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The reasonable man adapts himself to the world.

The unreasonable man persists in trying to adapt the world to himself.

Therefore all progress depends on the unreasonable man.

George Bernard Shaw
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Abstract

The ubiquitous trend to “go wireless” is a symbol of our need for independence and flexibility. To

allow for such an “all-wireless” world, large amounts of information with widely varying content

have to be exchanged, utilising a limited wireless spectrum. Wireless capacity is thus the keyword

and research concentrates on an efficient utilisation of the available frequency spectrum.

Recently, it has been proven that the link capacity in the Shannon sense of a Multiple-Input-

Multiple-Output (MIMO) system can be substantially higher than that of a single link system. The

promised limits, however, can only be reached if appropriate coding schemes are applied to spatially

decorrelated propagation channels. Naturally, physical limitations within the mobile terminal will

lead to mutual correlation among the antenna elements, jeopardising MIMO capacity bounds.

In this thesis, a novel implementation of a MIMO wireless system is presented that allows the

application of MIMO capacity enhancement techniques to mobile terminals with a limited number

of antenna elements. Such a system can be realised by permitting adjacent mobile terminals to

cooperate among each other and thus form a Virtual Antenna Array (VAA).

The analysis presented here relates to a generalised deployment of VAAs, where an informa-

tion source communicates with an information target via a given number of relaying VAAs. Each

relaying VAA consists of distributed and possibly cooperating mobile terminals, thereby realising

a distributed-MIMO multi-stage communication system. Such a system is shown in this thesis to

yield a drastic increase in data throughput, where analysis is composed of three stages.

First, novel information theoretical results are presented which characterise the capacity for

ergodic channels and rate outage probability for non-ergodic channels at each relaying stage. For

example, the capacity integral is introduced, and solved, which enables the derivation of closed form

capacity expressions for Rayleigh flat fading MIMO channels, as well as space-time block encoded

fading channels with arbitrary statistics and channel gains.

Second, the previously derived capacity and rate outage probabilities are utilised to derive com-

munication protocols which allocate resources in terms of power, bandwidth, and frame duration

to each relaying stage such as to achieve maximum end-to-end data throughput from source to

sink. The strategies are derived for general MIMO and space-time block encoded communication

scenarios with transceivers of infinite complexity, where resources may or may not be reused among

the relaying stages. The applicability of the protocols is assessed by means of numerous example

scenarios.

Third, fractional resource allocation strategies are derived which are near-optimum for finite-

complexity transceivers. The analysis is performed for space-time block encoded transceivers only,

which is easily extended to any form of channel and space-time coding schemes if required. The

exposure of the allocation strategies is preceded by the derivation of the error rates of distributed

space-time block encoded communication systems. Again, numerous simulation results corroborate

the applicability of the derived protocols.
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Chapter 1

Overview

1.1 Introduction

It would be foolish to believe that the capacity offered by the wireless medium is limited.

With Thousands of THz of electromagnetic spectrum known, auctioning 140MHz of band-

width for about £21bn on the grounds of scarce spectrum seems to be beyond ridicule. It

could be compared to somebody sitting in a small shelter in London and claiming there is

not enough space in the universe.

Unfortunately, such an auction has happened in the UK. It marked the beginning of

an era which is generally referred to as 3G. It also marked the beginning of an era where

we have only just begun to understand what freedom of information means, where we have

grasped the idea of having access to any information anywhere anyhow at any cost, but

where we have only started to explore ways of delivering this information. We are, to my

belief, only in the cradle of an information society.

There is a long path to pace until we are entitled to call the development of transmission

technologies to be mature. There is little we can predict at this stage, except that the way

the electromagnetic spectrum is handled has to change. Hopefully, in a couple of decades

it will be understood that the wireless medium is not the data bottleneck as frequently

claimed. It will then be the time when research can move on to more important things than

designing transceivers which operate as close as possible to the predicted capacity limits.

Until this will happen, however, the existence of researchers like me is justified and the

work which I expose within this thesis will be read. Indeed, this thesis is about increasing

the capacity of wireless systems under the constraints of limited bandwidth and limited

transmission power.

In its original formulation, the capacity of a communications channel characterises the

maximum amount of error-free information (in bits) which can be transmitted over that

channel in a given time (in seconds) over a given bandwidth (in Hertz). Shannon was the

first to associate the entropy of a random signal with its information contents, which allowed

him to analytically derive the capacity for an additive Gaussian noise channel [1].
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This capacity bound evolved over the consecutive years to encompass wireless single-

input-single-output (SISO) and later wireless multiple-input-multiple-output (MIMO) chan-

nels. The latter can be accomplished by systems where several antenna elements are avail-

able at the transmitter and receiver side. The landmark contributions by Telatar [2] and

Foschini & Gans [3] have demonstrated that the capacity of a MIMO system exceeds the

capacity of a SISO system.

For example, a single wireless link can be shown to offer a capacity of approximately

3 bits/s/Hz at a signal-to-noise ratio (SNR) of 10dB. Such a spectral efficiency is rather

poor for high data rate services, which could hence only be delivered by opening up the

frequency spectrum; however, this is not a viable solution for many years to come.

However, recently explored MIMO channels promise to meet the required spectral effi-

ciency of up to several tens of bits/s/Hz in dependency of the communication scenario [2, 3].

The immediate price to pay is an increased transceiver complexity. However, these costs

fall short in comparison to the potential capacity gained.

The capacity for MIMO channels derived in [2] and [3] are known to depend on the

correlation between the transmitting and receiving antenna elements [4]. The reason is that

the extra capacity is provided through spatially uncorrelated sub-channels. A high corre-

lation among the antenna elements reduces the MIMO wireless channel towards that of a

single link channel. Therefore, failing to provide uncorrelated antenna elements prevents the

deployment of high capacity MIMO systems. The main challenge a MIMO communications

engineer thus faces in practice is to design an antenna array with mutually decorrelated

antenna elements. Correlation among the antenna elements is firstly influenced by the

surrounding environment and secondly by the transceiver hardware design.

A dominant plane wave arriving at the receiving array is seen to be highly correlated

between array elements, whereas a field resulting from impinging waves from all directions

tends to be uncorrelated at a distance d ≈ λ/2 between antenna elements, where λ is the

wavelength [4]. In conjunction with this behaviour another dilemma occurs in practice: for

line-of-sight communication, the field tends to be highly correlated thus counteracting the

capacity improvement promised by MIMO channels.

As for the hardware design, correlation among the antenna elements is caused if their

mutual spacing is too small causing electromagnetic coupling [5].

MIMO channels hence promise an increase in capacity only if decorrelated signals are

present at the antenna elements. Naturally, physical limitations within the mobile terminal

will lead to mutual correlation among the elements jeopardizing MIMO capacity bounds.

A solution to overcome this problem by means of spatially distributed antenna elements,

termed Virtual Antenna Arrays, is introduced and analysed in this thesis.
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1.2 Virtual Antenna Arrays

This thesis presents a novel communications scheme which allows the deployment of MIMO

capacity techniques to terminals with only a few closely spaced antenna elements. The

system deployment is referred to as Virtual Antenna Arrays (VAAs), the concept of

which is briefly explained below.

Traditionally, a communications system is designed such that a base station commu-

nicates with each mobile terminal individually. Such a system as a whole, however, offers

theoretically much more in terms of capacity bounds and data throughput. A more prag-

matic approach to system design would allow mutual communication between the mobile

terminals to create virtual MIMO channels. Since many single antenna terminals form a

mutually communicating entity, the concept was termed Virtual Antenna Array (VAA) [6].

The underlying principle for cellular deployment is depicted in Figure 1.1. A base station

array consisting of several antenna elements transmits a space-time encoded data stream

to the associated mobile terminals which can form several independent VAA groups. Each

mobile terminal within a group receives the entire data stream, extracts its own information

and concurrently relays further information to the other mobile terminals. It then receives

more of its own information from the surrounding mobile terminals and, finally, processes

the entire data stream. The wired links within a traditional receiving antenna array are

thus replaced by wireless links. The same principle is applicable to the uplink.

Figure 1.1: Virtual Antenna Arrays in cellular deployment.
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In this situation, VAA accomplishes a special type of network which bridges cellular and

ad-hoc concepts to establish a heterogenous network with increased capacity. It calls for

intelligent synchronisation, relaying and data scheduling algorithms, the exact realisation

of which depends on the access scheme, choice of main link technology, choice of relaying

technology, technological limits, number of antennas within a given geographical area and

other factors, e.g. the ability of the cellular system to synchronise users, etc.

An example shall illustrate the previously mentioned deployment, where a VAA is em-

bedded into a 3G communication system. Here, the direct link between base station (BS)

and mobile terminals (MTs) is based on 3G UMTS W-CDMA [7]. For the relaying link a

current standard with direct mode communication capabilities is required, which is chosen

to be Bluetooth [8]. Therefore, MTs which happen to be in communication range of the

Bluetooth transceiver form a VAA in the sense that they start supporting each other via

mutual communication. They continue communicating with the BS using the W-CDMA

link and, at the same time, relay further captured information to the other MTs within the

VAA group utilising Bluetooth, thereby increasing the end-to-end link capacity.

The deployment of VAAs creates various problems which need to be addressed. For

instance, the ability of the terminals to transmit and receive simultaneously and thus to

operate in full duplex mode. The duplex communication problem can be solved by assuming

that the frequency bands for the main link (BS to MT) and the relaying links (MT to MTs)

differ. However, such duplex deployment still poses serious constraints on the MT radio

frequency (RF) chain. Particularly, if the receiving main link band and the transmitting

relaying band are not spaced sufficiently far apart in the frequency domain, the transmitter

front-end duplex filter may not be able to protect the receiving branch sufficiently well.

However, I believe that problems like these are either already solved (e.g. MEMS) or will

be solved in the near future with the ever increasing technological advances.

Of further importance is the actual relaying process. Similar to satellite transponders,

the signal can be retransmitted using a transparent or regenerative relay [9]. A transparent

relay is generally easier to deploy since only a frequency translation is required. However,

additions to the current standards are required. For a simpler adaptation of VAA to current

standards, regenerative relays ought to be deployed. This generally requires more compu-

tational power, but will be shown in this thesis to increase the capacity of the network.

Finally, the right choice on main link and relaying access technologies has a severe

impact on the performance and merit of VAAs. An assessment of the applicability of

current standards, such as GSM, UMTS, HiperLAN2, IEEE802.x, is beyond the scope of

this thesis. The interested reader is therefore referred to [10]. In contrast to a specific

deployment, this thesis deals with a generic realisation of Virtual Antenna Arrays, where

the above-given cellular example is only a subset of such a realisation.
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Such generic realisation of VAAs has been introduced in [10], which is henceforth referred

to as distributed-MIMO multi-stage relaying network. An example realisation is

depicted in Figure 1.2. Here, a source MT communicates with a target MT via a number

of relaying MTs. Spatially adjacent relaying MTs form a VAA, each of which receives

data from the previous VAA and relays data to the consecutive VAA until the target

MT is reached. Note that each of the involved terminals may have more than one antenna

element. Furthermore, an arbitrary number of MTs of the same VAA may cooperate among

each other. The suggested topology, as depicted in Figure 1.2, encompasses a variety of

communication scenarios.

For instance, a cellular system operating on the downlink is obtained by replacing the

source MT by the BS antenna array which communicates directly with the VAA containing

the target MT. It may also represent a system where a BS array communicates with a VAA

formed somewhere in the cell, which in turn relays the data to another VAA containing the

target MT. This allows the coverage area of the BS to be extended. The same topology is

applicable to mesh, ad-hoc and sensor networks [11, 12].

Although naturally more complex to deploy, it will be shown in this thesis how such

deployment can boost the system capacity. Also, a VAA allows an automatic scaling of

a network as depicted by means of Figure 1.2. This is because a higher density of MTs

requires more capacity, which is more easily provided if more antenna elements are available

to form VAAs.
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Figure 1.2: Distributed-MIMO multi-stage communication system.
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1.3 Background & State of the Art

The concept of Virtual Antenna Arrays with application to cellular networks has been intro-

duced in February 2000 [6]. To the best of my knowledge, the generalisation of the concept

to distributed-MIMO multi-stage communication networks with application of distributed

space-time codes has been introduced shortly after and consequently patented for M-VCE

in June 2001 [10]. Other excellent research has been performed in parallel, all of which led

to the currently flourishing research area of distributed wireless communication networks.

In its infancy, the concept of VAA evolved from the contributions by [13] and [14] on

relaying and by [2] and [15] on MIMO communication aspects.

The work exposed in [13] was undertaken from 1996 until approximately 2000 within the

scope of the Universal Mobile Communications System Terrestrial Radio Access (UTRA)

Concept Group Epsilon and mainly driven by Vodafone. The system was referred to as

Opportunity Drive Multiple Access (ODMA), the main purpose of which was to increase

the high data rate coverage within a cell. It is a relaying protocol and not a stand-alone PHY

layer technology, which was the reason why it had been rejected as a potential candidate

for UTRA. However, due to its capacity benefits, it is now an optional protocol for UTRA

TDD/CDMA.

The methodologies suggested in [13] have been studied in [14]. In this study, SISO relay-

ing has enabled an extension of the serving area of a BS by utilising r-MTs at the coverage

edge to provide data services to MTs out of reach. It has been demonstrated that, although

each r-MT consumes additional power to accommodate the relaying process, all MTs in the

network gain on average in performance. Simple relaying protocols have also been suggested

which are based on shortest distance relaying. The gains of the relaying process have been

attributed to the non-linear pathloss equation, which reduces the aggregate pathloss when

breaking a long distance into several shorter communication distances.

As for the MIMO aspects, the elegant analysis exposed by Telatar in [2] has enabled

a fundamental understanding of the potential gains offered by ergodic and non-ergodic

MIMO channels. Telatar showed that the capacity offered by the wireless channel increases

drastically when the number of transmit and receive antennas is increased. With the exposed

analysis on uncorrelated flat Rayleigh fading MIMO channels, Telatar has opened the door

to evaluating the capacity offered by MIMO channels obeying more general conditions,

e.g. different fading statistics, different correlation, flat or frequency selective fading.

The work by Alamouti [15] has triggered a revolution on the way pre-processing at the

transmitting side is viewed. It is certainly far from the complex theories exposed in later

works by Tarokh [16, 17]; however, it was the first transmission scheme which allowed the

deployment of transmit diversity as opposed to the well established receive diversity.
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Although these contributions have triggered the invention of Virtual Antenna Arrays

and distributed-MIMO multi-stage communication systems, they have not been the first

and only contributions in the field of relaying and MIMO systems. For this reason, a short

summary on the state of the art related to the work of this thesis is given below. Note

that the description given below of prior contributions is not complete; however, more

contributions are detailed in the introduction to the respective technical chapters.

Relaying Communication Systems. The method of relaying has been introduced in

1971 by van der Meulen in [18] and has also been studied by Sato [19]. A first rigorous

information theoretical analysis of the relay channel has been exposed by Cover in [20], a

more detailed description to which can be found in his book [21].

In these contributions, a source MT communicates with a target MT directly and via

a relaying MT. In [20] the maximum achievable communication rate has been derived in

dependency of various communication scenarios, which include the cases with and without

feedback to either source MT or relaying MT, or both. The capacity of such a relaying con-

figuration was shown to exceed the capacity of a simple direct link. It should be noted that

the analysis was performed for Gaussian communication channels only; therefore, neither

the wireless fading channel has been considered, nor have the power gains due to shorter

relaying communication distances been explicitly incorporated into the analysis.

Only in the middle of the 90s, research in and around the Concept Group Epsilon revived

the idea of utilising relaying to boost the capacity of wireless networks, thereby leading to

the concept of ODMA [13]. As already mentioned, the power gains due to the shorter

relaying links have been the main incentive to investigate such systems to reach MTs out of

BS coverage. However, the emphasis of the study was its applicability to cellular systems,

as well as a suitable protocol design. The research did not encompass more theoretical

investigations into capacity bounds, transmission rates or outage probabilities.

Interesting milestones into the above-mentioned theoretical studies have been the con-

tributions by Sendonaris, Erkip and Aazhang, which date back to 1998 [22]. In their study,

a very simple but effective user cooperation protocol has been suggested to boost the uplink

capacity and lower the uplink outage probability for a given rate. The designed protocol

stipulates a MT to broadcast its data frame to the BS and to a spatially adjacent MT, which

then re-transmits the frame to the BS. Such a protocol certainly yields a higher degree of

diversity because the channels from both MTs to the BS can be considered uncorrelated.

The simple cooperative protocol has been extended by the same authors to more sophisti-

cated schemes, which can be found in the excellent contributions [23] and [24]. Note that

in its original formulation [22], no distributed space-time coding has been considered.
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The contributions by Laneman in 2000 [25] are a conceptual and mathematical extension

to [22], where energy-efficient multiple access protocols are suggested based on decode-and-

forward and amplify-and-forward relaying technologies. It has been shown that significant

diversity and outage gains are achieved by deploying the relaying protocols when compared

to the direct link. Note again, that no distributed space-time coding has been considered.

Also, a short-coming of the developed theory is that the comparison with a direct commu-

nication system is not really fair because the relaying system is inherently allocated more

resources, either in terms of total communication duration or bandwidth. For instance,

given a two-hop relaying system with deployed time division multiple access (TDMA), a

frame of 10ms requires a total transmission time of 20ms to reach the target receiver,

whereas a direct communication system would require only 10ms.

The case of distributed space-time coding has been analysed by Laneman in his PhD

dissertation [26]. In his thesis, information theoretical results for distributed SISO chan-

nels with possible feedback have been utilised to design simple communication protocols

taking into account systems with and without temporal diversity, as well as various forms

of cooperation. He has demonstrated that cooperation yields full spatial diversity, which

allows drastic transmit power savings at the same level of outage probability for a given

communication rate. A vital asset of his thesis is also a discussion on the applicability of

the suggested protocols to cellular and ad-hoc networks. However, [26] does not incorporate

an analysis of distributed-MIMO multi-stage communication systems as proposed within

this thesis. Nonetheless, the analysis exposed in this thesis can be used to design protocols

similar to the ones in [26].

Gupta and Kumar were the first to statistically analyse the information theoretically

offered throughput for large scale relaying networks [27]. They showed that under some-

what ideal situations of no interference, hop-by-hop transmission and pre-defined terminal

locations, capacity per MT decreases by 1/
√

M with an increasing number of MTs M in a

fixed geographic area. They also showed that if the terminal and traffic distributions are

random, then the capacity per terminal decreases even in the order of 1/
√

M log M . The

analysis in [27] has been extended by the same authors to more general communication

topologies, where the interested reader is referred to the landmark paper [28].

Furthermore, Grossglauser and Tse have shown that mobility counteracts the decrease in

throughput for an increasing number of users in a fixed area [29]. The protocols suggested

therein benefit from the decreased power for a hop-per-hop transmission for decreasing

transmission distances. It also benefits from the location variability due to mobility, i.e. a

packet is picked up from the source MT by any passing by r-MT and only re-transmitted

(and hence delivered) when passing by the target MT.

27



MIMO Communication Systems. Contributions on MIMO systems have flourished

ever since the publication of the landmark papers by Telatar [2] and Foschini & Gans [3] on

capacity and Foschini [30], Alamouti [15] and Tarokh [16, 17] on the construction of suitable

space-time transceivers.

The contributions on the capacity are further detailed in Chapter 2. As for the BLAST

system introduced by Foschini in 1996 [30], a transmitter spatially multiplexes signal streams

onto different transmit antennas which are then iteratively extracted at the receiving side

using the fact that the fades from any transmit to any receive antenna are uncorrelated

and of different strength. The BLAST concept has ever since been extended to more

sophisticated systems, a good summary of which can be found in [4]. Note that these

systems require a quasi-static (or slow-fading) channel as the iterative cancellation process

requires a precise knowledge on the channel coefficients.

Alamouti introduced a very appealing transmit diversity scheme by orthogonally encod-

ing two complex signal streams from two transmit antennas, thereby achieving a rate one

space-time block code [15]. His work was then mathematically enhanced by the landmark

paper of Tarokh [17], who essentially exposed various important properties of space-time

block codes. In [16], he also showed how to construct suitable space-time trellis codes which

were shown to yield diversity and coding gain. Many other contributions on coherent and

differential space-time block and trellis code design followed, a summary of which is beyond

the scope of this overview.

MIMO Relaying Systems. A landmark contribution on relaying systems deploying mul-

tiple antennas at transmitting and receiving side has been made by Gupta and Kumar [28].

The network topology exposed therein is the most generic one can think of, i.e. any MT

may communicate with any other MT in the network such as to achieve a maximum sys-

tem capacity. This is in contrast to the scheme depicted in Figure 1.2, which considers only

stage-by-stage relaying. In [28], an information theoretic scheme for obtaining an achievable

communication rate region in a network of arbitrary size and topology has been derived.

