
Local Model Checking Games(Extended Abstract)Colin Stirling?Department of Computer ScienceUniversity of EdinburghEdinburgh EH9 3JZ, UKemail: cps@uk.ac.ed.dcs1 IntroductionModel checking is a very successful technique for verifying temporal properties of�nite state concurrent systems. It is standard to view this method as essentiallyalgorithmic, and consequently a very fruitful relationship between temporal lo-gics and automata has been developed. In the case of branching time logics theconnection has not been quite so tight as tree automata are not naturally thecorrect semantics of programs. Hence the introduction of amorphous automatawith varying branching degrees, and the use of alternating automata.Local model checking was proposed as a proof system approach to veri�cationwhich also applies to in�nite-state concurrent systems. In part this was becauseit predominantly uses the process algebra model of concurrency (such as CCS)where a concurrent system is presented as an expression of the calculus. Thequestion of veri�cation is then whether a particular expression has a temporalproperty (rather than all the states of a transition system which have a property).In local model checking the proof system is developed in a goal directed fashion,that is a top down approach. When a property holds, there is a proof tree whichwitnesses this truth. It also allows there to be proofs for in�nite-state systems.Moreover local model checking permits compositional reasoning, when a prooftree may be guided by the algebraic structure of the system as well as the logicalstructure of the formula expressing the property.In this talk we show that in the �nite-state case these two approaches, modelchecking as essentially algorithmic and model checking as a proof system, canbe combined using games as an underlying conceptual framework that can enjoythe best of both worlds. The automata theoretic approach is captured via theresulting game graph (which is an alternating automaton), and on the other handa witness for non-emptiness of a game graph is just a proof tree. Alternativelya game graph can be translated into a formula of boolean �xed point logic,which has provided a variant framework for model checking. Game playing alsoprovides a very perspicuous basis for understanding branching time temporallogics and model checking of �nite and in�nite-state systems.An important question is whether �nite-state model checking of modal mu-calculus properties can be done in polynomial time. Emerson showed that this? Research in part supported by ESPRIT BRA project Concur2.

problem belongs to NP\ co-NP. Games provide a very direct proof of this result.It appears that �ner structure needs to be exposed to improve upon this. Webelieve that new insights may come from the relationship between these gamesand other graph games. For example model checking games can be reduced tosimple stochastic games, an observation due to Mark Jerrum, whose decisionprocedure also belongs to NP\ co-NP.2 Modal Mu-CalculusModal mu-calculus, modal logic with extremal �xed points, was introduced byKozen [13]. Formulas of the logic given in positive form are de�ned by� ::= Z j �1 ^ �2 j �1 _ �2 j [K]� j hKi� j �Z: � j �Z:�where Z ranges over a family of propositional variables, and K over subsets2of an action set A. The binder �Z is the greatest whereas �Z is the least �xedpoint operator.Modal mu-calculus with action labels drawn fromA is interpreted on labelledtransition systems (P; f a�! : a 2 Ag) where P is a countable but non-emptyset of processes (or states), and each a�! is a binary transition relation onP. Labelled transition systems are popular structures for modelling concurrentsystems especially process calculi such as CCS [17]: P is then a transition closedset3 of process expressions and E a�! F means that E may evolve to F byperforming the action a.Assume a �xed transition system (P; f a�! : a 2 Ag), and let V be a valuationwhich assigns to each variable Z a subset V(Z) of processes in P. Let V[E=Z]be the valuation V 0 which agrees with V everywhere except possibly Z whenV 0(Z) = E . The subset of processes in P satisfying an arbitrary formula 	 underthe valuation V is inductively de�ned as the set jj	 jjPV where for ease of notationwe drop the superscript P which is assumed �xed throughout:jjZ jjV = V(Z) jj�^ 	 jjV = jj� jjV \ jj	 jjV jj�_ 	 jjV = jj� jjV [jj	 jjVjj [K]� jjV = fE 2 P : if a 2 K and E a�! F then F 2jj� jjVgjj hKi� jjV = fE 2 P : E a�! F for some a 2 K and F 2jj� jjVgjj�Z: � jjV = SfE � P : E �jj� jjV[E=Z]gjj�Z:� jjV = TfE � P : jj� jjV[E=Z]� EgAny formula � determines the monotonic function �E � P: jj� jjPV[E=Z] withrespect to the variable Z, the valuation V, and the set P. Hence the meaning ofthe greatest �xed point is the union of all post�xed points, and it is the intersec-tion of all pre�xed points in the case of the least �xed point. One consequenceis that the meaning of �Z:� is the same as its unfolding �f�Z:�=Zg (where2 It is very convenient to allow sets of labels to appear in modalities instead of theusual single labels.3 If E 2 P and E a�! F then F 2 P .

