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Abstract - Network restoration is often done at the
electronic layer by rerouting traffic along a redundant path.
With Wavelength Division Multiplexing (WDM) as the
underlying physical layer, it is possible that both the primary
and backup paths traverse the same physical links and would
fail simultaneously in the event of a link failure.  It is
therefore critical that lightpaths are routed in such a way that
a single link failure would not disconnect the network.  We
call such a routing survivable and develop algorithms for
survivable routing of a logical topology.  We prove necessary
and sufficient conditions for a routing to be survivable and
use this condition to formulate the problem as an Integer
Linear Program.  We use our new formulation to route
various logical topologies over a number of different physical
topologies and show that this new approach offers a much
greater degree of protection than alternative routing schemes
such as shortest path routing and a greedy routing algorithm.

I. Introduction

This paper deals with the problem of routing logical
links (lightpaths) on a physical network topology in such a
way that the logical topology remains connected in the

event of single physical link failures (e.g., fiber cut).  This

is a relatively new view on the Routing and Wavelength
Assignment (RWA) problem, that we believe to be critical

to the design of WDM-based networks.  We call this
version of the RWA problem survivable RWA. In a WDM

network the logical topology is defined by a set of nodes
and lightpaths connecting the nodes while the physical

topology is defined by the set of nodes and the fiber

connecting them.  Given the logical and physical

topologies of the networks, one important question is how to
embed the logical topology onto the physical topology. This

leads to a static version of the routing and wavelength
assignment (RWA) problem.  In this version of the problem, the

set of lightpaths, defined by the logical topology, are known in
advance.   In this context various researchers have developed

RWA algorithms with the goal of minimizing network costs,

including number of wavelengths required, number of
wavelength converters, fiber use, etc. [1].  Since with WDM

each physical fiber link can support many lightpaths (as many as
there are wavelengths on the fiber), once the lightpaths are

routed on the physical topology, it is possible (or in fact, likely)
that two or more lightpaths would share the same physical link.

Hence, the failure of a single physical link, can lead to the

failure of multiple links in the logical topology.  Since protected
logical topologies are often designed to withstand only a single

link failure, it is possible that a single physical link failure could
leave the logical topology disconnected.

As a simple illustrative example, consider the logical and
physical topologies shown in Figure 1.  The logical topology is

a ring with nodes ordered 1-3-4-5-2-1.  Clearly, such a ring
topology is 2-connected, and would remain connected if one of

its links failed.  The 5 logical links of this ring can be routed on
the physical topology as shown in Figure 1a, where each

physical link is labeled with the logical link that traverses it.
For example logical link (1,3) traverses physical links (1,5) and

(5,3).  As can be seen from the figure, no physical link supports

more than one logical link.  Hence, the logical ring would
remain protected even in the event of a physical link failure.
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Figure 1. Survivable routing of a logical topology on a

physical topology.

Alternatively, had we routed logical link (1,3) on
physical links (1,2) and (2,3) the routing would no longer
be survivable because physical link (1,2) would have to

support both logical links (1,3) and (2,1) hence its failure
would leave the logical topology disconnected.

Furthermore, for many logical topologies, no survivable
routings can be found.  For example, if the logical

topology was a ring with nodes ordered  1-4-2-3-5-1 then

it can be easily seen that no routing exists that can
withstand a physical link failure.  Hence, it is clear that

although the logical topology of the network may be
connected, once it is embedded on top of a WDM physical

network, it may no longer withstand a physical link failure

(e.g., fiber cut).

In the context of virtual private networks, the customer
might request from the network provider that their

lightpaths be routed in such a way that no single physical
link failure would leave their VPN disconnected. One

simple way to achieve this goal is to route the lightpaths so
that no two lightpaths share a physical link.  This

seemingly simple solution by itself is difficult to obtain.  In

fact, it was shown in [15] that the related problem of
finding disjoint paths for a collection of k source-

destination pairs is NP-complete1.  Furthermore, this
simplified solution can be wasteful of resources.  For many

logical topologies, some of the lightpaths can be routed

together while maintaining survivability.

