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Abstract: Nine proteins of the ABC superfamily (P-glycoprotein, 7 MRPs and BCRP) are involved in multidrug 

transport. Being localised at the surface of endothelial or epithelial cells, they expel drugs back to the external medium (if 

located at the apical side [P-glycoprotein, BCRP, MRP2, MRP4 in the kidney]) or to the blood (if located at the 

basolateral side [MRP1, MRP3, MRP4, MRP5]), modulating thereby their absorption, distribution, and elimination. In the 

CNS, most transporters are oriented to expel drugs to the blood. Transporters also cooperate with Phase I/Phase II 

metabolism enzymes by eliminating drug metabolites. Their major features are (i) their capacity to recognize drugs 

belonging to unrelated pharmacological classes, and (ii) their redundancy, a single molecule being possibly substrate for 

different transporters. This ensures an efficient protection of the body against invasion by xenobiotics. Competition for 

transport is now characterized as a mechanism of interaction between co-administered drugs, one molecule limiting the 

transport of the other, which potentially affects bioavailability, distribution, and/or elimination. Again, this mechanism 

reinforces drug interactions mediated by cytochrome P450 inhibition, as many substrates of P-glycoprotein and CYP3A4 

are common. Induction of the expression of genes coding for MDR transporters is another mechanism of drug interaction, 

which could affect all drug substrates of the up-regulated transporter. Overexpression of MDR transporters confers 

resistance to anticancer agents and other therapies. All together, these data justify why studying drug active transport 

should be part of the evaluation of new drugs, as recently recommended by the FDA.  
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INTRODUCTION 

 The proteins from the ATP-binding cassette (ABC) trans-
porters superfamily share as common features a capacity to 
actively transport molecules through the membranes, and to 
use ATP hydrolysis as an energy source. They have been 
classified in seven subfamilies (ABCA to ABCG), according 
mainly to sequence homologies and structural organization 
[1]. The topology and nomenclature of ABC transporters 
have been extensively reviewed elsewhere [2-4] and will not 
be addressed here.  

 Most of the 48 human ABC transporters (without the 
truncated ABCC13 with still unknown function [5]) play a 
role in the export of physiological substrates (amino acids, 
peptides, lipids, inorganic ions…), but nine of them are 
rather associated to a Multi-Drug Resistance (MDR) pheno-
type, due to their ability to extrude out of the cells a large 
variety of xenobiotics.1 These are the P-glycoprotein 
(ABCB1, P-gp), the Multidrug Resistance associated Pro-
teins or MRPs (MRP1-MRP7, also referred to as ABCC1-6 
and ABCC10), and the Breast Cancer Resistance Protein or 
BCRP (ABCG2). In addition, the intracellular transporter  
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1 Transporters involved in drug influx belong to another superfamily of transporters, 

namely the SLC (Solute-Linked Carrier) family (a family of secondary transporters that 
comprises the organic anion transporting polypeptides (OATPs), the organic anion 

transporters (OATs) or the organic cation transporters (OCTs)). These also play an 
important role in drug pharmacokinetics and drug-drug interactions [6, 7] but will not 

be discussed here. 

ABCA3 has also been implicated in multidrug resistance in 
leukemia cells, as it can sequester drugs inside lysosomes 
[8]. The role of these MDR transporters, and of P-gp in par-
ticular, is well described in the context of resistance to 
anticancer drugs [9, 10]. Yet, as they are widely distributed 
in the organism [11], they also play an important role in the 
modulation of absorption, tissue distribution and elimination 
of their substrates or in the protection of sanctuaries, like the 
central nervous system (Fig. 1). MDR ABC transporters are 
therefore considered as a major intervenient in the phar-
macokinetics of many drugs, which can in its turn modulate 
their pharmacological activity or their toxicity [12-14]. A 
first goal of this paper is to review the current knowledge on 
the role of MDR ABC transporters in drug transport and its 
consequences in terms of ADME properties.  

 A striking characteristic of these MDR transporters is the 
wide variety of apparently non chemically-related substrates 
they can accommodate. This is not yet fully understood, but 
the structure of the murine P-gp (Abcb1a) recently resolved 
at a 3.8 Å resolution [15], together with the structural models 
of different MDR ABC established by homology modeling 
using crystallographic structures from bacterial homologs 
[16-22], may be helpful in this respect. A pharmacological 
consequence of this broad substrate specificity is that co-
administration of drug substrates may cause drug-drug inter-
actions by competition for a same transporter. Moreover, 
drugs can also induce the expression of transporters, modi-
fying thereby their capacity to transport their substrates [13]. 
A second goal of this paper is to examine how these recently 
described mechanisms of drug-drug interactions can affect 
drug pharmacokinetic properties. 
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PHYSIOLOGICAL FUNCTIONS OF MDR ABC 

TRANSPORTERS 

 Table 1 illustrates the localization, expression levels (at 
the mRNA or protein level), and physiological substrates of 
MDR ABC transporters. Caution is required however when 
data refers only to mRNA levels, as discrepancies between 
mRNA and protein levels may exist. For example, BCRP 
expression  in  kidney  is  low  at  mRNA  level  but higher at  
protein level [23]. Moreover, spliced mRNA variants do not 
always code for an entire, functional protein [24-27]. While 
some of these transporters, like P-gp, have a very broad 
tissue distribution, others are expressed only in a few organs, 
like MRP7. For the latter, this suggests specific roles in these 
organs, even though these have rarely been evidenced. 
Considering MRP7, for example, it is interesting to note that 
it is expressed in the heart and can transport leukotriene C4, 
a well known vasoconstrictor agent [28]. Likewise, MRP4 is 
highly expressed in prostate and expels cyclic nucleotides 
that control erectile function and smooth muscle activity in 
the urinary tract [29]. The expression level of a given 
transporter can also markedly vary from one organ to the 
other, depending of its specific role. P-gp for example is 
highly expressed at the apical membrane of many epithelial 
cells (enterocytes, renal tubules, canalicular membrane of 
hepatocytes) or brain capillary endothelium [11], in relation 
with its detoxification function. More intriguingly, some 
transporters can be found either at the apical or at the 
basolateral membrane, depending on the tissue. This is 
mostly the case for MRP4, which is usually located at the 
basolateral membrane but is found at the apical surface of 
renal epithelial cells and brain endothelial cells (for a review, 
refer to [30]). The basolateral transporters MRP1 and MRP5 
have also been detected at the apical membrane of brain 
endothelial cells [31], although at low levels. This may 

contribute to reinforce the protective effect of P-gp or BCRP 
on the brain.  

