Local Model Checking Games
(Extended Abstract)

Colin Stirling*
Department of Computer Science
University of Edinburgh
Edinburgh EH9 3JZ, UK

email: cps@uk.ac.ed.dcs

1 Introduction

Model checking 1s a very successful technique for verifying temporal properties of
finite state concurrent systems. It is standard to view this method as essentially
algorithmic, and consequently a very fruitful relationship between temporal lo-
gics and automata has been developed. In the case of branching time logics the
connection has not been quite so tight as tree automata are not naturally the
correct semantics of programs. Hence the introduction of amorphous automata
with varying branching degrees, and the use of alternating automata.

Local model checking was proposed as a proof system approach to verification
which also applies to infinite-state concurrent systems. In part this was because
it predominantly uses the process algebra model of concurrency (such as CCS)
where a concurrent system is presented as an expression of the calculus. The
question of verification is then whether a particular expression has a temporal
property (rather than all the states of a transition system which have a property).
In local model checking the proof system is developed in a goal directed fashion,
that is a top down approach. When a property holds, there is a proof tree which
witnesses this truth. It also allows there to be proofs for infinite-state systems.
Moreover local model checking permits compositional reasoning, when a proof
tree may be guided by the algebraic structure of the system as well as the logical
structure of the formula expressing the property.

In this talk we show that in the finite-state case these two approaches, model
checking as essentially algorithmic and model checking as a proof system, can
be combined using games as an underlying conceptual framework that can enjoy
the best of both worlds. The automata theoretic approach is captured via the
resulting game graph (which is an alternating automaton), and on the other hand
a witness for non-emptiness of a game graph 1s just a proof tree. Alternatively
a game graph can be translated into a formula of boolean fixed point logic,
which has provided a variant framework for model checking. Game playing also
provides a very perspicuous basis for understanding branching time temporal
logics and model checking of finite and infinite-state systems.

An important question is whether finite-state model checking of modal mu-
calculus properties can be done in polynomial time. Emerson showed that this

* Research in part supported by ESPRIT BRA project Concur2.

problem belongs to NP N co-NP. Games provide a very direct proof of this result.
It appears that finer structure needs to be exposed to improve upon this. We
believe that new insights may come from the relationship between these games
and other graph games. For example model checking games can be reduced to
simple stochastic games, an observation due to Mark Jerrum, whose decision
procedure also belongs to NP N co-NP.

2 Modal Mu-Calculus

Modal mu-calculus, modal logic with extremal fixed points, was introduced by
Kozen [13]. Formulas of the logic given in positive form are defined by

S =7 | Dy ADy | DIVDy | [K]D | (K)D | vZ.D | pZ. &

where Z ranges over a family of propositional variables, and K over subsets®
of an action set .4. The binder v 7 is the greatest whereas 7 is the least fixed
point operator.

Modal mu-calculus with action labels drawn from A is interpreted on labelled
transition systems (P, {%ac€ A}) where P is a countable but non-empty
set of processes (or states), and each — is a binary transition relation on
P. Labelled transition systems are popular structures for modelling concurrent
systems especially process calculi such as CCS [17]: P is then a transition closed
set® of process expressions and E —— F means that £ may evolve to F by
performing the action a.

Assume a fixed transition system (P, {%L:a€ A}), and let V be a valuation
which assigns to each variable 7 a subset V(Z) of processes in P. Let V[E/7]
be the valuation V' which agrees with V everywhere except possibly Z when
V/(Z) = &. The subset of processes in P satisfying an arbitrary formula ¥ under
the valuation V is inductively defined as the set | |{ where for ease of notation
we drop the superscript P which is assumed fixed throughout:

1Zlv = V(Z) oAy =[elvn|¥ly [eVv¥ly =2y Ul¥]y
|[K®|ly = {E€P :ifa€ K and E - F then F €|® |y}

{(K)®|y = {F€P : E-F for some a € K and F €| ®|y}

vz @y = HECP : € C|Plve/z}

luz. @y = (HECP : [Plvie/z1C €}

Any formula @ determines the monotonic function A C P. | P ”17;[8/2] with
respect to the variable 7, the valuation V, and the set P. Hence the meaning of
the greatest fixed point is the union of all postfixed points, and it is the intersec-
tion of all prefixed points in the case of the least fixed point. One consequence
is that the meaning of 67.® is the same as its unfolding ${c7.¢/7} (where

2 It is very convenient to allow sets of labels to appear in modalities instead of the
usual single labels.

]IfEePand F -2 F then F € P.

