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The main theme of this review is the many-body physics of vortices in quantum droplets of
bosons or fermions, in the limit of small particle numbers. Systems of interest include cold atoms
in traps as well as electrons confined in quantum dots. When set to rotate, these in principle very
different quantum systems show remarkable analogies. The topics reviewed include the structure
of the finite rotating many-body state, universality of vortex formation and localization of vortices
in both bosonic and fermionic systems, and the emergence of particle-vortex composites in the
quantum Hall regime. An overview of the computational many-body techniques sets focus on the
configuration interaction and density-functional methods. Studies of quantum droplets with one
or several particle components, where vortices as well as coreless vortices may occur, are reviewed,
and theoretical as well as experimental challenges are discussed.
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I. INTRODUCTION

In recent years, advances in experimental methods in
quantum optics as well as semiconductor physics have
made it possible to create confined quantum droplets of
particles, and to manipulate them with unprecedented
control. Bose-Einstein condensates of ultra-cold atomic
gases, for example, may be set rotating either by rotat-
ing the trap, or by “stirring” the cold atoms with lasers.
These clouds of bosons are large in present day exper-
iments, but the regime of few-particle bosonic droplets
ultimately may be reached. Confined electron droplets,
on the other hand, are nowadays routinely realized as
low-dimensional nanostructured quantum dots in semi-
conductors, where the droplet size and its angular mo-
mentum can be accurately fixed by an external voltage
bias and a magnetic field, respectively. A bosonic atom
cloud in a trap, and electrons confined in quantum dots
are very different systems by nature. However, when set
to rotate, their microscopic properties show remarkable
analogies. While quantum dots are usually quasi-two-
dimensional due to the semiconductor heterostructure,
the dimensionality is reduced also in a trapped rapidly
rotating atom gas due to the centrifugal force, which flat-
tens the cloud of atoms.

The structure of a quantum state describing a rotat-
ing droplet fundamentally reflects how the system carries
angular momentum. Intriguingly, some of the underly-
ing mechanisms appear universal in two-dimensional sys-
tems regardless of the particle statistics, wave function
symmetries, and the form of the interparticle interac-
tion. For example, both bosonic and fermionic droplets
show formation of vortices in the droplet with increasing
angular momentum. Eventually, in the regime of very
rapid rotation, finite-size precursors of fractional quan-
tum Hall states with particle-vortex composites are pre-
dicted to emerge similarly in both bosonic and fermionic
systems. Due to these universalities in the structure
of the quasi-two-dimensional many-body state, rotating
quantum droplets can often be described theoretically by
similar concepts and analogous vocabulary. These analo-
gies are the main theme of this review, where boson and
fermion systems are treated in parallel and similarities
and differences between these systems are extensively dis-
cussed.

Despite the close connection between rotating cold
atom gases and electrons in nanostructured quantum sys-
tems in solids, research efforts in these fields have ad-
vanced mostly independently of each other. In this re-
view we highlight the similarities between these fields,

with the hope that it may serve as a source of inspiration
for further studies on rotating quantum systems where
complex and sometimes unexpected phenomena emerge.

A. Finite quantum liquids in traps

Confining elementary particles or indistinguishable
composite particles, such as atoms, by cavities or ex-
ternal potentials at low temperatures, one may create
finite-size quantum systems with particle numbers rang-
ing from just a few to millions. Cold atomic quantum
gases in traps and lattices, photons in cavities and elec-
trons confined in low-dimensional semiconductor nanos-
tructures are well-known examples.

1. Atoms in traps

Bose and Einstein predicted already in the 1920s the
condensation of an ideal gas of bosonic particles into
a single, coherent quantum state (Bose, 1924; Einstein,
1924, 1925). Apart from strongly interacting systems
such as liquid helium, the experimental discovery of this
phenomenon had to wait many decades, until advances in
cooling and trapping techniques for dilute atomic gases
finally made possible the observation of Bose-Einstein
condensation (BEC) in a cloud of cold bosonic alkali
atoms (Anderson et al., 1995; Cornell and Wieman, 2002;
Davis et al., 1995a,b; Ensher et al., 1996; Ketterle, 2002).
These celebrated experiments clearly marked a new era
in quantum physics combining the fields of quantum op-
tics, condensed matter physics and atomic physics. For
the physics of BEC, see for example the review arti-
cle by Leggett (2001) as well as Dalfovo et al. (1999),
the monographs by Leggett (2006); Pethick and Smith
(2002); Pitaevskii and Stringari (2003), and Inguscio
et al. (1999).

A BEC can be set rotating not only by rotating
the trap, but also by stirring the bosonic droplet with
lasers (Abo-Shaer et al., 2001; Chevy et al., 2000; Madi-
son et al., 2001, 2000), or by evaporating atoms (Engels
et al., 2003, 2002; Haljan et al., 2001) (see the discussion
in the recent review by Fetter (2009)). A weakly inter-
acting dilute system becomes effectively two-dimensional
when set rotating, making a description in the lowest
Landau level possible. We mainly restrict our analy-
sis of BEC’s in this review to this limit of quasi-two-
dimensional droplets of atoms.

More recently, superfluid states have been realized also
for trapped fermionic atoms, where fermion pairing or
molecule formation can occur in two distinct regimes de-
pending on the atomic interaction strength. Pairing can
take place in real space via molecule formation and these
composite bosons may then show Bose-Einstein conden-
sation (Greiner et al., 2003; Jochim et al., 2003; Regal
et al., 2004; Zwierlein et al., 2004). Pairing can also
occur in momentum space via formation of correlated
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Cooper pairs and the superfluid state would be analo-
gous to the Bardeen-Cooper-Schrieffer (BCS)-type of a
superconducting state (Chin et al., 2006; Zwierlein et al.,
2005). This is a relatively novel field and not treated here;
part of it has been reviewed by Giorgini et al. (2008)
and Bloch et al. (2008).

2. Electrons in low-dimensional quantum dots

Quantum dots are man-made nanoscale droplets of
electrons trapped in all spatial directions. As they show
typical properties of atomic systems, such as shell struc-
ture and discrete energy levels, they are often referred
to as artificial atoms (Ashoori, 1996). Electron numbers
in quantum dots may reach thousands. Quantum dots
are often fabricated in semiconductor materials, but the
use of graphene has also been proposed (Trauzettel et al.,
2007; Wunsch et al., 2008). These nanostructured finite
fermion systems have been studied extensively for (by
now) two decades. Several review articles, discussing the
quantum transport through quantum dots (van der Wiel
et al., 2003), electronic structure (Reimann and Manni-
nen, 2002), the role of symmetry breaking and correla-
tion (Yannouleas and Landman, 2007) as well as spin
in connection with quantum computing (Cerletti et al.,
2005; Coish and Loss, 2007; Hanson et al., 2007), were
published.

The semiconductor quantum dots discussed here are
of either lateral or vertical type. In a lateral device the
electrons in a two-dimensional electron gas are trapped
by external electrodes, while vertical dots are formed by,
e.g., etching out a pillar from a wafer containing a het-
erostructure. In both cases the motion of electrons is re-
stricted into a thin disk, with a typical radius of few tens
up to hundred nanometers, and a thickness that is often
an order of magnitude smaller. Electrons in quantum
dots can be set rotating by external magnetic fields per-
pendicular to the plane of motion. Other stirring mecha-
nisms have also been proposed, e.g. rotation in the elec-
tric field of laser pulses (Räsänen et al., 2007). Due to the
band structure of the underlying semiconductor material,
magnetic field strengths giving rise to transitions in the
electronic structure of quantum dots are orders of mag-
nitude lower than in real atomic systems, and attainable
in laboratories. Much of the information about the elec-
tronic structure must be extracted from electron trans-
port measurements (Oosterkamp et al., 1999). Direct
imaging methods of electron densities in quantum dots
have also been attempted, see for example (Dial et al.,
2007; Fallahi et al., 2005), but not yet proven equally
useful in this context.

Quantum dots in external magnetic fields have a very
close connection to quantum Hall systems, the only dif-
ference being that the quantum Hall effect is measured
in a sample of the two-dimensional electron gas (2DEG),
which is often modeled as an infinite system. Quan-
tum dots, however, are finite-size many-body systems.

FIG. 1 Examples of vortices and vortex lattices. Vortices are
ubiquitous in both classical and quantum systems: a) classi-
cal whirlpool vortex (Andersen et al., 2003), b) wake vortex
of a passing airplane wing, revealed by colored smoke (NASA
Langley Research Center, Figure ID: EL-1996-00130) c) STM-
image of an Abrikosov vortex lattice (Abrikosov, 1957) in a
type-II superconductor (Hess et al., 1989), d) vortex lattice in
a rotating Bose-Einstein condensate of 87Rb atoms (adapted
from Coddington et al. (2004)), e) cluster of vortices in the
calculated electron density of a 24-electron quantum dot, af-
ter Saarikoski et al. (2004). In panels c)-e), the vortices ap-
pear as “holes” in the particle density.

At strong magnetic fields, where electrons occupy only
the lowest Landau level, they are thus often referred to
as “quantum Hall droplets” (Oaknin et al., 1995; Yang
and MacDonald, 2002). Many concepts familiar from
the theory of the quantum Hall effect, such as the Lan-
dau level filling factor, can be generalized for these finite-
size droplets (Kinaret et al., 1992; Reimann and Manni-
nen, 2002). However, due to the presence of the exter-
nal confining potential in quantum dots, the analogy to
quantum Hall states in the infinite 2DEG is not exact
and edge effects play an important role (Cooper, 2008;
Viefers, 2008).

B. Vortex formation in rotating quantum liquids

The formation of vortices in a liquid that is set to ro-
tate is often a result of turbulent flow. In the epic poem
“The Odyssey”, Homer describes Ulysses’ encounter with
Charybdis, a monster-goddess who sucked sea water and
created a giant whirlpool (Homer, 8th century B.C.).
This early account of vortex dynamics is strikingly accu-
rate in identifying the characteristics of vortices, namely,
the rotating current of the whirlpool and the cavity at
the center of the vortex which engulfed the ships sail-
ing nearby. Homer’s description may well be illustrated
by other examples of more harmless vortices, such as
whirlpools in bathtubs where water is draining out (An-
dersen et al., 2003). Other well-known examples of vor-
tices in air include tornadoes, or wake vortices created
by an airplane wing (Figs.1(a) and (b)).
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Vortices are ubiquitous also in quantum mechanical
systems under rotation (see Figs. 1(c)-(e)). It is well
known that the magnetic field in type-II superconduc-
tors penetrates through vortex lines (Tinkham, 2004)
(see Fig. 1(c)). Superfluid 4He is another example where
vortices may form in a strongly interacting bosonic quan-
tum fluid (Williams and Packard, 1974; Yarmchuk et al.,
1979; Yarmchuk and Packard, 1982). (See also the early
work by Onsager (1949), London (1954) and Feynman
(1955), and for example the book by Donnelly (1991).)
Vortices appear as a very general phenomenon in Bose as
well as in Fermi systems with high as well as low particle
density. They may emerge for short-range interactions
between the particles, as in condensates of neutral atoms
(as shown in Fig. 1(d) for a rotating Bose-Einstein con-
densate of 87Rb atoms) or – perhaps more surprisingly
– even in electron systems with long-range Coulomb re-
pulsion, see Fig. 1(d) showing the vortices in a quantum
dot at a strong magnetic field.

1. Vortices in Bose-Einstein Condensates

For vortices in rotating Bose-Einstein condensates,
early theoretical descriptions have set focus on the
Thomas-Fermi regime of strong interactions, see for ex-
ample (Feder et al., 1999a,b; Garćıa-Ripoll and Pérez-
Garćıa, 1999; Rokhsar, 1997; Svidzinsky and Fetter,
2000), as well as weak interactions (Butts and Rokhsar,
1999; Kavoulakis et al., 2000; Mottelson, 1999). Baym
and Pethick (1996) treated vortex lines in terms of the
Gross-Pitaevskii approach, and later on also discussed
the transition to the lowest Landau level when the rota-
tion rate was increased (Baym and Pethick, 2004).

Intense experimental research efforts were made to ob-
serve vortices in rotating clouds of bosonic atoms, see
e.g., the early experimental work by Matthews et al.
(1999), as well as Madison et al. (2000), Abo-Shaer et al.
(2001), Engels et al. (2003, 2002), and Schweikhard et al.
(2004). For recent reviews, we refer to the articles by Fet-
ter (2009), as well as Bloch et al. (2008).

In weakly interacting and dilute systems, an effective
reduction of dimensionality can for example be caused by
rotation as a simple consequence of the increase in angu-
lar momentum. Due to the reduction in dimensionality,
phase singularities, i.e., nodes in the wave functions, be-
come important.

With increasing angular momentum, one finds succes-
sive transitions between patterns of singly-quantized vor-
tices, arranged in regular arrays. In finite-size systems,
so-called “vortex molecules” are formed, in much anal-
ogy to finite-size superconductors (Milosevic and Peeters,
2003).

There exist many analogies of a rotating cloud of
bosonic atoms with (fractional) quantum Hall physics
(Cooper and Wilkin, 1999; Ho, 2001; Viefers et al., 2000;
Wilkin et al., 1998). This in fact may also give important
theoretical insights into the regime of extreme rotation

which has not yet been achieved experimentally. (For
related reviews, see Cooper (2008); Viefers (2008) and
Fetter (2009)).

2. Vortices in quantum Hall droplets

Vortices have been an integral part of the theory of
quantum Hall states in the 2D electron gas since the
proposal of the Laughlin state (Laughlin, 1983). They
emerge also in quantum dots (Saarikoski et al., 2004;
Toreblad et al., 2004) at strong magnetic fields, and close
connections of these vortices to those that can be found
in rotating bosonic systems have been established (Borgh
et al., 2008; Manninen et al., 2005; Toreblad et al., 2004,
2006). The vortex patterns in quantum dots depend on
the strength of the external magnetic field, and on in-
tricate details of particle interactions (Saarikoski et al.,
2004; Tavernier et al., 2004).

In the regime of slow rotation, vortices (except those
originating from the Pauli principle) are not bound to
particles and form charge deficiencies in the density dis-
tribution, which may localize to structures in the par-
ticle and current densities that resemble the aforemen-
tioned vortex molecules or regular vortex arrays in rotat-
ing Bose-Einstein condensates (Manninen et al., 2005;
Saarikoski et al., 2004, 2005b). The emergence of vor-
tices that carry the angular momentum of the droplet is
manifest in the structure of the many-body states. For
fermions they may be described as hole-like quasiparti-
cles (Manninen et al., 2005). When the number of vor-
tices increases with the angular momentum, the electrons
and vortices may form composites well known from the
theory of the fractional quantum Hall effect, see for ex-
ample Jain (1989) or Viefers (2008).

3. Quantum Hall regime in bosonic condensates

In quantum dots, the fractional quantum Hall regime
with a high vortex density can be readily attained at
high magnetic fields. For the case of rotating cold
atom condensates, despite extensive experimental stud-
ies (Coddington et al., 2003; Schweikhard et al., 2004),
this regime of extreme rotation is not yet within easy
reach. Very recently, however, it was suggested to ex-
ploit the equivalence of the Lorentz and the Coriolis force
to realize “synthetic” magnetic fields in rotating neutral
systems, which could be a very important step forward
in the efforts to realize BEC’s at extreme rotation (Lin
et al., 2009). To date, experiments with rotating BEC’s
are only able to access states where the number of vor-
tices is relatively small compared to the number of par-
ticles (Abo-Shaer et al., 2001; Engels et al., 2003, 2002;
Fetter, 2009; Madison et al., 2000; Matthews et al., 1999;
Schweikhard et al., 2004). A high vortex density cre-
ates a highly correlated state. Counterparts of typi-
cal quantum Hall states, such as the bosonic Laughlin
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state and other incompressible states, as well as states
having non-Abelian particle excitations, are predicted
to emerge (Cooper and Wilkin, 1999; Lin et al., 2009;
Viefers, 2008; Wilkin et al., 1998). Compared to the
quantum Hall systems in the 2D electron gas, rotating
cold-atom condensates offer a high level of tunability
since particle interactions and trap geometries can be
easily modified. This makes bosonic quantum Hall states
an extremely interesting field of research (Cooper, 2008;
Viefers, 2008).

4. Self-bound droplets

A common feature of all the systems discussed above is
that the particles are bound by an external confinement,
which often can be approximated to be harmonic. Nu-
clei, helium droplets and atomic clusters provide other in-
teresting finite quantum systems where rotational states
have been studied. These systems are self-bound due
to attractive interactions between (at least some of) the
components.

Rotational states, shape deformations and fission of
self-bound droplets are interesting topics in their own
right. However, while in a harmonic confinement the
fast rotation causes the droplet to flatten into a quasi-
two-dimensional circular disk, this is usually not the case
in self-bound clusters, where the rotation can be ac-
companied with a noncircular deformation, often a two-
lobed or even more complicated shape (Hill and Eaves,
2008). Eventually this can lead to a fission of the droplet
to smaller fragments, preventing the occurrence of very
large angular momenta and vortex formation. In the case
of nuclei, the rotational spectrum is usually related to
deformation (Bohr and Mottelson, 1975). Nevertheless,
the possibility of vortex-like excitations has also been dis-
cussed, see (Fowler et al., 1985), and nuclear matter is
expected to carry vortices in neutron stars (Baym et al.,
1969; Link, 2003).

The only small self-bound system where vortices are
likely to occur, is a helium droplet. Grisenti and Toen-
nies (2003) indicate that anomalies in their cluster beam
experiments could be caused by vortex formation. How-
ever, no clear experimental evidence of vortex formation
in small helium droplets has yet emerged, while theo-
retical studies suggest that vortices form in 4He nan-
odroplets (Lehmann and Schmied, 2003; Mayol et al.,
2001; Sola et al., 2007). The properties of helium nan-
odroplets have been recently reviewed by Barranco et al.
(2006).

C. About this review

The main concern of this review are the struc-
tural properties of the many-body states of small two-
dimensional quantum droplets, where rotation induces
strong correlations and vortex formation. The direct con-

nections between bosonic and fermionic systems, as well
as finite-size quantum droplets and infinite quantum Hall
systems are recurrent themes. Other reviews complement
our work by taking different approaches: We refer to Fet-
ter (2009) for a review of rotating BEC’s especially in the
regime which is accessible with present day experimental
setups, and to Viefers (2008) for a review which focuses
on the quantum Hall physics in rotating BEC’s. An-
other recent review by Cooper (2008) describes rotating
atomic gases in both the mean-field and the strongly cor-
related regimes. A review on the many-body phenomena
and correlations in dilute ultra-cold gases that also dis-
cusses rotation, was recently published by Bloch et al.
(2008).

Quantum dot physics is a versatile field. We refer
to Reimann and Manninen (2002) and Yannouleas and
Landman (2007), as well as van der Wiel et al. (2003) and
Hanson et al. (2007) for reviews on the electronic struc-
ture and spin-related phenomena. Vortices in supercon-
ducting quantum dots have also been much discussed in
the literature, but are not treated here. We instead re-
fer the reader for example to the more recent articles by
Baelus et al. (2001), Baelus and Peeters (2002), Baelus
et al. (2004) and Grigorieva et al. (2006).

We begin this review in Sec. II by introducing basic
concepts to characterize the many-body states of rotating
systems. Section III discusses some of the computational
many-body methods used. Section IV discusses vortex
formation in rotating quantum liquids which are com-
posed of one type of particles (or one spin component),
while Section V is concerned with coreless vortices in
multi-component systems. We conclude the review and
discuss possible future challenges in Sec. VI.

(Unless stated otherwise, equations are presented in SI
units whereas most results of calculations are in atomic
units.)

II. MANY-BODY WAVE FUNCTION

In the following, we briefly describe concepts and meth-
ods to analyze the internal structure of the many-body
states, such as pair-correlation functions and conditional
probabilities. We then proceed to show the connections
between boson and fermion states, and particle-hole du-
ality that treats vortices as hole-like quasi-particles. We
finally give a brief overview of the connections to the
quantum Hall physics in the (infinite) two-dimensional
electron gas.

A. Model Hamiltonian

1. Rotating quantum droplets of bosons

Clouds of bosonic condensates are usually confined by
a harmonic trap that extends in all three spatial dimen-
sions. An axisymmetric rotation with frequency Ω leads
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to centrifugal forces which flatten the density by extend-
ing the radial size of the system, while the cloud con-
tracts in the axial direction. The ratio between the ax-
ial thickness Rz and radial thickness R⊥ of the rotating
cloud, i.e., the aspect ratio, can be calculated within the
Thomas-Fermi approximation (Fetter, 2009)

Rz
R⊥

=

√
ω2
⊥ − Ω2

ωz
, (1)

where ωz and ω⊥ are the radial and axial trapping fre-
quencies, respectively. Imaging of the condensate (Ra-
man et al., 2001; Schweikhard et al., 2004) confirms that
the rotation reduces the aspect ratio effectively.

With the trap rotating at an angular velocity Ω, in
the laboratory frame of reference the problem is time-
dependent. One thus conveniently introduces a rotating
frame at the angular velocity Ω, in which the (now time-
independent) Hamiltonian contains an extra inertial term
−ΩL, where L is the total angular momentum operator.

In the case of circular symmetry of the 2D system, for
its rotation around the z-axis, the angular momentum
operator L = Lz commutes with the Hamiltonian. We
may write

HΩ = H − ΩLz, (2)

where the many-body Hamiltonian in the rotating frame
is

H =

N∑
i=1

(
p2
i

2m
+ Vext(ri)

)
+
∑
i<j

V (2)(ri − rj) . (3)

Here Vext is the trapping potential that is usually har-
monic with oscillator frequency ω,

Vext =
1

2
mω2r2 , (4)

and V (2) is the two-body interaction between the trapped
atoms.

The ground states of Hamiltonian Eq. (2) are then
angular momentum eigenstates of Hamiltonian Eq. (3)
which have the lowest energy at some finite frequency of
rotation Ω.

The effective interaction between the bosons is often
assumed to be a contact interaction of zero range,

V (2)(ri − rj) =
1

2
g
∑
i 6=j

δ(ri − rj) , (5)

where g = 4π~2a/M , with atom mass M and a being
the scattering length for elastic s-wave collisions between
the atoms. In the regime of weak interactions, gn �
~ω, where n is the particle density and ~ω the quantum
energy of the confining potential. In a rotating system,
the problem becomes effectively two-dimensional when
gn is much smaller than the energy difference between
the ground and first excited state for motion along the
z-axis.

The single-particle energies of the two-dimensional
harmonic oscillator are ε = ~ω(2n + |m| + 1), where n
is the radial quantum number, and m the single-particle
angular momentum. In a non-interacting rotating many-
particle system, consequently, the lowest-energy configu-
ration is characterized by quantum numbers n = 0, and
0 ≤ m ≤ L, where m has the same sign as the angular
momentum L. This single-particle basis is identical to
the lowest Landau level (LLL) at strong magnetic fields.
In this subspace, a configuration can be denoted by the
Fock state |n0n1n2 · · ·nm · · ·nL〉, where ni is the (here
bosonic) occupation number for the single-particle state
with angular momentum m, and m = L is the largest
single-particle angular momentum that can be included
in the basis. As the angular momentum L is a good quan-
tum number, we have the restriction

∑
mmnm = L.

For a harmonic trap, there is a large degeneracy in
the absence of interactions, which originates from the
many different ways to distribute the N bosons on the
basis states with 0 ≤ m ≤ L (Mottelson, 1999; Wilkin
et al., 1998). Interactions break this degeneracy, and a
particular state can be selected at a given L that mini-
mizes the interaction energy. With reference back to the
nuclear physics terminology, the highest angular momen-
tum state at a given energy is called the yrast state (Bohr
and Mottelson, 1975; Grover, 1967), the name originat-
ing from the Swedish word for “the most dizzy”. The line
connecting the lowest energy states in the energy-angular
momentum diagram is consequently called the yrast line.

For interacting particles, the yrast line is a non-
monotonic function of the angular momentum. At an-
gular momenta corresponding to the ground states at a
certain trap rotation frequency Ω, it shows pronounced
cusps reflecting the vortex structures of the system, as it
will become clear later on.