MDR TRANSPORTERS AND MODULATION OF 
DRUG PHARMACOKINETICS  

 Fig. (1) illustrates the main role of MDR ABC trans-
porters with respect to drug disposition in the organism. 
Those that are localized at the apical surface of the cells 
bordering the elimination organs will contribute to cell 
detoxification by expelling xenobiotics into the bile, the 
urine or the faeces; those that are expressed at the basolateral 
surface will rather contribute to drug (re)absorption by 
driving them from the intracellular medium to the blood [30, 
32]. MRPs mainly transport Phase II metabolites (drug con-
jugates to glutathione, glucuronate or sulfate [33]) and cons-
titute therefore the "Phase III" of drug elimination [34, 35]. 

 At the level of barriers separating the blood from 
sanctuaries or vulnerable organs like the brain, the placenta 
or the testis, most transporters are oriented towards a trans-
port from the organ to the blood, as a way to protect these 
fragile sites from foreign invasion [36, 37]. This role is best 
evidenced by the specific neurotoxicity of ivermectin in 
beagle dogs that are naturally deficient in P-glycoprotein 
[38]. In non-polarized cells, efflux pumps can contribute to 
reduce the cellular concentration of drugs and hence, their 
pharmacological activity if they act upon an intracellular 
target. This is well exemplified by the reduction in intra-
cellular activity of fluoroquinolones, macrolides, or dapto-
mycin against bacteria infecting macrophages expressing 
MDR transporters [39, 40] or of anti-HIV drugs in infected 
macrophages and lymphocytes [41]. A fortiori, overexpres-
sion of MDR transporters is a well established mechanism of 
resistance of cancer cells to chemotherapy [10, 42, 43].  

 

Fig. (1). Illustration of the role of MDR ABC transporters in the modulation of drug disposition when expressed at the apical or basolateral 

side of the cells bordering the main barriers in the body, or in non polarized cells. 
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Table 1. Localization and Physiological Substrates of ABC Transporters  

 

Tissue Distribution ABC 

Transporter 
Localization 

High Expression Low Expression 
Physiological Substrates Refs. 

P-gp 
(ABCB1) 

Apical 
Kidney, adrenal gland, liver, 

pancreas, intestine, lung, 
blood-brain barrier, placenta 

Prostate, skin, heart, 
skeletal muscle, ovary 

Phospholipids, cytokines, 
steroids 

[11, 220] 

MRP1 
(ABCC1) 

Basolateral (except in 
placenta and BBB) 

Kidney, lung, testis, skeletal 
and cardiac muscles, placenta 

(apical) 
Liver, intestine, brain 

Glutathione, glutathione 
conjugates (LTC4, DNP-SG), 

bilirubin glucuronides, bile salts 

[31, 221-
223] 

MRP2 
(ABCC2) 

Apical 
Liver, kidney, small intestine, 

placenta 
 

LTC4, DNP-SG, bilirubin 
glucuronides, sulphated bile salts 

[183, 222, 
224, 225] 

MRP3 
(ABCC3) 

Basolateral 
Adrenal gland, intestine, 

pancreas, gallbladder, placenta 
Liver, kidney, prostate* 

Bile salts, LTC4, estradiol-17�-
glucuronide, bilirubin-

glucuronides 

[222, 226, 
227] 

MRP4 
(ABCC4) 

Apical (kidney, BBB) or 
basolateral (prostate, 

choroid plexus) 
Prostate 

Ovary*, testis*, kidney, 
lung*, intestine*, liver, 

brain, pancreas 

cAMP, cGMP, bile salts,  
folate, conjugated steroids, 

prostaglandins (PGE1, PGE2) 

[31, 228-
232] 

MRP5 
(ABCC5) 

Basolateral (except in 
BBB) 

Skeletal* and cardiac muscle, 
testis* 

Brain, neurons, liver* cAMP, cGMP, folate, DNP-SG [31, 227] 

MRP6 
(ABCC6) 

Basolateral 
Liver, kidney, skin, lung, heart, 

intestine, pancreas, stomach 
 LTC4, DNP-SG [233, 234] 

MRP7 
(ABCC10) 

?  
Colon*, skin*, testis*, 

pancreas* 
Estradiol-17�-glucuronide, 

LTC4 
[235, 236] 

BCRP 
(ABCG2) 

Apical 
Placenta, breast, blood-brain 

barrier, liver, intestine, 
Kidney, lung, ovary*, 

testis* pancreas* 

Vitamins (riboflavin, biotin), 
porphyrins, estrogen sulfate 

conjugates 

[23, 237-
240] 

BBB, blood-brain barrier; LTC4, leukotriene C4; DNP-SG, 2,4-dinitrophenyl-S-glutathione. 

*Data for gene expression only (mRNA); otherwise, the tissue distribution refers to protein detection. 

 

Table 2. Pharmacologically Relevant Substrates of MDR ABC Transporters 

 

ATC 

Code 

Pharmacological 

Class 
Drug P-gp MRP1 MRP2 MRP3 MRP4 MRP5 MRP6 MRP7 BCRP Refs. 

Alimentary tract and metabolism 

Cimetidine +        + [241, 242] 

Nizatidine +         [243] 02B 
H2-receptor 

antagonists 

Ranitidine +         [242] 

03F Propulsives Domperidone +         [101] 

04A Antiemetics Ondansetron +         [101] 

A 

07D Antipropulsives Loperamide +         [101] 

Cardiovascular system 

Digoxin +*        -* [100, 241] 
01A Cardiac glycosides 

Talinolol + (r)         [244] 

01B Anti-arrhythmics Quinidine + (r)*          

02C Antihypertensives Prazosin + (m)        + (m) [245] 

07A 
Beta-blocking 

agents 
Celiprolol +         [246] 

Nicardipine *        + [247, 248] 
08C 

Calcium channel 

blockers (vascular) Nifedipine +(r)*        + [247, 249] 

Diltiazem +*         [250] 

C 

08D 
Calcium channel 

blockers (cardiac) Verapamil +*         [251] 

 09C 
Angiotensin II 

antagonists 
Losartan + - -       [252] 
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(Table 2) Contd….. 

ATC 

Code 

Pharmacological 

Class 
Drug P-gp MRP1 MRP2 MRP3 MRP4 MRP5 MRP6 MRP7 BCRP Refs. 