The analysis showed that sophisticated multi-user coding schemes are required to provide

the derived capacity gains. Note also that the exposed theory is fairly intricate, which

makes the design of realistic communication protocols a difficult task.

Specific distributed space-time coding schemes have also been suggested recently, e.g. [31].

In this publication, two spatially adjacent MTs cooperate to achieve a lower frame error

rate to one or more destination(s), where a quasi-static fading channel has been assumed.

Distributed space-time trellis codes have been designed which maximise the performance

for the direct link from either of the MTs to the destination and the relaying link.

Although contributions on the topic of MIMO relaying have begun to emerge, the

amount of work done is scarce in comparison to the vast amount of potential scenarios.
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1.4 Aim & Organisation of the Thesis

The work during recent years on Virtual Antenna Arrays for the Mobile-VCE originally

endeavoured to embed this concept into existing and emerging communication systems.

It was understood, however, that a deployment, capacity and performance analysis for

generic communication topologies as depicted in Figure 1.2 would be more beneficial in

understanding relaying systems.

To simplify analysis and understanding, investigations first concentrated on an end-to-

end scenario where a given source MT communicates with target MT separated by various

relaying hops. Analysis was then extended to the case where each relaying hop contained

more than one relaying MT, henceforth referred to as the relaying stage. In due course it

became apparent that enough problems were unsolved for such a communication scenario,

some of which are exposed and solved in this thesis.

During the period of my research, the contribution by Gupta and Kumar [28] emerged.

Their topology can be seen as a generalisation of the one depicted in Figure 1.2, which is

the reason why it is referred to as a ‘fairly’ generic communication scenario throughout the

thesis. With hindsight to [28], this thesis can be seen as a bridge between the intricate

information theoretical description of the maximum achievable sum rate of large scale net-

works and the information and performance theory needed to deploy comparably simple

communication protocols as introduced in [26].

With this in mind, it is the aim of this thesis to design communication protocols which

yield optimum or near-optimum end-to-end data throughput for an information source com-

municating with an information sink via a given number of topologically imposed relaying

stages. As will be demonstrated, such protocols have to guarantee an optimum assignment

of resources to each relaying stage as a function of the channel conditions. These protocols

are henceforth referred to as fractional resource allocation strategies.

For a potential deployment, these strategies have to be as simple and robust as possible.

Their role is to allocate resources in terms of power, bandwidth and frame duration to each

relaying stage dependent upon of the prevailing channel conditions.

To derive optimum allocation algorithms, a thorough understanding of the offered end-

to-end capacity is needed first. Only after that, allocation strategies can be developed which

achieve maximum end-to-end throughput. Since the notion of capacity assumes transceivers

of infinite (or very high) complexity, their deployment is only justified in systems which

deploy such transceivers. A system operating below the capacity limit, simply because

it utilises less complex transceivers, may require different allocation strategies to achieve

maximum throughput. A derivation of these fractional allocation strategies is also of great

interest.
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Once the throughput maximising protocols are derived for a single end-to-end communi-

cation link, they can then be enhanced to allow optimum throughput in multiple end-to-end

communication links. This can be seen as a further step towards the realisation of generic

systems as introduced in [28]; however, with reference to the amount of material presented

in this thesis, this has been left open for future research.

To accomplish a logical thread in deriving the fractional allocation strategies, the thesis

has been organised as follows. In Chapter 2, the information theoretical foundations are laid

where the stage-to-stage capacity and outage probabilities are derived for a vast range of

communication scenarios. These are then utilised in Chapter 3 to derive fractional allocation

strategies which achieve end-to-end throughput; again, a wide range of scenarios is covered

by the analysis. Finally, Chapter 4 deals with the derivation of resource allocation strategies

for transceivers utilising distributed space-time block codes only. Note that each chapter

is concluded with a thorough summary on the achieved results, the author’s contributions

to the field, and the future research tailored to each particular chapter. Conclusions to

the entire thesis are drawn in Section 5, which are accompanied by suggestions on future

research taking the result of the whole thesis into account.

In more details, the major contributions of Chapter 2 can be summarised as follows.

First, a closed form expression for the MIMO capacity originally derived by Telatar in inte-

gral form has been given. This analysis is then used to derive closed form expressions of the

capacity achieved by distributed space-time block encoded communication systems. Also,

for these scenarios, the associated outage probabilities are derived assuming non-ergodic

MIMO channels. Finally, approximations to the MIMO capacity and outage probability

are introduced, which prove useful in the consecutive chapter.

The effort of Chapter 3 concentrates on the derivation of fractional resource allocation

strategies assuming transceivers of infinite complexity are available. The capacities and

their approximations are hence utilised to develop algorithms for general MIMO systems,

as well as space-time block encoded MIMO systems operating over channels of possibly

different statistics and gains. Similar throughput-maximising algorithms are then developed

for non-ergodic channels which invoke the outage probabilities instead of capacities.

Finally, Chapter 4 derives throughput-maximising resource allocation strategies assum-

ing space-time block encoded systems without an outer Shannon code. The deployed finite-

complexity transceivers lead to different optimisation criteria, and hence to different allo-

cation strategies than in the previous chapter. The derivation of the allocation strategies

is partially facilitated by the closed form expressions of the symbol error rate of space-time

block codes with different channel statistics and gains.

Chapters 2−4 contain almost exclusively novel material with background information

kept to a minimum.
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Chapter 2

Fundamental Capacity Limits

2.1 Introduction

Capacity is a concept related to the vast area of Information Theory, a branch of sci-

ence which really commenced after the publication of Shannon’s legendary monogram on

“A Mathematical Theory of Communication” in 1948 [1]. More than half a century has

passed since, during which major achievements in the field of theoretical and practical

communications have been achieved. A brilliant overview on the milestones of Shannon’s

information theory from its very infancy until the year 1998 can be found in [32], and is

briefly summarised below.

Back in 1915, Whittaker discovered how to reconstruct losslessly a bandlimited function

from appropriately taken samples. Almost a decade later, Nyquist related the transmission

rate to the logarithm of the number of signal levels in a unit duration [33]. In 1928, Hartley

recognised the need to introduce a “quantitative measure of information” [34]. He denoted it

H and related it in a logarithmic manner to the number of symbols available in the selection

process representing the communication from an information source towards an information

sink. He further concluded that the communication rate of a system is proportional to the

bandwidth of the utilised channel.

None of the aforementioned scientists included the effects of noise or the random nature

of signals into their theory, a theory which was majorly influenced by Wiener and Rice [35].

With their developed mathematical foundations, the year 1948 bore seven theories encom-

passing fundamental trade-offs between bandwidth, signal-to-noise ratio, transmission rate

and reliability. It was Shannon’s Information Theory which survived.

The Shannon information theory predicts the achievable error-free communication rate

for a communication system with given input distribution, transmission power, noise power,

and bandwidth. The maximum achievable rate is referred to as the channel capacity. The

theory also suggests design rules of how such an error-free transceiver can be constructed

at the expense of infinite complexity; however, the theory does not suggest design criteria

for transceivers operating at the capacity limits with finite complexity.
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Major research effort hence concentrated on the construction of transceivers operating

close to the capacity bound. This has been achieved only recently with the aid of Turbo

Codes [36]. Nobody, however, has ever managed to communicate beyond the bound, indi-

cating its universal nature.

Information theorists thought that with the discovery of Turbo Codes the research

area was almost closed, when Telatar [2] and Foschini & Gans [3] suggested utilising the

additional spatial dimension to further boost capacity. Their contributions gave birth to

the nowadays well established research branch of multiple-input-multiple-output (MIMO)

communication systems. The multiplexing scheme suggested by Foschini & Gans resulted

in practical MIMO BLAST-like systems, whereas Telatar’s contribution formed a profound

mathematical foundation for further developments in MIMO information theory. Both

contributions passed almost unnoticed, until Tarokh published minute code design rules

which allowed the derived capacity bounds to be approached [16, 17]. His work was inspired

by the works of Telatar, Foschini & Gans and Alamouti [15], and so is this thesis.

Although communication at the MIMO capacity limit requires a transceiver of infinite

complexity, this limit serves very well as a general characterisation and differentiation of

communication systems. An assessment of the applicability of VAA-type systems introduced

in Chapter 1 will therefore rely on a characterisation in terms of capacity first. It is hence the

aim of this chapter to deal with generic issues related to MIMO capacity, as well as specific

issues applicable to VAA-type systems. Although many theorems on the capacity behaviour

of MIMO channels have been proven to date, some interesting and novel results can be

found herein. The derivation of a closed expression of the Shannon capacity over ergodic

flat Rayleigh fading MIMO channels is worth mentioning, as it is so far only given in integral

form. Other contributions of this chapter to the research community are summarised in

Section 2.6

This chapter is structured as follows. First, some basic concepts related to the Shannon

notion of capacity are reiterated. Emphasis is put on the difference between capacity over

Gaussian and fading channels, leading to different representations over ergodic and non-

ergodic fading channels. This shall aid in understanding the capacity of MIMO channels,

which is dealt with second. To this end, a fairly intricate expression of the Shannon capacity

over ergodic flat Rayleigh fading MIMO channels is derived in closed form. The analysis

is then extended to non-ergodic MIMO channels. Third, various aspects of the capacity

of MIMO channels are analysed, which are being orthogonalised with the deployment of

orthogonal space-time block codes (STBCs). Fourth, an approximation of the exact capacity

and its associated outage probability is introduced, and its accuracy assessed. Finally,

chapter specific conclusions are drawn, contributions are listed, and the most important

results summarised.
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2.2 Basics in Understanding Capacity

2.2.1 The Gaussian Case

In his landmark development [1], Shannon introduced the entropy H(x) of a continuous

random variable x with probability density function (pdf) pdfx(x) as

H(x) � −
∫

pdfx(x) log2

(
pdfx(x)

)
dx (2.1)

Here, as in its original thermodynamical notion, entropy relates to the uncertainty in x.

Shannon further showed that if x is limited in its second moment σ2 (with any mean µ),

then the pdfx(x) which maximises (2.1) must obey a Gaussian distribution, i.e.

x ∼ N (µ, σ2) (2.2)

for which the entropy H(x) is easily calculated as

H(x) =
1
2

log2

(
2πeσ2

)
(2.3)

where e = 2.718 is the natural constant. The mutual information between two random

variables x and y is defined as

I(x, y) � H(x) − H(x|y) (2.4)

which represents the uncertainty inherent to x minus the uncertainty left about x once y is

observed. Although (2.4) is very general, x can be associated with the transmitted signal

and y with the received signal. Clearly, if after observation of y the uncertainty over x

remains, i.e. H(x|y) = H(x), then their mutual information (knowledge) must be equal to

zero and the receiver is unable to decide which realisation of x was transmitted. If, however,

observing y resolves all uncertainty over x, i.e. H(x|y) = 0, then the mutual information

(knowledge) is equal to the possible realisations of x, i.e. the entropy H(x).

Shannon defined the channel capacity C as the maximum mutual information I(x, y)

over all possible input distributions pdfx(x), i.e.

C � sup
pdfx(x)

{
I(x, y)

}
(2.5)

where sup{·} denotes the supremum. This allowed him to quantify the capacity per channel

use of a channel with additive white Gaussian noise (AWGN). Given a signal x transmitted

over an AWGN channel with noise n, the received signal y can be represented as y = x+n.

Because of the Gaussian character of the noise, the capacity as per (2.5) is maximised if x

is Gaussian too, leading to the capacity of an AWGN channel as

C =
1
2

log2

(
1 +

S

N

)
(2.6)

where S = σ2 is the average power of signal x and N the average power of noise n.
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Finally, Shannon showed that a signal essentially limited to a duration T and bandwidth

W can be represented by approximately 2WT samples (or dimensions). Since the capacity

per channel use (or per dimension) is governed by (2.6), the capacity of a bandlimited signal

can be found to be

C = WT log2

(
1 +

S

N

)
(2.7)

Shannon then defined as the channel capacity in [bits/s] the capacity of the 2WT samples

per time T , i.e.

C � lim
T→∞

WT log2

(
1 + S

N

)
T

= W log2

(
1 +

S

N

)
(2.8)

In this thesis, the normalised channel capacity is used for notational simplicity. It is defined

as the channel capacity per unit bandwidth, which simplifies (2.8) to

C = log2

(
1 +

S

N

)
. (2.9)

Note that the realised signal x of duration T → ∞ is referred to as the codeword, whereas

the ensemble from which x is chosen as the codebook. Finally, Shannon proved that an

error-free transmission rate exceeding the channel capacity is impossible.

2.2.2 Ergodic versus Non-Ergodic Channels

The concept of ergodicity arises in the context of wireless fading channels. To this end, it is

assumed that the transmitter is connected to the receiver via a wireless channel. A wireless

channel generally obeys large, medium and small-scale fading. The first is a deterministic

effect attributed to pathloss. The second is a random effect observed in the spatial dimension

when moved over several tens of wavelengths [37]. Unless otherwise stated, shadowing is

incorporated into pathloss assuming low-mobility communication scenarios. The last is a

random effect observed in the temporal and spatial dimension, which can be catagorised

into slow & fast fading and flat & frequency selective fading. Unless otherwise stated, it is

assumed that the channel is flat in frequency.

The channel power gains due to the deterministic effects are unified in one coefficient γ,

whereas the random channel power gains are represented by λ with its respective pdf. If the

channel power gains are fixed for at least the infinite duration of a codeword transmission,

then the capacity of the channel can be expressed as

C = log2

(
1 + λγ

S

N

)
(2.10)

Note that this expression is sometimes referred to as the instantaneous capacity, which has

obviously no meaning in the Shannon sense where codewords are of infinite duration.
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If λ varies over the transmitted codeword but all its moments are the same from codeword

to codeword, then the channel is referred to as an ergodic channel. In that case, the capacity

is given as [2]

C = Eλ

{
log2

(
1 + λγ

S

N

)}
(2.11)

where Eλ{·} denotes the statistical expectation with respect to λ. In applicable terms,

eq. (2.11) means that if the channel fades fast enough so that over a (possibly finite but

very long) codeword the mean of the fading statistics can be observed with almost certain

reliability, then such a channel can support any rate not exceeding the above-given capacity

C. That allows one to plot the capacity versus the signal-to-noise ratio (SNR), as will be

extensively made use of in this thesis.

In contrast to an ergodic fading channel, the channel realisations of a non-ergodic chan-

nel are randomly fixed at the beginning of the transmission and kept constant over the

duration of the codeword transmission. Since the channel realisation is chosen randomly

and kept constant over the codeword transmission, there is a non-zero probability that a

given transmission rate cannot be supported by the channel [2]. However, the probability

that a certain communication rate can be supported by a channel can be gauged, and is

referred to as the rate outage probability. That requires the probability of the achievable

communication rate to be plotted versus the SNR and rate. Since 3-dimensional plots are

difficult to read, a family of outage probability curves are plotted versus the rate for a range

of SNR values, or versus the SNR for a range of rates.

2.3 Capacity of MIMO Channels

2.3.1 System Model

A typical wireless MIMO transceiver model is depicted in Figure 2.1. It is assumed that

an information source communicates with an information sink via a channel spanned by t

inputs and r outputs. The channel is henceforth referred to as a multiple-input-multiple-

output (MIMO) channel.

Information
Source

Space-Time
Encoder

Space-Time
Decoder

Information
Sink

s s

t

Transmit

Antennas

r

Receive

Antennas

h
11

h
r,t

H

MIMO

Channel

Figure 2.1: Multiple-Input-Multiple-Output Transceiver Model.
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Communication is achieved by properly encoding the information s at the transmitter across

the temporal and spatial dimensions to produce a given space-time codeword. This code-

word is transmitted with average power S and received by the receiver which has an average

noise power N . The receiver performs appropriate decoding to yield an estimate ŝ of the

originally transmitted information. It is the aim of this chapter to assess the achievable

communication rate (or the probability of supporting such rate) in dependency of the com-

munication scenario.

To produce a neat mathematical representation of the communication system, let x ∈ C
t×1

be the spatial codeword transmitted over the t transmitters at any time instant. With the

required constraint on average transmission power, the following holds

tr
(
E
{
xxH

}) ≤ S (2.12)

where tr(·) denotes the trace operator and xH is the Hermitian to x. If all transmission

powers Si∈(1,t) are equal, then Si = S/t. The generally complex channel realisation from

transmitter i ∈ (1, t) to receiver j ∈ (1, r) is denoted as hij . The channel realisations hij

are henceforth referred to as sub-channels. They are conveniently grouped into a channel

matrix H ∈ C
r×t, where

H =




h11 h12 · · · h1,t

h21 h22 · · · h2,t
...

...
. . .

...
hr,1 hr,2 · · · hr,t


 (2.13)

Unless mentioned otherwise, it is assumed throughout the thesis that H is full-rank of

rank min(t, r). That implies that at least min(t, r) sub-channels are mutually independent.

Because of the flat-fading assumption, the received vector y ∈ C
r×1 can now be written as

y = Hx + n (2.14)

where n ∈ C
r×1 is the noise vector containing the random noise samples from each receiver

with average noise power N . The noise vector belongs to an r-dimensional complex zero-

mean circular symmetric Gaussian distribution with variance N per dimension, i.e.

n ∼ Nc(0r, N · Ir) (2.15)

where 0r and Ir denote respectively an all-zero and identity matrix of dimensions r × r.

2.3.2 Fixed Channel Coefficients

The derivation of the MIMO capacity for a fixed channel matrix H is due to Gallagar [38],

Cover & Thomas [21] and more rigorously derived by Telatar [2]. An overabundance of

literature on its derivation is now available, see for example the excellent books by [4, 39, 40].

For this reason, only the outcome is summarised here.
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For a communication system according to (2.14), where x ∼ Nc(0t,S), S = E
{
xxH

}
and

tr(S) = S, the capacity can be derived to be

C = log2 det
(
Ir +

HSHH

N

)
(2.16)

where the codebook covariance matrix S has to be diagonal [2]. That allows (2.16) to be

rewritten as

C = log2 det
(
Ir + HEHH S

N

)
=

t∑
i=1

log2

(
1 + εiλi

S

N

)
(2.17)

where λi∈(1,t) are the eigenvalues of HHH, and εi is the fraction of the total transmit power S

allocated to the ith transmit element. The entries of the diagonal matrix E = diag (ε1, . . . , εt)

are determined with the aid of Lagrangian optimisation, the solution to which yields

εi =

(
µ −

(
λi

S

N

)−1
)+

, i ∈ (1, t) (2.18)

Here, µ is given implicitly to satisfy
∑t

i=1 εi = 1 and (a)+ denotes max(a, 0). The later

operation is required to prevent negative power to be allocated. Such a fractional transmit

power allocation strategy is referred to as water-filling. The capacity (2.17) can then be

simplified to C =
∑t

i=1 (log2 (µλiS/N))+. An approximate but explicit fractional power

allocation εi∈(1,t) is conjectured in Appendix 2.7 (Derivation I). An exact but simple imple-

mentation of water-filling can be achieved as follows. It is assumed that the eigenvalues are

sorted such that λ1 ≥ λ2 ≥ . . . ≥ λt. The constraint on εi∈(1,t) can be rewritten as

1 =
t∑

i=1

(
µ −

(
λi

S

N

)−1
)+

=
τ∑

i=1

(
µ −

(
λi

S

N

)−1
)

= τµ −
(

S

N

)−1 τ∑
i=1

1
λi

(2.19)

where τ is chosen such that µ−N/S/λτ > 0 and µ−N/S/λτ+1 ≤ 0. To determine τ ∈ (1, t),

the latter inequality can be formulated as

µ =
1 +

(
S
N

)−1∑τ
i=1

1
λi

τ
≤
(

S
N

)−1

λτ+1
(2.20)

where λt+1 � 0. It can be expressed as

S

N
+

τ∑
i=1

1
λi

≤ τ

λτ+1
(2.21)

In practice, the signal power S and the receiver noise power N , as well as the eigenvalues of

the channel matrix H, have to be known to the transmitter. A simple iterative summation

according to (2.21) is then performed until the inequality holds. Finally, the capacity (2.17)

can be rewritten as

C =
τ∑

i=1

log2 λi + τ log2

(
S

N
+

τ∑
j=1

1
λj

)
− τ log2 τ (2.22)

The water-filling principle is also applicable to channels which vary extremely slowly com-

pared to the data rate, and H is fed-back to the transmitter via a feed-back channel.