�f	=Zg is the substitution of 	 for free occurrences of Z in �). Assume thattt (true) abbreviates �Z: Z, and ff (false) is �Z:Z. We use E j=V � as anabbreviation for E 2jj� jjPV when P contains E.An alternative but equivalent interpretation of extremal �xed points is interms of approximants. When � 2 f�; �g, and � is an ordinal let �Z�:� be the�-unfolding with the following interpretation, where � is a limit ordinal:jj�Z0: � jjV = P jj�Z0: � jjV = ;jj�Z�+1: � jjV = jj� jjV[jj�Z�: �jjV=Z] jj�Z�+1: � jjV = jj� jjV[jj�Z�: �jjV=Z]jj�Z�: � jjV = Tfjj�Z�: � jjV : � < �g jj�Z�: � jjV = Sfjj�Z�: � jjV : � < �gThe set jj �Z: � jjV equals Tfjj�Z�: � jjV : � is an ordinalg and jj�Z:� jjV is thesame as Sfjj�Z�: � jjV : � is an ordinalg.Modal mu-calculus is a very expressive propositional temporal logic with theability to describe liveness, safety, fairness, and cyclic properties. It has beenshown that it is as expressive as �nite-state automata on in�nite trees, andhence is as powerful as the monadic second-order theory of n successors [10].This is a very general and fundamental decidable theory to which many otherdecidability results in logic can be reduced. Most propositional temporal andmodal logics used in computer science are sublogics of mu-calculus. Consequentlyvarious subcalculi can be de�ned which contain other well known program logics.An important example is CTL which is contained within the alternation freefragment. This is the sublogic when the following pair of conditions are imposedon �xed point formulas:if �Z:� (�Z: �) is a subformula of �Y: 	 (�Y:) then Y is not free in �This fragment of modal mu-calculus turns out to be very natural, for it is pre-cisely the sublogic which is equi-expressive to weak monadic second-order theoryof n successors4 . This result follows from [3] where it is proved for Niwinski'stree mu-calculus. Other fragments of modal mu-calculus studied include thoseof k{alternation depth for any k, and those presented in [12].3 Veri�cation and model checkingModal mu-calculus is a very rich temporal logic for describing properties ofsystems. Here are two examples presented purely for illustration:Example 1 A �nite-state CCS description of a level crossing from [5] consistsof three components in parallel, the road, rail, and signal where the �rst two aresimple cyclers.Road def= car:up:ccross:down:RoadRail def= train:green:tcross:red:RailSignal def= green:red:Signal + up:down:SignalCrossing def= (Road jRail j Signal)nfgreen; red; up; downg4 when the second-order quanti�ers range over �nite sets.