Ezetimibe +  +       [253] 

Atorvastatin +*         [254-256] 

Pitavastatin +  +      + [257] 

Pravastatin   + (r)  +     [258, 259] 

C 10A 
Lipid modifying 

agents 

Rosuvastatin +  +      + [260, 261] 

Systemic hormons 

H 02A Corticosteroids Dexamethasone +        -* [100, 241] 

Anti-infectives 

01A Tetracyclines Tetracycline +    +     [258, 262] 

01C Beta-lactamsa  +  +  +    + (r) 
[258, 263-

265] 

Macrolidesa  + + + (r)       [266-268] 
01F 

Ketolides Telithromycin +  + (r)       [269] 

01M Fluoroquinolonesa  + + + (r)  + (m)    + 
[58, 268, 

270-276] 

Nitrofuranes Nitrofurantoin         + [277] 
01X 

Lipopeptides Daptomycin +         [40] 

02A Azole antifungals Itraconazole + (m)        -* [164, 278] 

04A 
Antimycobacterial 

antibiotics 
Rifampicin + (m)         [279] 

Adefovir 
- 

(CHO) 
-   + +  + + (m) 

[44, 228, 

280-283] 

Ganciclovir     +     [284] 

Reverse 

transcriptase 

inhibitors 
Zidovudine 

(AZT) 
    +    + [282, 285] 

Indinavir + +/- + -  -   - 
[89, 162, 

286-288] 

Lopinavir + - +      - (m) [289] 

Nelfinavir + +       -* 
[89, 162, 

288] 

Ritonavir + +/- + -  -   -* 
[162, 286-

288] 

J 

05A 

Protease inhibitors 

Saquinavir + +/- + -  -   -* 

[89, 162, 

286-288, 

290] 

Antineoplastic and immunomodulating agents 

Cladribine     +    + [44, 291] 

01B Antimetabolites 
Methotrexate + + + + + +   

+b (and  

PG) 
[292-299] 

Docetaxel +  +     +  [300-302] 

Paclitaxel + - + - -   + - 

[62, 228, 295, 

300, 301, 

303-305] 

Etoposide + +/- + (GC) + (and GC) -  + + - 

[62, 228, 281, 

295, 304, 306-

310] 

Vinblastine + + +#  -   +  

[228, 301, 

304, 311-

313] 

L 

01C Plant alkaloids 

Vincristine + +# +# +/- -   +  

[228, 295, 

301, 303, 

307, 310, 

314, 315] 
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(Table 2) Contd….. 

ATC 

Code 

Pharmacological 

Class 
Drug P-gp MRP1 MRP2 MRP3 MRP4 MRP5 MRP6 MRP7 BCRP Refs. 

Actinomycin D + +        [304, 314] 

Daunorubicin + + (GS)  - -  + + +b
 

[62, 228, 281, 

295, 303, 304, 

308, 314, 316, 

317] 

Doxorubicin + + (GS) + - -  +  +b
 

[62, 228, 295, 

303, 304, 307, 

308, 310, 316-

318] 

01D Cytotoxic antibiotics 

Mitoxantrone + +#       +b
 

[62, 316, 319, 

320] 

Irinotecan + + +  +    + [321-324] 
01X Camptothecins 

Topotecan +    +    + [325-328] 

-  Gimatecan -  -  +    - [329] 

- 
Platinium 

compounds 
Cisplatin   +# -      

[307, 310, 

330] 

Imatinib +        +/-* [331-334] 
- 

Protein kinase 

inhibitors Lapatinib +        + [335] 

- - Becatecarin         + [336] 

- - Flavopiridol 
+ (m) 

/- 
-       +/- 

[62, 245, 

337] 

Ciclosporin A +*    -    -* 
[100, 155, 

324, 338] 

L 

04A Immunosuppressants 

Tacrolimus +        -* [155, 338] 

Musculo-skeletal system 

01A 
Anti-inflammatory 

agents 
Diclofenac -  -      + [142] 

M 

04A Antigout agents Colchicine +  +      - [339] 

Brain and nervous system 

Morphine 
+ 

(CHO) 
 + (GC) + (GC) (m)     - [340-342] 

02A Opioid analgesics 

Oxycodone +         [200] 

- Analgesics Asimadoline +         [105] 

Phenobarbital + - -   -    [343, 344] 

Phenytoin + - -   -   - [343-345] 03A Antiepileptics 

Topiramate + - -   -    [346] 

Bromocriptine + (m)         [347] 

Budipine + (m)         [348] 04B 
Antiparkinsonian 

drugs 

L-dopa +         [349] 

Fluphenazine +         [350] 

Perazine +         [350] 05A Antipsychotic drugs 

Risperidone +         [351] 

Citalopram + (m)         [352] 

N 

06A Antidepressants 
Trimipramine + (m)         [352] 

Antiparasitic products 

Chloroquine - +        [353, 354] 

Mefloquine  +   +     [355] 01B Antiparasitics 

Quinine +         [353] 

-  Quinacrine + (m)         [356] 

02C Antihelmintics Ivermectin +         [100] 

P 

-  Oxfendazole -  -      + [357] 
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(Table 2) Contd….. 

ATC 

Code 

Pharmacological 

Class 
Drug P-gp MRP1 MRP2 MRP3 MRP4 MRP5 MRP6 MRP7 BCRP Refs. 

Respiratory system 

Cetirizine + +  [358] 
R 06A Antihistaminics 

Fexofenadine +  +       [359, 360] 

Various 

V 03A 
Antidotes (morphinic 

antagonist) 
Methadone +        - [341, 361] 

Drug are classified according to ATC codes (Anatomical Therapeutic Chemical classification system; http://www.whocc.no/atc/). 
All data refer to studies with human transporters, except when specifically indicated: (m) mouse; (r) rat; (CHO) Chinese hamster ovary cells. 
Key: +, substrate; -, non substrate; *, modulator/inhibitor [143]; #, transport is dependent upon the presence of glutathione; GS, glutathione conjugate; GC, glucuronide conjugate; PG, 
polyglutamate conjugate. 
a, does not apply to the whole class (some members are substrates, others, not); b, BCRP substrate specificity is affected by mutations at amino acid 482 [62]. 

 

 Table 2 summarizes our current knowledge on the active 
transport of drugs by the main MDR ABC transporters. A 
first observation is that a single transporter can affect a very 
large number of molecules, belonging to a wide variety of 
pharmacological classes and presenting markedly remote 
chemical structures. P-gp substrates are mostly organic 
amphipathic molecules, ranging in size from less than 200 
Da to almost 1900 Da. Most of them are neutral or basic 
compounds, but zwitterionic and negatively charged com-
pounds (like methotrexate) can also be transported. Among 
MRPs, MRP4 and MRP5 have the particularity to transport 
cyclic nucleotides and purine analogues [44-46], but not 
anthracyclines, taxanes, or vinca alkaloids. BCRP shows a 
broad substrate specificity, with partial overlap with P-gp 
substrates. On the other hand, all drugs belonging to a same 
pharmacological class are not necessarily substrates for the 
same transporter. All together, these data suggest that 
recognition by MDR transporters depends on molecular 
determinants that have nothing in common with those 
defining the high specificity of drug-target interaction in 
most pharmacological models (classical model of the key-
and-lock recognition [47]). Yet, converging evidence from 
experimental studies and molecular modeling tend to 
indicate that these are the global physico-chemical properties 
of the molecule rather than the presence of specific subs-
tituents that drive substrate recognition. Tentative 'phar-
macophores' have been progressively built up that allow to 
predict possible interactions, mainly with P-glycoprotein, 
and are now used for in silico screening [48, 49]. The 
features identified include the presence of hydrogen bond 
acceptor, hydrophobic and aromatic areas, and positive 
ionizable group at appropriate distance from one another 
[50]. Another factor that can contribute to broad substrate 
specificity is the fact that MDR transporters possess several 
binding sites in the transmembrane domains, as demons-
trated for P-gp [51-53], MRP2 [54] or BCRP [55], which can 
probably accommodate different substrates [56].  