@{W/Z} is the substitution of ¥ for free occurrences of 7 in @). Assume that
tt (true) abbreviates vZ. 7, and ff (false) is uZ. 7. We use £ |y @ as an
abbreviation for £ €| @ |}, when P contains .

An alternative but equivalent interpretation of extremal fixed points is in
terms of approximants. When o € {v, u}, and « is an ordinal let ¢Z%.9 be the
a-unfolding with the following interpretation, where A is a limit ordinal:

lvZ. @)y =P [u2’ @y =10
IIVZ:“+ @y =@l ze dv /21 IINZ:“+ By =@ vize. a2
vz oly =MIvZ%0lv: a <Al [pZ* ol =UllpZ" @l o <A}

The set |vZ. @ |y equals {|vZ2%. @ |v: « is an ordinal} and | puZ. @ |y is the
same as | J{|#Z%. @ |y: « is an ordinal}.

Modal mu-calculus is a very expressive propositional temporal logic with the
ability to describe liveness, safety, fairness, and cyclic properties. It has been
shown that it is as expressive as finite-state automata on infinite trees, and
hence is as powerful as the monadic second-order theory of n successors [10].
This is a very general and fundamental decidable theory to which many other
decidability results in logic can be reduced. Most propositional temporal and
modal logics used in computer science are sublogics of mu-calculus. Consequently
various subcalculi can be defined which contain other well known program logics.
An important example is CTL which is contained within the alternation free
fragment. This is the sublogic when the following pair of conditions are imposed
on fixed point formulas:

if uZ.® (v7.9P) is a subformula of VY. ¥ (uY.¥) then Y is not free in @

This fragment of modal mu-calculus turns out to be very natural, for it is pre-
cisely the sublogic which is equi-expressive to weak monadic second-order theory
of n successors®. This result follows from [3] where it is proved for Niwinski’s
tree mu-calculus. Other fragments of modal mu-calculus studied include those
of k—alternation depth for any k, and those presented in [12].

3 Verification and model checking

Modal mu-calculus is a very rich temporal logic for describing properties of
systems. Here are two examples presented purely for illustration:

Example 1 A finite-state CCS description of a level crossing from [5] consists
of three components in parallel, the road, rail, and signal where the first two are
simple cyclers.

Road Lt car.up.ccross.down. Road

Rail ! train.green.tcross.red. Rail

Stgnal def green.red.Signal + up.down.Signal
Crossing & (Road | Rail | Signal)\{green, red, up, down}

* when the second-order quantifiers range over finite sets.

The actions car and train represent the approach of a car and a train, up is
the gates opening for the car, and ccross is the car crossing, and down closes
the gates, and green is the receipt of a green signal by the train, tcross is the
train crossing, and red automatically sets the light red. A safety property for the
crossing is that it 1s never possible to reach a state where a train and a car are
both able to cross, vZ.([tcross]ff V [ccross]ff) A[—]Z°. The desirable liveness
property for the crossing is that whenever a car approaches then eventually it
crosses V7. [car](uY. (—)tt A[—ccToss|Y) A[—]Z (and similarly for a train). But
this only holds if we assume that the signal is fair, which is also expressible in
the logic.

Example 2 A second (somewhat artificial) example is a description of an
arbitrary new clock. Let CI; be a clock that ticks ¢ times before terminating, and
let Clock be Y {Cl; : i > 1}. Like all new clocks, Clock will eventually break
down, so has the property uZ.[tick]Z. However it fails to have pZ".[tick]Z
for all n > 0.

A process expression determines a (unique) transition graph according to the
rules for transitions. The graph associated with Crossing is finite-state whereas it
is infinite-state in the case of Clock. The verification problem in this framework
i1s to find techniques for determining whether or not a process description F
has the property @ (relative to stipulations as to what the free variables say as
summarized by a valuation V). One technique for checking whether process F
has @ is to first construct the transition graph for E (or even a larger graph),
and then second to calculate | @ |y with respect to this structure, possibly
using approximants, and then finally check whether E belongs to it. This seems
reasonable for determining whether a process such as the crossing has a property,
as 1ts transition graph is small. As a general method it is very cumbersome
and clearly not directly applicable to infinite-state processes such as the clock.
These were grounds for introducing local model checking as in [20, 6]. It was not
intended as an algorithmic method, but as a proof system, and this is why it
was developed using tableaux, for which in the finite-state one might be able to
extract a reasonable algorithm. In fact this is one consequence of using games
as an alternative logical basis for local model checking.