Of course, there has been a significant body of work in
the area of optical network protection [2-7,14,16].  Most

previous work in WDM network protection is focused on
restoration mechanisms that restore all lightpaths in the

event of a physical link failure.  Link based restoration

                                                  
1 In [15] it was shown that the problem of finding node
disjoint paths is NP-complete.  This result can be easily

extended to link disjoint paths in directed graphs.

recovers from a link failure by restoring the failed physical link,
hence simultaneously restoring all of the associated lightpaths

[2,3,6].  This is often done using optical loop-back protection
[2,3,5].  In contrast, path based protection restores each of the

lightpaths independently, by finding an alternative end-to-end
path for each lightpath [2,3,14]. In many cases it is indeed

necessary to restore all failed lightpaths.  However, in other

cases some level of protection is provided in the electronic layer
and restoration at the physical layer may not be necessary.   For

example, when the electronic layer consists of SONET rings,
single link failures can be recovered through loopback

protection at the electronic layer.  In this case, providing
protection at both the optical and electronic layers is somewhat

redundant.  Another less obvious example is that of packet

traffic in the internet where multiple electronic layer paths exist
between the source and destination and the internet protocol (IP)

automatically recovers from link failures by rerouting packets.

In such cases, a less stringent requirement may be imposed
on the network – for example that the network remain connected

in the event of a physical link failure.   This approach, of course,

is not suitable for all situations.  For example, when a network is
carrying high priority traffic with Quality of Service and

protection guarantees, it may still be necessary to provide full
restoration.  However, when a network is used to support best

effort internet traffic, guaranteeing connectivity may suffice.
This approach is relatively new in the field of WDM network

protection.  A similar design goal was considered in [7], where

heuristic algorithms were developed in order to minimize the
number of source destination pairs that would become

disconnected in the event of a physical link failure.  The
algorithm in [7] uses tabu search procedures to find disjoint

alternate paths for all of the lightpaths.

In this paper we address the problem of routing the
lightpaths of a logical topology on a given physical topology so
that the logical topology can withstand a physical link failure.

In section II we formulate the problem and give a necessary and
sufficient condition for survivable routing.  This condition, leads

to some interesting insights into the survivable routing problem
and allows us to formulate the problem as an Integer Linear

Program (ILP).  In section III we give an ILP formulation for

the survivable routing problem.  In order to obtain additional
insight to the problem, in section IV we focus our attention on

the problem of routing a bi-directional ring logical topology.  In
that case we are able to provide a simplified formulation that

more easily renders a solution. We are also able to obtain

necessary conditions for finding survivable routings for logical



rings.   Finally, we use our ILP formulation to solve the
survivable routing problem for some example networks

and compare our results to alternative approaches.

II.   Problem formulation

The physical topology of the network consists of a set
of nodes N = {1..N} and a set of edges E where (i,j) is in E

if a link exists between nodes i and j.  We assume a bi-
directional physical topology, where if (i,j) is in E so is

(j,i).  Furthermore, we assume that a failure (cut) of (i,j)

will also result in a failure in (j,i).  This assumption stems
from the fact that the physical fiber carrying the link from i

to j is typically bundled together with that from j to i.
Furthermore, in some systems the same fiber is used for

communicating in both directions.  Lastly, we assume that
WDM is employed and each physical link (fiber) is

capable of supporting W wavelengths in each direction.

The logical topology of the network can be described
by a set of logical nodes NL and logical edges EL, where NL

is a subset of N and an edge (i,j) is in EL if both i and j are

in NL and there exists a logical link between them.  Given
a logical topology, we wish to find a way to route the

logical topology on the physical topology such that the

logical topology remains connected even in the event of a
physical link failure.

In order to route a logical link (s,t) on the physical
topology one must find a corresponding lightpath on the
physical topology between nodes s and t.  Such a lightpath

consists of a set of physical links connecting nodes s and t
as well as wavelengths along those links.  If wavelength

changers are available then any wavelength can be used on

any link.  However, without wavelength changers, the
same wavelength must be used along the route.  In this

paper we assume that either wavelength changers are
available or that the number of wavelengths exceeds the

number of lightpaths.  This assumption allows us, for now,

to ignore the wavelength continuity constraints and focus
only on survivable design.

