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Abstract

Using the scleral search coil technique to monitor eye movements, we recorded short-latency ocular following responses to

displacement steps of large random-dot patterns. On half of the trials, the luminance of the dots and background were reversed

during the step, a procedure that is known to reverse the direction of the perceived motion (‘‘reverse phi’’). Steps without luminance

reversal induced small but consistent ocular following in the direction of the steps at ultra-short latency (<80 ms). Steps with lu-

minance reversal induced small but consistent tracking at the same latency but in the direction opposite to the actual displacement.

Tuning curves describing the dependence of initial ocular following on the amplitude of the displacement had a form approximating

the derivative of a Gaussian and were well fit by Gabor functions, the cosine term being phase shifted �180� by the luminance

reversal. This result is consistent with the idea that the initial ocular following is mediated, at least in part, by first-order (luminance)

motion-energy detectors.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This paper is concerned with the machine-like ocular
following responses that are elicited at ultra-short
latencies by sudden motion of a large textured pattern
(humans: <80 ms; monkeys: <60 ms): see Miles (1998)
for recent review. There is considerable psychophysical
evidence that motion can be sensed not only from the
spatio-temporal distribution of luminance (first-order
motion) but also from derived characteristics such
as contrast, binocular disparity, spatial frequency, and
flicker (second-order motion), or from yet other salient
features (third-order motion): see Lu and Sperling (2001)
for recent review. It is generally supposed that it takes
longer to sense higher-order attributes than first-order
ones and there is some psychophysical evidence for this.
For example, in the study of Derrington, Badcock, and
Henning (1993), the exposure time required to reliably

discriminate the direction of contrast-defined (second
order) motion––about 200 ms––was an order of mag-
nitude longer than for luminance-defined (first order)
motion. This would lead one to expect that re-
sponses elicited with latencies appreciably less than 100
ms––such as the initial ocular following under study in
the present paper––result mainly from the processing of
first-order motion. It is known that second-order motion
defined solely by disparity (Archer, Miller, & Helveston,
1987; Fox, Lehmkuhle, & Leguire, 1978) or flicker
(Harris & Smith, 2000) can elicit tracking eye move-
ments but, when defined solely by contrast, does so only
weakly, if at all (Harris & Smith, 1992). 1 To investigate
this issue further, we have now recorded the initial oc-
ular following responses elicited by single step displace-
ments of a large random-dot pattern rather than the
continuous ramp displacements employed in all previous
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it is not clear that the active component here was second-order motion:

see Smith and Ledgeway (1997) for discussion of the first-order

artifacts in such stimuli.

0042-6989/02/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.

PII: S0042-6989 (02 )00082-2

mail to: masson@lnf.cnrs-mrs.fr


studies of these tracking eye movements. When two
identical patterns are presented one after another with a
small spatial separation between them (single step dis-
placement), apparent motion is perceived in the direc-
tion of the image displacement: phi motion (Wertheimer,
1912). However, if the second pattern is a photographic
negative of the first (i.e., there is reversal of the lumi-
nance polarity during the step––see the cartoons in Fig.
1), the perceived apparent motion is in the opposite di-
rection to the image displacement: reversed phi (Anstis,
1970; Anstis & Rogers, 1975). 2 A number of models
have been proposed that can explain such motion per-
cepts and, essentially, all have a linear spatio-temporal
filter and perform a motion-energy computation: see Lu
and Sperling (2001) for review. Indeed, reversed phi
is regarded as the hallmark of a motion-energy mech-
anism. However, in the classical reversed-phi stimuli
only the first-order (luminance) motion energy is re-
versed––the second-order (contrast) motion energy re-
mains in the forward direction––and, for this reason,
they are now referred to as first-order reversed-phi
stimuli (Lu & Sperling, 1999). 3 We now report that
step-wise displacements of large random-dot patterns
elicit ocular following at short latency and that reversing
the luminance polarity during the steps––a first-order

reversed-phi stimulus––results in a reversal in the di-
rection of these tracking responses, consistent with the
idea that these earliest tracking responses result, at least
in part, from the operation of a first-order (luminance)
motion-energy detection mechanism.

2. Methods

Most of the methods have been described previously
(Gellman, Carl, &Miles, 1990; Masson, Busettini, Yang,
& Miles, 2001) and, except where there are substantive
differences, only an outline will be given here.