 A second observation is that a single molecule can be 
substrate for different transporters. At the molecular level, 
this indicates that common features may dictate recognition 
by different transporters. In this respect, it is interesting to 
note that this may even apply to totally unrelated trans-
porters, as those conferring resistance to antibiotics in 
bacteria. For example, ciprofloxacin but not moxifloxacin, is 
substrate of murine Mrp4 [57, 58] as well as of efflux pumps 
conferring resistance to fluoroquinolones in Staphylococcus 

aureus, Streptococcus pneumoniae, or Listeria monocyto-
genes [59-61]. At the physiological level, this redundancy 
between transporters may compensate for the poor expres-
sion of a given transporter in a particular tissue and/or for 
alteration of activity in mutated proteins. Mutagenesis 
studies have indeed shown that substrate specificity can be 
affected by a single amino acid change (see for example [62] 
for BCRP or [63] for P-glycoprotein). Indeed, in vivo also, 
variations in ABC transporters expression between indivi-
duals is well documented [64, 65], as well as genetic 
polymorphisms (see for review [66] for P-gp and MRP2 and 
[67] for BCRP). These polymorphisms might however be 
clinically relevant only at certain drug doses. 

 A third observation is that P-glycoprotein seems by far to 
be the broadest spectrum transporter. This conclusion needs 
however to be taken with caution, as P-glycoprotein is also 
the most widely studied transporter. Empty cells in Table 2 
need thus to be interpreted as an absence of data and not 
necessarily as an absence of transport. Other possible 
limitations of the data presented in this Table are that some 
of them have been performed in animal cells (exploring 
therefore transport capacity of the animal transporter), or in 
animal cells transfected with human transporter (but with the 
remaining background of the other transporters expressed by 
the animal cell) or using knockout animals. Transposition of 
the results to human needs therefore careful appreciation due 
to interspecies substrate discrepancies. Thus, whereas mouse 
Bcrp1 was functionally comparable with human BCRP in a 
murine fibroblast cell line [68], interspecies differences do 
exist between Bcrp1/BCRP in hepatocytes [69], as well as 
between murine and human MRP2/Mrp2 [70, 71], or P-gp 
[72, 73]. 

Consequences for Drug Absorption (Intestinal Barrier) 

 Drugs administrated by oral route must pass through 
several barriers before reaching their target site, the first one 
being the intestinal epithelium. Due to their high expression 
in the small intestine and to their co-localization at the apical 
membrane of enterocytes, P-gp, MRP2, and BCRP play a 
key role in limiting the absorption of drugs by expelling 
them back to the intestinal lumen [74, 75]. Expression of 
transporters along the small intestine is not uniform and 
regional differences have been reported (see for review 
[75]): whereas P-gp expression is higher in the ileum [76], 
MRP2 and BCRP expression are higher in jejunum [77, 78]. 
This will affect locally drug absorption at the intestinal 
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barrier. For example, a significant inverse correlation was 
found between ciclosporin A absorption and intestinal P-gp 
mRNA levels along the gastrointestinal tract [79]. 

 To date, the role of P-gp is the most documented [80]. In 
the mice, however, Bcrp1 has been shown to limit the oral 
bioavailability of the anticancer drug topotecan [81], and to 
protect the animals against ingested dietary carcinogens 
(such as 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, 
PhIP) [82] or phototoxins like pheophorbide A [83]. On the 
contrary, MRP transporters expressed at the basolateral side 
of the cells may increase drug absorption. This has been 
demonstrated for ampicillin [84] or adefovir [85] using in 
vitro models of intestinal barrier. 

 The tools developed to study the role of P-gp in intestinal 
drug absorption consist of in vitro models of Caco-2 cell 
monolayers [86] and in vivo models with knockout mice 
[87]. Mice express two isoforms of P-gp, namely Mdr1a and 
Mdr1b, which both act as multidrug transporters; however, 
Mdr1b is not detected in the intestine. Mdr1a (-/-) mice 
allowed for example to demonstrate the major role of P-gp in 
the pharmacokinetics of paclitaxel [88] or HIV protease 
inhibitors (indinavir, nelfinavir and saquinavir [89]), since 
drug plasmatic concentrations were significantly higher in 
Mdr1a (-/-) mice than in WT mice (6-fold higher for pacli-
taxel, and 2- to 5-fold higher for HIV protease inhibitors). 
Studies with healthy volunteers allowed to confirm the 
importance of P-gp expression levels [79] or of the co-
administration of pump inhibitors for drug absorption [90]. 

 Moreover, detoxifying enzymes of cytochrome P450 
family are likely to act in synergy with ABC transporters to 
decrease drug absorption [91, 92]. Cytochrome P450 3A4 
(CYP3A4) accounts for nearly 70% of all CYP enzymes 
expressed in small intestine [93]. It displays a substantial 
overlap in substrate specificity and colocalizes with P-gp in 
enterocytes [94]. Recently developed models of Mdr1a/1b  
(-/-), Cyp3a (-/-), and Cyp3a/Mdr1a/1b (-/-) mice will thus 
be of prime interest to evaluate the respective importance of 
metabolism and efflux in drug disposition. Of high interest, 
recent data obtained with this model suggest that there is a 
high degree of synergy between Cyp3a and Mdr1a. For 
example, a >70-fold increase in systemic exposure to doce-
taxel is observed after oral administration to Cyp3a/ 
Mdr1a/1b (-/-) mice vs. a 12-fold increase in Cyp3a (-/-) 
mice and a 3-fold increase in Mdr1a/1b (-/-) mice [95]. 
Mathematical models have been developed to predict the 
change in AUC mediated by each of these systems for drugs 
that are common substrates [96]. Yet, the observation of syn-
ergistic effects makes probably largely pointless evaluations 
of the individual contribution of each of these mechanisms 
with respect to modifications of drug bioavailability in vivo. 

