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An Information Theoretic Approach of Designing
Sparse Kernel Adaptive Filters
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Abstract—This paper discusses an information theoretic ap-
proach of designing sparse kernel adaptive filters. To determine
useful data to be learned and remove redundant ones, a subjec-
tive information measure called surprise is introduced. Surprise
captures the amount of information a datum contains which
is transferable to a learning system. Based on this concept, we
propose a systematic sparsification scheme, which can drastically
reduce the time and space complexity without harming the per-
formance of kernel adaptive filters. Nonlinear regression, short
term chaotic time-series prediction, and long term time-series
forecasting examples are presented.

Index Terms—Information measure, kernel adaptive filters,
online Gaussian processes, online kernel learning, sparsification,
surprise.

I. INTRODUCTION

I N machine learning, kernel methods and Gaussian processes
(GPs) are very popular nonparametric modeling tools. How-

ever, they are computationally expensive, scaling with
in time and up to in space where is the number of
trainingexamples.There aremanyapproaches to reduce thecom-
plexity, such as subspace approximation [1]–[3] and subset ap-
proximation [4]–[7]. Subset approximation achieves efficiency
byreducing theeffectivenumberof trainingdata.The complexity
of these algorithms ranges from to where

is the size of the effective data set (or the number of
basis functions). It usually requires multiple passes of the whole
training data. If computer memory cannot hold the whole training
data, disk read operation would slow down the learning speed
significantly. Online kernel learning provides more efficient al-
ternatives where the selection of basis functions can be accom-
plished during sample-by-sample training [8]–[11]. They require
only one pass over the training data and can be extremely efficient
and effective. The complexity of these algorithms ranges from

to .
Kernel adaptive filtering is an emerging subfield of online

kernel learning. It includes kernel least mean squares (KLMS)
[12], kernel recursive least squares (KRLS) [13], kernel affine
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projection algorithms (KAPA) [14]–[16], and extended kernel
recursive least squares (EX-KRLS) [17]. These methods gener-
alize naturally the classical linear adaptive filters [18] in repro-
ducing kernel Hilbert spaces (RKHS) and are very appealing
for nonlinear adaptive signal processing. The principal bottle-
neck of this class of algorithms is its growing structure with each
new sample. In other words, time and space complexities grow
linearly with the number of training data, which poses a big
problem for continuous adaptation. Intuitively, one can expect
that after processing sufficient samples from the same source,
there is little need to grow the structure of the filters more, be-
cause of redundancy. The difficulty is exactly how to select im-
portant data and to remove redundancy. Distance- and predic-
tion-error-based criteria are discussed in [19] and [13]. Predic-
tion variance is also used in [20]. A newly proposed coherence
criterion is discussed in [16]. Though these methods are quite
effective in practical applications, they are heuristic in nature.
Therefore, how to mathematically establish the framework to
test if a given sample is needed or not is of great significance.

In this regard, a new criterion is proposed based on the con-
cept of surprise. Surprise is a subjective information measure,
quantifying how much information a datum point contains rela-
tive to the “knowledge of the learning system.” Little surprise is
expected from redundancy. For example, one watches a weather
forecast to learn what kind of weather to expect, but watching
the same program for the second time does not add anything
to our knowledge. Obviously this concept is very important for
learning and adaptation but there is no widely accepted mathe-
matical definition in the literature yet. First, Palm gave a defini-
tion of surprise based on the idea of template [21], [22]. Then,
Itti and Baldi studied it in a Bayesian framework using the Kull-
back–Leibler divergence [23]. Most recently, Ranasinghe and
Shen investigated its use in robotics using symbolic schemes
[24]. In this paper, surprise is defined as the negative log like-
lihood (NLL) of an observation given the learning machine’s
hypothesis. The NLL concept is widely used in parameter esti-
mation and hypothesis test [25], [26]. However, its application
to active data selection is quite novel. The work of Dima and
Hebert [27] is similar to ours but they used kernel density esti-
mation while we use GP theory to derive an analytical solution.
Defining the instantaneous learnable information contained on a
data sample allows us to discard or include new exemplars sys-
tematically and curb the complexity of online kernel algorithms.
This information criterion provides a unifying view on existing
sparsification methods discussed in [19], [13], [20], and [16],
allows new insights to be gained, highlights the relationship be-
tween existing methods, and also provides a general framework
for redundancy removal, abnormality detection, and knowledge
discovery.
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A family of algorithms is proposed by applying the new
concept to different kernel adaptive filters including KLMS,
KAPA, and KRLS. The surprise measure is computed based on
the theory of Gaussian process regression (GPR). Since KRLS
is mathematically equivalent to online GPR [20], the surprise
measure can be seamlessly integrated into KRLS. Then, some
approximation is used to derive more efficient surprise-based
KLMS and KAPA.

