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Automatic Interpretation and Coding of Face
Images Using Flexible Models

Andreas Lanitis, Chris J. Taylor, and Timothy F. Cootes

Abstract —Face images are difficult to interpret because they are highly variable. Sources of variability include individual
appearance, 3D pose, facial expression , and lighting. We describe a compact parametrized model of facial appearance which takes
into account all these sources of variability. The model represents both shape and gray-level appearance , and is created by
performing a statistical analysis over a training set of face images. A robust multiresolution search algorithm is used to fit the model
to faces in new images. This allows the main facial features to be located , and a set of shape , and gray-level appearance
parameters to be recovered. A good approximation to a given face can be reconstructed using less than 100 of these parameters.
This representation can be used for tasks such as image coding, person identification, 3D pose recovery, gender recognition , and
expression recognition. Experimental results are presented for a database of 690 face images obtained under widely varying
conditions of 3D pose, lighting , and facial expression. The system performs well on all the tasks listed above.

Index Terms —Face recognition, expression recognition, pose recovery, coding-reconstruction, facial feature location, deformable
templates.

——————————  ✦  ——————————

1 INTRODUCTION

ACE images have received considerable attention from
both the computer vision and signal processing com-

munities. This interest is motivated by the broad range of
potential applications for systems able to code and interpret
face images. Examples include:

• Personal Identification and access control [5], [36];
• Low-bandwidth communication for videophone and

teleconferencing [22], [27];
• Forensic applications including videofit and mugshot

recognition [14];
• Human-computer interaction [2], [18];
• Alertness monitoring [34];
• Automated surveillance;

The functionality required to tackle these applications suc-
cessfully can be expressed in terms of a number of generic
capabilities:

• feature location and tracking,
• person identification,
• expression recognition,
• 3D pose recovery, and
• coding.

These are inherently difficult problems because the images
involved are complex and are also highly variable, even for
a particular individual. Sources of variability include 3D
pose, facial expression, individual appearance, lighting, and
occluding structure (facial hair, spectacles, etc.). Because of

the degree of difficulty, some researchers have concentrated
on particular constrained applications; this approach can
lead to the development of practical systems, but makes
little overall contribution to progress. Others have at-
tempted to tackle the various generic problems independ-
ently; the drawback with this approach is that the effects of
all the sources of variability are compounded, so it is ex-
tremely difficult to extract a description for one character-
istic of interest (e.g., individual appearance) which is not
sensitive to others (e.g., facial expression and pose) [29].

Our aim has been to develop a unified approach to the
problems of face image coding and interpretation. The basis
for this is a compact parametrized model of facial appear-
ance that takes into account all the main sources of vari-
ability. A robust image search method is used to recover a
parametric description for each new face image, by fitting
the model to the data. The locations of all the main facial
features are recovered implicitly in this process. Less than
100 parameters are required to describe each image suffi-
ciently well to generate a good quality reconstruction of the
face, irrespective of individual appearance, facial expres-
sion, 3D pose (±15 degrees of horizontal and/or vertical
rotation), or lighting. Given this compact, and nearly
lossless coding, low-bandwidth transmission is straight-
forward, while standard statistical pattern recognition
techniques can be used to perform such tasks as person
identification, gender recognition, expression recognition,
and 3D pose recovery.

Our models of facial appearance are statistical, derived
from a training set of face images. The shapes of the main
features and the spatial relationships between them are
represented by a Point Distribution Model (PDM) [10]. This
provides a compact, parametrized description of shape for
any instance of a face, and can be used in a multiresolution
Active Shape Model (ASM) search [8], [9] to locate the fea-
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tures in new images. Gray-level appearance is modeled
using flexible gray-level models [7], [8] analogous to the
shape model. The primary description is provided by a
shape-free gray-level model of the whole face. Local gray-
level models, attached to points on the shape model, are
also used to make ASM search more robust and improve
person identification in the presence of partial occlusion. This
extended model involves approximately 700 parameters. For
our experiments we have used a database containing 690
face images from 30 individuals.1 Details of the database
are shown in Table 1. The training and test sets contain ex-
amples which are much more varied in appearance, 3D
pose, and facial expression than those previously used in
most successful face image interpretation experiments. In
addition to the normal test set, a second test set contains
images in which subjects were asked to disguise themselves
by hiding part of their face; these images were intended to
provide a rigorous test of the robustness of the system.
Typical images from the training set and both test sets are
shown in Fig. 1.

Fig. 1. Examples of images used in our experiments. Training images,
test images, and difficult test images are show in top, middle, and bot-
tom rows, respectively.

In the remainder of the paper, we review some of the
most relevant literature on face coding and interpretation,
describe our approach in more detail, and present results

1 The database and its contents are available at:
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for feature location, coding and reconstruction, 3D pose
recovery, person identification, gender recognition, and
expression recognition.

2 BACKGROUND

In this section, we review, briefly, previous work on face
image interpretation and coding. We concentrate mainly on
approaches which aim to achieve generic functionality,
particularly those which are model-based.