Consequences for Drug Distribution  

 ABC transporters located at the blood-brain barrier 
(BBB), the blood-CSF barrier, the blood-placental barrier, or 
the blood-testis barrier restrict the penetration of xenobiotics 
into the central nervous system, the foetus (via the placenta) 
or the testis. While this contributes to protect these 
vulnerable territories, it also compromises drug accessibility 
in pathological situations. This is most conspicuously the 
case for central nervous diseases (neurodegenerative dis-

eases, intracranial tumors, dementia, epilepsy, meningitis…). 
Two physiological barriers separate the brain from the 
bloodstream. The blood-brain barrier (BBB) is made of 
endothelial cells of the brain microvasculature that isolate 
the cerebral blood from the brain interstitial fluid. Tight 
junctions between these cells limit the paracellular flux of 
hydrophilic molecules across the BBB, so that only lipo-
philic molecules with low molecular weight can passively 
diffuse. The blood-cerebrospinal fluid (CSF) barrier is 
formed by a single layer of choroid plexus epithelial cells 
that separates the plexus blood from the CSF. BCRP and P-
gp are the main ABC transporters expressed at the human 
BBB [97]; they are both localized at the apical (or luminal) 
pole of the BBB where they transport drugs from the brain to 
the blood. MRPs are also detected but with a lower 
expression; their functional role at the BBB still needs to be 
clearly determined [98].  

 The first studies investigating the influence of ABC 
transporters at the BBB were performed in vitro, using 
cultures of brain endothelial cells. These cells however do 
not always exhibit all the properties of in situ brain 
microvessel endothelial cells [98]. P-gp-knockout mice 
models were thereafter used to demonstrate the implication 
of P-gp to limit drugs entry into the brain, Mdr1a being the 
major P-gp isoform present at the BBB. The first studies 
with Mdr1a (-/-) mice showed that they were almost 100-
fold more sensitive to the neurotoxic effects of ivermectin, 
an antiparasitic compound [87] than wild-type mice. Many 
other P-gp substrates, such as digoxin [99, 100], ciclosporin 
A [100], loperamide, domperidone and ondansetron [101], 
HIV protease inhibitors (indinavir, saquinavir, nelfinavir) 
[89], or paclitaxel [102] are accumulated in the brains of P-
gp-deficient mice up to 35- or 40-fold higher than in WT 
mice, clearly documenting the role of P-gp as a gatekeeper at 
the luminal side of the BBB [103]. Several studies also 
evidenced a more marked implication of Mdr1a at the BBB 
than at the intestinal barrier by comparing the increase in 
drug concentration in the brain vs. the intestine of Mdr1a (-/-) 
or Mdr1a/1b (-/-) mice as compared to wild-type animals 
(4.4- to 9.6-fold vs. 2-fold for vinblastine [104]; 9-fold vs. no 
effect for asimadoline, an experimental analgesic [105]). 
More recently, positron emission tomography (PET) and 
single photon emission computed tomography (SPECT) 
imaging techniques [106] with radiolabeled efflux pump 
substrates have allowed non-invasive studies in animals and 
humans and a direct visualization of drug transporter 
function at the BBB [107, 108].  

 Although expressed at the BBB [109], Bcrp1 seems to 
have a moderate role in the transport of substances known to 
be BCRP substrates, such as imatinib [110] and mitoxan-
trone [111], or of xenobiotics that are also P-gp substrates 
[112, 113]. Yet, other studies showed the Bcrp1 acts syner-
gistically with P-gp to limit the brain penetration of topo-
tecan [114] and lapatinib [115]. In case of P-gp deficiency, 
however, Bcrp1 expression at the BBB increases, which is 
accompanied by greater export of its substrates, like mito-
xantrone or prazosin [116]. Mrp4 presents the particularity 
of being expressed at the apical membrane of endothelial 
cells at the BBB but at the basolateral membrane of epithe-
lial cells at the blood-CSF barrier. This dual localization 
allows for clearance of Mrp4 substrates from both the CSF  
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and the brain, as shown for topotecan [117]. However, this 
effect has been observed in rodents and might not be relevant 
in humans, where MRP4 expression seems to be very low 
[118]. 

 In the placenta, P-gp expressed in trophoblasts protects 
the fetus from potential teratogenic compounds [119], and 
from many drugs like digoxin, saquinavir or paclitaxel [120] 
extruding them into the maternal blood. Likewise, Bcrp1, 
expressed in placental syncytiotrophoblasts [109], limits the 
foetal penetration of topotecan [81]. Again the role of active 
transporters as a limitation to the permeability of the foeto-
maternal barrier may rationalize clinical observations, for 
example the lack of efficacy of protease inhibitors for 
preventing HIV transmission in pregnant women [121]. 

Consequences for Drug Elimination 

 A role for intestinal P-gp in the elimination of drugs from 
the blood to the gut lumen has been described [122], but the 
main routes of drug elimination remain through biliary 
excretion and renal clearance. 

Biliary Excretion of Drugs 

 In the liver, a lot of transporters are involved not only in 
the excretion of bile constituents, but also of xenobiotics and 
metabolites produced by Phase I and Phase II enzymes. 
These include MDR transporters, but also other ABC 
transporters like BSEP (Bile Salt Export Pump, ABCB11) 
and Solute-Linked Carrier transporters [123, 124]. P-gp, 
MRP2 and BCRP are localized at the canicular membrane of 
hepatocytes and secrete metabolized xenobiotics into the 
bile. MRP1, MRP3 and MRP4 are expressed at the basolate-
ral membrane and extrude metabolites in the blood, from 
where they can be eliminated by the kidneys (for a review, 
see [125]). Hepatic cells appear thus as a hub, orientating the 
route of elimination of metabolized drugs depending on their 
affinity for apical or basolateral transporters. 

 Transporters can also cooperate at the level of different 
barriers to efficiently reduce drug concentrations in the 
blood. For example, a complementary role of P-gp and Mrps 
has been evidenced for paclitaxel [126] and etoposide [127]. 
While P-gp is mainly involved in restricting their intestinal 
absorption, Mrp2 dominates in their hepatobiliary excretion. 
Moreover, in Mrp2 deficient animals (Mrp2 knockout mice), 
Mrp3 can secrete etoposide metabolites from the liver to the 
blood, from where they are further eliminated in urine [127]. 
Thus, MRP3 is considered to function as a backup detoxify-
ing pathway for hepatocytes, since its expression is increased 
when the normal canicular route is damaged by cholestatic 
diseases or when the function of MRP2 is impaired [128]. 

Renal Drug Excretion 

 In renal epithelial cells, P-gp, MRP2, and MRP4 are 
expressed at the apical (luminal) membrane, whereas MRP1 
and MRP6 are localized on the basolateral membrane [129]. 
Moreover, P-gp, MRP2, MRP4, and MRP6 are expressed in 
renal proximal tubules, whereas MRP1 is localized in distal 
tubules and collecting ducts [129], protecting distal part of 
the nephron from toxic drug accumulation which may occur 
with water reabsorption. BCRP protein expression in kidney  
 

has been recently evidenced, with also a localization in 
proximal tubules [23] but its role in renal drug efflux 
remains to be clearly determined. 