The organization of this paper is as follows. In Section II,
kernel adaptive filters including KLMS, KAPA, and KRLS are
briefly reviewed. Next, in Section III, we introduce the mathe-
matical definition of surprise and derive an analytical formula
based on GPR. Then, we focus on how to utilize the concept to
design sparse kernel adaptive filters in Section IV. Three exper-
iments are studied in Section V to support our theory. Finally,
Section VI summarizes the conclusions and future lines of re-
search.

II. KERNEL ADAPTIVE FILTERS

Suppose the goal is to learn a continuous input–output map-
ping based on a sequence of input–output ex-
amples where

is the input domain. The output is assumed to be 1-D
but it is straightforward to generalize the discussion to multidi-
mensions. Kernel adaptive filters are a framework to estimate

sequentially such that (the estimate at iteration ) is up-
dated based on the last estimate and the current example

.
A kernel is a continuous, symmetric, positive–definite func-

tion [28], [29]. The commonly used kernel is
the Gaussian kernel

(1)

According to Mercer’s theorem, any kernel induces
a mapping from the input space to a feature space such
that

(2)

is isometric–isomorphic to the RKHS induced by the kernel
and we do not distinguish these two spaces in this paper. Equa-
tion (2) is usually called the kernel trick.

A. Kernel Least Mean Square

To derive KLMS [12], the input is transformed into
as . Denote for simplicity. Using the
least mean square (LMS) [30] algorithm on the new example
sequence yields

(3)

where is called the prediction error, is the step size, and
denotes the estimate (at iteration ) of the weight vector in

. is the composition of and , i.e., ,

so the learning rule for KLMS is

(4)

KLMS allocates a new kernel unit for every new example with
input as the center and as the coefficient. The algo-
rithm ends up as a growing radial basis function (RBF) network

The coefficients and the centers are
stored in memory during training. The complexity at iteration

is , linearly increasing with the number of training data.

B. Kernel Affine Projection Algorithms

The KLMS algorithm can be viewed as a stochastic gra-
dient–descent algorithm using the instantaneous values to
approximate the covariance matrix and cross-covariance vector
[18]. KAPA [14] employs better approximations based on the

most recent inputs and observations

and

It yields the following stochastic gradient descent:

(5)

The updating rule for KAPA is

for

(6)

Like KLMS, KAPA is also a growing RBF-like network, allo-
cating a new unit with as the center and as the co-
efficient. Unlike KLMS, it also updates the coefficients for the
other most recent units by . The computational
complexity of KAPA is at iteration .

