusion rules, i.e., the modified majority fusion and the optimal
fusion.

A. Modified Majority Decision Fusion (MMDF)

From a given , we can immediately formulate a voting pool
, where denotes the number of SUs that

claim . Obviously, there is . Define the map-
ping function from to as , which can be easily
obtained from an offline manner once and are fixed. It
is not difficult to find that the total number of possible is

. The probability of any specific can then
be computed as

(33)

Remark 10: If we assume all SUs have the same detection
capability, i.e., the same ,6 then the expression of

can be simplified into (34) shown on top of this page.

(34)

A simple yet reasonable way to make the decision fusion is
to count the majority claims from SUs, i.e., pick

(35)

However, a special case happens when while
, for example . In this ex-

ample, (35) will output and claims the absence of PU,
but in fact more users claim the presence of PU. Therefore, we

6For example, the received signal at each SU experiences almost identical
path loss and noise variance [13], which approximately holds when the distance
between any two SUs is small compared to the distance from PU to any one of
the SUs.

Fig. 4. Illustration of mapping from to and then to .

should check the presence of PU before applying the majority
rule when the primary target is to detect the “on-off” status of
PU, and we call this newly designed rule as Modified Majority
Decision Fusion (MMDF).
Let us define and . Then, the deci-

sion rule can be expressed as

(36)

which can be simplified as

(37)

Note that, when is even and when , the final
decision can either be made as “on” or “off” because they are
equally probable. In the rest of the discussion, we claim “on” if

.
If PU is detected to be present, the next step is to discriminate

which power level is in use by majority law

(38)

Let us then define as the decision probability of
MMDF. It can be computed that

(39)

where the set is defined as

if

if
(40)

Remark 11: There exist special cases when more than one
state simultaneously achieve the maximum number of votes.
In this situation, one can choose any of them as the final decision
since they are equally probable. In this paper, we always choose
the largest value of as the final decision if this special case
happens, and all the theoretical and numerical results in the rest
of the paper are based on this consideration.
The set can be obtained from a mapping function in an

offline manner. Hence, we can easily build tables and mapping
functions as illustrated in Fig. 4, and compute a
prior. Fortunately, a more explicit expression for
in majority voting can be derived from the following theorem.
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Theorem 2: The MMDF has the decision probability as (41)
shown on the bottom of the page, where , and denote the
ceiling function and the floor function, respectively. Moreover,

and are defined as
if
if

if
if

(42)

Proof: To calculate the decision probability from (39), we
need to find all candidates in . In other words, we need to
determine the range of elements ’s, in .
Let us start form . As shown in , must satisfy

, so the range of should be from 0 to .
Moreover, since , the lower bound of
must be no less than , otherwise there will always be
another but satisfies . Therefore the range of

is from to .We then separately determine
the range of for and respectively by
assigning the remaining votes from SUs, which is
.
1) When , the upper bound of must be less than

or equal to the unassigned votes of SUs, which is
minus all the values that have already been assigned to

and , i.e., . Bearing
in mind the constraint , the upper bound can be
expressed as

As for the lower bound, should not be too small to allow
any other undetermined ( and ) be
greater than . The extreme case happens when all the
undetermined ’s get their highest values, i.e., being
equal to for while being for

. Then the summation of these ’s is
. Combining this result

as well as the constraint , we get the lower bound
of as

2) When , the maximum value of can only be ,
thus the upper bound of the summand changes to

Similar to the previous discussion, the maximum summa-
tion of all the undetermined in this situa-
tion is , so the lower bound is

When we use and in (42) to simplify the expression of
the range of ’s, the equality (41a) for is proved.
As for , the only constraint for is from
, so the summation range of must be from to

. All the others can be freely chosen
as long as . If we assign the values for ’s one
by one, then for any , its lowest possible value is 0 while its
highest possible value is . Note that, is fixed
when all the previous ’s, are chosen and does not
need to be included in the summand. Then, the equality (41b)
for is proved.
Once is derived, then the false alarm, the de-

tection probability, as well as the discrimination probability for
majority cooperation can be immediately obtained as the sum-
mation of the corresponding ’s.
In Fig. 5, we provide an example to verify several analyti-

cally derived with , and an average
. It is clearly seen that the numerical results

match the theoretical ones very well. It needs to be mentioned
that is close to zero because the number of sam-
ples starts from 3000, which is sufficient to provide a very small
false alarm provability.
Remark 12: Though the majority decision fusion rule has

been widely accepted in many research areas, the analytical ap-
proach to study its performance, e.g., obtaining
from , has not been fully discussed to the best of the
authors’ knowledge.