4 Simple games

We now present an alternative account of the satisfaction relation between a
process and a temporal formula using games which underpins the local model
checking proof systems in [20, 6]. A property checking game is a pair (F,®)
relative to V for which there are two players, player I and player II. It is the role
of player I to try to show that F fails to have the property & whereas player
IT attempts to frustrate this. Unlike more standard games, players here do not

® To cut down on brackets we write [a1,...an] instead of [{a1,...an}], and the same
within a diamond operator, and —K abbreviates A — K (and so [—] is [A]).

necessarily take turns®.

A play of the property checking game (Ey,®@g) relative to V is a finite or
infinite sequence of the form, (Fg, @) ...(En, Py) The next move in a play,
the step from (E;,P;) to (E;41,P;4+1), and which player makes it is determined
by the main connective of @;. An essential ingredient is the use of auxiliary
propositional constants, ranged over by U, which are introduced as fixed point
formulas are met and can be thought of as colours. Suppose an initial part of a
play is (Eo, o). ..(Ej, ®;). The next step (E;41,P;4+1) is as below:

— if @; = ¥ AW, (¥ VWs) then player I (player IT) chooses one of the conjuncts
(disjuncts) &;: the process E;41 is E; and @;44 is ;.

— if ¢; = [K|¥ ((K)¥) then player I (player II) chooses a transition E; =
Fi4q1 with a € K and @54, is V.

—if §; = vZ. ¥ (uZ.¥) then player I (player II) chooses a new constant U

and sets U & vZ.w (v = UZ.W): the process Ejyq is E; and ;41 18 U.
—if¢; =U and U 7w (v def p#Z. W) then player I (player IT) unfolds the

fixed point so @41 is U{U/Z} and Ej1; is E;.

There is a strong duality between the rules for A and Vv, [K] and (K), vZ. ¥ and
1 Z.W. In the case of the last pair new constants are introduced as abbreviations
for those fixed points. Rules also govern occurrences of constants as the formula
of the next step is the body of the defined fixed point when all the occurrences
of the fixed point variable are replaced with the constant.

The rules for the next move in a play are backwards sound with respect
to the intentions of the players. If player I makes the move (E;41,®;41) from
(E;,®;) and E;4, fails to satisfy $; 1, relative to V then also E; fails to have
&;. In contrast when player II makes this move and E;41 |y @41 then also
E; Ev @;. In the case of a fixed point formula this is clear provided we under-
stand the presence of a constant to be its defined equivalent. Formulas are no
longer “pure” as they may contain constants. However we can recover a pure
formula from an impure formula by replacing constants with their defined fixed
points in reverse order of introduction: assuming that Uy def v . Uy, def 18
the sequence of declarations in order of introduction, the meaning of ¥ is just
U, /Up} .. {1 /U1 }. Consequently the fixed point unfolding principle justifies
the backwards soundness of the moves determined by the constants.

A player wins a play of a game in the circumstances depicted in figure 1.
If the configuration (F,(K)®) is reached and there is no available transition
then player II can not establish that E has (K)@. Similarly if the configuration
is (F,[K]®) and there is no available transition then player I cannot refute
that F has [K]®. Similar comments apply to the case when the configuration
is (P, 7). The other circumstances when a player is said to win a play concern
repetition. If the configuration reached is (F,U) when U abbreviates a maximal
fixed point formula, and this same configuration occurs earlier in the game play
then player II wins. Dually if U abbreviates a least fixed point it is player 1

5 It is straightforward to reformulate the definition so that players must take turns.

Player IT wins

1. The play is (Eo, ®q) ... (En, Pn)
and ¢, = Z and E € V(7).

2. The play is (Eo, @) ... (En, Pn)
and @, = [K]¥ and the set
{F:E, -~ Fandac K}=0.

3. The play is (Eo, @) ... (En, Pn)
and @, = U and U & vZ.® and
F;=F, and &; = &,, for 1 < n.

Player I wins

1’. The play is (Eo,®0) ... (En, Pn)
and ¢, = Z and E ¢ V(7).

2'. The play is (Fo,Po) ... (En, Pn)
and @, = (K)¥ and the set
{F:E, -~ Fandac K}=0.

3'. The play is (Eo, o) ... (En, Pn)
and @, = U and U ¥ 4Z.® and
F;=F, and &; = &,, for 1 < n.