2. Electron droplet in a magnetic field

We focus here on droplets of electrons trapped in a
quasi-two-dimensional quantum dot (Reimann and Man-
ninen, 2002). The spatial thickness of the confined elec-
tron droplet is of the order of nanometers for typical
quantum dot samples. Electrons in quantum dots are
rotated, not by mechanical stirring, but instead by ap-
plying an external magnetic field perpendicular to the
dot surface (i.e. along the z-axis) quite analogously to
the circular motion in a cyclotron.

A droplet of electrons in a quantum dot can be modeled
using an effective-mass Hamiltonian in the x-y–plane,

H =

(
N∑
i=1

(−i~∇i + eA)2

2m∗
+ Vext(ri)

)
+

e2

4πε

∑
i<j

1

rij
,

(6)
where N is the number of electrons, m∗ and ε are the ef-
fective mass and dielectric constant of the semiconductor
material, A is the vector potential of the magnetic field,
B = ∇ × A, and the Zeeman term has been omitted.
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The external confining potential Vext is usually parabolic
to a good accuracy (Matagne et al., 2002). The single-
particle states in the external harmonic potential Eq. (4)
are known as Fock-Darwin states (Darwin, 1930; Fock,
1928). At strong magnetic fields the magnetic confine-
ment dominates over the electric confinement, and the
Fock-Darwin states bunch to Landau levels, as described
above for the case of rotation. The LLL is then the most
important subspace for ground state properties of the
system.

Using a symmetric gauge A = B(yêx−xêy)/2 the first
term in the Hamiltonian (6) can be expanded to give two
terms that are proportional to the magnetic field. The
diamagnetic term is scalar, e2B2/(8m∗)(x2 + y2), and
the other, the paramagnetic term, is proportional to the
z-component of the angular momentum e~/(2m∗i)Br ×
∇ = e/(2m∗)BLz. The scalar term depends on the
square radius from the center of the droplet and describes
the squeezing effect of the magnetic field. The latter term
lowers the energy of the states that circulate in the di-
rection of the cyclotron motion, and favours alignment of
the magnetic moment parallel to the external magnetic
field. By combining the diamagnetic term in the Hamil-
tonian Eq. (6) with the external confining potential and
writing the paramagnetic term as e/(2m∗)BLz = ΩLz
we see directly that, except for the Zeeman term and
the type of interparticle interactions, the Hamiltonian
is exactly the same as that for a rotating bosonic sys-
tem (3). The rotation corresponds to a magnetic field
strength of B = (2m∗Ω/e)êz in a weaker confinement
V ′ext = 1

2m
∗(ω2

0 −Ω2)r2. This constitutes a close analogy
between systems in mechanical rotation and systems of
charged particles in a perpendicular magnetic field.

3. Role of symmetry breaking

Even though the microscopic Hamiltonian often obeys
certain symmetries, such as rotation and translation,
macroscopic systems may spontaneously break these
symmetries in order to attain lower energy and higher
order. In the thermodynamic limit, mean-field theories
incorporating order parameters can describe states with
broken symmetries. However, the exact wave function of
the many-body system must always preserve the under-
lying symmetry of the Hamiltonian.

Construction of a symmetry-broken state and a sub-
sequent restoration of symmetry has been proposed to
construct wave functions in rotating, correlated many-
particle systems (Yannouleas and Landman, 2007). By
construction, this approach focuses on the role of particle
ordering in the confining trap potential. On the other
hand, small perturbations in the symmetric potentials
can be used to probe the internal structure of the many-
body states. For vortices in small quantum droplets,
this may be achieved effectively by using point perturba-
tions, or deforming the external field slightly (Christens-
son et al., 2008b; Dagnino et al., 2009a,b; Parke et al.,

2008; Saarikoski et al., 2005b).

B. Vortices in the exact many-body wave function

Vortices in a complex-valued wave function are as-
sociated with phase singularities. They are manifested
through a phase change of a multiple of 2π in every
path encircling the singularity. The phase is not defined
at the singularity, which means that the wave function
must vanish at this point. The particle deficiency in the
vicinity of the singularity gives rise to the vortex core.
Different types of phase singularities can be recognized:
(i) those which are related to the antisymmetry of the
fermion wave function, (ii) those which are largely inde-
pendent of particle positions and may be called isolated
or free vortices (and occur for bosonic as well as fermionic
systems in a rather similar way), and (iii) those which
are attached to particles to form a bound system, i.e., a
“composite” particle.

1. Pauli vortices

Exchange of two identical, indistinguishable bosons or
fermions can change the wave function of the system at
most by a factor C = ±1 so that Ψ(. . . , ri, . . . , rj , . . . ) =
CΨ(. . . , rj , . . . , ri, . . . ). In the 2D plane, making two ex-
changes (with a total phase change of 2π) is equivalent to
rotating the particles in-plane with respect to each other.
In the LLL this phase change implies that there is a vor-
tex attached to the electron (see Fig. 3b below). This
vortex (related to the fermion antisymmetry) is called a
“Pauli vortex” (or as in quantum chemistry, also the “ex-
change hole”). As a trivial consequence, a delta-function
type interparticle interaction does not have any effect on
fermions with the same spin.

2. Off-particle vortices

Vortices that are not attached to any particles are
called “off-particle” vortices. These elementary excita-
tions may occur in boson as well as in fermion systems.

For the two-dimensional electron gas, off-particle vor-
tices have been extensively studied in connection with the
quantum Hall effect, both for the bulk and in finite-size
quantum dots. The connection between the wave func-
tion phase and the vorticity in such systems can most
easily be seen by using the vector potential A(r) of the
magnetic field, that couples to the momentum operator
in the Hamiltonian, Eq. (6). A finite magnetic field leads

to an extra phase change of ∆θ = e/~
∫ B

A
A(r) · dr when

the electron moves from A to B. In a closed path in the 2D
plane the phase shift must be 2πl, where l is an integer,
which causes the magnetic field to penetrate the 2D plane
as vortices carrying magnetic flux quanta Φ0 = h/e. The
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integer l is called the winding number or vortex multi-
plicity (l = 0 means no vortex).

3. Particle-vortex composites

When the total angular momentum (and thus also the
number of vortices) increases, the correlations favour the
attachment of additional vortices to the particles. This is
well established in the 2DEG, where it leads to Laughlin
type quantum Hall states at high magnetic fields. These
states are discussed in Sec. II.E below. Analogous Laugh-
lin states are predicted to form also in rotating bosonic
systems (Cooper and Wilkin, 1999; Cooper et al., 2001;
Wilkin and Gunn, 2000; Wilkin et al., 1998). In general,
the wave function antisymmetry requires that fermions
must have an odd number of vortices attached to them,
while bosons have an even number of vortices.

In multi-component systems particle deficiency asso-
ciated with off-particle vortices in one component may
attract particles of other components. In finite-size quan-
tum droplets this is usually energetically favourable. The
structures that form are called “coreless vortices”, since
vortex cores are filled by another particle component, but
the singularities in the phase structure remain. Coreless
vortices will be analyzed further in Sec. V.

C. Internal structure of the many-body states

The exact many-particle wave-function is in many
cases known only as a numerical approximation, with the
complexity growing exponentially with the particle num-
ber N . Its dimensionality must be reduced to allow visu-
alization of the correlations and phase structures, since
symmetries of the underlying Hamiltonian often hide the
internal structures in the exact many-body state. Thus,
pair-correlation functions and reduced wave functions are
often applied. The former has been a standard tool in
many-body physics for many years. The latter, on the
other hand, is more suitable to visualize the phase struc-
ture of the wave function and its singularities.

1. Conditional probability densities

The pair-correlation function is a conditional probabil-
ity density describing the probability of finding a particle
at a position r when another particle is at a position r′.
For systems with only one kind of indistinguishable par-
ticles, one may write

P (r, r′) = 〈Ψ | n̂(r)n̂(r′) | Ψ〉 (7)

=

∫
|ψ(r, r′, r3, · · · , rN )|2dr3 · · · drN

where | Ψ〉 is the many-body state, n̂ the density oper-
ator and ψ the many-body wave function. For particles
with spin (or another internal degree of freedom, as for

example in the case of different particle components),
labeled by an index σ, the pair-correlation function is
correspondingly defined as

Pσ,σ′(r, r
′) = 〈Ψ | n̂σ(r)n̂σ′(r

′) | Ψ〉, (8)

where n̂σ and n̂σ′ are the density operators for the com-
ponents.

In a homogeneous system P depends only on the dis-
tance |r− r′| while in a finite system this is not the case.
Instead, one has to choose a reference point r′ around
which the pair-correlation function may then be plotted
as a function of r. The details of the pair-correlation in
finite systems are very sensitive to the selection of this
reference point. The inherent arbitrariness in choosing
the off-centered fixed point must be taken care of by sam-
pling over a range of values for r′ to allow any reasonable
interpretation. Usually, a position that does not coin-
cide with any symmetry point and where the density of
the system is at a maximum, gives the most informative
plot. Note, however, that in fermion systems the pair-
correlations at short distances are strongly dominated
by the exchange-correlation hole of the probe particle,
which may complicate the analysis.

2. One-body density matrix

The one-body reduced density matrix is defined as

n(1)(r, r′) = 〈Ψ|ψ̂†(r)ψ̂(r′)|Ψ〉, (9)

where ψ̂† and ψ̂ are field operators (with given statistics),
creating and annihilating a particle. The eigenfunctions
ψi and eigenvalues ni of the density matrix are solutions
of the equation∫

dr′n(1)(r, r′)ψ∗i (r′) = niψ
∗
i (r). (10)

For a noninteracting system, the eigenfunctions are sim-
ply the single-particle wave functions, while the eigenval-
ues give the occupation numbers. For interacting bosons,
it is suggestive that the exact eigenstate corresponding
to the highest eigenvalue (n1) of the density matrix plays
the role of a “macroscopic wave function” (order param-
eter) of the Bose condensate. This connection was es-
tablished already many decades ago in the context of off-
diagonal long-range order (Ginzburg and Landau, 1950;
Landau and Lifshitz, 1951; Penrose, 1951; Penrose and
Onsager, 1956; Pethick and Smith, 2002; Pitaevskii and
Stringari, 2003; Yang, 1962). For a discussion of frag-
mentation (Leggett, 2001) in this context, see for exam-
ple Baym (2001), Mueller et al. (2006) and Jackson et al.
(2008).

Since the eigenstates of the density matrix can be
complex, their phase can show singularities as they are
characteristic for vortices. However, the density matrix
bears the same symmetry as the Hamiltonian and, con-
sequently, so do its so-called “natural orbitals” ψ∗i (r). In
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a circular confinement, the eigenfunctions of the density
matrix can thus only show an overall phase singularity at
the origin, but not at the off-centered vortex positions.

In a study of vortex formation in boson droplets this
problem has been circumvented by adding a quadrupole
perturbation to the confining potential (Dagnino et al.,
2009a,b, 2007). Indeed, then the positions of all vortices
are seen as phase singularities of the complex “order pa-
rameter” ψ∗1(r). With a related symmetry breaking of
the external confinement, the vortices may also be seen
as minima in the total particle density (Dagnino et al.,
2007; Saarikoski et al., 2005a; Toreblad et al., 2004), and
as circulating currents as shown for example in Fig. 29
below.

3. Reduced wave functions

Pair-correlation functions smoothen out the finer de-
tails of the many-particle wave function. As real-valued
functions, they are not suited to probe the phase struc-
ture, and zeros (nodes) at the center of the vortex cores
cannot be directly identified either, since integrations
over particle coordinates blur their effect. The con-
cept of a reduced (or conditional) wave function has
thus been introduced to map out the nodal structure
of the wave function as a “snapshot” around the most
probable particle configuration. For fermions, reduced
wave functions were introduced in the context of two-
electron atoms (Ezra and Berry, 1983) and coupled quan-
tum dots (Yannouleas and Landman, 2000), and then
generalized to many-particle systems (Harju et al., 2002;
Saarikoski et al., 2004; Tavernier et al., 2004). The basic
idea is simple: Instead of calculating average values, the
wave function is calculated in a subspace by fixing N − 1
particles to positions given by their most probable con-
figuration r∗2, . . . , r

∗
N . The reduced wave function for the

remaining (probing) particle is then calculated at r,

ψc(r) =
Ψ(r, r∗2, . . . , r

∗
N )

Ψ(r∗1, r
∗
2, . . . , r

∗
N )

(11)

where r∗1 is the most probable position of the probe par-
ticle and the denominator is used to normalize the max-
imum value of ψc to unity. The most probable configu-
ration for fixed particles (r∗1, r

∗
2, . . . , r

∗
N ) is obtained by

maximizing the absolute square of ψc.
It is often convenient to visualize ψc(r) by plotting its

absolute value using contours, usually in a logarithmic
scale, together with its phase as a density plot. The re-
sulting diagram represents a single-particle wave function
in a selected “particle’s-eye-view” reference frame. Nodes
in the wave function can be identified as zeros in ψc(r)
associated with a phase change of integer multiple of 2π
for each path that encloses the zero. Fig. 2 demonstrates
the reduced wave function in the simple case of a two-
electron quantum dot in the spin singlet and triplet state,
respectively. One electron position is fixed, as marked by

FIG. 2 Reduced wave function of a two-electron quantum dot
in (a) the singlet and (b) the triplet states. The fixed electron
is marked by the cross to the right. The contours give the
logarithmic electron density of the probing electron and the
gray scale illustrates the phase of the wave function. The
phase jumps from 0 to 2π on the line where the scale changes
from white to darkest gray. In the singlet state, the electrons
have opposite spins and there is no vortex. In the triplet
state, the electrons have same spin and a vortex (circle with
an arrow in the direction of phase gradient) is attached on top
of the fixed electron in accordance with the Pauli principle.
Due to fermion antisymmetry the phase changes by 2π if the
probe electron is moved around the fixed electron in this case.
From (Harju, 2005).

the cross. In the singlet state, the electrons have oppo-
site spins and there is no vortex. In the triplet, a vortex
is attached to the fixed electron in accordance with the
Pauli principle.

In the case of larger particle numbers, interpretation
of the reduced wave function requires a careful analysis,
since nodes for different reference frames of fixed particles
may not coincide (Graham et al., 2003). However, local-
ized nodes can be readily identified as vortices. These
include off-particle vortices, which are associated with
holes in the particle density. Also particle-vortex com-
posites can be identified as nodes attached to the imme-
diate vicinity of particles.

The reduced wave function as defined for single-
component systems in Eq. (11) can be readily generalized
also for multi-component systems with two or more par-
ticle species distinguishable from each other. The wave
function is then a direct product of the wave functions
of different particle species. As a consequence, the re-
duced wave function can still be written as in Eq. (11), al-
though different particle species have to be distinguished.
The reduced wave function depends on the species of the
probe particle, unless the number of particles of each
species is equal. The fact that phase singularities of
one species coincide with particles of another species (see
Fig. 3c) indicates formation of coreless vortices. This is
discussed further in Sec. V. As an example, Figure 3 ex-
emplifies the appearance of the reduced wave functions
for different nodal structures, as here for fermions with
spin- 1

2 . Correlations in the many-body state can be fur-
ther studied by analysing the reduced wave function in
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FIG. 3 (Color online) Appearance of vortex structures in the
reduced wave function. The figures show details of reduced
wave functions for spin-1/2 fermions. The most probable posi-
tion of the probing particle is to the right; the contours show
the magnitude (on a logarithmic scale), and the gray-scale
shows the phase (darkest gray = 0, lightest gray = 2π). a)
An isolated, localized vortex which is not attached to any par-
ticle. b) A Pauli vortex (exchange hole) which is mandated by
the wave function antisymmetry between interchange of indis-
tinguishable fermions. c) A coreless vortex where the vortex
core of spin-down component is filled by a spin-up fermion.
d) A composite of a fermion (with a Pauli vortex) and two
additional nodes which are bound to the particle, reminiscent
of the Laughlin ν = 1

3
state. From (Saarikoski et al., 2009).

the vicinity of the most probable configuration(s).

D. Particle-hole duality in electron systems

In infinite quantum Hall liquids, particle-hole duality
can be used to study vortex formation by interpreting
holes as vortices (Burgess and Dolan, 2001; Girvin, 1996;
Shahar et al., 1996). Similar arguments for the symme-
try of particle and hole states can be used in finite-size
systems to gain insight into issues like vortex localiza-
tion and fluctuations. We will here consider polarized
electrons or, more generally, fermions of only one kind
(i.e., spinless fermions). However, much of the consider-
ations can be generalized to systems with more degrees
of freedom, such as for example, spinor gases.

In the occupation number representation, the Hamilto-
nian for interacting electrons in the lowest Landau level
can be written as

Hp =
∑
i

εic
†
i ci +

∑
ijkl

vijklc
†
i c
†
jclck , (12)

with annihilation and creation operators ci and c†i acting
on determinants of states constructed from a given single-
particle basis. Here we use the property that the occu-
pation of each state for fermions can only be zero or one.
We notice that the annihilation operator ci can be viewed
as an operator creating a hole in the Fermi sea. Formally

we can define new operators di = c†i and d†i = ci as cre-
ation and annihilation operators of the holes. Equation
(12) can then be written as a Hamiltonian of the holes.
For the lowest Landau level, considering only states with
good total angular momentum, it reduces to

Hh =
∑
i

ε̃id
†
idi +

∑
ijkl

vijkld
†
kd
†
l djdi + constant, (13)

where

ε̃i = 2
∑
j

(vijji − vijij)− εi. (14)

It is important to note that the interaction between the
holes is equal to the interaction between the particles (as-
suming normal symmetry vijkl = vklij), but the single-
particle energies of the holes are affected by the interpar-
ticle interactions. We can thus solve the many-particle
problem either for the particles, or for the holes. The use
of the holes, however, does not reduce the complexity of
the problem: The same accuracy of the solution requires
diagonalization of a matrix which has the same size for
particles or holes. However, considering holes instead of
particles provides an alternative way to understand the
localization of vortices in fermion systems (Jeon et al.,
2005; Manninen et al., 2005).

Using the above particle-hole duality picture we
can treat the off-particle vortices as hole-like quasi-
particles (Ashoori, 1996; Kinaret et al., 1992; Manninen
et al., 2005; Saarikoski et al., 2004; Yang and MacDonald,
2002). In electron systems, these vortices carry a charge
deficiency of an elementary charge e. In the particle-hole
duality picture the particles and holes (vortices) can be
treated on equal footing. They form a quantum liquid
of interacting electrons and vortices, where correlations
play an important role.

For a correct description of the internal structure of the
many-body system, we need to analyse all correlations
between the constituents of the system, i.e., particle-
particle, vortex-vortex, and particle-vortex correlations.
The relative strength of these correlations determines the
physics of the ground state. To give an example, clus-
tering of electrons to a Wigner-crystal-like “molecule”
of localized electrons is a signature of particularly strong
particle-particle correlations. Analogously, the formation
of a cluster or “molecule” of localized vortices shows the
correlations between the vortex positions. Since the vor-
tex dynamics is not independent of the electron dynam-
ics, strong correlations between electrons and vortices
may emerge, leading to the formation of particle-vortex
composites.

E. Quantum Hall states

Vorticity increases with angular momentum, leading to
the formation of particle-vortex composites at high mag-
netic fields. In the theory of the quantum Hall effect they
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were introduced to explain formation of incompressible
electron liquids at fractional filling (Jain, 1989; Laugh-
lin, 1983). However, the phenomenon is more general,
and similar in both fermion and boson systems where
vorticity is sufficiently high (Cooper and Wilkin, 1999;
Viefers, 2008; Wilkin et al., 1998).

It should be noted that the analogy between quantum
Hall states in finite-size droplets and corresponding states
in the infinite 2D electron gas is only approximate, since
the particle density inside the trapping potentials is often
inhomogeneous, and edge effects play an important role.
Nevertheless, in order to (at least approximatively) relate
the states in finite size electron droplets to those in the
infinite gas, the Landau level filling factor concept has
been generalized to finite size systems. There is obviously
no unique way to do such a generalization. However, a
definition

ν = ~
N(N − 1)

2L
, (15)

which is based on the structure of Jastrow states, has
been used in the ν < 1 regime (Girvin and Jach, 1983;
Laughlin, 1983). In large fermion systems, the filling fac-
tor becomes equal to the particle-to-vortex ratio, being
a useful quantity also to classify rapidly rotating bosonic
systems. Its relation to the fermion filling factor defined
above is modified by the absence of Pauli vortices in the
bosonic wave function.

The quantum Hall liquid is theoretically described by
the Laughlin wave function (Laughlin, 1983) with its ex-
tensions, or by the related Jain construction (Jain, 1989;
Jeon et al., 2004). These trial wave functions can be con-
structed just by using symmetry arguments without any
detailed knowledge of the interparticle interactions. It
has been shown that similar trial wave functions work
for bosons and fermions (Regnault and Jolicoeur, 2003,
2004). Below we will discuss the vortex structures of
these trial wave functions and demonstrate that one can
map the boson wave function onto the fermion wave func-
tion, allowing a direct comparison of the vortex struc-
tures in these different systems.

1. Maximum density droplet state and its excitations

When an electron droplet is placed in a sufficiently
strong magnetic field, it may polarize and the single-
particle orbitals in the lowest Landau level become singly-
occupied. (We remark that at some angular momenta,
the electrons may polarize even if the Zeeman effect
is ignored1 (Koskinen et al., 2007; Reimann and Man-
ninen, 2002)). The spin-polarized compact droplet of
electrons in the LLL, with total angular momentum
L = N(N − 1)/2, is called the maximum density droplet

1 Non-polarized states will be discussed in Sec. V.

(MDD) state (MacDonald et al., 1993). The MDD has
the lowest possible angular momentum which is compat-
ible with the Pauli principle. In the MDD, each electron
carries a Pauli vortex and the wave function can be writ-
ten as

ΨMDD =

N∏
i<j

(zi − zj) exp

[
−

N∑
i=1

r2
i /2

]
, (16)

where zj = xj + iyj , r
2 = x2 + y2 and x and y are co-

ordinates in the 2D plane. The MDD can be written
as a single-determinantal wave function; for example, for
seven particles it is |11111110000 · · · 〉, where a “1” at po-
sition i denotes an occupied state in the LLL with single-
particle angular momentum i − 1. Clearly, the MDD is
the finite-size counterpart of the integer quantum Hall
state with ν = 1.

Removing the Jastrow factor
∏

(zi−zj) (i.e., the Pauli
vortices) from the MDD in Eq. (16) leaves just a product
of Gaussians which form the non-rotating bosonic ground
state. The MDD state can therefore be interpreted as a
fermionic “condensate”-like state of particles that engulf
the flux quanta and, in effect, move in a zero magnetic
field. In this way, the MDD state with LMDD = N(N −
1)/2 is closely related to the non-rotating L = 0 state
of a bosonic system. We discuss this relation further in
Sec. II.F, where we show conceptually, that by removing
the Pauli vortices from each fermion, the wave function of
a fermion system at L is often a good approximation for
a bosonic state with angular momentum L′ = L−LMDD.

The first excitation of the MDD in the LLL can be
approximated as a single determinant where one of the
single-particle states is excited to a higher angular mo-
mentum. This state can be understood in two different
ways. It is definitely a center-of-mass excitation, since

|11 · · · 110100 · · · 〉 =

N∑
i=1

zi|MDD〉 . (17)

On the other hand, this state is also a simple single-
particle excitation where a hole enters the droplet from
the surface. This hole is associated with a phase singu-
larity in the reduced wave function.

To illustrate the nodal structure of a MDD, we show
in Fig. 4 (a), with seven particles as an example,
the reduced wave function for this state. Figure 4 (b)
shows the reduced wave function of the four-particle state
|1010101000〉 with three holes in the MDD, demonstrat-
ing that the holes localize on the sites of the “missing”
electrons, each of them carrying a vortex that is charac-
terized by zero density at the core, and the correspond-
ing phase change. It is important to note that in the
reduced wave function, only the positions of the particles
are fixed, while the vortices are free to choose their op-
timal positions. This is illustrated in Fig. 4 (c) and (d)
for a center of mass excitation: When one of the atoms
(here fixed at the vertices of a hexagon) is moved to the
center, the free vortex correspondingly moves from the
center to the hexagon.
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FIG. 4 (Color online) (a) Reduced wave function of a 7-
particle MDD-state, (b) the MDD state with three holes, and
(c), (d) MDD state with a center-of-mass excitation. The
upper panels show the phase and the lower panels the mag-
nitude of the reduced wave function. The bullets mark the
fixed particle positions.