37



2.3.3 Ergodic Fading Channels

In contrast to the previous section, capacity is now obtained by averaging (2.16) over all

realisations of H for a capacity maximising codebook covariance matrix S. The dependency

between capacity and codebook covariance S and channel statistics H is fairly complicated,

which is the reason why capacity expressions for only very few special cases could be de-

termined. The case where each entry in H obeys uncorrelated Rayleigh fading, has been

derived by Telatar [2]. In the opinion of the author, it bears an importance similar to Shan-

non’s information theory itself. The following mathematical developments were available

before Telatar’s historic contribution:

• The capacity expression (2.16) for a MIMO channel with fixed coefficients [38].

• The pdf of the ordered and unordered eigenvalues of a Wishart matrix [41].

Telatar then showed that if x ∼ Nc(0t,S) then such a codebook maximises capacity and

the prior developed capacity expression (2.16) yields

C = EH

{
log2 det

(
Ir +

HHH

t

S

N

)}
(2.23)

An auxiliary matrix W is introduced now such that

W �
{

HHH r < t

HHH r ≥ t
(2.24)

where, with defined parameters

m � min{t, r} (2.25)

n � max{t, r}, (2.26)

W is referred to as a Wishart matrix with parameters m, n. The joint pdf of its ordered

eigenvalues λi∈(1,m) is known to be [41]

pdfλ(λ) =
1

Kmn

∏
i

e−λiλn−m
i

∏
j>i

(λi − λj)2 (2.27)

where λ = (λ1, . . . , λm) and Kmn is a normalisation factor. Therefore, (2.23) turns into

C = Eλ

{
m∑

i=1

log2

(
1 +

λi

t

S

N

)}
(2.28)

=
∫

· · ·
∫

λ

dλ
m∑

i=1

log2

(
1 +

λi

t

S

N

)
· 1
Kmn

∏
i

e−λiλn−m
i

∏
j>i

(λi − λj)2 (2.29)

After some algebraic manipulations, this finally yields the landmark MIMO capacity theo-

rem derived by Telatar [2]

C =
∫ ∞

0
m log2

(
1 +

λ

t

S

N

)
· 1
m

m−1∑
k=0

k!
(k + n − m)!

[
Ln−m

k (λ)
]2

λn−me−λdλ (2.30)
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where Ln−m
k (λ) is the associated Laguerre polynomial of order k. The capacity can also be

expressed as

C = Eλ

{
m log2

(
1 +

λ

t

S

N

)}
(2.31)

with

pdfλ(λ) =
1
m

m−1∑
k=0

k!
(k + n − m)!

[
Ln−m

k (λ)
]2

λn−me−λ (2.32)

The capacity in (2.30) is given in integral form, to which an iterative and explicit closed form

expression are derived below. The advantage of such a development is that long Monte-Carlo

simulations are avoided; further, it proves generally useful in a variety of problems relating

to the computation of MIMO capacity. Note that in [42] and [43] two independent explicit

solutions have been found, which are different from the here-in developed expressions.

The derivation of a closed form expression of (2.30) is performed in two stages: The

pdf (2.32) is evaluated first, and then the expectation (2.31) is calculated. To this end, the

associated Laguerre polynomial of order k is expressed through the Rodrigues representa-

tion [44] (§8.970.1)

Ln−m
k (λ) =

k∑
l=0

(−1)l (k + n − m)!
(k − l)!(n − m + l)!l!

λl (2.33)

Inserting (2.33) into (2.32) gives

pdfλ(λ) =
1
m

m−1∑
k=0

k!
(k + n − m)!

[
k∑

l=0

(−1)l (k + n − m)!
(k − l)!(n − m + l)!l!

λl

]2

λn−me−λ (2.34)

which is conveniently expressed as

pdfλ(λ) =
1
m

m−1∑
k=0

k!
(k + d)!

[
k∑

l=0

A2
l (k, d)λ2l

+
k∑

l1=0

k∑
l2=0,
l2 �=l1

(−1)l1+l2Al1(k, d)Al2(k, d)λl1+l2

]
λde−λ

(2.35)

where

d � n − m (2.36)

Al(k, d) � (k + d)!
(k − l)! (d + l)! l!

(2.37)

The derived pdf can now be inserted into (2.30), which yields for the capacity in [bits/s/Hz]

C =
m−1∑
k=0

k!
(k + d)!

[
k∑

l=0

A2
l (k, d) Ĉ2l+d(a)

+
k∑

l1=0

k∑
l2=0,
l2 �=l1

(−1)l1+l2Al1(k, d)Al2(k, d) Ĉl1+l2+d(a)

] (2.38)
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where a � 1
t

S
N and Ĉζ(a) is defined as

Ĉζ(a) �
∫ ∞

0
log2(1 + aλ)λζ e−λ dλ (2.39)

Due to its frequent occurrence, Ĉζ(a) is henceforth referred to as the Capacity Integral.

Note that according to [44] (§4.337.2)

Ĉ0(a) = −e1/a Ei (−1/a) / log(2) (2.40)

where Ei(ζ) �
∫ ζ
−∞

et

t dt is the exponential integral. Ei(ζ) is related to ExpInt(ζ) typically

found in mathematical programmes via ExpInt(ζ) = −Ei(−ζ). Further, for ζ > 0

Ĉζ(a) = −
∫ ∞

0
log2(1 + aλ)λζ d

(
e−λ

)
(2.41)

= ζ ·
∫ ∞

0
log2(1 + aλ)λζ−1 e−λ dλ +

1
log(2)

∫ ∞

0

aλζ

1 + aλ
e−λ dλ (2.42)

= ζ · Ĉζ−1(a) +
1

log(2)

∫ ∞

0

aλζ

1 + aλ
e−λ dλ (2.43)

The remaining integral can be expressed in closed form, where [44] (§3.353.5)

∫ ∞

0

aλζ

1 + aλ
e−λ dλ = (−1)ζ−1 (1/a)ζ e1/a Ei (−1/a) +

ζ∑
k=1

(k − 1)! (−1/a)ζ−k (2.44)

Ĉζ(a) can thus be obtained through ζ iterations in (2.43). Ĉζ(a) can also be expressed in

an explicit way by consecutively performing the ζ iterations, which finally yields

Ĉζ(a) =
1

log(2)

ζ∑
µ=0

ζ!
(ζ − µ)!

[
(−1)ζ−µ−1(1/a)ζ−µe1/aEi(−1/a)

+
ζ−µ∑
k=1

(k − 1)!(−1/a)ζ−µ−k

] (2.45)

Hence, (2.38) constitutes a closed solution for the MIMO capacity C with Ĉζ(a) given either

in iterative form (2.43) or in explicit form (2.45).

The normalised capacities in [bits/s/Hz] versus the SNR in [dB] are shown in Figure 2.2

for various MIMO configurations. The capacities obtained through Monte-Carlo simulations

are compared with the capacities obtained through (2.38) and (2.43) or (2.45). Clearly, the

three capacities coincide for all of the presented values of t and r.

Eq. (2.38) can be simplified considerably if t = 1 or r = 1, since m will be equal to one.

In these cases, the capacities for the respective cases can be expressed as

C1×r = Ĉr−1

(
S

N

)/
Γ(r) (2.46)

Ct×1 = Ĉt−1

(
1
t

S

N

)/
Γ(t) (2.47)
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where the identity Γ(n) = (n − 1)! for n ∈ N has been used. These capacities are depicted

in Figure 2.3 versus the number of antenna elements for an SNR of 10dB. Additionally, the

case where the number of transmit elements coincides with the number of receive elements

is depicted, which was directly obtained from (2.38). The following observations can be

made:

1. Transmit Diversity: For a fixed number of receive elements r, capacity saturates

very fast if the number of transmitters t exceeds the number of receivers. This is

corroborated by Figure 2.3, graphs a) & d), where capacity levels off for t > 1 &

t > 3, respectively. This is because the diversity offered by the channel is quickly

exhausted with an increasing number of sub-channels created.

2. Receive Diversity: For a fixed number of transmit elements t, capacity increases

logarithmically with the number of receivers r, as depicted in Figure 2.3, graph b).

Such behaviour is attributed to the additional independent noise sample with each

additional receiver element. Recall that the capacity is logarithmically related to the

SNR.

3. Maximum MIMO Capacity: Capacity increases linearly in the number of elements

at either end for n = t = r, as shown in Figure 2.3, graph c). This indicates that

the offered spatial resources can be utilised in an optimum manner, i.e. capacity

does not level off as for transmit diversity and capacity gains are achieved not only

due to independent noise samples as for receive diversity. Instead, the uncorrelated

spatial signatures of H ∈ C
n×n are used to create n orthogonal sub-channels, to which

traditional Shannon coding is applied.

In summary, deploying transmit diversity is a waste of resources if the number of transmit

elements does not match the number of receive elements. The deployment of receive diver-

sity yields notable gains due to the additional independent noise samples. A linear increase

in capacity is achieved if the number of transmitters equates to the number of receivers.

This is an important observation as it dictates the formation requirements of VAA systems.

Note, however, if the increase in complexity due to the deployed MIMO configuration

is not negligible, then equating the number of transmit and receive elements may not yield

the optimum solution. Transceiver complexity is traditionally caused by the RF front

ends and/or the baseband processing unit. With a given cost function, which weighs the

achieved capacity gain against the required transceiver complexity, an ultimate answer on an

optimum MIMO configuration can be given. A proper analysis of such complexity metrics,

however, is beyond the scope of this thesis.
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2.3.4 Non-Ergodic Fading Channels

Since for non-ergodic fading channels the channel realisation H is chosen randomly and

kept constant over the codeword transmission, there is a non-zero probability that a given

transmission rate Φ cannot be supported by the channel [2]. As previously mentioned,

this probability is called the outage probability and it is denoted here as Pout(Φ). The

communication reliability is related to the outage probability, and is defined as 1−Pout(Φ).

It is the aim to minimise the outage probability for a given channel, average codeword

power, noise power, and required communication rate. That can be achieved by choosing

suitable codewords x with a given covariance matrix S = E{xxH} [2]:

Pout(Φ) = inf
tr(S)≤S

{
Pr
(

log2 det
(
Ir +

HSHH

N

)
< Φ

)}
(2.48)

where inf{·} and Pr(·) denote the infimum and probability, respectively. The choice of

codewords x which minimise the outage probability with given constraint tr(S) ≤ S is

not trivial and has not been solved in a satisfactory form. Telatar, however, provided a

conjecture on the optimum form of S [2]. As outlined there, let’s assume that τ transmit

elements and r receive elements are available. The conjecture then states that the covariance

S which minimises the outage probability of (2.48) has to be of the form

S =
S

t

(
It 0τ−t

0τ−t 0τ−t

)
(2.49)

where t ∈ (1, τ) is chosen such that (2.48) is minimised for a given rate Φ and SNR. That

means that out of τ transmitters only t are utilised. This allows (2.48) to be rewritten as

Pout(Φ) = Pr

(
log2 det

(
It +

HHH

t

S

N

)
< Φ

)
(2.50)

which, with reference to [2], is equivalently expressed as

Pout(Φ) = Pr

(
m∑

i=1

log2

(
1 +

λi

t

S

N

)
< Φ

)
(2.51)

This requires the calculation of an m-fold convolution of the pdf of log2

(
1 + λi

t
S
N

)
gen-

erated by the randomness of λi with pdfλi(λi) given by (2.32). For single-input-multiple-

output (SIMO) and multiple-input-single-output (MISO) cases with m = 1 the solutions

are straightforward [2], and are summarised for completeness below. Denoting the single

eigenvalue as λ and defining Ψ � log2

(
1 + λ

t
S
N

)
, eq. (2.51) can be simplified to

Pr
(

Ψ < Φ
)

=
∫ Φ

0
pdfΨ(Ψ) dΨ (2.52)

=
∫ λ(Φ)

0
pdfλ(λ) dλ (2.53)

where λ(Φ) can be derived as

λ(Φ) =
(
2Φ − 1

) t

S/N
(2.54)
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The SIMO Channel

In [2, Example 6] it has been shown that for the SIMO case S = S is optimal, since

E
{
xxH

}
= S for t = 1. Performing the integration in (2.53) with integrand (2.32) and

limit (2.54), yields for the outage probability for the SIMO case

Pout,1×r(Φ) = γ
(
r,
(
2Φ − 1

)/(
S/N

))/
Γ(r) (2.55)

where γ(·) is the lower incomplete Gamma function defined as

γ(a, x) �
∫ x

0
ua−1e−u du (2.56)

Figures 2.4 and 2.5 depict the derived dependencies.

In particular, Figure 2.4 displays the outage probability Pout,1×r(Φ) in [%] versus the

SNR in [dB] for a desired rate of Φ = 2 bits/s/Hz. The cases where r = (1, 2, 4, 8) are

compared. Clearly, increasing the number of receive antennas drastically decreases the

probability that only rates smaller than 2 bits/s/Hz can be supported for a given SNR. For

instance, with an SNR of 6dB, a single receive antenna supports only rates smaller than 2

bits/s/Hz in 50% of all cases, whereas eight receive antennas support in virtually 0% of all

cases only rates smaller than 2 bits/s/Hz; or, alternatively, eight receivers support at all

times rates at least as high as 2 bits/s/Hz. A reliable communication system is traditionally

designed to yield an outage probability of less than 10%, which means that for an SNR of

6dB four receive antennas suffice.

Figure 2.5 displays the outage probability Pout,1×r(Φ) in [%] versus the the desired rate

Φ in [bits/s/Hz] at an SNR of 10dB. Again, the cases where r = [1, 2, 4, 8] are compared.

Clearly, increasing the number of receive antennas allows one to communicate at increasing

data rates with a constant reliability for a fixed SNR. For instance, a system with r =

(1, 2, 4, 8) receive antennas can respectively support Φ = (1.0, 2.6, 4.2, 5.5) bits/s/Hz at an

outage probability of Pout,1×r(Φ) = 10%; or, alternatively, in 90% of all cases these data

rates can be supported.

For the SIMO channel, it can be observed that increasing the number of receive antennas

always yields performance benefits. For a fixed rate, increasing the number of receive

antennas always decreases the outage, independent of the SNR. For a fixed SNR, increasing

the number of receive antennas always decreases the outage, independent of the desired

rate. This is in contrast to the MISO channel, as elaborated below.
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Figure 2.4: Outage probability Pout,1×r(Φ) versus SNR for a rate of Φ = 2 bits/s/Hz; t = 1.
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Figure 2.5: Outage probability Pout,1×r(Φ) versus the rate Φ at an SNR of 10dB; t = 1.

45



The MISO Channel

If out of τ transmit antennas, t antennas are chosen for transmission, then the τ × 1 MISO

channel effectively reduces to a t × 1 MISO channel. With the conjecture (2.51) and the

pdfλ(λ) of (2.32), the outage probability of the MISO case can be obtained as

Pout,t×1(Φ) = γ
(
t,
(
2Φ − 1

)/(
S/N/t

))/
Γ(t) (2.57)

which is depicted for various MISO configurations in Figures 2.6 and 2.7.

Figure 2.6 displays the outage probability Pout,t×1(Φ) in [%] versus the SNR in [dB]

for a desired rate of Φ = 2 bits/s/Hz. The cases where t = (1, 2, 4, 8) are compared.

The curves intersect, in contrast to the SIMO case, indicating that a different number of

transmit antennas should be used dependent upon the SNR so as to minimise the outage

probability. Since the SNR region of intersection is fairly narrow (which holds for any Φ),

the communication system should switch between all available transmit antennas and only

one transmit antenna dependent upon the SNR point of operation. If a high SNR is available

for communication, then all elements should be utilised to minimise the outage probability,

whereas for low SNR only one element should be used. In the current example, where

Φ = 2 bits/s/Hz, an available SNR of 10dB yields an outage probability of (25, 12, 3, 0)%

for t = (1, 2, 4, 8). If, however, the available SNR is only 3dB, then the behaviour of the

outage probability is reversed and is now (78, 80, 85, 91)% for t = (1, 2, 4, 8). That means

that in 22% of all cases a single transmitter can support a rate of 2 bits/s/Hz, whereas eight

transmitters in only 9% of cases.

Figure 2.7 displays the outage probability Pout,t×1(Φ) in [%] versus the desired rate Φ

in [bits/s/Hz] at an SNR of 10dB. The cases where t = [1, 2, 4, 8] are compared. Again,

the curves intersect at a certain rate, here approximately at Φ = 3.5 bits/s/Hz. The same

observations as above can be made. If one built a system operating at 2 bits/s/Hz, then an

outage probability of (25, 12, 4, 0)% for t = (1, 2, 4, 8) would be achieved; a higher number

of transmit antennas achieves a lower outage. However, if one built a system operating

at 4 bits/s/Hz, then an outage probability of (77, 80, 85, 91)% for t = (1, 2, 4, 8) would be

achieved; a higher number of transmit antennas yields a higher outage.

With reference to Figures 2.6 and 2.7, it can be stated that for a required low outage

probability, i.e. high communication reliability, the usage of all transmit elements is always

beneficial. If the rate is fixed, then the SNR should be increased, whereas if the SNR is

fixed, then the rate should be adjusted. Only if the communication rate and SNR are fixed,

then the reliability can be influenced by adjusting the number of utilised transmit antennas.

It can further be observed that for the same system assumptions, the outage probability

is much lower for a SIMO system than for a MISO system with the same number of antenna

elements. That can clearly be attributed to the additional noise samples of a SIMO system.
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Figure 2.6: Outage probability Pout,t×1(Φ) versus SNR for a rate of Φ = 2 bits/s/Hz; r = 1.

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

Desired Communication Rate Φ [bits/s/Hz]

(O
ut

ag
e)

 P
ro

ba
bi

lit
y 

th
at

 o
nl

y 
R

at
es

 <
  Φ

 c
an

 b
e 

su
pp

or
te

d 
[%

]

t = 1
t = 2
t = 4
t = 8

Figure 2.7: Outage probability Pout,t×1(Φ) versus the rate Φ at an SNR of 10dB; r = 1.

47



2.4 Capacity of Orthogonalised MIMO Channels

Closed form representations of the capacity of MIMO channels of arbitrary statistics, corre-

lation and attenuation between the transceiver elements have proven to be difficult to derive,

mainly because of the difficulty to find the pdf of the eigenvalues involved in representing

the power of each uncorrelated sub-channel.

Fortunately, space-time block codes inherently orthogonalise the MIMO channel. They

are known to reduce the MIMO channel into parallel SISO channels, which drastically

simplifies analysis. The channel is henceforth referred to as the Orthogonal-MIMO (O-

MIMO) channel. This section is dedicated to the capacity analysis of O-MIMO channels,

where the cases of different statistics and attenuations are dealt with. This will be vital in

later chapters for the allocation of optimum resources to MTs belonging to a VAA.

Note that, strictly speaking, Shannon capacity is understood to be the maximum mutual

information a given channel can offer between source and sink, independent of the signal

processing at either end. In subsequent analysis, however, the maximum mutual information

a given channel with applied space-time block coding can accomplish is simply referred to

as the capacity of the O-MIMO channel.

2.4.1 System Model

According to the communication chain depicted in Figure 2.8, it is assumed that an infor-

mation source (not depicted) communicates with an information sink (not depicted). The

information source sends data to a channel encoder, after which the codeword is space-

time block encoded. These space-time encoded codewords are then passed to transmitters

which might be spatially distributed, and sent to the receiver elements which might also be

spatially distributed. The received signal is then passed to the space-time block decoder

to produce the estimated codeword, which is finally passed to the channel decoder. From

Figure 2.8 it is clear that the space-time block encoder does not provide any coding gain,

which is accomplished by the outer channel code. The space-time block encoder, however,

provides a diversity gain which allows the outer channel code to yield better performance.

Channel

Encoder

Distributed
Space-Time

Block
Encoder

Distributed
Space-Time

Block
Decoder

Channel

Decoder

t

Distributed

Transmit

Antennas

r

Distributed

Receive

Antennas

h
11

h
r,t

H

Unequal

MIMO

Channel

Figure 2.8: Distributed Space-Time Block Code transceiver model.
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The theory behind linear orthogonal STBCs is well established, see e.g. the excellent

books [4, 39, 40], which is the reason why the theory is only dealt with brevity here.

The space-time block encoder receives s encoded symbols x1, x2, . . . , xs from the chan-

nel encoder, which are part of a longer codeword x. These are encoded with an orthogonal

space-time coding matrix G of size d × t, where d is the number of symbol durations re-

quired to transmit the space-time code word, and t is the number of (distributed) transmit

elements. At each time instant 1 ≤ k ≤ d, the space-time encoded symbol ck,i ∈ G is

transmitted from the ith distributed transmit element, where i = 1, . . . , t. Such encoding

may come at a decrease in transmission rate R, defined as R � s/d.