The actions car and train represent the approach of a car and a train, up isthe gates opening for the car, and ccross is the car crossing, and down closesthe gates, and green is the receipt of a green signal by the train, tcross is thetrain crossing, and red automatically sets the light red. A safety property for thecrossing is that it is never possible to reach a state where a train and a car areboth able to cross, �Z:([tcross]ff_ [ccross]ff)^ [�]Z5. The desirable livenessproperty for the crossing is that whenever a car approaches then eventually itcrosses �Z: [car](�Y: h�itt^ [�ccross]Y)^ [�]Z (and similarly for a train). Butthis only holds if we assume that the signal is fair, which is also expressible inthe logic.Example 2 A second (somewhat arti�cial) example is a description of anarbitrary new clock. Let Cl i be a clock that ticks i times before terminating, andlet Clock be PfCli : i � 1g. Like all new clocks, Clock will eventually breakdown, so has the property �Z: [tick]Z. However it fails to have �Zn: [tick]Zfor all n � 0.A process expression determines a (unique) transition graph according to therules for transitions. The graph associated withCrossing is �nite-state whereas itis in�nite-state in the case of Clock . The veri�cation problem in this frameworkis to �nd techniques for determining whether or not a process description Ehas the property � (relative to stipulations as to what the free variables say assummarized by a valuation V). One technique for checking whether process Ehas � is to �rst construct the transition graph for E (or even a larger graph),and then second to calculate jj � jjV with respect to this structure, possiblyusing approximants, and then �nally check whether E belongs to it. This seemsreasonable for determining whether a process such as the crossing has a property,as its transition graph is small. As a general method it is very cumbersomeand clearly not directly applicable to in�nite-state processes such as the clock.These were grounds for introducing local model checking as in [20, 6]. It was notintended as an algorithmic method, but as a proof system, and this is why itwas developed using tableaux, for which in the �nite-state one might be able toextract a reasonable algorithm. In fact this is one consequence of using gamesas an alternative logical basis for local model checking.4 Simple gamesWe now present an alternative account of the satisfaction relation between aprocess and a temporal formula using games which underpins the local modelchecking proof systems in [20, 6]. A property checking game is a pair (E;�)relative to V for which there are two players, player I and player II. It is the roleof player I to try to show that E fails to have the property � whereas playerII attempts to frustrate this. Unlike more standard games, players here do not5 To cut down on brackets we write [a1; : : : an] instead of [fa1; : : : ang], and the samewithin a diamond operator, and �K abbreviates A�K (and so [�] is [A]).

necessarily take turns6.A play of the property checking game (E0; �0) relative to V is a �nite orin�nite sequence of the form, (E0; �0) : : : (En; �n) : : :. The next move in a play,the step from (Ej; �j) to (Ej+1; �j+1), and which player makes it is determinedby the main connective of �j. An essential ingredient is the use of auxiliarypropositional constants, ranged over by U , which are introduced as �xed pointformulas are met and can be thought of as colours. Suppose an initial part of aplay is (E0; �0) : : : (Ej; �j). The next step (Ej+1; �j+1) is as below:{ if �j = 	1^	2 (1_	2) then player I (player II) chooses one of the conjuncts(disjuncts) 	i: the process Ej+1 is Ej and �j+1 is 	i.{ if �j = [K]	 (hKi) then player I (player II) chooses a transition Ej a�!Ej+1 with a 2 K and �j+1 is 	 .{ if �j = �Z: 	 (�Z:) then player I (player II) chooses a new constant Uand sets U def= �Z: 	 (U def= �Z:): the process Ej+1 is Ej and �j+1 is U .