2.1. Subjects

The subjects were the three authors and one addi-
tional subject (JKM) who was completely unaware of
the purpose of the experiment. All subjects were expe-
rienced in eye movement recording and had no known
oculomotor or visual problems other than refractive
errors that were corrected with spectacles (FAM, JKM
and GSM).

2.2. Eye movement recordings

The horizontal and vertical positions of both eyes
were recorded with the scleral search coil technique
(Collewijn, Van Der Mark, & Jansen, 1975; Fuchs &
Robinson, 1966). Coils were placed in each eye follow-
ing application of 1–2 drops of anaesthetic (Propara-
caine HCl) and wearing time ranged up to 100 min. The

Fig. 1. Mean version velocity profiles elicited by rightward stepwise displacements of a high-density random dot pattern. Continuous lines: lumi-

nance polarity remained constant across the step (upper right cartoon). Broken lines: luminance polarity was reversed during the step (lower right

cartoon). Numbers indicate the amplitude (in degrees) of the image displacement. Horizontal grey bar indicates the time window over which response

amplitude is quantified. Upward displacements represent rightward movements. Traces are each means of �180 trials. Subject, GSM.

2 For a demonstration of reversed phi motion see http://www.

biols.susx.ac.uk/home/George_Mather/Harley.html.
3 More recently, some second-order reversed-phi stimuli have been

devised in which there is a reversal of the second-order (contrast)

motion energy (Lu & Sperling, 1999; Nishida, 1993).
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AC voltages induced in the scleral search coils were led
off to phase-locked amplifiers that provide separate DC
voltage outputs proportional to the horizontal and
vertical positions of the two eyes with corner frequencies
(�3 dB) at 1 kHz (CNC Engineering). The outputs from
the coils were calibrated at the beginning of each re-
cording session by having the subject fixate small target
lights located at known eccentricities along the hori-
zontal and vertical meridia. Peak-to-peak voltage noise
levels were equivalent to an eye movement of �1 min of
arc. The presentation of the stimuli and the acquisition,
online display and storage of the data were controlled by
a PC using the REX software package (Hays, Rich-
mond, & Optican, 1982).

2.3. Behavioral paradigm and visual display

The subject was seated in an acrylic chair with his/her
head stabilized by means of a chin support and forehead
rest. He/she faced a translucent tangent screen (distance:
33.3 cm; subtense: 80� horizontal� 50� vertical) onto
which photographic images were back projected. Two
kinds of random-dot patterns were used: one consisted
of white dots on a black ground and the other was the
same except that the dots were black and the back-
ground was white. The dots (diameter �2�) were ran-
domly distributed and covered 50% of the image space,
which always filled the screen. Luminance was 3.2 cd/m2

in the light areas and 0.032 cd/m2 in the dark areas
(Spectra Pritchard photometer), values comparable with
those in our previous studies of human ocular following
using velocity steps. The two random-dot images were
generated by two separate slide projectors. The hori-
zontal and vertical positions of the images on the screen
were controlled by X–Y pairs of mirror galvanometers
(General Scanning Inc., M3-S with vector tuning) lo-
cated in each light path and driven by the DAC outputs
of a PC at a rate of 1 kHz with a resolution of 12 bits
(optical range �50�). Images were turned on and off by
means of shutter galvanometers (General Scanning Inc.,
CX-660) located in each projector path between the light
source and the collimator to eliminate moving edges.

Horizontal step stimuli (13 amplitudes ranging from
0.1� to 4.8�, with equal probability of being leftward or
rightward) were applied 50 ms after 10� leftward cen-
tering saccades to take advantage of post-saccadic en-
hancement (Gellman et al., 1990; Kawano & Miles,
1986). We also included two types of control trials with
zero-amplitude steps, i.e., transient blanking of the im-
ages with and without luminance reversal. Saccades
were guided by target spots projected onto the random
dot pattern, the second (central) spot being extinguished
during the saccade. The screen was always blanked
briefly (maximum duration, �14 ms) during the step,
using the shutter galvanometers. The image was present
on the screen for 200 ms after the step, at which time the

shutters were used to blank the screen for 500 ms,
ending the trial. Data were collected over several ses-
sions until each of the (54) stimuli had been repeated at
least 180 times (random order of presentation).

