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Abstract

Biological systems display a high degree of flexibility in problem solving. In this paper a model is presented, Distributed Adaptive Control
III (DACIII), which is aimed at understanding these forms of behavior. DACIII is part of a larger modeling series directed at understanding
how biological systems acquire, retain, and express knowledge of the world. This modeling series has its roots, on one hand, in the
methodological consideration that brain and behavior need to be modeled from a multi-level perspective. On the other, the importance of
the acquisition of representations of events in the world, as opposed to an a priori specification, is emphasized. DACIII is presented against
the background of the paradigms of classical and operant conditioning. On the basis of an analysis of these experimental approaches towards
the study of animal behavior a theoretical framework is defined aimed at identifying the minimal requirements of a control structure which
could display these behaviors. The proposed model is evaluated in different configurations using both simulated and real robots. It is
demonstrated that DACIII is able to fully bootstrap itself from a mode of control which solely relies on proximal sensors and predefined
reflexes, to a level of control which is dominated by acquired representations of events transduced by distal sensors. This transition is
reflected in the performance of the behaving device, from strongly variable trajectories to highly structured behavioral sequences. The results
are compared with alternative models of classical and operant conditioning and models which attempt to capture the properties of its
underlying neural substrate.q 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Biological systems demonstrate a high degree of robust-
ness in the face of environmental uncertainty. For instance,
a rat placed in a seven-arm maze, each arm containing a
number of food items, will rather quickly display a per-
formance which is described as an optimal strategy
(Roberts, 1992). Optimality, in this case, has an operational
definition in terms of the relationship between the distance
traveled and the number of food items recovered. Depen-
dent on the task demands, for instance defined by the effort
required to recover the food items, a different behavioral
strategy is displayed. In case the food dispensers are
covered, the animal will after training, first visit those dis-
pensers which contain the maximal number of food pellets.

In case the food is readily accessible a so-called linear
strategy is followed where the nearest dispensers are visited
first. Hence, dependent on the properties of the task and the
environment the animal displays a different behavior; in
both cases, however, converging to an optimal strategy.
This type of performance relies on the balancing of many
different components. For instance, the actual data available
to the animal is only presented to it in egocentric coordi-
nates. Only through defining the temporal relationships of
the local ‘views’ of the world, together with the displayed
local actions, can global ‘world centered’ relationships be
defined. In contrast, most robotic applications dealing with
issues of path planning, for instance, solely rely on global
information regarding the environment (see Kro¨se and Van
Dam, 1997, for a review). Biological systems unfortunately
do not have this luxury. In addition, only a small fraction of
the actual impressions of the world transduced through the
sensors pertains to the task at hand. The task being defined
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in terms of the ‘goals’ of the animal, for instance foraging
for food in case it is food deprived, and the relevant rein-
forcement encountered in the world. In these terms, even a
seemingly straight forward behavior turns out to be a feat of
problem solving. The modeling study presented in this paper
is aimed at understanding the processes involved in acquiring
and expressing these forms of behavior. Preliminary results
of this study have been presented by Verschure (1993a).

Moore (1956) showed that it is in principle impossible to
decide between alternative functional models of an
observed response function. In practice, this problem of
indeterminancy is often encountered. For instance, in the
explanation of the types of behavior displayed in the
foraging task, which can be seen as a form of operant, or
instrumental, conditioning, a large range of models have
been proposed. On one extreme there is the strict stimulus
response interpretation which goes back to Thorndike’s law
of effect (Thorndike, 1911). The law of effect specifies that
in case a response leads to a ‘satisfying state of affairs’ it is
‘stamped in’ while if it leads to an ‘annoying’ state of affairs
it will be ‘stamped out’. This proposal attempts to explain
changes in behavior owing to conditioning solely in terms of
the effects of particular actions. It has formed a center piece
of the extreme behaviorist movement of Watson and
Skinner. Other proposals, however, emphasized the role of
the expectations the learning system entertains, for instance
by Hull (1943) (see Mackintosh, 1972 and Dickinson, 1994
for a review). In this proto-cognitive approach, variables
internal to the organism were introduced in the explanation
of learning phenomena. One problem underlying this
dilemma in theories of learning is that both the observations
to define and to validate these proposals are derived from
the same level of description, in this case behavior. In order
to solve this problem of indeterminancy a method of con-
vergent validation was introduced (Verschure, 1997a)
which proposes that in order to enhance the probability
that a model provides a unique formulation of a phenom-
enon it needs to be validated against constraints derived
from multiple levels of description. In our present explora-
tion, these levels are provided by the behavioral and the
neuronal perspectives. The above methodological con-
sideration provides a strong argument for a synthetic
research program, which relies on large scale computer
simulations interfaced to real-world devices. This seems
the most effective way to actually develop and validate
these ‘multi-leveled’ scenarios. The choice in the presented
study to validate the model using simulated and real robots
is an implication of the method of convergent validation,
next to the observation that behavior can only be explained
as a real-world real-time phenomenon. Verschure (1993b,
1997a) further elaborates on the methodological and
conceptual arguments for this choice.

The present modeling study is part of a larger series,
called Distributed Adaptive Control (DAC) (Verschure
et al., 1992). The focus of these efforts are the study of
the acquisition, retention, and expression of knowledge by

biological systems. Part of its theoretical considerations
were derived from the observed limitations in the program
of artificial intelligence and some of its more recent incar-
nations, connectionism, new artificial intelligence, and arti-
ficial life which have been extensively analyzed over the last
years (Verschure, 1990, 1992, 1993b, 1996). The bottom
line of this analysis is that even though the metaphors can
be changed from the digital computer to the brain in most
cases the hard problem of a prioris remains; how can we
explain or create adaptive behavior without assuming it
beforehand? The combination of both the methodological
considerations, regarding the validity of our scientific
efforts, and the theoretical ones, addressing the genesis of
knowledge in biological systems, constitutes a program of
synthetic epistemology (Verschure, 1998).

In the present proposal, we make the assumption that in
order to explain the forms of learning expressed in, for
instance, a foraging task, three strongly coupled levels of
control need to be distinguished (Fig. 1). First, by solely
relying on prewired reflexive relationships between sensory
events and actions the system functions as a reactive
controller. It will reflexively respond to immediate events.
Second, as an adaptive controller the system will develop
representations of events that correlate in some way with
stimuli which triggered the reflexes. In addition the reflexive
actions can be reshaped in order to better reflect the proper-
ties of the environmental perturbation. At the level of
reflective control more extended representations of sensory
events and motor actions will be formed, for instance
expressing their relationship over time. The behavior
displayed is influenced by internally generated expectations
of the properties of the world. A system which comprises of
these three components will be referred to as a complete
learning system. The three levels of control will generate
distinct behavioral signatures. Ranging from the
strongly variable behaviors displayed by a reactive control
system to the highly structured behavioral patterns
generated through reflective control. The goal of our
modeling efforts now becomes the study of the complete
learning system.

Fig. 1. The three levels of control.
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2. Methods

2.1. Terminology

The study of learning and problem solving has been
systematically pursued for the last century. The main
paradigms that have been developed are those of classical
and operant conditioning. The models presented in this
study take their terminology from these domains and will
be shortly described.