Let fij
st =1 if logical link (s,t) is routed on physical link

(i,j) and 0 otherwise. Now in order to find a routing for the

logical topology, we must find a route for every logical
link (s,t) in EL.   For much of this paper we consider bi-

directional logical topologies where if (s,t) ∈  EL so is (t,s).

Therefore, implicit in finding a route from s to t is also the
route from t to s.

In this work we are concerned with finding routings that are
survivable.  We call a routing survivable if the failure of any

physical link leaves the (logical) network connected.  Of course,
a routing cannot possibly be survivable if the underlying logical

topology is not redundant.   The logical topology is redundant
(i.e., 2-connected) if the removal of any logical link does not

cause the topology to be disconnected.  The following theorems,

give some simple yet useful necessary and sufficient conditions
for survivability in a network.  First we must define the

following notions:

A cut is a partition of the set of nodes N into two parts S and

S = N- S.  Each cut defines a set of edges consisting of those
edges in E with one endpoint in S and the other in N-S.  We
refer to this set of edges as the cut-set associated with the cut

<S,N-S>, or simply the  CS(S,N-S).  Let  
��� ���� �

−  equal

the size of the cut-set <S,N-S>; that is, the number of edges in

the cut-set.  The following Lemma, also known as Menger’s
Theorem [12], relates the connectivity of a network to the size

of its cut-sets.

Lemma 1: A logical topology with set of nodes NL and set of
edges EL is redundant (two-connected) if and only if every non-
trivial cut <S,NL-S> has a corresponding cut-set of size greater

than or equal to 2.

Proof:  (see [12]) Necessity is due to the fact that if any cut-
set consists of only a single link, removal of that link would
leave the topology disconnected.  Sufficiency is a direct result of

the max-flow min-cut theorem. � ���
Consider a routing for a logical topology given by the

assignment of values to the variables fij
st (for all physical links

(i,j) and logical links (s,t)) which correspond to the physical

links used to route the various logical links.   The following
Theorem gives a necessary and sufficient condition for a routing

of a logical topology to be survivable.

Theorem 1: A routing is survivable if and only if for every
cut-set CS(S,NL-S) of the logical topology the following holds.
Let E(s,t) be the set of physical links used by logical link (s,t),

i.e., E(s,t) = {(i,j) ∈  E for which fij
st =1}.  Then, for every cut-

set CS(S,NL-S), �
E s t

s t CS S N SL

( , )
( , ) ( , )

= ∅
∈ −

.

The above condition requires that no single physical link is
shared by all logical links belonging to a cut-set of the logical

topology.  In other words, not all of the logical links belonging
to a cut-set can be routed on the same physical link.  This



condition must hold for all cut-sets of the logical topology.
To prove the theorem we must show that the above

condition is both necessary and sufficient.  Necessity is
obvious because if there exists a physical link that carries

all of the logical links belonging to a cut-set, failure of that
link would leave the network disconnected.  To see that the

condition is also sufficient, notice that the removal of any

physical link leaves at least one logical link in each cut-set
of the logical topology connected.  Hence the network

must still be connected. �  Notice that it is a direct result
of the above theorem that if the logical topology was not

redundant then no routing could be survivable.  This is
because if the logical topology was not redundant then at

least one cut-set must exist with size equal to 1.  The

failure of the corresponding link would leave the topology
disconnected.

III.  Integer Linear Programming formulation

Using Theorem 1, we are able to formulate the problem
of survivable routing of a logical topology on a given

physical topology as an Integer Linear Program (ILP).
Given a physical topology and a corresponding logical

topology, we wish to find a way to route the logical

topology on the physical topology such that the logical
topology remains connected even in the event of a physical

link failure.