4. The play (Eo,@o)...(E:, &) ... 4'. The play (Fo,®o)...(Ei, i) ...
is infinite length and there is a
constant U & »Z. & such that
for infinitely many j, ®; = U.

is infinite length and there is a

constant U = 1Z.®d such that
for infinitely many j, ®; = U.

Fig. 1. Winning conditions

that wins’. More generally as a play can have infinite length (but only when the
initial process is infinite state) this repeat condition for winning is generalized
for these plays. Player I wins if there is a least fixed point constant U which is
traversed infinitely often, and player Il wins if instead there is a greatest fixed
point constant U/ which occurs infinitely often. In any infinite length play there
is only one constant that occurs infinitely often, and therefore just one of the
players wins the play.

Lemma 1 If (Eo,®y)...(En, Py) ... is an infinite length game play then there
15 exactly one constant U such that for infinitely many j, &; = U.

A player is said to have a winning strategy for a game if she is able to win
any play of it. This means that she can always respond effectively to the moves
her opponent makes.

Theorem 1 EF |y ¢ iff player IT has a winning strategy for (E,) under V.

This provides an alternative characterization of the satisfaction relation between
processes and formulas. Game playing does not depend upon explicit calcula-
tion of fixed points. It is also open-ended as to knowing only part or all of the
transition graph of a process. There is another feature, the possibility of more
sophisticated game playing where moves may also be guided by the algebraic
structure of a process expression (the raw material in [2] provides a basis for
this).

Player IT has a winning strategy for the game (Clock, uZ. [tick]Z). Any play
has finite length as player I must choose a transition Clock tack Cl; and so
" These two conditions are redundant, but are included because then any finite-state

process can only have finite length game plays.

must end being stuck in a configuration (Cly, [tick|U) when U = uZ. [tick]Z.
Similarly the safety and liveness (under fairness) properties of the crossing can
be established using games.

Game playing justifies the tableaux proof systems for verifying temporal
properties of finite and infinite-state processes as developed in [6, 20]. A success-
ful tableau for a process E and a property @ turns out to be a witness for player
IT’s successful strategy for (E,®). In the case that F is a finite-state process each
branch in the tableau is a winning play for player II, and all choices available to
player I are contained within it. In the case of an infinite-state system the idea
is essentially the same.

Game playing provides a very transparent methodology for property proving.
However in the case of a finite-state process 1t is not very time efficient: the
length of a play may be exponential in the number of fixed point subformulas.
By refining the definition of game we can dramatically improve efficiency, and
yet retain transparency.

5 Refinement of games

In this section we refine the definition of game play to provide a more efficient
characterization of the satisfaction relation. Constants are reintroduced when
the same fixed point formula is met again. This means that the previous rule for
introducing constants for fixed points is divided it into two cases. Recall that we
are defining the next pair in the play (Eo, @o) ... (E;,P;):

—if §; =vZ ¥ (uZ.¥) and player I (player II) has not previously introduced

a constant V 2 p 7. @ % def 17 W) then player I (player IT) chooses a new

constant U and sets U % v7Z. W (v = uZ.): the process F;i; is E; and
@j+1 1s U.

—if &; = vZ. ¥ (uZ.¥) and player I (player II) has previously introduced a

constant V =y 7. % ! uZ.) then Ej4q1s Ej and @41 1s V.

The other rules are as before. As before a player wins a play in the circumstances
1,1',2 and 2’ of figure 1. The other conditions for winning, when there is a repeat
configuration and those for infinite length plays, need to be redefined because
constants are reintroduced: an infinite length play may now contain more than
one constant that recurs infinitely often. A little notation:

Definition 1 The constant U is active in @ iff either U occurs in @, or some

constant V occurs in @ with V' def ocZW and U 1s active in o Z.W.

The constraints on how constants are introduced ensure that being active is
well defined. Activity of a constant can be extended to finite or infinite length

sequences of formulas, U is active throughout @y, ..., @, ... 1f it is active in each
D;.

Lemma 2 i. If (Fo,®q),...,(En, Py) is an initial part of a game play and
@; = @, wheni < n then there is a unique constant U which is active throughout
D;, ..., Py and occurs there, @; = U for some j:1<j < n.

i If (Fo,@o),...,(En, @) ... 1s an infinite length game play then there
15 a unique constant U which occurs infinitely often and is active throughout

D;,..., Dy ... for some j > 0.