Classical conditioning (Pavlov, 1927) refers to learning
phenomena where initially neutral stimuli, or conditioned
stimuli (CS), like lights and bells, are through their
simultaneous presentation with motivational stimuli,
unconditioned stimuli (US), like footshocks or food, able
to trigger a conditioned response (CR), such as freezing or
salivation. The success of this learning process is measured
in terms of the probability of the occurrence of a CR after
the presentation of a CS. As to be expected, the reality of
animal behavior in the domain of classical conditioning is
more complicated than was initially anticipated (Mackin-
tosh, 1972). In order to place the discussed models in a
proper context a number of additional properties of this
type of learning need to be emphasized.

At a behavioral level it seems to be appropriate to
distinguish consummatory, or specific, components of
learning from preparatory, or non-specific, ones (Konorski,
1967). For instance, in the case of eyelid conditioning,
where a tone (CS) is presented with an airpuff to the cornea
(US), the animal will display a number of responses. Next to
the closing of the eye lid, which can be seen as specific to
the US, non-specific behavioral or autonomic responses can
be observed; startle, freezing, changes in heartrate, breath-
ing, or Galvanic skin response. The conditioned occurrence
of these non-specific responses will follow a different
temporal trajectory than the specific responses. Non-specific
responses show a fast acquisition (about five to 15 trials),
while the development of the US specific CR takes a much
larger number of trials. This behavioral distinction seems to
be also reflected at the anatomical level (Lavond et al.,
1993). Lesions to the amygdala, a structure in the medial
temporal lobe, will strongly affect non-specific learning
while lesions to the cerebellum, will selectively affect the
specific learning component.

A more general interpretation of the behavior revealed in
classical conditioning is that it allows behaving systems to
learn about correlations between CS and US occurrences.
To a certain extent, one could speak of the substitution of
the US by the CS through learning. This can be seen as a
crude approximation of causal relationships in the world
through correlative measures (Hall, 1994; Verschure, 1996).

Operant, or instrumental, conditioning describes learning
procedures in which the US is contingent on a particular
action displayed by the organism. The earlier mentioned
foraging experiment can be taken as an example. It was
first distinguished from classical conditioning by

experiments performed by Miller and Konorski in 1928
(Miller and Konorski, 1928). In these experiments a dog
was trained to lift its leg in response to a cue, in order to
acquire a food reward. Only when the animal displayed this
required response did it receive a food reward. As opposed
to classical conditioning, it is an action of the organism itself
which triggers the reinforcement. The distinction between
classical and operant conditioning is still debated in the field
of animal learning (Mackintosh, 1972). In the work pre-
sented here we make the proposal that both phenomena
reflect components which are closely coupled in the
complete learning system. Both experimental paradigms
address complementary subcomponents of the complete
learning system.

2.2. Experimental environment

Experiments were performed using both simulated and
real robots. Simulations guarantee repeatability over trials
and, therefore, allow a systematic evaluation of a control
structure. Only experiments with a real robot, however,
allow the exploration of the robustness and generalizability
of a model. The real world always being more noisy than the
worst case simulation can accomplish (see Mondada and
Verschure, 1993 for a further discussion and comparison
of both methods).

2.2.1. BugWorld
Simulations were performed using the simulation

environment BugWorld (Goldstein and Smith, 1991). In
this case the simulated spherical robot (Fig. 2(a)) is using
three types of sensors; range finders, collision sensors and
two target sensors. The range finder consists of 37 elements
distributed over 1808 on the front side of the robot, each
element covering a part of the range finder field. Their
angular resolution decreases on the borders, 208, and is
maximal at the center, 58. Thirty-seven collision detectors
cover the same region as the range finder elements. The two
target detectors are located at 908 and ¹ 908 from the center
of the robot. The configuration of the shape of the robot and
the properties of its sensors and effectors will be referred to
as the soma.

The soma can execute discrete translational and rotational
actions. These atomic actions are coupled together to define
behavioral patterns: ‘exploration’, ‘avoidance’ and
‘approach’. Avoidance will lead to a combination of reverse
and turn actions, approach induces a turn action, while
exploration induces translational motion.

Figure 2(b) displays a typical environment used in these
simulation experiments. A more generalizable dimension to
measure the size of an environment is provided by units of
body size. In these terms, this environment measures
approximately 173 10 body units. In a secluded space,
multiple obstacles and targets are placed. The four targets
(A, B, C, and D) each disperse a gradient which decays
linearly with distance. The targets have their own dynamics.
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When a target is touched it is removed. A new target
reappears in the same position when another target is found.

Figure 2(c) illustrates some of the behavior of the
simulated robot. The positions visited are indicated with
an outline of the soma. In this short trajectory a number of
typical events occur. From the initial position, 0, the
soma displays exploration, translational movement. Subse-
quently, it collides (US) three times (locations 1, 2, and 3)
each time an avoidance reflex (UR) is displayed. Given the
position of the collision on the soma each collision induces a
turn to the right. At location 4 the gradient dispersed by
target C is sensed which induces approach behaviors. The
soma follows the gradient until the target is found.

2.2.2. Khepera–Xmorph
Experiments with the microrobot Khepera (K-team,

Lausanne, Switzerland) were performed using the
distributed simulation environment Xmorph (Verschure,
1997b).

Khepera (Fig. 3(a)) is a circular robot with a diameter of
55 mm and a height of 30 mm (Mondada et al., 1993). The
basic configuration consists of two modules; the base plate
and the processor module. All modules are connected by an
extension bus to allow easy expansion. The base plate

constitutes the elementary interface to the real world;
effectors and obstacle/light detection. The robot uses two
wheels for its locomotion, each wheel is driven by a DC
motor. Obstacle and light detection is achieved by eight
infra red send–receive sensors (IR). Six IRs are evenly
placed over the front 1808 of the robot and two are placed
in the back. The angular resolution of the IRs is approxi-
mately 508. The on-board computer is based on a Motorola
68331 processor with a clock speed of 16 MHz and supports
256 kByte of both RAM and ROM. Local to Khepera
only the processes maintaining the serial communication,
sampling of the sensors, and control of the effectors were
executed. Khepera was connected to a host computer (Sun
Ultra1) using a serialport at 38400 baud. Next to the two
base modules Khepera was equipped with a color PAL
CCD camera (K-team, Lausanne). The image from the
camera was digitized with a video frame grabber (ProMovie
Studio, Media Vision, Fremont, CA) attached to a Pentium-
Pro PC (dual CPU 300 MHz under Linux).

The environment (Fig. 3(b)) consisted of a 903 60 cm
secluded space (163 11 body units). At regular intervals
along the walls red stripes were attached. In the center of the
environment lines consisting of purple stripes or green
rectangles were defined. A light source illuminated the

Fig. 2. BugWorld. (a) The simulated soma. (b) A standard environment containing four targets. (c) An example trajectory using a reactive control structure.
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center of the lines in a region with a diameter of approxi-
mately 30 cm. Through a reflector a gradient of illumination
intensity was defined.