2.4. Data analysis

Voltage signals separately encoding the horizontal
and vertical positions of both eyes were low-pass filtered
(Bessel, 6 poles, DC-180 Hz) and digitized (16 bits res-
olution; sampling rate: 1 kHz). After linearization, the
horizontal and vertical position signals were smoothed
with a cubic spline function of weight 107 selected by
means of a cross-validation procedure (Busettini, Miles,
& Schwarz, 1991). Horizontal version position was
computed by averaging the horizontal positions of the
left and right eyes and this was then used to determine
the horizontal version velocity by two-point backward
differentiation. For each stimulus, we computed the
mean changes in version velocity over time and esti-
mated the magnitude of the associated ocular following
response by measuring the mean change in horizontal
version position over the 80-ms time-window starting 80
ms after stimulus onset. Small post-saccadic drifts were
effectively removed by subtracting the mean responses to
the zero-amplitude steps (transient blanking only) and
all data shown have been so adjusted. Tuning curves
describing the dependence of these response measures
on the step size were fitted with a Gabor function using
a least-squares regression procedure.

3. Results

3.1. Position steps without luminance reversal

Step displacements of a large, random dot pattern
elicited consistent ocular following responses at ultra-
short latencies (<80 ms) in all four subjects tested. Fig. 1
(continuous lines) shows sample mean eye velocity
profiles over time in response to rightward steps ranging
from 0.1� to 0.4� for one subject (GSM). Responses were
always very small, especially compared with our previ-
ously published responses to velocity steps (Busettini,
Masson, & Miles, 1996; Busettini, Miles, Schwarz, &
Carl, 1994; Masson et al., 2001; Masson, Rybarzyck,
Castet, & Mestre, 2000), and generally showed an initial
transient peak with a subsequent decline back to a non-
zero asymptote that was sustained throughout the ac-
quisition time window (180 ms) despite the transient
(pulsatile) nature of the (motion) stimulus. The quanti-
tative dependence of the tracking response on the size of
the step is illustrated in Fig. 2 (open symbols), which
plots the change in version position (over the time
window, 80–160 ms) as a function of the amplitude of
the step (in degrees) for all four subjects. These response
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measures generally peak with steps of 0.2–0.4�, and de-
cline thereafter, reaching an asymptote with steps of

�2�. The continuous lines in Fig. 2 are best-fit Gabor
functions, which provide a reasonably good represen-

Fig. 2. Initial ocular following responses to step displacements: dependence on the magnitude and direction of the step (four subjects: GSM, FAM,

DY, JKM). Ordinate: Change in version position (mean� SE) over the 80–160 ms time window (in degrees). Abscissa: Image displacement (in

degrees). Open symbols: luminance polarity remained constant across the step. Closed symbols: luminance polarity was reversed during the step.

Continuous lines are best-fitting Gabor functions. Positive values represent rightward version responses and step displacements.

Table 1

Best-fit parameters of Gabor functions

Subject A r D f / B R r2

Luminance constant

GSM 0.535 0.58 �0.055 0.073 269 �0.017 0.168 0.98

FAM 0.145 0.58 0.020 0.099 272 �0.007 0.062 0.98

DY 0.295 0.45 �0.005 0.051 270 �0.003 0.048 0.95

JKM 0.540 0.49 �0.050 0.049 269 �0.015 0.100 0.97

Luminance reversed

GSM 0.295 0.45 0.030 0.081 90 0.000 0.081 0.95

FAM 0.270 0.43 0.000 0.035 90 0.002 0.031 0.91

DY 0.120 0.36 �0.030 0.069 92 0.009 0.023 0.86

JKM 0.255 0.38 �0.035 0.077 89 0.005 0.057 0.93

Best-fit parameters when the following Gabor function was fitted to the step-size tuning curves:

f ðsÞ ¼ A exp

 
� ðs� SÞ2

2r2

!
cosð2pf ðs� SÞ þ /Þ þ B

where s is the size of the stimulus step, A is a gain factor, r is the Gaussian width, f and / are the spatial frequency and phase of the cosine term, S is

the displacement, and B is an offset parameter to allow for non-zero asymptotes. R is the peak-to-peak amplitude derived from the best-fit Gabor

functions. All units are in degrees except for f, which is in cycles per degree. r2 provides a measure of the goodness of fit, indicating the proportion of

the step-induced responses accounted for by the Gabor function.
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tation of the data, r2 values ranging from 0.95 to 0.98:
see Table 1 for a complete listing.