2.1 Locating Facial Features
Many researchers describe the use of specialized techniques
designed to locate single facial features, within defined
search areas. Matched filtering techniques are remarkably
successful [5], [30] but do not deal very satisfactorily with
variation in feature shapes.

Methods based on deformable templates have proved
more effective. Kass et al. [19] describe the use of active
contour models—snakes—for tracking lips in image se-
quences. They initialized a snake on the lips in a face image
and show that it is able to deform and accurately track lip
movements. A similar technique is described by Waite and
Welsh [37] for locating head outlines. They initialize the
snake in the image border and the snake contracts until it
latches on to the face outline. Because snakes do not incor-
porate prior knowledge about expected shapes, this ap-
proach is easily confused by other structures present in the
image and occlusion. Yuille et al. [39] describe the use of
deformable templates, based on simple geometrical shapes,
for locating eyes and mouths. These templates are similar to
snakes, in that they can deform and move under the influ-
ence of image evidence in an attempt to minimize an en-
ergy function. Yuille’s models incorporate shape con-
straints, but it is difficult to ensure that the form of a given
model is sufficiently general or that an appropriate degree
of variability has been allowed.

Craw and Cameron [13] describe a model-based ap-
proach for locating face outlines. They use a deformable
model representing the outline shape, derived from a large
number of training images. They place the model on a new
image containing a face, and simulated annealing is used to
deform, scale, and translate the model until an objective
function is maximized. This function has two terms:

TABLE  1
DETAILS OF THE FACE DATABASE USED IN OUR EXPERIMENTS

Number of Subjects 30 CONDITIONS TRAINING IMAGES TEST IMAGES

Training images per subject 10 Lighting conditions fixed* variable

Normal test images per subject 10 3D movements yes yes

Difficult test images per subject 3 Expression variable variable

Male subjects 23 Distance from camera variable variable

Female Subjects 7 Spectacles no yes

Ethnic origin mixed Beards/Mustaches yes yes

Minimum age of subjects 17 Hairstyle changes no yes

Maximum age of subject 45 Background fixed variable

Time between capturing train-
ing/test images

3-54 weeks

* For images of a particular individual.
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• The first is maximized when the model lies on strong
edges;

• The second is maximized when the shape of the
model looks most like a face outline based on a meas-
ure of aspect ratio.

Human faces are characterized by constrained geometrical
relationships between the positions of facial features. Some
systems exploit these constraints to locate groups of fea-
tures [5], [13]. For example, once one feature has been lo-
cated, the positions of other features can be predicted and
their search areas reduced significantly. Although some
success has been reported with this approach, the behavior
of such systems is complex, and it has proved difficult to
achieve robust performance.

2.2 Coding and Reconstruction
Kirby and Sirovich [20] propose the decomposition of face
images into a weighted sum of basis images (or eigenfaces)
using a Karhumen-Loeve expansion. They code a face im-
age using 50 expansion coefficients, and subsequently re-
construct an approximation using these parameters. Many
researchers [14], [22], [23], [24], [30], [36], have built on this
methodology in an attempt to produce improved eigen-
faces for coding and person identification applications.

Model-based coding and reconstruction has received
considerable attention in the literature. Terzopoulos and
Waters [33] use a model based on the physical and ana-
tomical structure of faces, which incorporates information
about tissue and muscles. They track facial features in im-
age sequences and estimate the muscle contractions re-
quired to adjust their model in an attempt to produce a
faithful reconstruction. This approach can be used for cod-
ing and expression recognition.

A number of researchers [6], [27] use variations of the
CANDICE model [31]. This is a 3D wire frame model de-
rived using a triangulation algorithm. The 3D pose and ex-
pression of the model are controlled by a number of pa-
rameters. They initialize the model to a face in a starting
frame of a sequence by filling the triangles using texture
mapping techniques and arranging the model shape to
have the same shape as the person at the transmitting end.
The 3D motion of the face in the sequence is calculated and
used to drive the model at the receiving end.

2.3 Person Identification
Face identification techniques can be divided into two main
categories:

• those employing geometrical features, and
• those using gray-level information.

Techniques based on geometrical features use a number of
dimensional measurements, or the locations of a number of
control points for classification. Since geometrical features
are expression and 3D orientation dependent, explicit
methods of normalization must be employed. Brunelli and
Poggio [5] use 22 relative geometrical distances between
features to represent faces. Correct classification rates of up
to 90 percent were obtained when the method was tested
on a database containing images from 47 individuals. Craw
and Cameron [14] represent faces in terms of the coordi-

nates of 59 key points. They attempt to minimize the effects
of position and scale by using least squares minimization of
the Euclidean distances between five control points located
on each test image and the corresponding control points
located on the average face shape. This approach was only
tested on images which did not display significant variation
in 3D pose.

