
Practitioners’ Perspectives on Security in Agile Development

Steffen Bartsch
TZI, Universität Bremen

Bremen, Germany
Email: sbartsch@tzi.org

Abstract—Agile methods are widely employed to develop
high-quality software, but theoretical analyses argue that agile
methods are inadequate for security-critical projects. However,
most agile-developed software today needs to satisfy baseline
security requirements, so that we need to focus on how to
achieve this this level for typical agile projects. In this paper, we
provide insights from the practitioner’s perspective on security
in agile development and report on exploratory, qualitative
findings from interviews. Our findings extend the theoretical
prior work and suggest to focus on adequate customer in-
volvement, developer security awareness and expertise, and
continuously improving the development process for security.

Keywords-Agile development; Secure software development;
Security requirements; Developer awareness; Empirical study

I. INTRODUCTION

Agile development [3], [16] is reported to have disad-
vantages related to secure software development [4], [13].
Heavy-weight security practices are not as applicable as
in plan-driven development and may reduce the benefits
of agile methods. However, the analyses primarily target
security-critical contexts. Conversely, we need to understand
the interrelation of security and agility also for projects
with baseline security requirements, such as typical Web
applications, for which agile development is often employed.
Accordingly, rather than asking whether agile methods are
adequate, we need to focus on how to improve the security
in typical agile contexts.

Prior work on security in agile development primarily
analyzes the challenges and mitigation theoretically [4],
[13]. In contrast, this paper focuses particularly on the
practitioner’s perspective to expand the scope. Aiming to
understand the effects of agile development concerning
security, one question is how developers and customers
interact on security. We further study what implications
the security awareness and expertise of developers have
and how they employ security practices. In this paper, we
report on interviews with agile practitioners on these and
related questions and discuss mitigations after giving a brief
overview of prior findings on agile development and security
in agile development.

II. AGILE DEVELOPMENT

Major characteristics of agile development [3] include
the iterative and incremental development, reflective process

improvement, customer participation, and a high level of
communication [16]. There are numerous empirical studies
on effects of agile development, although the quality of the
evidence is challenged [10].

Quality and productivity: Studies on agile methods and
specific agile practices indicate increased software quality
and productivity with no changes at worst [10]. Surveys,
case studies, and experiments reported mixed [25], neutral
[21], and positive effects [24], [27], [34].

Motivation: According to Highsmith, agile developers
are motivated because the process reflects how software is
actually being developed [16]. Although often limited in
scope, the existing studies, such as surveys [22], [26] and
case studies [18], indicate higher satisfaction and motivation.

Communication: Case studies show positive effects
of agile practices on internal communication between the
developers, both informal and formal [27], [28]. Concerning
the external communication between developers and the
customer, case studies indicate improved common under-
standing [28] and a reduction in defects due to the more
informative communication media [20].

Learning: The increased communication can also lead
to improved sharing of knowledge and learning. A survey
of students in an academical setting found that agile devel-
opment helped them to learn the development skills [24].
Also, the sharing of tacit knowledge has been indicated to
increase in agile development [2].

III. SECURITY IN AGILE DEVELOPMENT

A. Challenges

In theoretical publications, authors have studied how
compatible agile methods are with security practices, for
example, contrasting XP with SSE-CMM and Common
Criteria (CC) [33] or generally with secure software devel-
opment practices [4]. As shown in Table I, the challenges
from literature can be grouped into three areas. Process
life-cycle challenges concern conflicts with the dynamics
of agile methods: Dynamic process changes hinder process
audits [29] and the iterative nature of the processes result in
difficulties with in-depth assurance activities [4], [13].

The second area are the communication and interaction
patterns in agile development: The focus on functional
requirements and their elicitation result in neglected non-
functional security requirements [14], [6] and a lack of trace-



Table I
CHALLENGES IN LITERATURE AND MENTIONS IN THIS STUDY

Literature Mentions
Process life-cycle model
Process dynamics [29]
Emergent requirements, design changes [9], [8], [4], [13] 6
Security is difficult to retrofit [7], [33]
Assurance does not fit with life-cycle model [4], [13] 1
Communication/interaction
Neglected non-functional security reqs. [14], [6]
Missing requirements traceability [29]
Missing assurance objectivity [4], [13] 1
Lack of/outdated security documentation [13], [4] 2
Lack of customer awareness/sec. reqs. – 5
Trust in team and individuals
Implicit trust in developers [13]
Lack of specialist expertise on team [13], [14], [33]
Neglected practices from pressure – 1

ability of requirements back to security goals [29]. Cross-
functional teams and close customer participation are also
seen critically, since this brings evaluators and developers
closer together and endangers their objectivity [4], [13].
Third, the trust in team and individuals is difficult to align
with the skeptic approach of traditional security processes
and the fear of malicious developers [13]. Also, security
expertise may be missing without the explicit security expert
role in teams [14].