2. Laughlin wave function

The angular momentum of a quantum Hall state in-
creases with the formation of additional vortices. When
there are three times more vortices than electrons (ν =
1/3), fermion antisymmetry is preserved if two additional
vortices (on top of Pauli vortices) are attached to each
fermion. The corresponding wave function is the cele-
brated Laughlin state

Ψm =

N∏
i<j

(zi − zj)m exp

[
−

N∑
i=1

r2
i /2

]
, (18)

where the antisymmetry of fermion wave functions re-
quires that the exponent m is an odd integer (Laughlin,
1983). The analogous wave function for a boson system
in a trap is given by even values of m. The exponent m is
related to the filling factor, ν = 1/m, and to the angular
momentum L = mN(N − 1)/2. According to computa-
tional studies that apply diagonalization schemes to the
many-body Hamiltonian (see Sec. III below), the Laugh-
lin wave function with ν = 1/3 gives a good approxi-
mation of the ground state at the corresponding filling
factors in finite-size quantum Hall droplets. We discuss
this regime of strong correlations in the context of rapidly
rotating quantum droplets in Sec. IV.F.

3. Jain construction and composite particles

The composite-fermion (CF) theory (Jain, 1989, 2007)
generalizes the Laughlin wave function to a larger set of
possible filling fractions. The basic idea is that when
an even number of vortices, or flux quanta, is bound to
electrons, these interact less as the vortices keep them
apart, i.e., the exchange hole is widened by the cores of
bound vortices. In addition, the composites move in an
effective magnetic field that is weaker than the original
one.

Formally, the composite fermion wave function can be
written as (Jain, 2007)

ΨCF = PLLLψS

∏
i>j

(zi − zj)m, (19)

where ψS is a single Slater determinant of single-particle
states, the product

∏
(zi − zj)m adds m vortices at each

electron and the operator PLLL projects the wave func-
tion to the lowest Landau level. If ψS is taken to be the
MDD, Eq. (16) and Eq. (19) lead to the Laughlin wave
function for the fractional Hall effect with filling factor
ν = 1/(m + 1) and no projection to the LLL is needed.
However, ψS is not restricted to the LLL, which allows
constructing the states along the whole yrast line. For ex-
ample, in order to get the MDD of composite particles,
we have to take for ψS a MDD of states with negative
angular momenta, which means replacing zi and zj with
their complex conjugates z∗i and z∗j in Eq. (16). Note
that the states with negative angular momenta are at
higher Landau levels. Multiplying this by

∏
(zi − zj)

2

and projecting to the LLL gives the normal MDD wave
function of Eq. (16). Wave functions between ν = 1 and
ν = 1/3 can be obtained by starting from properly chosen
Slater determinants for ψS (Jain, 2007). The projection
to the LLL, however, is the most difficult part of the Jain
construction. In practice, it can be done by replacing z∗i ’s
by partial derivatives (Girvin and Jach, 1984).

The composite fermion picture accurately describes
states at high angular momentum (L � LMDD) where
two vortices (in addition to the Pauli vortex) are at-
tached to each electron. However, for the states imme-
diately above the MDD (L ≈ LMDD) the CF theory still
requires the attachment of two vortices to each electron.
This means that the composite particle (electron and two
vortices) has to move in an effective magnetic field which
is opposite to the true magnetic field. In this case the
projection operator PLLL will remove the two vortices
(attached by the product

∏
(zi − zj)2) and leads to the

physically correct result that only one (Pauli) vortex is
attached to each electron. The true number of vortices
attached to each electron can thus be determined only
after the projection to the lowest Landau level.

Comparison with exact numerical calculations have
shown that the CF theory in the mean-field approxima-
tion does not predict all ground states correctly (Harju
et al., 1999; Yannouleas and Landman, 2007). It is possi-
ble to go beyond mean-field theory, but the price to pay
is that the beauty of not having variational parameters
in the wave function is lost (Jeon et al., 2007).

The CF theory has also been used for bosons (Cooper,
2008; Cooper and Wilkin, 1999; Viefers, 2008; Viefers
et al., 2000). In this case an odd number of vortices are
attached to each particle, i.e., the exponent m in Eq.
(19) is odd. Interestingly, the boson wave function is
constructed as a product of two antisymmetric fermionic
wave functions. The composite fermion picture natu-
rally predicts a close relation between the bosonic and
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fermionic states along the yrast line, discussed in the next
section.

F. Mapping between fermions and bosons

In the Laughlin state, the difference in angular momen-
tum between the boson and fermion states equals that of
the maximum density droplet, since trivially,

N∏
i<j

(zi − zj)m =

N∏
i<j

(zi − zj)
N∏
i<j

(zi − zj)m−1. (20)

As long as the single-particle basis is restricted to the low-
est Landau level, a similar transformation can be used to
add a Pauli vortex to each bosonic particle, i.e., by mul-
tiplying the boson wave function with the determinant of
the MDD,

Ψfermion =

N∏
i<j

(zi − zj)Ψboson. (21)

This transformation is valid, in addition to the Laughlin
states, also for the Jain construction. It is expected that
the same mapping is a good approximation for any many-
particle state in the lowest Landau level (Ruuska and
Manninen, 2005).

The accuracy of the boson-fermion mapping has been
studied in detail by computing the overlaps between the
exact fermion wave function, and the wave function ob-
tained by transforming the exact boson state to a fermion
state using Eq. (21) (Borgh et al., 2008). At high an-
gular momenta where the particles localize, the mapping
becomes exact, while at small angular momenta the map-
ping is justified by the small number of possible configu-
rations in the LLL. It is important to note that the free
vortices of the bosonic system stay as free vortices also in
the fermionic state. Only the Pauli vortices which local-
ize at the particle positions are added. After transform-
ing the bosons to fermions, particle-hole duality allows
a detailed study of the vortex structure of the bosonic
many-body wave function.

Figure 5 shows the calculated overlap between the
transformed boson state and the exact fermion state as a
function of the total angular momentum for eight parti-
cles. The transformation described by Eq. (21) does not
always result in the ground state of the fermion system
at given angular momentum. Instead, it may be one of
the low-lying excitations and, consequently, the overlap
drops to zero in these cases, as shown in Fig. 5. More-
over, the complexity of the wave function increases, while
overlaps of the transformed wave function with the true
fermion ground states tend to decrease with the number
of particles N .

Figure 6 illustrates the effect of the mapping for a
droplet with N = 20 particles in a harmonic trap at
angular momenta where three free vortices form. The

FIG. 5 Overlap between the fermion ground state and the
transformed boson ground state as a function of the total
angular momentum, for eight particles. From (Borgh et al.,
2008).

radial density profile of the bosonic state shows a mini-
mum at the expected radial distance. When the bosonic
state is transformed to a fermionic one, its radial den-
sity expands and becomes nearly identical to the exact
density of the corresponding fermion system. The map-
ping allows to study the internal structure of the vortex
lattice in the particle-hole duality picture: Figure 6 also
shows the particle-particle and vortex-vortex correlation
functions, indicating similar localization of three vortices
in both cases.

The simple mapping of Eq. (21) is computationally
demanding when the particle number increases. This is
due to the fact that every configuration of the boson
wave function fragments to numerous fermion configu-
rations. A simpler mapping was suggested by Toreblad
et al. (2004) with a one-to-one correspondence between
each boson and fermion configuration in the few-body
limit. This mapping captures the most important con-
figurations, but could not give as good overlaps.

The above transformation, Eq. (21), can be general-
ized to two-component quantum droplets. The trans-
formation Lboson = Lfermion − LMDD would attach a
Pauli vortex to each boson. It is apparent that fermion
states with Lfermion < LMDD cannot have bosonic coun-
terparts in the LLL. Nevertheless, suggestive analogies
in the (coreless) vortex structures between bosonic and
fermionic states have been obtained in the few-particle
limit (Koskinen et al., 2007; Saarikoski et al., 2009).

III. COMPUTATIONAL MANY-BODY METHODS

The complexity of the many-body wave function grows
exponentially with the particle number N , which makes
computational studies indispensable. We here give a brief
overview of the central methods used in the computa-
tional approaches to physics of rotation in both bosonic
and fermionic systems, and their applicability to small
droplets. As it is often the case for approximate ap-
proaches, the methods presented here have their limits
of usability – no “universal” method exists which is su-
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FIG. 6 Mapping between boson and fermion states. The up-
per panels show the particle density of 20 bosons (a) and
fermions (b) with Coulomb interactions, in the region of three
vortices as a function of the radial distance of the droplet
center. For bosons, the density of the mapped fermion sys-
tem is shown as a dashed line. The lower panels show in
coulmn (c) the particle-particle pair-correlations determined
from the fermion wave functions. The position of the ref-
erence point is marked by the arrow at the bottom of the
exchange-correlation hole. In column (d) the corresponding
vortex-vortex pair-correlations are shown.

perior to the others in capturing the essential physics in
all parameter regimes.

The exact diagonalization or so-called configuration in-
teraction (CI) method does not introduce any approxi-
mations to the solution of the Schrödinger equation apart
from a cut-off in the used basis set. Therefore it is ide-
ally suited to analyse correlations in the system. This
method is, however, limited to relatively small particle
numbers. Mean-field and density-functional methods are
often needed to complement data for larger systems. In
the density-functional approach, correlation effects are
usually incorporated using local functionals of the spin
densities. The method is able to reveal some of the under-
lying correlations in the system, but local approximations
may fail to describe properly the complex particle-vortex

correlations and formation of particle-vortex compos-
ites (Saarikoski et al., 2005b). In the following, we draw
upon the analogies between (a conventionally fermionic)
density-functional theory and the Gross-Pitaevskii ap-
proach for bosons. We finally summarize the configura-
tion interaction method for the direct numerical diago-
nalization of the many-body Hamiltonian.

Rather generally, the ground-state energy of an inter-
acting many-body system trapped by an external poten-
tial Vext(r) can be written as a functional of the particle
density n(r), summing up the kinetic, potential and in-
teraction energy contributions,

E[n(r)] = T0[n(r)] +

∫
dr n(r)Vext(r) + (22)

1

2

∫
dr

∫
dr′ n(r)n(r′)V (2)(r, r′) + Exc ,

where T0[n(r)] is assumed to be the non-interacting ki-
netic energy functional, the second term accounts for the
trap potential, the third term is the Hartree term for a
two-particle potential V (2), and the exchange-correlation
energy Exc is defined to include all other many-body ef-
fects.

Introducing a set of single-particle orbitals ψi(r), the
density may be expressed as

n(r) =

∞∑
i=0

fi | ψi(r) |2 , (23)

with occupancies
∑
i fi = N , following either bosonic

or fermionic statistics. One can then write the non-
interacting kinetic energy functional for the orbitals ψi
in the form

T0[n(r)] =
∑
i

fi

∫
dr ψ∗i (r)

(
−~2∇2

2m

)
ψi(r) . (24)

The crux of the matter is that Eq. (24) not necessarily
holds for the exact kinetic energy functional T [n(r)]. In
many cases there will be a substantial correlation part
in the kinetic energy functional that is not accounted
for by the expressions above. In the spirit of density-
functional theory (Dreizler and Gross, 1990), the last
term in Eq. (22), Exc, thus has the task to collect what
was neglected by this assumption, together with the ef-
fects of exchange and correlation that originate from the
difference between the true interaction energy, and the
simple Hartree term. It is important to note that the
Hohenberg-Kohn theorem guarantees that this quantity
is a functional of only the density, Exc = Exc[n(r)].

A. The Gross-Pitaevskii approach for trapped bosons

1. Gross-Pitaevskii equation for simple condensates

In the case of bosons, for a simple condensate all bosons
are in the lowest state ψ0(r) and the particle density is

n(r) = |ψ0(r)|2 = N | φ0(r) |2 (25)
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where the condensate wave function ψ0(r) is normalized
to N , and the corresponding “order parameter” φ0(r) to
unity.

By using contact interactions and ignoring the corre-
lations in Eq. (22) one obtains the well-known Gross-
Pitaevskii energy functional,

E[n(r)] =

∫
dr

[
− ~2

2m
| ∇ψ0(r) |2 (26)

+Vext(r) | ψ0(r) |2 +
1

2
g | ψ0(r) |4

]
.

Finding the ground state usually amounts to a vari-
ational procedure, i.e., independent variations of ψ and
ψ∗ under the condition that the total number of particles
in the trap is constant. For the variation with respect to
ψ∗0 ,

δ

δψ∗0(r)

[
E[ψ0, ψ

∗
0 ]− µ

∫
dr | ψ0(r) |2

]
= 0 , (27)

where the chemical potential µ plays the role of a La-
grange multiplier to fulfill the constraint. We then arrive
at the time-independent Gross-Pitaevskii equation,[
− ~2

2m
∇2 + Vext(r) + g | ψ0(r) |2

]
ψ0(r) = µψ0(r)

(28)
having the typical form of a self-consistent mean-field
equation. The corresponding N -particle bosonic wave
function is

ψ(r1, r2, ..., rN ) =

N∏
i=1

ψ0(ri) . (29)

The Gross-Pitaevskii approach, derived already in the
60’s independently by Gross (1961) and Pitaevskii
(1961), has been applied extensively for the theoretical
description of inhomogeneous and dilute Bose gases at
low temperatures2. It is often convenient to solve the
Gross-Pitaevskii equations in the imaginary-time evolu-
tion method, using a fourth-order split-step scheme (Chin
and Krotscheck, 2005).

2. Gross-Pitaevskii approach for multi-component systems

The above Gross-Pitaevskii equation for a simple
single-component Bose condensate Eq. (28) can be
straightforwardly generalized also to multiple compo-
nents of distinguishable species of particles. Let us con-
sider as an example a two-component gas of atoms of
kinds A and B, that are interacting through the usual

2 For a more detailed discussion, see for example the textbooks by
Pitaevskii and Stringari (2003) and Pethick and Smith (2002).

s-wave scattering with equal interaction strengths g =
gAA = gBB = gAB . The order parameters ψA and ψB
of the two components then play an analogous role than
the spin “up” and “down” orbitals in the spin-dependent
Kohn-Sham formalism (see Sec. III.B). The correspond-
ing Gross-Pitaevskii energy functional in the rest frame
is simply

E =
∑

σ=A,B

∫
drψ∗σ

(
−~2∇2

2M
+ Vext(r)

)
ψσ +

g

2

∫
dr
(
| ψA |4 + | ψB |4 +2 | ψA |2| ψB |2

)
(30)

where σ = {A,B} plays the role of a pseudospin 1/2. In
analogy to the single-component case described above,
we minimize the energy functional with respect to ψ∗A
and ψ∗B , which results in two coupled Gross-Pitaevskii
equations:(

p2

2M
+

1

2
Mω2r2 + g(|ψA|2 + |ψB |2)

)
ψA = µAψA(

p2

2M
+

1

2
Mω2r2 + g(|ψB |2 + |ψA|2)

)
ψB = µBψB .

Naturally, it is required that NA =
∫

dr|ψA|2 and NB =∫
dr|ψB |2, which determines the chemical potentials µA

and µB . One may choose to normalize the order param-
eter of one of the components, say B, to unity. Then, NA
is determined by the ratio NA/NB . For the total angular

momentum, L =
∫

dr(ψ∗AL̂zψA + ψ∗BL̂zψB) = LA + LB .
The above mentioned imaginary-time evolution method
is also in the multi-component case the method of choice
to numerically solve the Gross-Pitaevskii equations.

B. Density-functional approach

The density-functional theory for the solution of many-
body problems in physics and chemistry was proposed
by Hohenberg, Kohn and Sham in the 1960’s (Hohen-
berg and Kohn, 1964; Kohn and Sham, 1965). It is a
correlated many-body theory where all the ground-state
properties can in principle be calculated from the particle
density (Dreizler and Gross, 1990; Hohenberg and Kohn,
1964; Kohn, 1999; Parr and Yang, 1989). The original
density-functional theory did not take into account the
effects of a non-zero spin polarization and currents in-
duced by an external magnetic field. Since these effects
have marked consequences on the ground-state properties
of the rotating many-body systems, for a description of
quantum dots in strong magnetic fields, extensions such
as the spin-density-functional method (von Barth, 1979;
Gunnarsson and Lundqvist, 1976) and the current-spin-
density-functional method (Capelle and Gross, 1997; Ra-
solt and Perrot, 1992; Vignale and Rasolt, 1987, 1988)
were applied. For a very pedagogic review on density-
functional theory, we refer to Capelle (2006).
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1. Spin-density-functional theory for electrons

In the spin-density-functional formalism one can derive
self-consistent Kohn-Sham equations for the Hamiltonian
Eq. (6) that describes N interacting electrons in an ex-
ternal magnetic field:

∇2VH = −n/ε (31)

nσ(r) =
∑Nσ
i |ψi,σ(r)|2 (32){

1
2m∗ [p + eA(r)]

2
+ Veff,σ(r)

}
ψi,σ = εi,σψi,σ . (33)

Eq. (31) is the Poisson equation for the solution of the
Hartree potential VH, i.e. the Coulomb potential for
the electronic charge density n, where ε is the dielectric
constant of the medium. Eq. (32) determines the spin
densities, where σ = {↑, ↓} is the spin index, Nσ is the
number of electrons with spin σ, the ψi,σ’s are the one-
particle wave functions, and the summation is over the
Nσ lowest states (which here have fermionic occupancy).
In Eq. (33), the effective scalar potential for electrons

Veff,σ(r) = Vext(r) + VH(r) + Vxc,σ(r) + VZ (34)

consists of the external scalar potential Vext, the Hartree
potential VH, the exchange-correlation potential Vxc and
the Zeeman term VZ = g∗µBBsσ, where µB is the Bohr
magneton, sσ = ±1/2, B is the magnetic field and g∗ is
the gyromagnetic ratio. All the interaction effects beyond
the Hartee potential VH are incorporated in the exchange-
correlation potential Vxc. A more fundamental general-
ization of the density-functional method for systems in
external magnetic fields is the current-density-functional
method (Vignale and Rasolt, 1987, 1988), where the vec-
tor potential A is replaced by an effective vector potential
Aeff = A + Axc accounting for many-particle effects on
the current densities. In the above equations, only the
conduction electrons of the semiconductor are explicitly
included in the theory, while effects of the lattice are
incorporated via material parameters such as effective
mass, dielectric constant and effective g-factor.

Density-functional approaches are often combined with
local approximations for the exchange-correlation poten-
tial where Vxc in actual calculations is usually taken
as the exchange-correlation potential of the uniform
electron gas. In 2D electron systems, approximate
parametrizations have been calculated (Attaccalite et al.,
2002; Tanatar and Ceperley, 1989) and the approach
leads to a set of mean-field-type equations. It should
be emphasized that density-functional theory a priori is
not a mean-field method but a true many-particle theory.
Its strength is that it very often may provide accurate ap-
proximations to the ground state properties such as the
total energy with the computational effort of a mean-
field method. It is important to note that single-particle
states (Kohn-Sham orbitals) and their eigenenergies are
auxiliary parameters in the Kohn-Sham equations. How-
ever, as an approximation, the Kohn-Sham orbitals may
still be used to construct a single Slater determinant to
account for the nodal structure.

The density-functional approach in the local density
approximation, as well as the unrestricted Hartree-Fock
method, may show broken symmetries in particle and
current densities. This is often interpreted as reflec-
tions of the internal structure of the exact many-body
wave function3. However, a caveat is that implications
of symmetry-breaking patterns may in some cases yield
wrong implications of the actual many-body structure
of the exact wave function. This problem is well-known
in quantum chemistry as “spin contamination”, and we
refer to Szabo and Ostlund (1996) as well as the more
recent articles by Schmidt et al. (2008), as well as Harju
et al. (2004) and Borgh et al. (2005) for a thorough
discussion. This conceptual problem of spin-density-
functional theory often calls for an analysis by more exact
computational methods.

2. Density-functional theory for bosons

The Gross-Pitaevskii mean-field approach discussed
above certainly is the most widely used theoretical tool to
describe Bose-Einstein condensates, and has been exten-
sively applied to investigate vortex structures in rotating
systems. Clearly, it is a density-functional method based
on the functional Eq. (27) where the density is a square of
a single one-particle state, Eq. (25). However, there are
many situations where correlations determine the many-
body states, that cannot be captured by the standard
Gross-Pitaevskii approach (Bloch et al., 2008).

On the other hand, the exact diagonalization method,
which captures all correlation effects, cannot be used for
systems which consist of more than just a few particles.
A bosonic density-functional theory has been introduced
as one possible way to go beyond the mean-field approxi-
mation (Braaten and Nieto, 1997; Capelle, 2008; Griffin,
1995; Hunter, 2004; Kim and Zubarev, 2003; Nunes, 1999;
Rajagopal, 2007). For ground states this approach is not
very efficient due to a lack of nodal structure in the wave
function. This, however, is different in the case of frag-
mented or depleted condensates (Capelle, 2008; Mueller
et al., 2006).

Following the well-known Hohenberg-Kohn theorem,
the energy functional E[n(r)] is minimized by the
ground-state density. This in fact is independent of
whether the particles are bosons or fermions, and a corre-
sponding density-functional approach to bosonic systems
was more recently formulated by Capelle (2008). Tak-
ing the Exc contributions into account, the variation of
Eq. (22) adds the potential (Nunes, 1999)

Vxc =
1

ψ(r)

δExc

δψ(r)
. (35)

3 For a comprehensive discussion of this issue in the context of
quantum dots, see Reimann and Manninen (2002).
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However, ψ(r) cannot describe correctly the many-body
state, if the ground state contains “uncondensed” bosons,
or requires a macroscopic occupation of more than one
single-particle state. Capelle (2008) showed that since
the Hohenberg-Kohn theorem still holds in these cases,
the Gross-Pitaevskii equation, Eq. (28), can be more gen-
erally expressed as[
− ~2

2m
∇2 + Vext(r) +

∫
dr n(r)n(r′)V (2)(r− r′)

+
δExc[n]

δn(r)

]
ψi(r) = εi(r)ψi(r) , (36)

with the label i now running over all solutions of the
equation. The orbitals ψi do not have a simple relation
to the Gross-Pitaevskii order parameter, but they do pro-
vide the correct density via Eq. (23) with (bosonic) occu-
pancies fi of the states ψi . These equations took a form
that is indeed very familiar from the usual Kohn-Sham
equations for fermions discussed above (Capelle, 2008).
For an account of viable approximations to Exc, we refer
to Capelle (2008), as well as Nunes (1999) and Kim and
Zubarev (2003).

C. Exact diagonalization method

The configuration interaction (CI) method, also called
“exact diagonalization”, is a systematic scheme to ex-
pand the many-particle wave function. It traces back
to the early days of quantum mechanics, to the work
of Hylleraas (1928) on the Helium atom. It has been
extensively used in quantum chemistry, but nowadays
found its use also for quantum nanostructures as well as
cold atom systems. In the basic formulation of this ap-
proach, one takes the eigenstates of the non-interacting
many-body problem (called configuration) as a basis and
evaluates the interaction matrix elements between these
states. The resulting Hamiltonian matrix is then diago-
nalized.

Rules to calculate the matrix elements were originally
derived by Slater (1929, 1931) and Condon (1930), and
developed further by Löwdin (1955). We note that the
use of the term “exact diagonalization” that has been
widely adopted by the community, often replacing the
quantum-chemistry terminology of “configuration inter-
action”, might in some cases be misleading, as truly exact
results are obtained only in the limit of an infinite basis.

Consider a Hamiltonian split into two parts H = H0 +
HI , where the Schrödinger equation of the first part is
solvable,

H0|φi〉 = εi|φi〉 , (37)

and the states |φi〉 form an orthonormal basis. The so-
lution for the full Schrödinger equation can be expanded
in this basis as |ψ〉 =

∑
i αi|φi〉. Inserting this into the

Schrödinger equation

H|ψ〉 = E|ψ〉 (38)

results in

(H0 +HI)
∑
i

αi|φi〉 = E
∑
i

αi|φi〉 , (39)

or a matrix equation

(H0 +HI)α = Eα , (40)

where H0 is a diagonal matrix with 〈φi | H0 | φi〉 = εi
and the elements of HI are 〈φj |HI |φi〉. The vector α
contains the values αi. In principle, the basis {|φi〉} is
infinite, but the actual numerical calculations must be
done in a finite basis. The main computational task is to
calculate the matrix elements of HI and to diagonalize
the corresponding matrix. The convergence as a function
of the size of the basis set depends on the problem at
hand, and is of course fastest for the cases where HI is
only a small perturbation to H0.