In order to route a logical link (s,t) on the physical
topology one must find a corresponding path on the

physical topology between nodes s and t.  Such a lightpath
consists of a set of physical links connecting nodes s and t

as well as wavelengths along those links. Let fij
st =1 if

logical link (s,t) is routed on physical link (i,j) and 0

otherwise. Clearly fij
st >0 implies that there exists a

physical link between nodes i and j. When the logical links
are bi-directional, implicit in finding a route from s to t is

also the route from t to s. Using standard network flow
formulation finding a route from s to t amounts to routing a

unit of flow from node s to node t [10].  This can be

expressed by the following set of constraints on the value
of the flow variables associated with the logical link (s,t).
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The set of constraints above are flow conservation
constraints for routing one unit of traffic from node s to node t.

Equation (1) requires that equal amounts of flow due to
lightpath (s,t) enter and leave each node that is not the source or

destination of (s,t). Furthermore, node s has an exogenous input
of 1 unit of traffic that has to find its way to node t.  There are

many possible combinations of flow variable values that can

satisfy the constraint of eq.(1).  Any feasible solution to eq.(1)
has a route from s to t embedded in it.  It is easy to see that if in

addition we required that the path length be minimized (i.e.,

min fij
st

i j E( , )∈
∑  subject to (1)) , the solution would also be the

unique shortest path [11, p.73].

Now in order to find a survivable routing for the logical
topology, we must find a route for every logical link (s,t) in EL.

Using theorem 1, the connectivity requirement can be expressed

using the following constraint,

∀ ∈
∀ ⊂

+ < −
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The above constraint simply states that for all proper cuts of

the logical topology, the number of cut-set links flowing on any

given physical link (in either direction) is less than the size of
the cut-set.  This implies that not all logical links belonging to a

cut-set can be carried on a single physical link and immediately
satisfies Theorem 1.

If the number of wavelengths on a fiber is limited to W, a
capacity constraint can be imposed as follows,

∀ ∈ ≤
∈

∑( , ) ,
( , )

i j E f Wij
st

s t EL

.

There are a number of objective functions that one can
consider.  Perhaps the simplest is to find a survivable routing

that uses the least capacity.  That is, minimize the total number

of wavelengths used on all links (i.e., if one link uses 2
wavelengths and another uses three that amounts to a total cost

of 5). An alternative formulation goal may be to minimize the
total number of physical links used.  Such an approach would

lend itself to solutions that maximize physical link sharing by
the lightpaths (subject to survivability constraints). Here we

focus on the first objective of minimizing total number of

wavelengths used and the optimal survivable routing problem
can be expressed as the following integer linear program.



Minimize fij
st

i j E
s t EL
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Subject to:

a) Connectivity constraints:  for each pair
(s,t) in EL:
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b) Survivability constraints:
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c) Capacity constraints

∀ ∈ ≤
∈

∑( , ) ,
( , )

i j E f Wij
st

s t EL

d) Integer flow constraints:  fij
st ∈ { }0 1,

The above ILP can now be solved using a variety of
techniques. We implemented this ILP using the CPLEX

software package.  CPLEX uses branch and bound

techniques for solving ILPs and is capable of solving ILPs
consisting of up to one million variables and constraints

[13].   To illustrate the utility of this approach, we
implemented the ILP for the NSFNET physical topology

shown in figure 2.  We attempted to embed random logical
topologies of degree 3, 4, and 5, where we define a logical

topology of degree k to be logical topology where every

node has degree k.

For each, we generated 100 random logical topologies
and used the ILP to find optimal survivable routing on the

NSFNET.  Since we are mainly concerned with the
survivable routing, in our implementation we ignored the

capacity constraint (i.e., we assume no wavelength

restriction).  Obviously, if needed, the capacity constraints
can be easily incorporated into the solution. We also

compare our approach to the survivability provided by
shortest path routing for the same random logical

topologies.  In each case we checked to see if the shortest path
solution yields a survivable routing.  This can be accomplished

by individually removing each physical link and checking to see
if the remaining topology is connected.