In [16] it was proven that the only full-rate STBC with complex entries exists for t = 2,

i.e. the Alamouti scheme. Furthermore, half-rate STBCs for t = 2, . . . , 8 and 3/4-rate

STBCs for t = 3, 4 were given in [16]. To yield orthogonality, the transmission matrix G
has to satisfy

GGH ∝
(

s∑
i=1

|xi|2
)

Is (2.58)

Any violation of condition (2.58) will lead to intersymbol interference and thus performance

degradation. As an example orthogonal STBC, the complex transmission matrix for the

half-rate STBC is given here [16]

G =




x1 −x2 −x3 −x4 x∗
1 −x∗

2 −x∗
3 −x∗

4

x2 x1 x4 −x3 x∗
2 x∗

1 x∗
4 −x∗

3

x3 −x4 x1 x2 x∗
3 −x∗

4 x∗
1 x∗

2

x4 x3 −x2 x1 x∗
4 x∗

3 −x∗
2 x∗

1


 (2.59)

For this particular case, s = 4 symbols are transmitted during d = 8 time instances over

t = 4 transmit antennas, hence yielding a code rate of R = 1/2.

The use of orthogonal space-time block codes is known to reduce the MIMO channel into

a single SISO channel with modified channel statistics [39, 45]. For fixed channel realisations

H, the normalised capacity in [bits/s/Hz] over such an O-MIMO channel can be expressed

as [39]

C = R log2

(
1 +

1
R

‖H‖2

t

S

N

)
(2.60)

where S is the average transmitted symbol power and N the noise power at the receiver.

‖H‖ denotes the Frobenius norm1 of H, the square of which is given as

‖H‖2 =
t∑

i=1

r∑
j=1

|hij |2 = tr
(
HHH

)
(2.61)

1Note that the typically used subscript ‘F’ denoting the Frobenius norm has been omitted here.
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From (2.61), it is clear that ‖Ht×r‖ = ‖h1×t·r‖, where h � vect(H). Therefore, the following

is adopted

h � vect(H) (2.62a)

u � t · r (2.62b)

λi � hih
∗
i (2.62c)

λ � ‖h‖2 =
u∑

i=1

hih
∗
i =

u∑
i=1

λi (2.62d)

γi � E {hih
∗
i } (2.62e)

to simplify notation.

2.4.2 Ergodic O-MIMO Channels

With reference to definitions (2.62), the capacity over an ergodic flat Rayleigh fading O-

MIMO channel can be expressed as

C = Eλ

{
R log2

(
1 +

1
R

λ

t

S

N

)}
(2.63)

=
∫ ∞

0
R log2

(
1 +

1
R

λ

t

S

N

)
pdfλ(λ)dλ (2.64)

where the pdfλ(λ) of λ =
∑

λi solely depends on the statistics of each sub-channel. The aim

of this section is to derive a closed solution to (2.64) for various communication conditions.

From (2.62d) it is clear that the pdfλ(λ) can be obtained via a u-fold convolution in the

respective pdfs of λi, i.e.

pdfλ(λ) = pdfλ1(λ1) ∗ pdfλ2(λ2) ∗ . . . ∗ pdfλu(λu) (2.65)

where ∗ denotes the operation of convolution. Although analytically feasible, it has been

proven easier to use the moment generating function (MGF) to solve (2.65). The MGF

φλ(s) of λ is defined as

φλ(s) �
∫ ∞

0
pdfλ(λ)esλ dλ (2.66)

the application of which is known to transform (2.65) into

φλ(s) =
u∏

i=1

φλi(s) (2.67)

The pdf of λ is now obtained by performing the inverse transformation, obtained as

pdfλ(λ) =
1

2πj

∫ σ+j∞

σ−j∞
φλ(s)e−sλ ds (2.68)

where j denotes the complex number j =
√−1, and σ is chosen in the region of convergence

of the integral in the complex s plane. Since the MGF is closely related to the Laplace

transform, the operations (2.66) and (2.68) are rarely performed since large tables of either

transform are available, see e.g. [44].
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To solve (2.64), the only prerequisite is therefore a knowledge of the statistics pdfλi(λi)

of the instantaneous power λi of the ith sub-channel. In this thesis, the cases of Rayleigh

and Nakagami fading channels are dealt with. Note that the Ricean fading channel is

excluded due to the mathematical difficulties associated with its pdf. However, the Ricean

distribution with parameter K is very well approximated with a Nakagami distribution with

fading parameter f , where f = (1 + K)2/(1 + 2K) [46] 2.

Clearly, the MGF of the instantaneous power λi is of interest to subsequent analysis.

These can be calculated from the respective statistics as [46]

φλi(s) =

{
(1 − γis)

−1 Rayleigh
(1 − γis)

−f Nakagami
(2.69)

which allow one to find closed form expressions for the capacity of channels with the above-

given statistics and possibly different channel gains γi, as shown below.

Rayleigh Fading - Equal Sub-Channel Gains

If all sub-channel gains are equal then γ1 = . . . = γu, henceforth simply denoted as γ.

From (2.69) and (2.67), the MGF of the instantaneously experienced power λ can then be

expressed as

φλ(s) =
1

(1 − γs)u (2.70)

the inverse of which yields the desired pdf [47]

pdfλ(λ) =
1

Γ(u)
λu−1

γu
e−λ/γ (2.71)

which is obviously a central χ2-distribution with 2u degrees of freedom and mean uγ. With

reference to (2.64) and some changes in variables, the capacity of the orthogonalised MIMO

channel can be expressed in closed form as

C =
R

Γ(u)

∫ ∞

0
log2

(
1 + λ

1
R

γ

t

S

N

)
λu−1 e−λ dλ (2.72)

=
R

Γ(u)
· Ĉu−1

(
1
R

γ

t

S

N

)
(2.73)

where Ĉζ(a) is the Capacity Integral defined in (2.39) and solved in (2.45). The offered

capacity is visualised for various MIMO configurations in Figures 2.9−2.12 with γ = 1.

Explicitly, Figure 2.9 depicts the normalised capacity in [bits/s/Hz] versus the SNR in

[dB] for various MIMO system configurations with one receive antenna. Depicted are the

following cases: (1) t = 1 (SISO), (2) t = 2 (Alamouti), (3) t = 3 (3/4-Rate), (4) t = 4

(3/4-Rate), (5) t = 3 (Half-Rate), (6) t = 4 (Half-Rate), (7) t = 3 (generic MISO), (8) t = 4

(generic MISO), and (9) the SISO Gaussian channel with t = 1.
2Note that traditionally m is used to denote the Nakagami factor; however, it has been used already.

51



It can be observed that the full-rate Alamouti scheme with t = 2 outperforms the SISO

scheme with t = 1 by approximately 1dB or 0.3 bits/s/Hz. Furthermore, the 3/4-rate and

1/2-rate schemes perform inferior to the full-rate schemes with t = 1 and t = 2, because

of the loss in transmission rate. That means that if a transceiver deploys a channel code

operating at the capacity limit, then the use of more than two transmit antennas does

not bring any gain for ergodic fading channels. Conspicuously, the differences between the

capacities of a 3/4-rate STBC with t = 3 and t = 4 is very small, which holds as well for the

1/2-rate STBC. Finally, the generic MISO channel without the utilisation of STBCs yields a

much higher capacity than with STBCs. Since the STBC reduces the MIMO channel to an

equivalent SISO channel, none of the capacities exceeds the capacity of a simple Gaussian

SISO link. This is well corroborated by Figure 2.9.

Figure 2.10 is equivalent to Figure 2.9 with the only difference that two receive antennas

have been deployed, i.e. r = 2. The following observations can be made. First, none of the

O-MIMO capacity curves exceed the capacity of the equivalent Gaussian channel. Second,

the capacity gap between the cases where t = 1 (SIMO) and t = 2 (Alamouti MIMO)

is reduced compared to Figure 2.9, where only one receive antenna was deployed. This

indicates that a major amount of diversity is picked-up by the two receive antennas, which

is further corroborated by the fact that the capacities of a 3/4-rate, and also 1/2-rate, STBC

with t = 3 and t = 4 virtually coincide. Therefore, with an increasing number of antennas

involved forming the O-MIMO channel, the capacity gap between the O-MIMO channel and

the equivalent Gaussian channel will vanish. However, the capacity of a Gaussian channel

can not be exceeded; whereas the capacity of a generic MIMO channel drastically increases.

The simplicity of STBCs hence limits the ultimate system capacity.

Figure 2.11 depicts the normalised capacity in [bits/s/Hz] versus the number of transmit

antennas for the cases of different receive antennas at an SNR of 10dB. For each transmit

antenna 1 ≤ t ≤ 8, the STBC with highest possible capacity was chosen, i.e. for t = 2 the

Alamouti scheme, for t = 3, 4 the 3/4-rate STBCs, and for t = 5, . . . , 8 the 1/2-rate STBCs.

These capacities are compared against the capacities of the equivalent Gaussian channels

(dash-dotted lines). Clearly, only the use of two transmit antennas brings any benefit over

the SISO case. It can further be observed that the capacity gap between the Gaussian

channel and the O-MIMO channel with t = 2 and r = 4 almost vanishes.

Finally, Figure 2.12 depicts the same schemes as Figure 2.11 with the only difference

that now the capacity is compared to the traditional MIMO case. It can again be observed

that the capacity of MIMO system of high complexity is higher than for an O-MIMO system

with reduced complexity.
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Figure 2.9: Capacity versus SNR for various O-MIMO system configurations; r = 1.
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Figure 2.10: Capacity versus SNR for various O-MIMO system configurations; r = 2.
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Figure 2.11: Capacity of O-MIMO and Gaussian channels versus the number of transmit
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Rayleigh Fading - Unequal Sub-Channel Gains

From (2.69) and (2.67), the MGF of the instantaneously experienced power λ can then be

expressed as

φλ(s) =
u∏

i=1

φλi(s) =
1

1 − sγ1
· 1
1 − sγ2

· · · 1
1 − sγu

(2.74)

Resolving (2.74) into its partial fractions, one can write

φλ(s) =
u∑

i=1

Kiφλi(s) (2.75)

where the constants Ki are obtained by solving the set of linear equations, the solution to

which is

Ki =
u∏

i′=1,i′ �=i

γi

γi − γi′
(2.76)

as demonstrated in the Appendix 2.7 (Derivation II) of this chapter. The linearity of the

inverse of the MGF allows the pdf of the instantaneous power λ to be written as

pdfλ(λ) =
u∑

i=1

Ki · 1
γi

e−λ/γi (2.77)

Evaluating (2.64), the capacity of the O-MIMO channel with unequal channel coefficients

can finally be expressed in closed form as

C = R

u∑
i=1

Ki · Ĉ0

(
1
R

γi

t

S

N

)
(2.78)

Subsequent descriptions relate to Figures 2.14−2.16, which analyse the capacity behaviour

when some of the MIMO sub-channels are unequally attenuated, e.g. shadowed.

Figure 2.14 depicts the normalised capacity in [bits/s/Hz] versus the SNR in [dB] for the

distributed Alamouti scheme with only one receive antenna. In the case of equal channel

coefficients, the expectation of the square of the Frobenius norm of the normalised channel

coefficients would yield t; here t = 2. For this reason, the power of the unequal channel

coefficients is chosen such that γ1 + γ2 ≡ 2. The particular case where γ1 : γ2 = 2 : 1 was

chosen, i.e. γ1 = 4/3 and γ2 = 2/3. The cases are depicted where only the channel with

power γ1 is utilised, and where only the channel with power γ2 is utilised, and where the

distributed Alamouti STBC is utilised. The latter is corroborated by numerical simulations.

Clearly, the loss in capacity of the distributed communication scenario is negligible com-

pared to the case where communication happens through the stronger single link. However,

a considerable capacity loss can be observed when the weaker single link is utilised. There-

fore, when only a single link is deployed then shadowing may severely degrade the link

capacity; whereas when a distributed encoding is chosen then the capacity is fairly robust

to attenuations in either link. A quantification of the performance gains when independent

shadowing dominates the communication system is postponed to Chapter 4.
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Figure 2.15 depicts the normalised capacity in [bits/s/Hz] versus the SNR in [dB] for

the distributed 3/4-rate STBC scheme. Here, the ratio between the channel coefficients was

chosen such that γ1 : γ2 : γ3 = 4 : 2 : 1, i.e. γ1 = 12/7, γ2 = 6/7 and γ3 = 3/7. Again,

severe capacity losses can be observed when communication happens only over the weaker

single links; however, the distributed communication scenario offers a robust capacity. Note,

however, that the absolute ergodic capacity of the 3/4-rate STBC is inferior to the ergodic

capacity of the full-rate Alamouti scheme.

Figure 2.16 depicts the normalised capacity in [bits/s/Hz] versus the normalised power

γ1 in the first link for the distributed Alamouti scheme with an SNR of 10dB. Furthermore,

depicted are the cases where communication happens only over either of the single links,

where γ2 = 2 − γ1. The distributed Alamouti scheme outperforms even the strongest link

for 0.8 < γ1 < 1.2. Notably, the capacity of the distributed scheme is much less dependent

on the power of the individual links than in the case of the single link schemes. Similar

observations can be made for higher order STBCs. This corroborates the advantage of

deploying a distributed communication network where channel conditions are not known a

priori and feedback is limited.

Rayleigh Fading - Generic Sub-Channel Gains

Generally, the sub-channel gains γi∈(1,u) can be different where some gains are repeated.

There shall be g ≤ u distinct sub-channel gains, which are henceforth referred to as γ̂i∈(1,g)

with each of them being repeated νi∈(1,g) times. In this case, the MGF of λ is equal to

φλ(s) =
g∏

i=1

φλ̂i
(s) =

1
(1 − sγ̂1)

ν1
· 1
(1 − sγ̂2)

ν2
· · · 1

(1 − sγ̂g)
νg

(2.79)

where
∑g

i=1 νi = u. Resolving (2.79) into its partial fractions with repeated roots yields

φλ(s) =
g∑

i=1

νg∑
j=1

Ki,jφ
j

λ̂i
(s) (2.80)

The coefficients Ki,j are derived in the Appendix 2.7 (Derivation III) to this chapter as

Ki,j =
1

(νi − j)! (−γ̂i)
νi−j

∂νi−j

∂sνi−j




g∏
i′=1,
i′ �=i

1
(1 − sγ̂i′)

νi′




s=1/γ̂i

(2.81)

This allows one to express the pdfλ(λ) in closed form as

pdfλ(λ) =
g∑

i=1

νg∑
j=1

Ki,j · λj−1

Γ(j) · (γ̂i)
j
e−λ/γ̂i (2.82)
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Figure 2.13: Distributed STBC communication scenario with one transmitter and two co-
operating receivers, all of which possess two antenna elements.

Finally, evaluating (2.64), the capacity of the O-MIMO channel with unequal but possibly

repeated channel coefficients can be expressed as

C = R

g∑
i=1

νg∑
j=1

Ki,j

Γ(j)
· Ĉj−1

(
1
R

γ̂i

t

S

N

)
(2.83)

The number of different scenarios obeying (2.83) is certainly infinite. To demonstrate its

applicability, it is assumed that a terminal with two (uncorrelated) transmit elements com-

municates with two distributed but cooperating target terminals, each possessing two (un-

correlated) receive antennas. This scenario is depicted in Figure 2.13; it could correspond

to the case where an access point in an office communicates with a remote VAA group

consisting of two terminals.

The spatial proximity between the elements of the same terminal results in the same

channel attenuations from the first terminal to the second terminal, henceforth denoted as

γ̂1 with repetition ν1 = 4, and from the first terminal to the third terminal, henceforth

denoted as γ̂2 with repetition ν2 = 4. Eq. (2.79) can hence be written as

φλ(s) =
1

(1 − sγ̂1)
4 · 1

(1 − sγ̂2)
4 (2.84)

The coefficients Ki={1,2},j∈(1,4) can be obtained by simply performing the required differen-

tiations to arrive at

K{1,2},j∈(1,4) =
1
3!

(7 − j)!
(4 − j)!

(−γ̂{2,1}
/
γ̂{1,2}

)4−j(
1 − γ̂{2,1}

/
γ̂{1,2}

)8−j
(2.85)

which allows one to calculate (2.83) in closed form for the given scenario.

57



0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

SNR [dB]

C
ap

ac
ity

 [b
its

/s
/H

z]

1 Tx − SISO (γ
1
=4/3)

1 Tx − SISO (γ
2
=2/3)

2 Tx − Alamouti theoretically (γ
1
=4/3, γ

2
=2/3)

2 Tx − Alamouti numerically (γ
1
=4/3, γ

2
=2/3)

Figure 2.14: Capacity versus SNR for the distributed Alamouti scheme with one receive
antenna only; γ1 + γ2 ≡ 2 and γ1 : γ2 = 2 : 1.
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Figure 2.15: Capacity versus SNR for the distributed 3/4-rate STBC scheme with one
receive antenna only; γ1 + γ2 + γ3 ≡ 3 and γ1 : γ2 : γ3 = 4 : 2 : 1.
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Figure 2.16: Capacity versus the normalised power γ1 in the first link for the distributed
Alamouti scheme; SNR=10dB and γ2 = 2 − γ1.
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Figure 2.17 depicts the normalised Shannon capacity in [bits/s/Hz] versus the SNR in

[dB] for the above-given scenario. In the case of equal channel coefficients, the expectation

of the square of the Frobenius norm of the normalised channel coefficients would yield u;

here u = 2 · 4. For this reason, the power of the two unequal channel coefficients is chosen

such that
∑8

i γi =
∑2

i γ̂i ≡ 8. The particular case where γ̂1 : γ̂2 = 2 : 1 was chosen, i.e.

γ̂1 = 16/3 and γ̂2 = 8/3. The capacities of each individual link are shown, as well as the

capacity when both target terminals cooperate and hence realise a 2 × 4 O-MIMO system.

The latter case yields an expected increase in capacity due to additional receive diversity.

Note that the additional resources in terms of relaying power and bandwidth required to

maintain the cooperation are not incorporated into current analysis. It is a fair assumption,

however, that the cooperating terminals are spatially sufficiently close as to neglect the

relaying power compared to the transmission power at the access point. Furthermore, it

can be assumed that with many such VAA groups re-using the relaying bandwidth, the

additional bandwidth can also be neglected.

Nakagami Fading - Equal Sub-Channel Gains

The MGF of the instantaneously experienced power λi of the ith Nakagami distributed

sub-channel with fading factor fi can be expressed as [46]

φλi(s) =
1(

1 − sγi

fi

)fi
(2.86)

For equal channel gains γ1 = . . . = γu, henceforth simply denoted as γ, and equal fading

parameters f1 = . . . = fu, henceforth denoted as f , yields for (2.67) with (2.86)

φλ(s) =
1(

1 − sγ
f

)fu
(2.87)

the inverse of which leads to the desired pdf of the instantaneous power [47]

pdfλ(λ) =
ffuλfu−1

γfuΓ(fu)
e−fλ/γ (2.88)

The capacity (2.64) is solvable for f ∈ N in closed form as

C =
R

Γ(fu)
· Ĉfu−1

(
1
R

γ

ft

S

N

)
(2.89)

Note that if f ∈ R then f should be replaced by 
f� to obtain a lower bound, i.e. the

capacity which is at least achieved by the ergodic Nakagami O-MIMO channel.

Figure 2.18 depicts the normalised capacity in [bits/s/Hz] versus the SNR in [dB] for

various O-MIMO system configurations over Nakagami fading channels with γ = 1 and two

receive antennas, i.e. r = 2. Depicted are the following cases: (1) t = 1 (O-SIMO) with

f = 1 (Rayleigh), (2) t = 1 (O-SIMO) with f = 10 (strong LOS), (3) t = 2 (Alamouti)
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with f = 1 (Rayleigh), (4) t = 2 (Alamouti) with f = 10 (strong LOS), (5) equivalent

Gaussian channel for comparison. To observe the small capacity differences between these

cases, only a small region for large SNR is depicted. Clearly, for f = 10, i.e. a strong LOS

communication scenario, capacity reaches Gaussian performance. This is independent from

the number of transmit antennas as the fading channel exhibits very little fluctuations for

high f . Therefore, the deployment of STBCs in environments with a high likelihood of LOS

communication is not worthwhile from a capacity point of view.

To gain a better insight on the capacity tendencies in dependency of the Nakagami f

fading factor, Figure 2.19 depicts the normalised capacity in [bits/s/Hz] versus the Nakagami

f fading factor for various O-MISO system configurations at an SNR of 10dB and one receive

antenna only. The Nakagami f fading factor is varied from f = 1 (Rayleigh) to f = 20 (very

strong LOS). Compared are the following scenarios: (1) t = 1 (SISO), (2) t = 2 (Alamouti),

(3) t = 3 (3/4-Rate), (4) t = 4 (3/4-Rate), (5) t = 3 (Half-Rate), (6) t = 4 (Half-Rate), (7)

Gaussian channel for comparison.