{ if �j = U and U def= �Z: 	 (U def= �Z:) then player I (player II) unfolds the�xed point so �j+1 is 	fU=Zg and Ej+1 is Ej.There is a strong duality between the rules for ^ and _, [K] and hKi, �Z: 	 and�Z: 	 . In the case of the last pair new constants are introduced as abbreviationsfor those �xed points. Rules also govern occurrences of constants as the formulaof the next step is the body of the de�ned �xed point when all the occurrencesof the �xed point variable are replaced with the constant.The rules for the next move in a play are backwards sound with respectto the intentions of the players. If player I makes the move (Ej+1; �j+1) from(Ej; �j) and Ej+1 fails to satisfy �j+1 relative to V then also Ej fails to have�j. In contrast when player II makes this move and Ej+1 j=V �j+1 then alsoEj j=V �j. In the case of a �xed point formula this is clear provided we under-stand the presence of a constant to be its de�ned equivalent. Formulas are nolonger \pure" as they may contain constants. However we can recover a pureformula from an impure formula by replacing constants with their de�ned �xedpoints in reverse order of introduction: assuming that U1 def= 	1 : : :Un def= 	n isthe sequence of declarations in order of introduction, the meaning of 	 is just	f	n=Ung : : :f	1=U1g. Consequently the �xed point unfolding principle justi�esthe backwards soundness of the moves determined by the constants.A player wins a play of a game in the circumstances depicted in �gure 1.If the con�guration (E; hKi�) is reached and there is no available transitionthen player II can not establish that E has hKi�. Similarly if the con�gurationis (E; [K]�) and there is no available transition then player I cannot refutethat E has [K]�. Similar comments apply to the case when the con�gurationis (E;Z). The other circumstances when a player is said to win a play concernrepetition. If the con�guration reached is (E;U) when U abbreviates a maximal�xed point formula, and this same con�guration occurs earlier in the game playthen player II wins. Dually if U abbreviates a least �xed point it is player I6 It is straightforward to reformulate the de�nition so that players must take turns.

Player II wins Player I wins1: The play is (E0; �0) : : : (En; �n) 10: The play is (E0; �0) : : : (En; �n)and �n = Z and E 2 V(Z): and �n = Z and E 62 V(Z):2: The play is (E0; �0) : : : (En; �n) 20: The play is (E0; �0) : : : (En; �n)and �n = [K]	 and the set and �n = hKi	 and the setfF : En a�! F and a 2 Kg = ;: fF : En a�! F and a 2 Kg = ;:3: The play is (E0; �0) : : : (En; �n) 30: The play is (E0; �0) : : : (En; �n)and �n = U and U def= �Z:� and and �n = U and U def= �Z:� andEi = En and �i = �n for i < n: Ei = En and �i = �n for i < n:4: The play (E0; �0) : : : (Ei; �i) : : : 40: The play (E0; �0) : : : (Ei; �i) : : :is in�nite length and there is a is in�nite length and there is aconstant U def= �Z:� such that constant U def= �Z:� such thatfor in�nitely many j; �j = U: for in�nitely many j; �j = U:Fig. 1. Winning conditionsthat wins7. More generally as a play can have in�nite length (but only when theinitial process is in�nite state) this repeat condition for winning is generalizedfor these plays. Player I wins if there is a least �xed point constant U which istraversed in�nitely often, and player II wins if instead there is a greatest �xedpoint constant U which occurs in�nitely often. In any in�nite length play thereis only one constant that occurs in�nitely often, and therefore just one of theplayers wins the play.Lemma 1 If (E0; �0) : : : (En; �n) : : : is an in�nite length game play then thereis exactly one constant U such that for in�nitely many j, �j = U .A player is said to have a winning strategy for a game if she is able to winany play of it. This means that she can always respond e�ectively to the movesher opponent makes.Theorem 1 E j=V � i� player II has a winning strategy for (E;�) under V.This provides an alternative characterization of the satisfaction relation betweenprocesses and formulas. Game playing does not depend upon explicit calcula-tion of �xed points. It is also open-ended as to knowing only part or all of thetransition graph of a process. There is another feature, the possibility of moresophisticated game playing where moves may also be guided by the algebraicstructure of a process expression (the raw material in [2] provides a basis forthis).Player II has a winning strategy for the game (Clock ; �Z: [tick]Z). Any playhas �nite length as player I must choose a transition Clock tick�! Cl i and so7 These two conditions are redundant, but are included because then any �nite-stateprocess can only have �nite length game plays.