Our results are summarized in Table 1.  Shown in the table
are results for both the Shortest Paths solution (labeled SP ) and

the ILP solution (labeled ILP).  As can be seen from the table,
the ILP was able to find a protected solution for every one of the

random logical topologies.  In contrast, the shortest path
approach resulted in 86 out of 100 of the degree 3 topologies

being unprotected.  With higher degree logical topologies,
shortest path was able to protect more of the topologies, still 38

and 27 of the random degree 4 and 5 topologies, respectively,

remained unprotected.   However, as expected, the ILP solution
on average required both more physical links and more total

wavelengths (wavelength*links). This difference in link
requirements appears to be small and well justified by the added

protection that it provides.
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Figure 2.  The 14-node, 21 link  NSFNET.

Logical

Top's

Unprotected

solution

Ave.

links

Ave.

λ*links

Degree 3 -ILP 100 0 19.55 46.07

Degree 3 - SP 100 86 19.31 45.25

Degree 4 -ILP 100 0 20.30 60.64

Degree 4 - SP 100 38 20.17 60.47

Degree 5 - ILP 100 0 20.50 75.40

Degree 5 - SP 100 27 20.48 75.31

Table 1.  Embedding random logical topologies on the NSFNET
of figure 2.



IV.  Ring Logical topologies

We can gain some additional insight into the survivable
routing problem by considering special forms of the

logical topology.   For example, the ring logical topology,
which is the most widely used protected logical topology

has a special structure that leads to a simpler problem
formulation.   In this section we discuss the special case of

embedding ring logical topologies on arbitrary physical
topologies

A unidirectional ring logical topology is an ordered set
of nodes (n1..nL) where (ni, ni+1)  is in EL for 0<i<L and (nL,

n1) is also in EL.  In a bi-directional ring, the reverse
connections (ni+1, ni) and (n1,nL) are also in EL.  Since we

focus on protected topologies, here we only consider bi-
directional rings.  Hence, for simplicity, we assume that all

links are bi-directional and refer to the pair of links

connecting nodes ni and ni+1 as (ni, ni+1).  Implied in this
notation is that the pair of links between two nodes are

treated as a single bi-directional link.  It is also possible to
treat the links (ni, ni+1) and (ni+1,ni) as two separate links.

That approach is subsumed in the general logical topology
discussion of the previous section.

Recall that a routing of the logical topology is
survivable if the failure of any physical link leaves the

(logical) network connected.  The following corollary to
Theorem 1 gives a necessary and sufficient condition for a

routing of a bi-directional logical ring to be survivable.

Corollary 1: A bi-directional logical ring is survivable
if and only if no two logical links share the same physical

link.

Proof:  It can be easily seen that every cut-set of the
ring logical topology contains exactly two links and every
pair of logical links share a cut-set, hence by Theorem 1 no

two logical links can share a physical link.  �
Corollary 1 leads to a significant simplification of the

survivability constraints.  While in the general logical
topology case the survivability constraints were expressed

in terms of constraints on all of the cut-sets (notice that
there can be as many as 2N-1 such cut-sets).  For the ring

topology the survivability constraint can be simply
replaced by a capacity constraint on the physical links.

Specifically we require,

f f
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That is, there can be at most one logical link routed on any
given physical link. Note that since the logical links are bi-

directional, when route (s,t) uses physical link (i,j), implicitly it
uses the link in both directions.  Also note that since no two

lightpaths can share a physical link, the objective of minimizing
the total number of physical links and that of minimizing the

total number of wavelength*links used are in fact the same (in

contrast to the general case where a physical link may be used
by multiple logical links).  The optimal survivable routing

problem for logical rings can be expressed as the following
integer linear program:

Minimize fij
st
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∈
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b)  Survivability constraints:
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c)  Integer flow constraints: fij
st ∈ { }0 1,

Again, the above ILP can now be solved using a variety of
search techniques.  While general ILP’s can be rather difficult to
solve, this particular ILP is relatively simple.  First notice that

without the survivability constraints the ILP amounts to solving

a shortest path problem.  The addition of the survivability
constraints make the solution more difficult to obtain.  However,

the total number of constraints used is small, relative to the
exponential number of constraints used in the general case,

hence the above ILP can be solved very quickly.  We were able
to solve this ILP using the CPLEX software package running on



a SUN SPARC Ultra 10 machine for 10 node rings in less

than a second.