Interestingly, capacity is rather independent of f for the 3/4 and 1/2 rate STBCs;

however, generally inferior to the capacity of the full-rate STBCs. Their low dependency

is explained with the high diversity already obtained from the 3 and 4 transmit antennas.

Their low performance comes from the rate loss due to R < 1. Furthermore, the Alamouti

STBC converges to the Gaussian capacity faster than the one transmit antenna case does.

Finally, increasing the number of receive antennas r lessens the dependency on the Nakagami

f fading factor even further. It can hence be stated that the f factor can be traded against

the number of transmit elements when deploying STBCs, as corroborated by Figure 2.20

which is an enlargement of Figure 2.19. For example, if one wishes to communicate at a

capacity of 3.3 bits/s/Hz, then with f = 4 a single transmitter is sufficient, whereas with

f = 2 one has to deploy Alamouti STBC with two transmit antennas.

Nakagami Fading - Unequal Sub-Channel Gains

Here, the same procedure as for the Rayleigh fading case can be repeated. The MGF φλ(s)

of the O-MIMO Nakagami fading channel can be expressed as

φλ(s) =
u∏

i=1

φλi(s) =
1(

1 − sγ1

f1

)f1
· 1(

1 − sγ2

f2

)f2
· · · 1(

1 − sγu

fu

)fu
(2.90)

where fi ∈ N is the Nakagami fading parameter of the ith link. Repeating the procedure of

the O-MIMO Rayleigh fading case, finally yields for the capacity

C = R
u∑

i=1

fi∑
j=1

Ki,j

Γ(j)
Ĉj−1

(
1
R

γi

jt

S

N

)
(2.91)

where the coefficients Ki,j are now found by performing partial fractions on (2.90).
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Figure 2.18: Capacity versus SNR for various O-MIMO system configurations with different
Nakagami fading parameters; r = 2.
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Figure 2.20: Capacity versus the Nakagami f fading factor for the full-rate O-MISO system
configurations only; SNR=10dB, r = 1.
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Figure 2.21: Capacity versus the normalised power γ1 in the first link for the distributed
Alamouti scheme over a Nakagami fading channel; SNR=10dB, f = 10 and γ2 = 2 − γ1.
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Figure 2.21 depicts the normalised capacity in [bits/s/Hz] versus the normalised power

in the first link γ1 over a Nakagami fading channel with f = 10 for the distributed Alamouti

scheme at an SNR of 10dB. Again, depicted are the cases where communication happens

only over either of the single links, where γ2 = 2 − γ1. Clearly, the region where the

distributed Alamouti scheme outperforms the stronger link has reduced to a single point

for γ1 = 1. Furthermore, the capacity of the distributed scenario is up to 15% lower than of

the stronger single link case. However, the capacity of the distributed scenario is virtually

independent of the fading coefficients. Therefore, if the terminals are potentially shadowed,

then the distributed communication scenario offers a significant performance stability.

Nakagami Fading - Generic Channel Gains

The case of generic channel coefficients is similarly obtained as for the Rayleigh channel

and is thus omitted here.

2.4.3 Non-Ergodic O-MIMO Channels

The calculation of the outage capacity for O-MIMO channels with different statistics in

each sub-channel is fairly simple. This is because, as demonstrated before, the STBCs are

known to reduce MIMO channels into rank one SISO channels, which allows the application

of (2.53) and (2.54) with some modifications related to the rate of the STBC. Various

communication scenarios are briefly dealt with below.

Rayleigh Fading - Equal Sub-Channel Gains

Computing (2.53) for the Rayleigh fading channel with the pdf given by (2.71), one obtains

Pout(Φ) =
1

Γ(u)
γ

(
u,

(
2Φ/R − 1

)/(
1
R

γ

t

S

N

))
(2.92)

which is visualised in Figures 2.22 & 2.23 for γ = 1.

Figure 2.22 displays the outage probability Pout(Φ) in [%] versus the the desired rate Φ

in [bits/s/Hz] for one receive antenna at an SNR of 10dB. The following cases are compared:

(1) t = 1 (SISO), (2) t = 2 (Alamouti), (3) t = 3 (3/4-Rate), (4) t = 4 (3/4-Rate), (5)

t = 3 (Half-Rate), and finally (6) t = 4 (Half-Rate). The curves intersect, indicating that a

different number of transmit antennas ought to be used in dependency of the desired rate Φ

at a given SNR such as to minimise the outage probability. In contrast to traditional MISO

channels, c.f. Section 2.3, the region of intersection is now fairly wide due to the different

rates of the deployed STBCs. However, the general observation of Telatar’s conjecture (2.49)

holds here as well, i.e. desired high rates with low reliability should be supported by one

transmit element, desired low rates with high reliability by four elements with the 3/4-rate

STBC. The absolute values of the rate and the outage probability depend on the SNR.
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For the chosen SNR of 10dB, a high rate of Φ = 4.5 bits/s/Hz is supported by the

single transmitter with 12% reliability, by the Alamouti scheme with 7%, whereas all other

schemes with 0%. A lower rate of Φ = 1.5 bits/s/Hz is supported by the single transmitter

with 16% outage probability, by the Alamouti scheme with 5%, and by the 3/4-rate STBC

with four transmit antennas with only 1% outage probability, i.e. a reliability of 99%.

Only the case for r = 1 was shown here; however, similar conclusions can be made for

any number of receive antennas, with steeper outage curves with r increasing.

To appreciate the power savings achieved by deploying a higher number of transmit

antennas, Figure 2.23 depicts the outage probability Pout(Φ) in [%] versus the SNR in

[dB] for a desired rate Φ = 2 bits/s/Hz. For an outage of 10%, the gains with respect to

the SISO case are: 1.5dB (1/2-Rate, 3 transmit antennas), 2.0dB (1/2-Rate, 4 transmit

antennas), 4.0dB (Alamouti, 2 transmit antennas), 4.0dB (3/4-Rate, 3 transmit antennas),

and approximately 5.0dB (3/4-Rate, 4 transmit antennas). It is worth noting that the gains

decrease for increasing Φ.

A 5dB gain translates to approximately (1 − 1/
√

10) · 100% = 70% power savings. In

contrast to the ergodic channels, it is thus worth deploying O-MIMO systems with more

than two distributed transmit element for non-ergodic channel realisations.

Rayleigh Fading - Unequal Sub-Channel Gains

Computing (2.53) for the Rayleigh fading channel with unequal channel gains, the pdf of

which is given by (2.77), one obtains

Pout(Φ) =
u∑

i=1

Ki · γ
(

1,

(
2Φ/R − 1

)/(
1
R

γi

t

S

N

))
(2.93)

where the coefficients Ki are given by (2.76). Note that γ(1, x) = 1 − e−x.

Figure 2.24 depicts the outage probability Pout(Φ) in [%] versus the normalised power

in the first link γ1 for the distributed Alamouti scheme with a desired communication rate

of 2 bits/s/Hz at an SNR of 15dB. Again, the cases where communication happens only

over either of the single links are depicted, where γ2 = 2 − γ1.

Similar to the ergodic case, the outage probability of the distributed scheme is much less

dependent on the power of the individual links than the single link schemes. Furthermore,

for the chosen system parameters, the distributed scheme can support a rate of 2 bits/s/Hz

with an outage probability of less than 10% for any γ1. The single links, however, cannot

guarantee this data rate at 10% outage probability as the normalised power in the respective

links drops below unity. It can thus be concluded that in the case of independent shadowing

between the communication elements, a distributed communication scenario will always

bring benefits in terms of power savings or outage probabilities when compared to a single

link communication scenario.
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Finally, Figure 2.25 depicts the outage probability Pout(Φ) in [%] versus the normalised

power in the first link γ1 for various distributed communication scenarios with a desired

communication rate of 2 bits/s/Hz at an SNR of 15dB. With a varying γ1, the remaining

channel power was equally distributed between the other sub-channels, i.e. for the Alamouti

scheme we have γ2 = 2−γ1, for the 3/4-rate STBC scheme with three transmit elements we

have γ2 = γ3 = (3 − γ1)/2, and for the 3/4-rate STBC scheme with four transmit elements

we have γ2 = γ3 = γ4 = (4 − γ1)/3. Note that the sub-channel power distribution has to

guarantee that
∑t

i=1 γi ≡ t to allow for a fair comparison between the schemes. The given

scenario could correspond to the case where one distributed transmit element is subject to

severe shadowing, whereas the remaining distributed elements are not.

From Figure 2.25 it is clear again that, at 10% outage probability, the SISO case can

only support the rate of 2 bits/s/Hz for a sufficiently high γ1, whereas all the distributed

cases support such rate for any γ1. Furthermore, the 3/4-rate STBC with four distributed

transmit elements exhibits the most robust link with a reliability of more than 99%.

Note finally that the case of generic channel gains with repeated γi∈(1,u) is similarly

obtained by utilising the appropriate pdf previously derived, and is thus omitted here.

Nakagami Fading - Equal Sub-Channel Gains

Computing (2.53) for the Nakagami fading channel with u equal sub-channel gains, the pdf

of which is given by (2.88), one obtains for the outage probability

Pout(Φ) =
1

Γ(uf)
γ

(
uf,

(
2Φ/R − 1

)/(
1
R

γ

ft

S

N

))
(2.94)

which is not further visualised. Numerical results, however, indicate that for a scenario

with γ = 1, Φ = 2 bits/s/Hz, t = 4 and r = 1, power savings of approximately 2.6 dB can

be achieved by increasing f from 1 to 10 at an outage probability of 10%. Compared to

the ergodic capacity, where capacity saturates very fast for increasing f , this is a notable

power gain.

Nakagami Fading - Unequal Sub-Channel Gains

Finally, the outage probability over differently distributed Nakagami fading channels can

be obtained as

Pout(Φ) =
u∑

i=1

fi∑
j=1

Ki,j

Γ(j)
γ

(
j,

(
2Φ/R − 1

)/(
1
R

γ

fit

S

N

))
(2.95)

which is not further analysed here.

Note again that the case of generic sub-channel gains with repeated γi∈(1,u) and arbitrary

fi∈(1,u) is similarly obtained by utilising the appropriate pdf previously derived, and is thus

omitted here.
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2.5 Approximations to Capacity and Outage Probability

Distributed-MIMO multi-stage communication systems require optimum resource allocation

algorithms which, in the case of FDMA-based relaying, assign each relaying terminal within

a relaying stage a fractional bandwidth αW and a fractional power βS, such as to maximise

the end-to-end capacity. In Chapter 3, it will be shown that the normalised capacity of a

MIMO link with given fractional bandwidth and power allocations can be expressed as

C = α · Eλ

{
m log2

(
1 + λ

β

α

γ

t

S

N

)}
(2.96)

where m = min{t, r}, γ is associated with the pathloss and the expectation is generally

calculated with the aid of (2.32). The optimisation process clearly involves some form of

differentiation with respect to the fractional resources α and β, after which a large set of

equations has to be solved. If the solution to (2.96) was given in the fairly intricate form

of (2.38), no analytical optimisation of the entire multi-stage network is possible.

It is the aim of this section to introduce a sufficiently precise approximation to the MIMO

capacity, thereby decoupling the fractional resource allocations from the complicated term

associated with the MIMO capacity gain. This will enable closed form resource allocation

algorithms for networks of any size, as will be demonstrated in Chapter 3. Note that other

approximations were suggested in the literature, see e.g. [48]; however, none of these are

sufficiently simple to decouple the fractional resources from the MIMO capacity gain.

In a similar manner, sufficiently precise approximations to the outage probability are

introduced which are needed in Chapter 3 to maximise the end-to-end throughput over

non-ergodic fading channels.

2.5.1 Functional Approximation to the MIMO Capacity

The term log2(1 + x) in (2.96) clearly complicates the analysis. To this end, a simple

functional approximation is suggested in form of

log2(1 + x) ≈ √
x (2.97)

the precision and applicability of which is assessed below. The suggested approximation

simplifies (2.96) to

C ≈ α

√
β

α

√
γ

S

N
· Eλ

{
m
√

λ/t
}

(2.98)

The above expression decouples the fractional resources α and β from Eλ

{
m
√

λ/t
}

, which

is associated with the MIMO capacity gain. The expectation with respect to the unordered

eigenvalue λ is evaluated following exactly the same approach as exposed by (2.32)−(2.39),
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to arrive at

Eλ

{
m
√

λ/t
}

=
1√
t

m−1∑
k=0

k!
(k + d)!

[
k∑

l=0

A2
l (k, d) L̂2l+d

+
k∑

l1=0

k∑
l2=0,
l2 �=l1

(−1)l1+l2Al1(k, d)Al2(k, d) L̂l1+l2+d

] (2.99)

where, to remind the reader, d = n − m, Al(k, d) = [(k + d)!]
/
[(k − l)! (d + l)! l!], and

m = min(t, r), n = max(t, r). Furthermore, with reference to (2.38), the capacity integral

Ĉζ(a) is replaced by the capacity approximation integral L̂ζ , which is defined and solved [44]

(§3.381.4) as

L̂ζ �
∫ ∞

0

√
x xζ e−x dx (2.100)

= Γ(ζ + 3/2) (2.101)

Interestingly, the expectation in (2.98) with the pdf of (2.32) can be calculated in a more

compact form as [44] (§ 7.414.4.1)

Eλ

{
m
√

λ/t
}

≈ 1√
t

m−1∑
k=0

k!
(k + d)!

∫ ∞

0

√
λ
[
Ld

k(λ)
]2

λde−λdλ (2.102)

=
1√
t

m−1∑
k=0

k!
(k + d)!

Γ3(d + k + 1)Γ(d + 3
2)Γ(k − 1

2)
(k!)2Γ(d + 1)Γ(−1

2)
× (2.103)

3F2(−k, d +
3
2
,
3
2
; d + 1,

3
2
− k; 1)

where 3F2(·) is the generalised hypergeometric function with three parameters of type 1

and two parameters of type 2. For the sake of clarity, Eλ

{
m
√

λ/t
}

is henceforth denoted

as Λ(t, r), which allows simplification of the MIMO capacity expression to

C ≈ α

√
β

α

√
γ

S

N
· Λ(t, r) (2.104)

The same approach is taken to calculate the approximated capacity for various O-MIMO

channels, some of which are summarised below as

Λ(t, r) =




1√
t

∑m−1
k=0

k!
(k+d)!

[
. . .

]
MIMO Rayleigh

√
R√
t

Γ(u+1/2)
Γ(u) O-MIMO Rayleigh - Equal Channel Gains

√
R√
ft

Γ(fu+1/2)
Γ(fu) O-MIMO Nakgami - Equal Channel Gains

√
Rπ√
t

∑u
i=1 Ki

√
γi O-MIMO Rayleigh - Unequal Channel Gains

(2.105)

Rounded values of Λ(t, r) for the traditional MIMO Rayleigh fading case are tabled in

Table 2.1 for 1 ≤ t ≤ 10 and 1 ≤ r ≤ 10. For instance, a 4 × 1 MIMO configuration

achieves approximately twice the capacity of a SISO communication system. A 10 × 10

MIMO configuration yields approximately a nine-fold capacity increase, which is well inline

with the observed linear increase of capacity when t = r.
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Furthermore, in Figure 2.26, the exact and approximated capacities for various example

configurations of transmit and receive arrays are depicted. The following MIMO configura-

tions have been chosen: t = 1 & r = 1, t = 8 & r = 2, t = 2 & r = 8 and t = 8 & r = 8.

For the first case, the absolute difference between the exact and approximated capacities is

very low. For an increasing number of transmit and/or receive antennae, the approximation

error clearly increases. The mean approximation error in [%] is summarised in Table 2.2

for 1 ≤ t ≤ 10 and 1 ≤ r ≤ 10 calculated for an SNR ranging from 0 to 10. Table 2.2

shows that only MIMO configurations with t = 1 and r ≥ 6 yield an approximation error

exceeding 10%. If a higher precision is vital, then a tighter approximation should be used

which is introduced in [49]. However, the tighter approximation is not directly applicable to

the analysis exposed in the subsequent chapter, which is the reason why it has been omitted

here.

2.5.2 Functional Approximation to the Outage Probability

If a fractional bandwidth α and a fractional power β is allocated to a SIMO link operating

over non-ergodic channels, then, with reference to (2.55), the derived outage probability

can be expressed as

Pout(Φ) =
1

Γ(r)
γ

(
r,

(
2Φ/α − 1

)/(
β

α

S

N

))
(2.106)

where γ(·, ·) is the lower incomplete and Γ(·) the complete Gamma function. Again, an

optimisation of the allocated fractional resources is not possible in closed form. Therefore,

the following tractable approximation is suggested and briefly assessed below:

Pout(x) =
γ(r, x)
Γ(r)

≈ axb (2.107)

where the constants a and b are obtained numerically such as to minimise the mean error

between approximation and exact values in the outage region below 50%. For instance, with

reference to Figure 2.27, the optimisation has been performed over the region 0 ≤ x ≤ 2.6

for r = 3.

The constants a and b are a function of the parameter r, i.e. a = a(r) and b = b(r),

and are tabled for 1 ≤ r ≤ 4 in Table 2.3 together with the occurring mean error e in [%].

Figure 2.27 depicts the exact outage probability and its approximation (2.107) for various

configurations of parameter r. Clearly, the suggested approximation fits very well the exact

outage probability, which is also corroborated with the low error e.

Note that the outage probability fitting parameters a and b can be determined for r > 4

in a similar fashion. It has been omitted here, because they will not be required in later

chapters. Note finally that the MISO case yields approximately the same coefficients a and

b, which is the reason why they have not been tabled separately.
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Table 2.1: Approximate capacity gain of MIMO systems over a SISO system for various
transmit and receive array configurations assuming Rayleigh fading.

t\r 1 2 3 4 5 6 7 8 9 10
1 1 1 2 2 2 2 3 3 3 3
2 1 2 2 3 3 3 4 4 4 4
3 1 2 3 3 4 4 4 5 5 5
4 1 2 3 3 4 5 5 5 6 6
5 1 2 3 4 4 5 5 6 6 7
6 1 2 3 4 4 5 6 6 7 7
7 1 2 3 4 5 5 6 7 7 8
8 1 2 3 4 5 5 6 7 7 8
9 1 2 3 4 5 5 6 7 8 8
10 1 2 3 4 5 6 6 7 8 9

Table 2.2: Mean capacity approximation error e [%] for various transmit and receive array
configurations.

t\r 1 2 3 4 5 6 7 8 9 10
1 6% 8% 8% 9% 10% 12% 13% 15% 16% 18%
2 9% 5% 6% 8% 8% 8% 8% 9% 9% 10%
3 8% 7% 5% 6% 6% 7% 7% 8% 8% 8%
4 9% 7% 5% 5% 5% 6% 7% 7% 7% 8%
5 10% 8% 7% 6% 5% 5% 6% 6% 6% 7%
6 9% 8% 7% 6% 5% 5% 6% 6% 6% 7%
7 10% 9% 7% 7% 6% 5% 5% 5% 6% 6%
8 10% 9% 8% 7% 6% 6% 6% 5% 5% 6%
9 10% 8% 8% 7% 7% 7% 6% 5% 5% 5%
10 10% 9% 9% 8% 7% 7% 6% 6% 5% 5%

Table 2.3: Outage probability fitting parameters a and b for a varying parameter r, together
with the mean error e caused.

r = 1 r = 2 r = 3 r = 4
a 0.82 1.34 1.83 2.19
b 6.7e-1 2.6e-1 8.9e-2 3.1e-2
e 5 % 3 % 4% 4%
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2.6 Conclusions

2.6.1 Summary

This chapter has analysed capacities and associated outage probabilities of MIMO chan-

nels of different types. Although the derived capacity limits can only be approached with

transceivers of infinite complexity, an understanding of their behaviour is vital in design-

ing optimum MIMO communication systems. The analysis in Sections 2.3−2.5 will prove

very useful in assigning optimum resources to VAA-type communication systems, such as

distributed-MIMO multi-stage systems. It was the aim to maintain a logical thread through-

out the analysis, from the introductory notes to the derivation of closed form and approx-

imate expressions for capacities and associated outage probabilities. Essential foundations

have been given, with generally known results kept to a minimum.

In Section 2.1, a brief historical background to the evolvement of capacity was given,

ranging from its infancy to the neat information theory developed by Shannon. His under-

standing and definition of capacity was then briefly reiterated in Section 2.2 to allow for a

proper understanding of that subject in later sections. In the same section, the fundamen-

tal difference between capacity and its outage probability was highlighted. Both concepts

proved vital for the remaining sections.