must end being stuck in a con�guration (Cl0; [tick]U) when U def= �Z: [tick]Z.Similarly the safety and liveness (under fairness) properties of the crossing canbe established using games.Game playing justi�es the tableaux proof systems for verifying temporalproperties of �nite and in�nite-state processes as developed in [6, 20]. A success-ful tableau for a process E and a property � turns out to be a witness for playerII's successful strategy for (E;�). In the case that E is a �nite-state process eachbranch in the tableau is a winning play for player II, and all choices available toplayer I are contained within it. In the case of an in�nite-state system the ideais essentially the same.Game playing provides a very transparent methodology for property proving.However in the case of a �nite-state process it is not very time e�cient: thelength of a play may be exponential in the number of �xed point subformulas.By re�ning the de�nition of game we can dramatically improve e�ciency, andyet retain transparency.5 Re�nement of gamesIn this section we re�ne the de�nition of game play to provide a more e�cientcharacterization of the satisfaction relation. Constants are reintroduced whenthe same �xed point formula is met again. This means that the previous rule forintroducing constants for �xed points is divided it into two cases. Recall that weare de�ning the next pair in the play (E0; �0) : : : (Ej; �j):{ if �j = �Z: 	 (�Z:) and player I (player II) has not previously introduceda constant V def= �Z: 	 (V def= �Z:) then player I (player II) chooses a newconstant U and sets U def= �Z: 	 (U def= �Z:): the process Ej+1 is Ej and�j+1 is U .{ if �j = �Z: 	 (�Z:) and player I (player II) has previously introduced aconstant V def= �Z: 	 (V def= �Z:) then Ej+1 is Ej and �j+1 is V .The other rules are as before. As before a player wins a play in the circumstances1, 10, 2 and 20 of �gure 1. The other conditions for winning, when there is a repeatcon�guration and those for in�nite length plays, need to be rede�ned becauseconstants are reintroduced: an in�nite length play may now contain more thanone constant that recurs in�nitely often. A little notation:De�nition 1 The constant U is active in � i� either U occurs in �, or someconstant V occurs in � with V def= �Z:	 and U is active in �Z:	 .The constraints on how constants are introduced ensure that being active iswell de�ned. Activity of a constant can be extended to �nite or in�nite lengthsequences of formulas, U is active throughout �0; : : : ; �n : : : if it is active in each�i.

Lemma 2 i. If (E0; �0); : : : ; (En; �n) is an initial part of a game play and�i = �n when i < n then there is a unique constant U which is active throughout�i; : : : ; �n and occurs there, �j = U for some j : i � j � n.ii. If (E0; �0); : : : ; (En; �n) : : : is an in�nite length game play then thereis a unique constant U which occurs in�nitely often and is active throughout�j ; : : : ; �n : : : for some j � 0.Lemma 2 governs the remaining winning conditions for game playing, thereplacements for 3, 30, 4 and 40 of �gure 1. A repeat con�guration (E;) when	 is any formula, and not just a constant, terminates play. Who wins depends onthe sequence of formulas between (and including) the identical con�gurations.There is exactly one constant U which is active in this cycle and which occurswithin it: if it abbreviates a maximal �xed point formula then player II wins andotherwise it must abbreviate a least �xed point formula and player I wins. Inany in�nite length play there is a unique constant which is traversed in�nitelyoften and which is active for all but a �nite pre�x: if this constant abbreviatesa maximal �xed point formula player II wins and otherwise player I wins.As before a player is said to have a winning strategy for a game if she is ableto win any play of it.Theorem 2 E j=V � i� player II has a winning strategy for (E;�) under V.It is straightforward to present tableaux proof systems for verifying temporalproperties of �nite and in�nite-state processes, which are underpinned by thesemore re�ned games and where again a successful tableau is a witness for