Turk and Pentland [36] describe how principal compo-
nent analysis of the gray-levels of face images can be used
to create a set of eigenfaces. Any face can be approximated
for identification purposes by a weighted sum of eigen-
faces. During the eigenvalue decomposition, no shape nor-
malization takes place, and, for the identification system no
shape information is employed. Up to 96 percent correct
classification was obtained when this approach was tested
on a database containing images from 16 different indi-
viduals. Craw and Cameron [14] describe a similar method,
except that they normalize the shapes of faces in order to
ensure that only gray-level variations are modeled. Train-
ing face images are deformed to the mean shape and prin-
cipal component analysis applied to obtain shape-free ei-
genfaces. During identification, test images are deformed to
the mean shape, and the weights of the eigenfaces required
to approximate the new face are calculated and used as the
classification parameters. Using this approach, test faces
were retrieved correctly from a database containing 100
images. These results relied on a user interactively locating
59 key points on the test images. When a similar experi-
ment was performed using shape information alone, the
results were not as good as those obtained with eigenfaces.

Cottrell et al. [11], [12] describe the use of an MLP for
processing face images. They present a number of face im-
ages to the network and train it to perform various tasks
such as coding, identification, gender recognition, and ex-
pression recognition. During this procedure, face images
are projected onto a subspace in the hidden layers of the
network; it is interesting to note that this subspace is very
similar to the eigenfaces space. However, an important dif-
ference is that, in this case, the face subspace is defined ac-
cording to the application for which the system is to be
used. Correct identification rates of up to 97 percent were
reported when the system was tested using a database of
images from 11 individuals.

Lades et al. [21] describe a different approach to the
problem. During training, they overlay a rectangular grid
on a training image, from each individual in their face da-
tabase. They measure the responses at each of the grid
points for a set of 2D Gabor filters tuned to different orien-
tations and scales. When a new image is presented to the
system, the grid is overlaid and allowed to deform. A
similarity measure between the new image and each train-
ing image is computed based on the responses of the same
set of Gabor filters and the grid distortion. The new face
image is identified as the individual for whom the similar-
ity measure is maximized. This method uses both gray-
level information (in the form of Gabor filter responses) and
shape information (in the form of grid distortion). Classifi-
cation experiments [17], [21] have shown that the approach
can cope with changes in expression, orientation, and small
changes in the lighting conditions.
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2.4 Expression Recognition
Psychologists working in the area of facial expression un-
derstanding define seven distinct facial expressions [15]:
happiness, sadness, surprise, fear, anger, disgust, and neu-
tral. Many of the expression recognition systems reported
in the literature are trained to classify expressions into these
seven categories.

Yacoob and Davis [38] describe a method for interpret-
ing facial expressions in image sequences based on motion
detection. They analyze interframe motion of edges ex-
tracted in the area of the mouth, nose, eyes, and eyebrows.
During a training phase, they establish a set of rules con-
cerning the motion of these edges during transitions be-
tween expressions. Based on these rules they successfully
interpret expressions in face image sequences. This ap-
proach to the problem is not applicable to static images.

Cottrell and Fleming [12] use a Multi-Layer Perceptron
for recognizing expressions. When tested on the face im-
ages used for training, their system classifies positive emo-
tions (like happiness, delighted, relaxed), reliably, but the
results obtained for negative expressions (like sleepy, an-
gry, sad) are not very good.

2.5 3D Pose Recovery
Tsukamoto et al. [35] describe how 3D pose can be recov-
ered. They divide each face image into a large number of
blocks which they parametrize in terms of intensity and
edge strength. Once they detect a face in an image, they use
a deformation algorithm to simulate rotation in three dif-
ferent directions, generating a temporary model for each
direction of rotation. In subsequent frames, they correlate
these models with the detected face; the 3D pose is esti-
mated as a linear function of the model correlations.

Gee and Cipolla [18] describe the estimation of the di-
rection of gaze using a simple facial model. They use the
location of the eyes, nose, and mouth in face images in or-
der to define four length measures based on which they
calculate the direction of gaze.

Bichsel and Pentland [2] use motion analysis and tem-
plate matching to track head movements in image se-
quences. At each frame, the head detector returns the loca-
tion and orientation parameters of the face. By studying the
variation of these parameters they interpret head move-
ments, like nodding and shaking.

3 OVERVIEW OF OUR APPROACH

Rather than treating feature location, person identification,
expression recognition, 3D pose recovery, and coding as
separate goals, we have attempted to develop a unified ap-
proach. The basis for this is a compact, parametrized model
of facial appearance, which accounts for all the important,
systematic sources of variability. Our approach can be di-
vided into two main phases:

• Modeling, in which flexible models of facial appear-
ance are generated, and

• Interpretation, in which the models are used for cod-
ing and interpreting face images.

3.1 Modeling
We model the shapes of facial features and their spatial
relationships using a single flexible shape model [8], [10].
The model is derived from a set of training images. In each
image, the main features are delineated by a large number
of landmark points. The model is generated by a statistical
analysis of the positions of the landmark points over the
training set; it describes the mean shape, and is capable of
representing variation due to differences between indi-
viduals, change in 3D pose, and change in expression.