Xmorph (Fig. 3(c)) supports the study of neural models at
different levels of description. It provides a graphical
specification language (using the X-Motif environment) to
define, control, and analyze large scale simulations using a
distributed computing method. To enhance the computa-
tional performance Xmorph uses a server-client arrange-
ment based on the TCP/IP protocol. In this study a total of
five individual, but interacting, processes were defined;
front-end graphics, tracking system, and three simulation
and interface processes. These processes were distributed
over a LAN consisting of one Sun Ultra1 (Solaris) and
four PentiumPro PCs (Linux). Processes communicated in
a synchronous mode and performed at approximately 10
update cycles per second. The three simulation processes,
‘Video’, ‘DacIII’ and ‘Khepera’, exchange data as indicated
by the connections shown in Fig. 3(c). ‘Video’ deals with
digitizing the video image derived from the CCD camera
mounted on the microrobot and the simulation of the neural

system which processes the image. ‘Video’ exchanges the
activity of a population of simulated cells reflecting the CS
events (see Section 2.6) with the simulation of the control
structure, ‘DacIII’. In addition, ‘DacIII’ receives inputs
from populations of simulated cells responding to US events
on the robot derived from the IR sensors. ‘DacIII’ projects
the activity of its population expressing URs to ‘Khepera’.
‘Khepera’ in turn interprets its motor map which receives
this activity and sends the appropriate commands to the
robot over the serial link.

2.3. The working hypothesis on the complete learning
system

Combining the assumptions on the three interacting
levels of control and the distinction between the role of
the non-specific and specific learning systems our sketch
of a complete learning system can be further refined (Fig. 4):

1. Underlying the learning systems is an automatic system
of reactive control which provides the organism with a

Fig. 3. Khepera and Xmorph. (a) The microrobot Khepera. (b) The used environment. Scale bar indicates 20 cm. The circle indicates the border region of the
target gradient. ‘X’ represents the center of the target region with the highest light intensity. (c) The three simulation processes defined in Xmorphdealing with
the sensors, Video, and the effectors, Khepera, and the simulation of the control structure, DacIII.
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basic level of behavioral competence. This system is
fully prewired and consists of US–UR couplings. The
UR can be interpreted as an expression of species
specific behaviors.

2. The fast non-specific component of classical condition-
ing reflects the properties of a learning system which not
only regulates autonomous function, preparing the
organism for action, but in addition facilitates the
formation of primary representations of CS events, CS
identification.

3. The slow specific component of classical conditioning
relates to the shaping of the CR, which is bootstrapped
on top of acquired CS representations. CR shaping
allows a fine tuning of predefined behavioral patterns
to the actual properties of environmental challenges,
i.e. timing.

4. CSs are derived from events on distal sensors (e.g. color
CCD camera), while USs are derived from proximal
sensors (e.g. IR sensors).

5. Operant conditioning reflects aspects of a general
purpose learning system which allows the organism to
form more extended representations of earlier acquired
CS and CR representations, for instance reflecting their
relationship in time.

6. The substrate of learning is the change in efficacies of
synapses connecting different cell populations. The
change of synaptic efficacy is solely dependent on the
activity of pre- and postsynaptic cells, the learning
process is seen as strictly local.

Components 1, 2, 3 and 4 define the adaptive control
structure. The reflective control structure is defined by com-
ponents 1, 2, 3, 4 and 5. In the following sections, the
models of the reactive controller (called DAC0), the
adaptive controller (called DACII), and of the reflective

controller (called DACIII) will be described in terms of
the configuration considered in the present study, in this
case one CS and two US modalities. The properties of the
specific learning system are not included in the present
study.

2.4. Adaptive control: a model of the non-specific learning
system

The control structure implementing the non-specific
learning system, DACII, is based on the following assump-
tions (Fig. 5): (1) USs of a particular type activate specific
populations of cells reflecting an internal state (IS), i.e.
aversive (US¹–IS¹) and appetitive (USþ–ISþ); (2) the
activation patterns in IS preserve the topology of the
proximal sensor (e.g IR sensors); (3) cells in IS will activate
specific reflexive actions (UR); (4) priorities between the IS

Fig. 4. The complete learning system. The assumed interactions between non-specific, specific, and general purpose components of learning and the sensors
and effectors of a behaving system. Dashed lines represent operations performed on representations of the CS or CR. Dotted lines represent acquired CRs. Solid
lines indicate prewired relationships.

Fig. 5. Adaptive control. DACII a model of the non-specific learning
system. WTA: winner take all.
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populations are expressed by predefined interactions (I); (5)
the CS modality (e.g video camera) is represented by a
distinct population of cells preserving the topology of the
sensor; (6) learning proceeds by modifying the connections
between the CS and IS populations.

2.4.1. DACII: model equations describing the fast dynamics
The activity,uj, of unit j in population CS is derived from

the state,sj, of elementj of the related distal sensor:

uj ¼ j(sj) (1)

wherej is a transduction function.
The activity of population CS is propagated to the IS

populations through excitatory connections. The input,vk
i ,

of cell i in IS populationk is defined by:

vk
i ¼

∑N
j ¼ 1

wk
ij uj þ ck

i (2)

whereN is the size of the CS population,wk
ij is the efficacy

of the connection between CS cellj and IS celli, andck
i is

the state of elementi of US conveying sensork. The activity,
ok

i , of cell i of IS populationk is defined by:

ok
i ¼ H(vk

i ¹ vk
i ) (3)

whereH is the Heaviside or step function andvk defines the
threshold of the units of IS populationk.

The input,r l, of unit l in the UR population is defined by:

rl ¼
∑K
k¼ 1

∑Mk

i ¼ k

yk
li o

k
i (4)

WhereK denotes the number of IS populations,Mk is the
size of IS populationk, andyk

li is the strength of the connec-
tion between celli of IS populationk and celll of the UR
population.

After updating their inputs the UR units compete in a
winner take all (WTA) fashion. The winning unit’s activity
is again thresholded. In case its activity is suprathreshold it
will induce a particular motor action. In case no motor unit
is activated, the control structure will trigger exploration
behavior.

A system only consisting of the US–IS and the IS–UR
mapping constitutes a reactive control structure (DAC0).

2.4.2. DACII: model equations describing the slow dynamics
The learning rule employed is defined on the basis of a

number of observations. In experiments with DACI
(Verschure et al., 1992), a first model of an adaptive control
structure, it was shown that in order to acquire and retain
CS–US associations the depression component in a local
learning rule needs to be activity dependent. In this way
the solution reached was similar to the Oja learning rule
(Oja, 1982), which is known to extract the principal com-
ponents of its input set. Subsequently, it was shown that this
activity dependent depression can be derived from only the
postsynaptic cell, as opposed to the average activity in the
postsynaptic population (Verschure et al., 1995), in order

not to violate the assumption of the locality of the learning
process. Verschure and Pfeifer (1992) identified two sources
of instability of this local learning rule, overgeneralization
and self-reinforcement. This fundamental problem was
subsequently solved in DACII, without violating the
assumption of the locality of the learning process, by
embedding the process regulating the synaptic efficacies
in a recurrent circuit. After updating the input,vk, of the
IS populations (Eq. (2)), these populations in turn
recurrently inhibit the CS population. The resultant activity,
uj9, of unit j in the CS population now is defined as:

uj9 ¼ uj ¹ grej (5)

Where g r is a gain factor modulating the effect of the
recurrent inhibition andej is the recurrent prediction defined
by:

ej ¼
∑K
k¼ 1

∑Mk

i ¼ 1
wk

ij v
k
i (6)

whereMk is the size of IS populationk. e will be referred to
as a CS prototype.