There are several variants of KAPA in [14] and we only dis-
cuss the basic gradient–descent algorithm here for simplicity. In
addition, similar algorithms are discussed in [15] and [16]. The
algorithm presented in [16] is very close to the type 2 KAPA al-
gorithm discussed in [14], but it is more elegant in the sense that
all data points are treated in the same affine projection frame-
work regardless of being novel or not. By contrast, all the al-
gorithms discussed in this paper distinguish novel data from re-
dundant data and simply throw away all the redundant data.
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C. Kernel Recursive Least Squares

In KRLS [13], the weight vector is the minimizer of

(7)

where is the regularization parameter. This cost func-
tion is also studied in the context of kernel ridge regres-
sion [31] and least squares support vector machines [32].
It is shown that where

and . KRLS is also a growing RBF-like
network

Denoting

(8)

we have the following sequential learning rule for KRLS:

(9)

where is the th component of . The learning proce-
dure of KRLS is very similar to KLMS and KAPA in the sense
that it allocates a new unit with as the center and
as the coefficient. At the same time KRLS also updates all the
previous coefficients by whereas KLMS never
updates previous coefficients and KAPA only updates the
most recent ones. The computational complexity of KRLS is

at iteration . The online GPR presented in [20] is equiv-
alent to KRLS.

D. Existing Sparsification Criteria

As we see, the bottleneck problem of kernel adaptive filters
is its growing structure (complexity) with each new datum. Ac-
tive data selection (retaining important data and removing re-
dundant ones) is a natural approach to tackle this issue. There
are mainly two existing criteria in the literature of online kernel
learning: the novelty criterion (NC) proposed by Platt [19] in
resource-allocating networks and the approximate linear depen-
dency (ALD) test introduced by Engel [13] for KRLS. The pre-
diction variance criterion in [20] is similar to ALD. The coher-
ence criterion proposed in [16] can be viewed as an approxima-
tion to ALD as we will show later.

Suppose the present learning system is

(10)

with as the th center and as the th coefficient. Denote
as the center set (or dictionary). When a new

example is presented, the learning system
needs to decide if is accepted as a new center.

1) Novelty Criterion: NC first computes the distance of
to the present dictionary

If will not be added into the dictionary.
Otherwise, it further computes the prediction error

. Only if will
be accepted as a new center. and are two user-specified
parameters.

2) Approximate Linear Dependency: ALD tests the fol-
lowing cost:

which indicates the distance of the new input to the linear span
of the present dictionary in the feature space. Similar problem is
discussed in the context of finding approximate preimage [33].
By straightforward calculus, it turns out that

(11)

where

(12)

...
. . .

... (13)

will be rejected if is smaller than some preset
threshold .

If regularization is added, (11) becomes

(14)

which is a quantity already defined in KRLS (8). It is also the
prediction variance in GPR [20]. This understanding is very im-
portant to derive efficient approximations in the following sec-
tions.

ALD is quite computationally expensive scaling quadrati-
cally with the size of the dictionary. A natural simplification
is to use the “nearest” center in the dictionary to estimate the
overall distance, i.e.,

(15)
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By straightforward calculus, one has

When is a unit-norm kernel, that is, for all , this
distance measure is equivalent to the coherence measure. When

is an RBF, this distance measure is equivalent to used in
the NC.

Notice that the target is not used in ALD.

III. SURPRISE

Suppose the learning machine is after processing
, where specifies the state of the

learning system at time . The problem is to measure how much
information a new example contains which
is “transferable to” the current learning system.

First, let us see why the definition from the classic informa-
tion theory does not apply here. By [34], the information con-
tained on an exemplar is defined as

(16)

where is the true joint probability den-
sity. This definition is widely used and achieves huge successes
in digital communications, game theory, and other fields [35].
However, it has at least two problems in the learning setting.
First, the learning machine never knows the true joint prob-
ability density, which is the ultimate knowledge meant to be
learned by the machine [36]. Second, it is observer independent.
This is certainly undesirable in the context of learning because
it is unable to distinguish novelty and redundancy.

A. Definition of Surprise

Since the true joint distribution is unknown and an observer-
dependent information measure is sought, a natural idea is to
define the information measure based on the posterior distribu-
tion hypothesized by the learning system.

