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1. INTRODUCTION
Scientific computing has long been one of the

deep and challenging applications of computer sci-
ence and data management, from early endeavors
in numerical simulation, to recent undertakings in
the life sciences, such as genome assembly. Complex
computational problems abound and their solutions
transform our understanding of the physical world.
The data management community’s interest in sci-
entific applications has grown over the last decade
due to the commoditization of parallelism, dimin-
ishing system administration costs, and a search for
relevance beyond enterprise applications.

Research in scientific computing raises non-tech-
nical challenges, such as overcoming the paucity of
resources needed for experimentation, and estab-
lishing a collaborative research agenda that fosters
a mutual appreciation of problems, results in a con-
certed effort to develop software tools, and makes
all researchers successful in their respective fields.
In light of this, we report on a recently formed in-
stitute at the Johns Hopkins University to further
the interaction between computer science, and sci-
ence and engineering. We describe ongoing projects
at the institute and our collaboration experiences.

2. IDIES
The Institute for Data Intensive Engineering and

Science (IDIES) was founded in April 2009 to bring
together data intensive computing in a variety of
science and engineering disciplines. The mission
of IDIES is to foster the interdisciplinary develop-
ment of tools and methods that derive knowledge
from the massive datasets that today’s instruments,
experiments, and simulations generate at exponen-
tially growing rates.

2.1 Research and Academic Model
IDIES includes faculty members drawn from a

variety of disciplines ranging from Physics and As-
tronomy, Mechanical Engineering, the Sheridan Li-

braries, Applied Math, School of Medicine, School
of Public Health and the Human Language Tech-
nology Center of Excellence. The authors of this
paper make up the Computer Science members of
IDIES and two of their long-standing collaborators.

The establishment of a data intensive computing
center has numerous benefits in addition to provid-
ing an umbrella for data-driven research. It acts as
a beacon for the remainder of the Hopkins commu-
nity and beyond, where our members are the first
port of call for anyone with big data problems from
academia, industry, and government agencies in the
vicinity and nationwide, such as the Johns Hop-
kins Applied Physics Laboratory, a not-for-profit
research lab housing 3,000 engineers and scientists.

The Johns Hopkins University provides an ex-
tremely conducive environment for these efforts.
The demographics of the university leads to an
outward-looking faculty within departments. The
model of research being conducted through inter-
disciplinary centers is the norm rather than the
exception (e.g. the Human Language Technology
Center of Excellence). This facilitates application-
driven research, combining scientific domain knowl-
edge with core computer systems research expertise.

From an academic standpoint, the interdisciplinary
model of IDIES percolates through to the students,
engaging students in an application and dataset-
driven research agenda. Our agenda fosters a breadth
of knowledge beyond data management and com-
puter science, and encourages a hands-on approach
to system development. This results in tangible, us-
able components that further the underlying scien-
tific problem, as well as promoting an experimental
approach to data management challenges.

This research model leads to the development
of communities around individual datasets and the
curation of these datasets both in terms of data
cleaning and functionality supported on top of the
dataset. Most often, this process produces public
resource for widespread academic usage.
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2.2 Scientific Data Workflow at IDIES
Traditionally, under the scientific method, basic

research involves the formation of hypotheses and
theories, designing experiments for their validation,
collecting data by realising experimentation, and
analysing data to guide new insights for further re-
search through iteration of this workflow. All stages
of this workflow loop exhibit heavy computational
and data management needs, particularly experi-
mentation, simulation and analysis. The emergence
of data-driven science has front-loaded much of this
iterative workflow, where an intense period of ex-
perimentation results in a substantially larger data
volume for processing, followed by an intense pe-
riod of exploration and analysis of the data. Both
modes must address large dataset challenges.

Many of these challenges appear individually in
other domains, but are greatly exacerbated in scien-
tific computing by the diversity of complex, instance-
specific semantics. The end result is an application
domain with extremely high overheads and barriers
to entry through the combination of limited soft-
ware reuse, and the brittle infrastructures arising
from ad-hoc composition of tools that are difficult
to parameterize and generalize.