 Beside their role in drug elimination, MDR transporters 
may also exert a protective role on the kidneys themselves, 
as these organs are particularly exposed to toxic compounds. 
In patients (or animals) with chronic renal failure, it has been 
observed that the renal expression of P-gp [130] or of Mrp2 
[131] is increased while that of uptake transporters is 
decreased. This may help the sick organ to eliminate toxins. 
Modifications of the expression of MDR transporters may 
also contribute to modulate drug nephrotoxicity. It has been 
shown for example that the expression level of P-gp is lower 
in kidney graft recipients treated with ciclosporin A than in 
those treated with tacrolimus. This is correlated with a longer 
graft survival in the tacrolimus patients, attributed to a higher 
nephrotoxicity in the ciclosporin A group [132]. Overexpres-
sion of several MDR transporters (P-gp, Mrp2, Mrp4, Mrp5 
[133]) and down regulation of influx transporters (OAT and 
OCT) has also been evidenced in mice treated with cisplatin, 
another nephrotoxic drug, even if its transport is not 
documented for all of them (see Table 2). 

MDR EFFLUX PUMPS AND TRANSPORTER-
MEDIATED DRUG-DRUG INTERACTIONS 

 Polymedication is very frequent in clinical practice, 
especially in the elderly. It is often the cause of iatrogenic 
adverse reactions related either to drug-drug interactions or 
to inappropriate dosing due to organ insufficiency in old 
patients. Some mechanisms of pharmacokinetic interactions 
are now quite well characterized, like those mediated by the 
administration of inhibitors or inducers of cytochromes P450 
or the formation of complexes between cationic and anionic 
compounds. Yet, it now appears that MDR transporters can 
also play a major role in drug –drug interactions. The most 
popular example is probably that of flavonoids present in 
grapefruit juice, which can inhibit both the P-gp-mediated 
efflux and the CYP3A4-mediated metabolism of many drugs 
in enterocytes, improving thereby their bioavailability [134, 
135]. There is considerable overlap between CYP3A4 and P-
glycoprotein substrates [136], so that both systems will often 
be involved in drug interactions, resulting in complex 
pharmacokinetic profiles of multidrug regimens [137]. As 
compared to CYP-mediated drug interactions, those media-
ted by MDR transporters have however the particularity of 
possibly affecting drug concentration in a specific body 
compartment (such as the brain) without modifying blood 
levels.  

 Drug-drug interactions related to MDR transporters can 
occur by two main mechanisms. The first one is a 
competition between drugs (substrates or modulators of the 
pump) for the binding site(s) of the transporter, which can 
impair the transport of one or the two interacting drugs. The 
second is a change in the expression level of the MDR 
transporter upon exposure to a given drug, but which can 
affect the transport of any other drug substrate of the same 
pump. These interactions are not always deleterious, one 
drug being able to boost the absorption of the second one. 
This is well exemplified in Kaletra®, which consists of the 
combination of a therapeutic dose of lopinavir and a low 
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dose of ritonavir, which only serve for inhibiting lopinavir 
efflux and metabolism, hence increasing its bioavailability 
[138-140]. 

Competition for Drug Binding Site 

 A combination of an efflux pump substrate with a well-
characterized inhibitor/modulator can be useful to increase 
intestinal absorption or penetration into specific tissues, but 
it can also lead to adverse effects by decreasing drug eli-
mination. On the other hand, the co-administration of two 
drugs substrates for the same transporter may sometimes 
result in unexpected and/or unwanted effects. One may 
anticipate that the drug with the highest affinity will be more 
efficiently transported, and thus inhibit the transport of the 
other drug. Yet, if the mechanism of the interaction is com-
petitive, the concentration ratio between the two drugs may 
also play a critical role in determining which one will inf-
luence the transporter of the other one. Moreover, other 
mechanisms of interaction than simple competition for trans-
port have been described, for example, allosteric modifica-
tion by binding to a modulator site (see for example diclo-
fenac, which inhibits the transport of anionic substrates by 
MRP2 [141] but stimulates that of amphiphilic substrates 
[142]). On these bases, it is clear that transporter-mediated 
drug interactions are not easy to predict in vivo, and are often 
understood a posteriori. Methods to accurately predict such 
interactions are therefore needed [96]. 

 A series of drugs, which were first documented as being 
P-gp substrates, are now widely used both in vitro and in 
vivo for their modulator activity (among others, quinine and 
quinidine, verapamil, ciclosporin A and nifedipine; they con-
stitute the first generation of P-gp modulators [143, 144]). 
Using P-gp knockout mice, Fromm et al. [145] showed that 
co-administration of quinidine increases digoxin concentra-
tions in plasma and brain (by 73.0% and 73.2%, respect-
ively) of wild-type mice, but not in Mdr1a (-/-) mice, dem-
onstrating that quinidine is not only a substrate, but also a 
potent inhibitor of P-gp. In accordance with these results, a 
study with human volunteers showed that digoxin intestinal 
absorption increased from 22.3 ± 8.9% to 55.8 ± 21.2% of 
the dose when co-administrated with quinidine [90]. Digoxin 
oral bioavailability is also increased when co-administrated 
with talinolol [146], with a 23% increase of the area under 
the concentration-time curve AUC(0-72h), or clarithromycin 
[147] (1.7-fold increase in AUC(0-24h)), whereas its renal 
elimination is reduced when co-administrated with verapamil 
[148]. In another study with healthy male volunteers, 
quinidine caused an increase of loperamide transport into the 
brain, leading to several side effects, although the blood 
plasma concentration of loperamide remained unchanged 
[149].  

 Ciclosporin A, another well-known P-gp substrate [100], 
is also able to act as an inhibitor, increasing taxane 
(paclitaxel or docetaxel) oral bioavailability in wild-type 
mice [150] (from 9.3% up to 67% when co-administrated 
with ciclosporin A) as well as in cancer patients [151, 152] 
(from 4-8% for taxane alone, up to 47% or 88%, depending 
on the taxane, in presence of ciclosporin A). Similarly, the 
increased bioavailability and reduced clearance of the BCRP 
substrate irinotecan in patients treated concomitantly with 
ciclosporin A [153, 154] has been attributed to the inhibition 

of BCRP by ciclosporin A [155]. The clinical efficacy of 
ciclosporin A as a pump modulator is thus related to its 
ability to inhibit different MDR transporters (P-gp, BCRP, 
MRP1 [156]). 

 Anti-HIV therapy requires the combination of three or 
four antiretroviral drugs from different classes. Many anti-
HIV drugs have been demonstrated as being substrates for 
MDR transporters, mainly P-gp and MRP2 (see Table 2). 
However, ritonavir also behaves as a P-gp inhibitor and 
decreases digoxin clearance by 35%, in humans, likely 
because both drugs compete with P-gp for renal elimination 
[157]. P-gp and CYP3A4 inhibition by ritonavir or other 
protease inhibitors has also been evoked to explain the 
increased blood concentrations of tacrolimus [158], 
fexofenadine [159] or loperamide [160]. This could apply to 
much more classes of drugs that are substrates of both P-gp 
and CYP 3A4 [161]. Moreover, protease inhibitors are also 
inhibitors (but not substrates) of BCRP [162, 163], and could 
therefore also affect the pharmacokinetic profile of drugs 
that are substrates of this transporter. The same reasoning 
could apply to antifungal agents, which are substrates of P-
gp but inhibitors of BCRP [164]. 