The basic procedure is straightforward text-book
knowledge of quantum mechanics. However, one should
bear in mind that much of the state-of-the-art compu-
tational knowledge must be employed when it comes to
numerical implementations, in order to model large and
highly-correlated systems.

The usual starting point for the exact diagonalization
method is the non-interacting problem. In 2D harmonic
potentials, harmonic oscillator states - or Fock-Darwin
states of non-interacting particles in a magnetic field -
can be used to construct a suitable basis, but it can also
be optimized by using states from, e.g., Hartree-Fock or
density-functional methods (for a recent example, see the
work by Emperador et al. (2005)). For fermions, the solu-
tion is a Slater determinant formed from the eigenstates
of the single-particle Hamiltonian. The corresponding
symmetric N -boson state is a permanent. In the non-
interacting ground state, all the bosons occupy the same
state. On the other hand, fermions occupy the N lowest
states due to the Pauli principle. Due to interactions,
other configurations than the one of the non-interacting
ground state have a finite weight in the expansion of
the many-particle wave function. Often, the increasing
complexity of the quantum states with large interaction
strengths and large system sizes causes severe conver-
gence problems, where the number of basis states needed
for an accurate description of the many-body system in-
creases far beyond computational reach.

In rotating weakly-interacting systems confined by har-
monic potentials, a natural restriction of the single-
particle basis is the LLL. It provides a well-defined trun-
cation of the Hilbert space for the given value of the
angular momentum L and particle number N . The LLL
approximation in the harmonic confinement implies that
the diagonal part of the Hamiltonian is independent of
the configuration, and solving the Hamiltonian reduces to
the diagonalization of the potential energy of the inter-
particle interactions. This truncation eliminates also the
usual issue of regularization that emerges with the use
of contact forces in exact diagonalization schemes, see
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for example, Huang (1963): The direct diagonalization
of the Hamiltonian with contact interactions on a com-
plete space yields unphysical solutions unless the class of
allowed basis functions obeys special and often imprac-
tical boundary conditions (Esry and Greene, 1999). The
Hamiltonian matrix in the LLL is often sparse, and in
the limit of large N and L it is usually diagonalized in a
Lanczos scheme (Lehoucq et al., 1997).

IV. SINGLE-COMPONENT QUANTUM DROPLETS

In the following, we describe the structure of single-
vortex states and the formation of vortex “clusters” or
vortex “molecules”, as they are also often called, in
single-component systems. In the strongly-correlated
regime of rapid rotation, the increased vortex density
leads to finite-size counterparts of fractional quantum
Hall states, both with bosons and fermions. The exis-
tence of giant or multiple-quantized vortices in anhar-
monic traps is also discussed.

A. Vortex formation at moderate angular momenta

1. Vortex formation in trapped bosonic systems

Following the achievement of Bose-Einstein conden-
sation in trapped cold atom gases, experimental setups
were devised to study their rotational behavior. The first
observation of vortex patterns in these systems was made
for a two-component Bose condensate consisting of two
internal spin states of 87Rb, where the formation of a
single vortex was detected (Matthews et al., 1999). Soon
after this seminal experiment, evidence for the occur-
rence of vortices was found by literally “stirring” a one-
component gaseous condensate of rubidium by a laser
beam (Madison et al., 2000). While the vortex cores are
too small to be directly observed optically (the core ra-
dius is typically from 200 to 400 nm), vortex imaging is
possible if the atomic cloud first is allowed to expand by
turning off the trap potential (Madison et al., 2000). In
this way, regular patterns of vortices were observed in the
transverse absorption images of the rubidium condensate
(see Fig. 7). At moderate rotation, above a certain criti-
cal frequency Ωc, first a central “hole” occurred, clearly
identified as a pronounced minimum in the cross-section
of the density distribution, shown to the right in Fig. 7b).
As the rotation of the trap increases, a 2nd, 3rd and 4th
vortex penetrates the bosonic cloud. The vortices then
arrange in regular geometric patterns. Intriguingly, these
patterns coincide with the geometries of Wigner crystals
of repulsive particles, as they have been found for exam-
ple in quantum dots at low electron densities, or strong
magnetic fields (Reimann and Manninen, 2002). Vortices
with the same sign of the vorticity effectively repel each
other (see for example, Castin and Dum (1999)). This
supports the view of Wigner-crystal-like arrangement of

FIG. 7 Transverse absorption images of a Bose-Einstein con-
densate of 87Rb, stirred with a laser beam. As the rotation of
the trap increases from a) to e), a clear vortex pattern evolves.
The inset to the right of panel b) shows the cross section of
the optical density which shows a pronounced minimum at
the center. After Madison et al. (2000).

vortices, throwing an interesting light on the much de-
bated melting of the vortex lattice at extreme rotation
(see also Sec. IV.D below). The interplay between vortex-
and particle localization in a rotating harmonic trap is
further discussed in Section IV.B below.

The theory of vortices in rotating BEC’s has attracted
a lot of attention in the recent years, and much work has
been published for the Thomas-Fermi regime of strong in-
teractions, see for example, (Feder et al., 1999a,b; Garćıa-
Ripoll and Pérez-Garćıa, 1999; Rokhsar, 1997; Svidzinsky
and Fetter, 2000). In this limit, which applies to most
experiments on rotating BEC’s, the coherence length
ξ = (8πna)1/2, where n is the density and a the scat-
tering length, is much smaller than the extension of the
bosonic cloud, and some properties of the system resem-
ble those of a bulk superfluid (Baym and Pethick, 1996).
In the case of weakly interacting bosons in a harmonic
trap, however, the coherence length becomes larger than
the size of the cloud, and the interaction energy plays the
dominant role: the mesoscopic limit is reached, where
the system becomes like a quantum-mechanical Knud-
sen gas (Mottelson, 2001). In this mesoscopic limit, the
analogies between trapped bosons and quantum dots at
strong magnetic fields become apparent. This regime of
weak interactions is our primary concern in the following.

2. Weakly interacting bosons under rotation

Let us now consider a dilute system of N spinless
bosons in a harmonic trap, weakly interacting by the
usual contact force gδ(r − r0), where g = 4π~2a/M is
the strength of the effective two-body interaction with
scattering length a and atom mass M . The condition for
weak interactions is that the interaction energy is much
smaller than the quantum energy of the confining poten-
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tial, i.e.,

ng � ~ω , (41)

where n is the particle density. As explained in
Sec. II.A.1 above, requiring maximum alignment of the
total angular momentum, the relevant single-particle
states of the oscillator are those of the LLL. This ap-
proach, which has earlier proven very successful for the
description of the fractional quantum Hall regime for the
electron gas, has been introduced for bosonic systems
by Wilkin et al. (1998).

As mentioned in II.A.1, the large degeneracy origi-
nating from the many different ways to distribute the N
bosons on the single-particle states of the LLL, is lifted
by the interactions.

Identifying the elementary modes of excitation, Mot-
telson (1999) showed that besides the usual condensation
into the lowest state of the oscillator, the yrast states (i.e.
the states maximizing L at a given energy, see Sec. II.A.1)
involve additional kinds of condensations that are associ-
ated with the many different possibilities for distributing
the angular momentum on the degenerate set of basis
states in the LLL. For 1 � L � N , the yrast states
and low-energy excitations as a function of L can be con-
structed by a collective operator

Qλ =
1√

2Nλ!

N∑
p=1

zλp , (42)

with coordinates of the pth particle zp = xp + iyp.
In the case of attractive interactions, the lowest-energy

state for fixed angular momentum is the one involving
excitations of the center-of-mass of the cloud. The yrast
state is then described by | ΨL〉 ∼ (Q1)L | ΨL=0〉 (Mot-
telson, 1999; Wilkin et al., 1998).

In the case of repulsive interactions, for bosons in the
LLL at L = 0 the only possible state is the pure conden-
sate in the m = 0 single-particle orbital, thus maximizing
the interaction energy. Increasing the angular momen-
tum by one is possible via a center-of-mass excitation of
the non-rotating state. For L > 1 and L � N , the ex-
citation energies of the modes Qλ6=1 show that the yrast
states are predominantly obtained by a condensation into
the quadrupole (λ = 2) and octupole (λ = 3) modes, as
shown by Mottelson (1999).

Bertsch and Papenbrock (1999) compared these results
to a numerical computation of the yrast line. For the
harmonic trap in the lowest Landau level, the problem
can be solved straightforwardly by numerical diagonal-
ization of the Hamiltonian Eq. (3). (See the discussion
in Sec. III.C above).

The resulting yrast line decreases with increasing L
for repulsive interactions, since centrifugal forces tend to
keep the particles further apart when rotation increases
(see Fig. 8 for the example of N = 25 and N = 50
bosons). It shows a linear decrease in energy with L,
that extends up to L = N . This linearity was also

found in a study within the Gross-Pitaevskii approach
by Kavoulakis et al. (2000) (see below). The inset to
Fig. 8 shows the excitation spectra for N = 50 bosons
at angular momenta L ≤ 18. “Spurious” eigenstates oc-
cur that originate from a SO(2, 1) symmetry (Pitaevskii
and Rosch, 1998) only exciting the center-of-mass, i.e.,
the yrast spectrum at L+ 1 includes the full set of states
at angular momentum L. (These center-of-mass excita-
tions were excluded in the spectra shown in Fig. 8.) In a
harmonic confinement the center-of-mass excitations are
exactly separated from the internal excitations and they
are known to exist also in Fermi systems (Reimann and
Manninen, 2002; Trugman and Kivelson, 1985).

The lower panel in Fig. 8 shows the occupancies of the
lowest single-particle states for a N = 50 bosonic state
with angular momentum up to L = N . In agreement
with the aforementioned results of Mottelson (1999),
at small L/N the yrast states are mainly built from
single-particle states with m = 0, m = 2 and m = 3,
respectively, where m is the angular momentum of the
single-particle state (Bertsch and Papenbrock, 1999).
Approaching L/N = 1, the yrast state takes a much sim-
pler structure, with a dominant occupancy of the m = 1
single-particle orbital. At L/N = 1, a single vortex lo-
cates at the center of the cloud.

An analytic expression for the exact energies for
2 ≤ N ≤ N was conjectured by Bertsch and Papen-
brock (1999) and subsequently derived by Jackson and
Kavoulakis (2000); in atomic units it reads

εL =
1

2
N(2N − L− 2) . (43)

Smith and Wilkin (2000) derived analytically the ex-
act eigenstate as an elementary symmetric polynomial of
coordinates relative to the center-of-mass. Later, exact
yrast energies for a universality class of interactions were
derived (Hussein and Vorov, 2002; Vorov et al., 2003).
Generalizing a conjecture by Wilkin et al. (1998) for the
structure of the unit vortex at L = N ,

| L = N〉 = ΠN
p=1(zp − zc) | 0〉 (44)

where zc = (z1+z2+· · ·+zN )/N is the center-of-mass co-
ordinate, Bertsch and Papenbrock (1999) could demon-
strate that the exact wave function in the whole region
2 ≤ L ≤ N is given by

| L〉 = N
∑

p1<p2<...<pL

(zp1 − zc)

×(zp2 − zc)...(zpL − zc) | 0〉, (45)

where N is a normalization constant, and the indices
run over all particle coordinates, up to the total particle
number N .

Let us now investigate the evolution of the pair-
correlated densities, defined in section II.C.3 above.
Fig. 9 shows their contours, for N = 40 bosons with the
reference point located at a distance rA = 3`0 (chosen
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FIG. 8 Upper panel: Many-body yrast lines for N = 25 and
N = 50 spinless bosons in a harmonic confinement for angular
momenta 2 ≤ L ≤ 50. The inset shows the excitation spec-
trum for N = 50 and L ≤ 18, excluding the spurious center-
of-mass excitations, see text. From Papenbrock and Bertsch
(2001). Lower panel: Occupancies of the lowest single-particle
states of the harmonic oscillator in the lowest Landau level,
for m = 0 (diamonds), m = 1 (squares), m = 2 (circles) and
m = 3 (triangles). From Bertsch and Papenbrock (1999).
Calculations are within the lowest Landau level.

outside the bosonic cloud for clarity; `0 is the oscillator
length). Starting from a homogeneous Gaussian density
distribution at L = 0, as L/N increases, clearly the first
vortex enters the cloud from its outer parts. At L = N ,
the (azimuthally symmetric) particle density has devel-
oped a pronounced central hole, that is also apparent
from the correlation function shown in the lower right
panel of Fig. 9. The nodal pattern of this state, as probed
by conditional wave functions, clearly confirms the sim-
ple structure of the unit vortex (see e.g. the L = N = 5
state in Fig. 31). For a discussion of the low-energy exci-
tations at and around the unit vortex, we refer to Ueda
and Nakajima (2006).

Recently, Dagnino et al. (2009a,b) studied the vortex
nucleation process by calculating the density matrix ob-
tained from the CI eigenstates for a trap with a small
quadrupole deformation. A related early study was pre-
sented by Linn et al. (2001), who applied a variational

FIG. 9 Equidensity lines of the pair-correlation function
P (r, rA) for N = 40 spinless bosons at L = 28, 32, 36 and 40.
For clarity, the reference point was located outside the cloud
at rA = (3, 0). The vortex, which approaches the center from
the right with increasing L, gives rise to a pronounced min-
imum in the pair-correlation plots. From Kavoulakis et al.
(2002).

method to investigate the ground state phase diagram in
an axially asymmetric BEC. The analysis by Dagnino
et al. (2009a,b) indicated that when the rotation fre-
quency of the axially deformed trap is increased and the
system passes through the first vortex transition, two of
the “natural orbitals” of the density matrix have equal
weight. Nunnenkamp et al. (2009) also studied the noise
correlations at criticality for the elliptic trap, while Parke
et al. (2008) relate the transition to vortex tunneling in
the process of nucleation.

In the light of the above-mentioned findings, however,
it is worth noting that the overall picture strongly de-
pends on the symmetry of the chosen trap deformation,
and is further complicated by finite-size effects – the lat-
ter being an inevitable restriction in the CI method that
becomes more severe, when the angular momentum no
longer commutes with the Hamiltonian.

In the Gross-Pitaevskii approach, the vortices are di-
rectly visible in the density as well as the phase of the
order parameter, which breaks the rotational symmetry.
Butts and Rokhsar (1999) and Kavoulakis et al. (2000)
were among the first to apply this method to a weakly
interacting, dilute condensate of bosonic atoms in a ro-
tating harmonic trap. Fig. 10 shows the equidensity sur-
faces for the Gross-Pitaevskii order parameter Ψ(r) for
the states along the yrast line between L = 0 and L = N
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FIG. 10 Vortex entry for a spherical bosonic cloud at angu-
lar momenta l = L/N . Shown are the surfaces of constant
density obtained by the Gross-Pitaevskii method. The cloud
flattens with increasing angular momentum. From Butts and
Rokhsar (1999).

(Butts and Rokhsar, 1999), demonstrating how the first
vortex enters the cloud. In the non-rotating case, the
condensate forms a lump with zero angular momentum
at the center of the trap. Beyond a certain critical rota-
tion, however, the ground state becomes a vortex state
with one single-quantized vortex that manifests itself as
a central hole in the density (see l = 1.0 in Fig. 10).
The phase of the order parameter changes by 2π when
encircling this hole (see Fig. 15, upper panel, left). The
value of the critical rotation frequency depends on the
system parameters, but the angular momentum per par-
ticle l = L/N equals unity when the vortex reaches the
center. This result is also confirmed by the exact diag-
onalization calculations in the few-particle regime (see
Fig. 12a). The same mechanism of vortex entry was also
found in the Gross-Pitaevskii study by Kavoulakis et al.
(2000). In the limit of large N , Jackson et al. (2001)
compared the energies obtained in the Gross-Pitaevskii
approach to those obtained by the CI method, and found
that the mean-field results provide the correct leading-
order approximation to the exact energies within the
same subspace. For a more complete discussion of the
mean-field theory of single-vortex formation in bosonic
condensates, we refer to Fetter (2009).

3. Single-vortex states in electron droplets

Two-dimensional electron droplets in quantum dots
can be rotated by applying a perpendicular magnetic
field. The number of confined electrons, as well as the
rotation frequency can be controlled by an external gate
voltage and the field strength, respectively.

In symmetric quantum dot devices the confining poten-
tial can often be modeled accurately by a 2D harmonic
potential (Bruce and Maksym, 2000; Matagne et al.,
2002; Nishi et al., 2006). These systems would there-
fore be ideal testbeds for analysis of vorticity in rotating
fermionic systems with repulsive interactions. However,
direct experimental detection of signatures of vortex for-
mation in the electron density is very difficult due to
small charge densities inside the electron droplet, that
is often buried in a semiconductor heterostructure. At-
tempts to extract any signatures of vortex formation have
usually focused on the analysis of quantum transport

measurements (Güçlü et al., 2005; Saarikoski and Harju,
2005).

In weak magnetic fields, electron droplets in quantum
dots are composed of electrons which have their spin ei-
ther parallel or antiparallel to the magnetic field. As
the strength of the magnetic field increases, the sys-
tem gradually spin-polarizes. For details on this process
and electronic structure of quantum dots in this regime
we refer to the reviews by Kouwenhoven et al. (2001)
and Reimann and Manninen (2002). The first totally
spin-polarized state in the LLL is the maximum density
droplet (MDD) state (MacDonald et al., 1993) discussed
in Sec. II.E.1. The existence of this state was firmly es-
tablished experimentally (Oosterkamp et al., 1999) using
quantum transport measurements. When the angular
momentum is further increased with the magnetic field,
the MDD state reconstructs, and a vortex may form in-
side the electron droplet.

The breakdown mechanism of the MDD and its inter-
pretation has been one of the most discussed subjects in
the early theoretical studies of quantum dots. Many of
these works were inspired by the theory of excitations
of the quantum Hall states. MacDonald et al. (1993) as
well as Chamon and Wen (1994) discussed the possibil-
ity of edge excitations in large quantum Hall systems.
Their studies suggested that the MDD would break up
via reconstruction of the MDD edge. This possibility
was examined further by Goldmann and Renn (1999) us-
ing a set of trial wave functions which described a MDD
state surrounded by a ring of localized electrons. In
large quantum dots, density-functional studies indicated
a charge-density wave (CDW) solution along the edge
of the dot (Reimann et al., 1999) around a rigid MDD-
like dot center. These studies showed that for larger dot
sizes, a rotating single-component fermion liquid would
not develop vortex states but instead the edge of the
system would be excited around a rigid MDD-like cen-
ter. However, Hartree-Fock calculations for small elec-
tron droplets predicted that holes are created inside the
droplet that would bunch to minimize the exchange en-
ergy (Ashoori, 1996). Yang and MacDonald (2002) used
the exact diagonalization approach and also found the
MDD state unstable towards creation of internal holes in
high magnetic fields. A skyrmion type of excitation above
the MDD state was considered by Oaknin et al. (1996).
This study generalized the theory of skyrmion type of ex-
citations in the 2D electron gas (2DEG) (Ezawa, 2000)
to finite-size quantum Hall droplets, which was motivated
by localization of skyrmions in a Zeeman field. They pro-
posed a wave function whose form for large particle num-
bers is that of a mean-field type of skyrmion excitation.
(Heinonen et al., 1999) found also edge spin textures in
an ensemble density-functional approach. A skyrmion-
type spin texture can be treated as another manifesta-
tion of vorticity, as pointed out in the context of two-
component bosonic condensates, see Sec. V. For quantum
dots with four and six electrons, a recent study within the
CI method showed that meron excitations are dominant
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FIG. 11 a) Charge density (gray scale) and current den-
sity (arrows) in the maximum density droplet state of a 6-
electron droplet at magnetic field B = 9 T calculated with
the density-functional method. The angular momentum is
L = 15, and the density inside the droplet is uniform. The
solution shows also an edge current reminiscent of those in
quantum Hall states. b) The single-vortex state in the same
droplet at slightly increased magnetic field of B = 11 T with
L = 21. It shows a pronounced vortex hole in the middle
with a rotating current around it. Adapted from the results
of Saarikoski et al. (2004).

for the lowest-lying states in very small quantum dots at
strong magnetic fields (in the limit of vanishing Zeeman
coupling), see (Petkovic and Milovanovic, 2007).

Holes in the charge density were identified as vor-
tex cores in the density-functional studies of quantum
dots (Saarikoski et al., 2004) (see Fig. 11). This work
also directly showed with the configuration interaction
method that for the N = 6 case the nodal structure of
the many-body wave function revealed an isolated vortex
at the center of the dot.

These results suggested that the first magnetic flux
quantum, which penetrates the electron droplet, is a free
vortex and not bound to any particle as in the Laugh-
lin wave function. Configuration interaction calculations
for few-electron quantum dots provided further evidence
for vortex formation in few-electron systems (Manninen
et al., 2005; Tavernier et al., 2004; Toreblad et al., 2004).
In the few-electron regime, the unit vortex can be local-
ized at the center of the electron droplet, just like in the
bosonic case discussed above. In this respect the vor-
tex in few-electron droplets is a localized hole-like quasi-
particle (Manninen et al., 2005; Saarikoski et al., 2004).
However, in the full quantum mechanical picture the vor-
tex position in the electron droplet is always subject to
fluctuations as shown by the above diagonalization stud-
ies.

For bosonic systems, Bertsch and Papenbrock (1999)
suggested an ansatz (see Eq. 45) to describe a single-
quantized vortex at the center of the droplet at L/N = 1.
Following Manninen et al. (2001b) a similar approxima-
tion for the corresponding single-vortex state in fermionic

FIG. 12 Systematics of boson and fermion ground states.
When the external rotation Ω is gradually increased from zero,
a droplet of N particles goes through a series of ground states
with increasing angular momentum L. Stars mark these L
values as a function of N for a) boson droplets and b) fermion
droplets. Calculations are done with the exact diagonaliza-
tion method in the lowest Landau level approximation, and a
harmonic confining potential Eq. (4). In the fermion results in
b), the angular momentum of the maximum density droplet,
LMDD, is substracted from L. The linear N dependence of
the first (N,L)-combination in bosonic systems (red arrow)
indicates that the first L above the non-rotating state has a
central vortex. Fermionic systems with repulsive interactions
show a similar behaviour only until N = 12, where the break-
down mechanism of the MDD clearly changes (blue arrow),
and a non-localized node emerges at a finite distance from the
center. After Harju (2005) and Suorsa (2006).

droplets can be defined with L = LMDD +N ,

Ψ1v =

N∏
i=1

(zi − zc)|MDD〉, (46)

where zc is the center-of-mass coordinate, as defined
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above. When the number of electrons is large, the center-
of-mass is, with a high accuracy, at the center of the
trapping potential, and we can approximate zc = 0 and
Ψ1v =

∏
zi|MDD〉 = |0111 · · · 111000 · · · 〉 (for arbitrary

N). For a single-vortex state where the hole is not located
at the center, the wave function would be composed of
single-determinants like |11011 · · · 11000 . . .〉, where the
position of the hole determines the average radius where
the vortex is most likely to be found. The particle den-
sity has a minimum at the distance where the amplitude
of the empty single particle state has a maximum. How-
ever, even in the LLL approximation the true many-body
state is a mixture of all other determinants in the LLL
subspace, and the exact vortex position is then subject
to fluctuations. This effect can be captured by different
trial wave functions. Oaknin et al. (1995) constructed
a nearly exact wave function for the single-vortex state.
Jeon et al. (2005) could describe the vortices in the com-
posite fermion approach formulated for the hole states.
This issue is discussed further in Sec. IV.C which ad-
dresses vortex localization and fluctuations.

In a bosonic system, the yrast line has a pronounced
cusp at angular momentum L = N (see Fig. 14), corre-
sponding to a state with a single-quantized vortex at the
center of the trap. In a fermion system, however, the first
cusp of the yrast line is not necessarily a central vortex
state. Yang and MacDonald (2002) have shown that a
(vortex) hole is created at the center of the dot for low
electron numbers. When N > 13 the hole locates at a
finite distance from the center. In circularly symmetric
systems, such a delocalized node would not be associated
with the usual rotating charge current around a localized
vortex core. A qualitatively similar regime of N < 13 for
the central vortex was obtained within a spin-density-
functional analysis (Saarikoski and Harju, 2005). Cal-
culations using the “rotating electron molecule”-model
reported a lower limit, N < 7 (Li et al., 2006). In the ex-
act diagonalization studies in the LLL (Harju, 2005) the
ground-state angular momenta for the first cusp state
beyond the MDD-state shows a marked change in the
N -dependence above N = 12 (Fig. 12b). For N < 12
the node of the first cusp state is at the center of the
electron droplet as indicated by its angular momentum
L = LMDD + N . These solutions can be readily identi-
fied as vortex states. However, for N ≥ 12 the angular
momentum increase is almost independent of N , which
is an indication that the node can not reach the center
but stays delocalized close to the edge, as illustrated in
Fig. 13. This solution can also be interpreted as an edge
excitation which helps to understand why different mod-
els and methods yield seemingly contradictory results for
the MDD reconstruction, as discussed above.