Previous investigators have shown that gray-level in-
formation is extremely important for interpreting face im-
ages [5], [14]. We have, therefore, augmented our shape
model with gray-level information using two complemen-
tary approaches. In the first, we generate a flexible gray-
level model of “shape-free” appearance by deforming each
face in the training set to have the same shape as the mean
face, and training a flexible “shape-free” gray-level model.
This is similar to the method used by Craw and Cameron
[14]. In the second approach, we use a large number of local
gray-level profile models, one at each landmark point of the
shape model. The first approach is more complete, but the
second is more robust to partial occlusion.

Shape and gray-level models are used together to de-
scribe the overall appearance of each face image; collec-
tively, we refer to the model parameters as appearance pa-
rameters. When the face image is coded in terms of the
shape model and the gray-level model of the shape-free
appearance, less than 100 appearance parameters are re-
quired. It is important to note, that in this case, the coding we
achieve is reversible—a given face image can be reconstructed
from its shape and shape-free gray-level parameters.

3.2 Interpretation
When a new image is presented to our system, facial fea-
tures are located automatically using an ASM search [9]
based on the flexible shape model obtained during training.
The resulting automatically located model points are trans-
formed into shape model parameters. Gray-level informa-
tion at each model point is collected and transformed to
local gray-level model parameters. Then, the new face is
deformed to the mean face shape and the gray-level ap-
pearance is transformed into the parameters of the shape-
free gray-level model. The resulting set of appearance pa-
rameters can be used for image reconstruction, person
identification (including gender recognition), expression
recognition, and 3D pose recovery.

4 FLEXIBLE MODELS

All the models used in our system (both shape and gray-level
models) are of the same mathematical form. A flexible model
[7], [8], [10] is generated from a set of training examples. Each
training example (Xi) is represented by N variables.

Xi = x x xi i N i1 2, , ...,e j (1)

Where xk i is the kth variable in the ith training example.

For instance, in constructing a shape model, the xk i repre-
sent the coordinates of landmark points, expressed in a
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standard frame of reference. The average example, X , is cal-
culated, and the deviation of each example from the mean is
established. A principal component analysis of the covari-
ance matrix of deviations reveals the main modes of varia-
tion. Any training example Xi can be approximated using:

X X Pbi = + (2)

Where P is a matrix of unit eigenvectors of the covariance
of deviations, and b is a vector of eigenvector weights
(these are referred to as Model Parameters). By modifying
b, new instances of the model can be generated; if the ele-
ments of b are kept within some limits (typically ±3sk,
where sk is the standard deviation of bk over the training
set) the corresponding model instances are plausible exam-
ples of the modeled objects. Since the columns of P are or-
thogonal PTP = I, and (2) can be solved with respect to b.

b P X XT= −ic h (3)

Equation (3) can be used to transform examples to model
parameters. Usually, the number of eigenvectors needed to
describe most of the variability within a training set is
much smaller than the original number of variables, al-
lowing the model to approximate training examples using a
small number of model parameters b1 . . . bt : t < N.

The same method can be used to train both shape and
gray-level models. For shape models, the variables (xk i) are
the coordinates of landmark points, and for gray-level
models, the variables are based on gray-level intensities.
For example, for flexible gray-level profile models variables
(xk i) may represent the absolute gray-level intensity at a
specific point on each training profile.

We refer to both shape and gray-level models, as flexible
models because they model the ways in which shapes or
gray-level surfaces, respectively, are allowed to vary with
respect to a mean value. The details have been described
elsewhere [8], [10]. Important points to note are that

• in the shape models, the shapes of facial features and
the spatial relationships between them are captured in
a single model,

• although the models are flexible, they are still spe-
cific, they can vary only in ways encountered in the
training set.

5 MODELING SHAPE

We have built a flexible shape model (or Point Distribution
Model) [8], [10] representing the face using 152 points
manually located on each of 160 training examples (eight
examples from each of 20 individuals). Typical training
examples, the mean shape, and the locations of the model
points are shown in Figs. 2, 3, and 4, respectively. The
model can accurately approximate the shape of any face in
the training set using just 16 shape parameters; the effect of
the first six is shown in Fig. 5. The first three parameters
reflect variations in the 3D pose, the fourth and the sixth
account for shape variation between different individuals,
and the fifth changes the expression. In addition to the 16
model parameters, four 2D pose parameters are needed to
define a model instance in the image plane: The x and y
coordinates of the origin, a rotation angle, and a scaling

factor. Given a set of model and 2D pose parameters, a face
shape can be computed and projected into an image.

Fig. 2. Typical training shapes.

Fig. 3. The mean shape.

Fig. 4. Locations of model points on a training image.
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Fig. 5. The effect of the main modes of shape variation.

6 MODELING SHAPE-FREE
GRAY-LEVEL APPEARANCE

6.1 Shape Normalization
We wish to model gray-level appearance independently of
shape. To do this, we deform each face image to the mean
shape in such a way that changes in gray-level intensities
are kept to a minimum. For this purpose, we have used a
technique developed by Bookstein [3], based on thin plate
splines. This allows an image to be deformed so that a set of
landmarks are moved to coincide with a set of target land-
marks on the mean face in such a way that changes in the
gray-level environment around each landmark are kept to
minimum. We have used 14 landmarks to deform the face
images. The position of these landmarks on a particular
face shape and on the average face shape are shown in
Fig. 6. All the landmarks are part of the shape model, thus,
once the shape model has been fitted to an image, the
landmarks are located trivially. Examples of face images
before and after deformation are shown in Fig. 7.