Definition 1: Surprise is a subjective information measure of
an exemplar with respect to a learning system . De-
noted by , it is defined as the NLL of the exemplar
given the learning system’s hypothesis on the data distribution

(17)

where is the subjective probability of hypoth-
esized by .

measures how “surprising” the exemplar is to the
learning system. Applying this definition directly to the active
online learning problem, we have the surprise of

to the current learning system simply as

(18)

where is the posterior distribution
of hypothesized by . Denote

for simplicity in the following
discussion.

Intuitively, if is very large, the
new datum is well expected by the learning
system and thus contains a small amount of information
to be learned. On the other hand, if
is small, the new datum “surprises” the learning system, which
means either the data contains something new for the system to
discover or it is suspicious.

According to this measure, we can classify the new exemplar
into three categories:

• abnormal: ;
• learnable: ;
• redundant: .

and are problem-dependent parameters. The choice of
the thresholds and learning strategies defines the characteristics
of the learning system.

B. Evaluation of Surprise

It is a difficult problem in general to estimate the posterior
distribution. One way is to use kernel density estimation as in
[27] but this is problematic when the dimensionality of is
high. Another way is to convert it to a parameter estimation
problem by assuming a parametric distribution family. In [23],
Itti studied neural activities by assuming a Poisson distribution
across the models. In this paper, we use the GP theory.

1) Gaussian Processes Regression: In the GPR, the prior
distribution of system outputs is assumed to be jointly Gaussian
[37], i.e.,

where

...
. . .

...

for any . is the variance of the noise contained in the obser-
vation. is the covariance function. Covariance functions are
equivalent to reproducing kernels in the sense that any covari-
ance function can be a reproducing kernel and vice versa. With
this prior assumption, the posterior distribution of the output
given the input and all past observations can be
derived as

(19)

which is again normally distributed, with

(20)

(21)

where
and . It is clear that GPR is equivalent
to KRLS.

2) Evaluation of Surprise: Let us assume
for now, i.e., the learning system memorizes all the past
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input–output pairs. By (19), the posterior joint probability
density becomes

and therefore, the surprise measure is

(22)

(23)

Equation (22) gives a whole picture of what factors and how
these factors affect the surprise measure of the new datum. Some
observations are as follows.

1) The surprise measure is proportional to the magnitude of
the prediction error. is the
prediction error since is the maximum a poste-
riori (MAP) estimation of by the current learning
system . If is very small, which means the
learning system predicts well near , the corre-
sponding is small.

2) The surprise measure is proportional to the prediction vari-
ance if the prediction error is very small. In the case of a
very small prediction error, say , the second
term is ineffective, and

is directly proportional to . A large vari-
ance indicates that the learning system is uncertain about
its guess though the guess happens to be right. Incorpo-
rating the new datum will boost the prediction confidence
near the neighborhood of the new datum in the future in-
ference.

3) The surprise measure is huge with a small vari-
ance and a large prediction error. With a large pre-
diction error and a small variance, the second term

dominates the mea-
sure. This is a strong indication of abnormality: the
machine is sure about its prediction but its prediction is
far away from the observation. It means exactly that the
current observation is contradictory to what the machine
had learned before.

4) A rare occurrence means more surprise. A smaller
leads to a larger .

C. Input Distribution

The distribution is problem dependent. In
the regression model, it is reasonable to assume

(24)

that is, the distribution of is independent of the previous
observations, or memoryless. If the input has a normal

distribution , we have

(25)

In general, we can assume the distribution is uni-
form if no a priori information is available. Therefore, by dis-
carding the constant terms, the surprise measure (22) is simpli-
fied as

(26)

D. Unknown Desired Signal

The surprise measure depends on the knowledge of the de-
sired signal . In the case of unknown desired signal,
we simply average over the posterior distribution of

. By using (22), one has

Neglecting the constant terms yields

(27)

Furthermore, under a memoryless uniform input assumption, it
is simplified as

(28)

Therefore, ALD and variance criterion are a special case of the
surprise criterion.

E. The Probability of Novelty

Assume that the probability density function of the prediction
error is , which does not contain any delta function at 0.
According to the surprise criterion, the probability of accepting

into the dictionary is

is accepted into the dictionary

(29)

when , or equivalently,
. Otherwise, the probability is 0.

