
My Insanely Great Operating Systems Research

Paper

Geordi LaForge

Abstract

Describe your paper in 100-200 words, give or take. The command-line
wc utility is really useful here!

1

Contents

1 Outline for Option 1: In-Depth Study 3
1.1 Introduction . 3
1.2 Previous Work . 3
1.3 Concept and Theory . 3
1.4 User View . 4
1.5 Developer View . 4
1.6 Implementation . 4
1.7 Conclusion . 4
1.8 (as an Appendix) Sample Code 4

2 Outline for Option 2: Research Report 4
2.1 Introduction . 5
2.2 Background, Preliminary, and Related Work 5
2.3 User View . 6
2.4 Developer View and Implementation 6
2.5 Current Status and Discussion 6
2.6 Future Directions . 6
2.7 Conclusion . 6
2.8 (as an Appendix) Sample Code 7

2

1 Outline for Option 1: In-Depth Study

The following subsections form the outline for an in-depth study paper —
or, “learn about an operating system aspect from top to bottom,” from
concept and theory all the way to implementation and sample code. In the
final paper, these subsections should actually promoted to full sections,
and this artificial umbrella section should be removed.

Sample topics for this type of paper are listed below. Accompanying
citations represent sample starting points for reading about the corre-
sponding topic:

• A particular operating system’s I/O subsystem (e.g., [Com05])

• A particular operating system’s kernel, with emphasis on what is
distinctive or unique compared to other kernels (e.g., [RS01])

• An interesting operating system-related application or enhancement
(e.g., [Bes05])

• A complete study of a specialized operating system (e.g., [Wil04])

A word of caution: because operating systems tend to be very well-
documented, this type of paper will usually have few references, and you
might find yourself simply restating a lot of the content that you have
read. Always state things in your own words; it will probably help if you
adhere strictly to the outline below, so that you are forced to comprehend
and restructure the material sufficiently.

Of course, you can get an excellent starting point for most core con-
cepts from the textbook, so you will probably be citing that as well
[SGG05].

1.1 Introduction

Summarize the operating system aspect or feature that you are studying.
The introduction should be written with the assumption that the reader
is technically competent but might not know any specifics at all on this
particular operating system concept, service, or construct.

1.2 Previous Work

Provide background work or prior versions (or equivalents) of your chosen
subject matter. For this type of paper, “previous work” includes but is not
restricted to: equivalent constructs from prior versions of the operating
system; equivalents from other operating systems entirely; and earlier
prototypes, research, or theory that led to the current version of your
chosen subject matter. Most of your citations and references will probably
reside here. Refer to the first few paragraphs in Section 2 for pointers on
creating effective bibliographies and citations with BibTEX and LATEX.

1.3 Concept and Theory

This section should describe your subject matter at a conceptual level:
what is it, what are its core ideas, what are its primary functions. Def-
initions and overall schematics or diagrams belong in this section. If

3

some theory is involved (e.g., algorithms, mathematics, abstractions), this
would be the right place to discuss that as well.

1.4 User View

Describe a user’s perspective of your chosen subject: what does the user
see? What benefits or functions does it provide? How does the user
interface look, if any? Are there any flaws or issues in what is presented
to the user?

In many respects, this section functions like a condensed “instruction
manual” for a non-developer user.

1.5 Developer View

In this section, shift to a developer’s perspective: how does one program-
matically access your chosen subject? What features are provided? How
are the concepts or abstractions expressed as programming constructs:
data structures, interfaces, etc.? How are error conditions and logging
handled? What capabilities would applications or other programs gain by
using your chosen subject at a programmatic level?

1.6 Implementation

The final section discusses the implementation of your chosen subject. If
possible, acquire the source code for your chosen subject so that you can
really study “where the rubber meets the road.” What language (you may
need to be really specific here; typically just saying “C” won’t be enough)
was used in the implementation? Are there any interesting or particularly
elegant design choices? Effective optimizations or algorithms? How bound
is the implementation to the hardware?

1.7 Conclusion

Summarize your overall in-depth study. List any advantages and dis-
advantages, at any level, that you discovered. Provide suggestions for
addressing the weaknesses that you found. Point to possible future work
or directions, whether “official” or based on your own understanding.

1.8 (as an Appendix) Sample Code

A quality in-depth study should include sample code which you’ve tested,
experimented, and played with; include those in an appendix. If needed,
provide screenshots or other artifacts of the programs, since I may not
always be able to try them firsthand.

2 Outline for Option 2: Research Report

The following subsections form the outline for a research report — essen-
tially “read up on something, then report on what you read.” In the final

4

paper, these subsections should actually promoted to full sections, and
this artificial umbrella section should be removed.

This type of paper is likely to be the heaviest user of LATEX’s excellent
bibliography features. Citations and references are handled automatically
by LATEX through its companion program, BibTEX. All you have to do
is provide a bibliography file that provides the reference information and
internal keys (very much like variable names) that you use in your docu-
ment.

BibTEX supports virtually all kinds of references, including books
[SGG05, Com05, Wil04], parts of books [Bes05], articles [Loe05, RS01],
and conference proceedings [SG05, HJLT05, ZCT+05], to name a few.
If not already included in your LATEX distribution, download and install
the url package to support formatting of URLs; you can usually mention
these in the note or howpublished fields of your BibTEX file.

Sample topics for this type of paper are listed below. Accompanying
citations represent sample references about the corresponding topic:

• New features beyond the classic process, memory, storage, and I/O
responsibilities of a traditional operating system (e.g., better file
searches [SG05], enhanced security features [CCC+05])

• New work or enhancements on a known or established aspect of an
operating system (e.g., new approaches to operating system pro-
cesses and threads [Loe05, EKV+05], new power management tech-
niques for mass storage [ZCT+05])

• New approaches to operating system design or construction (e.g.,
build an operating system with Haskell monads [HJLT05]!)