Fig. 6. The landmarks used for deforming face images.

6.2 Training the Flexible Model
Training images were deformed to the mean shape, and
gray-level intensities within the face area were extracted, as

shown in Fig. 8. Each training example was represented by
a vector containing the gray-level at each pixel in the patch
(a total of 10,656 pixels). A flexible gray-level model for our
database was generated; only 12 variables were needed to
explain 95 percent of the variation in the training set. Each
variable is responsible for a specific mode of variation, as
shown in Fig. 9. For example, there are modes that control
the lighting conditions (first mode), the addition of beards
and moustaches (second and fourth modes), and the

Fig. 7. Examples of original face images (left), and the respective
shape-free face images (right).

Fig. 8. Examples of training shape-free patches.

Fig. 9. The main modes of gray-level variation.
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change in expression (third mode). A problem with this
model is that the first mode of variation represents
80 percent of the gray-level variation on its own so that
other possible modes of variation are swamped. A second
model, using gray-levels normalized with respect to the
average intensity in the gray-level patch was also trained.
This model needed 79 variables to explain 95 percent of the
variability. For classification and reconstruction purposes
the normalized gray-level model was used.

7 MODELING LOCAL GRAY-LEVEL APPEARANCE

We have described how we model the shape and overall
gray-level appearance of face images. We also model the
gray-level appearance in the vicinity of each shape model
point, using a large number of local gray-level profile mod-
els. Modeling gray-level appearance locally can be important
for face interpretation, because subtle but important localized
effects can be swamped in the global shape-free model. Local
models can also be used to achieve more robust interpretation
in the presence of partial occlusion [23].

During training, shape model points were overlaid on
the corresponding training images and gray-level profiles
perpendicular to the boundary were extracted, as shown in
Fig. 10. Because each shape model point should always cor-
respond to the same facial feature, there is no need to apply
a deformation algorithm. However, the appearance of the
extracted gray-level profiles is dependent on the scale of the
face in the image. To account for this, the length of training
profiles was normalized with respect to the scale of the
face. Each profile was represented by 10 gray-level samples,
with the sampling interval varied to achieve length nor-
malization (see Fig. 10). A flexible gray-level model was
built for the profile at each model point; most of these mod-
els needed four model parameters to explain 95 percent of
the variation in the training set.

Fig. 10. Extraction of gray-level profile at a model point.

8 CALCULATING THE APPEARANCE PARAMETERS

When a new face image is presented to the system, the
whole set of appearance parameters can be calculated. This
procedure is summarized in Fig. 11. The shape model is
fitted automatically to the new face (the fitting procedure is
described in Section 9) and the shape model parameters
corresponding to the shape of the new face are computed.
At each located shape model point, gray-level information
from a profile perpendicular to the boundary is extracted,
and the parameters of the local gray-level model are calcu-
lated. Based on the shape model fit, the landmarks used to
deform to the mean face shape (see Fig. 6) are identified.
The deformation is performed and shape-free gray-level
model parameters are calculated. Together the three sets of
model parameters constitute the full set of appearance pa-

rameters; in Sections 10 to 14, we describe how we use
these parameters to code and interpret face images.

Fig. 11. Calculating the appearance parameters for a new face image.

9 LOCATING FACIAL FEATURES

9.1 Overview
The shape model and local gray-level models described
above can be used to automatically locate all the modeled
features simultaneously. This is achieved using an ASM
search [7], [8], [9], [10]. The mean shape model is placed in
a given image and is allowed to interact dynamically until
it fits to the data. Each iteration involves two main steps:
Calculating a new suggested position for each model point
based on matching the local gray-level models, followed by
movement and deformation of the model in order to move
each point as close as possible to the new preferred posi-
tion. During this process, the shape model is only allowed to
deform in ways which are consistent with the training set.

9.2 Calculating New Positions for the Model Points
At each model point, a gray-level profile perpendicular to
the boundary is extracted, and a new preferred position for
the point is selected along the profile. This is illustrated in
Fig. 12. The gray-level model associated with the shape
model point is scanned along the search profile (which is
longer) to determine the position of best fit; details are
given in [8], [9], [10]. This results in a new preferred posi-
tion for each shape model point.