The key point here is
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In other words

is accepted into the dictionary

Therefore, the probability of being accepted into the dictionary
is very small if is small. In this sense, we say the pre-
diction variance is probabilistically lower bounded in
online learning algorithms with a surprise criterion. By using
the arguments presented in [13] and [16], we can conclude that
the number of centers added into the dictionary is essentially
bounded even as the number of training examples increases
without bound.

IV. SURPRISE CRITERION FOR SPARSE KERNEL

ADAPTIVE FILTERS

A. Surprise Criterion Kernel Recursive Least Squares

It is easy to verify that in (20) and in (21)
equal and , respectively, in KRLS with

. Therefore, the surprise criterion can be integrated into
KRLS seamlessly. We call it SC-KRLS. The system starts with

with
and . Then, it iterates

the following procedure for .
For a new datum , it computes the fol-

lowing quantities:

and the surprise measure becomes

where can be assumed to be constant if no a
priori information is available. As we see, the computation of
the surprise criterion comes with no additional complexity.

Based on this surprise measure, we can decide if the example
is abnormal, learnable, or redundant. If it is abnormal or re-
dundant, it can be simply thrown away. If it is learnable, the
system is updated by the standard KRLS algorithm as shown in
(30)–(33) at the bottom of the page.

The updating rule is consistent with the observations of (22).
If the prediction error is small, the modifying quantities are

small. In the extreme case, a redundant datum leads to negli-
gible update. On the other hand, a large prediction error and a
small prediction variance result in a large modification to the
coefficients. In the extreme case, an abnormal datum causes in-
stability. The overall complexity of SC-KRLS is .

B. Surprise Criterion Kernel Least Mean Square

The complexity of computing the exact surprise measure for
KLMS is at iteration , which may offset the advan-
tage of KLMS over other kernel adaptive filters in terms of sim-
plicity. As we know the surprise involves two basic concepts:
the prediction error and the prediction variance. It is relatively
easy to get the prediction error and the question is how we sim-
plify the computation of the prediction variance. The approxi-
mation is based on the relationship between the prediction vari-
ance and the distance measure . To simplify the
computation of , we use the following distance measure as
an approximation:

(34)

i.e., selecting the “nearest” center in the dictionary to estimate
the overall distance just like in the NC. By straightforward cal-
culus, one has

When is an RBF, this distance measure is equivalent to
used in the NC, and we can add a regularization term simply by
including . Using the same notation from SC-KRLS, we have

(35)

Its complexity is which is acceptable to KLMS.
Therefore, we have the following surprise criterion KLMS
(SC-KLMS). The system starts with with

and . Then, it iterates the
following procedure for .

For a new datum , it computes the fol-
lowing quantities:

(30)

(31)

(32)

(33)
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Fig. 1. Surprise measure of training data and corresponding learning curve in
nonlinear regression.

The surprise measure is

where can be assumed to be constant if no a
priori information is available. If the example is learnable, the
system is updated by the standard KLMS algorithm

(36)

(37)

The overall complexity of SC-KLMS is .

C. Surprise Criterion Kernel Affine Projection Algorithms

As we see, SC-KLMS uses only the “nearest” sample in the
dictionary to approximate the distance. A natural idea is to use
multiple (say ) centers to improve the approximation. Putting
it into an optimization equation, we have

(38)

i.e., selecting centers in the dictionary to estimate the overall
distance. This is a combinatorial optimization scaling with

, where denotes the number of -combina-
tions from the dictionary. A more feasible alternative is to
select the “nearest” neighbors one-by-one simply based on
(34), whose complexity is . After selecting the neigh-
bors, the surprise measure can be computed and the learning
system can be updated by the KAPA algorithms based on the
selected neighbors. To summarize, the surprise criterion KAPA
(SC-KAPA) is

where

...
. . .

...