B. Mitigations

Together with the challenges of security in agile devel-
opment, a host of mitigations for the identified problems
have been proposed, mostly based on analytical or laboratory
work (cf. Table II). One type of approaches modify the pro-
cess life-cycle and, for example, introduce explicit security
iterations [31] or emphasize the iterative and incremental
nature of security design [1], [7]. A second type of ap-
proaches targets the elicitation of security requirements, for
instance, through abuse cases. More common are proposals
of adopting security practices for design, implementation,
assurance [4]. A fourth set of enhancements fosters the
security awareness and expertise of developers through se-
curity trainings [12] and security experts who rotate through
programming pairs [33].

The listed challenges and mitigations in literature are
either from theoretical analysis or laboratory experiments,
and primarily target explicitly security-critical environments.
However, to understand the actual problems and mitigations,
an exploration of how security is addressed in typical agile
development projects is still missing.

IV. STUDY DESIGN

The goal of this study is to expand on the theoretical
findings on security-critical agile development through an
exploration of the challenges and their mitigations in typical
agile development projects. Since there is little prior work on
this area, we chose an exploratory approach and conducted

Table II
MITIGATIONS IN LITERATURE AND MENTIONS IN THIS STUDY

Literature Mentions
Process life-cycle
Defining and auditing the process – 3
Adapting the process for security – 3
High-level security architecture up-
front, early/late security sprint

[31], [4], [12] 3

Iterative, incremental security design [1], [7] 6
Individual sec. activities per sprint [31] –
Close customer integration – 6
Security requirements
Abuse cases [19], [5], [15], [23] –
Security requirements traceability [29] –
Explicit risk analysis [1] 2
Implicit security requirements – 7
Concrete requirements and threats – 6
Non-functional reqs. as done-definition – 2
Design, implementation, assurance
Secure design and implementation [4] 2
Test cases/code as documentation [33] 2
Automatic sec. testing, static analysis [4], [19], [32], [11] 4
Security review meeting [19] 2
Implicit/explicit code reviews – 4
Formal change and integration proc. [4] 2
Early secure deployment [19] –
Security awareness and expertise
Prevalent security – 7
Implicitly and explicitly spreading
awareness and expertise

– 6

Rotating experts on team [33] 1
Security training [12] 2
Self-teaching security expertise – 4
Holistic development approach – 5

semi-structured interviews. While limited in sampling size,
the interviews allowed us deeply explore the challenges
and mitigations in practice. Based on the prior work, we
identified the following areas to cover in the interviews:

• Customer involvement: Due to its theoretical nature,
prior work is thin on the implications of customer
involvement, particularly, how customers relate non-
functional and functional security requirements.

• Developer security awareness and expertise: Prior work
recommends security training for developers. How
security-aware are developers typically and where do
expertise and awareness originate?

• Effects of “agile” on security: Which effects do prac-
titioners see from agile methods and practices?

• Security practices: Several security practices are sug-
gested to improve security in agile development. Are
they present and how well do they integrate?

• Authorization: Authorization is a particularly dynamic
security measure [30]. How is it affected by agile
development?

We conducted the sampling of the participants in a way
to represent a wide variety of agile development contexts.
Sampling dimensions included the interviewee’s process role
and project characteristics, such as team size and develop-
ment platform. Table III lists the ten interviewees from nine

2



Table III
INTERVIEWEE DETAILS

Pseudonym Role Affiliation type Project characteristics (customer, team, platform)
Moritz Developer Medium development company External customer, 7 developers, JavaEE
Ben Developer Medium development company External, 3–6 developers, Ruby on Rails
Max Developer Small development company External, 4–6 developers, Rails
Herbert Developer Small development company External, 3 developers, Rails
Stefan Developer Medium-sized company Internal, safety-critical, 11 developers, C#
Niels Developer Medium-sized company Internal, security-critical, 10 developers, JavaEE
Wolfgang Developer Consultant developer in medium-sized company Internal, 4–9 developers, Rails
Günther Coach Consultant Internal, ca. 1000 developers
Klaus Customer CEO Medium-sized company External, Business processes, 1–3 developers, Rails
Jan Business analyst Consultant, in medium-sized organization External, 3 dev., 2 QA at customer, Delphi/ASP.NET

companies. We directly contacted the interviewees primarily
through agile development meet-ups. The interviews lasted
between 30 and 60 minutes. Based on detailed notes on each
interview, we structured the statements by common concepts
iteratively with each interview and clustered related aspects
to derive the findings on challenges and mitigations (see
Tables I and II for an overview, which includes the number
of interviewees who mentioned each concept).