Fig. 12. Defining the new preferred position A* for a model point cur-
rently at A.
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9.3 Deforming the Shape Model
The key feature of ASM search is that model points do not
move individually to the new suggested positions. First,
the pose parameters (i.e., translation, scaling and rotation)
are adjusted to minimize the mean squared distance be-
tween model points and the suggested new positions.
Next, the shape model is deformed to fit as closely as pos-
sible to the suggested points by modifying the shape pa-
rameters (b in (2)). The set of b values needed to give a
least squares approximation to the new suggested shape
can be obtained directly from (3). Shapes which are incon-
sistent with those in the training set can be avoided by
constraining the values of b to lie within limits obtained
from the training set. Further details are given in [7], [8],
[10]. Examples of model fitting are shown in Fig. 13 which
illustrates that the method is robust to 3D pose variation
and occlusion. In practice, the fitting procedure is imple-
mented as a multiresolution search [9]; this results in im-
proved speed of execution and robustness.

Fig. 13. Examples of the ASM fitting procedure.

9.4 Experimental Results
We have assessed the accuracy with which the 152 land-
marks, shown in Fig. 4, can be located automatically in
new images. For the experiment, we used a subset of 40
training images from our database to train a new shape
model, and subsequently fitted this model to a different
subset of 40 training images from the database. (For this
experiment, we used images from the training set for
testing, because, for these images, we already had manu-
ally located landmarks which we could use to assess the
accuracy of the automatically located points). The model
was initialized on each test image, with the mean shape
scale 70 percent of the mean scale, displaced by ±20 pixels
from the true position and rotated by ±12 degrees from
the true orientation. The accuracy of point location at each
iteration of a multiscale ASM search was assessed by cal-
culating the mean Euclidean distance between model
points and the curves defined by correct landmark points.
The graph in Fig. 14 shows the results of this experiment
averaged over 40 runs. Landmark points were located to
an average accuracy of about three pixels within about 25
iterations. In its current form the model fitting procedure
takes approximately two seconds on a Sun Sparc 20 work-
station.

10 TRACKING CODING AND RECONSTRUCTING FACES

10.1 Method
Once the shape model has been fitted to a new face image,
the shape-free and local gray-level model parameters can
also be extracted, providing a complete description of the
face area. We have shown how the shape model can be fit-
ted to an individual face image. If a video sequence is used,
the ASM search result for each frame can be used as the
starting approximation for the next frame. Since only small
changes in shape and position occur between frames, the
shape model can be updated very rapidly. Fig. 15 shows an
example of face tracking using the flexible shape model. At
each frame, the shape and gray-level model parameters can
be calculated and used as an extremely compact coding. To
reconstruct a frame the shape-free gray-level parameters
are used to generate the shape-free gray-level appearance,
and the shape model parameters to define the shape of the
face. The deformation algorithm described in Section 6.1 is
applied again with the difference that now we deform from
the average face shape to the shape corresponding to the
shape parameters given.

Fig. 15. Face movement tracking using a flexible shape model.

10.2 Experimental Results
Fig. 16 shows two examples of coding and reconstructing
face image sequences; the images in these sequences are
new images of individuals who were in the training set. By
using this method of coding, appearance variations caused
by differences between individuals, changes in expression,
and changes in head orientation, are reproduced accurately
in the reconstruction. The total number of parameters
needed for coding and reconstructing face images using
this method, is 99 (16 shape parameters, four pose parame-
ters, and 79 shape-free gray-level parameters).

Fig. 14. Results in locating facial characteristics.
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Fig. 16. Examples of tracking and reconstruction of face image se-
quences (top row: originals, bottom rows: reconstructions).

We have also tested the approach by coding and recon-
structing images of new individuals. The reconstructions
obtained (see Fig. 17) are promising implying that the
model can generalize its knowledge about the appearance
of faces to unseen examples. However, it would be desir-
able to train the gray-level model of shape-free appearance
using more examples in order to improve the quality of
reconstructions for images of unseen individuals.

Fig. 17. Reconstruction of faces images of new individuals (top row:
originals, bottom row: reconstructions).

For the face images used in training the model, no indi-
vidual was wearing spectacles. As a result the model can-
not reproduce faces wearing spectacles. This is demon-
strated in Fig. 18, where the reconstruction of a partially

occluded face is the corresponding occlusion-free face.
However, if the occlusions are very severe the recon-
structed faces can be significantly distorted (see the fourth
example in Fig. 18).

11 RECOVERING 3D POSE

11.1 Method
Once the shape model has been fitted to a new face, the
recovered shape model parameters can be used to deter-
mine the 3D pose of the face. As shown in Fig. 5, the first
(b1) and third (b3) shape model parameters are responsible
for controlling the apparent changes in shape due to turn-
ing and nodding the head. 3D pose recovery can be based
on the numerical values of these parameters, calculated for
a new face outline. To calibrate the system, we captured a
series of face images in which an individual was asked to
rotate his head in both the vertical and horizontal direction,
from -20 degrees to +20 degrees by looking at a number of
grid points on a wall; each grid point corresponded to a
known combination of horizontal and vertical rotation an-
gles. We automatically fitted the shape model to these im-
ages and recorded the values of the first and third shape
parameters. Plots of b1 and b3 against angles are shown in
Fig. 19 and demonstrate approximately linear relationships
for the range of angles considered. When a new face is pre-
sented the shape model is fitted, the resulting numerical
values for b1 and b3 are recorded and the 3D pose angles
are calculated based on the calibration graphs in Fig. 19.