If the datum is determined to be learnable, the system is updated
in the following way:

for

where is the output associated with . The above
SC-KAPA is significantly different from KAPA and demands
more computational resources . KAPA uses
the most recent data points to approximate the gradient
vector whereas SC-KAPA uses the nearest neighbors. It is
argued that using the nearest neighbors is more effective in
terms of modeling while using the most recent ones is better
at tracking. In principle, approximating the prediction variance
and approximating the gradient direction are independent and
can be dealt with differently. For example, we can simply use
the approximation in SC-KLMS to compute the surprise in
SC-KAPA without modification. As we will emphasize here,
the real advantage of SC-KAPA is its flexibility in design and
users should tailor the algorithm accordingly in practice.

V. SIMULATIONS

A. Nonlinear Regression

In the example, we use a simple nonlinear regression problem
to illustrate the main idea of surprise and its effectiveness in
learning. The input–output mapping is
and the input is Gaussian distributed with zero mean and unit
variance.

In the first simulation, we use SC-KRLS and assume all data
are learnable. The surprise is computed for every point during
training. In general, the surprise measure of each datum depends
on the relative order by which it is presented to the learning
system. There are 200 points for training and 100 for testing.
Fig. 1 is a typical learning curve with mean square error (MSE)
calculated at each iteration on the testing data. It clearly shows
that decreases in testing MSE (solid) are directly resulted from
learning informative data (cross). The Gaussian kernel (1) is
used with . The regularization parameter .
The parameters are selected through cross validation.

We also plot the 5% most “informative” data in Fig. 2. It ex-
hibits the characteristic of active sampling with few data in the
well-defined region and more data near the boundary. The sur-
prise measure is very effective to distinguish novelty and redun-
dancy.

In the second simulation, we show how effective the method
is to remove redundancy. We compare the surprise criterion
(SC) [see (25)] with the ALD test [see (28)] in KRLS. We test
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Fig. 2. Informative training data according to the surprise measure in nonlinear regression. (a) The 5% most informative training data (cross) along training
iteration. (b) The 5% most informative training data (cross) in 2-D space.

Fig. 3. Final network size versus testing MSE for SC-KRLS in nonlinear re-
gression.

both SC-KRLS and ALD-KRLS with 30 different thresholds
of . A large is used to disable the abnormality detection.
For each , 100 Monte Carlo simulations are conducted with
independent inputs to calculate the average number of centers
and the corresponding average testing MSE. For each Monte
Carlo simulation, 200 training points and 100 testing points are
used. The results are illustrated in Figs. 3–5. It is clear that SC
is very effective with in a wide range of . Though
ALD is equally effective with in the range of , a
larger leads to catastrophic results (almost all points are ex-
cluded except the first one). By contrast, SC provides a balance
by checking the prediction error. As shown in Fig. 5, SC-KRLS
is superior over ALD-KRLS. For the same MSE, SC-KRLS re-
quires 10–20 less data points on average.

In the third simulation, we show how SC-KRLS can be
used to detect outliers while ALD-KRLS cannot. Two hun-
dred training data are generated as before but 15 outliers are
manually added at time indices 50, 60, , 190 (by flipping
their signs). We choose in SC and

in ALD based on the result of the second sim-
ulation. There are actually 12 effective outliers as shown in
Fig. 6 since another three points are very close to the origin,
and SC-KRLS correctly detects all the outliers as shown in

Fig. 4. Final network size versus testing MSE for ALD-KRLS in nonlinear
regression.

Fig. 5. Comparison of SC-KRLS and ALD-KRLS in redundancy removal in
nonlinear regression.

Fig. 7. The outliers seriously compromise the performance of
ALD-KRLS as shown in Fig. 8. This example clearly demon-
strates the ability of SC to detect and reject outliers.

B. Mackey–Glass Time Series Prediction

The Mackey–Glass (MG) chaotic time series [38], [39] is
widely used as a benchmark data set for nonlinear learning
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Fig. 6. Training data with outliers in nonlinear regression.