V. FINDINGS

A. Unclear security requirements

The interviewees portrayed the security awareness among
customers as very heterogeneous, ranging from marginally to
highly aware. Five interviewees mentioned problems related
to the lack of security awareness. Ben noted that the security
awareness at the customer “depends on the specific person
that you talk to.” Interviewees generally observed that the
awareness on the customer side is often driven by specific
values at risk and requirements and threats need to be
discussed in concrete terms (6 mentions). Max: security “is
only of interest [to the customer] when money-aspects are
concerned”. Security incidents involving similar systems in-
crease the customer’s high-level security awareness (Moritz:
“the shop leak at [newspaper], that’s where customers wake
up”). Security requirements are discussed, “if at all, then
only unspecific, together with functions” (Klaus) and are
characterized as being approached from the positive side
(“what is allowed” instead of “what is forbidden”).

Jan’s case is an exception in that the customer was
very security-aware and developed very specific security
requirements because the developers were rather unaware.

B. Implicit security requirements

Often, developers derive the security requirements from
the functional requirements as implicit security requirements
(7). For example, Moritz’ development team has good do-
main knowledge in electronic commerce and can therefore
propose adequate security requirements. For Herbert’s team,
the developers’ best practices led to agreements between the
customer and developers to minimize risks and outsource
payment data directly to the service provider. According to

Klaus, the trust relationship between the customer and the
development team is very important in this respect. Non-
technical customers often cannot comprehend the technolog-
ical basis of each security measure. The necessary level of
trust is built up with the close development participation. The
trust on the technological level is similar to the trust on the
inner quality of the software product, for which customers
usually assume that the developers conduct adequate quality
assurance measures.

C. Close customer involvement

Six interviewees mention that, irrespective of the cus-
tomer’s security awareness, close customer participation
improves the security requirements elicitation with their
domain knowledge. The security requirements are usually
refined over several discussions and iterations (6 mentions).
For example, developers propose technical approaches,
which are discussed with the customer, then implemented
and adapted in subsequent iterations. In Jan’s project, au-
thorization requirements were complicated to elicit bottom-
up with large variations among the customer stakeholders,
causing overly complex requirements. The simplified, top-
down model that was implemented instead then needed to
be adapted in production over time, with changes even
after 1.5 years in production. Another reason for discussions
are functional changes: Moritz reports that over the course
of the project, functional changes, such as new interfaces
between the ERP and the shop system, repeatedly require
security discussions. In his experience, adaptations to the
original plan are mostly necessary when the best practices
of the developer team do not fit as expected in the customer
context.

The style of customer interaction on authorization varies.
A permission matrix can be appropriate, but more common
are natural language discussions without a document as
basis. Two interviewees mention that missing or outdated
security documentation is a problem. In Jan’s case, a five-
page document is necessary to describe the high-level autho-
rization concept used in the application in addition to seven
separate lists with the actual permissions that are maintained
in parallel to the actual permission configuration.

3



D. Awareness and expertise spreads

Seven interviewees describe security as being generally
present within the developer teams and expertise as being
homogeneous. Exceptions are interns and new employees
who “need some time to take up the necessary security
awareness” (Max). There are several ways in which the
security awareness and expertise is built. Generally, security
expertise and awareness spreads between developers (6 men-
tions) and security is part of informal discussions. According
to Moritz, “there is exchange of information between the
people of the team and between the teams, ‘how have you
handled the problem?’ ” Self-taught awareness and expertise
from the news and blogs was also mentioned frequently
(4). One reason is the motivation of feeling “responsibility
for the project” due to the holistic development approach
(5). Holistic development also increases the awareness and
expertise: New developers, for example, rotate through mul-
tiple project teams to work on various parts of a project.
Comparing the motivation to pre-agile development, Stefan
states that the improved communication among developers
and quality assurance helped. Other motivating factors are
external audits and the inner-company competition for qual-
ity between teams.