Fig. 19 Graphs of b3 against the horizontal rotation angle (left), and b1
against the vertical rotation angle.

11.2 Experimental Results
We tested the accuracy of 3D pose recovery on 30 new test
images obtained in a similar manner to the calibration set.
In the test set we included images of previously unseen
individuals. The results obtained are summarized in Fig. 20
and show robust recovery of 3D pose angles. Fig. 21 shows
examples of test images and the 3D pose angles computed.

12 PERSON IDENTIFICATION

12.1 Method
Once the shape model has been fitted to a new image, a full
set of appearance parameters can be computed (see Fig. 11).
Some of these are associated with differences between indi-
viduals, while others model changes in 3D pose, facial ex-Fig. 18. Reconstructing occluded face images (top row: originals, bot-

tom row: reconstructions).
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pression, or lighting. We have developed a classification
system for identifying the individual appearing in an image,
irrespective of 3D pose, expression or lighting. The classifier
was trained by computing the appearance parameters for all
training images (10 images for each of the 30 individuals) in
our database and establishing the distribution of appearance
parameters for each individual. Simple discriminant analysis
techniques [16], [28] were applied in order to enhance the
effect of the inter-class (between person) variation parame-
ters using the Mahalanobis distance(Di) measure.

Di
2 = − −−b b C b bi

T

ie j e j1 (4)

Where b is a multivariate observation (a set of appearance

parameters in this application), bi  is the centroid of a mul-
tivariate distribution for a particular class i and C is the
common covariance matrix for all classes. By using the

common covariance matrix rather than covariance matrices
computed for individual classes, we ensure that we get a
good estimate despite the limited number of training ex-
amples available. A given multivariate observation is as-
signed to the class that minimizes the Mahalanobis distance
between the observation and the centroid of that class.
Since Mahalanobis distance uses covariance information, it
has the ability to suppress the effect of parameters responsi-
ble for within-class variation. We have described elsewhere
[26] how the interclass variation parameters can be explicitly
isolated, using canonical discriminant analysis.

When a new face image is presented the shape model is
fitted and the appearance parameters computed. The face is
assigned to the class for which the Mahalanobis distance is
minimized. Classification can be performed using the three
types of appearance parameter (shape, local gray-level, and
shape-free gray-level) individually, or in combination.

12.2 Experimental Results
We performed person identification experiments on the test
and difficult test sets from our face database using various
combinations of appearance parameters. The classification
results are shown in Table 2. The timings quoted are for a
SunSparc 20 workstation. The two methods involving gray-
level information achieve much better results, than the
method based on shape alone. These results are consistent
with those reported by other researchers [5], [14], suggesting
that the gray-level appearance of faces is much more im-
portant than shape for identification purposes. However,
shape has an important role since classification rates im-
prove significantly when shape information is combined
with gray-level information. Gray-level profile models
proved to be the least sensitive to occlusion. Any of the
combinations of the measures produced good results. For
real-time applications the method combining shape and
gray-level profile information is the least computationally
expensive, but if optimal classification accuracy is required
the shape-free gray-level model parameters should also be
included. It is very important to note that when all three
methods are combined together the results obtained are
significantly better than any other combination, both for the
test and difficult test images. This implies that each method
conveys important and unique classification information.

Fig. 20. Results for the calculation of the horizontal (left hand graph)
and vertical (right hand graph) angles on test images.

  
Face rotated -20° in the
horizontal plane and 5°
in the vertical plane

Face rotated 20° in the
horizontal plane and 10°
in the vertical plane

Face rotated -10° in the
horizontal plane and
-10° in the vertical plane

Fig. 21. Examples of 3D pose recovery on test images.

TABLE  2
RESULTS FOR THE FACE IDENTIFICATION EXPERIMENTS

Normal test set (300 images) Difficult test set (90 images)

Method Classification time Correct
classifications

Correct class
within best three

Correct
classifications

Correct class
within best three

Shape model 2 sec. 50.3% 66.6% 15.6% 31.11%

Shape-free gray
model

6 sec. 78.7% 87.33% 31.1% 53.3%

Local gray-level
models

2 sec. 77.33% 89.7% 28.9% 57.8%

Shape + Shape –
free model

6 sec. 85.3 93.3 34.4 57.7

Shape + Local
models

2 sec 80.0% 90.3 % 34.4 % 66.7 %

All three methods 6 sec 92.0% 97.0% 48.9% 74.4%
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For access control applications, it is important that face
identification systems have the ability to reject faces which
do not look similar to any of the database entries. We per-
formed a preliminary experiment in which images were
rejected if the minimum Mahalanobis distance was not
within acceptable limits. The results of this experiment are
shown in Fig. 22 and Fig. 23. When the threshold was set to
0.8, the classification rates for both the test and difficult test
sets were 100 percent. In this case about 55 percent of the
test images and 97 percent of the difficult test images were
rejected since they were not sufficiently similar to any of
the individuals in the training set, which is not surprising
bearing in mind the appearance variations between training
and test images in our database.