Fig. 7. Comparison of surprise measure in SC-KRLS and ALD measure in
ALD-KRLS in nonlinear regression with outliers.

Fig. 8. Learning curves of SC-KRLS and ALD-KRLS in nonlinear regression
with outliers.

methods. The time series is generated from the following time
delay ordinary differential equation:

(39)

Fig. 9. Final network size versus testing MSE of SC-KRLS and ALD-KRLS
with different � in Mackey–Glass time series prediction.

with , and . The time series is dis-
cretized at a sampling period of 6 s. The problem setting for
short term prediction is as follows: the previous seven points

are used to predict
the present one . The number of previous data points used as
input is called time embedding and can be determined by Takens
theorem [40]. A segment of 500 samples is used as the training
data and another 100 points as the test data (in the testing phase,
the filter is fixed).

First, we compare the performance of SC-KRLS with ALD-
KRLS. A Gaussian kernel with kernel parameter is
chosen. A large is used to disable the abnormality detec-
tion. We test both algorithms with 30 different . The result
is illustrated in Fig. 9. It is seen that the overall performance of
SC-KRLS is better than ALD-KRLS though comparable. The
regularization parameter is selected by cross valida-
tion in both algorithms and memoryless uniform input distribu-
tion is assumed in the computation of a surprise.

Second, we compare the performance of SC-KLMS with the
coherence criterion KLMS (CC-KLMS). A Gaussian kernel
with kernel parameter is chosen. A large is used to
disable the abnormality detection in SC-KLMS. We test both
algorithms with 50 different thresholds. The result is illustrated
in Fig. 10. It is seen that SC-KLMS outperforms CC-KLMS.
The regularization parameter in SC-KLMS is . The
step size is set as 0.4 for both algorithm. All the free parameters
are selected by cross validation. Memoryless uniform input
distribution is assumed in the computation of a surprise.

Finally, we compare the performance of a linear filter trained
with least mean square (LMS), novelty criterion kernel least
mean square (NC-KLMS), surprise criterion kernel least mean
square (SC-KLMS), resource-allocating network (RAN) [19],
and SC-KRLS. A Gaussian kernel (1) with kernel parameter

is chosen for all the kernel-based algorithms. One hun-
dred Monte Carlo simulations are run with different realizations
of noise. The noise is additive white Gaussian noise with zero
mean and 0.004 variance. The step size for LMS is 0.01. The
step size is 0.5 for NC-KLMS, and and
are used in the NC. SC-KLMS uses step size 0.5, ,
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Fig. 10. Final network size versus testing MSE of SC-KLMS and CC-KLMS
with different criterion thresholds in Mackey–Glass time series prediction.

Fig. 11. Learning curves of LMS, RAN, NC-KLMS, SC-KLMS, and
SC-KRLS in Mackey–Glass time-series prediction.

and . For RAN, the step size is 0.05 and the toler-
ance for prediction error is 0.05. The distance resolution param-
eters are , and . The overlap
factor is 0.87. Refer to [19] for the parameter settings of RAN.
SC-KRLS uses and . The parameters are
set by cross validation. Fig. 11 is the ensemble learning curves
for LMS, NC-KLMS, SC-KLMS, RAN, and SC-KRLS, respec-
tively. Performances of RAN, NC-KLMS, and SC-KLMS are
comparable and SC-KRLS outperforms all significantly. The
network sizes are listed in Table I. It can be seen that SC-KLMS
has a much smaller network size than NC-KLMS and RAN,
which shows the superiority of the surprise criterion over the
heuristic NC. In addition, the surprise criterion is simpler than
the NC in the sense that it needs one threshold to determine re-
dundancy whereas the NC requires two.