In Section 2.3, the traditional flat Rayleigh fading MIMO channel in its ergodic and

non-ergodic realisation was dealt with. The underlying theory was briefly introduced, after

which a closed solution to Telatar’s MIMO capacity expression has been developed. The

integral that has been solved was referred to as the capacity integral, as it proved useful in

a variety of following MIMO capacity problems. For the sake of completeness, the outage

probability of generic MIMO channels has been characterised.

The two major problems associated with MIMO systems, i.e. complexity and diffi-

culties of analysing it analytically for more general communication scenarios, have been

overcome by deploying Space-Time Block Codes. These are known to yield orthogonalised

MIMO (O-MIMO) channels, and hence simplifying analysis significantly, as shown through-

out Section 2.4. In there, the capacities (i.e. maximum mutual information for given STBC

processing and channel coefficients) and associated outage probabilities of a wide range of

O-MIMO Rayleigh and Nakagami fading channels were derived. The cases of equal, un-

equal and generic channel coefficients were dealt with, which allow assessing the capacity

behaviour of distributed O-MIMO communication systems with links subject to different

pathloss or shadowing. Finally, O-MIMO channels were shown to yield significantly lower

capacities than their traditional MIMO channel counterparts, induced by the lower deploy-

ment complexity.
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The exposed capacity behaviour of MIMO and O-MIMO channels will prove vital in

deploying VAA-type communication systems. However, the optimisation of resources de-

termining the capacity by utilising the derived closed form capacity expressions of Sec-

tions 2.3 and 2.4, was shown to be impossible. In Section 2.5, sufficiently precise functional

approximations have thus been suggested for the logarithm occurring in the MIMO ca-

pacity expressions. This allowed the decoupling of the fairly intricate expression related

to MIMO capacity gains from terms requiring optimisation, such as transmission power

or bandwidth. Closed solutions of the approximate capacity have also been developed for

a variety of different communication conditions. In the same section, an approximation

for the outage probability has been exposed which will also be useful for the allocation of

fractional resources over non-ergodic channels.

2.6.2 Contributions

The field of MIMO Information Theory is currently one of the biggest and most flourishing

areas of research. However, only essential fundamentals on MIMO theory have been incor-

porated into this chapter, whereas the majority of the exposed analysis was the contribution

of the author. The contributions to the research community can be summarised as follows:

1. A closed solution to the MIMO capacity over ergodic flat Rayleigh fading channels

with equal channel gains has been developed.

2. A closed solution to the MIMO capacity over space-time block encoded ergodic flat

Rayleigh fading channels with unequal channel gains has been developed, as well its

associated outage probability over a non-ergodic channel.

3. A closed solution to the MIMO capacity over space-time block encoded ergodic flat

Nakagami fading channels with unequal channel gains has been developed, as well its

associated outage probability over a non-ergodic channel.

4. A sufficiently precise functional approximation has been suggested for the logarithm

occurring in the MIMO capacity expressions. This allowed the fairly intricate expres-

sion related to MIMO capacity gains to be decoupled from terms requiring optimisa-

tion, such as transmission power or bandwidth. Closed solutions of the approximate

capacity have also been developed for a variety of different communication conditions.

5. A sufficiently precise functional approximations to the outage probability involving

the complete and incomplete Gamma functions has been suggested, as well as its

precision assessed.
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2.6.3 Future Research

Numerous questions and problems remain open in the field of MIMO information theory.

Related to the problematic of distributed-MIMO capacity, the following topics are deemed

to be worthwhile pursuing as future research:

1. Fractional Transmit Power Allocation. A rigorous mathematical assessment of the

precision of the conjectured fractional transmit power allocation (2.109) for fixed or

quasi-static channels is still an open problem.

2. Generic Eigenvalue Distribution. A very challenging research area is the derivation

of the pdf of the eigenvalues occurring in MIMO channels of arbitrary statistics,

correlation and channel gains.

3. Ricean Fading. Although Ricean fading is well approximated by Nakagami fading,

closed capacity expressions for the Ricean case are desirable.

2.6.4 Deployment Guidelines

The following guidelines give a technical summary on the derived dependencies. They can

prove useful for general MIMO system understanding, as well as in subsequent chapters

when dealing with VAA-type communication systems. Furthermore, since these guidelines

might be read by people not that familiar with statistics, some terminology has been sim-

plified, e.g. ”ergodic” → ”fast-fading”.

Guidelines based on MIMO Capacity Behaviour

1. Fast-Fading Channels: Having more transmit antennas t than receive antennas r is

not worth deploying.

EXAMPLE: With one receive antenna and an SNR of 10dB, the capacity is approxi-

mately 3 bits/s/Hz irrespective of the number of transmit antennas.

2. Fast-Fading Channels: Having more receive antennas r than transmit antennas t is

worth deploying; however, a higher capacity can be achieved if the elements are equally

distributed between transmitter and receiver.

EXAMPLE: With one transmit antenna and an SNR of 10dB, the capacity is 3

bits/s/Hz for r = 1, 4 bits/s/Hz for r = 2 and 5 bits/s/Hz for r = 4. The increase

follows a logarithmic dependency.

3. Fast-Fading Channels: Having r = t yields the highest capacity, and is hence optimum.

EXAMPLE: With an SNR of 10dB, the capacity is 3 bits/s/Hz for 1× 1, 6 bits/s/Hz

for 2 × 2 and 12 bits/s/Hz for 4 × 4. The increase is hence linear.
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4. Slow-Fading Channels: For a fixed configuration of t × r and a desired rate Φ in

[bits/s/Hz], increasing the transmit power results in a higher reliability.

EXAMPLE: For a desired rate of 2 bits/s/Hz and a 2×1 MIMO system, operating at

5dB allows the system to support 2 bits/s/Hz in 46% of all times, whereas operating

at 10dB increases the reliability to 88%.

5. Slow-Fading Channels: For a fixed configuration of t × r and a fixed SNR, increasing

the desired rate results in a lower reliability.

EXAMPLE: For an SNR of 10dB and a 2 × 1 MIMO system, a rate of 2 bits/s/Hz

can be supported in 88% of all cases, whereas a rate of 4 bits/s/Hz only in 20%.

6. Slow-Fading Channels: For a fixed SNR and fixed communication rate, increasing

the number of receive antennas always results in a higher communication reliability,

whereas the optimum choice of the number of transmit antennas depends on the SNR

and rate. Generally, higher rates should be supported by one transmit element only,

whereas lower rates by as many as possible.

EXAMPLE: For an SNR of 10dB and a rate of 2 bits/s/Hz, the 8 × 1 MIMO system

offers 100% reliability, whereas the 1×1 MIMO system only 75%. For a higher rate of 4

bits/s/Hz, the 8×1 MIMO system offers only 10% reliability, whereas the 1×1 MIMO

system only 22%. Since systems are traditionally designed to yield a high reliability,

the maximum number of elements should be chosen in any MIMO configuration.

Guidelines based on O-MIMO Capacity Behaviour

1. Generally: The capacity of an O-MIMO channel cannot exceed the capacity of an

equivalent Gaussian channel. The role of the deployed STBC is to reduce the detri-

mental effect of fading only, hence merely leading to diversity gains.

EXAMPLE: The capacity of a 4 × 2 O-MIMO channel cannot be greater than the

capacity of a 1 × 2 Gaussian channel (2 Gaussian channels in parallel).

2. Generally: In the case of uncorrelated Rayleigh fading, the capacity of a MIMO channel

exceeds the capacity of an O-MIMO channel. The difference between both capacities

lessens with an increase in the LOS component, i.e. predominant Ricean/Nakagami

fading.

EXAMPLE: Assuming a 2× 2 communication scenario operating at 10dB, the loss in

capacity from a MIMO to a O-MIMO communication system mounts to approximately

30% for the case of no LOS component, i.e. Nakagami f = 1 or Ricean K → −∞dB.

In the case of strong LOS with Nakagami f = 6 or Ricean K = 10dB, the loss in

capacity mounts only to 10%.

77



3. Fast-Fading: The STBC rate R has a predominant influence, i.e. it is only worth

deploying full-rate STBCs for any channel conditions. The only full-rate STBC is the

Alamouti scheme.

EXAMPLE: For a O-MIMO system with two receivers operating at an SNR of 10dB,

the equivalent Gaussian channel supports a rate of 4.2 bits/s/Hz, the Alamouti scheme

(t = 2) 4.1 bits/s/Hz, the 3/4-rate schemes (t = 3, 4) 3.6 bits/s/Hz and the 1/2-rate

schemes (t = 3, 4) only 2.6 bits/s/Hz.

4. Fast-Fading: STBC diversity gains can be traded against the strength of LOS condi-

tions.

EXAMPLE: Assuming a system supporting 3.3 bits/s/Hz at 10dB with one receive

antenna, then for weak LOS conditions with f = 2 two transmit antennas should be

deployed, whereas for stronger LOS conditions with f = 4 only one transmit antenna

suffices. If in the latter case two transmit antennas were deployed then a rate of 3.4

bits/s/Hz could be deployed.

5. Slow-Fading: The same tendencies as for the general MIMO channels hold. Therefore,

to maintain a rate with high reliability, the 3/4-rate STBC with four transmit antennas

should be used.

EXAMPLE: To maintain a rate of 2 bits/s/Hz with 90% reliability, a 1 × 1 SISO

system requires an SNR of 14.5dB and a 4× 1 O-MIMO system with 3/4-rate STBC

only 9.5dB, leading to a power savings of 4dB.

6. Distributed Cases: Deploying distributed O-MIMO communication systems may not

yield optimum performance, however, it yields a more robust system. If one or more

links of the O-MIMO system are shadowed then, without the distributed deployment,

the capacity and reliability will be very low; whereas for a distributed deployment, the

capacity and reliability are fairly unaffected by shadowing. This is the case because

capacity and reliability are dominated by the weakest link.

EXAMPLE: A distributed Alamouti scheme operating at 10dB (if both links are

equally strong) can support a rate of at least 3 bits/s/Hz, whereas if only either of the

links was deployed in a SISO system then the rates would break down for the weak

link, e.g. 1 bit/s/Hz when the link is 12dB weaker than the stronger of the two.
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2.7 Appendix

Derivation I. An approximate fractional power allocation to each transmit element in the

case of fixed (quasi-static) channel coefficients is exposed here. The author could not derive

the allocation strategy, which is the the reason why the allocation is stated as a conjecture.

It is hence the aim to find approximate transmit power allocations εi∈(1,t) such that

C =
t∑

i=1

log2

(
1 + εiλi

S

N

)
(2.108)

is maximised, which can be achieved by the allocation strategy

εi =

∏t
j=1,j �=i λ

−1/2
j∑t

k=1

∏t
j=1,j �=k λ

−1/2
j

(2.109)

Figure 2.28 depicts the achieved normalised capacity in [bits/s/H] versus the SNR in [dB]

for 4 × 4 MIMO communication scenario, where H was chosen randomly and then fixed

to perform the allocation process. The optimum allocation was obtained following the

strategy developed in Section 2.3.2. The near-optimum capacity was achieved by deploying

the conjectured fractional power allocation (2.109). Clearly, the exposed allocation strategy

yields near-optimum performance. Furthermore, the case of equal power allocation is shown

to be inferior to the other two allocation strategies.
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Figure 2.28: Achieved capacity for various fractional power allocation strategies; H is fixed.
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Derivation II. It is proven here that

Ki =
u∏

i′=1,i′ �=i

γi

γi − γi′
(2.110)

Without loss of generality, K1 is derived here according to [50]. To this end, the fractional

expansion is equated to the product expression, i.e.
u∑

i′=1

Ki′

1 − γi′s
≡

u∏
i′=1

1
1 − γi′s

(2.111)

K1

1 − γ1s
+

K2

1 − γ2s
+ . . . +

Ku

1 − γus
=

1
1 − γ1s

· 1
1 − γ2s

· . . . · 1
1 − γus

(2.112)

To obtain K1, (2.112) is multiplied by (1 − γ1s) to yield

K1 + K2
1 − γ1s

1 − γ2s
+ . . . + Ku

1 − γ1s

1 − γus
=

1
1 − γ2s

· . . . · 1
1 − γus

(2.113)

after which s is set to s = 1/γ1 to arrive at

K1 =
1

1 − γ2

γ1

· . . . · 1
1 − γu

γ1

(2.114)

=
u∏

i′=2

γ1

γ1 − γi′
(2.115)

The same procedure is repeated for any Ki to derive (2.110).

Derivation III. Following the approach exposed in [50], it is proven here that

Ki,j =
1

(νi − j)! (−γ̂i)
νi−j

∂νi−j

∂sνi−j


 g∏

i′=1,i′ �=i

1
(1 − sγ̂i′)

νi′




s=1/γ̂i

(2.116)

if the partial fractions are applied to (2.79) which, expanded into its partial fractions, can

be expressed as

g∑
i′=1

νi′∑
j′=1

Ki′,j′

(1 − γ̂i′s)
j′ ≡

g∏
i′=1

1
(1 − γ̂i′s)

νi′

[
K1,1

(1 − γ̂1s)
1 + . . . +

K1,ν1

(1 − γ̂1s)
ν1

]
+ . . . +

[
. . . +

Kg,νg

(1 − γ̂gs)
νg

]
=

g∏
i′=1

1
(1 − γ̂i′s)

νi′

To obtain coefficient K1,ν1 , (2.117) is multiplied with (1 − γ̂1s)
ν1 after which s is set to

s = 1/γ̂1 to arrive at

K1,ν1 =
g∏

i′=2

1(
1 − γ̂i′

γ̂1

)νi′ (2.117)

Similarly, the coefficients Ki,νi can be obtained as

Ki,νi =
g∏

i′=1,i′ �=i

1(
1 − γ̂i′

γ̂i

)νi′ (2.118)

80



Furthermore, to obtain coefficient K1,ν1−1, (2.117) is multiplied with (1 − γ̂1s)
ν1 , differen-

tiated w.r.t. s, after which s is set to s = 1/γ̂1 to arrive at

K1,ν1−1 =
1

(−γ̂1)
∂

∂s

[
g∏

i′=2

1
(1 − sγ̂i′)

νi′

]
s=1/γ̂1

(2.119)

Similarly, the coefficients Ki,νi−1 are obtained as

Ki,νi−1 =
1

(−γ̂i)
∂

∂s


 g∏

i′=1,i′ �=i

1
(1 − sγ̂i′)

νi′




s=1/γ̂i

(2.120)

The same procedure is repeated for coefficients K1,j . Hence, coefficient K1,1 is obtained by

multiplying (2.117) with (1 − γ̂1s)
ν1 , differentiated (ν1 − 1) times w.r.t. s, after which s is

set to s = 1/γ̂1 to arrive at

K1,1 =
1

(ν1 − 1)! (−γ̂1)
ν1−1

∂ν1−1

∂sν1−1

[
g∏

i′=2

1
(1 − sγ̂i′)

νi′

]
s=1/γ̂1

(2.121)

Similarly, the coefficients Ki,1 are obtained as

Ki,1 =
1

(νi − 1)! (−γ̂i)
νi−1

∂νi−1

∂sνi−1


 g∏

i′=1,i′ �=i

1
(1 − sγ̂i′)

νi′




s=1/γ̂i

(2.122)

That finalises the proof that Ki,j is given by (2.116). Note that the (νi − j)th derivative of∏g
i′=1,i′ �=i (1 − sγ̂i′)

−νi′ in (2.116) is easily derived in closed form. The first order derivative

is obtained as

∂

∂s


 g∏

i′=1,i′ �=i

1
(1 − sγ̂i′)

νi′


 =


 g∏

i′=1,i′ �=i

1
(1 − sγ̂i′)

νi′




 g∑

i′=1,i′ �=i

νi′ γ̂i′

1 − sγ̂i′


 (2.123)

To enhance readability, the following symbolic notation is introduced

[Π] �
g∏

i′=1,i′ �=i

1
(1 − sγ̂i′)

νi′ (2.124)

[Σ] �
g∑

i′=1,i′ �=i

νi′ γ̂i′

1 − sγ̂i′
(2.125)

[Σn] �
g∑

i′=1,i′ �=i

νi′ (γ̂i′)
n

(1 − sγ̂i′)
n (2.126)

∂n [·] � ∂n

∂sn
[·] (2.127)

With the introduced notation the following holds

∂[Σn] = n[Σn+1] (2.128)

∂[Σ]m = m[Σ]m−1[Σ2] (2.129)
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and generally

∂[Ξ][Ψ] = ∂[Ξ] · [Ψ] + [Ξ] · ∂[Ψ] (2.130)

This allows one finally to rewrite (2.123) and, inductively, any higher order derivative as

∂[Π] = [Π][Σ] (2.131)

∂2[Π] = ∂[Π][Σ] (2.132)

= ∂[Π] · [Σ] + [Π] · ∂[Σ]

= [Π]
(
[Σ]2 + [Σ2]

)
∂3[Π] = ∂

[
[Π]

(
[Σ]2 + [Σ2]

)]
(2.133)

= ∂[Π] · ([Σ]2 + [Σ2]
)

+ [Π] · ∂ ([Σ]2 + [Σ2]
)

= [Π]
(
[Σ]3 + 3[Σ][Σ2] + 2[Σ3]

)
∂4[Π] = [Π]

(
[Σ][Σ]3 + 6[Σ]2[Σ2] + 8[Σ][Σ3] + 3[Σ2]2 + 6[Σ4]

)
(2.134)

...
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Chapter 3

Resource Allocation Strategies

3.1 Introduction

It is the aim of this chapter to analyse the behaviour of distributed-MIMO multi-stage

communication networks with the aid of the theory developed in the previous chapter. An

example realisation of the named communication network is depicted in Figure 3.1. Of

major interest here is to maximise the end-to-end data throughput by optimally assigning

resources in terms of frame duration, frequency band and transmission power to each of

the terminals. These resources are usually constrained, thus calling for effective allocation

strategies. Since resources have to be shared among all terminals involved, the allocation

strategies to be developed are referred to as fractional resource allocation strategies.

The two major approaches to accomplish a relaying network are transparent or regen-

erative relaying. For the transparent case, a relaying terminal receives a signal stream on

one frequency band and directly translates it for re-transmission onto another. In the re-

generative case, a relaying terminal receives a signal stream, processes it and re-transmits

it. From a capacity perspective it is clear that regenerative relaying outperforms transpar-

ent relaying, which is confirmed by [51] for the particular communication scenario of SISO

relaying over flat Rayleigh fading channels. Additionally, regenerative relaying allows the

deployment of MIMO capacity enhancement technologies at each relaying stage. These are

the reasons why regenerative relaying is considered in this thesis. It is therefore the aim

to allocate fractional resources to each relaying terminal so as to maximise the end-to-end

throughput in dependency of prevailing channel conditions.

The problem formulation to similar resource allocation problems with partial solutions to

achieve maximum throughput has been analysed in [27] and [52]-[59]. A generic operational

mode of a wireless network is defined in [27] that covers both routing, scheduling and power

control. Joint routing and scheduling is considered in [52], where the total throughput is

maximised by decomposing the joint optimisation problem into a pure scheduling and a

pure routing problem. In [53], a joint scheduling-power control solution to the multiple

access problem in wireless ad-hoc networks is introduced.
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In [54], a jointly optimal scheduling, routing and power control algorithm achieving

max-min fair rate allocation in one-dimensional networks is presented. The capacity regions

for wireless ad-hoc networks with an arbitrary number of nodes and topology are studied

in [55]. Here, the transceivers used are capable of variable-rate adaptation by automatically

adjusting the transmission rate to match the SINR at the receiver. In [56], the capacity

region and optimal power allocation scheme for a multi-user fading broadcast channel is

derived in which minimum rates must be maintained for each user in all fading states.

In [57] and [58], three types of capacity (ergodic, zero-outage and outage with nonzero

outage) regions for fading broadcast channels and their corresponding optimal resource

allocation strategies for different spectrum-sharing techniques are analysed. The optimal

power allocation that achieves the boundary of the ergodic capacity region is derived by

solving an optimisation problem over a set of time-invariant Gaussian broadcast channels

with a constrained total average transmit power. Finally, the capacity region of the downlink

broadcast channel in fading and additive white Gaussian noise for time-division, frequency-

division, and code-division is studied in [59].

All solutions to the respective optimisation problems, however, require some form of

numerical optimisation. It is the aim of this chapter to introduce for the first time explicit

resource allocation strategies for regenerative distributed-MIMO multi-stage communication

scenarios constrained by a total utilised power S, bandwidth W and frame duration T .

This chapter is organised as follows. In Section 3.1, the system assumptions are in-

troduced, as well as the notation to be used throughout the remainder of the chapter.