13 GENDER RECOGNITION

13.1 Method
Gender recognition can also be attempted in our frame-
work, since some appearance parameters reflect inter-
gender differences in facial appearance (for example, the

second mode of variation in Fig. 9). We have investigated
the use of shape model parameters and shape-free gray-
level parameters both individually and in combination.
During training we established the distributions of these
parameters for the male and female subjects in the training
set of face images. The classification procedure was similar
to the one used for face identification.

13.2 Experimental Results
In order to perform the experiment on images of unseen
persons, we have trained the system using the training im-
ages from 20 individuals in our database and tested it using
the test images for the remaining 10 individuals (100 test
images). The results obtained are summarized in Table 3,
and show that gray-level information is more important
than shape information for gender recognition. The peak
classification rate was 94 percent.

TABLE  3
RESULTS FOR GENDER RECOGNITION

Method Correct
Classifications

Shape model 72%

Shape-free gray-level 94%

Shape + Shape-free model 86%

14 EXPRESSION RECOGNITION

14.1 Method
Expression recognition, particularly from static images, is a
difficult but interesting problem. It is known that even hu-
man observers often fail to agree in expression classification
experiments [15]. We have addressed the problem by es-
tablishing the distribution of appearance parameters over a
selected training set for each expression category so that the
appearance parameters calculated for a new face image
could be used for determining the expression. For this ex-
periment we used shape and shape-free appearance pa-
rameters both individually and in combination.

14.2 Experimental Results
We asked five observers to classify the expression of each
of our training and test face images using the seven psy-
chologically recognized categories [15] shown in Fig. 24.
For our subsequent experiments we used the images for
which at least four of the observes agreed (139/300 train-
ing and 118/300 test images). Fig. 25 shows the recon-
struction obtained from the centroid of the distribution for
each expression; the reconstructed mean expressions are
realistic. Because the face database used was not origi-
nally intended to be used for expression recognition ex-
periments, it does not contain an adequate number of ex-
amples for all expressions. Few of the selected training
images were categorized as afraid or disgusted; as a result
the reconstructed mean expressions for afraid and dis-
gusted look more like the subjects in the database who
displayed those emotions.

The results for automatic classification are shown in
Table 4. We also asked two more observers to classify the
expressions in each of the 118 test images with which we

Fig. 22. Rejection and classification ratios for the normal test set.

Fig. 23. Rejection and classification ratios for the difficult test set.
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tested our classification system. They achieved 80 per-
cent and 83 percent correct classification. The peak clas-
sification rate of 74 percent obtained from the automatic
system compares well with these results, implying that
our methodology has the potential to be employed suc-
cessfully in this application.

In the future, we plan to extend our preliminary work on
expression recognition by performing experiments using a
more suitable database. We are in the process of collecting a
new database using actors to animate all seven fundamen-
tal expressions, so that we have an adequate number of
examples for all expressions.

15 CONCLUSIONS

We have presented a system which can be used for locating
facial features, coding, and reconstruction, recovering 3D
pose, recognizing gender and expression, and identifying
the individual in an image. Our results for most of the ap-
plications are promising, even though considerable varia-
tion in 3D pose, lighting, and expression were allowed,
demonstrating the potential for use in real life applications.
The distinctive feature of our system is that it can cope suc-

cessfully with almost all aspects of face image processing,
within a unified framework.

The face interpretation procedures described are fully
automatic; errors for the classification experiments may be
caused either by failure in locating landmarks accurately, or
by failure of the classification algorithm. We do not distin-
guish between the two cases, since we believe that locating
facial characteristics automatically is an important aspect of
an integrated system.

Studies performed by other researchers have shown
that certain facial areas are more important than others for
specific applications. For example, the eyes and mouth are
the most important areas for identification [4], [5], [30],
and for expression recognition, the left side of the face is
considered to be more important than the right [32]. We
intend to perform classification experiments using sub-
parts of the shape-free appearance of faces in order to es-
tablish the parts with the highest discriminating power
for specific classification tasks.

Although the lighting conditions were not altered sys-
tematically during the capture of training images, there was
some variability. As a result, test images captured with dif-
ferent lighting intensity and/or direction were recognized
correctly. Ideally, we need to collect a very large training
and test set, in which pose, expression, and lighting condi-
tions are varied systematically for each of a large number of
individuals. This would allow us to build a more complete
model and characterize the performance of our system
more thoroughly.

Our approach is generic, and can be easily adopted for
different applications. For example, a similar method has
been used for automatic interpretation of hand gestures in
image sequences [1], [25]. For this application, flexible
shape models were used for tracking hand and finger
movements and classifying the gesture in each frame.
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TABLE  4
RESULTS FOR EXPRESSION RECOGNITION

Method Correct
Classifications

Shape model 53%

Shape-free gray-level 74%

Shape + Shape-free model 70%

Fig. 24. Faces displaying the seven expressions used in the expres-
sion recognition experiment.

Surprised Sad Disgusted Neutral

Angry Happy Afraid

Fig. 25. The reconstructed mean expressions for our database.
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