3.2. Position steps with luminance reversal

Reversing the luminance polarity during the step re-
sulted in reversal of the ocular following responses:
rightward (leftward) steps induced leftward (rightward)
tracking responses. This is apparent from the mean eye
velocity profiles in Fig. 1 (dashed traces) and from the
response measures plotted in Fig. 2 (closed symbols).
Gabor functions once more provided a reasonably good
representation of the data, though slightly worse than
for the data without luminance reversal (r2 values
ranging from 0.86 to 0.95: see Table 1). The cosine terms
for the best-fit Gabor functions with and without re-
versal of luminance polarity differ by �180� (actual
values for the four subjects: 179�, 182�, 178�, 180�): see
Table 1. It is also clear that, in all cases, the responses
with reversal of luminance polarity were even smaller
than the (already small) responses to steps without the
reversal in luminance. This is apparent from the peak-
to-peak amplitudes of the best-fit Gabor functions (R in
Table 1), those for the data obtained with luminance
reversal being about half those without (actual ratios for
the four subjects: 0.48, 0.50, 0.48, 0.57). In addition, the
Gaussian width of the Gabor functions (r in Table 1)
was significantly smaller with the luminance reversal
(one-tail t-test, p < 0:05), on average by 23%.

4. Discussion

In the present study, we found that small step dis-
placements of a large random-dot pattern elicited ocular
following responses at ultra-short latencies. These eye
movements were always in the direction of both the
stimulus displacement and the perceived (phi) motion
(Sato, 1989), and we assume that they are generated by
the same mechanisms that produce the ocular following
elicited at similarly short latencies by velocity steps
(Busettini et al., 1994; Gellman et al., 1990; Masson
et al., 2001; Miles, Kawano, & Optican, 1986). However,
the responses to velocity steps are generally much more
sustained and achieve much higher velocities, presum-
ably in large part because the motion stimulus with ve-
locity steps is sustained throughout the 200-ms duration
of the step whereas that with position steps is restricted
to the initial transient (pulse).

Reversing the luminance of the pattern during the
steps also resulted in ocular following but in the reverse
direction, i.e., in the direction opposite to the actual
displacement of the pattern but still in the direction of
the perceived motion: reversed phi (Anstis, 1970; Anstis
& Rogers, 1975; Sato, 1989; Smith & Ledgeway, 2001).
The spatial tuning characteristics evident in Fig. 2 are in

rough quantitative agreement with the perceived direc-
tion of motion in visual psychophysical experiments
using comparable stimuli. For example, in the recent
study of Smith and Ledgeway (2001), when random-dot
kinematograms with large texture elements (1.25�, com-
pared with 2� in our experiments) were subject to step
displacements, forward phi was reliably reported with
steps up to 1.7–1.8� and reverse phi with steps up to 1.3–
1.4�, values that are roughly comparable with the ef-
fective stimulus ranges in our experiments. Based on the
Gaussian widths of the best-fit Gabor functions, the
effective stimulus ranges in our experiments were on
average 23% smaller with the reverse-phi stimuli than
with the forward-phi stimuli, which is comparable with
the differences in the data of Smith and Ledgeway
(2001).

For any given position step, the ocular following re-
sponses to the reversing-luminance stimuli were invari-
ably weaker than those to the constant-luminance
stimuli. Thus, on average, the peak-to-peak amplitudes
of the best-fit Gabor functions with luminance-reversal
were about half those without reversal. A part of this
difference could be due to the fact that, as pointed out
by Dosher, Landy, and Sperling (1989), the first-order
motion energy is slightly smaller for the reversing-
luminance stimuli than for the constant stimuli. When
applied to our stimuli, the Fourier computation of
Dosher and colleagues (1989) indicated that the net Di-
rectional Power of the first-order motion was on average
9% (� 2%, SD) lower in the reversed condition, based on
200 randomly selected (x,t) slices. 4 Thus, the difference
in motion energy is sufficient to explain only a small
proportion (�18%) of the reduction in ocular following
when luminance polarity was reversed during the step.

As pointed out in Section 1, with our luminance-
reversing stimulus it is only the first-order (luminance)
motion energy that is reversed: the second- and third-
order motion energy is in the forward direction (Lu &
Sperling, 1999; Nishida, 1993). Thus, the extent to
which initial ocular following shows reversal with our
luminance-reversing stimulus depends on the relative
strengths and efficacy of the first- and higher-order mo-
tion-energy components, which in turn depends on the
spatio-temporal characteristics of the stimulus (Chubb
& Sperling, 1989; Gorea, 1995; Solomon & Sperling,
1995). This means that the reduction in the amplitude
of the ocular following responses with luminance re-
versal that cannot be directly accounted for by the re-
duced first-order motion energy can be attributed to the

4 For this computation, the upper limits of the window of visibility

were set at 10 cpd for the spatial frequency and 40 Hz for the temporal

frequency, based on the spatio-temporal characteristics of human

ocular following see Gellman et al. (1990). These values are slightly

different from those used by Dosher et al. (1989).
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competing higher-order motion components. Such
competitive effects have also been observed in pursuit
initiation (Lindner & Ilg, 2000) and the slow phases of
OKN (Harris & Smith, 2000), though here too ocular
responses were always dominated by the first-order
motion components.