2.1 Introduction

Provide an introductory description of the operating system area that you
researched in this paper. Discuss any goals, motivation, or examples of
the subject; the key is to provide the reader with any information that
is necessary to understand the project or work. This descriptive section
should also allow the reader to understand the subsequent detail sections
on the subject.

2.2 Background, Preliminary, and Related Work

Describe any history, work, or projects that serve as direct predecessors to
the subject that you are summarizing or surveying. These items typically
form the context or environment that spawned the subject of your paper.
Previous work that has since been replaced or supplanted by the subject
of your paper belongs in the section as well. Look at the sample research
papers to see how they organized, presented, and discussed prior work.

The bibliographic notes in the text [SGG05] provide some pointers to
seminal or key works; because they made it into the textbook they aren’t
necessarily “bleeding edge,” but they likely provide the foundation for
your chosen subject matter.

5

2.3 User View

Describe a user’s perspective of your chosen subject: what does the user
see? What benefits or functions does it provide? How does the user
interface look, if any? Are there any flaws or issues in what is presented
to the user?

Since your subject matter for this type of paper is “bleeding edge”
work, much of this may be speculative or hypothetical; that’s OK. What
matters is that you are able to communicate how your chosen subject will
affect its end-users when/if it reaches them in some final form.

2.4 Developer View and Implementation

In this section, shift to a developer’s perspective: how does one program-
matically access your chosen subject? What features are provided? How
are the concepts or abstractions expressed as programming constructs:
data structures, interfaces, etc.? How are error conditions and logging
handled? What capabilities would applications or other programs gain by
using your chosen subject at a programmatic level?

Again, since your subject matter for this type of paper is not necessar-
ily “finished goods,” this section may also be tentative or prototypical. As
with the user view, the important part is that you are able to communicate
how developers would interact with or use your chosen subject.

For the same reason, implementation details may be few and far be-
tween; still, a well-reported research area will have discussed this issue,
and your findings in this area would belong in this section.

2.5 Current Status and Discussion

Provide the most up-to-date status report on the subject of your paper —
what it can do, its level of maturity, any current applications, any related
work, the latest findings or observations — complete with citations to the
sources that provided this information. A key component of this section
with be any references to the most recent publications, documents, or
version of your paper’s subject.

Another key component of this section is an evaluation of the subject:
successes, failures, problems solved, and problems discovered. This com-
ponent serves as an excellent transition to the final major section, which
is. . .

2.6 Future Directions

Summarize what authors or developers have said about the future di-
rection of your paper’s subject. What’s next? What new features are
planned? What technical challenges or other barriers lie ahead?

2.7 Conclusion

Wrap up your survey with an “executive summary” of the paper’s subject,
its background, its current status, and its future directions.

6

2.8 (as an Appendix) Sample Code

The ability to include sample code will depend greatly on the maturity
level of your chosen topic, so this section may or may not apply to the
paper. However, if it is available (even if it is speculative or just a “pro-
jection”), this would be where it would go.

As with the in-depth study, provide screenshots or other artifacts of
the programs (which may be mockups for this type of paper).

7

References

[Bes05] Steve Best. User-Mode Linux, chapter 11. Prentice Hall, 2005.

[CCC+05] Manuel Costa, Jon Crowcroft, Miguel Castro, Antony Row-
stron, Lidong Zhou, Lintao Zhang, and Paul Barham. Vigilante:
end-to-end containment of internet worms. SIGOPS Oper. Syst.
Rev., 39(5):133–147, 2005.

[Com05] Apple Computer, Inc. I/O Kit Fundamentals. Apple Computer,
Inc., 2005. http://developer.apple.com/documentation/

DeviceDrivers/Conceptual/IOKitFundamentals.

[EKV+05] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart,
Cliff Frey, David Ziegler, Eddie Kohler, David Mazières,
Frans Kaashoek, and Robert Morris. Labels and event processes
in the asbestos operating system. In SOSP ’05: Proceedings of
the twentieth ACM symposium on Operating systems principles,
pages 17–30, New York, NY, USA, 2005. ACM Press.

[HJLT05] Thomas Hallgren, Mark P. Jones, Rebekah Leslie, and Andrew
Tolmach. A principled approach to operating system construc-
tion in Haskell. In ICFP ’05: Proceedings of the tenth ACM
SIGPLAN international conference on Functional programming,
pages 116–128, New York, NY, USA, 2005. ACM Press.

[Loe05] Keith Loepere. Stackable thread mechanisms. SIGOPS Oper.
Syst. Rev., 39(4):4–17, 2005.

[RS01] Mark Russinovich and David Solomon. Windows XP: Kernel
improvements create a more robust, powerful, and scalable OS.
MSDN Magazine, 16(12), December 2001.

[SG05] Craig A. N. Soules and Gregory R. Ganger. Connections: using
context to enhance file search. In SOSP ’05: Proceedings of
the twentieth ACM symposium on Operating systems principles,
pages 119–132, New York, NY, USA, 2005. ACM Press.

[SGG05] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Op-
erating System Concepts. John Wiley & Sons, 7th edition, 2005.

[Wil04] Greg Wilson. Exploring Palm OS: Memory, Databases, and
Files. PalmSource, Inc., 2004.

[ZCT+05] Qingbo Zhu, Zhifeng Chen, Lin Tan, Yuanyuan Zhou, Kim-
berly Keeton, and John Wilkes. Hibernator: helping disk arrays
sleep through the winter. In SOSP ’05: Proceedings of the twen-
tieth ACM symposium on Operating systems principles, pages
177–190, New York, NY, USA, 2005. ACM Press.

8