B. Optimal Decision Fusion (ODF)
Though MMDF is very simple and effective, it does have

some drawbacks which limit the performance of cooperative
decision. For example, when , even if the

(41a)

(41b)
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Fig. 5. Theoretical analysis and numerical results for decision probability
under MMDF.

detection result is , it is still possible that is truer
than . The reason is that majority decision is a type of “hard”
decision and is not “soft” enough to count in the priori proba-
bility of each hypothesis.
From the probabilistic point of view, the optimal decision fu-

sion with the observation should follow MAP criterion [41].
Similar to majority decision fusion, we need to first to make a
decision about the presence of PU before recognizing the power
levels, i.e.,

(43)

From Bayes rule, there is

(44)

Hence, (43) can be simplified to

(45)

If PU is detected to be present, we continue to recognize the
power level of PU. Following the similar steps from (10) to (14),
the detection rule is

(46)

The decision probability of the optimal decision fusion can
be expressed as

(47)

where the set is defined as

if

if

The elements in is an implicit function of and
, which makes it difficult to obtain an explicit

expression of . Nevertheless, is the
summation of those whose could result in the
decision of , while these can be found from a predetermined
mapping in an offline manner, as did in Fig. 4.
Remark 13: Since and are real contin-

uous values, the probability for obtaining more than one max-
imum index from (46) is 0, and the corresponding discussion is
not necessary.
Remark 14: If we assume the same detection capability for

all SUs, as did in [13], and apply (34), then a more concise form
of the decision (46) can be obtained as

(48)

V. SIMULATIONS

In this section, we resort to numerical examples to evaluate
the proposed studies. Four levels of primary transmit power are
assumed, while the corresponding prior probabilities are set as

, and , 2, 3, 4. The noise
variances is taken as unit. The power levels satisfy

, and the average SNR is defined as
.

A. Sensing With a Single SU
We first demonstrate the performance loss of the traditional

binary spectrum sensing algorithmwhen PU is actually working
with multiple power levels. Since the conventional binary
sensing algorithm has to assume one constant power level, it
cannot be directly applied to MPTP scenario. We then consider
the following three different cases: 1) binary sensing algorithm
assumes the lowest power level of PU as the constant power
level in its algorithm; 2) binary sensing algorithm assumes the
average power level of PU as the constant power level in its
algorithm; 3) binary sensing algorithm assumes the highest
power level of PU as the constant power level in its algorithm;
In Fig. 6, we choose the figure of the merit as ,
where is the miss detection probability, and
compare the performance of different algorithms. The PU’s
average is taken as-12 dB. It can be seen that the conventional
binary spectrum sensing always suffers from performance loss
due to the model mismatch, which supports our consideration
of MPTP scenario.
In Fig. 7, we evaluate the performance of detecting the

presence of PU versus the number of samples for the proposed
sensing strategies. It is seen that sensing strategy-I works better
than sensing strategy-II, especially when the sampling number
is small, which matches our discussion in Section III-E that

. Nevertheless, the gaps between the two
sensing strategies reduce when the number of samplings be-
comes larger or the PU’s SNR becomes higher. This implies
that when the sensing conditions become better, then difference
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Fig. 6. The performance loss of binary spectrum sensing compared to the pro-
posed algorithm at average .