We have assembled a critical mass of researchers
at IDIES with expertise spanning many aspects
of the scientific research workflow: Randal Burns
(storage systems and transaction processing), An-
dreas Terzis (sensor and wireless networks), Michael
Kazhdan (computer graphics, mesh processing and
geometric retrieval) and Yanif Ahmad (data man-
agement and declarative languages). We are ex-
tremely fortunate to work with scientists and en-
gineers who have developed a deep appreciation of
data management throughout their careers, includ-
ing Alex Szalay (physics, astronomy), and Charles
Meneveau (mechanical engineering, turbulence).

3. THE SLOAN DIGITAL SKY SURVEY
The focus on data-intensive computating at JHU

started when the Department of Physics and As-
tronomy joined the Sloan Digital Sky Survey project
(SDSS), the astronomy equivalent of the “Human
Genome Project.” The SDSS created a high reso-
lution multi-wavelength map of the Northern Sky
with 2.5 trillion pixels of imaging. The results
of the image segmentation were placed in a rela-
tional database that has grown to 12 terabytes over
the last ten years and has created a new way to
do astronomy. Based upon citation statistics, the
database of the SDSS has been the most used as-
tronomy facility in the world. A large fraction of
the world’s astronomy community has learned to

use SQL to formulate their research questions and
can run observations instantly, rather than waiting
for months to get their turn at a telescope.

The original database was built in close collabo-
ration between Alex Szalay’s team at JHU and Jim
Gray of Microsoft. The database is based on SQL
Server, contains about 70 tables of data and de-
scriptive metadata, and incorporates a substantial
amount of astronomy code in the form of User De-
fined Functions. Among other things, we have built
a high precision GIS system for astronomy, based on
the Hierarchical Triangular Mesh, implemented as
a set of class libraries, wrapped into C# functions,
callable from T-SQL.

Today about 30% of the world’s professional as-
tronomy community has a server side database in
this system. The two-stage parallel loading envi-
ronment and the whole framework is now in use
by many groups, both at JHU and all over the
world, and has been repurposed from astronomy
to many other disciplines, such as environmental
science and radiation oncology. Most recently, the
Pan-STARRS project, on the way to its first of
many petabytes of data, builds upon a scaled-out
version of the SDSS design.

4. APPLICATIONS AND DATASETS
IDIES research spans a wide variety of applica-

tions and datasets. We present a sample here.

4.1 Turbulence
Hydrodynamic turbulence is a formidably diffi-

cult and pressing problem. However, direct numer-
ical simulations of turbulence for the flow conditions
prevalent in most engineering, geophysics, and as-
trophysics applications are impractical. Also, most
critical scientific problems, such as predicting the
Earth’s climate and developing energy sources, re-
quire reliable simulations of turbulent flows.

Typically, individual researchers perform large
simulations that are analyzed during the compu-
tation with only a small subset of data stored for
subsequent analysis. The majority of the time evo-
lution is discarded. As a result, the same simu-
lations must be repeated after new questions arise
that were not initially obvious; most breakthrough
concepts cannot be anticipated in advance. Thus, a
new paradigm is emerging that creates large and
easily accessible databases that contain the full
space-time history of simulated flows.

In IDIES, we have embarked on building such
databases. The JHU public turbulence database
houses a 27 TB database that contains the entire
time history of a 10243 mesh point pseudo-spectral
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Figure 1: Contour and surface plot of dissi-
pation field in isotropic turbulence as deter-
mined from a 2D cut through the 4D data
from the JHU public turbulence database.

direct numerical simulation of forced isotropic tur-
bulence [15, 12]. 1024 time-steps have been stored,
covering a full “large-eddy” turnover time. A Web
service fulfills user requests for velocities, pressure,
and various space-derivatives and interpolation func-
tions (see [7]). The 10244 isotropic turbulence
database has been in operation continuously since
2008 and has served more than 50 billion point
queries for research and teaching purposes.