The intermediate angular momentum states between
the MDD and the ∆L = N central vortex states show a
node in the wave function at a finite distance from the
center (Oaknin et al., 1995; Saarikoski et al., 2005a) that
can be interpreted as a delocalized vortex, i.e., a vortex
approaching the center from the droplet surface as in

FIG. 13 Occupations of the single-particle (Fock-Darwin)
eigenstates with angular momentum m of fermions in a har-
monic trap at ground states with L = LMDD + 13 for N = 15
(left) and N = 25 (right). Since the mean particle distance
from the center increases with m the high-N states resemble
more edge excitations than central vortex states (cf. Fig. 12).
After Suorsa (2006).

the case of Figs. 9 and 10 for bosons. Note that these
delocalized vortex states can be interpreted as center of
mass excitations, as explained in connection with Eq.
(17).

For larger electron numbers it is energetically more fa-
vorable to generate two (or even more) vortices already at
L/N = 1. In other words, the wave function shows then
two or more delocalized nodes at a finite distance from
the center at L/N = 1. This is contrary to Bose systems,
where the central vortex state is the lowest-energy state
at L/N = 1 for any particle number (see Fig. 12a and
b). Apart from this fact, vortices in both fermionic and
bosonic systems are manifest in the nodal structure of
the wave function in a very similar manner (Borgh et al.,
2008; Toreblad et al., 2004).

B. Vortex clusters and lattices

When the angular momentum of the quantum droplet
increases with rotation, additional vortices successively
enter the cloud of particles. Normally, in a harmonic
trap these vortices are all singly-quantized and arrange in
simple geometries, as it was observed for a rotating Bose-
Einstein condensate in the early experiment by Madison
et al. (2000), see Fig. 7. With increasing system size
and rotation, the vortices order in arrays that resemble a
triangular Abrikosov lattice (Abo-Shaer et al., 2001; Ho,
2001).

1. Vortex lattices in bosonic condensates

Let us begin by investigating the vortex structures
along the yrast line, i.e., let us study the states with
highest angular momentum L at a given energy. Fig-
ure 14 shows the yrast line for N = 20 bosons up to
L = 3N , calculated by exact diagonalization. The vor-
tex is located at the center when L/N = 1. The inset at
L = 20 shows the pair-correlated density for that state,
with a pronounced minimum at the origin. At angular
momenta L > N , the slope of the yrast line changes
abruptly, and the spectrum is no longer linear beyond
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FIG. 14 (Color online) Yrast line of N = 20 bosons in a har-
monic confinement, obtained by the CI method in the lowest
Landau level and for contact interactions between the bosonic
particles. The inset shows the total angular momentum of the
ground state, plotted as a function of Ω/ω. Pair-correlated
densities (renormalized in height) are shown for increasing
angular momentum per particle, l = L/N = 0.1, 1.0, 1.8,
and 2.85 (as marked by the blue triangles). The reference
point was chosen at high density for radii of order unity. Af-
ter (Christensson et al., 2008b)

the first cusp at L/N = 1. The inset in Fig. 14 shows
the angular momenta of the lowest-energy states for a
given rotational frequency Ω of the trap, that are ob-
tained by minimizing the energy in the rotating frame,
Erot = Elab − ΩL. The pronounced plateaus correspond
to stable states with vortices, that successively enter the
bosonic cloud with increasing trap rotation. Below a cer-
tain critical angular frequency, the cloud remains in the
L = 0 ground state. Beyond that frequency, the axially-
symmetric single vortex at the center becomes the ground
state, until more vortices penetrate the trap as the rota-
tion increases. In the exact results for small atom num-
bers, the vortices appear as clear minima in the pair-
correlated densities, as here shown for the example of a
two-vortex solution at L/N = 1.8, and a three-vortex
state, as here for L = 2.85, see Fig. 14. Related results
of vortex formation in small systems have for example
been studied by Barberán et al. (2006), Dagnino et al.
(2007) and Romanovsky et al. (2008).

For weakly interacting bosons, many states between
angular momenta L = N and L = N(N + 1) can be de-
scribed well with the composite particle picture (Cooper
and Wilkin, 1999; Viefers et al., 2000). Cooper and
Wilkin (1999) have shown that for most states with a
clear cusp in the yrast line, the overlaps between the ex-
act wave function and that of the Jain construction is in
general very close to one for particle numbers N ≤ 10.
Wilkin and Gunn (2000) furthermore showed that at
some angular momenta in this region, the so-called Pfaf-
fian state is a good analytic approximation for the exact
wave function.

These findings are very similar to the results of the

mean-field Gross-Pitaevskii method, where one finds suc-
cessive transitions between vortex states of different sym-
metry. With increasing angular momentum, the arrays
of singly-quantized vortices are characterized by a phase
jump of the order parameter around the density minima
at the vortex cores (Butts and Rokhsar, 1999; Kavoulakis
et al., 2000).

Figure 15 shows a schematic picture of the equiden-
sity surfaces for the unit vortex, a two-vortex and three-
vortex state in the upmost panel, as well as the contours
and the corresponding phase of the order parameter at
higher ratios l = L/N , as demonstrated by Butts and
Rokhsar (1999). At angular momenta beyond the unit
vortex, the rotational symmetry of the mean-field solu-
tions is broken. At L ≥ 1.75N the optimized Gross-
Pitaevskii wave function shows a two-fold symmetry
when the second vortex has entered the cloud, in much
similarity to the aforementioned experimental results for
87Rb (Madison et al., 2000), and in agreement with the
pair-correlated densities in Fig. 14 above. Higher rota-
tional frequencies introduce new configurations of vor-
tices. At l ≈ 2.1 there is a state with three vortices
symmetrically arranged around the center of the trap.
As l = L/N increases, more and more vortices enter
the cloud (Butts and Rokhsar, 1999; Kavoulakis et al.,
2000), and eventually the vortices arrange in a pattern
that resembles a triangular lattice (Baym, 2003, 2005;
Ho, 2001). This is in agreement with the experiments
which were able to reach and image the angular mo-
mentum regime where large vortex arrays emerge (Abo-
Shaer et al., 2001), reminiscent of the Abrikosov lattices
in type-II superconductors. Stable multiply-quantized
vortices with phase shifts larger than 2π were not ob-
tained (Madison et al., 2000) for a one-component Bose
gas in the purely harmonic trap, in agreement with the
theoretical results discussed above.

As we discussed in detail in Sec. III.A, the effective
mean-field potential in the Gross-Pitaevskii approach
may break the rotational symmetry of the Hamiltonian to
lower the energy. As a consequence, such a mean-field so-
lution for the order parameter is not an eigenstate of the
angular momentum operator and the solution may reflect
the internal symmetry of the exact quantum state. Simi-
lar behavior has been observed also in density-functional
studies of quantum dots (Reimann and Manninen, 2002),
and is further discussed also in the review by Cooper
(2008).

Figure 16 shows the expectation value of the angu-
lar momentum of a bosonic cloud as a function of the
angular velocity of the trap, as obtained from the Gross-
Pitaevskii approach (Butts and Rokhsar, 1999). The dis-
continuities in l = L/N correspond to the topological
transformations of the rotating cloud that are associated
with the occurrence of additional vortices, as discussed
above.

In the purely harmonic trap, the oscillator frequency
ω limits the angular rotation frequency Ω, see Eq. (1).
When both quantities finally become equal, the conden-
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FIG. 15 (Color online) Vortices in a rotating cloud of bosons.
Schematically shown are the vortex holes that penetrate the
boson cloud with increasing angular momentum. The lower
panel shows the phase of the order parameter, and its den-
sity contours. (The black dots indicate the vortex positions).
After Butts and Rokhsar (1999).

sate is no longer confined, and the atoms fly apart.

2. Vortex molecules and lattices in quantum dots

The close analogy between the bosonic ground state,
|N00000 · · · 〉 at L = 0, and the fermionic maximum
density droplet state, |111 . . . 111000 . . . 〉 at LMDD =
N(N − 1)/2, (see Sec. II.F) suggests that vortex lattices
may emerge also in fermionic systems to carry the angu-
lar momentum. Indeed, density-functional studies pre-
dicted the emergence of clusters or “vortex-molecule”-like
geometric arrangements of vortices inside small droplets
of electrons in quantum dots (Saarikoski et al., 2004)
when the angular momentum increases beyond the MDD.
This happens in a very similar way as in bosonic droplets
at small rotation frequencies (Toreblad et al., 2004). An
example of these vortex molecules in few-electron quan-
tum dots is shown in Fig. 17. Figure 18 shows a cluster of
14 vortices in a 24-electron quantum dot calculated with
the density-functional method in a local spin-density ap-
proximation (see Sec. III.B above). These vortices corre-
spond to off-electron nodes. The filling factor of the state
in Fig. 18 can be approximated as ν ≈ 0.63. As in the

FIG. 16 Angular momentum per particle, L/N , as a func-
tion of the rotational frequency Ω/ω of the trap. The dis-
continuities correspond to the transitions between different
symmetries. The insets show the surfaces of constant den-
sity in a spherical trap for states with two and six vortices.
γ = (2/π)1/2aN/σz, a being the scattering length and σz the
axial width of the ground state of a single particle in the trap.
From Butts and Rokhsar (1999).

FIG. 17 (Color online) Vortex molecules in a 6-electron
droplet. Charge density (gray scale) and current density (ar-
rows) show rotating currents around a) three and b) four lo-
calized vortex cores in density-functional calculations. Af-
ter Saarikoski et al. (2004).

bosonic systems vortex clusters are composed of single-
quantized vortices (Saarikoski et al., 2005b). Remark-
ably, the structure of the vortices that appear localized
on two concentric rings with four vortices on the inner,
and ten vortices on the outer “shell”, matches that of a
classical Wigner molecule with 14 electrons at the verge
of crystallization (Bedanov and Peeters, 1994). This
also holds for the three- and four-vortex solutions shown
in Fig. 17, where the triangle and square match the
three- and four-particle classical Wigner-molecule con-
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FIG. 18 (Color online) Electron density (gray scale) and cur-
rent density (arrows) in a 24-electron quantum dot calculated
with the density functional method. The solution shows a
cluster of 14 localized vortices arranged in two concentric
rings. After Saarikoski et al. (2004).

figurations.
The clustering of vortices has also been analyzed with

the CI method using reduced wave functions (see Sec.
II.C.3) in the case of few-electron circular (Saarikoski
et al., 2004; Stopa et al., 2006; Tavernier et al., 2004,
2006) and elliptical (Saarikoski et al., 2005b) quan-
tum dots. In these studies the formation of few-vortex
molecules has been found to follow a similar pattern in
both the CI method and the density functional method.

Using the idea of the Bertsch-Papenbrock
ansatz (Bertsch and Papenbrock, 1999) and assum-
ing n fixed vortex sites, we can anticipate that the single
determinant describing a vortex ring would be (Toreblad
et al., 2004)

Ψnv =

N∏
j=1

n∏
k=1

(zj−aei2πk/n)|MDD〉 =

N∏
j=1

(znj −an)|MDD〉,

(47)
where a is the radius of the ring of vortices. This wave
function is not an eigenstate of the angular momentum,
but it can be projected out by collecting the states with a
given power of a and symmetrizing the polynomial mul-
tiplying the |MDD〉:

Ψnv = an(N−K)S

 K∏
j=1

znj

 |MDD〉, (48)

where S is the symmetry operator and K determines the
average radius of the vortex ring. For example, with

FIG. 19 (Color online) Reduced wave function representation
of of the vortex structure of the model wave function Eq. (48)
for bosons and fermions (N = 7, n = 2, K = 2). The fixed
particles are shown as light dots, the current field with arrows
(logarithmic scale) and the particle density as shades of red
(light color corresponding to high density).

N = 7, K = 5 and n = 3, the most important configu-
ration is |1100011111000 · · · 〉, in agreement with the CI
calculations (in the LLL approximation) for vortex rings
by Toreblad et al. (2004). We discuss localization and
fluctuations of vortices further in Sec. IV.C.

Equation (48) also elucidates the origin of different vor-
tex types and the similarity of fermion and boson sys-
tems. The zeros of the symmetric polynomial S(

∏
znj )

give the free vortices, while the zeros of |MDD〉 give the
Pauli vortices. In a boson system, |MDD〉 is replaced
with the boson condensate |0〉 which has no zeros, and
only the free vortices appear, as illustrated in Fig. 19.

Studies of electron-vortex correlations in quantum
dots indicate that, at least in few-electron systems, the
electron-vortex separation de−v can be approximated by
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a universal quadratic function of the filling factor, de−v ∼
de−eν

2, where de−e is the average electron-electron sepa-
ration (Anisimovas et al., 2008). This shows that in the
limit of high angular momentum (low ν) electrons tend to
attract vortices closer to electron positions, which even-
tually leads to the formation of electron-vortex compos-
ites and the emergence of finite-size counterparts of the
quantum Hall states.

The “rotating electron molecule” approach (Yan-
nouleas and Landman, 2002, 2003) has also been used
to analyze correlations between particles and vortices in
electron droplets. However, this approach has been found
to underestimate electron-vortex correlations (Anisi-
movas et al., 2008) and vortex attachment to particles
in the limit of high angular momentum (Tavernier et al.,
2004).

The vortex-molecule-like characteristics of the states
are expected to vanish gradually with increasing vor-
ticity. However, exact diagonalization studies of few-
electron systems with Coulomb interactions have sug-
gested that the above-described vortex ordering into
Wigner-molecule-like shapes continues down to a filling
factor ν = 1

2 , where the electron number equals the (off-

electron) vortex number (Emperador, 2006). At ν = 1
2

the structure of the state is complex (Emperador et al.,
2005) and possible electron pairing in this regime has
been studied (Harju et al., 2006; Saarikoski et al., 2008).
This filling factor marks also the beginning of a regime
ν < 1

2 where the vortex attachment to particles becomes
pronounced (Emperador, 2006). We further discuss the
breakdown of vortex molecules and the emergence of frac-
tional quantum-Hall-liquid-like states in Sections IV.C
and IV.F, respectively.)

3. Signatures of vortices in electron transport

For quantum dots in the fractional quantum Hall
regime, where vortices have been predicted to form, elec-
tron transport measurements have revealed a rich vari-
ety of transitions associated with charge redistribution
within the electron droplet (Ashoori, 1996; Oosterkamp
et al., 1999).

Quantum dots contain a tunable and well-defined num-
ber of electrons. The electron transport experiments
in the Coulomb blockade regime at low temperatures
(around 100 mK) measure the chemical potential

µ(N) = E(N)− E(N − 1), (49)

which gives the minimum energy needed to add one more
electron to the electron droplet. Transitions in the elec-
tron transport data can be seen as cusps or jumps in
the chemical potential. Different quantum Hall regimes
can be identified from these characteristic features of the
chemical potential as a function of both the electron num-
ber and the magnetic field, see Fig. 20.

In experimental studies of vertical quantum dots, a
harmonic external potential has been found to give a

FIG. 20 Current peaks in the electron transport experi-
ments and transitions in the spin-density-functional theory
(red lines). The dashed lines denote the MDD boundaries
and the roman numerals indicate number of vortices in the
theory. After Saarikoski and Harju (2005); the experimental
data are from Fig. 2b in Ref. (Oosterkamp et al., 1999).

good approximation of the confining potential (Matagne
et al., 2002). The harmonic confinement strength ~ω0

is determined by the size of the quantum dot device,
and usually depends on the number of electrons N inside
the quantum dot. The area of the electron droplet has
been found to increase with the gate voltage suggesting
that the electron density in the droplet remains constant
(Austing et al., 1999b). Confining potentials scaling as
~ω0 ∼ N−1/4 in (Koskinen et al., 1997) or ~ω0 ∼ N−1/7

in (Saarikoski and Harju, 2005) have been used in order
to compare with experimental data.

The MDD state in quantum dots is the finite-size coun-
terpart of the ν = 1 quantum Hall state. Its existence
has been firmly established in experiments since it gives
rise to a characteristic shape in the chemical potential
at ν = 1 (Oosterkamp et al., 1999). The MDD state
assigns one Pauli vortex at each electron position giv-
ing a total magnetic flux of NΦ0. As the rotation is
further increased, the MDD reconstructs (Chamon and
Wen, 1994; Goldmann and Renn, 1999; MacDonald et al.,
1993; Reimann et al., 1999; Toreblad et al., 2006), and a
vortex enters the electron droplet. This transition oc-
curs approximately when the magnetic flux Φ = BA
through the MDD of area A exceeds (N + 1)Φ0. Sub-
sequent transitions involve an increasing number of such
off-electron vortices (Saarikoski et al., 2004; Toreblad
et al., 2004). Assuming a constant electron density in
the droplet, the change in B required for the addition of
subsequent off-electron vortices in the droplet is approx-
imately ∆B = Φ0n/N . This result can be compared to
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FIG. 21 Chemical potential of a quantum dot device with
N = 30 (upper panel) and N = 13 (lower panel) compared to
the results from the spin-density-functional theory. The ex-
perimental data are from Oosterkamp et al. (1999). Noise in
the experimental data has been reduced by using a Gaussian
filter. In the calculations the confining potential is assumed
to be parabolic with ~ω0 being 4.00 meV for N = 13 and 3.51
meV for N = 30. Finite-size precursors of different quantum
Hall states are identified. The roman numbers between the
filled triangles indicate the number of vortices inside the elec-
tron droplet predicted by the density-functional calculations.
The open triangles mark other possible transitions which are
beyond the reach of density-functional theory.

density-functional calculations, which indicates a 1/N -
dependence of the spacing between the first major tran-
sitions after the MDD state. However, the limited accu-
racy of the available electron transport data at present
does not allow to draw any more firm conclucions.

The different ground states obtained within density-
functional theory are compared to electron transport
data in Fig. 20. The transition patterns in theory and
experiment show a narrowing of the stability domain of
the MDD.

Closer examination of the chemical potential for differ-
ent N values and comparison with the mean-field results
reveal different quantum Hall regimes as the magnetic
field is increased. Fig. 21 shows the chemical potential
for N = 13 and N = 30.

The agreement with the electron transport data is
best in the vicinity of the MDD domain. Experimen-
tal data show additional features not accounted for by
the density-functional theory (open triangles in Fig. 21),

which could be attributed to correlation effects, espe-
cially a transition to partially polarized states (Oaknin
et al., 1996; Siljamäki et al., 2002). In a Quantum Monte
Carlo study by Güçlü et al. (2005) the frequency of tran-
sitions per unit of magnetic field was calculated in the
ν < 1 regime and it was found to roughly correspond to
the frequency in experiments. However, many of the cal-
culated transitions give rise to small changes in angular
momentum and energy. A direct comparison with exper-
iments is therefore difficult due to noise in experimen-
tal setups and inevitable imperfections in the samples.
Nishi and coworkers have done experimental measure-
ments and detailed modeling for few-electron quantum
dots (Nishi et al., 2006). High-accuracy electron trans-
port data that would go deep into the fractional quantum
Hall regime, are still lacking for higher electron numbers.

Magnetization measurements of quantum dots could
provide another way to probe for transitions caused by
vortex formation inside electron droplets. Observed oscil-
lations in the magnetic susceptibility χ = ∂M/∂H have
been analyzed, showing the de Haas–van Alphen effect
in large arrays of quantum dots (Schwarz et al., 2002).
However, to resolve transitions in individual states in the
regime of high angular momentum is challenging, because
the shapes of the quantum dots in the ensemble must be
sufficiently uniform, and the number of electrons in the
samples has to be small.

C. Localization of particles and vortices

We have seen above that localized vortices and vortex
molecules have been observed in rotating bosonic sys-
tems, and very similar structures were predicted to oc-
cur in rotating fermion droplets. Vortex localization can
be seen as analogous to particle localization within the
framework of the particle-hole duality picture, discussed
in Sec. II.D. We start this section by a brief discussion of
particle localization in 2D systems. Insight and concepts
derived from these studies are necessary as we proceed
to discuss the analogy between particle and vortex local-
ization.

1. Particle localization and Wigner molecules

Wigner crystallization (Wigner, 1934) has been ob-
served for electrons trapped at the surface of super-
fluid liquid helium (Andrei et al., 1991) or in a two-
dimensional electron gas in a semiconductor heterostruc-
ture (Pudalov et al., 1993). Recent addition energy
measurements of islands of trapped electrons floating on
a superfluid helium film have revealed signatures of a
Wigner-crystalline state (Rousseau et al., 2009). In the
low-density limit, the kinetic energy of the 2D electron
gas becomes very small and the interparticle interactions
dominate. The crystalline phase is expected to emerge
at the density parameter rs ≈ 37a∗B , where a∗B is the ef-
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fective Bohr radius (Tanatar and Ceperley, 1989) (rs is
a radius of a circle containing on average one electron).
This estimate is in agreement with more recent compu-
tations by Attaccalite et al. (2002, 2003).

A finite system of a few (nearly) localized electrons is
commonly referred to as a “Wigner molecule”. In small
quantum dots, these Wigner molecules take the shapes of
simple polygons, depending on the number of electrons
that can be resolved by classical electrostatics (Bedanov
and Peeters, 1994; Bolton and Rössler, 1993). In the
non-rotating case, the onset of electron localization oc-
curs already at relatively high densities rs ≈ 4a∗B (Egger
et al., 1999; Jauregui et al., 1993; Reimann et al., 2000;
Yannouleas and Landman, 2007). In this context it is
interesting to note that in small systems most of the par-
ticles localize at the perimeter of the dot. For seven elec-
trons, for example, six particles localize at the vertices
of a hexagon, with the seventh particle at the dot cen-
ter (Bolton and Rössler, 1993): the electrons along the
perimeter essentially form a 1D system where the local-
ization is even easier than in 2D (Kolomeisky and Straley,
1996; Viefers et al., 2004). Localization in the radial di-
rection takes place first followed by localization in the an-
gular direction (Filinov et al., 2001; Ghosal et al., 2006).
In small electron systems there are no true phase tran-

FIG. 22 (Color online) Pair-correlation functions of four
fermions with repulsive Gaussian interactions at four different
angular momenta L = 10, L = 18, L = 30, and L = 42, re-
spectively, showing that localization increases with rotation.
The contour plots are in the same scale to demonstrate the
expansion due to the rotation. From Nikkarila and Manninen
(2007a).

sitions and the localization of electrons increases grad-
ually with decreasing electron density (Reimann et al.,
2000). Inelastic light scattering experiments have only
been used to probe excitations of molecule-like states

in few-electron quantum dots in the high-density regime
where, however, localization has not yet occured (Kalli-
akos et al., 2008). Addition-energy spectra obtained from
Coulomb blockade experiments (Tarucha et al., 1996)
have been proposed as a direct probe for signatures of
localization (Güçlü et al., 2008). In large quantum dots,
the crystallization occurs in ring-like patterns, like the
shells of an onion (Filinov et al., 2001; Ghosal et al.,
2006). A gradual rearrangement of addition energy spec-
tra, which indicates a change in shell fillings, is then pre-
dicted to occur as the shell sizes of Wigner molecules
differ from those of non-localized electrons. However, no
experimental data yet exist in this regime.

Quantum dots are often modeled as circularly symmet-
ric and the associated quantum states and ground-state
electron densities therefore also have the same symme-
try. The localization of particles takes place in the in-
ternal frame of reference. In the laboratory frame the
localization is seen in the total density distribution only
when using approximate many-particle methods which
allow symmetry breaking, such as for example the unre-
stricted Hartree-Fock approach (Yannouleas and Land-
man, 1999). Other possibilities are to break the sym-
metry of the confining potential, as for example by an
ellipsoidal deformation (Dagnino et al., 2009a,b, 2007;
Manninen et al., 2001a; Saarikoski et al., 2005b), or to
analyze localization of the probing particle in the reduced
wave function (Harju et al., 2002; Saarikoski et al., 2004).
However, there are other straightforward methods to see
the localization in exact calculation for circular confine-
ment: Figure 22 shows the pair-correlation function (con-
ditional probability) for four particles at different values
of the total angular momentum. Clearly, when the angu-
lar momentum increases, the particles are further apart
and the localization becomes more pronounced. Another
possibility is to study the rotational many-particle en-
ergy spectrum, which is more intricate, but also more
revealing.