playerII's successful strategy.Theorem 2 o�ers a di�erent perspective on similar results for the �nite-statecase presented in [12] whose basis is tree automata, and [4] which is groundedin alternating automata. The proof in the general case, when processes may bein�nite-state, is similar to the model construction in [19]. It also follows fromTheorem 2 (which utilizes approximants) that a winning strategy for a game isstationary or history free. Hence for a player it is a function from con�gurationsshe is able to move from to unique successors.Assume that E is �nite-state. The game graph for (E;�) relative to V isthe graph representing all possible plays of (E;�) modulo a canonical meansof choosing constants. The vertices are pairs (F;), con�gurations of a possiblegame play, and there is a directed edge between two vertices v1 �! v2 if aplayer can make as her next move v2 from v1. Let G(E;�) be the game graph for(E;�), and let jG(E;�)j be its vertex size. It follows that jG(E;�)j � jEj � j�jwhere jEj is the number of processes in the transition graph for E, and j�j isthe size of this formula. This means that any play of (E;�) has length at most1+(jEj�j�j). The proof that model checking belongs to NP\ co-NP follows fromthe observation that given a strategy for player II or player I it is straightforwardto check in polynomial time whether or not it is successful. (See [10] for a proofwhich has its roots in [9] using tree automata.) For the alternation free fragmentgame graphs obey the weak alternating automaton condition for partitioningvertices [18], and hence model checking can be determined in polynomial time.

(See [4] which directly uses alternating automata.)We can easily ensure that game playing must proceed to in�nity by addingextra moves when a player is stuck (and removing the redundant repeat termin-ation condition). The resulting game graph is then an alternating automaton:the and-vertices are the con�gurations from which player I must proceed and theor-vertices are those from which player II moves, and the acceptance conditionis given in terms of active constants.Alternatively a game graph can be directly translated into a formula ofboolean �xed point logic, de�ned as follows:� ::= Z j tt j ff j �1 ^�2 j �1 _ �2 j �Z: � j �Z:�Satis�ability (or really truth) checking of closed formulas of this logic is thereforealso in NP\ co-NP. Various authors have, in e�ect, translated �nite-state modelchecking into this logic, with a preference for a syntax utilizing equations [1,14, 7]. One can also model check directly using approximants, where a carefulutilization of monotonicity provides reasonable exponential algorithms [11, 15].An important open question is whether model checking modal mu-calculusformulas can be done in polynomial time (with respect to the size of a gamegraph). One direction for research is to provide a �ner analysis of successfulstrategies, and to be able to describe optimizations of them. New insights maycome from the relationship between the games developed here and other graphgames where there are such descriptions.6 Graph gamesThe model checking game of the previous section can be abstracted into thefollowing graph game. A game is a graph with vertices f1; : : : ; ng where eachvertex i has two directed edges i �! j1 and i �! j2, and which obeys thefollowing condition: if i �! j and j � i then there is a path j �! j1 �! : : : �!jn = i where j � j1 � : : : � jn. Each vertex is labelled I or II. A play is anin�nite path through the graph starting at vertex 1, and player I moves fromvertices labelled I and player II from vertices labelled II. The winner of a play isdetermined by the label of the least vertex i which is traversed in�nitely often:if i is labelled I then player I wins, and if II then player II wins. A player winsthe game if she is able to win any play. A winning strategy is again stationary.Simple stochastic games [8] are graph games where the vertices are labelledI, II or A (average), and where there are two special vertices I-sink and II-sink(which have no outgoing edges). As above each I, II (and A) vertex has twooutgoing edges. At an average vertex during a game play a coin is tossed todetermine which of the two edges is traversed each having probability 12 . Moregenerally one can assume that the two edges are labelled with probabilities ofthe form pq where 0 � p � q � 2m for some m, as long as their sum is 1. A gameplay ends when a sink vertex is reached: player II wins if it is the II-sink, andplayer I otherwise. The decision question is whether the probability that playerII wins is greater than 12 . It is not known whether this problem can be solved