 Several drug-drug interactions have been reported with 
the antifolate drug methotrexate. Co-administration of 
benzimidazole proton-pump inhibitors significantly inhibits 
BCRP-mediated transport of methotrexate in vitro, and 
pantoprazole reduces its clearance in vivo in mice (1.9-fold), 
possibly via competition for BCRP [165]. Co-administration 
of nonsteroidal anti-inflammatory drugs (NSAIDs) [166] 
also modifies methotrexate pharmacokinetics, possibly by 
inhibiting its renal tubular secretion via MRP2 and MRP4 
[141, 167]; in vitro diclofenac inhibits BCRP-mediated 
methotrexate transport [142].  

 Much more interactions have been described in cellular 
or in vitro models. For example, bromocriptin increases L-
dopa cellular accumulation about 2.05-fold in a rat brain 
endothelial cell model by inhibiting P-gp [168], whereas 
amiodarone inhibits digoxin secretion through P-gp in 
kidney epithelial cells [169]. Interactions with anticancer 
drugs have also been demonstrated. The antibiotics ofloxacin 
and erythromycin enhance vincristine accumulation in 
MRP1-overexpressing cells [170], and opiates (methadone 
and morphine) inhibit paclitaxel uptake by P-gp in human 
placental inside-out vesicles [171]. On the contrary, transport 
of paclitaxel, docetaxel, and saquinavir in MDCK cells 
overexpressing MRP2 is stimulated by diclofenac [142]. 
Further investigations are needed however to determine 
whether these are relevant in the clinics, as concentrations 
used in vitro are often supratherapeutic. 

Drug-induced Change in Expression of MDR ABC 
Transporters 

 Regulation of transporters expression has been mainly 
studied in the liver, a key organ for drug detoxification and 
disposition (for comprehensive reviews, see [172, 173]). 
Several nuclear receptors like the pregnane X receptor (PXR, 
also referred as the steroid and xenobiotic receptor SXR), 
constitutive androstane receptor (CAR), peroxisome proli-
ferator activated receptor alpha (PPAR�), or nuclear factor-
E2-related factor (Nrf2) are implicated in the induction by 
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xenobiotics of ABC transporters (P-gp, MRP2 [174], MRP3 
[175], Mrp4 [176] or BCRP [177]), as well as of cyto-
chromes P450 [178] or of uptake transporters (OATP) [179], 
enabling a coordinated response to drug injury. Nuclear 
receptors regulate target gene transcription in a ligand-
dependent manner. Ligand binding promotes their activation 
and translocation to the nucleus, where they form homo- or 
heterodimers that bind to specific response elements within 
regulatory regions of the target gene. Several drugs are able 
to bind to and activate nuclear receptors, such as rifampicin, 
clotrimazole, phenobarbital, dexamethasone, nifedipine, or 
midazolam [180], and therefore to modulate MDR trans-
porter expression (see Table 3) [178, 181]. In vitro, other 
drugs induce rather gene amplification [182]. 

 Rifampicin is known for a long time as an inducer of P-
gp and MRP2 [183, 184], through a PXR-activation mecha-
nism [185]. In human healthy volunteers, rifampicin treat-
ment increases intestinal P-gp level, thus affecting oral 
bioavailability of several drugs, such as digoxin [184], 
talinolol [186], fexofenadine [187] or ciclosporin A [188]. 
Mice expressing human PXR and treated with rifampicin 
were also much less susceptible to methadone antinocicep-
tive effect, demonstrating the increase of P-gp activity at the 
BBB after rifampicin treatment [189].  

  HIV protease inhibitors like amprenavir and nelfinavir 
[190], ritonavir [191, 192] or atazanavir [193] can induce 
intestinal P-gp overexpression in animals and in cultured 
cells [194, 195], through binding and activation of PXR, at 
clinically-relevant concentrations for ritonavir [196]. Rito-
navir also induces MRP1 overexpression in vitro [191]. 
However, patients treated with protease inhibitors do not 
exhibit an increase in P-gp expression in lymphocytes, as 
compared to patients treated with other classes of 
antiretrovirals [197]. Yet, non-nucleoside and nucleoside 
reverse transcriptase inhibitors also induce intestinal P-gp 
expression in vitro probably via a PXR pathway [198, 199], 
making the previous study difficult to interpret.  

 In rats, repeated administration of oxycodone (an opioid 
agonist used for the management of pain in cancer patients) 
causes P-gp overexpression (in liver, kidney, and brain), and 
affects tissue concentration of paclitaxel [200]. Celecoxib, a 
NSAID, induces an increase in MRP4 and MRP5 expression 
in vitro at clinically relevant concentrations [201]. This 
could explain the lack of improvement in response rate 
observed in clinical trials examining celecoxib combined 
with irinotecan for solid malignancies [202]. Carbamazepine, 
an antiepileptic drug known as a CYP3A4 inducer, has been 
shown to induce both intestinal P-gp and MRP2 in human 
healthy volunteers, which affects talinolol pharmacokinetics 
[203]. Other antiepileptic drugs, among which phenobarbital 
(a known PXR activator), also increase P-gp, MRP1 and 
MRP2 expression levels after long-term exposure of rat brain 
microvascular endothelial cells [204, 205] as well as in rat 
brain [206]. This effect is associated with an activation of 
PXR and CAR receptors [205]. 

 Acquired MDR phenotype in cancer cells often results 
from the overexpression of ABC transporters able to expel 
anticancer drugs out from the cells [10, 42]. This suggests 
that anticancer drugs can induce the expression of the  
 

corresponding transporter. Thus, resistant cell lines obtained 
in vitro after chronic exposure to various anticancer agents 
(see Table 3) do indeed overexpress ABC transporters. The 
same strategy could be applied to other drug substrates, 
provided they can exert a certain toxicity on cells allowing to 
select those having acquired resistance. Successful examples 
include mouse macrophages exposed to ciprofloxacin, which 
overexpress Mrp4 [58, 207] or human erythroleukemia cells 
exposed to adefovir, which overexpress an indomethacin-
sensitive efflux pump (later identified as being also MRP4) 
[208]. This strategy is thus very useful to obtain cells 
overexpressing efflux pumps as tools for molecular studies 
and characterization of drug transport [209]. The conditions 
needed to select cells in vitro are not relevant from the 
clinical situation (high concentrations; prolonged exposure), 
but clinical data suggests this also occurs during therapy. 
Induction of P-gp expression during treatment has been 
demonstrated for example in patients treated for bladder 
cancer with doxorubicin [210]. Overexpression of P-gp, 
MRPs or BCRP at the surface of cancer cells is frequently 
reported in tumors and constitute a poor prognosis factor 
[211, 212]. Interestingly also, these transporters show higher 
expression levels at the BBB in drug refractory epilepsy 
[213, 214]. 