2. Rotational spectrum of localized particles

When the particles are localized, we may consider
the system as a rotating “molecule” with a given point
group symmetry. In the case of two identical atoms in
a molecule the rotational spectrum shows a two-fold pe-
riodicity in the angular momentum, which may be odd
or even depending upon whether the atoms are bosons
or fermions (Tinkham, 1964). Similarly, for N identical
particles forming a ring, only every Nth angular momen-
tum is allowed (Koskinen et al., 2001) in a rigid rotation
around the symmetry axis. For other angular momenta,
the rotational state should be accompanied by an inter-
nal excitation. In the case of particles having no internal
degrees of freedom (no spin), the only such excitations
are vibrational modes of the molecule. Group theory
can then be used to resolve the vibrational modes which
are allowed to accompany a certain angular momentum
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eigenvalue (Koskinen et al., 2001; Maksym, 1996; Viefers
et al., 2004).

Plotting the energies of the many-body system as a
function of the angular momentum, the lowest energy
(yrast line) has oscillations with a period of the symme-
try group. The minima correspond to pure rotational
states. Between the minima the states have vibrational
excitations which increase the energy. Maksym showed
that the energy spectrum of few electrons at high an-
gular momenta can be quantitatively explained by a ro-
tating and vibrating Wigner molecule (Maksym, 1996)
which is the basis for the molecular approaches to cor-
relations in quantum dots (Maksym et al., 2000) and
quantum rings (Koskinen et al., 2001). Several other
studies have later confirmed this observation, for a re-
view see Viefers et al. (2004). This molecular approach
for rotating particles has also been used by Yannouleas
and Landman (2002, 2003), who introduced “rotating
electron molecule” wave functions to describe rotating
molecular states at high angular momenta. These wave
functions are available in analytic form, with their inter-
nal structure constructed by placing Gaussian functions
at classical positions of electrons in high magnetic fields.

Formulating a molecular model of a rotating system,
we may approximate the many-particle spectrum (at zero
magnetic field) by

E =
L2

2IL
+
∑
ν

~ωLν
(
nν +

1

2

)
, (50)

where IL is the moment of inertia of the Wigner molecule
and ωLν the vibrational frequencies. IL and ωLν can
be determined using classical mechanics in the rotating
frame, and thus depend on the angular momentum as in-
dicated with the subscript L. The eigenenergies Eq. (50)
can be compared to those calculated from the exact di-
agonalization method.

To give an example for the signatures of localization in
the many-body energy spectra, Fig. 23 shows the rota-
tional three-particle spectrum. A broad range of low-
lying states may be described quantitatively with the
rotation-vibration model of Eq. (50). Figure 23 also
shows examples of the pair-correlation functions for a
purely rotating state and for a state including vibrational
modes. Similar observations have been reported for other
vibrational modes and particle numbers (Maksym et al.,
2000; Nikkarila and Manninen, 2007a). A more detailed
quantum-mechanical analysis of the molecular states has
recently also been reported by Yannouleas and Landman
(2009).

Finally, we should consider what happens to the ro-
tational energy spectrum when the particles have inter-
nal degrees of freedom, say spin. In the classical limit,
the internal degrees of freedom separate from the spatial
excitations (vibrations), since the Hamiltonian is spin-
independent. The different spin-states of the system will
eventually become degenerate. However, the existence of
the different spin states will give more freedom to satisfy
the required symmetry (bosonic or fermionic) of the total

FIG. 23 Classical orbits and pair-correlation functions of lo-
calized electrons in rotating frame (upper panel). At angular
momentum L = 24 the lowest energy state is purely rotational
while at L = 25 a doubly excited rotational state is shown.
In the rotating frame the classical motion shows a pseudo-
rotation (middle left) while the pair-correlation shows max-
ima at the classical turning points (middle right).The spec-
trum (lower panel) compares the exact energies (dots) with
those of the classical model (squares). It shows a period-
icity of ∆L = 3 in angular momentum, which agrees with
the localization in a triangular geometry (see upper panel).
The horizontal dashed lines indicate the center-of-mass exci-
tations which occur at all angular momenta. From Nikkarila
and Manninen (2007b).

wave function. Again, group theory can be used to de-
termine the spin states which are allowed for a given an-
gular momentum and a given vibrational state (Maksym,
1996). The energies agree well with the classical model
of Eq. (50) (Koskinen et al., 2007).

The localization of the particles may in fact also be
incomplete. This is indicated by the non-vanishing par-
ticle density in between the classically localized geome-
tries, as well as small deviations in the symmetry of the
Wigner crystal. Especially the excited quantum Hall
states (edge states) may show such structures, as dis-
cussed already in connection with vortex formation, see
Sec. IV.A. The lowest-lying excitations of a large elec-
tron droplet above the MDD state have been predicted to
show particle localization into rings of electrons around a
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compact non-localized core of the MDD electrons (Cha-
mon and Wen, 1994; MacDonald et al., 1993). The wave
functions of these states contain a single node at a fi-
nite distance from the center (i.e., a non-localized vor-
tex, see Sec. IV.A.3) which leads to a separated ring of
localized electrons at the edge, often referred to as the
Chamon-Wen edge, that has been much discussed in the
literature (Goldmann and Renn, 1999; Manninen et al.,
2001a; Reimann et al., 1999; Reimann and Manninen,
2002; Toreblad et al., 2006). The localized edge state
appears when the MDD begins to break up with the en-
trance of the first vortex, but before further vortex holes
penetrate the cloud (see Sec. IV.C.4). It should be noted
that the current-spin-density functional theory (Vignale
and Rasolt, 1987, 1988) with the local density approxima-
tion (Reimann et al., 1999) largely over-emphasizes the
localization of electrons in the Chamon-Wen edge (Tore-
blad et al., 2006).

3. Localization of bosons

In a non-rotating condensate, all bosons may occupy
the same quantum state. In the regime of high angu-
lar momenta, however, rotation may induce localization
in bosonic systems in the same way as in fermionic sys-
tems. In both cases, the rotation pushes the particles
further apart, and the classical picture of a rotating and
vibrating Wigner molecule (Maksym, 1996) sets in. The
similarity of bosons and fermions in reaching the clas-
sical limit was suggested by Manninen et al. (2001b)
on the basis of Laughlin’s theory (Laughlin, 1983) of
the fractional quantum Hall effect, and has been subse-
quently studied more quantitatively: a detailed compar-
ison of few bosonic and fermionic particles in a harmonic
trap (Reimann et al., 2006a) indicated similar localiza-
tion effects in both systems. Note that for small par-
ticle numbers in the LLL, the mapping between boson
and fermion states, discussed in Section II.D, becomes
increasingly accurate when the angular momentum in-
creases (Borgh et al., 2008), in accordance with the clas-
sical interpretation of the spectrum.

4. Vortex localization in fermion droplets

There is an apparent analogy between vortex local-
ization and particle localization: we have seen above
that localized vortices cause minima in the electron den-
sity, with rotational currents around their cores. These
“holes” arrange in vortex molecules, with shapes that in-
deed resemble those of Wigner molecules in the case of
particle localization, discussed in Sec. IV.C.1. (Note that
the Pauli vortices do not give rise to vortex structures in
the electron density, since each electron carries one such
vortex).

The vortex localization can be illustrated by the config-
uration mixing of the exact quantum states. If the config-

uration has, say, four vortices and |11110000111111 · · · 〉
has the largest weight, other configurations with the same
angular momentum, like |11101001011111 · · · 〉, have a fi-
nite weight. The CI method shows that the mixing of
these states happens mostly around the holes in the filled
Fermi sea, as indicated in Fig. 24. This means that the
holes are strongly correlated and may localize. This can

FIG. 24 Electron-electron pair-correlation functions showing
localization of four vortices (left) and localization of electrons
at the edge of the cloud in the case of one vortex (right).
White color means high density, and some constant-density
contours are shown. The two most important configurations
are given in each case, demonstrating that mixing of single-
particle states close to holes leads to hole localization, while
correspondingly the mixing of particles localizes particles.
The results are calculated with the CI method for 20 particles
with angular momenta L = 202 (left) and L = 242 (right).

be directly compared to the localization of particles. As
discussed further in Sec. IV.C.1, the lowest-lying excita-
tions of a large electron droplet above the MDD state
were predicted to show particle localization into ring-like
geometries, with a single vortex hole at a finite distance
from the center (see Sec. IV.A.3). In this case, the config-
uration mixing is shifted to the outer edge of the droplet
where it leads to a ring of strongly correlated particles,
as for example seen in Fig. 24.

The localization of particles and vortices in a circu-
lar system breaks the internal symmetry (unless a single
vortex is localized at the center). The density functional
method, using a local approximation for the exchange-
correlation effects, may show the localization of particles
and vortices directly in the particle and current densi-
ties (see Fig. 18 and discussion of symmetry breaking
in Sec. II.A.3), as discussed above. However, the true
many-body wave function of the system must have the
symmetry of the Hamiltonian. Figure 24 already demon-
strated that the localization of vortices can be seen in the
pair-correlation functions by taking the reference point
to be at the same radius as the vortices. Moreover, in
a one-component fermion system, particle-hole duality
(see Sec. II.D) can be used to gain insight into corre-
lations between vortices. Transformation of a bosonic
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wave function to a fermionic one can be used to illus-
trate the vortex localization. Any fermion state can be
written as a determinant of the MDD times a symmetric
polynomial, where vortex structures are included in the
latter (Manninen et al., 2005). On the other hand, this
polynomial is a good approximation to the exact boson
wave function, as discussed in Sec. II.F.

Figure 25 shows examples of the particle-particle and
hole-hole correlation functions which indeed reveal that
vortices in both boson and fermion systems are well local-
ized. This can be understood by considering the angular

FIG. 25 (Color online): Pair-correlation functions for large
fermion and boson systems with four vortices. The pair-
correlation function of the MDD is displayed for comparison;
it only shows the exchange-correlation hole at the reference
point.

momentum of the system of holes, and the correspond-
ing filling factor of the LLL. For example, in the case of
four vortices, the hole filling factor is as low as about 1/9,
which corresponds to the value where the particles form a
Wigner solid in an infinite system. In other words, when
the electron filling factor approaches unity (from below),
the hole filling factor approaches zero, forcing the holes
to be localized.

Hole-hole correlations in Fig. 25 show clearly the ef-
fect of the zero-point fluctuation in the vortex position.
To examine this further in the case of fermions, let us
as an example investigate the singly-quantized vortex for
six electrons in a harmonic confinement. As discussed
earlier in Sec. IV.A.3 the MDD state in this case, with
angular momentum L = 15, is characterized by a rela-
tively flat electron density. The electrons occupy the six
lowest levels of angular momentum in the lowest Lan-
dau level with occupancies |11111100 . . .〉. When the an-

FIG. 26 (Color online) Upper panel: Radial electron densities
in a harmonic trap (ω = 1) in a six-electron droplet with a
central vortex at L = 21 (in harmonic oscillator units). The
exact solution in the LLL is shown by the blue line, a single-
determinant wave function which describes a central vortex is
shown by the red line, and a single-determinant wave function
in the center-of-mass (CM) transformed coordinates zi → zi−
zCM is shown by the green line. Lower panel: Radial electron
densities for central vortex states L = LMDD + N , showing
that vortex localization increases with electron number N due
to decrease in the center-of-mass motion.

gular momentum increases, at stronger magnetic fields
the MDD state is reconstructed and a vortex hole is cre-
ated in the center. This state has angular momentum
L = 21. The single-particle determinant |011111100 . . .〉
with a weight 0.91 yields the largest contribution to the
wave function in the lowest Landau level. Due to fluctua-
tions, the exact many-body wave function includes other
single-particle determinants corresponding to L = 21,
such as |1011110100 . . .〉 and |11011100100 . . .〉. However,
since their weights are relatively small, the state can be
characterized by a rather flat maximum density droplet
configuration with a vortex hole in the center. The elec-
tron density of this state, indeed, shows a deep hole in
the center and a rotating current around it (upper panel
of Fig. 26). Fluctuations in the vortex position cause
the particle density to remain finite in the center of the
confining potential. A single-determinant wave function
|01111100 . . .〉 transformed into the center-of-mass coor-
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FIG. 27 (Color online) Fermion low-energy spectrum for 20
particles. The lowest energy many-particle states as a func-
tion of the total angular momentum (yrast states) are con-
nected with lines to guide the eye. A smooth function of
angular momentum was substracted from the energies to em-
phasize the oscillatory behavior of the yrast line. The period-
icity of the oscillation reveals the number of localized vortices
as schematically illustrated. From Reimann et al. (2006b).

dinates zi → zi−zCM shows a density profile that is very
close to the exact results (upper panel of Fig. 26). The
quantum mechanical zero-point motion of the vortex hole
leads to a finite density at the vortex core. The center-of-
mass fluctuations decrease with electron number, which
is reflected by localization increasing with particle num-
ber (lower panel of Fig. 26).

5. Vortex molecules

A section of the many-particle energy spectrum for
N = 20 electrons for different angular momenta L is
shown in Fig. 27 (Reimann et al., 2006b). The yrast line
shows periodic oscillations, with the oscillation length (in
units of L) equal to number of localized vortices in the
system. The reason behind these periodic oscillations in
the energy spectrum is deeply connected with the above-
mentioned particle-hole duality and vortex localization:
they are signatures of two, three, and four vortices, re-
spectively, being localized at the vertices of simple poly-
gons with C2v symmetry. For polarized fermions as in
Fig. 27, the rigid rotation of the vortex “molecule” with
n-fold symmetry is allowed only at every nth angular mo-
mentum, corresponding to a minimum (cusp) in the yrast
line. At intermediate angular momenta, the rigid rota-
tion is accompanied by other excitations, such as vibra-
tional modes, that result in higher energies (Nikkarila
and Manninen, 2007a). Figure 28 compares a small part
of the spectrum to that for three electrons. The marked
similarity of these spectra demonstrates not only that the
vortices are localized in a triangle, like the three elec-
trons, but also that elementary excitations of the many-
particle energy spectrum are vibrational modes of the

FIG. 28 Fermion yrast spectrum for 20 particles and three
vortices (upper panel) and 3 particles (lower panel) show both
the periodicity of ∆L = 3 associated with the three-fold ro-
tational symmetry of the vortex molecule in the former case
and electron molecule in the latter case. From Manninen et al.
(2006).

vortex-molecule.
Under certain circumstances the particle and current

densities of the (exact) many-body state may show di-
rectly the formation of vortex molecules. This may for
example be the case for a broken rotational symmetry of
the system, as for example predicted for elliptically con-
fined quantum dots (Manninen et al., 2001a; Saarikoski
et al., 2005b). Fig. 29 shows the electron density of
an elliptical 6-electron quantum dot calculated by exact
diagonalization. Two localized vortices can be identi-
fied as minima in the charge density, around which the
current shows the typical loop structure. In highly ex-
centric confining potentials, vortex structures containing
three and more localized vortices were also predicted to
form (Saarikoski et al., 2005b). The effect of fluctua-
tions in the vortex positions is clearly seen also in this
case. To some extent, electron localization is observed as
well. In this case, the wave function can be characterized
by two hole-like quasi-particles at the center of a ring
of six electrons. It should be noted that Fig. 29 shows
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FIG. 29 (Color online) Electron density (color, with red for
maximum density) and current density (arrows) of an ellipti-
cally confined 6-electron droplet with two localized vortices,
calculated by the exact diagonalization method. The con-
finement strength is ~ω0 = 5.93 meV, the eccentricity of the
elliptic confining potential δ = 1.2 and the magnetic field is
B = 17 T. Inset: profile of the electron density at the longest
major axis shows fluctuations in the vortex positions, which
causes electron density to remain finite at the density minima.
Adapted from Fig. 6 in (Saarikoski et al., 2005b).

the exact particle density, and not the mean-field particle
density. Since elliptically deformed quantum dots have
been realized experimentally (Austing et al., 1999a) this
may be the most direct way to image vortex structures
in quantum dots. Localized vortex structures have been
predicted to emerge also in other quantum dot geome-
tries (Marlo-Helle et al., 2005; Saarikoski et al., 2005b).

A perturbative approach to visualize vortices in the
particle density is to include a point-perturbation in the
external potential (Christensson et al., 2008b), which can
pin the vortices. The resulting particle density clearly
shows the vortex localization. An example is shown in
Fig. 30 for a system of 8 electrons. With this small per-
turbation, the expectation value of the angular momen-
tum still has a nearly similar dependence on the rota-
tional frequency than the unperturbed system. It is thus
expected that each angular momentum jump in the non-
perturbed system corresponds to addition of one vortex
as seen in the perturbed system.

D. Melting of the vortex lattice

After single vortex lines in rotating condensates
were experimentally realized by phase imprinting tech-
niques (Matthews et al., 1999), many experimental stud-
ies concerned the formation of lattices of vortices in
bosonic cold-atom gases in the regime of high particle-
to-vortex ratio (filling factor) νpv = N/Nv (Chevy et al.,
2000; Madison et al., 2001, 2000). The modes of the vor-
tex lattice (Baym, 2003, 2004) as well as the structure of
the vortex cores were analyzed (Coddington et al., 2003,
2004; Schweikhard et al., 2004). When the vortex den-

FIG. 30 (Color online) Angular momentum as a function of
the rotational frequency of the parabolic trap with N = 8
electrons in the lowest Landau level. The unperturbed result
(thin line) is comparable to the expectation value of angular
momentum in the presence of an added point perturbation
which breaks the rotational symmetry (thick solid line). The
insets show the densities in the perturbed system. The vor-
tices appear as pronounced minima in the density distribu-
tion, their number increasing with the trap rotation. Results
are calculated with the exact diagonalization method (Chris-
tensson et al., 2008b).

sity increases with the angular momentum, it is expected
that for rapid rotation, the vortex density may finally be-
come comparable to the particle density (Cooper et al.,
2001; Fetter, 2001; Ho, 2001). An interesting issue is then
how the system changes with the increasing particle-to-
vortex ratio (Baym, 2005). At rapid rotation, strongly
correlated states analogous to fractional quantum Hall
states may emerge (Cooper, 2008; Viefers, 2008; Wilkin
et al., 1998). These states are quantum liquid-like states
of particles and vortices where correlations may give rise
to the formation of particle-vortex composites. It is be-
lieved that a phase transition occurs with a vortex den-
sity somewhere between the rigid vortex lattice and the
quantum liquid of vortices. This transition is often ref-
ered to as “melting”. However, the process is not fully
understood and calculations yield different estimates for
the critical vortex density. Moreover, in present day ex-
periments the particle-to-vortex density is usually very
high, νpv & 500 (Schweikhard et al., 2004).

1. Lindemann melting criterion

The vortex density at the transition from localized
vortex lattice states to liquid-like states can be approx-
imated by assuming that the melting process is analo-
gous to the melting of solids when atomic vibrations in-
crease above a threshold amplitude. In the Lindemann
model the melting point of solids is determined from the
condition that when thermal vibrations reach a critical
amplitude, melting of the material occurs (Lindemann,
1910). This amplitude in solids is often approximated
to be around 10% to 20% of the lattice spacing. Using
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an analogous idea, the melting point of the vortex lat-
tice can be approximated from the condition that ther-
mal and quantum zero-point vibrations reach a critical
threshold amplitude (Blatter and Ivlev, 1993).

Rozhkov and Stroud (1996) studied the vortex lattice
melting in superconductors at zero temperature to ob-
tain an estimate for the vortex density where zero-point
fluctuations become large enough to melt the vortex lat-
tice. Their study was motivated by the presence of large
quantum fluctuations in high-Tc materials but their re-
sults give also an estimate of the vortex lattice melting
in ultra-cold rotating Bose-Einstein condensates. Using
the Lindemann criterion they approximated that melting
takes place at particle-to-vortex filling factor νpv ∼ 14 at
a presumed threshold zero-point vibration amplitude of
14% of the nearest-neighbour inter-vortex distance.

Other calculations using the Lindemann criterion have
given comparable estimates of the filling factor at the
vortex lattice melting (see also the discussion in the re-
views by Cooper (2008) and Fetter (2009)). Sinova et al.
(2002) reported that the critical density in their model
system of rapidly rotating bosons corresponds to νpv ∼ 8.
Baym (2003, 2004, 2005) analyzed normal modes of vor-
tex lattice vibrations in the mean-field limit and found
that the vortex lattice melts at νpv ∼ 10.

2. Transition to vortex liquid state

The predictive power of the Lindemann model is poor
because melting in solids is known to be a co-operative
phenomenon, and the process therefore cannot be accu-
rately described in terms of the mean vibration ampli-
tude of a single particle. However, Rozhkov and Stroud
(1996) obtained another estimate νpv ∼ 11 for the melt-
ing point of the vortex lattice by comparing the energy
of a Wigner crystal model wave function to the energy
of a Laughlin-type wave function. These wave functions
were assumed to correspond to the ordered vortex-lattice
state and the vortex-liquid state, respectively. Exact di-
agonalization calculations with contact interactions in a
periodic toroidal geometry showed that the excitation
gap collapsed at νpv ∼ 6, which was interpreted as a
lower bound for a vortex lattice melting (Cooper et al.,
2001). The associated vortex-liquid states at integer and
half-integer νpv were in this work shown to be, in general,
well described with so-called parafermion states studied
by Read and Rezayi (1999).

In contrast to bosonic systems, the vortex lattice melt-
ing has not been studied theoretically in fermion systems.
However, we can obtain an estimate for a correspond-
ing transition using the particle-hole duality (Sec. II.D).
There is a transition from the fractional quantum Hall
liquid to localized electrons (i.e. the formation of a
Wigner crystal) when the filling fraction of the LLL de-
creases below ν ≈ 1/7 (Lam and Girvin, 1983; Pan et al.,
2002). There are about 6 to 8 vortices per particle, not
counting the Pauli vortices, at the transition point. Using

the particle-hole duality we can now reverse the role of
particles and vortices. In the dual picture a lattice of lo-
calized vortices then melts to a quantum Hall liquid when
the particle-to-vortex ratio decreases to a value between
6 and (about) 8. This corresponds to a filling factor be-
tween ν ≈ 0.8 and 0.9, where a vortex lattice is expected
to melt in a 2DEG. The close relation between boson and
fermion states in the LLL, Eq. (21), would suggest that
also in boson systems the vortex lattice should melt when
the particle-to-vortex ratio decreases to about 8, which
is not too different from the values mentioned above.

In conclusion, even though the results of different cal-
culations show a considerable variation for the melting
point, they all indicate vortex lattice melting well before
the number of vortices in the system becomes compara-
ble to the particle number. However, much of the details
are not understood, and experiments do not yet reach
the transition regime. The transition may happen grad-
ually and go through several intermediate states with in-
creasing vortex delocalization, or, as the name explicitly
suggests, it may occur through an abrupt loss of vortex
ordering.

3. Breakdown of small vortex molecules

As discussed earlier, rotation in the intermediate an-
gular momentum regime in small quantum droplets may
give rise to formation of vortex molecules which are ana-
logues of vortex lattice states of infinite systems. How-
ever, in finite-size systems, edge effects may play an
important role. This was noted also in the context of
Wigner crystallization in quantum dots, where the on-
set of localization occurs at electron densities which are
much higher than the corresponding values for the in-
finite 2D electron gas. The importance of edge effects
has been pointed out also for bosonic systems (Cazalilla
et al., 2005).

Partly, localization effects account for the fact that
in small systems also the ν = 1/3 state appears local-
ized, as for example visible in the pair-correlation func-
tions. The same applies to vortices, and in very small
systems it is difficult to make a difference between a vor-
tex molecule and a vortex liquid, since both show similar
short-distance correlations.

