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Wavelength-Selective Reflector Based on a Circular
Array of Coupled Microring Resonators

Joyce K. S. Poon, Student Member, IEEE, Jacob Scheuer, Member, IEEE, and Amnon Yariv, Life Fellow, IEEE

Abstract—We propose and analyze a novel type of wavelength-
selective reflector for planar lightwave technology based on a cir-
cular array of coupled microring resonators. Narrow-band reflec-
tion peaks can be achieved without the need for additional complex
lithography and processing steps. The ring resonators also allow
for simple and wide-range tuning of the reflection peak.

Index Terms—Integrated optics, microresonators, optical filters,
tunable filters.

I. INTRODUCTION

EMICONDUCTOR lasers that exhibit stable wavelengths
S and narrow bandwidths are key elements in modern op-
tical communication systems [1]. For wavelength-division-mul-
tiplexing applications, it is also desired that the laser’s wave-
length could be dynamically tuned. In most lasers, stable lasing
wavelength is achieved by employing either distributed Bragg
reflectors (DBRs) [2] or external cavities [3]-[5]. However, the
use of DBR or external cavities requires additional processing
steps that complicate the fabrication of the laser structures. In
addition, tuning the reflection wavelength of a DBR over a wide
wavelength range without deteriorating the reflection character-
istics is not trivial and requires careful design and implementa-
tion.

In this letter, we present a new type of in-plane wavelength-
selective reflector which is based on coupled microring res-
onators. In the lateral coupling scheme, the ring resonators allow
for the fabrication of a reflector in a single lithography step.
Moreover, it is possible to dynamically tune the reflection peak
simply by changing the effective index of the rings using, for
example, the thermooptic or electrooptic effect [6], [7]. While
incorporating microrings as mode filters in semiconductor lasers
with reflective end facets was recently proposed and analyzed
[8]-[10], the use of ring resonators as reflectors has not been
previously suggested or studied.

Our device consists of a circular array of N > 2 ring res-
onators coupled to a waveguide, as shown in Fig. 1. In a laser, the
waveguide will be fabricated from an optically active material,
and the other end of the waveguide can be coupled to a similar
reflector or can consist simply of a reflective facet. The circular
array can also be regarded as a “super” ring resonator formed
by a microring coupled resonator optical waveguide [11]-[13].
A wave propagating in the waveguide excites a travelling wave
inside the ring resonator array. From Fig. 1, we observe that for
an odd number of rings (N > 3), the device may act as a re-
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Fig. 1. Schematic of the reflector. (a) For an even number of rings, the device is
always transmitting. (b) For an odd number of rings, the device can be reflecting.

TABLE 1
LIST OF SYMBOLS

Symbol Significance
an,bn,cl,d, counter-clockwise propagating fields
Cn,dn,ap,, b, clockwise propagating fields
Tn field vector [a, b, c,d]n
coupling coefficient
transmission coefficient
propagation constant
gain or loss, imaginary part of 3
angle of an external vertex of an equilateral polygon

DL W+ A

flector, but for an even number of rings (N > 4), the device is
always nonreflecting.

II. TRANSFER MATRIX ANALYSIS

To analyze light propagation in the resonator array, we use
a transfer matrix formalism. The symbols used in this letter are
summarized in Table I. In the transfer matrix method, one matrix
describes the coupling of light between resonators and another
describes the wave propagation inside the resonators [13]-[16].
The forward and backward propagating field components are
defined in Fig. 2. We use the vector z,, to represent the field
components in the n — 1th ring

Tp,=[a b ¢ d~E. (1)

To describe the coupling of waves between adjacent res-
onators, we assume that the coupling length is much greater
than the wavelength of light such that only the phase-matched
waves are coupled. Hence, there is no mixing between the
clockwise and counterclockwise propagating waves, and the
coupling can be represented by a 4 x 4 matrix

Tpy1 = [{; ?D} x, = Pxl, (2a)
-t 1
P—E[_l t*}’ n >0 (2b)
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Fig. 2. Circular array of an arbitrary number of rings with the clockwise and
counterclockwise fields labeled.

where x and ¢ are the dimensionless coupling and transmission
coefficients. P is unitary such that |x|? + |¢|? = 1.
We can relate =/, and x,, with a propagation matrix such that

xl = {CST Cg} T, = Qx, (3a)
0 —iBRe
Q= |:eiﬂR(27r—6) ¢ 0 } (3b)

where [ is the propagation constant, R is the radius of the rings,
QT is the conjugate transpose of (), and f is determined from
the internal angles of the polygon whose vertices are located
at the centers of the rings. § may be complex, such that § =
negw/c + ia, to account for loss or gain. For an equilateral
polygon, 6 is

p=or - T2 )
Combining (2) and (3)
Tpi1 = [POQT POQ} Tn = Tz, (®)]

For N(N > 2) ring resonators in the circular chain, we cascade
the matrices to obtain

zy = TV 1P, (6)

Our goal is to find an expression that depends solely on =/ ,
since the components of z! will give the transfer functions of

the structure. Thus, we seek to manipulate (6) into the form
xl = B!, @)

where B is a matrix to be determined. Equation (7) also has the
form of an eigenvalue problem with an eigenvalue of one.