4.2 Life Under Your Feet
Lack of field measurements, collected over long

periods of time and at biologically significant spa-
tial granularity, hinders scientific understanding of
the effects of environmental conditions to the soil
ecosystem. Wireless Sensor Networks (WSNs) promise
to address ecologists’ predicaments through a foun-
tain of readings from low-cost sensors deployed with
minimal disturbance to the monitored site.

In the fall of 2005 we built a proof-of-concept
WSN to validate this claim. The end-to-end Life
Under Your Feet (LUYF) system includes motes
that collect environmental parameters such as soil
moisture and temperature, static and mobile gate-
ways that periodically download collected measure-
ments through the Koala reliable transfer proto-
col [13], a database that stores collected measure-
ments, access tools for analyzing the data, a Web
site that serves the data, and tools to monitor the
network. LUYF has been deployed in multiple
forests in networks whose sizes range from ten to
fifty nodes, deployed from a couple of weeks to more
than two years. The LUYF database contains more
than 120 million measurements, data derivatives,
and the provenance of stored data.

4.3 DC Genome
The IT industry is the one of the fastest growing

sectors of the U.S. economy in terms of its energy
consumption. According to a 2007 EPA report, U.S.
data centers consumed 61 billion kWh in 2006—
enough energy to power 5.8 million households. Un-
der conservative estimates, IT energy consumption
is projected to double by 2011. Only a fraction
of the electricity consumed powers IT equipment.
The rest is used by environmental control systems
such as air conditioning, (de-)humidifiers, and wa-
ter chillers, or is lost during delivery.

A key reason for inefficiency is the lack of visibil-
ity into the data center operating conditions. Con-
ventional wisdom dictates that IT equipment need
excessive cooling to operate reliably, so the AC sys-
tems are set very cool and fan speeds set high, to re-
duce the danger of hot spots. Also, when servers is-
sue thermal alarms, data centers have limited means
to diagnose and remedy the problem other than fur-
ther decreasing the temperature.

Given the data center’s complex airflow and ther-
modynamics, dense and real-time environmental
monitoring is necessary to improve energy efficiency.
The data collected can help operators troubleshoot
thermal alarms, make intelligent decisions on rack
layout and server deployments, and innovate on fa-
cility management.

Wireless sensor network technology is an ideal
candidate for this monitoring task as it is low-
cost, nonintrusive, can provide wide coverage, and
can be easily repurposed. The Data Center (DC)
Genome project—a collaborative effort with Mi-
crosoft Research—aims to understand how energy is
consumed in data centers as a function of facility de-
sign, cooling supply, server hardware, and workload
distribution through data collected from large-scale
sensor networks, and to use this understanding to
optimize and control data center resources.

4.4 Data Conservancy
Research projects have finite lifetimes and the

data products they produce need to persist long af-
ter the community of researchers have disbanded
and funding has ceased. The preservation of sci-
entific data makes scientific discovery available to
future researchers and preserves our investment in
the sciences. However, the data management com-
munity has yet to define self-sustaining preservation
data management platforms that are widely avail-
able and many critical data sets are being lost. For
example, the completed SDSS sky survey represents
8 years of telescope time and has produced more
than 4 TB of curated data. As of now, the project
is complete and scientists and staff are moving.

At JHU, we have undertaken the long-term preser-
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vation of scientific data in the Data Conservancy
project: an NSF-funded Sustainable Digital Data
Preservation and Access Network (DataNets) project.
Preservation targets include earth science, biology,
and social science data in addition to astronomy
and the SDSS. The Data Conservancy will create a
preservation environment that retains not only the
data, but the metadata and queries that express
how scientists interact with the data. Scientists now
and in the future will be able to query SDSS data to
repeat and validate previous findings and continue
the exploration of the universe.

5. RESEARCH PROJECTS
We now survey the data management techniques

inspired by the above applications.

5.1 Instrumenting the Real World with
Sensor Networks

Sensor networks deployed to collect scientific data
(e.g., [14, 16, 19]) have been shown to be plagued
with measurement faults. These faults must be de-
tected to prevent pollution of the experiment and
waste of network resources. At the same time, net-
works should autonomously adapt to sensed events,
for example by increasing sampling rates or raising
alarms. Here, events are measurements that deviate
from “normal” data patterns, yet represent features
of the underlying phenomenon, such as rain events
in the case of soil moisture measurements.