The connections between the CS and IS populations now
evolve according to:

Dwk
ij ¼ hkvk

i uj9 (7)

where hk defines the learning rate of the connections
between population CS and IS populationk.

Despite the possibility ofu9 to attain negative values,w is
at all times kept at values greater or equal to 0. Given the
effect of the recurrent inhibition this learning method is
referred to as predictive Hebbian learning.

DACII will, over time, form a classification of its
interaction with the environment in terms of CS events con-
ditional to its internal states. These acquired CS prototypes,
on one hand, allow the system to function as an adaptive
controller and, on the other, form the representational
building blocks for the construction of sequential represen-
tations. Before elaborating on the behavioral properties of
DACII, the basic components of DACIII, the present
approximation of the reflective controller, will be defined.

2.5. Reflective control: acquisition, retention, and use of
sequential representations

The reflective controller, DACIII, inherits all properties
from the reactive and the adaptive control structures, DAC0
and DACII, respectively. In addition, it contains a number
of components which allow it to form and use sequential
representations; the general purpose learning system.

Fig. 6 shows the central components of our present
approximation of a general purpose learning system.
These components deal with: (1) the acquisition of
sequences of pairs of CS prototypes and related actions in
a transient short term memory buffer (STM); (2) the reten-
tion of these sequences in a permanent form in long term
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memory (LTM); (3) the parallel matching of retained CS
prototypes with ongoing sensory events; (4) the competition
between matching retained prototypes; (5) the mechanism
facilitating the chaining between components of LTM; (6)
the recombination of LTM components and new CS
prototypes.

DACIII will bootstrap itself from a stage of reactive con-
trol to a stage of adaptive control, followed by a transition to
a level of reflective control. Each transition to a higher level
of control depends on constraints generated at the preceding
level. In case of the transition from the reactive to the adap-
tive controller this constraint is provided by the actual
occurrence of US events which will induce a re-mapping
of the CS–IS associations (Eq. (7)). The transition from this
level of control to the reflective controller depends on the
quality of the matching between predicted and actual CS
events expressed by an internal confidence measure,D. D
depends on the accuracy of the CS prototypes formed by the
non-specific learning system of the adaptive control struc-
ture. This accuracy is reflected in the result of the matching
of actual, distal sensor derived (Eq. (1)), and predicted
(Eq. (6)) CS events. Matching is defined by the distance,
d(u, e), between the feedforward generated CS activity
pattern,u, and the recurrent prediction,e:

d(u, e) ¼
1
N

∑N
j
ðuj ¹ ejÞ (8)

D evolves according to:

DðT þ 1Þ ¼ (1¹ tD)DðTÞ þ tDd(u, e) (9)

wheretD defines the integration time constant.
D is a dynamic state variable which is internal to the

learning system. It provides an estimate of the progression
of non-specific learning and will decrease (not mono-

tonically however) in case the constructed CS prototypes
consistently match ongoing CS events. It will increase in
case expected CS events are violated. This can occur, for
instance, if the environment or the CS prototypes were to
change for any reason.

Once D reaches a confidence threshold, DACIII will
engage the general purpose learning system. In case any
of the IS populations is active the generated CS prototype,
e (Eq. (6)), and the related action,r (Eq. (4)), is stored in the
STM buffer. This CS–UR pair will be refered to as a seg-
ment. STM functions as a ring buffer and has a finite length,
NSTM. In case a target is found, the STM content is copied in
a permanent representation, LTM. The CS prototypes stored
in the LTM segments will now be matched against ongoing
CS events. The result of matching is expressed in the activ-
ity of a collector unit attached to each LTM segment. The
activity, cl(v), of the collector unit of LTM segmentl, given
IS activity v is defined as:

cl(v) ¼
1
N

∑N
i ¼ 1

����� ei

max(e)
¹

si

max(s)

����� (10)

wheres represents the stored CS prototype. The collector
units of all LTM segments interact in a competitive fashion.
The probability of segmentl to win this competition
depends oncl and an associated trigger unit,t l, which acts
as a dynamic threshold. The best-matching prototype
minimizes the quantityml(v):

ml(v) ¼ cl(v)tl (11)

In case ml(v) of winning segmentl is below a given
matching threshold, its corresponding UR representation is
projected onto the UR population.

Chaining through a sequence of LTM segments is defined

Fig. 6. The model of the general purpose learning system. Central components and their interactions are distinguished.
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as a probabilistic process. The activation of LTM segment 4
will increase the probability that the next segment,l þ 1, of
the sequence will be selected in the future, by reducing the
value of its trigger unitt l þ 1; t l þ 1 ¼ b, 0 , b , 1. On
each step, the activation of the trigger unit of each LTM
segment decays to its default value 1:t l ¼ t t þ (1 ¹ t t)t l, 0
, t t , 1.

DACIII can form recombinations of LTM segments and
ongoing CS prototypes by reinserting activated LTM
segments into the STM buffer.

2.6. The mapping of sensors and effectors

In case of the BugWorld simulations the cells of the CS
population,N ¼ 37, receive their input,sj, from the range
finder (Fig. 2(a)). The US dependent input,cUSþ

, to the ISþ

group, N ¼ 2, is defined by the sign of the difference
between the states of the two target sensors. In this way,
the robot can be sensitive to the gradient dispersed by a
target. The IS¹ population, N ¼ 37, receives its input,
cUS¹

, from the collision sensors.cUS¹

i is 1 when collision
sensori is active.

In the experiments using Khepera and Xmorph bothcUS¹

andcUSþ

were derived from the IR sensors. On average, the
IR sensors will respond to reflecting surfaces placed at up to
5 cm from the sensor.cUS¹

is defined by thresholding,vCL,
the IR return signal, which gives an approximation of a
collision sensor (CL).vCL was set such that only surfaces closer
than 1 cm from the sensor would trigger suprathreshold
activity. The raw IR signal was projected onto a population
of leaky integrator linear threshold units,N ¼ 6, which
renderedcUS¹

. cUSþ

was derived from the ambient light
(AL) detected by the IR sensors in their passive mode.
This signal was projected onto a population of leaky
integrator linear threshold units,N ¼ 6. Their activity was
thresholded,vAL, in order to reduce the background, level of
ambient light. By thresholding,vT, AL with an appropriate
value a measure is defined which reflects the presence of a
target.

The dynamics of both US populations are defined in simi-
lar terms. The membrane potential,vmUS

i , of US transducing
unit i is defined as:

vmUS
i ¼ bUSvmUS

i þ gIRIRi (12)

wherebUS specifies the decay rate ofvmUS, g IR the excita-
tory gain due to the IR signal, andIRi the return signal of
IR i, either in active or passive mode.