Less common are explicit trainings for formal security
requirements (2). Other institutionalized knowledge sharing
occurs through security review meetings (2). Moritz also
reports on coding Dojos (collective development sessions),
in which developers train specific quality-improving agile
practices, such as test-driven development.

E. Developing securely

Three interviewees mention that there are problems of
integrating assurance into the agile life-cycle or of neglected
assurance practices from the pressure of short iterations. The
full-stack tests can be more difficult with agile processes
because the effort is too high for rigorous testing on each
iteration. Short iterations can cause pressure to make visible
progress, in some cases even causing practices, such as test-
driven development, to be neglected.

Two interviewees state that the iterative and incremental
development allows them to find more direct approaches and
keep the software design simpler as recommended in secure
software design. The design also benefits from the holistic
development approach (5) since it offers a more complete
picture for the individual developers. If non-functional re-
quirements, such as quality and high-level security aspects,
should be made explicit, they can be formulated as “done
definitions” (2) that specify when a feature is considered
complete.

F. Employing low-overhead assurance

In most cases, the assurance practices are integrated into
the development process. Four interviewees mention testing
and test-driven development, typically conducted by the

development team. In contrast, the customer took over most
of the testing activities in Jan’s project to guarantee the
necessary product quality. Penetration tests were conducted
in two cases, either as part of the done criteria or in parallel
to the development on the production system. Code reviews
are more common (4), for example, as a four-eye principle
on each software repository check-in or as part of the done
criteria. Three interviewees report that the practices are
adapted over time to changing contexts, so that, for example,
the code review practices evolved with the company and
development processes.

G. Adapting the process model to high-criticality

In three cases, the processes are defined and externally
audited in parallel to development to assure the process
quality. The same three projects also employ dedicated
security or release iterations before the actual release to
create the necessary documents and thoroughly test the
product. Explicit risk analysis and management is mentioned
by two interviewees, either assessing the risk for individual
features before deployment or following regulations on a
systematic risk management process, including explicit risk
meetings and sign-off procedures.

VI. DISCUSSION

We interviewed agile practitioners to explore the problems
and mitigations in practice. The interviews offer only sub-
jective data and are prone to researcher or participant bias.
Since the sample size is limited for interviews, we focused
on covering a broad range of development contexts. The
results are, by study design, not sound and representative,
but extends the prior theoretical findings with a practical
perspective and offer a description as an initial hypothesis for
further research. We discuss the key results in the following:

Institutionalize customer involvement: Despite not be-
ing covered in prior work, a good interaction concerning
security between developers and customers is a prerequisite
to achieve adequate security measures. In this study, the
interaction is very heterogeneous among projects and cus-
tomers can often only state unclear security requirements,
leading to implicit security requirements. Non-functional
requirements need to be elicited together with customers and
then iteratively turned into functional requirements. Thus,
customers and developers need a common understanding of
the roles in the project regarding security, including:

• Which side has how much security awareness and
expertise,

• Who is responsible for triggering discussions of non-
functional and functional security requirements.

Risk assessments are often only implicitly part of functional
discussions. While not necessarily as explicit security itera-
tion as suggested in literature [31], customers and developers
should explicitly address the risks and the non-functional
security requirements early in the project to have a common

4



framing for the later decisions on security measures and
implementation practices. Developers should also focus on
concrete threats and security requirements to improve the
common understanding [35].

Foster developer security awareness and expertise: The
overall security in a project depends on the security expertise
of the individuals, either on the customer or developer side.
This corresponds to the agile value of “individuals and
interaction over processes and tools” [3]. The developers in
this study for the most part feel responsible to craft secure
systems and are motivated to learn and spread security ex-
pertise, also supported by the communicative nature of agile
processes. Nevertheless, this cannot be taken for granted.
The spreading of awareness and expertise among developers
should thus be further supported. Not only through explicit
security trainings [12] and experts on teams [33], as sug-
gested in literature, but also by motivating the exchange
between developers, for example, through agile practices
with positive effects on internal communication.

Continuously improve the process for security: Three
teams in this study are actively adapting the development
processes over time to optimally fit the environment. While
this has not been the focus in literature, developers should
consider the security level of the development process in
retrospectives and adapt it to meet security needs. Retro-
spectives are also a good place to consider the integration
of secure development practices, for example, from SSE–
CMM [17]. Three cases in this study show that it is possible
to integrate heavy-weight security practices, in contrast to
the skeptical prior work.