MDR ABC TRANSPORTERS AS A DRUG TARGET 

 Considerable effort has been made over the last decade to 
develop efflux pump inhibitors as a way to improve efficacy 
of anticancer agents (see for recent reviews [215 and 216]). 
Yet, if in vitro or animal data are promising, success is 
limited in clinical trials, probably in relation with the 
pleiotropic character of the MDR transporters and with the 
difficulty of inhibiting transporters that have physiological 
roles without causing toxicity.  

 In a more general context, inhibition of apical trans-
porters like P-gp and/or BCRP is also an attractive strategy 
to improve oral bioavailability and CNS penetration of drug 
substrates [103, 110, 120] but it may face the same 
limitations.  

 Another strategy could therefore rather consist of trying 
to select drugs that are poor substrates for efflux transporters. 
High throughput methods of in vitro and in silico screening 
should be helpful in this respect.  

CONCLUSION 

 There is no doubt that active efflux transport should now 
be considered as a part of the evaluation of the pharma-
cokinetic profile of a drug, to the same extent as its metabo-
lism by hepatic enzymes. Variations in the expression profile 
of transporters should also be considered with care to explain 
inter-individual variability.  

 The importance of characterizing transport by MDR 
efflux pumps is now recognized also by health authorities. In 
its last drug interaction guidance, the US Food and Drug 
Administration recommends indeed to test for transport, 
inhibition or induction of P-glycoprotein by new drugs, as a 
way to predict potential drug-drug interactions [217-219]. 
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Table 3. Drug Inducers of MDR ABC Transporters Expression 

 

ATC code Pharmacological class Drug P-gp MRP1 MRP2 MRP3 MRP4 MRP5 BCRP Refs. 

Cardiovascular system 

01A Cardiac glycosides Digoxin + (l)       [362] 

Amiodarone + (s)       [181] 
01B Antiarrhythmics 

Quinidine + (s)       [363] 

02A Anti-hypertensive agents Reserpine + (s)       [181] 

08C 
Calcium channel blockers 

(vascular) 
Nifedipine + (s)   + (s)    [175, 181] 

08D 
Calcium channel blockers 

(cardiac) 
Verapamil + (s)       [181] 

C 

10A Lipid modifying agents Atorvastatin + (s)       [363] 

Genito-urinary system and sex hormones 

G 01A 
Antiinfectives  

(triazole antifungal) 
Clotrimazole + (s)   + (s)    [175, 181] 

Systemic hormons 

H 02A Corticosteroids Dexamethasone ++ (r,s)  
+ (r,s) / 

- (s) 
- (s)  - (s) + (r,s) [364-366] 

Anti-infectives 

01C Beta-lactams Flucloxacillin + (s)       [367] 

01F Macrolides Erythromycin + (s)       [181] 

01G Aminoglycosides Gentamicin   + (r,l)     [368] 

01M Fluoroquinolones Ciprofloxacin   + (m,l)  + (m,l)   [58] 

04A 
Antimycobacterial 

antibiotics 
Rifampicin + (s,l) 

+ (p,l) 

/ - (s) 
+ (s,l) + (s)  + (s) + (s) 

[175, 183-185, 366, 369-

371] 

Reverse transcriptase 

inhibitors 
Zidovudine (AZT) + (l)    + (l) + (l)  [41] 

Atazanavir + (s)       [193] 

Nelfinavir + (r,l)       [190] 
Protease inhibitors 

Ritonavir 
+ (s), 

+ (r,s) 
+ (s)      [191, 192] 

Non-nucleoside reverse 

transcriptase inhibitors 
Delavirdine + (s)       [198] 

J 

05A 

- Neviradine + (s)       [199] 

Antineoplastic and immunomodulating agents 

Docetaxel + (s)       [372] 

Paclitaxel + (s)       [372] 

Vinblastine + (s) + (s) - (s)     [366, 372] 

01C Plant alkaloids 

Vincristine + (s)  + (s) + (s)    [369, 372] 

Doxorubicin 
+ (s), 

+ (l) 
- (s) - (s)   + (s) + (m,l) [68, 210, 366, 373, 374] 

01D Cytotoxic antibiotics 

Mitoxantrone + (s)      + (l) [182, 375, 376] 

Camptothecins Topotecan + (s)      + (l) [328, 363] 

Platinium compounds Cisplatin + (p,s) - (s) + (s) + (s)  + (s,l)  [366, 377-379] 01X 

Protein kinase inhibitors Imatinib + (l) - (l) - (l)    + (l) [380] 

02B Hormon antagonists Tamoxifen + (s) - (s) 
+ (mo,l) 

/ - (s) 
- (s)  - (s)  [366, 372, 381] 

Sirolimus + (s)       [181] 

L 

04A Immunosuppressants 

Tacrolimus + (s)       [181] 
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(Table 3) Contd ..... 

ATC code Pharmacological class Drug P-gp MRP1 MRP2 MRP3 MRP4 MRP5 BCRP Refs. 

Musculo-skeletal system 

M 01A Anti-inflammatory agents Celecoxib  - (s) - (s)  + (s) + (s)  [201] 

Brain and nervous system 

Morphine ++ (r,l) + (r,l)     + (r,l) [382, 383] 
02A Opioid analgesics 

Oxycodone + (r,l)       [200] 

Carbamazepine + (l)  + (l)     [203] 
03A Antiepileptics 

Phenobarbital + (s) - + (s)    + (s) [174, 181, 366, 370] 

04B Antiparkinsonian drugs Bromocriptine + (m, s)       [384] 

N 

05C Hypnotics and sedatives Midazolam + (s)       [181] 

Antiparasitic products and insecticides 

P 01B Antimalarials Artemisinin + (s)       [385] 

Drugs are classified according to ATC codes (Anatomical Therapeutic Chemical classification system; http://www.whocc.no/atc/). 

Induction has usually been demonstrated in vitro (at mRNA and/or protein levels); symbols in bold correspond to in vivo induction. Studies were performed in animals: m, mouse; r, 
rat; p, pig; mo, rhesus monkeys; or in humans/human cell lines (no indication). Induction has been performed for short time (s) (� 72h), or long time (l) (> 3 days) periods. 

 
 Appropriate models are therefore critically needed to 
evaluate drug transport by specific efflux pumps. P-gp role is 
now appropriately evaluated, using reliable in vitro and in 
vivo procedures. Interactions caused by other MDR trans-
porters still need to be examined on a case-by-case basis, as 
standard procedures are lacking. Furthermore, we also need 
filling the gap between in vitro and in vivo data to accurately 
predict the role of MDR efflux pumps in drug transport and 
drug interactions. 
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