The activity, cUS
i , is defined through thresholding the

integrated input:

cUS
i ¼ H(vmUS

i ¹ vUS)vmUS
i (13)

The multiplication of the Heaviside withvmUS
i is only

applied to AL. Motor output sent to Khepera is derived
from a topologically structured map as used in earlier
work (Verschure et al., 1995). Continuous rotational or
translational motion is defined by patterns of activity in

population M which consists of leaky integrators,N ¼

100. The units inM receive external excitatory inputs
from the UR population. The pattern of innervation is
specific for each UR unit, since they each represent a
specific behavior. The units inM update their membrane
potentials following Eq. (12) to which now an inhibitory
input is added derived from all other units inM. When the
winning unit is above threshold,vM, it will define the motor
commands the robot will execute. Note that as opposed to
the simulation in this case motor activity is continuous, once
initialized the motors will only change their state in case
another pattern of activity arises inM.

The distal sensor, which defines CS events, was provided
by the color CCD camera mounted on Khepera. The 4803
640 image was compressed to an image size of 2103 210.
Every color channel of the digitized image, using a RGB
representation, was pixelized (reduction ratio: 43 4:1)
onto a distinct population of leaky integrators,N ¼ 2500,
conserving the ‘retinotopy’ of the camera. Their membrane
potentials and activity were updated according to Eqs. (12)
and (13). The population conveying the CS states,N ¼ 36,
was subdivided into three subregions, each cell reflecting
the relative dominance of a particular color channel in
particular regions of the image. Each unit received
excitatory input from a topologically mapped (153 l5)
region of the preferred color channel and inhibition over a
wider surround (303 30) in the two opposing color chan-
nels. The membrane potential,vmC

i , of cell i of populationC
is defined as:

vmC
i ¼bCvmC

i þgp
∑Np

p
wp

ij c
p
j ¹ go1

∑no1

j
wo1

ij co1
j ¹ go2

∑no2

j
wo2

ij co2
j

(14)

wherebC specifies the decay rate ofvmC, gp the gain of the
preferred color channel,cp

j the value of pixelj of the pre-
ferred color channelp, andwp

ij the connection strength of the
projection of cellj to cell i. Indices o1 and o2 refer to the
two opposing color channels.

The activity,sC
i , of unit i is defined through thresholding

the integrated input:

sC
i ¼ H(vmC

i ¹ vC)vmC
i (15)

Fig. 7 shows the properties of the model processing the
color image and producing the mapping to the CS popula-
tion. Fig. 7(a) shows the projections onto one representative
cell of each color region in the CS population. Fig. 7(b)
displays the configuration used to illustrate the response
properties of the CS modality in which a red rectangle
was placed in front of the robot. Fig. 7(c) represents the
compressed image derived from the camera using a standard
luminance to gray mapping. Fig. 7(d) shows the response of
the three color channels to the stimulus and the response
of the CS population. In this case a single cell in the region
of the CS population responding to red is active. Through
balancing the excitation from the prefered color channel
with the inhibition from the two opponent channels a

1539P.F.M.J. Verschure, T. Voegtlin / Neural Networks 11 (1998) 1531–1549



1540 P.F.M.J. Verschure, T. Voegtlin / Neural Networks 11 (1998) 1531–1549



robust response to colors can be achieved over a range of
illumination conditions.

3. Results

By means of the simulated robot the basic properties of
both DACII and DACIII will be illustrated. The experiments
with Khepera serve to demonstrate that the proposed model
generalizes in a straight forward manner to a real robot.
Before turning to a more detailed analysis of DACII and
DACIII, a performance comparison of the three forms of
control distinguished will be described.

3.1. A comparison of the three models of control

In order to delineate the performance difference between
the three types of control, reactive (DAC0), adaptive
(DACII), and reflective (DACIII), all three models were
applied to the same task of finding targets in an environment
containing multiple obstacles. In this simulation experiment
the environment depicted in Fig. 2(b) was used. The robot
could explore this environment for a total of 7000 time
steps. The target gradients were only present for the first
2000 time steps. In this way, a recall period, lasting 5000
time steps, was introduced. In this period, the robot either
finds a target through the use of acquired representations or
by coincidence. Table 1 summarizes the performance of the
three forms of control.

Table 1 shows that there is a strong performance differ-
ence between the three forms of control. DAC0 finds a
significant number of targets, but suffers a high number of
collisions. The overall collision to target ratio is 10.04 and
the traveled distance is 66 170. DACII reduces the number
of collisions compared with DAC0, but finds less targets.
DACIII further reduces the number of collisions and finds as
many targets as DAC0. In addition, its total traveled distance
is markedly lower than for the other two control structures.
To further exemplify the performance difference between

DACII and DACIII. Figure 8 displays the trajectories of
both control structures during the recall period.

In the recall period, DACII does not collide with
any obstacles anymore, as a result of previous learning
experiences. The displayed trajectory, however, shows
that its behavior is highly variable. DACII practically covers
all positions in the environment. Since its actions are
reactive to immediate sensory events, CS or US, little tem-
poral structuring of its behavior can be observed. This is in
sharp contrast to DACIII which has settled into a trajectory
which is highly regular and approximates the shortest route
between the different targets. This suggests that it has
created sequential representations which seem appropriate
for the present task. The structuring of the behavior, through
the use of the general purpose learning system, also explains
the reduced number of collisions DACIII suffers as opposed
to the other control structures. Since DACIII covers a
reduced region of the environment the probability to
encounter obstacles also decreases. The relatively low
value of the traveled distance of DACIII can be explained
in terms of the properties of the behavioral stereotypes;
avoidance, and approach. Approach behaviors have no
translational component, hence the more a control structure
is, directly or indirectly, under the influence of population
ISþ the less its traveled distance will become. This indicates
that DACIII to a large extent relies on sequences containing
approach behaviors.

3.2. The dynamics of the confidence measure D

The transition from adaptive control to reflective control
depends on the internal confidence measureD (Eq. (9)). The
performance test described above demonstrated that DACIII
did reach its confidence threshold and engaged the general
purpose learning system. Figure 9 provides a more detailed
description of the dynamics ofD.

The performance of DACIII in this experiment was
equivalent as in the earlier described performance com-
parison. Figure 9 shows thatD rapidly decreases over the
first 2000 time steps. At the onset of the first recall periodD
transiently rebounds and subsequently shows a practically
constant decrease with time. When the target gradients
return at time step 7000 this decrease is accelerated.D
reaches an asymptotic level after approximately 8000 time
steps.

Together with the performance of DACIII (see Fig. 8(b)),
this implies that the internal confidence measureD reliably
reflects the quality of acquired CS prototypes.D shows

Fig. 7. Properties of the modeled sensory system processing states of the distal sensor (color CCD camera). (a) An illustration of the projections between the
three populations responding to the color channels and the CS generating population. Light gray lines indicate excitatory connections, dark gray isinhibitory.
(b) Khepera placed in front of a red rectangle. Scale bar is 20 cm. (c) The digitized video image using a standard hue to luminance mapping. (d) A single cell in
the CS population responds to the red rectangle present in the image. Only for this cell the excitation, derived from the preferred red channel (population
FoveaR), exceeds the inhibition received from the two opposing color channels, green and blue (populations FoveaG and FoveaB). Levels of activity are
expressed in a gray scale and the size of the rectangles representing the individual cells. Light gray and large rectangles represent maximum activity, dark gray
and dots represent minimum levels of activity.