A. Necessary conditions for survivable routing

In this section we develop some necessary conditions
on the physical topology to ensure survivable routing of

ring logical topologies.  Clearly, it is not always possible
to route a logical topology on a given physical topology in

a manner that preserves the survivability of the logical
topology.  For example, in the case of a ring, there may be

instances where we cannot find disjoint paths for all of the

links.  In such cases some of the lightpaths will have to
share a physical link and the ring would not be survivable.

It is interesting to determine under what circumstances it
will be possible (or not possible) to find survivable

routings. Consider any random ring logical topology.   For
any cut <S, N-S> of the physical topology, let |CSP(S,N-S)|

be the number of physical links along this cut and

|CSL(S,N-S)| be the number of logical links traversing the
same cut.  Clearly, in order to be able to route the logical

links along disjoint physical paths, |CSP(S,N-S)|  must be
greater than or equal to  |CSL(S,N-S)|.  Hence, for a given

logical topology one requirement is that for all possible

cuts of the physical topology <S,N-S>, the following must
hold,

|CSP(S,N-S)| ≥ |CSL(S,N-S)|.

The above condition is necessary, but not sufficient to
insure that a survivable routing exists for a particular ring

logical topology.

There are situations where one may want to design a
physical topology that can support all possible ring logical
topologies.  One such example may be a service provider

that regularly receives requests for ring topologies.  Such a
service provider may want to design the physical topology

of his network so that it can support all possible rings in a
survivable manner.  Another possible situation is when the

logical topology can be dynamically reconfigured [8,9] for

the purpose of load balancing.  Here, again, one may want
to ensure that the resulting topology can be routed in a

survivable manner.  The following theorem provides a
necessary condition on the physical topology for

supporting all possible ring logical topologies in a

survivable manner.

Theorem 2: In order for a physical topology to support
any possible ring logical topology in a survivable manner

the following must hold.  For any cut of the physical topology

<S, N-S>,

CS S N S S N SP( , _ ) min( , )≥ −2 .

Theorem 2 says that for all cuts of the physical topology, the
number of physical links in the cut set must be greater than or

equal to twice the number of nodes on the smaller side of the

cut.  The condition of theorem 2 is only a necessary condition.
To prove its necessity we must show that there exists a ring

logical topology that requires 2 min (|S|,|N-S|) physical links
along the given cut. To show the existence of such a topology

we construct the following ring.  Suppose without loss of
generality that S achieves the minimum of (S,N-S) and let S

contain nodes n1..ns.  Now, construct a logical ring consisting of

the following links:  {(n1 ’ ,n1),(n1,n2’), (n2’,n2)  …
(ns,ns’),(ns’,n1’)}, where ni∈ S and ni’ ∈ (N-S).  Since |N-S|≥|S|,

such a construction always exists.  Figure 3 shows an example
where S contains 2 nodes and |N-S| = 3.  A ring with 4 links

traversing the cut-set is constructed using the above procedure.

N-S S

n1

n2

n2’

n1’

n3’

Figure 3.  A logical ring that requires the maximum number

of cut-set links.

Shortest path bound: Another useful yet simple lower bound

on the number of links that the physical topology must contain
is obtained by observing that each link in the logical topology

will use at least as many physical links as would be required if it
were routed on the shortest path.  Since no logical link can share

a physical link, the number of physical links in the physical

topology must obey the following inequality,

E SP s t
s t EL

≥
∈

∑ ( , )
( , )

,

Where, SP s t( , )  is the length (in physical links) of the

shortest path from s to t.