Promote implicit documentation: Literature and two
cases in this study point to the problem of outdated security
documentation in agile development. Not only test cases
[33], but also other artifacts, such as, authorization poli-
cies can provide implicit documentation. Developers should
consider to move the security documentation into the code
where possible to create current documentation as the basis
for discussions with customers.

VII. CONCLUSION

We interviewed ten agile development practitioners in
order to improve the understanding of security in actual
agile development projects. Despite its limited sample size
and the subjectivity of the interview method, the study
offers a more practical perspective than the theoretical prior
work. The studied cases show problems with the customer
involvement and emergent requirements. However, several
challenges and mitigations from literature, such as the lack
of specialist expertise or abuse cases, are not relevant to
the studied cases. Conversely, approaches not discussed in
prior work, such as implicit security requirements and the
spreading of expertise and awareness among developers, are
helpful for the studied cases. Our recommendations expand
on existing mitigations to build upon the strengths of agile

development for improved security in projects of average
security-criticality.

ACKNOWLEDGMENT

I sincerely thank all the interviewees in this study who
reported openly about the sensitive topic of security.

REFERENCES

[1] E. G. Aydal, R. F. Paige, H. Chivers, and P. J. Brooke.
Security planning and refactoring in extreme programming.
In P. Abrahamsson, M. Marchesi, and G. Succi, editors, XP,
volume 4044 of Lecture Notes in Computer Science, pages
154–163. Springer, 2006.

[2] B. Bahli and E. S. A. Zeid. The role of knowledge creation
in adopting extreme programming model: an empirical study.
In Information and Communications Technology, 2005. En-
abling Technologies for the New Knowledge Society: ITI 3rd
International Conference on, pages 75–87, 5-6 2005.

[3] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn,
W. Cunningham, M. Fowler, J. Grenning, J. Highsmith,
A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin,
S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas.
Manifesto for agile software development. Online, retrieved
10 Jul 2010, 2001.

[4] K. Beznosov and P. Kruchten. Towards agile security assur-
ance. In NSPW ’04: Proceedings of the 2004 workshop on
New security paradigms, pages 47–54, New York, NY, USA,
2004. ACM.

[5] G. Boström, J. Wäyrynen, M. Bodén, K. Beznosov, and
P. Kruchten. Extending xp practices to support security
requirements engineering. In SESS ’06: Proceedings of the
2006 international workshop on Software engineering for
secure systems, pages 11–18, New York, NY, USA, 2006.
ACM.

[6] L. Cao and B. Ramesh. Agile requirements engineering
practices: An empirical study. Software, IEEE, 25(1):60–67,
jan.-feb. 2008.

[7] H. Chivers, R. F. Paige, and X. Ge. Agile security using
an incremental security architecture. In H. Baumeister,
M. Marchesi, and M. Holcombe, editors, XP, volume 3556 of
Lecture Notes in Computer Science, pages 57–65. Springer,
2005.

[8] N. Davis. Secure software development life cycle processes:
A technology scouting report. Technical Report CMU/SEI-
2005-TN-024, CarnegieMellon, December 2005.

[9] B. De Win, R. Scandariato, K. Buyens, J. Grégoire, and
W. Joosen. On the secure software development process:
Clasp, sdl and touchpoints compared. Information and
Software Technology, 51(7):1152–1171, 2009.

[10] T. Dybå and T. Dingsøyr. Empirical studies of agile software
development: A systematic review. Information and Software
Technology, 50(9-10):833–859, 2008.

5



[11] G. Erdogan, P. H. Meland, and D. Mathieson. Security
testing in agile web application development - a case study
using the east methodology. In W. Aalst, J. Mylopoulos,
N. M. Sadeh, M. J. Shaw, C. Szyperski, A. Sillitti, A. Martin,
X. Wang, and E. Whitworth, editors, Agile Processes in
Software Engineering and Extreme Programming, volume 48
of Lecture Notes in Business Information Processing, pages
14–27. Springer Berlin Heidelberg, 2010.

[12] X. Ge, R. F. Paige, F. Polack, and P. J. Brooke. Extreme
programming security practices. In G. Concas, E. Damiani,
M. Scotto, and G. Succi, editors, XP, volume 4536 of Lecture
Notes in Computer Science, pages 226–230. Springer, 2007.

[13] K. M. Goertzel, T. Winograd, and P. Holley. Security
in the Software Lifecycle: Making Software Development
Processes–and the Software Produced by Them–More Secure.
DHS, August 2006. Draft Version 1.2.