Table 1
A performance comparison of DAC0, DACII, and DACIII

Control Targets Collisions Traveled
distance

Collisions/
targets

DAC0 53 532 66 170 10.04
DACII 34 106 60 590 3.12
DACIII 53 73 39 910 1.38
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that the matching between the ongoing events on the dis-
tal sensors progressively improves. In addition, Fig. 9
suggests that it can be considered as an implicit time
indicator.

3.3. The acquisition and use of sequential representations

Figure 8(b) showed that DACIII is able to display a highly
structured behavioral trajectory over extended periods of
time. The underlying LTM segments, however, do not
necessarily need to directly reflect this coherence. This
raises the question of the content and relationships of the
sequential representations that affected the performance.
As a first approximation of the analysis of the LTM
segments we can pose the question in what position in the

environment effective LTM segments, that matched
ongoing CS events and induced actions, were actually
stored in the STM buffer. The distribution of these locations
provides a measure of the specificity and the coherence of
the LTM representations.

Figure 10 displays this acquisition distribution for the
experiment with DACIII described in Fig. 8(b). Every
time a LTM segment induced an action, the position were
it was stored in STM was plotted with the outline of the
soma. The spatial distribution of the acquisition of effective
segments shows that most were acquired in four specific
regions in the vicinity of the four targets. At each target
distinct approach sequences were acquired which captured
the detailed differences at these four locations. These fre-
quently reused sequences, which are most densely labeled,
fall mostly within the region of the target gradient. A second
type of effective segments, however, were acquired outside
of these gradient regions. These are of particular interest.
These segments were acquired when learned approach or
avoidance actions were displayed. This demonstrates that
not only the content of the CS prototypes depends on the
learning experience, but that also their inclusion in LTM
segments reflects the learning history. Comparing with the
actual trajectory displayed by DACIII (Fig. 8(b)) shows that
this latter type of sequences were generalized to other situa-
tions. This analysis shows that DACIII has parcelated its
representation of its interaction with the environment in
terms of a limited and coherent set of prototypical
situations.

This provides a possible scenario for explaining aspects
of the foraging behavior. Figure 8(b) showed that DACIII
followed a linear strategy. The interpretation of the used
LTM representations indicated that this linear strategy is
based on a limited set a prototypical situations defined in
terms of the motivational state, appetitive, and the CS
prototypes and their associated actions. Hence, a continuous
representation of the complete trajectory is not required to
induce this highly structured behavior. In addition, globally
structured behavior can be achieved through the use of local,
egocentric views of the world. This property of DACIII can
be partly explained through the generalization of particular

Fig. 8. Performance comparison in the recall period. (a) Trajectory of
DACII. (b) Trajectory of DACIII performing the same task.

Fig. 9. The confidence measureD. Evolution ofD of DACIII over 14 000
steps using the environment depicted in Fig. 2b. The target gradients were
present from time steps 0–2000 and 7000–9000 (see lower panel).

Fig. 10. Positions in the environment where effective LTM segments were
stored in STM.
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sequences to other positions in the environment, but
especially by the emphasis of the mechanisms for acquisi-
tion and expression on events which deviate from default
behavior. This aspect of DACIII’s behavior suggests, there-
fore, that not only in the interpretation of specific sensory
events generalization can be achieved, but also in the
formation and especially expression of more abstract
sequential representations, which combine both sensory
and effector components.

3.4. Results with Khepera–Xmorph

In the experiments with the microrobot Khepera the aim
was to demonstrate that DACIII generalizes to a real-world
device using sensors and effectors with very different, and
certainly less ideal, properties than the simulated device. In
these experiments the environment depicted in Fig. 3 was
used. The position of the robot was tracked using a ceiling
mounted PAL CCD camera and the tracking module, TraX,

Fig. 11. Performance of Khepera using DACIII. Time intervals are defined as hours:minutes:seconds. (a) Example trajectory in time interval 00:10:45and
00:13:59. Individual points in the plot reflect the position of Khepera as sampled through TraX. The white and black rectangles represent the positionof the
soma at the start and end of this sequence respectively. (b) Positions visited by the soma during the first 26 min of the experiment. (c) Time interval 1:29:57–
1:33:48. (d) Positions visited by the soma in the time interval 1:08:55–1:33:48.
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of Xmorph. In addition, relevant state variables were con-
tinuously logged. Fig. 11 displays the performance of the
model in a trial that lasted a total of 2 h. The model used its
first LTM segment after 24 800 cycles which is equivalent to
48 min.

Figure 11(a) shows a typical trajectory in the early
stages of learning. This trajectory was generated during
3 min and 14 s beginning at 10 min and 45 s after the start
of the trial. Khepera started out at the lower right corner of
the environment, indicated with the white rectangle, and
finished approximately 3 min later at the lower side of
the target region, black rectangle. In the early stages of
learning, the behavior is dominated by reactive control
and progressively by adaptive control. In this period the
behavioral trajectory, summarized for the first 26 min
in Fig. 11(b), is characterized by periods of translational
movement deflected by collisions, and avoidance actions,
or the detection of the target gradient, accompanied
by approach actions. After the transition to reflective
control (Fig. 11(c) and (d)) the translational motion is
regularly interrupted by sequences of actions induced
by the reflective control structure. The LTM representa-
tions, in turn, are activated by the colored markers on
the floor and the walls of the environment. This is
illustrated in detail for the trajectory displayed in
Fig. 11(c) in Fig. 12.

Figure 12 displays the positions visited by Khepera in a
time interval starting at 89 min after the start of the trial and
which lasted about one minute. The positions visited by
Khepera where actions were defined by the reflective con-
trol structure are indicated with rectangles. Positions in the
environment where a target was found are indicated with
stars. Early in this trajectory, in the vicinity of the green
rectangles attached to the floor of the environment, several
subsequent actions are under reflective control. The
perceived green rectangles matched with some of the CS
representations stored in the LTM segments. Subsequently,
the robot moves towards the wall and collides. After turning
into the open field another collision occurs with the upper
wall. While crossing the set of green rectangles reflective
control is activated and the green rectangles are followed
for a number of steps. A few seconds later this reoccurs.
In this case, reflective control remains active for 13
consecutive time steps and induces a turn towards the
target region. Subsequently, the target is found. This
sequence of actions demonstrates that the non-specific
learning system has constructed stable representations of
CS events which the reflective control structure has
combined, with their accompanying actions, in an appropriate
way in LTM.

As a second example of the ability of DACIII to success-
fully control a real-world device, a set of experiments were

Fig. 12. Illustration of the structuring of the behavior of Khepera through the use of sequential representations. Positions where the behavior was determined by
reflective control are indicated with a rectangle. The location of the robot where it found a target is indicated with a star. The start and end position of the soma
in this interval is indicated with ‘Start’ and ‘End’. The arrow indicates a situation where under the continuous control of the internally generated predictions a
target was found.
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performed using a similar environment (Fig. 13(a)). This
environment measured 373 57 cm. Next to red stripes
attached to the wall a red triangle was placed on the left
center part of the floor to evaluate the avoidance responses
acquired by the adaptive controller. A path of green or
purple rectangles was leading to the target region. The
trajectory of the first 45 min (Fig. 13(a)) demonstrates that
the red triangle is systematically avoided and that the target
region is regularly visited. In the recall test the light source
was switched off and the robot was repetitively placed in the
upper left corner of the environment, marked with a white
rectangle. The orientation of the robot was such that it
would not be able to reach the target region through trans-
lational motion only. In all trials the target region was
visited (Fig. 13(b)).