Lemma 2 governs the remaining winning conditions for game playing, the
replacements for 3, 3', 4 and 4’ of figure 1. A repeat configuration (E,¥) when
¥ 1s any formula, and not just a constant, terminates play. Who wins depends on
the sequence of formulas between (and including) the identical configurations.
There is exactly one constant U which is active in this cycle and which occurs
within it: if it abbreviates a maximal fixed point formula then player II wins and
otherwise it must abbreviate a least fixed point formula and player I wins. In
any infinite length play there is a unique constant which is traversed infinitely
often and which is active for all but a finite prefix: if this constant abbreviates
a maximal fixed point formula player II wins and otherwise player I wins.

As before a player is said to have a winning strategy for a game if she is able
to win any play of it.

Theorem 2 F =y @ iff player IT has a winning strategy for (E,P) under V.

It is straightforward to present tableaux proof systems for verifying temporal
properties of finite and infinite-state processes, which are underpinned by these
more refined games and where again a successful tableau is a witness for player
IT’s successful strategy.

Theorem 2 offers a different perspective on similar results for the finite-state
case presented in [12] whose basis is tree automata, and [4] which is grounded
in alternating automata. The proof in the general case, when processes may be
infinite-state, is similar to the model construction in [19]. Tt also follows from
Theorem 2 (which utilizes approximants) that a winning strategy for a game is
stationary or history free. Hence for a player it is a function from configurations
she 1s able to move from to unique successors.

Assume that F is finite-state. The game graph for (E,®) relative to V is
the graph representing all possible plays of (E,®) modulo a canonical means
of choosing constants. The vertices are pairs (F,¥), configurations of a possible
game play, and there is a directed edge between two vertices v; — wvq if a
player can make as her next move vs from vy. Let G(E, @) be the game graph for
(E,®), and let |G(E, @)| be its vertex size. It follows that |G(E,)| < |E| * ||
where |E| is the number of processes in the transition graph for E, and |®] is
the size of this formula. This means that any play of (E,®) has length at most
14+ (| E|*|®]). The proof that model checking belongs to NP N co-NP follows from
the observation that given a strategy for player IT or player I it is straightforward
to check in polynomial time whether or not it is successful. (See [10] for a proof
which has its roots in [9] using tree automata.) For the alternation free fragment
game graphs obey the weak alternating automaton condition for partitioning
vertices [18], and hence model checking can be determined in polynomial time.

(See [4] which directly uses alternating automata.)

We can easily ensure that game playing must proceed to infinity by adding
extra moves when a player is stuck (and removing the redundant repeat termin-
ation condition). The resulting game graph is then an alternating automaton:
the and-vertices are the configurations from which player I must proceed and the
or-vertices are those from which player II moves, and the acceptance condition
is given in terms of active constants.

Alternatively a game graph can be directly translated into a formula of
boolean fixed point logic, defined as follows:

b =7 | tt | ff | b1 NPy | b1V Dy | vZ.® | /,LZQ5

Satisfiability (or really truth) checking of closed formulas of this logic is therefore
also in NP N co-NP. Various authors have, in effect, translated finite-state model
checking into this logic, with a preference for a syntax utilizing equations [1,
14, 7]. One can also model check directly using approximants, where a careful
utilization of monotonicity provides reasonable exponential algorithms [11, 15].

An important open question is whether model checking modal mu-calculus
formulas can be done in polynomial time (with respect to the size of a game
graph). One direction for research is to provide a finer analysis of successful
strategies, and to be able to describe optimizations of them. New insights may
come from the relationship between the games developed here and other graph
games where there are such descriptions.

6 Graph games

The model checking game of the previous section can be abstracted into the

following graph game. A game is a graph with vertices {1,...,n} where each
vertex ¢ has two directed edges i — j; and ¢ — j5, and which obeys the
following condition: if ¢ — j and j < ¢ then there is a path j — j; — ... —

Jjn = @ where 5 < j; < ... < j,. Each vertex is labelled I or II. A play is an
infinite path through the graph starting at vertex 1, and player I moves from
vertices labelled I and player II from vertices labelled II. The winner of a play is
determined by the label of the least vertex ¢ which 1s traversed infinitely often:
if 7 1s labelled I then player I wins, and if II then player II wins. A player wins
the game if she is able to win any play. A winning strategy is again stationary.