To begin, we note that at the first resonator, the coupling to
the external waveguide is

Tin = Pinx;n- (8)

Moreover, there are six phase relations in the first resonator

a6 — dine—’LﬁRO/Q7 d6 — ainel,3R0/2
b6 — cNelﬂR(Zﬂ—0)7 66 — bNe—z,HR(27r—6)
ay = bine” 2 dy = e P2, ©)
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We use (9) to express x and zj, in terms of elements in z;,

in (6). by and cy simplify to
(in Agye P12

by = 1 — Ayge—iBR(2m—06) N

diy Asy e~ 1BR0/2 = even (10a)
o= 1-— A326i5R(27"_6)

dinAg1e™PRII2 4 qi Agy Agye?PR(2T+0/2)
= 1= ApA
— A2 Ass _
o iy Asg BRI/ 4 (i Ay Agge—iPR(27—6/2) N = odd
Y 1 Az Ass
(10b)

where A;; is the 7jth element of A and A = TN-1P. Hence,
invoking (8), we can rewrite (6) as
MPya! = TN IPWP! (11)
where M and W express by, ¢y, by, and ¢f, using (9) and (10).
Finally, we can rewrite (11) in our desired form (7)
zl, =P *M'TVN'PWP,, 2!, = Bxl,. (12)
However, Det(W) = 0, rendering B noninvertible. This is
expected because physically the system is fully characterized
relative to a single input, so the four components of z{, are not
linearly independent variables. Thus, we have some freedom
in selecting the form of the eigenvector z/,. Assuming only a
single input, we set one of the inputs to the circular chain of rings
to zero, say a!_, and we take the transmission and reflectance

mn?

relative to ¢f . The resultant eigenvector has the form

vy =[0 b, 1 )" (13)

where d!,, is the transmission function and b}, is the reflection
function. They can be calculated by solving the matrix equation

Byo -1 b Bys
1—Byy B 1/1’1 — 1gB44
_ _Boa ! 23
1 1—Bass dm 1—-Bso

where B;; is the ijth element of B. The solution also satisfies

(14)

Bssbl,, + Baz + Baady, = 1
Biobiy, + Bis + Biadi, =0

(15a)
(15b)

ensuring that it is self-consistent with (12).

III. RESULTS AND DISCUSSION

We use (14) to compute the reflectance and transmittance
spectra of the circular array-based reflector. For an even number
of rings, the structure is verified to be purely transmitting. For
lossless rings, the even number of rings acts as an all-pass filter.
Fig. 3(a) and (b) shows the transmission and phase characteris-
tics of an array of four resonators. The interresonator coupling
is kK = —0.5¢ and the coupling between the waveguide and the
array is also kj, = —0.5¢. The radius of the rings is 100 pm
and their effective index is 1.5. The transmission drops and the
phase changes most rapidly at the resonances of the “super” res-
onator. The phase response is not strongly dependent on loss.

Fig. 3(c) and (d) shows the spectra of three coupled resonators
for various losses. The interresonator coupling is k = —0.08%
and the coupling between the waveguide and the array is ki, =
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Fig. 3. Top: (a) Transmittance and (b) phase response of an array of
four resonators for various losses. kK = —0.5¢,k;, = —0.5:. Bottom:
(c) Reflectance and (d) transmittance of an array of three resonators for various

losses. £ = —0.087,k;, = —0.53:. For both cases, r = 100 gm and
Nefr = 1.5.
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Fig. 4. Reflectance from an array consisting of three different resonators.
ri3 =130 pm, ro = 125 pm, k = —0.37, k;, = —0.85¢.

—0.53:. The radius of the rings is 100 pm and their effective
index is 1.5. The structure exhibits a narrow reflection peak
centered at 1.55 pm and its free spectral range is 2.4 nm. The
maximum reflectance achievable is inversely proportional to the
propagation loss in the rings. In general, to obtain narrow re-
flection peaks, weak interresonator coupling is required. For fil-
tering applications, the input coupling can be chosen to optimize
the flatness of the transmission and reflection spectra.

An advantage to the matrix formalism is that it can readily
deal with an array composed of an arbitrary mix of resonators
and coupling constants simply by accounting for the differences
in resonator sizes, coupling, and internal angles in the transfer
matrices. By varying the resonators, we can more finely tune
the strongly reflected frequencies. Fig. 4 shows the reflectance
spectrum for an array of three resonators in which the second
resonator is of a different size. The rings are lossless with inter-
resonator coupling of —0.3% and the coupling to the waveguide
is —0.85:. The first and third rings (using the notation in Fig. 2)

1333

have a radius of r; 3 = 130 pum, while the second ring has a
radius of o = 125 pm. The main reflection peaks are spaced
2 nm apart. However, even though the coupling coefficients are
higher than the previous example, the reflection peaks are nar-
rower than the structure composed of identical resonators with a
smaller coupling strength [as in Fig. 3(c)]. The use of different
resonators provides an additional degree of freedom to obtain
narrow reflection peaks.

IV. CONCLUSION

A circular array of ring resonators, when coupled to a
waveguide, offers a new alternative to a wavelength-selective
reflector for planar lightwave circuits. The width of the re-
flection peaks can be narrowed by decreasing interresonator
coupling or by using resonators of varying sizes. The advan-
tage of this reflector is that it can be readily fabricated in an
integrated optical circuit without any additional processing
steps. Moreover, the reflector can be made tunable by using the
thermal-optic or electrooptic effect. The device can be used as
a laser end-mirror, where the tunable and wavelength-selective
nature of the reflector can offer a stabilized yet tunable output
wavelength.
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