However, detection algorithms tailored to specific
types of faults lead to false positives when exposed
to multiple types of faults [6]. More importantly, al-
gorithms which classify measurements that deviate
from the recent past as faulty tend to misclassify
events as faults [6]. This misclassification is par-
ticularly undesirable because measurements from
episodic events are invaluable data for domain sci-
entists and should be given the highest priority.

In our recent work we unified fault and event
detection under a more general anomaly detection
framework, in which online algorithms classify mea-
surements that significantly deviate from a learned
model of data as anomalies [5]. We avoid misclas-
sification by including punctuated, yet infrequent
events in the training set, thus allowing the system
to distinguish faults from events of interest. Specif-
ically, we developed an anomaly detection frame-
works based on Echo State Networks as well as
Bayesian Networks and implemented these frame-
works on a mote-class device. We showed that
learning-based techniques are more sensitive to sub-
tler faults and generate fewer false positives than
the rule-based fault detection techniques.

5.2 Incremental and Model-Based
Continuous Queries

Data-driven stream processing arises naturally in
scientific applications given continuous data acqui-
sition. Here at Johns Hopkins we are studying the
incremental foundations of stream processing, and
investigating the use of mathematical representa-
tions of data in model-based stream engines.

The DBToaster [9] project investigates incremen-
tal query processing of large dynamic data work-
loads. While stream processors answer queries over
recent, contiguous windows of data streams, a dy-
namic data management system has to handle large,
arbitrarily long-lived, non-contiguous state. A dy-
namic data management system is well-suited for
streaming analysis, combining streaming data with
persistent data for example, in scientific applica-
tions, to detect stream outliers with the aid of a
historical database.

DBToaster transforms continuous queries to be
evaluated as incrementally as possible. DBToaster
applies the concept of using delta queries, as found
in incremental view maintenance, recursively, yield-
ing higher-order delta queries much as with higher-
order derivatives from calculus. By intelligently ma-
terializing and reusing higher-order deltas, we avoid
repeated computation of delta queries.

The Pulse [2] project investigates the use of piece-
wise polynomials, in a traditional stream processing
engine. The input data stream is represented as
a piecewise polynomial, while queries expressed in
a declarative first-order logic based language such
as SQL are transformed into a series of systems of
equations. Query processing then involves solving
equation systems. Streams represented by mathe-
matical models can interpolate missing data, for ex-
ample from sensor and network failures, or extrapo-
late data for predictive query processing and “what-
if” queries. Furthermore, polynomial streams are a
highly compact data representation and can often
be processed extremely efficiently.

5.3 Batch Processing: Data-Driven
Exploration and Analysis

Publicly-available data-intensive scientific services
experience a tragedy of the commons. User work-
loads are I/O bound and concurrent workloads in-
terfere with each other, creating congestion. As our
scientific data services become more popular, the
user experience inevitably degrades. Jim Gray ex-
pressed this best, in the early days of the Sloan
Digital Sky Survey, when he said, “The only things
that we have to fear are success and failure.”

The Sloan Digital Sky Survey uses data replica-
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tion, workload classification, and server storage to
handle long-running, data-intensive queries. The
Catalog and Archive Server Jobs (CasJobs) [11]
system defined a separate instance of the SDSS
database for asynchronous queries that allowed un-
restricted SQL access to the SDSS and stored query
results on server local storage for subsequent anal-
ysis. This insulated power-users from casual, inter-
active use and made long-running queries faster and
more reliable: jobs transfer results to local storage
and job completion does not rely on client-server
connectivity.