The analysis of few-electron quantum dots using the
exact diagonalization method has shown that the final
break-up of vortex molecules and the transition into the
fractional quantum Hall regime of electrons is associated
with the formation of composites of particles and vor-
tices (Saarikoski et al., 2004). Electrons “capture” free
vortices, breaking up the vortex molecules. Similar pro-
cesses have been reported also for bosons in the LLL by
analysing the vortex attachment with reduced wave func-
tions (see Fig. 31). These calculations suggest, however,
that vortices continue to show ordering at surprisingly
low particle-to-vortex filling factors, well below the ob-
tained stability limits of vortex lattices in bosonic con-
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FIG. 31 (Color online) Reduced wave functions of a bosonic
5-particle system in a harmonic trap, showing the formation of
one and two free vortices in the region of high particle density
(marked as circles) at low angular momenta L = 5 and L = 8,
respectively (left and middle). When the angular momentum
increases, two vortices are finally captured by each particle to
form a state which is approximated by the bosonic Laughlin
statem = 2 (two concentric circles) at L = 20 (right). Particle
interactions are Coulombic here and the probe particle is at
the bottom. After Suorsa (2006).

densates. This is also evident for fermions, as shown in
Fig. 24, where hole correlations show vortex molecules at
very high angular momentum and large zero-point fluc-
tuations. In the case of fermions, vortex localization may
continue to filling factors down to ν = 1

2 where a transi-
tion from prominent vortex localization into particle lo-
calization occurs (Emperador, 2006). These calculations
showed signs of vortex-hole bunching and the formation
of concentric rings of localized vortices, until the number
of (free) vortices was equal to the number of particles.
Below ν = 1

2 , no such signatures are seen. Instead, this
regime is characterized by particle localization. The con-
ditional probability densities begin to show prominent lo-
calized structures (Koskinen et al., 2001; Yannouleas and
Landman, 2007). The corresponding bosonic case has
not been studied, but due to close analogies of bosonic
and fermionic states, similar results are expected to hold
also for small bosonic droplets where vortex localization
should disappear at νpv = 1.

These results suggest that signatures of vortex local-
ization in small systems disappear at a particle-to-vortex
ratio which is an order of magnitude lower than the value
where vortex lattice melting occurs in large bosonic con-
densates. However, as mentioned before, in small sys-
tems the separation of liquid and solid is difficult, and
the observed transition is also related to the formation
of composite particles (see Sec. IV.F).

E. Giant vortices

In multiply-quantized vortices, the phase changes sev-
eral integer multiples of 2π when encircling the singular-
ity. However, they are not stable in a purely harmonic
confinement potential. The existence of many singly-
quantized vortices is energetically prefered, and the ef-
fective repulsive interaction between the vortex cores
leads to a lattice of singly-quantized vortices (Butts and
Rokhsar, 1999; Castin and Dum, 1999; Lundh, 2002).

FIG. 32 Schematic phase diagram of the ground states
of a bosonic cloud in an anharmonic confinement.
From Kavoulakis and Baym (2003).

The instability of multiply-quantized vortices in har-
monic potentials, and the break-up into singly-quantized
vortices was further discussed by Möttönen et al. (2003)
and Pu et al. (1999). Disintegration of a multiple quan-
tized vortex has also been observed experimentally (Shin
et al., 2004).

Rotating condensates in anharmonic potentials that
rise more rapidly than r2, however, show a behavior that
is very different from purely harmonic traps. Most com-
monly, a quartic perturbation is added to the oscillator
confinement4. Due to the anharmonicity it is possible
to rotate the system sufficiently fast such that the cen-
trifugal force may create a large density hole at the trap
center. So-called “giant” vortices with a large core at
the center may exist that originate from multiple quanti-
zation. Singly-quantized vortices may also form a close-
packed ensemble inside a large density core. In addition,
for certain parameter ranges, the usually-quantized lat-
tice exists. Kavoulakis and Baym (2003) found a very
rich phase diagram, for which a schematic picture is given
in Fig. 32, showing the different possible phases as a func-
tion of the interaction strength and the trap rotation. In
the following, we discuss the formation and structure of
such “giant” vortex states in both bosonic as well as in
fermionic quantum droplets.

1. Bose-Einstein condensates in anharmonic potentials

Lundh (2002) proposed that in the presence of an-

4 See e.g., (Blanc and Rougerie, 2008; Fetter, 2001; Fetter et al.,
2005; Fischer and Baym, 2003; Fu and Zaremba, 2006; Jackson
and Kavoulakis, 2004; Jackson et al., 2004; Kasamatsu et al.,
2002; Kavoulakis and Baym, 2003; Lundh, 2002)
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FIG. 33 (Color online) A rotating Bose-Einstein condensate
in a mixed state with a giant vortex in the center, surrounded
by ten single-quantized vortices. The giant vortex is com-
posed of four phase singularities. The left panel shows the
particle density (white is high density and black is zero den-
sity) and the right panel shows the phase profile. Locations
of phase singularities are marked with red circles. The large
circle marks the ensemble of four phase singularities in the
core of the giant vortex. After Kasamatsu et al. (2002), who
applied the Gross-Pitaevskii method.

harmonicity of the confining trap potential, multiply-
quantized vortices with a giant vortex core could exist
in a rotating condensate, and calculated the ground-
state vortex structures within the Gross-Pitaevskii for-
malism. In fact, vortices in these states are not truly
multiple-quantized vortices but rather dense-packed en-
sembles of single-quantized vortices (Fischer and Baym,
2003; Kasamatsu et al., 2002). Phase singularities do not
completely merge into the same point because the resid-
ual interaction between phase singularities is logarithmic
as a function of intervortex separation in the region of
low particle density surrounding the cores. Despite this
fact, the composite core has a large and uniform spatial
extent. Therefore, the name “giant vortex” was coined
for these structures. Depending on the strength of the
anharmonicity, the condensate can exist in a phase where
only single-quantized vortices occur, in a state where
all vortices form a giant vortex, and in a mixed phase
where both giant vortices and single-quantized vortices
exist (Jackson and Kavoulakis, 2004; Jackson et al., 2004;
Kasamatsu et al., 2002; Kavoulakis and Baym, 2003). An
example of the latter is shown in Fig. 33.

We further note that anharmonicity, which is required
for giant vortex formation, may be induced also via the
presence of another, distinguishable particle component.
The interaction between the particles would then cre-
ate an effectively anharmonic potential for the parti-
cle components which may induce giant vortex forma-
tion (Bargi et al., 2007; Christensson et al., 2008a; Yang
et al., 2008). This is discussed in Sec. V in the context
of multi-component quantum droplets.

FIG. 34 (Color online) A giant vortex in a six-electron quan-
tum dot calculated with the exact diagonalization method.
The left panel shows the particle density (black is low density)
and current density (arrows), and the right panel shows the
reduced wave function, where phase singularities are marked
with red circles and electron positions with crosses. The giant
core in this case comprises three phase singularities. Interac-
tions and fluctuations keep the phase singularities separated.
The probe electron is on the bottom-right. From Räsänen
et al. (2006).

2. Giant vortices in quantum dots

Giant vortex structures are predicted to form also
in fermionic droplets with repulsive interactions, as it
was shown by exact diagonalization calculations for few-
electron quantum dots (Räsänen et al., 2006). Similarly
to the bosonic case, giant vortices emerge in anharmonic
confining potentials and their structure shows a large core
with multiple phase singularities. It was found that even
a slight anharmonicity in the confining potential is suf-
ficient for these giant vortex states to become energeti-
cally favorable. In addition to the particle interactions,
fluctuations tend to keep phase singularities separated,
broadening the charge deficiency in the core to a larger
area (see Fig. 34). The electron density of a central giant-
vortex state shows a ring-like distribution.

Unlike bosonic systems, giant vortices with repulsive
fermions were only found in the limit of small numbers
of particles. This could be seen as another manifesta-
tion of the tendency of vortices to drift towards the edge
of the droplet in the limit of large particle numbers (see
Sec. IV.A.3), breaking apart the giant vortex pattern at
the center. In electron droplets interacting via Coulomb
forces, density-functional calculations predicted that gi-
ant vortex formation is generally limited to systems with
less than 20 fermions (Räsänen et al., 2006).

F. Formation of composite particles at rapid rotation

In the regime of high vorticity, electron-vortex corre-
lations are particularly strong and cause vortices to be
bound to electrons. This regime is ultimately linked with
the fractional quantum Hall effect in the 2D electron gas.
Actually, the early works aiming to explain this effect
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FIG. 35 (Color online) The reduced wave functions for (a) the
approximate Laughlin state ν = 1

3
and (b) the exact L = 30

ground state for five electrons in a parabolic external poten-
tial. The Laughlin state fixes a triple-vortex (concentric rings)
on each electron position (crosses). In the exact solution there
are clusters of three vortices near each electron.

used a disk geometry (Girvin and Jach, 1983; Laughlin,
1983) and are in fact more relevant for quantum dots
than for the bulk properties of quantum Hall systems.

Figure 35 shows the nodal structure of the reduced
wave function for the Laughlin state state for N = 5
electrons as well as the corresponding L = 30 state ob-
tained with the CI method. In the Laughlin ν = 1

3 state,
there are three vortices on each electron position, one
Pauli vortex and two extra vortices, as shown in Fig.
35(a). In the exact wave function, there are clusters of
three vortices near each electron (except near the probe
electron). There is one vortex on top of each electron
position, as required by the Pauli principle, but, in ad-
dition, there are two vortices very close-by, separated by
their mutual repulsion to opposite sides. Calculations
show that small changes in the position of one of the
fixed electrons in the reduced wave function causes the
vortex to be dragged along with the electron, which in-
dicates vortex attachment to the electron. The overlap
between the exact state and the Laughlin approximation
is 0.98. The state can be interpreted as a finite-size pre-
cursor of the ν = 1

3 fractional quantum Hall state, for
which the Laughlin wave function yields an accurate de-
scription. However, in contrast to the Laughlin state,
the attachment of nodes to particles in the exact wave
function shows a small spatial separation.

The attachment of vortices to particles explains also
the absence of vortices for the probe electron in the exact
many-body state, see Fig. 35. In the fractional quantum
Hall regime, the density-functional method failed to re-
veal the correct nature of the ground state. The solutions
of the spin- as well as current-spin-density-functional
theory show only a cluster of vortices inside the elec-
tron droplet, but these methods are unable to associate
two extra vortices to each electron (Saarikoski et al.,
2005a) (see Fig. 36). The density-functional approach
fails to properly include these correlations. A single-
determinantal wave function constructed from the self-
consistent Kohn-Sham orbitals yields an approximate de-

FIG. 36 (Color online) A ν = 1
3

state of five electrons in a har-
monic trap. Left: electron density (color) from the density-
functional method and current density (arrows). The con-
finement strength is ~ω0 = 5 meV and the magnetic field is
B = 18T . Right: reduced wave function for the same state
constructed from the Kohn-Sham single-particle states. The
probe electron is at the top-right.

scription for few-vortex states near ν = 1, but the over-
laps with the exact wave functions diminish as the an-
gular momentum of the system increases. Fig. 37 shows
that for a five-electron system at ν = 1/3 the overlap is
only of the order of 0.5 . Compared to this, the overlap
with the Laughlin ν = 1/3 wave function that amounts
to 0.98 is very high. When the angular momentum of
the droplet increases further, additional vortices appear
in the Laughlin-like state and the filling factor decreases
below ν = 1/3. These vortices are not bound to compos-
ite particles, rather they correspond to the Laughlin exci-
tations with fractional charge. The pattern of vortex for-
mation is expected to be similar to that after the MDD:
first a single vortex enters from the surface and moves to-
wards the center until it is energetically favorable to have
two vortices, and so on. This is illustrated in Fig. 38,
which shows the vortex sites for a five-electron system
determined from the reduced wave function. Again, a
similar behavior is expected in the case of bosonic par-
ticles. However, despite the recent progress in realizing
BEC’s at extreme rotation (Lin et al., 2009), an analy-
sis of these states appears still to be beyond the current
experimental capabilities.

There are two basic mechanisms to unbound the vor-
tices from the particles, namely the softening of the inter-
action potential by e.g. the finite thickness of the system,
and secondly by impurities. When the system has a fi-
nite thickness, the incompressible ν = 1/3 Laughlin state
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FIG. 37 (Color online) Overlap of a single-determinant wave
function with the exact one as a function of the angular
momentum increase with respect to the MDD state ∆L =
L−LMDD for 5-electrons in parabolic confinement. The higher
points (squares) are obtained with a coordinate transforma-
tion to the center-of-mass, zi → zi − zCM and the lower ones
(circles) without it. The star at ∆L = 20 shows the overlap
with the Laughlin ν = 1/3 state. The roman numbers count
the vortices inside the electron droplet. From Harju (2005).

FIG. 38 (Color online) Schematic view of the sites of vortices,
determined from the reduced wave function of an exact diag-
onalization for five electrons with angular momentum L = 16
(6 above the MDD, left) and L = 36 (6 above the state with
filling factor 1/3, right). Fixed electron positions with Pauli
vortices are denoted by red bullets, vortices attached to elec-
trons making composite particles by blue, and free vortices
inside the electron droplet by green bullets. Free vortices
outside the droplet are shown by gray bullets.

breaks down as the vortices are gradually less bound to
the electron coordinates. This effect is in contrast to the
screening of the Coulomb interaction energy whereby, in
the strong-screening limit, the zeros are exactly local-
ized to the electron positions (Tölö and Harju, 2009).
We should also mention that repulsive impurities attract
vortices at the impurity position (Baardsen et al., 2009).

V. MULTI-COMPONENT QUANTUM DROPLETS

Multi-component quantum droplets are composed of
different particle species, that may for example be differ-
ent atoms, different isotopes of the same atom, different
spin states of an atom or electron, or even different hyper-
fine states of an atom. In such systems inter-component
interactions can modify the many-body wave function
significantly.

The properties of multi-component BEC’s have been
much discussed, both experimentally and theoretically,
over the past few years. For recent reviews on multi-
component BEC’s, see Kasamatsu et al. (2005a) and
parts of the article by Fetter (2009). We do not attempt
to cover the vast literature on binary or spinor BEC’s,
but instead set our focus mainly on structural properties
and vorticity of few-particle droplets and the analogies
between bosonic and fermionic two-component systems.
Only a brief outlook on spinor condensates with more
components is given at the end of this chapter.

Theoretical studies of multi-component quantum liq-
uids were performed already in the 1950s for super-
fluid helium mixtures, see for example the early works
by Guttman and Arnold (1953), Khalatnikov (1957),
and Leggett (1975). Examples for vortex patterns in-
clude the Mermin-Ho vortex (Mermin and Ho, 1976) and
the Anderson-Toulouse vortex (Anderson and Toulouse,
1977). These vortices are non-singular and the order-
parameter is continuously rotated by superposing a tex-
ture on it (see below). More recently, doubly-quantized
vortices in the A-phase of 3He were found by Blaauwgeers
et al. (2000). With ultra-cold atoms, condensate mix-
tures may be achieved by using different atomic species,
such as 87Rb and 41K (Modugno et al., 2002), or for ex-
ample the different isotopes of 87Rb (Bloch et al., 2001;
Burke et al., 1998), in the same trap.

Another possibility to create multi-component conden-
sates is given by the different hyperfine states of the
same atom, as for example 87Rb with the hyperfine states
| F = 1,mf = −1〉 and | F = 2,mf = 1〉 (Hall et al.,
1998a,b; Matthews et al., 1998, 1999; Myatt et al., 1997).
The atoms in the two states have nearly equal inter- and
intra-component scattering lengths, and the spin flip rate
is very small due to weak hyperfine coupling, which yields
a stable two-component system with a long lifetime (Juli-
enne et al., 1997; Kasamatsu et al., 2005a). In fact, the
first experiment by Matthews et al. (1999) creating vor-
tices in a BEC made use of these internal spin states,
following a suggestion by Williams and Holland (1999):
they proposed a phase-imprinting technique, where an
external coupling field was used to control independently
the two components of the quantum gas. In this way,
angular momentum could be induced in one component,
that formed a quantized vortex around the non-rotating
core of the other component, when the coupling was
turned off. Since the magnetic moments for the 87Rb
atoms in the two hyperfine states are nearly equal, they
could be confined by the same magnetic trap.
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Optical traps have the advantage that one is not re-
stricted by certain hyperfine spin states. Already in
1998, experimentalists at MIT could create a BEC of
23Na (Stamper-Kurn et al., 1998; Stenger et al., 1998)
where different “spinor” degrees of freedom of the atomic
quantum gas can be trapped simultaneously. Other ex-
amples are 39K, and 87Rb (Barrett et al., 2001). In these
alkali systems one can trap the three projections of the
hyperfine multiplet with F = 1, adding three (internal)
degrees of freedom to the system. However, population
exchange (without trap loss) among the hyperfine states
may occur due to spin relaxation collisions (Stenger et al.,
1998). The dynamical loss of polarization of a BEC due
to spin flips was examined by Law et al. (1998). Larger
atom spins can also be realized, as for example with 85Rb
and 133Cs. Such condensates show a wealth of quantum
phenomena that do not occur in simple scalar conden-
sates (Ho, 1998; Ohmi and Machida, 1998). The inter-
actions between the different components of the trapped
cold-atom gas may lead to topologically interesting, new
quantum states.

Rotating two-component fermion droplets may be re-
alized with electrons in quasi-two-dimensional quantum
dots (Reimann and Manninen, 2002) with a spin degree of
freedom. Usually, the magnetic field causes polarization
of the droplet due to the Zeeman coupling. However, in
2D electron systems, the Zeeman splitting can be tuned
by applying external pressure (Leadley et al., 1997) or by
changing, e.g., the Al-content in a GaAs/AlxGa1−xAs-
sample (Salis et al., 2001; Weisbuch and Hermann, 1977).
In systems with low Zeeman coupling the regime of vor-
tex formation beyond the maximum density droplet is as-
sociated with various spin polarization states (Siljamäki
et al., 2002). These states occur in much analogy to those
in two-component bosonic systems (Saarikoski et al.,
2009). In the regime of rapid rotation, some of the many-
electron states can also be identified as finite-size coun-
terparts of non-polarized quantum Hall states, such as
the much studied ν = 2

3 and ν = 2
5 states (Chakraborty

and Zhang, 1984; Guo and Zhang, 1989).

A. Pseudospin description of multi-component condensates

For a bosonic condensate with n components, the or-
der parameter Ψ becomes of vector type (ψ1, ψ2, . . . , ψn).
One may interpret this as a “pseudospin” degree of free-
dom (Kasamatsu et al., 2005a,b). As an example, for
n = 2 distinguishable particles of kind A or B the order
parameter is then a spinor-type function, ψ = (ψA, ψB),
and the pseudospin T points “up” (T = 1/2) or “down”
(T = −1/2) for either of the two components in the
absence of the other. This concept straightforwardly
extends to higher half-integer, as well as integer pseu-
dospins.

When rotation is induced in the multi-component or
“spinor” system, vortex formation becomes much more
complex due to the increased freedom of the system to

carry angular momentum. Spatial variations in the di-
rections of the atomic spins may lead to very differ-
ent patterns, such as the aforementioned spin textures.
For atomic quantum gases, these structures were exten-
sively investigated theoretically5. Many theoretical stud-
ies applied the spin-dependent Gross-Pitaevskii formal-
ism. The Thomas-Fermi approach has been used to de-
termine the density profiles of ground state and vortex
structures for two-component mixtures of bosonic con-
densates (Ho and Shenoy, 1996). This approach was
later simplified to describe segregation of components in
the presence of vorticity (Jezek and Capuzzi, 2005; Jezek
et al., 2001).

In their most general form, the two-body interactions
are often parameterized by Vij = [c0+c2(Ti·Tj)]δ(ri−rj)
with the usual contact interactions of strengths c0. For
c2 > 0, i.e., repulsive spin-dependent interactions, as for
example for 23Na, the system minimizes the total spin.
Consequently, this parameter regime is called the “an-
tiferromagnetic” one, while for c2 < 0, as for example
for 87Rb, the spin-interactions are called “ferromagnetic”
(Ho, 1998; Miesner et al., 1999; Stamper-Kurn et al.,
1998; Stenger et al., 1998). Typically, the ratio of the
spin-dependent and spin-independent parts of the con-
tact interaction is of the order of a few percent. In the
following we set c2 = 0 and restrict the discussion to the
special case of SU(2) symmetry, unless otherwise stated.

B. Two-component bosonic condensates

Let us now consider a bosonic gas of atoms that is a
mixture of two distinguishable species A and B with fixed
numbers of atoms NA and NB . The majority of exper-
imentally studied two-component gases has very similar
interactions between the like and unlike species. Similar
s-wave scattering lengths yield a very small inelastic spin
exchange rate (Julienne et al., 1997), providing a stable
two-component system with a long lifetime (Kasamatsu
et al., 2005a). Therefore, the case gAA ≈ gBB ≈ gAB
(with interaction strengths as defined in Sec. III.A above)
appears as the most relevant one. Thus, we first assume
equal and (pseudo)spin-independent coupling strengths g
between all particles, and also choose the harmonic trap-
ping potentials for the two components to be identical.
As mentioned above, the two-component Bose gas is then
described by a pseudospin 1/2 and the order parameter
is a vector, (ψA, ψB).

We have seen in Section IV above that for repulsive
interactions, a condensate with only one kind of atoms
that is brought to rotation, develops first a single vortex

5 See e.g. (Chui et al., 2001; Ho, 1998; Isoshima and Machida,
2002; Isoshima et al., 2001; Khawaja and Stoof, 2001a,b, 2002;
Kita et al., 2002; Martikainen et al., 2002; Mizushima et al.,
2002a,b,c; Mueller, 2004; Ohmi and Machida, 1998; Reijnders
et al., 2004; Stoof et al., 2001; Yip, 1999).
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at the trap center at L/N = 1. With increasing angu-
lar momentum, the single-component, so-called “scalar”
condensate nucleates an increasing number of vortices in-
side the condensate, until the triangular Abrikosov vortex
lattice is formed (Abo-Shaer et al., 2001; Madison et al.,
2000), in agreement with the results of Gross-Pitaevskii
mean-field theory (Butts and Rokhsar, 1999; Kavoulakis
et al., 2000). The case of a two-component gas is more
complex since the system may divide its angular momen-
tum between its components. One possibility is that one
component is at rest, while another carries all the angu-
lar momentum. The component at rest may then fill the
core of the first vortex in the other component, creat-
ing a so-called coreless vortex state. When the rotation
increases, the Abrikosov lattice of the scalar condensate
now may become a lattice of such coreless vortices. The
vortex lattice geometry depends crucially on the interac-
tions between the components, as well as the sizes and
numbers of components.

1. Asymmetric component sizes

Figure 39 shows the mean-field (Gross-Pitaevskii) den-
sities and phases of the order parameters ψA and ψB for a
two-component condensate with unequal particle popula-
tions NB > NA (Bargi et al., 2007, 2008). At L/NA = 1,
the system forms a single vortex in the smaller compo-
nent A, which is clearly seen in the phase plot of the
order parameter in Fig. 39. The phase jump is 2π along
any closed path encircling the origin. The larger compo-
nent rests at the origin LB = 0 with no vorticity (and,
correspondingly, a flat phase profile in the order param-
eter). When the angular momentum reaches L = NB ,
a singly-quantized coreless vortex is formed in the larger
component B, while the component A now is stationary
at the origin.

Referring back to the work of Skyrme in the context
of nuclear and high-energy physics (Skyrme, 1961, 1962)
such coreless vortices were also called “skyrmions”, see
the review by Kasamatsu et al. (2005a).6. A very graphic
illustration of the pseudospin behavior in a single coreless
vortex state is given in Fig. 40 (Mueller, 2004), showing
the top and perspective view of such a skyrmion in a
two-component system.

As L increases, beyond L = NB , a second vortex enters
the larger component B, merging with the other vortex
at L = 2NB . The smaller component A remains localized
at the center, and the system as a whole has a two-fold
phase singularity at the center. An example is shown in
Fig. 41. The central minimum in the density of the larger

6 This terminology has also been used for analogous textures in liq-
uid 3He-A (Anderson and Toulouse, 1977; Mermin and Ho, 1976;
Salomaa and Volovik, 1987), and in quantum Hall states (Aifer
et al., 1996; Barrett et al., 1995; Lee and Kane, 1990; Oaknin
et al., 1996; Sondhi et al., 1993).