C. CO Concentration Forecasting

The data consist of monthly average atmospheric CO con-
centrations [in parts per million by volume (ppmv)] collected
at Mauna Loa Observatory, HI, between 1958 and 2008 with
a total of 603 observations [41]. The first 423 points are used
for training and the last 180 points are for testing. The data are

TABLE I
NETWORK SIZES OF RAN, NC-KLMS, SC-KLMS, AND SC-KRLS

Fig. 12. CO concentration trend from 1958 to 2008.

shown in Fig. 12. We try to model the CO concentration as
a function of time. Several features are immediately apparent:
a long term rising trend, a pronounced seasonal variation, and
some smaller irregularities. The problem of kernel design for
this specific task is thoroughly discussed in [37]. We use the
same kernel in this example. Our goal is to test how effective
SC-KRLS is to model this nonlinear time series.

First, we simply assume all data are learnable and calculate
the surprise of every point during training. The learning curve is
the MSE calculated on the testing data. Fig. 13 shows the cor-
respondence between the additions of informative data (cross)
and drops in testing MSE (solid).

Next we show how effective SC-KRLS is to remove redun-
dancy. A large is used to disable the abnormality detec-
tion. Fifty different are chosen from . The result
is illustrated in Fig. 14. The number of centers can be safely
reduced from 423 to 77 with equivalent accuracy. By setting

, we have the corresponding learning curves with
the effective training data highlighted (circle) in Fig. 15. The
two learning curves in Figs. 13 and 15 are almost the same even
though the latter only uses 77 out of 423 total training data. This
shows the feasibility and necessity of removing redundancy in
learning. The long term prediction result from the last training
is plotted in Fig. 16. As is clear, the prediction is very accurate
at the beginning but deviates in the far future. Actually it is clear
from Fig. 16 that the increase of the CO concentration accel-
erates at an unforeseen speed.

VI. DISCUSSION

This paper presents an information theoretic criterion for on-
line active learning. Active learning is crucial in many machine
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Fig. 13. Learning curve of SC-KRLS and a surprise measure of training data
along iteration assuming all data learnable in CO concentration forecasting.

Fig. 14. Final network size versus testing MSE of SC-KRLS for different �
in CO concentration forecasting.

Fig. 15. Learning curve of SC-KRLS and a surprise measure of training
data along iteration with effective examples circled in CO concentration
forecasting.

learning applications, as many meaningful learning systems in-
teract with learning environments with state models. Therefore,
not all new samples encountered contain the same information
to update the system state. An information measure of an ex-
ample which is “transferable” to the learning system is very
significant. As we show theoretically and experimentally, the

Fig. 16. Forecasting result of SC-KRLS �� � ������ for CO concentration.

introduced surprise measure successfully quantifies the “trans-
ferable” information content contained in a datum with respect
to the learning system, and the GP theory enables an elegant and
still reasonably efficient algorithm to carry on the computation
in real time.

We are particularly interested in applying the surprise con-
cept to designing sparse kernel adaptive filters. We systemati-
cally study the surprise criterion kernel adaptive filters including
SC-KRLS, SC-KLMS, and SC-KAPA. We theoretically high-
light the close relationship between the surprise criterion and
other existing methods such as NC and ALD. We experimentally
show that the surprise criterion is superior or equivalent to ex-
isting methods in the simulations of nonlinear regression, short
term chaotic time-series prediction, and long term time-series
forecasting. Moreover, the surprise criterion is more principled
and elegant in comparison with others.

There are many more applications that can benefit from this
development. The interesting next question is how to apply the
same technique for classification problems. The second inter-
esting question is how to set the thresholds in a surprise criterion
automatically. Any criterion requires some threshold picking.
Cross validation is usually used as a default method. Since sur-
prise is a more meaningful quantity, it might be easier than
others to choose the thresholds theoretically. Another note is
about learning with abnormal data. Throwing away abnormal
data may not be efficient when the learning environment is non-
stationary or subject to sudden changes. A feasible learning
strategy to deal with abnormal data in a tracking mode is to make
small, controlled adjustments using stochastic gradient descent.
We leave all these interesting questions for future work.
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