[14] K. M. Goertzel, T. Winograd, H. L. McKinley, L. Oh,
M. Colon, T. McGibbon, E. Fedchak, and R. Vienneau.
Software security assurance: A state-of-art report. Technical
report, Information Assurance Technology Analysis Center
(IATAC), 2007.

[15] J. Heikka and M. Siponen. Abuse cases revised: An action
research experience. In PACIS 2006 Proceedings, 2006.

[16] J. A. Highsmith. Agile software development ecosystems.
Addison-Wesley, Boston, MA, USA, 2002.

[17] ISSEA. The systems security engineering capability maturity
model (SSE-CMM), model document, 2003. Version 3.0.

[18] D. Karlström and P. Runeson. Combining agile methods with
stage-gate project management. IEEE Software, 22(3):43–49,
2005.

[19] V. Kongsli. Towards agile security in web applications. In
OOPSLA ’06: Companion to the 21st ACM SIGPLAN sym-
posium on Object-oriented programming systems, languages,
and applications, pages 805–808, New York, NY, USA, 2006.
ACM.

[20] M. Korkala, P. Abrahamsson, and P. Kyllonen. A case study
on the impact of customer communication on defects in agile
software development. In Agile Conference, 2006. IEEE
Computer Society, 2006.

[21] F. Macias, M. Holcombe, and M. Gheorghe. A formal
experiment comparing extreme programming with traditional
software construction. In Mexican International Conference
on Computer Science, Los Alamitos, CA, USA, 2003. IEEE
Computer Society.

[22] K. Mannaro, M. Melis, and M. Marchesi. Empirical analysis
on the satisfaction of it employees comparing XP practices
with other software development methodologies. In Extreme
Programming and Agile Processes in Software Engineer-
ing, 5th International Conference, XP 2004, pages 166–174.
Springer, 2004.

[23] D. Mellado, E. Fernández-Medina, and M. Piattini. A compar-
ative study of proposals for establishing security requirements
for the development of secure information systems. In M. L.
Gavrilova, O. Gervasi, V. Kumar, C. J. K. Tan, D. Taniar,
A. LaganÃ, Y. Mun, and H. Choo, editors, ICCSA (3), volume
3982 of Lecture Notes in Computer Science, pages 1044–
1053. Springer, 2006.

[24] G. Melnik and F. Maurer. A cross-program investigation
of students’ perceptions of agile methods. In ICSE ’05:
Proceedings of the 27th international conference on Software
engineering, pages 481–488, New York, NY, USA, 2005.
ACM.

[25] P. Middleton. Lean software development: Two case studies.
Software Quality Control, 9(4):241–252, 2001.

[26] D. Parsons, H. Ryu, and R. Lal. The impact of methods
and techniques on outcomes from agile software development
projects. In Organizational Dynamics of Technology-Based
Innovation: Diversifying the Research Agenda. Springer,
2007.

[27] K. Petersen and C. Wohlin. The effect of moving from a plan-
driven to an incremental software development approach with
agile practices. Empirical Software Engineering, 2010.

[28] M. Pikkarainen, J. Haikara, O. Salo, P. Abrahamsson, and
J. Still. The impact of agile practices on communication
in software development. Empirical Software Engineering,
13(3):303–337, 2008.

[29] M. Poppendieck. XP in a safety-critical environment. Cutter
IT Journal, September 2002.

[30] S. Sinclair, S. W. Smith, S. Trudeau, M. E. Johnson, and
A. Portera. Information risk in the professional services –
field study results from financial institutions and a roadmap
for research. In Proceedings for the 3rd International Work-
shop on Enterprise Applications and Services in the Finance
Industry, 2007.

[31] B. Sullivan. Streamline security practices for agile develop-
ment, 2008.

[32] A. Tappenden, P. Beatty, and J. Miller. Agile security testing
of web-based systems via httpunit. In AGILE, pages 29–38.
IEEE Computer Society, 2005.

[33] J. Wäyrynen, M. Bodén, and G. Boström. Security engineer-
ing and extreme programming: An impossible marriage? In
C. Zannier, H. Erdogmus, and L. Lindstrom, editors, XP/Agile
Universe, volume 3134 of Lecture Notes in Computer Sci-
ence, pages 117–128. Springer, 2004.

[34] C. A. Wellington, T. Briggs, and C. D. Girard. Comparison of
student experiences with plan-driven and agile methodologies.
In Proceedings 35th Annual Conference on Frontiers in
Education, 2005. FIE ’05, 2005.

[35] R. West. The psychology of security. Commun. ACM, 51:34–
40, April 2008.

6