Attempts to generate ocular tracking with pure sec-
ond-order motion stimuli were not very successful when
pure contrast was used (Harris & Smith, 1992), though
flicker-defined motion was somewhat more effective
under some conditions (Harris & Smith, 2000). A po-
tentially important factor in our studies is that we are
dealing with responses that have ultra-short latencies
(<100 ms) and second-order (contrast) mechanisms
have been shown to be slower than first-order mecha-
nisms (Derrington et al., 1993), though it is also possible
that this difference in dynamics is small in our situation,
as for instance in the experiments of Masson et al.
(2000), who observed a latency difference of �20 ms.
This suggests that the very earliest ocular following re-
sponses in our experiments (latency < 100 ms) might
have escaped the effects of the competing higher-order
components of motion.

The reversed ocular following responses in the present
study probably share the same etiology as the self-
sustaining eye movements observed by Spillmann, Ans-
tis, Kurtenbach, and Howard (1997) when subjects
viewed a random-dot pattern undergoing repeated
luminance reversals (‘‘counterphase flicker’’). Spillman
et al. state that, ‘‘eye movements occasionally began
spontaneously, but generally needed to be started by
tracking a finger that moved across the surface of the
stimulus screen’’ and attributed them to ‘‘positive retinal
feedback from the contrast-reversing pattern’’. Once
initiated, these eye movements were self-sustaining for 3–
5 s but thereafter could not be self-initiated and had to be
restarted with a moving finger. It is possible that the
gradual decay in the nystagmus with prolonged exposure
to the stimulus was due to the gradual intervention of
second-order mechanisms, reinforcing the idea that the
latter have more sluggish dynamics than first-order
mechanisms. This would be consistent with the finding of
Harris and Smith (1992) that prolonged flicker-defined
(second order) motion of a large pattern can produce
reflexive ocular tracking, albeit weak. Also, a single
moving object defined by second-order attributes can
elicit vigorous smooth pursuit eye movements, although
with a longer latency (B€uutzer, Ilg, & Zanker, 1997).

Concerning the neuronal mediation of our response
reversals, ocular following has very similar properties in
human and non-human primates––see Miles (1998) for
recent review––and, based on the data from lesions and
single unit recordings in monkeys, the medial superior
temporal (MST) area of cortex has been strongly im-
plicated in its initiation (Kawano, Inoue, Takemura,
Kodaka, & Miles, 2000). Many neurons in the middle

temporal (MT) area, which provides major inputs to
MST, show directional selectivity for motion and exhibit
reversed directionality with luminance-reversing motion
stimuli (Livingstone, Pack, & Born, 2001), a character-
istic also of some simple––but not complex––cells in
striate cortex (Livingstone, Tsao, & Conway, 2000).
Interestingly, there is another type of eye movement––
disparity vergence––that shares a number of features
with ocular following: (1) It is elicited at ultra-short la-
tency when the appropriate stimuli––this time, disparity
steps––are applied to large random-dot patterns (Bu-
settini, FitzGibbon, & Miles, 2001; Busettini, Miles, &
Krauzlis, 1996); (2) it shows response reversal with lu-
minance-reversing stimuli, referred to as ‘‘anticorrelated
stimuli’’ (Masson, Busettini, & Miles, 1997); (3) it seems
to be mediated at least in part by MST (Takemura,
Inoue, & Kawano, 2000; Takemura, Inoue, Kawano,
Quaia, & Miles, 1999), whose disparity-selective neurons
show response reversals with luminance-reversing stimuli
(Takemura, Inoue, Kawano, Quaia, & Miles, 2001), as
also do the disparity-selective neurons in striate cortex
(Cumming & Parker, 1997), many of whose properties
have been successfully simulated with an energy model
(Fleet, Wagner, & Heeger, 1996; Ohzawa, DeAngelis, &
Freeman, 1990; Qian, 1994). The clear suggestion is that
the motion that initiates version and the disparity that
initiates vergence are both sensed by first-order energy
mechanisms in cortex.
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