B.  Logical ring results

We implemented the ILP for the ring logical topology
using the CPLEX software package. We know from the
previous section that in order to embed randomly ordered

logical rings on a physical topology the physical topology
must be densely connected. Hence,  for the analysis in this

section we consider the 6 and 10 node physical topologies

of figures 4 and 5.  Both of these topologies obey the
conditions of Theorem 2 and every node is of degree four.

Furthermore, it can be shown that both topologies are 4-
connected.  We therefore believe that we should be able to

find survivable routings for most logical rings.
We attempted to embed all possible 6 and 10 node

logical rings on the 6 and 10 nodes physical rings.  Notice

that there are 120 (5!)  6-node logical ring orders and
362880 (9!) 10-node logical ring topologies.  We used the

ring ILP to determine survivable routings  for all of these
topologies.  In addition, we also considered two simple

heuristic algorithms for finding a routing for the lightpaths.

The shortest path solution where each lightpath of the
logical topology is routed along the shortest path.  Of

course, in the case of shortest path, some lightpaths may be
routed along the same physical link.  In such cases, the

shortest path approach would result in an unprotected
routing.  A somewhat more sophisticated approach is a

greedy algorithm that routes lightpaths sequentially using

the shortest available path.  In order to prevent two
lightpaths from sharing a physical link, whenever a

physical link is used for routing a lightpath, it is removed
from the physical topology so that no other lightpaths can

be routed through it.  Note that this greedy algorithm is
useful for embedding ring logical topologies since rings

require that no two logical links share a physical link.

Unfortunately a similar approach cannot be used to embed
arbitrary logical topologies since the connectivity of the

logical topology cannot be easily determined by inspecting
the routing of individual lightpaths.

Our results are summarized in Table 2.  For the 6-node
physical topology, our ILP was able to find a survivable

routing for all 120 logical ring orders.  The average

number of physical links used to route a logical topology
was 7.4.  Also, since each physical link supports at most

one lightpath, the average number of wavelength*links
used was also 7.4.  For the 10-node physical topology, our

ILP was not able to find a survivable routing for 9.3% of

the 362880 logical topologies.  When a routing was found,

the average number of links used to route a logical topology was
17.8.  The greedy algorithm also found a survivable routing for

all 6 node logical topologies, but it could not find a survivable
routing for 61% of the 10 node rings. With shortest path routing,

53% of the 6-node ring logical topologies were left unprotected
and 99% of the 10-node rings were left unprotected.  As

expected, the ILP was able to protect many more of the logical

topologies.  Of course, this added protection comes at a price.
Shortest path routing used an average of 7.2 wavelengths*links

for the 6-node rings and 15.5 wavelengths*links for the 10 node
rings, only slightly less than the number of links used by the ILP

solution.   However, shortest path routing used significantly
fewer physical links than the ILP solution.   This is, of course,

because shortest path routing allows lightpaths to share a

physical link, while the ILP does not.  Also shown in the table
are the number of links used by the greedy algorithm. By

definition, the greedy algorithm does not yield a routing when a
protected solution is not found, thus the number of links used

can only be calculated when a protected solution is obtained. As

expected, the greedy solution used more links than both the ILP
and the shortest-path solutions.
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Figure 4.  6 node degree 4 physical topology.
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Figure 5.  10 node degree 4 physical topology.



Logical

Top's

No protected

solution

Ave.

links

Ave.

λ*links

6 node-ILP 120 0 7.4 7.4

6 node - SP 120 64  (53%) 6.4 7.2

6 node - GR 120 0 8.1 8.1

10 node-ILP 362880 33760 (9%) 17.8 17.8

10 node - SP 362880 358952 (99%) 11.8 15.5

10 node - GR 362880 221312 (61%) 18.4 N/A

Table 2.  Embedding ring logical topologies on 6 and

10 node 3-connected physical topologies.