It is also demonstrated how to relate the obtained fractional bandwidth and power of an

FDMA-based system with the fractional frame duration and power of a TDMA-based sys-

tem. Subsequent analysis is therefore focused only onto FDMA-based systems.

Analysis then splits into ergodic and non-ergodic flat fading channels, the optimum

fractional resource allocation strategies for each are then introduced in Section 3.2 and 3.3,

respectively. In each of the sections, the following communication scenarios have been

analysed in sufficient depth: (1) distributed-MIMO multi-stage relaying without resource

reuse, (2) distributed-MIMO multi-stage relaying with resource reuse, and (3) distributed O-

MIMO multi-stage relaying with and without resource reuse. A network with resource reuse

allows allocating, e.g., the same fractional bandwidth to terminals which have a sufficient

spatial separation. That is shown to influence the fractional resource allocation strategy.

In Section 3.4, it is then shown that the very same algorithms are also applicable to

frequency selective fading channels, which makes them applicable to currently deployed

CDMA and OFDMA based communication systems.

Finally, conclusions are drawn in Section 3.5, which includes a summary of the results

of this chapter, the research contributions, and future research.
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3.2 System Model

3.2.1 General Deployment

The description here relates to the generalised VAA multi-stage communication system as

depicted in Figure 3.1. Consider, a source mobile terminal (s-MT) communicating with a

target mobile terminal (t-MT) via a given number of relaying mobile terminals (r-MTs).

Spatially adjacent r-MTs are grouped into VAAs, thereby forming a relaying VAA (r-VAA)

tier. The s-MT and t-MT themselves might be a member of a VAA, henceforth referred

to as source VAA (s-VAA) and target VAA (t-VAA), respectively. The system of a s-VAA

communicating with a t-VAA via several tiers of r-VAAs is referred to as a VAA multi-stage

communication system. The optimum choice of r-MTs, as well as their optimum grouping

into VAAs, is beyond the scope of this thesis. It is therefore assumed that the fractional

resource allocation algorithms developed here are applied to the given topology.

The s-MT, t-MT and r-MTs may possess any number of antenna elements, depicted as

large dots in Figure 3.1. Furthermore, the MTs may or may not cooperate among each

other within the same VAA tier. The cooperative link is shown as a dash-dotted line. Each

r-MT of the same r-VAA transmits the prior agreed spatial branch of a space-time code

word, where the encoding bases on the received and detected symbol from the previous

r-VAA tier. The resulting MIMO sub-channels are shown as grey lines.
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Figure 3.1: Distributed-MIMO multi-stage communication system.
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Clearly, a cooperative deployment yields a higher capacity; however, at the expense of

additional complexity, relaying power and bandwidth. The latter two are assumed to be

negligible in the current analysis, as justified in Section 2.4.2. The increase in capacity is

thus due to more complex transceivers only, which have to accomplish intra (cooperation)

and inter (multi-stage) VAA relaying. It is assumed here that the intra (cooperation) VAA

communication process is error-free. Note further that not all available antenna elements

need to be active for the intra and/or inter VAA relaying process.

With reference to eq. (2.8), regenerative relaying allows the utilisation of two access

methodologies: frequency division multiple access (FDMA) and time division multiple ac-

cess (TDMA). FDMA-based regenerative relaying implies that the totally available band-

width W is orthogonally or non-orthogonally partitioned among the relaying VAA tiers, as

depicted in Figure 3.2; communication may occur continuously over the entire frame dura-

tion T . On the other hand, TDMA-based regenerative relaying implies that the total frame

duration T is orthogonally or non-orthogonally partitioned into slots among the relaying

VAA tiers, as depicted in Figure 3.3; communication occurs over the entire bandwidth W .

For orthogonal relaying, available resources are divided such that no interference be-

tween the relaying stages occurs. Thus, bandwidth/frame has to be fractioned into non-

overlapping frequency-bands/slots such that at any time they are used by only one relaying

link. On the other hand, non-orthogonal relaying allows resources to be re-used among

stages, which leads to interference between the relaying VAA tiers.

The encoding, distributed relaying and decoding process is described for an FDMA-

based relaying system as follows.

Source MT. In an FDMA-based relaying system, the s-MT continuously broadcasts the

data to the remaining r-MTs in the first relaying VAA tier, utilising negligible power and

bandwidth, and possibly not deploying all of its available antenna elements.

First Relaying VAA Tier. The first VAA relaying tier is formed by q1 spatially adjacent

MTs (including the s-MT). Each of the involved MTs possesses n1,i antenna elements for

inter VAA relaying purposes, where the first subscript relates to the first VAA relaying tier

and 1 ≤ i ≤ q1.

After cooperation between the s-MT and the remaining r-MTs of the first relaying VAA

tier, the data is space-time encoded according to a given code book with t1 =
∑q1

i=1 n1,i

spatial dimensions. Each MT then transmits only n1,i∈(1,q1) spatial dimensions such that

no transmitted codeword is duplicated. Transmission from the first relaying VAA tier is

accomplished at frequency band W1 with total transmission power S1.

Second Relaying VAA Tier. The second VAA relaying tier is formed by q2 spatially

adjacent MTs such that their inclusion into the VAA yields capacity benefits to the com-

munication system.
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Each of the q2 MTs possesses n2,i∈(1,q2) antenna elements. Some MTs may cooperate

among each other, thereby forming Q2 clusters, where 1 ≤ Q2 ≤ q2. The case of Q2 = 1

represents the scenario where all MTs cooperate, whereas Q2 = q2 means that none of

the MTs cooperate. The former case clearly yields the best performance, however, at the

expense of additional transceiver complexity to realise the cooperation; also, additional

bandwidth and power are required to accomplished the relaying process. The later case

yields less gains; however, it will be shown that the performance of such a system still

outperforms a traditional SISO relaying system.

The jth cluster is assumed to contain r2,j receive antennas, where 1 ≤ j ≤ Q2 and∑q2
i=1 n2,i =

∑Q2
j=1 r2,j . Therefore, Q2 MIMO channels are created, each with t1 transmit

antennas and r2,j∈(1,Q2) receive antennas.

After cooperation, the data is space-time decoded and re-encoded according to a given

code book with t2 =
∑q2

i=1 n2,i spatial dimensions. Again, each MT then re-transmits

only n2,i∈(1,q2) spatial dimensions such that no re-transmitted code word is duplicated. Re-

transmission from the second relaying VAA tier is accomplished at frequency band W2 with

total transmission power S2.

vth Relaying VAA Tier. The reception, cooperation, de-coding, re-encoding and re-

transmission process is congruent to the proceedings described above. Again, Qv MIMO

channels are created. All of these MIMO channels will have tv−1 transmit antennas and

rv,j∈(1,Qv) receive antennas. After cooperation, the data is space-time decoded and re-

encoded according to a given code book with tv =
∑qv

i=1 nv,i spatial dimensions. Re-

transmission from the vth relaying VAA tier is accomplished at frequency band Wv with

total power Sv.

Vth Relaying VAA Tier. The final relaying tier contains the t-MT. Similar to the 1st

tier, only cooperative MTs are considered here (no cooperation between the r-MTs and the

t-MT would terminate the data flow in the respective r-MTs). Therefore, there will be one

MIMO channel with tV −1 transmit antennas and
∑qV

i=1 nV,i receive antennas.

Target MT. After cooperation between the r-MTs and the t-MT, the data is space-time

decoded and passed on to the information sink in the t-MT.

A TDMA-based system operates exactly like the above-described FDMA-based relaying

system, with the only difference that all fractional bandwidths Wv∈(1,K) need to be replaced

by fractional frame durations Tv∈(1,K). Here, K denotes the number of relaying stages and

is related to the number of VAA relaying tiers via K = V − 1.

For any scenario, the total communication duration is normalised to T and the total

bandwidth to W . For orthogonal TDMA and FDMA-based relaying systems, T =
∑K

v=1 Tv

and W =
∑K

v=1 Wv respectively. For non-orthogonal (interfering) relaying systems, the sum

of all utilised fractional resources need to add-up to T and W respectively.
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Figure 3.4: Distributed MIMO Multi-Stage communication system with resource reuse
within the respective interference zones.

3.2.2 Extension to Resource Reuse Networks

The introduced communication scenario is easily extended to the case where resources in

terms of fractional frame duration or bandwidth are reused after a given number of relaying

VAA tiers, without yielding any interference to the other stages utilising the same resources.

The concept is similar to the frequency re-use concept in cellular systems, which relies on

the radio propagation inherent pathloss.

The suggested system deployment is depicted in Figure 3.4 with Z interference zones.

Within each such interference zone, the same resources may be reused without introducing

interference to adjacent interference zones.

3.2.3 Equivalence between TDMA and FDMA

To simplify subsequent analysis, it is proven here that TDMA and FDMA-based SISO

relaying systems are equivalent in terms of fractional resource allocations. The outlined

analysis is equally applicable to multi-stage distributed-MIMO systems.

In TDMA-based relaying, only a fraction α(t) of the total frame length T is allocated

to a MT; whereas in FDMA, only a fraction α(f) of the total bandwidth W . Traditionally,

a given fractional power is allocated to each MT; however, as illustrated in Figure 3.5,

fractional energy is the appropriate figure to be considered. Here, hop #1 and hop #3

transmit with the same average power S1 = S3, whereas hop #2 transmits with power S2.

The energy consumed by hop #1, however, is much smaller than of hop #3, and equates

the energy consumed by hop #2.
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The energy E to transmit information from source to sink needs therefore to be con-

strained, so as to allow for a fair comparison between different relaying schemes. Since the

Shannon capacity is related to the signal and noise powers, appropriate translations to the

energies have to be performed.

Given a TDMA-based multi-hop SISO communication scenario with K hops, the capac-

ity of the vth hop can be expressed as

C(t)
v = α(t)

v · W · Eλv

{
log2

(
1 +

λv · γv · Sv

Nv

)}
(3.1)

where α
(t)
v is the fractional frame duration, γv is the pathloss associated with the vth link,

and λv the random fading with given statistics pdfλv(λv). The transmit power into the vth

hop is denoted as Sv and the captured noise power at the receiver is Nv. The later can also

be expressed as Nv = N0 · Wv, where N0 is the noise power spectral density and Wv is the

allocated fractional bandwidth. For a TDMA-based relaying system, the following holds:

Ev = β(Et)
v E, Tv = α(t)

v T, Wv = W (3.2)

where β
(Et)
v is the fraction of the total energy E allocated to the vth hop leading to a

fractional energy Ev. Furthermore, Tv is the fractional frame duration of a total frame

duration T . The total power S relates to the total energy E via S = E/T ; furthermore,

N = N0 · W . Inserting (3.2) into (3.1) yields for the capacity

C(t)
v = α(t)

v · W · Eλv

{
log2

(
1 + λv · γv · β

(Et)
v

α
(t)
v

· S

N

)}
(3.3)

with constraints

K∑
v=1

α(t)
v ≡ 1,

K∑
v=1

β(Et)
v ≡ 1 (3.4)
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Figure 3.5: Relationship between power, energy and frame duration at each hop.

90



From (3.2) it is easily seen that a fractional power β
(Pt)
v = β

(Et)
v /α

(t)
v has to be allocated to

the vth hop, to which the constraint
∑K

v=1 α
(t)
v β

(Pt)
v ≡ 1 applies.

Given an FDMA-based multi-hop SISO communication scenario with K hops, the ca-

pacity of the vth hop can be expressed as

C(f)
v = α(f)

v W · Eλv

{
log2

(
1 +

λv · γv · Sv

Nv

)}
(3.5)

where α
(f)
v denotes the fractional bandwidth. Furthermore,

Ev = β
(Ef )
v E, Tv = T, Wv = α(f)

v W (3.6)

where β
(Ef )
v is the fractional energy. This yields for the FDMA-based relaying system

C(f)
v = α(f)

v W · Eλv

{
log2

(
1 + λv · γv · β

(Ef )
v

α
(f)
v

· S

N

)}
(3.7)

with constraints
K∑

v=1

α(f)
v ≡ 1,

K∑
v=1

β
(Ef )
v ≡ 1 (3.8)

From (3.6) it is easily seen that a fractional power β
(Pf )
v = β

(Ef )
v has to be allocated to the

vth hop, to which the constraint
∑K

v=1 β
(Pf )
v ≡ 1 applies.

Comparing (3.3) with (3.7), and the respective constraints (3.4) and (3.8), demonstrates

that with given constraints on frame duration, bandwidth and energy to deliver informa-

tion from source to sink, either relaying access methodology leads to the same capacity

expression. In other words, if a fractional bandwidth α
(f)
v and energy β

(Ef )
v is found to be

optimum for an FDMA-based relaying system, then a fractional frame duration α
(t)
v = α

(f)
v

and energy β
(Et)
v = β

(Ef )
v will also be optimum for a TDMA-based relaying system. Al-

though rigorously derived here, this could have been expected as the Shannon capacity of

either systems ought not to differ.

Since traditionally fractional transmission powers are allocated to relaying terminals,

subsequent analysis will refer to α
(t)
v and β

(Pt)
v for TDMA-based relaying systems, and α

(f)
v

and β
(Pf )
v for FDMA-based relaying systems. As demonstrated above,

∑K
v=1 α

(t)
v β

(Pt)
v ≡ 1

and
∑K

v=1 β
(Pf )
v ≡ 1, where the latter is clearly the more desirable constraint from an

analysis point of view. Further analysis will therefore concentrate on FDMA-based relaying

only. To simplify notation, the superscripts are dropped which yields for the constraints on

fractional bandwidth and transmission power of an FDMA-based system
K∑

v=1

αv ≡ 1 (3.9)

K∑
v=1

βv ≡ 1 (3.10)

An equivalent TDMA-based relaying system therefore requires a fractional frame duration

αv and transmission power βv/αv. This will frequently be used in subsequent analysis.
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3.3 Maximum Throughput for Ergodic Channels

Throughput is defined as the information delivered from source towards sink. This requires

a certain duration of communication T and frequency band W . Subsequent analysis will

therefore refer to the normalised (spectral) throughput Θ in [bits/s/Hz].

An ergodic channel offers a normalised capacity C in [bits/s/Hz] with 100% reliability,

which allows relating capacity and throughput via Θ = C. Therefore, maximising the

throughput Θ is equivalent to maximising the capacity C. As defined by Shannon, capacity

relates to error-free transmission. Hence, if a certain capacity was to be provided from

source to sink, all channels involved must guarantee error-free transmission. From this it is

clear that the end-to-end capacity C is dictated by the capacity of the weakest link.

For a VAA multi-stage relaying network with V relaying tiers as depicted in Figure 3.1,

there will be V − 1 = K stages each comprised of multiple MIMO channels. At each of

the stages, partial cooperation may take place on the receiving side. As an example, the

transmission stage from the vth VAA relaying tier to the (v + 1)st is enlarged in Figure 3.6,

where the three receiving terminals cooperate such as to yield two clusters. Generally, the

clustering yields Qv+1 MIMO channels with tv transmit antennas and rv+1,j∈(1,Qv+1) receive

antennas. For the example below, Qv+1 = 2, tv = 5, rv+1,1 = 3 and rv+1,2 = 3.

(v+1)-st Tier VAAv-th Tier VAA

n
v,1

n
v,2

n
v,3

n
v+1,1

n
v+1,2

n
v+1,3

MIMO #1: (n
v,1

+n
v,2

+n
v,3

) x (n
v+1,1

+n
v+1,2

)

MIMO #2: (n
v,1

+n
v,2

+n
v,3

) x (n
v+1,3

)

Figure 3.6: Established MIMO channels from the vth to the (v + 1)st VAA relaying tier.
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Prior to optimising the end-to-end capacity, the weakest of all Qv+1 MIMO channels has

to be determined at each relaying stage. If the distances between the r-MTs of the same

relaying VAA tier are negligible compared to the inter-VAA distances, then the strength

of a MIMO channel can be measured by the number of receive antennas. It is generally

desirable to guarantee mutual cooperation between terminals such that all created MIMO

channels offer the same capacity, which can be achieved if they have the same number of

receive antennas. In Figure 3.6 for example, two r-MTs cooperate with a total of three

receive antennas, which equates to the number of receive antennas of the non cooperating

r-MT, hence achieving an optimal relaying solution.

Since optimisation has to be performed on the weakest link (or one of the equally strong

links) at each of the K relaying stages, notation can be simplified further. To this end,

it is assumed that the vth relaying stage has tv antennas acting as transmitters and, to

simplify subsequent notation, rv � minj∈(1,Qv+1){rv+1,j} antennas acting as receivers. This

is henceforth denoted as (t1 × r1)/(t2 × r2)/ . . . /(tK × rK).

The capacity Cv of the vth relaying stage is hence determined by tv and rv, and the

occurring channel conditions. It is thus the aim to find for all v = 1, . . . , K stages the

fractional allocations of bandwidth αv and power βv for given channel conditions λv and γv

so as to maximise the minimum capacity C, i.e.

C = sup
α,β

{
min

{
C1(α1, β1, λ1, γ1), . . . , CK(αK , βK , λK , γK)

}}
(3.11)

where the optimisation is performed over the fractional sets α � (α1, . . . , αK) and β �
(β1, . . . , βK). Furthermore, Cv(αv, βv, λv, γv) denotes the dependency of the capacity in

the vth link on the fractional resource allocations αv and βv, and on the channel condi-

tions λv and γv. Fractional capacity allocation strategies satisfying (3.11) under applicable

constraints are derived below.

3.3.1 Algorithms for MIMO Relaying without Resource Reuse

With the parameter constraints given by (3.9) and (3.10), increasing one capacity inevitably

requires decreasing the other capacities. The minimum is maximised if all capacities are

equated and then maximised. The normalised capacity of the vth stage is given as

Cv = αv · Eλv

{
mv log2

(
1 + λv

γv

tv

βv

αv

S

N

)}
(3.12)

where the expectation is evaluated with any of the applicable pdfs derived in Chapter 2.

Thus, αv is obtained by equating (3.12) for all v = 1, . . . , K, which is derived in Appendix 3.7

(Derivation I) to be

αv =

∏
w �=v Eλw

{
mv log2

(
1 + λw

γw

tw
βw

αw

S
N

)}
∑K

k=1

∏
w �=k Eλw

{
mv log2

(
1 + λw

γw

tw
βw

αw

S
N

)} (3.13)
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The end-to-end capacity C = C1 = . . . = CK is obtained by inserting (3.13) into (3.12), i.e.

C =

∏K
w=1 Eλw

{
mv log2

(
1 + λw

γw

tw
βw

αw

S
N

)}
∑K

k=1

∏
w �=k Eλw

{
mv log2

(
1 + λw

γw

tw
βw

αw

S
N

)} (3.14)

Equation (3.14) is conveniently expressed as

C =


 K∑

k=1

1

Eλk

{
mv log2

(
1 + λk

γk
tk

βk
αk

S
N

)}


−1

(3.15)

which constitutes a 2K-dimensional optimisation problem with respect to (w.r.t.) the frac-

tional bandwidth and power allocations αk and βk, respectively.

Exact Optimisation via Lagrangian

Using Lagrange’s method [60] for maximising (3.15) under constraints (3.9) and (3.10),

suggests the Lagrangian

L =


 K∑

k=1

1

Eλk

{
mv log2

(
1 + λk

γk
tk

βk
αk

S
N

)}


−1

+ ι

[
1−

K∑
k=1

αk

]
+ κ

[
1 −

K∑
k=1

βk

]
(3.16)

which is differentiated w.r.t. αk K times and then w.r.t βk another K times. The resulting

2K equations are equated to zero and the system of equations is resolved in favour of any

αk and βk, where ι and κ are chosen so as to satisfy (3.9) and (3.10).

Clearly, a pdf given in the form of (2.32) leads to 2K equations which are not explicitly

resolvable in favour of the sought variables. This is the main reason why no explicit resource

allocation strategy has been developed to date, where only numerical optimisation routines

can be found in the literature.

Optimised Fractional Bandwidth and Optimised Fractional Power

An explicit resource allocation algorithm has been developed by the author, which yields a

close to optimum solution, the precision of which is being assessed below. To this end, it

is suggested to reduce the 2K dimensional optimisation problem (3.15) to a K-dimensional

optimisation problem by optimising w.r.t. βk
αk

, the ratio between the fractional power and

bandwidth allocation. In Appendix 3.7 (Derivation II) it is shown that

K∑
k=1

βk

αk
≈ K (3.17)

Applying approximation (2.98) and taking (3.17) into account, (3.15) can be simplified to

C ≈


 1

Λ (t1, r1)
√

γ1
S
N

√
K −∑K

k=2
βk
αk

+
K∑

k=2

1

Λ (tk, rk)
√

γk
S
N

√
βk
αk



−1

(3.18)
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which constitutes now a (K − 1)-dimensional optimisation problem w.r.t. βk
αk

with k =

2, . . . , K. The approximate capacity gain Λ(t, r) in dependency of the number of transmit

antennas t and receive antennas r can be taken from (2.105) for the appropriate commu-

nication scenarios. The maximum end-to-end capacity is obtained by equating the first

derivative of C w.r.t. β2

α2
, . . . , βK

αK
to zero. Instead of maximising C it is more convenient to

minimise 1/C, i.e.