in polynomial time. In [16] a \subexponential" (2O(pn)) algorithm is presented,which works by re�ning optimal strategies. A polynomial time algorithm forsimple stochastic games would imply that extending space bounded alternatingTuring machines with randomness does not increase the class of languages thatthey accept.Mark Jerrum noted that there is a reduction from the graph game to thesimple stochastic game. The idea is to add the two sink vertices, and an averagevertex i1 for each vertex i for which there is an edge j �! i with j � i. Each suchedge j �! i when j � i is changed to j �! i1. And the vertex i1 has an edgeto i, and to I-sink if i is labelled I or to II-sink otherwise. With suitable rationalprobabilities on the edges, player II has a winning strategy for the graph game i�she has one for the simple stochastic game. Another relevant graph game is themean payo� game for which there is also a reduction from the model checkinggame.Acknowledgement: I would like to thank Mark Jerrum for numerous discus-sions about model checking and games.References1. Andersen, H. (1994). Model checking and boolean graphs. Theoretical Comp. Sci-ence, 126, 3-30.2. Andersen, H., Stirling, C., and Winskel, G. (1994) A compositional proof systemfor the modal mu-calculus. Procs LICS.3. Arnold, A., and Niwinski, D. (1992). Fixed point characterization of weak monadiclogic de�nable sets of trees. In Tree Automata and Languages, ed. M. Nivat andA. Podelski, Elsevier, 159-188.4. Bernholtz, O., Vardi, M. and Wolper, P. (1994). An automata-theoretic approachto branching-time model checking. Procs. CAV 94.5. Brad�eld, J. and Stirling, C. (1990). Verifying temporal properties of processes.Lect. Notes in Comput. Science, 458, 115-125.6. Brad�eld, J. and Stirling, C. (1992). Local model checking for in�nite state spaces.Theoret. Comput. Science, 96, 157-174.7. Cleaveland, R. and Ste�en, B. (1992). A linear-time model checking algorithm forthe alternation-free modal mu-calculus. Lect. Notes in Comp Science, 575.8. Condon, A. (1992). The complexity of stochastic games. Inf. and Comp., 96,203-224.9. Emerson, E. (1985). Automata, tableaux, and temporal logics. Lect. Notes inComput. Science, 193, 79-87.10. Emerson, E., and Jutla, C. (1988). The complexity of tree automata and logicsof programs. Extended version from FOCS `88.11. Emerson, E, and Lei, C. (1986). E�cient model checking in fragments of thepropositional mu-calculus. In Proc. 1st IEEE Symp. on Logic in Comput. Science,267-278.12. Emerson, E., Jutla, C., and Sistla, A. (1993). On model checking for fragmentsof �-calculus. Lect. Notes in Comput. Sci., 697, 385-396.13. Kozen, D. (1983). Results on the propositional mu-calculus. Theoret. Comput. Sci27, 333-354.

14. Larsen, K. (1992). E�cient local correctness checking. Lect. Notes in Comput.Sci., 663, 385-396.15. Long, D., Browne, A., Clarke, E., Jha, S., and Marrero, W. (1994) An improvedalgorithm for the evaluation of �xpoint expressions. Procs. CAV 94.16. Ludwig, W. (1995). A subexponential randomized algorithm for the simplestochastic game problem. Inf. and Comp, 117, 151-155.17. Milner, R. (1989). Communication and Concurrency. Prentice Hall.18. Muller, D., Saoudi, A. and Schupp, P. (1986). Alternating automata, the weakmonadic theory of the tree and its complexity. Lect. Notes in Comput. Sci., 225,275-283.19. Streett, R. and Emerson, E. (1989). An automata theoretic decision procedurefor the propositional mu-calculus. Inf. and Comp., 81, 249-264.20. Stirling, C. and Walker, D. (1991). Local model checking in the modal mu-calculus. Theoret. Comput. Science, 89, 161-177.