Both through a direct analysis of the relationship between
the performance of DACIII and the effectiveness of
reflective control and a recall test it is demonstrated that
the presented model of a complete learning system
generalizes well to a real-world device.

4. Discussion

The aim of this paper was to describe a model of a com-
plete learning system which could provide a heuristic in
understanding the forms of behavior displayed in, for
instance, a foraging task. The presented approximation of
a complete learning system demonstrated that aspects of
these forms of behavior can be understood in strictly bottom
up terms. Using reactive control as a foundation for learning
the experiments described showed that an adaptive control
structure can be defined which extracts representations of
CS events out of the interaction between the soma and the
environment. The representations of CS events, called CS
prototypes, express a relationship between a particular state
of a distal sensor and an internal state. Through this
coupling of a sensory event and an internal state, imple-
mented by the synaptic efficacies of the projections between
the CS and IS populations, the CS representation is
implicitly associated with a particular behavior. Hence,
three components of a CS representations can be distin-
guished: its content derived from the state on the distal
sensor (the CS properly); its meaning defined by the internal
state (in the present case appetitive or aversive derived from
the encountered USs); and an action pattern (UR). The pre-
sented model of adaptive control suggests that the construct
representation needs to be considered in terms of these three
closely coupled components. In addition, this model demon-
strated that the process of CS identification can be based on
a fully local learning rule. Subsequently, reflective control,
using sequential representations of CS prototypes and UR
representations, can be bootstrapped on top of the adaptive
control structure. The reflective control structure, in turn, is
able to induce highly structured forms of behavior. This
structuring, owing to the chaining mechanism, in turn is

only defined in terms of the local interactions between the
segments which form the sequential representations.
Activated segments affect future classifications only by
transiently increasing the probability that the subsequent
segment in the sequence will dominate the competition
process implemented by the collector and trigger units.
This allows the reflective control structure to dynamically
construct and maintain multiple ‘plans’ for its behavior. It is
this property of our present model which could be
interpreted as reflective.

Fig. 13. Illustration of the structuring of the behavior of Khepera through
the use of sequential representations in a recall test in a different environ-
ment. (a) Positions visited during the first 45 min. (b) Positions visited
during three test trials where the robot was placed in the upper left corner
of the environment indicated with the white rectangle.
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In developing this model, the assumption was made that
complementary components of the complete learning
system are revealed through the paradigms of classical
and operant conditioning. Our results demonstrate that this
is a feasible option. The processes revealed through classi-
cal conditioning, adaptive control, laying the foundation for
the processes studied through the paradigm of operant con-
ditioning, reflective control. Before elaborating on the
implications of the results some elements of the presented
models will be discussed.

DacIII is presented as a first approximation of a complete
learning system and a reflective control structure. At this
stage of its development, however, it is not claimed that it
actually is complete. Many elements are still missing, and
provided our only limited understanding of the behavioral
and the neuroscientific domains some elements still await
their specification. DACIII does provide a first step towards
the study of these systems and allows a systematic explora-
tion of scenarios dealing with the domain of operant and
classical conditioning which facilitate an interaction
between these two domains of inquiry.

In this study, we choose a formulation of the predictive
Hebbian learning mechanism which can induce negative
levels of activity in the CS population as opposed to
the original definition (Verschure and Pfeifer, 1992).
This choice was based on the wish to find a smooth
approximation of the asymptotic values of the connection
strengths. This precludes a direct application of this method
as a heuristic in the study of biological systems. The method
of predictive Hebbian learning, however, does require
further study. It, for instance, replicates the observed
response properties of the ventral tegmental area (VTA)
(Schultz et al., 1997). It has been shown that the
dopaminergic cells in this region show an enhanced
response, to background, in anticipation of rewarding
events, which in turn can be suppressed below background
in case the anticipated reward does not occur. In addition, an
equivalent method has been successfully applied to the
study of cortical dynamics (Rao and Ballard, 1997). In
current work we are exploring the option to allow the
recurrent inhibition of the CS population to change the
level of activity given a particular level of background
activity. This implies, however, that the dynamics of the
weights needs to be extended with a variable threshold as
proposed in (Bienenstock et al., 1982). In the case of
predictive Hebbian learning, however, the dynamic
threshold will express the presynaptic drive onto a particular
synapse as opposed to the time averaged post synaptic
activity. Preliminary results have shown that this is a
feasible option.

The main problem which has not been explicitly
addressed in the present study is how STM and LTM repre-
sentations are retained. The current version of DACIII relies
on algorithmic solutions. The distinction between specific
brain structures involved in either acquisition, amygdala, or
retention, cortex, needs to be made in the study of learning

and memory and in the proposed model. Yet, no clear
proposals are available how this transformation is accom-
plished. This is an open problem which will take a central
role in the further study of a complete learning system.

Many models have been proposed dealing with either
classical or operant conditioning (i.e. Klopf, 1982; Sutton
and Barto, 1981; Grossberg and Levine, 1987; Grossberg
and Schmajuk, 1987). As opposed to these models the DAC
modeling series, which has its background in a model of
classical conditioning Verschure and Coolen (1991), took
as its central theme the problem of the acquisition of CS
representations, or CS identification, which was proposed to
be one of the central elements of the learning system studied
through the paradigm of classical conditioning. These alter-
native approaches, however, were focused on the acquisi-
tion of CS–US or CS–UR associations assuming that the
respective CS, US and UR representations are given a priori.
DAC also deviates from the main stream of models studied
in the domain of machine learning (see Kaelbling et al.,
1996 for a review) by its insistence on local learning
methods. DAC confirms, however, Grossberg’s hypothesis
(Grossberg, 1982) on the importance of distinguishing the
effects of a short term drive representation, in DAC termi-
nology the internal state, and the CS representation in the
explanation of classical conditioning. This distinction, how-
ever, has roots both in the study of behavior (Konorski,
1967) and the neuroscience of learning (Thompson et al.,
1983). Armony et al. (1995) proposed a model of classical
conditioning which described the development of receptive
field properties of thalamic and cortical cells induced by fear
conditioning. This model, which relates to the properties of
the adaptive controller (DACII), only provides a very
abstract description of these dynamics. It does provide an
additional example, however, of the hypothesis put forward
by the DAC series that the observed effects of classical
conditioning on the autonomous nervous system only
provide a restricted picture on the role of the non-specific
learning system. Traditionally, the role of classical con-
ditioning has been defined in terms of the acquisition of
CS–US associations. Its effects should be expanded,
however, to include the dynamic formation of CS repre-
sentations. This is also suggested by the physiology of
both the primary auditory (Weinberger et al., 1993) and
visual (Galuske et al., 1997) cortex in conditioning tasks.
It has been demonstrated that neurons in both areas, con-
veying distal sensor information, can adapt their tuning
curves to reflect the properties of a CS.