FIG. 39 (Color online) Densities (left) and phases (right) in
a two-component rotating Bose-Einstein condensate, as ob-
tained from the Gross-Pitaevskii equations, for a ratio of atom
numbers in the two components of NA/NB = 0.36 and equal
coupling strengths gAA = gAB = gBB = 50 a.u. (The den-
sities are cut in one quadrant in order to visualize them for
both components in one diagram). The rotational frequency
is Ω = 0.45. The upper panel shows a coreless vortex at an-
gular momentum L = NA, where the smaller component A
shows a unit vortex at the center, as it is clearly seen from
the phase of ΨA plotted to the right (from dark to light shad-
ing), changing by 2π when the center is encircled once. The
phase singularity is absent in B component. The lower panel
shows the case L = NB , where now the larger component
encircles the smaller one, filling the unit vortex at the center.
The phase singularity consequently now occurs in the order
parameter of B component, as shown to the right (from dark
to light blue). After data from Bargi et al. (2008).

component B expands with increasing angular momen-
tum. It encircles the smaller one, that is non-rotating
and localized at the trap center. A phase change of 4π in
a closed path around the center indicates a vortex that
is two-fold quantized. At L = 3NB a triple phase singu-
larity emerges at the center, but eventually the scenario
breaks down with increasing rotation frequency.

In single-component quantum liquids, multiply-
quantized vortices are not favored in parabolic potentials.
However, any external potential that grows more rapidly
than quadratically may give rise to these giant vortex
structures (Kavoulakis and Baym, 2003; Lundh, 2002)
discussed in Sec. IV.E before. In two-component systems,
it was found that the smaller, non-rotating component at
the trap center may effectively act as an additional po-
tential to the (harmonic) trap confinement, rendering the
potential effectively anharmonic close to the trap center
for the rotating component (Bargi et al., 2007). With in-
creasing rotation, both components carry a finite fraction
of the total angular momentum, and multiply quantized
or “giant” vortex states are no longer energetically favor-
able.



42

FIG. 40 Schematic view of a skyrmion (top and perspective).
The spin tilts from “up” for one component at the center,
where one component shows a maximum density filling the
vortex in the other component, to “down” towards the edge.
From Mueller (2004).

FIG. 41 (Color online) Densities (left) and phases (right) of
the Gross-Pitaevskii order parameters in a two-component
rotating Bose-Einstein condensate with a coreless vortex with
a double phase singularity. For notation see Fig. 39 above.
After data from Bargi et al. (2008).

In exact diagonalization studies of multi-component
systems, the additional degree of freedom through the
pseudospin increases the dimension of the Hamiltonian
matrix significantly, which leads to severe restrictions
in the particle numbers or angular momenta that can
be studied. Nevertheless, the results obtained for few-
particle systems confirm the existence of Anderson-
Toulouse and Mermin-Ho types of coreless vortices, as
they were obtained within the Gross-Pitaevskii approach.

FIG. 42 (Color online) Angular momentum as a function of
the trap rotation frequency (in arbitrary units) for N = 8
bosons with equal masses and interactions, in a harmonic
trap, for equal population (NA = NB = 4) (red line) and
unequal population (NA = 2 and NB = 6) (green line). From
Bargi et al. (2010).

For a two-component system with NA +NB = 8 bosons
with contact interactions in a harmonic trap, Fig. 42
shows the total angular momentum L as a function of the
rotational frequency Ω/ω. As in the case of scalar Bose
gases (see Fig. 14 in Sect. IV.B above), plateaus with
increasing Ω can be associated with vortices that succes-
sively enter the bosonic cloud with increasing trap rota-
tion (Butts and Rokhsar, 1999; Kavoulakis et al., 2000).
These plateaus correspond to cusp states along the yrast
line in the two-component system Bargi et al. (2010).

The exact quantum states retain the symmetry of
the Hamiltonian, and thus one must turn to conditional
probability densities (pair-correlation functions) and re-
duced wave functions to map out the internal struc-
ture of the wave function, as discussed in Sec. II. For
unequal populations of the two species, here NA = 2
and NB = 6, at those angular momenta where the pro-
nounced plateaus occur in the L-versus-Ω-plot in Fig. 42,
the pair-correlations are shown in Fig. 43. At L = 2
a vortex is seen as a hole at the center in the smaller
component, encircling the larger component that forms
a Gaussian at the trap center. At angular momentum
L = 6 a single vortex is created in the larger component,
as seen in the middle panel. Twice this angular momen-
tum creates a two-fold quantized vortex structure in the
larger component. The existence of coreless vortices, as
predicted by the Gross-Pitaevskii equation in the mean-
field limit (Sec. V.B), is accurately reproduced by the
exact solutions in the few-body regime.
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FIG. 43 (Color online) Density plots of conditional proba-
bilities for a two-component few-boson system in a harmonic
trap, with two bosons in component A and six bosons in com-
ponent B. The reference point was chosen in component B at
an off-center position close to the maximum of the probability
density. Axes are from (−4, 4) in atomic units. The color scale
in the density plots is from blue (zero) to red (maximum).
(To increase the visibility, the plot range of the conditional
probablities in the two components was re-scaled to the same
constant in all panels.) The charge deficiency of the vortex
cores causes deep minima to appear in the pair-correlation
functions. After Bargi et al. (2010).

2. Condensates with symmetric components

When the cloud has equal populations of the two com-
ponents, i.e., NA = NB , a different scenario emerges:
a vortex enters each of the components from “oppo-
site” sides, reaching a minimum distance of one oscil-
lator length from the center of the trap when L = NA =
NB (Christensson et al., 2008a). An example is given by
the Gross-Pitaevskii solution shown in the upper panel
of Fig. 44. Similarly to the one-component case, increas-
ing rotation adds more vortices to the cloud. For two
equal components, the vortices become interlaced, with
density maxima in one component located at the vortices
in the other, minimizing the interaction energy between
the different components (lower panel of Fig. 44). In the
limit of large N and L a lattice of coreless vortices is
formed (Kasamatsu et al., 2005a).

These Gross-Pitaevskii results are in good correspon-
dence with exact diagonalization results of few-particle
systems. The left panel of Figure 45 shows conditional
probability densities of a symmetric configuration NA =
NB = 4. When L equals NA = NB = 4, the clouds
separate, with a vortex hole emerging at the maximum
density location in the other component. These solu-
tions correspond to a Mermin-Ho vortex (or a meron pair,
where each meron accounts for half of the spin texture
of the coreless vortex) as obtained in Gross-Pitaevskii
theory (Kasamatsu et al., 2005a). For higher angular
momenta, as here for L = 10, the correlation functions
indicate interlaced vortices as in Fig. 44 above, with den-
sity maxima in one component localizing at the min-

FIG. 44 (Color online) Mean-field order parameters (left) and
phases (right) of a symmetric condensate with NA = NB , at
L = 1.2(NA+NB), for equal coupling strengths gAA = gAB =
gBB = 50, showing a) one and b) two interlaced coreless vor-
tices in the two components. Component B is only shown in
a half-plane to make the vortex in the component A visible.
After data from Bargi et al. (2008).

FIG. 45 (Color online) As in Fig. 43, but for equal com-
ponents, NA = NB = 4 (left panel). The density minima in
one component coincide with the density maxima in the other
component. This suggests that these states are finite-size pre-
cursors of interlaced vortex lattices that occur in the limit of
large N . The picture becomes much more clear for larger
particle numbers, as shown in the right panel for N = 20 and
L = 26. After Bargi et al. (2010).

ima (vortex cores) in the other component. The inter-
laced pattern of density minima and maxima becomes
more apparent with higher particle number as shown in
the right panel of Fig. 45 for N = 20 bosons, where
NA = NB = 10, at angular momentum L = 26.

The conditional probability densities average out the
effect of phase singularities as signatures of vortices.
However, the nodal structure of the many-body state
may straightforwardly be probed by reduced wave func-
tions (Saarikoski et al., 2009) (see Sec. II.C.3), as shown
in Fig. 46 for a system with NA = NB = 3 bosons.
Coreless vortices form one-by-one as the angular momen-
tum increases: in the example shown here for L = 6 and
L = 12, the phase singularities in one component oc-
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FIG. 46 (Color online) Reduced wave functions in a symmet-
ric system of NA = NB = 3 bosons, showing the correlations
between phase singularities (marked with circles) with the
most probable positions of the particles of opposite species
(marked with triangles). This is an indication for the for-
mation of coreless vortices one-by-one in the system as the
angular momentum increases. The figure shows a) the non-
rotating state, b) a state with one coreless vortex per particle
species, c) two coreless vortices, and d) three coreless vortices.
Note that for identical components A andB, the reduced wave
functions for the two species are necessarily symmetric, and
only one component is shown here. After Saarikoski et al.
(2009).

cur at the most probable positions of the particles of the
other component, indicating formation of two and three
coreless vortices, respectively, in each particle component
(Fig. 46).

3. Vortex lattices and vortex sheets

Vortex lattices in two-component bosonic condensates
may show a variety of different structures, depending
on the strength and sign of the interspecies interac-
tion (Mueller and Ho, 2002). In the antiferromagnetic
case (c2 > 0), for weak interactions square lattices form,
whereas for strong interactions the vortices are arranged
into triangular Abrikosov lattices. In the former case the
square lattice is energetically favoured because the anti-
ferromagnetic interaction between adjacent vortex holes
makes a triangular lattice frustrated (Kasamatsu et al.,
2003). At c2 = 0 the system has metastable states such
as a stripe phase. In the regime of ferromagnetic inter-
species coupling (c2 < 0), spin domains spontaneously

form. These vortex sheets form “serpentine-like” struc-
tures that are nested into each other (Kasamatsu and
Tsubota, 2009; Kasamatsu et al., 2003). A number of
metastable lattice structures that were energetically al-
most degenerate have also been found in an antiferro-
magnetic spin-1 BEC (Kita et al., 2002).

C. Two-component fermion droplets

Recent electronic structure studies of quantum dots
with spin degrees of freedom predicted the formation of
coreless vortices in fermion droplets analogously to the
bosonic case (Dai et al., 2007; Koskinen et al., 2007;
Petkovic and Milovanovic, 2007; Saarikoski et al., 2009).
This comes as no suprise since analogies in the struc-
ture between fermion and boson states (Sec. II.F) are
not limited to single-component systems, but an approx-
imate mapping between two-component fermion and bo-
son states can be constructed as well. In the following
we discuss coreless vortices in fermion droplets and some
of the consequences of the fermion-boson analogy with
few-electron droplets as a particular example.

1. Coreless vortices with electrons

The angular momentum for a system with eight
fermions with both balanced (NA = NB = 4) and un-
balanced (NA = 2, NB = 6) component sizes, is shown
as a function of the trap rotation frequency in Figure 47.
The staircase shape is strikingly similar to the bosonic
counterpart (Fig. 42) with Lboson = Lfermion − LMDD =
Lfermion− 28. In the fermion case with asymmetric com-
ponents NA = 2 and NB = 6, the first pronounced
plateaus appear at L = LMDD + NA = 28 + 2 and
L = LMDD +NB = 28+6, which correspond to a coreless
vortex in the A and B component, respectively. In the
case of symmetric component occupations NA = NB = 4
the first major plateau moves to L = LMDD + 4 and
the coreless vortex configuration is analogous to a meron
pair (Petkovic and Milovanovic, 2007) in bosonic systems.
The lengths of these plateaus indicate that coreless vor-
tex states are very stable also in fermion systems.

The fermionic “quantum-dot” analog to the unbal-
anced few-boson system (with NA = 2 and NB = 6)
discussed above would be a system with N = 8 electrons
and fixed Sz = 2, which demands two spins antiparal-
lel to the external magnetic field (component A) and six
spins parallel to the field (component B). Both compo-
nents form compact maximum density droplets indepen-
dently at LMDD = 28, that corresponds to the L = 0
non-rotating condensate in the bosonic case. When the
angular momentum exceeds that of the MDD by two
units of ~, a hole forms at the center of the smaller
component which is associated with a vortex state, while
the larger one remains a MDD. This can be clearly seen
from the pair-correlated density shown in Fig. 48. Note



45

FIG. 47 Angular momentum as a function of the trap rota-
tion frequency (in arbitrary units) for N = 8 fermions with
symmetric (red) and asymmetric (green) component occupa-
tions, in Fig. 42 above. From Bargi et al. (2010).

FIG. 48 (Color online) Pair-correlated densities for fermions,
as in Fig. 43, but here for fermions with Coulomb interactions
(NA = 2 and NB = 6). Shown are angular momenta corre-
sponding to the pronounced plateaus in Fig. 47. Compared
to the bosonic case the densities show analogous structures
except for an additional exchange hole at the reference point
in component B which is reflected also in the component A
due to Coulomb repulsion. From Bargi et al. (2010).

that in the case of fermions, there is a clearly visible
exchange-correlation hole around the reference point in
the pair-correlation. This is due to the Pauli princi-
ple which is naturally absent in the bosonic case. Due
to the strong repulsion between the fermions, this hole
is mirrored in the other component. For larger angu-
lar momentum, multiply quantized vortices are found in
the larger component, in direct analogy to the bosonic
case discussed above. This happens in our example for
Lfermion = LMDD + 6 and Lfermion = LMDD + 12 (shown
in Fig. 48). The case of equal components corresponds
to fixed Sz = 0. For L = NA = NB , just as in the
bosonic case, a vortex appears at some distance from
the trap center, with a density maximum on the other
side, and vice-versa. These textures are again similar to

FIG. 49 (Color online) Pair-correlated densities for fermions,
as above, but for Sz = 0, i.e., equal components (NA = 4 and
NB = 4). From Bargi et al. (2010).

the “meron” pairs in the bosonic two-component system
discussed above. For higher angular momenta, the inter-
laced vortex lattice is seen for fermions at L = LMDD + 8
and L = LMDD +10 (see Fig. 49). (Note again the occur-
rence of the exchange hole, that should not be confused
with the holes of off-electron vortices.)

Figure 50 shows the reduced wave functions, see
Eq. (11), for a two-component fermion droplet with
Coulomb interactions and N = 6 particles, with symmet-
ric component occupations NA = NB = 3. The sequence
of states in this figure shows the formation of coreless
vortices one-by-one inside the fermion droplet, in anal-
ogy to the bosonic case in Fig. 46 above, with the angu-
lar momenta for boson and fermion systems shifted by
Lfermion = Lboson +LMDD. In comparison to the bosonic
case, for fermions the Pauli vortices keep the particles
further apart.

2. Quantum dots with weak Zeeman coupling

The formation of coreless vortices, as discussed above,
can be observed also in quantum dots where Zeeman cou-
pling is weak. Then, the first reconstruction of the MDD
may not be directly into the completely polarized states
with one additional vortex, but into an excitation which
is reminiscent of the vortex state, with one spin flipped
anti-parallel to the magnetic field. This transition would
be followed by a second one, involving a spin flip into
the completely polarized state (Oaknin et al., 1996). Sil-
jamäki et al. (2002) studied the effect of Landau level
mixing in the MDD reconstruction, using the variational
quantum Monte Carlo method. They found significant
changes in the ground states for systems consisting of up
to 7 electrons. Figure 51 shows the different states of a
6-electron quantum dot in the vicinity of the MDD. The
partially polarized state after the MDD has a leading
determinant of the form |01111100 . . .〉 for the majority
spin component and |100 . . .〉 for the minority spin com-
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FIG. 50 (Color online) Reduced wave functions in a two-
component system. In a two-component fermion droplet with
symmetric occupations NA = NB = 3 the reduced wave func-
tion in the lowest Landau level reveals coreless vortices as cor-
relations between phase singularities (circles) with the most
probable positions of the particles of opposite spin (triangles).
The figure shows a) the MDD state with total spin S = 3
and Sz = 0 b) a state with one coreless vortex per particle
species c) two coreless vortices, and d) three coreless vortices.
This sequence of states is analogous to that of a bosonic sys-
tem in Fig. 46. Note that vortices of the MDD state are not
shown in order to ease the comparison to the bosonic case.
From Saarikoski et al. (2009).

ponent: the vortex hole at the center of the dot in the
majority spin component is filled by a particle with oppo-
site spin polarization. Consequently, the state shows for-
mation of a coreless vortex and is completely analogous
to the case of asymmetric particle populations in a two-
component bosonic systems, as discussed in Sec. V.B.1
above. The minority spin component has a MDD-like
structure, which corresponds to the non-rotating compo-
nent in the bosonic case, and the majority spin compo-
nent shows a single vortex core localized at the center.

3. Non-polarized quantum Hall states

In the regime of rapid rotation vortices are expected
to attach to particles also in two-component quantum
droplets. One of the studied model wave functions
for two-component states was introduced to explain the
quantum Hall plateau at ν = 2/3 (Halperin, 1983)

ψ = Π
N/2
i<j (zi − zj)qΠN/2

k<l (z̃k − z̃l)
qΠN/2

m,n(zm − z̃n)p, (51)

FIG. 51 Partially polarized states beyond the maximum den-
sity droplet reconstruction, obtained from a variational Monte
Carlo study by Siljamäki et al. (2002). The diagrams show
the different states of a 6-electron quantum dot as a func-
tion of the magnetic field and the strength of the Zeeman
coupling per spin in the lowest Landau level approximation
(upper panel, LLL) and including Landau level mixing (lower
panel, LLM). The states are labeled as (N↑,∆L) where N↑ is
the number of electrons with spins parallel to the magnetic
field and ∆L = L−LMDD is the additional angular momentum
with respect to the MDD. The Zeeman coupling strength for
GaAs is marked by dashed lines. The confinement strength
is ~ω = 5 meV and the material parameters are for GaAs,
m∗/me = 0.067 and εr = 12.4.

where q is an odd integer (due to fermion antisymme-
try), p is a positive integer and the Gaussians have been
omitted. The last product in Eq. (51) attaches p vortices
to each electron with opposite spin and these can be in-
terpreted as coreless vortices. The corresponding nodal
structure can also be found in spin-compensated few-
electron systems near the ν = 2/3 filling. Figure 52 shows
the reduced wave function of the NA = NB = 3, L = 24
electron state where one (Pauli) vortex is attached to
each particle of the same spin and two (coreless) vor-
tices are attached to particles of the opposite spin, in
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FIG. 52 (Color online) Reduced wave function of the L = 24
fermion state with symmetric occupations NA = NB = 3.
The nodal structure closely corresponds to that of the q =
2, p = 1 Halperin-wave function with one phase singularity in
the component of the probing particle and two phase singu-
larities in the opposite component. The approximate Landau
level filling for the above finite size system is ν ≈ 2/3, just as
for the Halperin state proposed to describe the ν = 2/3 quan-
tum Hall plateau. The symbols in the figure were explained
in Fig. 3 above. From Saarikoski et al. (2009).

good agreement with the Halperin model with q = 1 and
p = 2 (Saarikoski et al., 2009). However, despite the cor-
respondence in the nodal structures the overlap of this
state with the Halperin wave function has been found to
be small for large particle numbers, due to a mixing of
spin states in the Halperin model (Koskinen et al., 2007).

D. Bose gases with higher spins

Experimentally, the investigations with two-
component quantum gases have been extended to
higher pseudospins (T = 1) (Leanhardt et al., 2003).
For a rotating trap in the LLL approximation, the phase
diagram of pseudospin T = 1 bosons was studied by Rei-
jnders et al. (2004), both using mean-field approaches
and numerical diagonalization. The stability of the
Mermin-Ho and Anderson-Toulouse vortices has been
demonstrated for rotating ferromagnetic condensates
with pseudospin T = 1 (Mizushima et al., 2002b,c). At
small rotation the ground state is a coreless vortex. As
an example, Fig. 53 shows the ground state structure
of a ferromagnetic T = 1 spinor condensate for the
three different components of the order parameter (Mar-
tikainen et al., 2002). The 3D trap was chosen with
strong confinement in the z-direction of a harmonic trap,
such that the system was effectively two-dimensional.
The density distributions (where light color corresponds
to the maximum density) in the x − y-plane are shown
for m = 1, 0, and −1. The m = ±1 components show

FIG. 53 Density plots of the Gross-Pitaevskii order param-
eters of the three components (m = −1, 0, 1) for a T = 1
ferromagnetic condensate (see text). The calculation was per-
formed for 1.7× 104 bosonic atoms of 87Rb. Length units in
the figure are in oscillator lengths. The total angular mo-
mentum per particle for the state shown was L/N = 1.85,
and the rotation frequency in units of the trap frequency was
Ω = 0.17. White color indicates maximum density. After
Martikainen et al. (2002).

two coreless vortices in much similarity to the two-
component case discussed above. The third component,
m = 0, shows a regular array of four vortices that occur
at the same positions of the coreless vortices.

VI. SUMMARY AND OUTLOOK

In finite systems with only a small number of parti-
cles, vortex formation can be studied by a numerical di-
agonalization of the many-body Hamiltonian. Often, a
reasonable approximation is to assume the confinement
to be a two-dimensional harmonic oscillator and to re-
strict the single-particle basis to the lowest Landau level.
This is in particular the case in the limit of weak interac-
tions. The close relationship of the many-body problem
to the quantum Hall liquid then helps to explain the vor-
tex localization and the similarity of vortex formation
in boson and fermion systems. The many-body energy
spectrum, although experimentally yet inaccessible, pro-
vides a wealth of information on the localization of vor-
tices and their mutual interactions. The energy spectrum
should also allow an approximation of the partition func-
tion and thus evaluation of temperature effects in future
studies (Dean and Papenbrock, 2002).

The exact diagonalization is limited to systems with
only a few particles. Mean-field and density-functional
methods are necessary for capturing basic features of vor-
tices in larger systems. In general, the density-functional
methods describe the vortex structures in excellent qual-
itative agreement with the exact diagonalization re-
sults. In most density-functional approaches, the parti-
cles move in an effective field which allows internal sym-
metry breaking, making the observation of vortices more
transparent than in the exact diagonalization method.
However, the present state-of-the-art density-functional
approaches fail to describe properly the highly-correlated
regime at small filling fractions where vortices start to at-
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tach to particles, forming composites.
Experimentally, clear signatures of vortices in small

electron droplets are still waiting to be observed. Imag-
ing methods of electron densities in quantum dots may
provide direct evidence of vortex formation in the fu-
ture (Dial et al., 2007; Fallahi et al., 2005; Pioda et al.,
2004). The predicted localization of vortices in asym-
metric confinements and in the presence of pinning im-
purities open a possible way to direct detection of vor-
tices by means of measurements of the charge density of
the electron droplet. Scanning probe imaging techniques
have been developed to visualize the subsurface charge
accumulation (Tessmer et al., 1998), localized electron
states (Zhitenev et al., 2000) and charge flow (Topinka
et al., 2003) of a quantum Hall liquid. Similar meth-
ods could also turn out to be useful in probing electron
density of two-dimensional electron droplets in quantum
dots.

In rotating traps the present observation techniques
are based on releasing the atoms from the trap and are
limited to large atom numbers. Naturally, the exper-
imental goal has been the study of large condensates.
Optical lattices, with a small number of atoms in each
lattice site, could in the future provide information of
vortex formation in the few-body limit.

Despite experimental and theoretical advances in stud-
ies of rotating finite-size systems this review can provide
only glimpses of this rich field of physics where vorticity
plays a central role. Many important theoretical results
presented here remain unverified in experiments. Theo-
retical challenges remain as well, especially in the regime
of rapid rotation (Baym, 2005) where strong correlations
may lead to emergence of exotic states. Vortex localiza-
tion and ordering in the transition regime to a quantum
Hall liquid, as well as the breakdown of this liquid state
into a crystalline one, are still lively discussed themes in
the field.
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Andrei, E., S. Yücel, and L. Menna, 1991, Phys. Rev. Lett.
26, 3704.

Anisimovas, E., M. B. Tavernier, and F. M. Peeters, 2008,
Phys. Rev. B 77, 045327.

Ashoori, R., 1996, Nature 379, 413.
Attaccalite, C., S. Moroni, P. Gori-Giorgi, and G. Bachelet,

2002, Phys. Rev. Lett. 88, 256601.
Attaccalite, C., S. Moroni, P. Gori-Giorgi, and G. Bachelet,

2003, Phys. Rev. Lett. 91, 109902.
Austing, D. G., S. Sasaki, S. Tarucha, S. M. Reimann,

M. Koskinen, and M. Manninen, 1999a, Phys. Rev. B 60,
11514.

Austing, G., Y. Tokura, T. Honda, S. Tarucha, M. Danoe-
sastro, J. Janssen, T. Oosterkamp, and L. Kouwenhoven,
1999b, Jpn. J. Appl. Phys. 38, 372.
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