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Channel Holding Time in Hierarchical Cellular
Systems

Yan Zhang and Boon-Hee Soong, Member, IEEE

Abstract—In this letter, we study the characteristics of the
channel holding time in the multitier cellular systems supporting
overflow and underflow schemes with the general call holding time
and the general cell residence time. The comparison between our
result, together with previous results, and the simulation shows
that our result is more universal and more accurate.

Index Terms—Call holding time, cell residence time, channel
holding time (CHT), hierarchical cellular systems (HCS), over-
flow/underflow.

1. INTRODUCTION

HE characteristics of the channel holding time (CHT)

plays a pivotal role in the performance evaluation of the
standalone wireless network, e.g., GSM, as well as the next
generation multitier wireless multimedia network, such as
the currently standardizing UMTS and WLAN interworking
network [1]. Owing to the critical significance, the CHT deriva-
tion in standalone wireless network has attracted extensive
studies (e.g., [2], [8]). However, in multitier wireless network,
CHT still remains a significant research issue since it is not
only dependent on the relationship between call holding time
and cell residence time but reliant on the resource allocation
strategy and the network architecture. In addition, the general
call holding time and cell residence time further complicate
CHT investigation. For the sake of analytical tractability, CHT
is traditionally provided under the exponential call holding time
and the exponential cell residence time [3], [4], [6] in hierar-
chical cellular systems (HCS). One recent work [5] calculated
CHT with the hyper-erlang call holding time and general cell
residence time.

In this letter, we present an approach for the CHT deriva-
tion in a two-layer HCS supporting slow and fast call over-
flow and underflow schemes. Both the call holding time and
cell residence time follow general distribution functions. The
lower microlayer is designed to provide service for the slow-mo-
bility mobile station(MS) while the upper macro-layer for the
fast-mobility MS. Overflow mechanism indicates that if there
is insufficient resource in the appropriate service layer upon the
moment of a call arrival, the call may transfer to another layer
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Fig. 1. The different call traffic and the corresponding typical behavior in: (a)
microcell and (b) macrocell.

to avoid the connection from being dropped. With the under-
flow scheme, an overflowed call can return to its own service
level upon crossing the microcell boundary. In the following, let
Ju(t), Eu(t), f2(s), F¥(s) denote the probability density func-
tion (pdf) of the nonnegative random variable x, the cumulative
distribution function (CDF) of z, Laplace-Stieltjes transform
(LST) of the pdf, and the LST of the CDF.

II. SYSTEM MODEL AND ANALYSIS

Fig. 1 shows the typical call trajectory for different call traf-
fics in microcell and macrocell. It is evident that the derivation
of the slow call and fast call CHT in microcell, or fast call in
macrocell, is exactly similar as the technique in standalone net-
work, which has been already discussed extensively (e.g., [2]).
Hence, we will neglect these types of call traffics and focus on
the slow call CHT in macrocell.

Let ¢, denote the call holding time with the average 1/ .. De-
note by X7 (X ) as the slow call cell residence time (residual
cell residence time) in macrocell with expected value 1/ny;.
Using the residual life theorem, the pdf of X, is given by
fxu, () = nu[l = Fx,, (t)].

We will focus on the overflowed slow new call CHT 7,,,. Let
Xmk(k=1,2,3...) represent the i.i.d. cell residence time in

1089-7798/04$20.00 © 2004 IEEE



ZHANG AND SOONG: CHT IN HIERARCHICAL CELLULAR SYSTEMS

the kth underlying microcell an overflowed slow new call tra-
versed with the generic form X,,, and the average 1/7,,. Ac-
cordingly, the residual cell residence time in the kth microcell
is denoted as X, ; with the generic form X,,,.

Denote by &g, as the probability that an overflowed slow new
call is moving out the coverage of the current serving macrocell
under the condition that it is leaving the coverage of the corre-
sponding underlying microcell. The equation to calculate this
quantity is

q)sn = P(er,1+Xm,2+' . +Xm,k < tc)(l_fsn)k_lfsn

K

k=1

ey

where ®,,, = P(X - < t.) represents the probability that an
overflowed slow new call moves out the serving macrocell when
virtually no underflow mechanism is utilized. The right side is
the summation of probabilities that the MS will eventually move
out the macrocell after traversing several underlying microcells.

Denote xr = Xmr1 + Zf=2 Xm,i with the LST of its pdf
given by

[l = f%, (9)f%, ()]

S

fr(8) =

k=1,2....

@
Employing the similar technique in [2], the probability in (1)
right-hand side becomes

P(xr <te)
- / Plxe < 1)fo () di

[ et

M [T [ (O] T L f

()] fi (=

m

) ds
3)

S

where j is the imaginary unit and o is a sufficiently small posi-
tive number. Analogously, the probability ®,,, is expressed as

me [T L= i, (9)] £ (=)

o, = M =4 4
27Tj o—joo 82 i ( )

If £ (s) has only finite possible isolated singular point in the
left-half complex plane, we can apply the Residue Theorem [7]
using a semicircular contour in the right-half plane [2]. In this
case, we substitute (3) and (4) into (1) and apply the Residue
Theorem

nm Z Ress:so [1 _ f;(M i‘;)]fti(_s)
S0€Q

= Eantim Y, Resy—y, =

S0 EN

(1= fx, ()] fi(=s)
(L= %, (5)(1 = &)

&)

where €2 denotes the set of poles of f; (—s) in the right complex
plane and Res;—, represents the residue at poles s = sg.
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Based on (5), a recursive approach is developed to compute