Fig. 7. The detection probability of local SU versus the number of samples.

of the two sensing strategies gradually diminishes and the
choice of sensing strategies becomes less important.
One the other hand, Fig. 8 displays the performance of dis-

criminating the power level versus the number of samples of
the proposed sensing strategies. The discrimination probability
follows the definition in (28), i.e., we treat absence as an equiv-
alent power level with 0 value. From Fig. 8, we see that sensing
strategy-II works slightly better than sensing strategy-I but the
difference diminishes when SNR becomes higher. This phe-
nomenon right fits our analysis in Section III-E that sensing
strategy-II takes into account all error cases.
The average detection error probabilities versus the number

of samples for different power offsets are displayed in
Fig. 9 with the average , where denotes
the offset of between the true power level and the detected
power level. For example, detection error probability with

is the summation of those satisfying
, i.e., . And the curve

with means we sum up all the error probabilities for

Fig. 8. The discrimination probability of local SU versus the number of
samples.

Fig. 9. Error detection probability versus the number of samples with average
.

. These curves indicate the trend of error distribution as
the received sample number increases. Moreover, it is seen that
the error probability decreases extensively when increases.
Especially when , the error probability is almost ignorable
compared with that of . This is not unexpected because
the chances for making a wrong decision to the farer power
level should be smaller. A very important indication to practical
design is that, SU may only pay attention to those errors with
smaller and set the corresponding cost values in Bayes Risk
detection. Furthermore, sensing strategy-I performs worse than
sensing strategy-II for while performs better than sensing
strategy-II for .
Next we demonstrate the sensing performance versus average

SNR in Fig. 10 for both the detection probability and the dis-
crimination probability defined in (21). It is seen that sensing
strategy-I outperforms sensing strategy-II in terms of both de-
tection probability and discrimination probability. For sensing
strategy-I, the difference between detection probability and dis-
crimination probability is very large at low SNR. The reason is
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Fig. 10. The detection and discrimination probability of local SU versus SNR
with .

Fig. 11. Detection and discrimination probability versus number of samples
for these two cooperative sensing methods with , .

that even if PU is detected to be present, the sensing strategy-I
makes many mistakes about PU’s actual power level. However,
for sensing strategy-II, may mask all the other states when
SNR is low, which almost ruins the detecting ability. Never-
theless, since sensing strategy-II is originally defined for dis-
criminating all , once we include , the discrimina-
tion probability could outperform sensing strategy-I as has been
demonstrated in Fig. 8.

B. Cooperative Sensing

For all cooperative sensing examples, the local sensing results
of all secondary users are made from sensing strategy-I.
Then, in Fig. 11, we show the detection probability as well

as the discrimination probability versus the number of received
samples when five SUs cooperate tomake the final decision. The
average SNR is taken as 12 dB. Comparing with the sensing
performance of single local SU in Fig. 7 and Fig. 8, it is clearly
seen that the performance is greatly improved when cooperative

Fig. 12. Detection probability and discrimination probability in cooperative
sensing versus SNR with , .

scheme is applied. Moreover, ODF outperforms MMDF at all
sample numbers. Nevertheless, ODF needs to dynamically build
the mapping function and is not as simple as MMDF.
In the last example, we show the performance of cooperative

sensing versus average SNR in Fig. 12. Not surprisingly, ODF
rule outperforms the MMDF in all SNR range. Besides, the dis-
crimination probabilities for both sensing rules also get closer
to the detection probabilities as the SNR grows. Moreover, the
gaps between the ODF and MMDF diminish when SNR be-
comes larger.

VI. CONCLUSIONS
In this paper, we thoroughly investigated a new CR scenario

when PUworks with different discrete power levels, which both
matches the practical transmission and fits the theocratical de-
mands of adapting the transmit power. We designed two spec-
trum sensing strategies which are shown to possess different but
correlated optimization criteria. Most results, e.g., threshold ex-
pressions, decision probabilities, are derived in closed-forms.
We present fruitful discussions over all aspects of the new spec-
trum sensing strategies, including the power-mask effect and its
reasoning, the new definition of performance metrics, as well as
the rationales behind. Moreover, we developed two cooperative
sensing schemes which are shown to be very different from the
traditional cooperative sensing algorithms. Various simulations
are provided to corroborate the proposed studies. From the pro-
posed studies, we believe that there exist many new problems
in MPTP waiting for exploitation, while in the mean time many
existing results from traditional CR deserve re-investigation.
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