Simple stochastic games [8] are graph games where the vertices are labelled
I, IT or A (average), and where there are two special vertices I-sink and II-sink
(which have no outgoing edges). As above each I, IT (and A) vertex has two
outgoing edges. At an average vertex during a game play a coin is tossed to
determine which of the two edges 1s traversed each having probability % More
generally one can assume that the two edges are labelled with probabilities of
the form £ where 0 < p < ¢ < 2™ for some m, as long as their sum is 1. A game
play ends when a sink vertex is reached: player II wins if it 1s the Il-sink, and
player I otherwise. The decision question is whether the probability that player
IT wins 1s greater than % It is not known whether this problem can be solved

in polynomial time. In [16] a “subexponential” (QO(ﬁ)) algorithm is presented,
which works by refining optimal strategies. A polynomial time algorithm for
simple stochastic games would imply that extending space bounded alternating
Turing machines with randomness does not increase the class of languages that
they accept.

Mark Jerrum noted that there is a reduction from the graph game to the
simple stochastic game. The idea is to add the two sink vertices, and an average
vertex i1 for each vertex ¢ for which there is an edge j — ¢ with j > i. Each such
edge j — ¢ when j > 7 is changed to j — i1. And the vertex i1 has an edge
to i, and to I-sink if 7 is labelled I or to II-sink otherwise. With suitable rational
probabilities on the edges, player II has a winning strategy for the graph game iff
she has one for the simple stochastic game. Another relevant graph game is the
mean payoff game for which there is also a reduction from the model checking
game.

Acknowledgement: I would like to thank Mark Jerrum for numerous discus-
sions about model checking and games.

References

1. Andersen, H. (1994). Model checking and boolean graphs. Theoretical Comp. Sci-
ence, 126, 3-30.

2. Andersen, H., Stirling, C., and Winskel, G. (1994) A compositional proof system
for the modal mu-calculus. Procs LICS.

3. Arnold, A., and Niwinski, D. (1992). Fixed point characterization of weak monadic
logic definable sets of trees. In Tree Automata and Languages, ed. M. Nivat and
A. Podelski, Elsevier, 159-188.

4. Bernholtz, O., Vardi, M. and Wolper, P. (1994). An automata-theoretic approach
to branching-time model checking. Procs. CAV 94.

5. Bradfield, J. and Stirling, C. (1990). Verifying temporal properties of processes.
Lect. Notes in Comput. Science, 458, 115-125.

6. Bradfield, J. and Stirling, C. (1992). Local model checking for infinite state spaces.
Theoret. Comput. Science, 96, 157-174.

7. Cleaveland, R. and Steffen, B. (1992). A linear-time model checking algorithm for
the alternation-free modal mu-calculus. Lect. Notes in Comp Science, 575.

8. Condon, A. (1992). The complexity of stochastic games. Inf. and Comp., 96,
203-224.

9. Emerson, E. (1985). Automata, tableaux, and temporal logics. Lect. Notes in
Comput. Science, 193, 79-87.

10. Emerson, E., and Jutla, C. (1988). The complexity of tree automata and logics
of programs. Extended version from FOCS “88.

11. Emerson, E, and Lei, C. (1986). Efficient model checking in fragments of the
propositional mu-calculus. In Proc. 1st IEFEFE Symp. on Logic in Comput. Science,
267-278.

12. Emerson, E., Jutla, C., and Sistla, A. (1993). On model checking for fragments
of p-calculus. Lect. Notes in Comput. Sci., 697, 385-396.

13. Kozen, D. (1983). Results on the propositional mu-calculus. Theoret. Comput. Sci
27, 333-354.

14.

15.

16.

17.

18.

19.

20.

Larsen, K. (1992). Efficient local correctness checking. Lect. Notes in Comput.
Sci., 663, 385-396.

Long, D., Browne, A., Clarke, E., Jha, S., and Marrero, W. (1994) An improved
algorithm for the evaluation of fixpoint expressions. Procs. CAV 94.

Ludwig, W. (1995). A subexponential randomized algorithm for the simple
stochastic game problem. Inf. and Comp, 117, 151-155.

Milner, R. (1989). Communication and Concurrency. Prentice Hall.

Muller, D., Saoudi, A. and Schupp, P. (1986). Alternating automata, the weak
monadic theory of the tree and its complexity. Lect. Notes in Comput. Sci., 225,
275-283.

Streett, R. and Emerson, E. (1989). An automata theoretic decision procedure
for the propositional mu-calculus. Inf. and Comp., 81, 249-264.

Stirling, C. and Walker, D. (1991). Local model checking in the modal mu-
calculus. Theoret. Comput. Science, 89, 161-177.