Next we consider the 10-node physical topology of
figure 5 and attempt to embed random logical ring
topologies of various sizes. We attempted to embed 10,000

random logical rings of each size between 5 and 10 nodes.
For each ring the set of nodes and their order was chosen

at random.  Again, we compare the results of our ILP to
those obtained using the shortest path routing algorithm

and the greedy algorithm. In figure 6 we plot the percent of

logical topologies for which we failed to obtain a protected
routing.  As can be seen from the figure, when we used the

ILP we were able to find a protected routing for 100% of
the logical rings of size 5 to 9, and fewer than 10% of the

10 node rings were left unprotected.  Notice that this latter
number is consistent with the results in Table 2.  However,

when shortest path routing was used, the majority of the

logical topologies were left unprotected.  The greedy
approach was able to protect more of the topologies, but

not nearly as many as the ILP.  In Figure 7 we plot the
average number of physical links used per logical

topology.  As can be seen from the figure, the shortest path

approach indeed uses fewer physical links.  However, at a
relatively small cost in number of physical links, the ILP

solution is able to offer a much greater level of protection.
Also notice that the number of wavelengths*links used

with the ILP solution is the same as the number of physical
links used.  In contrast the shortest path solution uses more

wavelength*links than physical links because some

physical links support multiple wavelengths.  As expected,
the greedy approach used the most links.  Also notice that

in the case of the greedy approach, the average number of
links represents only those topologies for which a

protected routing was found.  Hence for those cases the
number of physical links is the same as the number of

wavelengths*links.   As mentioned previously, in the case

of the greedy algorithm, the number of links used is only
calcuated in cases where a protected solution is found.
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Figure 6.  Fraction of logical ring topologies that cannot be

protected on the 10 node physical topology of figure 5.

For extremely large topologies, solving the Integer Linear
Program may become difficult.  Thus it would be nice to
determine what information can be obtained from the Linear

Programming (LP) relaxation of the problem. The linear
programming relaxation will either find (1) no solution exists,

(2) determine a solution with integer flows, or (3) determine a

solution with non-integer flows.  If the LP relaxation results in
no solution, this is a simple way to determine that there is no

solution to the ILP either.  If the LP relaxation finds an integer
solution, then this solution will also be the solution for the ILP.

In the third case where the LP relaxation finds a non-integer
solution, one must solve the ILP to determine a survivable

routing.  We solved the LP relaxation for the 6-node and 10-

node cases described above to determine the effectiveness of the
LP relaxation in solving the integer problem.  In the 6-node

case, 11.6% of the logical topologies resulted in a non-integer
solution.  The remaining logical topologies produced integer

solutions.  In the 10-node case, 97% of the logical topologies
that were determined to be unprotectable by the ILP were also

found to be infeasible by the LP relaxation.  Unfortunately, 57%

of the ring logical topologies produced non-integer solutions to
the LP relaxation.  As mentioned above, to determine a

survivable routing for these logical topologies requires solving
the ILP.
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Figure 7.   Average number of physical links used to
embed ring logical topologies on the 10 node physical

topology of figure 5.

V.  Conclusion

This paper considers the problem of embedding
protected logical topologies on a WDM physical topology

so that the resulting network remains connected in the
event of a physical link failure.  We proved necessary and

sufficient conditions for the survivable routing of the

logical topology and used these conditions to develop an
ILP formulation for the problem. We used the new ILP

formulation to find survivable routings for a variety of
network topologies.  Our results show that this new

formulation is able to offer a much greater degree of

protection when compared to shortest path routing.  This
added protection, of course, comes at the expense of

additional network resources.  However, it appears from
our examples that the additional number of links and

wavelengths needed is rather small.
Since this problem is relatively new, the work in this

paper is rather preliminary and many extensions are

possible.  For example, this approach can be used to design
a network to various degrees of protection.  While here we

focused on single link failures, multiple failures can be
captured in a similar manner.  Also, while here we focused

on minimizing the total number of wavelength*links used,
other objective functions, such as total number of physical

links used, can also be minimized.  Lastly, while here we

focused on the survivability constraints only, future work
could also consider wavelength limitation and wavelength

continuity constraint.
Perhaps the most important area for future work is in

the search for an efficient solution to the ILP problem.
Since large ILPs are generally difficult to solve, it would

be useful to find efficient relaxations and alternative
formulations that yield feasible solutions.
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