Our subsequent efforts focused on increasing the
throughput of concurrent jobs based on I/O sharing
among queries. I/O cannot be provisioned incre-
mentally to meet increased demand, e.g. by adding
servers, nor is caching effective for data-intensive
scientific queries that scan large data sets. In-
stead, we identify queries that share data, e.g. scan
the same relation, execute the queries concurrently.
For declarative Astronomy queries in which data
may be processed in any order, the LifeRaft sched-
uler [20] co-schedules queries against an ordering of
the data that maximizes data sharing. In LifeR-
aft, each data region may be accessed a single time
to compute the partial results of all queries that
use that data. The Job-Aware Workload (JAWS)
scheduler [21] extends LifeRaft in order to support
workflows in which queries exhibit data dependen-
cies. This is typical of queries to the Turbulence
Database Cluster in which the results derived from
one timestep of simulation are used as input to
the next timestep. Both LifeRaft and JAWS avoid
query starvation through adaptive and incremental
trade-offs between query throughput and response
time. Data-driven batch scheduling typically im-
proves throughput by a factor of four or more.

At present, we are collaborating with Yahoo! to
combine LifeRaft and JAWS with their work on
shared scans for Hadoop! and Pig workloads [1].

5.4 Data-Intensive Architectures
In deploying scientific databases, IDIES has de-

signed and built several data-intensive clusters. The
GrayWulf system [18] represents the evolution of
the SDSS architecture to a scalable, multi-tenant
database cluster. The name pays homage to Jim
Gray who defined this class of computing and ref-
erences BeoWulf clusters. GrayWulf provides clus-
ter management tools to manage workflows, localize
computation to data, monitor systems status, and
recover from faults. The GrayWulf system won the
Supercomputing Storage Challenge in 2008 and, as
part of that competition, demonstrated a sustained

Figure 2: Visualization of the raw data re-
turned by 3D scanners (left) and a surface
reconstruction fit to the data (right).

data rate of 70 GB/s for a parallel SQL workload.
The cost and power consumption of the Gray-

wulf scales linearly with storage size and therefore
will soon face a power consumption wall as scientific
data sets continue to increase in size. To resolve
this challenge, we recently proposed an alternative
architecture comprising large number of so-called
Amdahl blades that combine energy-efficient CPUs
with solid state disks to increase sequential read I/O
throughput by an order of magnitude while keeping
power consumption constant [17]. The same prelim-
inary study also showed that while keeping the total
cost of ownership constant, Amdahl blades offer five
times the throughput of the Graywulf system.

5.5 Fitting Models to Data: Large Surface
Reconstruction

Using state-of-the-art laser range scanners, it is
has now become possible to acquire 3D data at re-
markably high resolution. These advances in scan-
ning technology enable sub-millimeter resolution
scans from Stanford’s Digital Michelangelo Project
[10], allowing art historians to make out the de-
tails of individual chisel marks, and reason about
sculpting techniques without having to go to Flo-
rence. Similarly, with the ten centimeter resolution
LIDAR fly-by over of New York City, environmen-
talists can plan the city’s solar power capacity.

One of the challenges here is transforming the
data returned by the 3D scanner into a coherent
3D model. Specifically, fitting a water-tight surface
to the set of disjoint point-samples returned by the
scanner (see Figure 2.) Research at Johns Hopkins,
in collaboration with Microsoft Research, addresses
this challenge by reducing fitting a surface to the
scan data to solving a 3D Poisson equation [8].

To provide a tractable solution for large models,
we have developed a new multigrid technique that
supports the solution of Poisson equations formu-
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lated over an octree adapted to the scanned points.
This solver retains the benefits derived from solving
a global system (providing robustness in the pres-
ence of missing data and noise), is capable of recon-
structing models at the resolution of the input data,
and has a space/time complexity that is linear in the
size of the input. We have extended the approach
with a partial ordering of octree nodes along an axis
to provide both out-of-core [3] and distributed pro-
cessing [4]. We have reconstructed models of up to
one billion points (e.g. the David dataset from [10])
on a distributed cluster in just half a day.

6. SUMMARY
Data-intensive scientific computing has emerged

as a theme around which we can engage in outreach
for data management. We have enjoyed a rewarding
intellectual experience here at IDIES, and champion
this mode of research across the broader computer
science research community. We encourage any sci-
ence or engineering students interested in studying,
or researchers seeking collaborations on data inten-
sive challenges to explore the institute’s webpage
(http://idies.jhu.edu) and authors’ webpages,
and to contact an author via email.
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