Eon-

Uupper

= OUlower (fgifl)) 7

1=1,2,... (©6)

with

s)] fi (=)

2

) 1- f%
C = %7Uupper = Z RGSSZSO [ fl\M(

S
m s0EQ

and

Ulower (5 o 1)) =Y Res,—s,

S0 EN

(- f, ] i)
52 [1—f‘§7n (s) (1—5551))}

Next, we will compute the channel holding time of the over-
flowed slow new call T,,. For an accepted slow overflow new
call in macrocell, its behavior can be broadly classified into two
categories. On the one hand, the call connection can be: 1) nor-
mally completed in the coverage of the first microcell when t. <
Xmr,1; or 2) normally completed in the coverage of the second
microcell after a failed underflow attempt when X,,,, 1 < t. <
Xumr,1 + X, 2; or 3) normally completed in the coverage of the
third microcell after two times failed underflow attempts in the
case of X1 + X2 < te < Xyt + Xon2 + X3, and so
on. In this case, Ty, is equal to ¢, due to the call normal com-
pletion in the upper layer.

On the other hand, the CHT can be: 1) X, 1 due to the suc-
cessful underflow upon crossing the first microcell boundary
or leaving the macrocell coverage; 2) X;,,1 + X, 2 due to
the successful underflow upon crossing the second microcell
boundary or leaving both the second microcell and the macro-
cell coverage provided that the first underflow is failed; and 3)
Xmr,1 + Xm,2 + X, 3 due to the successful underflow upon
crossing the third microcell boundary or leaving the third mi-
crocell coverage provided that the first and second underflows
are failed, and so on. As a result, the CDF of the overflowed
slow new call CHT is expressed as

Pl <t) = ZP (te <t,xh1<te < Xu)[(1=&n)Pou) "
=1

+ 3 POtk < toxk < t)[(1 = Ean) Pou]*
k=1
. [gsn + (1 - fsn)(l - Pbu)] (7)

where Py, is the underflow blocking probability. The item [(1 —
€.n)Pyu]*~1 accounts for the probability that the overflowed
slow call remains in the macrocell after £ — 1 times of failed
underflow attempts. The term [(1 — &.,,) Ppu]* e + (1 —
&sn)(1 — Ppy)] represents the probability that the overflowed
slow call remains in the macrocell after £ — 1 times of failed un-
derflow attempts, but in the kth underflow, the call either moves
out the coverage of the serving macrocell with probability &,
or successfully underflows to the lower layer with probability

(1 - gsn)(l - Pbu)
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After the mathematical manipulation, we obtain the pdf as

fr,.(t)
= fe. @)L = Fy, (O] + (1 — a) fy, () [L = Fy (2)]
+ ) T f Ohe(t) +(1 = a) fy (O [1 = F (D]}

®)

where @ = (1—&) Py and by (t) = [ fro o (7)[1—Fx,, (t—
7)]d7 with its LST

m (L= F5 ()] fi ()62
2 b]

S

h;(s):77 k=23....
€))

Consequently, the statistical moments of the CHT can be ob-
tained on the basis of the pdf of Ty,,. In particular, the expected
value is given by E(Ton) = [ tfr,, (t)dt.

Suppose that the call holding time has an n-stage Erlang dis-
tribution with mean 1/p,. = n/pu, variance V., = n/u?, and the
probability density function

’ulntnfl ot
t)= —e ¥
.ftc( ) (n_1>'6 )

In this case, the mean of 7Ty, is given by

o (=) dUEFY(s)
B(Ton) = po (n=1)! dsm

t>0n=1,2.... (10)

s=p

ko1 (2D dUh(s)
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k=1 =0

k=2 s=u

~

s=p

(11)

III. NUMERICAL RESULTS AND CONCLUSIONS

In this section, we will compare our result with the previous
results, and the simulation with the exponential call holding time
and the exponential cell residence time. In such case, all the slow
call CHT in macrocell follows the same exponential distribution
due to the memoryless property. If not specified, the set of pa-
rameters are chosen as: 1/p. = 180.0 s, 9 /nar = 3.0, and
Py, = 0.1. Hence, we denote CHT as 7" and drop the subscript.

1/E(T) = Hc + nm(l - Pbu) + THWPbu~

In contrast, the results in [3] (denoted as JF) and [4], [5]
(denoted as BCF & YJ) are given by

L/E(T) 35 = pe +numr
1/E(T)Bcre Y3 = te + Mm(1 = Pou) + 11
We argue that JF result has ignored the reason for channel
release due to successful underflow and that the studies BCF &

YJ have disregarded the prerequisite for the validity of overflow
slow call CHT equal to the cell residence time in macrocell.

(12)

13)
(14)
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Fig. 2. E(T) in terms of 5,,/p. with exponential call holding time and
exponential cell residence time.

Fig. 2 plots the mean CHT of slow call in macrocell in terms
of N /e It is evident that our result matches the simulation
result perfectly well while JF result exhibits a significant dis-
crepancy from the simulation, and BCF&YJ is smaller than and
only approximative to the actual value.

In contrast with the previous results, our result is superior in
the following aspects: 1) more general in the sense of the ab-
sence of any specific distribution assumption for the call holding
time and cell residence time, and the support of the overflow and
underflow mechanisms in HCS; 2) more accurate and validated
by the simulation result; and 3) simpler to compute due to the
closed-form formula. An interesting future topic is to employ
the obtained results to study the performance of HCS with gen-
eralized critical teletraffic parameters.
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