Based on the method of convergent validation, the sub-
sequent models in the DAC series have been extensively
studied using both simulated and real robots and a wide
range of sensor and effector systems (Verschure et al.,
1992, 1995; Verschure and Pfeifer, 1992; Almassy and
Verschure, 1992; Mondada and Verschure, 1993). This
aspect of DAC can be best compared with the work on the
mobile robot MAVIN (Baloch and Waxman, 1991). Despite
its relatively restricted focus on visual object recognition it
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is one of the first examples of a complete control structure
applied to a mobile robot based on observations derived
from the behavioral literature. A model of operant con-
ditioning, applied to a delayed match to sample task,
implemented on a robot has been proposed (Touretzky
and Saksida, 1996). This model, as opposed to DACIII, is
aimed at a functional decomposition of the task at hand,
using a production system implementation, and does not
allow any cross validation with a neuroscientific level of
description. As such it faces the problem of indeterminancy
pointed out in the introduction and its application to a real-
world device does not seem a necessary component in
understanding the proposed functional decomposition.

Several models dealing with sequence learning have been
proposed. On one hand a large number of these models are
derived from Hopfield networks (Hopfield, 1982) which
include a transduction delay (e.g. Morita, 1996). In our
earlier work on classical conditioning we have demon-
strated that these types of networks can be successfully
applied to the modeling of both delay and trace conditioning
(Verschure and Coolen, 1991). In the case of the acquisition,
retention, and expression of sequential representations,
however, these models are not sufficient. DACIII shows
that an important component of the complete learning
systems is the parallel matching and competition of LTM
segments and the expectancy dynamics implemented by the
collector and trigger units. In order to implement such a
system, CS prototypes need to be represented as distinct
entities in the underlying substrate. Hopfield networks,
however, would represent the CS prototypes as attractors
which cannot be guaranteed to be distinguishable at any
one point in time. Hence, they do not provide a feasible
option. A second class of models explicitly addresses the
biological substrate involved in sequence learning (e.g.
Dominey et al., 1995; Denham and McCabe, 1995; Dehaene
and Changeux, 1997). All these models emphasize the close
interaction between frontal cortex and the basal ganglia and
imply a system implemented by the STM-LTM dynamics of
DACIII. In all cases, however, the CS identification problem
has been side stepped and the models have not been
evaluated in terms of behaving systems. This can account
for the different solutions pursued. For instance, DACIII
relies strongly on the internal confidence measureD. It
was argued that such a variable expressing the ability of
the learning system to reliably classify its interaction with
the environment is a necessary component of a complete
learning system. It can be seen as a gating signal for the
acquisition of STM representations. The proposed con-
fidence measure, does provide an hypothesis on the type
of state variables that a reflective control structure, such
as a mammalian brain, needs to maintain in order to function
effectively. Both alternative proposals mentioned lack such
a measure. They also lack a clear framework specifying how
CS representations are acquired and retained. As DACIII
both proposals, however, emphasize the importance of
the continuous matching and competition between

representations. In this case, the matching is interpreted as
a process implemented in frontal areas of the neocortex,
while the competition is implemented through the cortico-
basal ganglia loop. In the further development of the DAC
series, the different components of the proposed model are
replaced with models which reflect more closely the
anatomical and physiological properties of these brain
areas (e.g. Verschure and Ko¨nig, 1997). Only after this
modeling exercise can we with more confidence provide
anatomical labels to the subcomponents of DACIII, i.e.
functional components distinguished in a model do not
necessarily map directly and uniquely onto specific brain
areas. At our present level of modeling it seems more appro-
priate to not violate the obvious, i.e. by insisting on local
learning methods, as opposed to too quickly generalize the
putative models to highly intricate and still only partly
understood brain structures.

In the present version of DACIII the complexity of the CS
representations are severely reduced compared with what
biological systems can accomplish. This implies that the
actual behavioral implications of the models cannot be
fully explored. The issue of learning is closely tied to the
notion of representation. In addition, as mentioned earlier,
the model components are defined in too abstract terms to
allow a validation against neuroscientific data which the
method of convergent validation prescribes. In order to alle-
viate this situation a parallel modeling effort dealing with
the way in which cortical circuits can form dynamic, spatial
and temporal scale, invariant representations has been
performed which includes pertinent anatomical and physio-
logical features of cortical circuits (Ko¨nig and Verschure,
1995; Verschure and Ko¨nig, 1997). In addition, in order to
arrive at more biologically realistic real-world devices,
initial experiments were performed using neuromorphic
sensors (silicon retinae) as distal sensors on mobile plat-
forms (Indeveri and Verschure, 1997). These sensors
approximate the response properties of the outer plexiform
layer of the retina (Douglas et al., 1995). They provide an
input signal which emphasizes the dynamics of the visual
world, rapidly adjusting to changing illumination conditions
and responding to spatio-temporal contrast variations.
Hence, these distal sensors provide more realistic con-
straints on neural models which are supposed to work
with these signals as opposed to CCD cameras.

An important question is whether the proposed model,
which captures elements of problem solving tasks such as
foraging, can be considered a model of cognitive processes.
The dominant paradigm in the study of mind, brain, and
behavior can be called symbolic cognitive psychology
(Newell, 1990). This approach bases its explanations of
cognition on a so-called knowledge level. A central
principle in a knowledge level explanation is the law of
rationality: a rational system will use its knowledge in
order to reach its goals. A paradigmatic example of this
approach, which constituted the core of the artificial
intelligence program, is the hypothesis of physical symbol
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systems (PSS) put forward by Newell and Simon (Newell,
1980). Despite its limitations the proposed model of the
reflective controller, DACIII, is the closest approximation
of a synthetic rational system, which uses its knowledge to
reach its goals. The goals are defined in terms of its internal
states, i.e. avoid or approach. When the IS population
aversive is active, for instance, the adaptive control struc-
ture will aim the behavior of the system to the reduction of
this internal state, i.e. by triggering avoidance actions. As
such, both the avoidance of obstacles and the approach of
targets can be interpreted as goals the system tries to attain.
The reflective control structure is, in addition, attempting to
achieve the goal of finding targets. The knowledge it brings
to bear on reaching these goals are the acquired LTM seg-
ments, which can be interpreted as the world model of the
system. This world model, however, is at no point in time
fixed. The content of LTM can change at any time owing to
new experiences (see Verschure (1998) for a further com-
parison). Traditionally the ascription of a goal to a behaving
system is defined in terms of performance. The presented
model of the reflective control structure makes the proposal
that its neuronal correlate will have a component which
relates to the motivational state of the organism. As such,
the definition of a representation in terms of a sensory
event, an internal state, and an action implies that the notion
of a goal is an integral component of the acquired CS
representations.

DACIII is a fully bootstrapped system. Initially, it per-
forms as a reactive controller which provides the constraints
to develop CS representations. Through the acquisition of
these CS representations the system will start to behave as
an adaptive controller. Subsequently, the transition to reflec-
tive control can be made in case the non-specific learning
system reliably classifies the ongoing interaction between
the organism and the environment. At this level the
developed CS prototypes can start to function as expecta-
tions on future states of the world expressing their relative
confidence in terms of the dynamics of the collector and
trigger units. These expectations will, in turn, strongly
structure the actual behavior displayed. Even though many
problems remain to be solved, DACIII demonstrates that
also more complicated, ‘cognitive’, problem solving
tasks are within reach of a pure bottom up approach, the
reservations of the cognitivists not withstanding (Fodor,
1983).
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