∂

(
1
C

)

∂

(
β2

α2

) = . . . =
∂

(
1
C

)

∂

(
βK

αK

) ≡ 0 (3.19)

After partial differentiation, one obtains

1

Λ(t1, r1)

√
γ1

S

N

[
K −

K∑
v=2

βv

αv

] 3
2

− 1

Λ(t2, r2)

√
γ2

S

N

[
β2

α2

] 3
2

= 0 (3.20)

...
1

Λ(t1, r1)

√
γ1

S

N

[
K −

K∑
v=2

βv

αv

] 3
2

− 1

Λ(tK , rK)

√
γK

S

N

[
βK

αK

] 3
2

= 0 (3.21)

The K − 1 equations can be resolved for any βv/αv which yields, as demonstrated in

Appendix 3.7 (Derivation III)

βv

αv
≈ K ·

∏
w �=v

3
√

γw · Λ2(tw, rw)∑K
k=1

∏
w �=k

3
√

γw · Λ2(tw, rw)
(3.22)

The fractional bandwidth allocations αv=(1,...,K) can now be obtained by substituting (3.22)

into (3.13). The fractional power allocations βv=(1,...,K) can finally be obtained by inserting

the prior obtained αv into (3.22) and solving for βv.

Since the derived fractional resource allocation rules are the result of various approxi-

mations, they have to be applied with care.

First, one has to make sure that the constraints (3.9) and (3.10) hold for the derived αv

and βv. Therefore, it is suggested to derive K − 1 coefficients αv and βv, and then obtain

the remaining two αv and βv from (3.9) and (3.10). Second, it is suggested to obtain the

K − 1 coefficients αv and βv from the first K − 1 strongest links, where the strength is

determined by γw · Λ2(tw, rw). Third, the obtained K capacities Cv∈(1,K) are not entirely

equal, which is again due to the approximations deployed. The end-to-end capacity utilising

the above-given technique is hence obtained by choosing the minimum of all Cv.

The flowchart in Figure 3.7 summarises the method in obtaining the fractional band-

width and power allocations.
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Equal Fractional Bandwidth and Optimised Fractional Power

To compare the performance benefits of the above-developed fractional resource alloca-

tion algorithm, a similar algorithm is developed here with the fractional power alloca-

tion optimised only. With the fractional power βv to be optimised and equal bandwidth

αv = 1/K, (3.12) turns into

Cv =
1
K

· Eλv

{
mv log2

(
1 + λvβvK

γv

tv

S

N

)}
(3.23)

≈
√

βv

√
γv

K

√
S

N
Λ(tv, rv) (3.24)

Equating all capacities Cv given by (3.24) and applying constraint (3.10) allows one to

resolve the set of equations in favour of any βv as

βv ≈
∏

w �=v γw · Λ2(tw, rw)∑K
k=1

∏
w �=k γw · Λ2(tw, rw)

(3.25)

which, when inserted into (3.23), yields the end-to-end capacity C. Again, the obtained

capacities Cv do not entirely coincide because of the approximation chosen. The end-to-end

capacity will therefore be dominated by the smallest of all. Note finally that the case of

optimised bandwidth and equal power has not been considered here because of negligible

applicability.

Equal Fractional Bandwidth and Equal Fractional Power

Finally, the trivial case of equal fractional bandwidth and power yields for the capacity at

each stage Cv = 1
K ·Eλv

{
mv log2

(
1 + λv

γv

tv
S
N

)}
, and the end-to-end capacity C is obtained

by choosing the minimum of all Cv.

3.3.2 Performance of MIMO Relaying without Resource Reuse

The developed fractional resource allocation algorithms are assessed below for various VAA

relaying scenarios. The simplest scenario is the 2-stage relaying scenario with only one

relaying VAA tier. In addition to this, the 3-stage relaying configuration is assessed. More

relaying stages have not been analysed here due to the lengthy numerical optimisation. The

obtained graphs are generally labelled on the parameter p defined as

p �
[
10 log10

(
γ1

γ1

)
, 10 log10

(
γ2

γ1

)
, . . . , 10 log10

(
γK

γ1

)]
(3.26)

which characterises the relative strength in dB of the K relaying stages with respect to the

first stage.

The 2-Stage VAA Relaying Scenario

The precision and applicability of the derived resource allocation strategies is assessed here

for various antenna configurations of the 2-stage VAA relaying scenario.
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a) Single Antenna Element. The derived resource allocation strategies are obviously

also applicable to traditional relaying networks with one antenna element per MT. The

precision of the developed fractional resource allocation algorithm is assessed in Figure 3.8.

It depicts the optimum end-to-end capacity obtained via numerical optimisation on (3.16)

and the approximate end-to-end capacity obtained from (3.22), (3.13) and (3.12) versus

the SNR in the first relaying stage. The graphs are labelled on the parameter p as defined

in (3.26) with K = 2, where the second relaying channel is 10dB and 5dB stronger than the

first one, equally strong than the first one, and 5dB and 10dB weaker than the first one.

It can be observed that the exact and developed end-to-end capacities almost coincide.

The error was found not to exceed 3% for any of the depicted cases. The developed explicit

resource allocations are hence a powerful tool in obtaining a near-to-optimum end-to-end

capacity without the need for lengthy numerical optimisations. The algorithm is shown to

be applicable for channels with attenuations differing by magnitudes.

Figure 3.9 compares the obtained end-to-end capacities of various allocation strategies,

where the curves are labelled on p =
(
[0, 10], [0, 0], [0,−10]

)
dB. The numerically obtained

optimum allocation strategy is depicted together with the developed strategies of optimised

bandwidth and power, equal power but optimised bandwidth, and equal bandwidth and

equal power. When both links are equally strong, i.e. p = [0, 0]dB, then all of the considered

allocation strategies yield the same end-to-end capacity. This is obvious because for the

given symmetric communication scenario, resources have to be shared equally between the

relaying terminals.

When the second link is 10dB weaker, i.e. p = [0,−10]dB, then optimising bandwidth

and power or optimising power only yields close to optimum performance. This is because

for low SNR, log(1+x) ≈ x, which, with reference to (3.12), makes the optimisation problem

independent of the bandwidth αv. When no optimisation is performed then the end-to-end

capacity is dictated by the weakest link, here the second link which is 10 times weaker than

the first one. The capacity is considerably lower than for the optimised cases; at an SNR of

6dB a loss in rate of 40% can be observed, whereas at a rate of 0.4 bits/s/Hz approximately

40% more power is required.

When the second link is 10dB stronger, i.e. p = [0, 10]dB, then optimising bandwidth

and power yields close to optimum performance, whereas only optimising power does not.

This is because for high SNR, the dependence of the end-to-end capacity on the bandwidth

αv increases. At an SNR of 6dB, a relative loss of approximately 10% occurs. As for the

case where no optimisation is performed, the end-to-end capacity is dictated by the first link

which yields the same end-to-end capacity as for p = [0, 0]dB. Here, a relative loss of 30%

occurs at an SNR of 6dB, or 50% more power is required to maintain a rate of 1 bit/s/Hz.

Note that the absolute loss in bits/s/Hz is much higher as for the case of p = [0,−10]dB.
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Figure 3.8: Comparison between optimum end-to-end capacity and the capacity obtained
with the aid of the fractional resource allocation algorithm for a 2-stage network.
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Figure 3.9: Achieved end-to-end capacity of various fractional resource allocation strategies
for a 2-stage network.
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Figure 3.10: Comparison between optimum end-to-end capacity and the capacity obtained
with the aid of the fractional resource allocation algorithm for a 2-stage network with a
varying number of transmit and receive antennas.
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Figure 3.11: Achieved end-to-end capacity of various fractional resource allocation strategies
for a 2-stage network.
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For decreasing differences in the attenuations between the links, the relative and absolute

errors in the maximum achievable end-to-end capacities of all developed allocation strategies

decrease. The example of 10dB difference has been chosen to obtain some upper bounds on

the occurring errors.

b) Multiple Antenna Elements. The algorithms are now scrutinised for communica-

tion scenarios where the MTs possess multiple but equal number of antenna elements.

Figure 3.10 is the equivalent to Figure 3.8, with the only difference that each MT possesses

two or four transmit and receive antennas. Again, the occurring errors between derived

allocation strategy and an optimum allocation is below 3%.

Figure 3.11 is the equivalent of Figure 3.9, with the only difference that each terminal

possesses 4 antenna elements; note that the p = [0, 0]dB case has been omitted here due

to the symmetric communication scenario. The same comments on the precision of the

algorithms as above apply. For a second link being 10 times weaker than the first link, the

allocation of optimised bandwidth/power and power only yield close to optimum perfor-

mance, whereas no optimisation leads to a loss of 40% at an SNR of 6dB, or approximately

75% more power is required to maintain 1 bit/s/Hz. When the second link is 10 times

stronger than the first one, then the losses from optimum to optimised power only is about

8%, whereas from optimum to no optimisation a loss of about 30% occurs at an SNR of

6dB or, alternatively, 85% more power is needed to accomplish 4 bits/s/Hz.

The demonstrated performance gains and power savings clearly underline the merit of

the developed fractional resource allocation algorithms.

c) Differing Antenna Elements. The importance of the developed strategy, however,

becomes apparent when the 2-stage communication scenario is optimised for terminals with

a different number of antenna elements. The precision of the fractional resource allocation

algorithm, as well as its performance gains when compared to sub-optimal solutions, is

exposed in Figures 3.12 and 3.13.

In particular, Figure 3.12 depicts the case where a s-MT with one antenna element

communicates with a t-MT (or t-VAA) with three elements via a relaying stage, which

effectively provides two relaying antennas. The asymmetry of the gains provided by the

respective distributed-MIMO relaying stages causes the sub-optimum allocation strategies

not to overlap with the optimum one for p = [0, 0]dB. Furthermore, non-linearities can be

observed in the end-to-end capacity for the case of optimised power only, which is due to

the approximation utilised in the derivation of the allocation strategy. In fact, one can

observe a breakpoint which divides the zones where one or the other approximate capacity

dominates the end-to-end capacity.
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Figure 3.12: Achieved end-to-end capacity of various fractional resource allocation strategies
for a 2-stage network.
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Figure 3.13: Achieved end-to-end capacity of various fractional resource allocation strategies
for a 2-stage network.
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Figure 3.14: Achieved end-to-end capacity of various fractional resource allocation strategies
for a 3-stage network.
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Figure 3.15: Achieved end-to-end capacity of various fractional resource allocation strategies
for a 3-stage network.
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However, the optimised fractional bandwidth and power allocation strategy yields close

to optimum performance, even if the link attenuations and the created MIMO configurations

differ significantly. Additionally, the gains obtained from a bandwidth/power optimised

system when compared to a power optimised or non-optimised system increase with the

balance between both links decreasing. For instance, for p = [0, 10]dB, the first (1 × 2)

MIMO link is much weaker than the second (2 × 3) link. At an SNR of 6dB the capacity

losses of a power optimised system is then 20% and of a non-optimised system a considerable

40%. Alternatively, the power required to maintain 2 bits/s/Hz is about 55% higher for the

power optimised system, whereas a non-optimised system requires 120% (!) more power.

Figure 3.13 depicts a (1×4)/(4×1) scenario. The same tendencies as already described

can be observed; additionally, the precision of the developed fractional bandwidth/power

allocation strategy is once more corroborated.

The 3-Stage VAA Relaying Scenario

The 3-stage relaying scenario is dealt with in less detail as for the 2-stage case, which is

due to the increased simulation times and the increased number of potentially different

communication scenarios. To this end, Figures 3.14 and 3.15 depict the performance of the

developed resource allocation algorithms for the 3-stage communication scenario.

Explicitly, Figure 3.14 deals with the case of only one antenna element per MT, i.e. a

(1×1)/(1×1)/(1×1) relaying scenario. The case of equally strong links when p = [0, 0, 0]dB

yields an equal performance for any of the allocation strategies, which is again due to

the scenario’s symmetry. The allocation strategies, however, deviate from the numerically

obtained optimum when the links are unbalanced; the error was found to be below 3%.

Figure 3.15 shows the performance of the allocation strategies for the relaying scenario of

(1 × 2)/(2 × 3)/(3 × 2). Here, the approximation error was found not to exceed 5%.

The scrutinised communication scenarios hence confirm the applicability and precision

of the developed explicit fractional bandwidth and power allocation strategy. The optimised

systems were shown to perform near-optimum, with drastic gains in communication rates

at a given SNR, or power savings at a given communication rate.

3.3.3 MIMO Relaying with Resource Reuse

The reuse of resources under the assumption of orthogonal relaying is analysed here. With

reference to Figure 3.4, there are Z interference zones within which the reuse of resources

would cause interference. It is further assumed that the optimum formation of VAA relaying

stages is accomplished according to the description at the beginning of Section 3.3, which

implies that each of the v ∈ (1, K) stages is assigned tv transmit and rv receive elements.
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Defining as Kz∈(1,Z) the number of stages in the zth interference zone, then the capacity

of the vth stage is given through (3.12); however, end-to-end capacity optimisation is now

performed under the following constraints
Kz+Kz−1∑
v=1+Kz−1

αv ≡ 1, z = 1, . . . , Z (3.27)

K∑
v=1

βv ≡ 1 (3.28)

where K0 � 0 and
∑Z

z=1 Ki = K. Put in words, the power (energy) required to deliver

information from source to sink is still normalised taking all relaying stages into account;

however, the fractional bandwidths are now only normalised over one interference zone.

Optimising (3.12) under the set of constraints (3.27) and (3.28) is again not feasible

utilising a Lagrangian approach. Furthermore, the author could attain a satisfactory solu-

tion optimising fractional bandwidth and power for special communication scenarios only.

The lack of generality is the reason why this case has been excluded from further analysis.

However, a sufficiently precise solution could be derived when optimising power only.

Equal Fractional Bandwidth and Optimised Fractional Power

Equal fractional bandwidth implies that the same bandwidth is assigned to each relaying

stage within an interference zone. With the fractional power βv to be optimised and equal

bandwidth per interference zone, i.e. αv∈(1+Kz−1,Kz+Kz−1) = 1/Kz, (3.12) turns into

Cv∈(1+Kz−1,Kz+Kz−1) =
1

Kz
· Eλv

{
mv log2

(
1 + λvβvKz

γv

tv

S

N

)}
(3.29)

≈
√

βv

√
γv

Kz

√
S

N
Λ(tv, rv) (3.30)

for z = 1, . . . , Z. Equating all capacities Cv given by (3.30) and applying constraint (3.28)

allows one to resolve the set of equations in favour of any βv as

βv ≈
∏Z

z=1

∏Kz+Kz−1

w=1+Kz−1,w �=v γw · Λ2(tw, rw)/Kz∑K
k=1

∏Z
z=1

∏Kz+Kz−1

w=1+Kz−1,w �=k γw · Λ2(tw, rw)/Kz

(3.31)

which, when inserted into (3.29), yields the end-to-end capacity C for a relaying system

allowing a reuse of resources. Since the obtained capacities Cv do not entirely coincide, the

end-to-end capacity will again be dominated by the smallest of all.

Equal Fractional Bandwidth and Equal Fractional Power

The trivial case of equal fractional bandwidth per interference zone and equal power for

each relaying stage yields for the capacity at each stage

Cv∈(1+Kz−1,Kz+Kz−1) =
1

Kz
· Eλv

{
mv log2

(
1 + λv

Kz

K

γv

tv

S

N

)}
(3.32)

and the end-to-end capacity C is obtained by choosing the minimum of all Cv.
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Performance

The performance of the fractional power allocation strategy is investigated here. Clearly,

the number of potential scenarios is much greater than for the case without resource reuse.

This is the reason why only a few selected scenarios are scrutinised.

Figure 3.16 depicts the achieved end-to-end capacity for a 2-stage (1 × 4)/(4 × 1) com-

munication scenario with frequency reuse. To allow for such configuration, the relaying

stage requires 8 antenna elements, because transmission and reception at the same time

and frequency is not feasible.

The optimum end-to-end capacity is obtained via numerical optimisation of (3.12) un-

der constraints (3.27) and (3.28), i.e. bandwidth and power are optimised numerically.

The capacity for equal bandwidth and optimum power is obtained utilising (3.31) inserted

into (3.29) with Z = 2 and K1 = K2 = 1, whereas the capacity for non-optimised bandwidth

or power is obtained from (3.32). From Figure 3.16 it is clear that the derived fractional

power allocation strategy performs very well, even for highly unbalanced communication

links. The error was again found not to exceed 3%.

Furthermore, for the chosen antenna configuration and an SNR in the first link of 6dB,

the gain due to the deployed fractional power allocation mounts to approximately 100%, 30%

and 15% for p = [0,−10]dB, p = [0, 0]dB and p = [0, 10]dB, respectively, when compared

to a non-optimised system. The power savings mount to 50%, 30%, 20% at a rate of 0.5

bits/s/Hz for p = [0,−10]dB, 2 bits/s/Hz for p = [0, 0]dB and 4 bits/s/Hz for p = [0, 10]dB,

respectively, when compared to a non-optimised system.

Note that resource reuse allows achieving higher end-to-end capacities when compared

to systems without resource reuse. This becomes apparent when comparing the absolute

values of the achieved end-to-end capacities of Figure 3.16 with the ones of Figure 3.13,

which deal with a (1 × 4)/(4 × 1) system with and without resource reuse, respectively.

Finally, Figure 3.17 depicts the case of a highly asymmetric (1×2)/(2×3)/(3×2) scenario

with Z = 2 and K1 = 1, K2 = 2. The precision of the developed fractional power allocation

strategy is clearly limited; nonetheless, it still yields significant gains when compared to

a non-optimised system. At an SNR of 6dB, the loss in precision of the fractional power

allocation algorithm when compared to the numerically obtained optimum is approximately

10%, 11% and 12% for p = [0,−10]dB, p = [0, 0]dB and p = [0, 10]dB, respectively. The

gain when compared to a non-optimised system, however, is approximately 70%, 20% and

50% for p = [0,−10]dB, p = [0, 0]dB and p = [0, 10]dB, respectively.

Here, the power savings mount to 60%, 30%, 100% at a rate of 0.5 bits/s/Hz for p =

[0,−10]dB, 1.5 bits/s/Hz for p = [0, 0]dB and 1.5 bits/s/Hz for p = [0, 10]dB, respectively,

when compared to a non-optimised system.
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Figure 3.16: Achieved end-to-end capacity of various fractional resource allocation strategies
for a 2-stage relaying network with resource reuse.
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Figure 3.17: Achieved end-to-end capacity of various fractional resource allocation strategies
for a 3-stage relaying network with resource reuse.
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3.3.4 O-MIMO Relaying

Similar fractional allocation strategies with and without resource reuse can also be derived

for relaying networks deploying O-MIMO. The derivations for an O-MIMO channel with

equal sub-channel gains differ slightly from the case with unequal sub-channel gains. Here,

the cases of equal sub-channel gains for Rayleigh and Nakagami fading channels is consid-

ered, as well as the case of unequal sub-channel gains for Rayleigh fading only. The analysis

can easily be extended to the cases of generic attenuations for the Rayleigh and Nakagami

fading cases; however, it was omitted here because the principle is already sufficiently out-

lined with the case of unequal gains over a Rayleigh fading O-MIMO channel.

Equal Sub-Channel Gains

For equal sub-channel gains, Λ(tv, rv) occurring in the above analysis is simply replaced by

the respective expressions in (2.105). Furthermore, the exact capacities, denoted by the

expectations in the above analysis, are calculated utilising (2.73) for the case of Rayleigh

fading and (2.89) for the case of Nakagami fading with equal channel gains. The performance

is demonstrated with the aid of Figures 3.18 and 3.19. Note that for these examples not

more than two transmit antennas (Alamouti scheme) were studied, because a deployment

of STBCs with a rate less than one is not worthy when considering ergodic channels, as

shown in Section 2.4.2.

Explicitly, Figure 3.18 shows the attained capacity of a 2-stage relaying system versus

the SNR in the first link for various resource allocation algorithms over Rayleigh fading

channels. In the first stage, a SIMO communication is realised with one transmit and

two receive elements. The second stage utilises Alamouti encoding with two transmit and

four receive elements, the rate hence being R2 = 1. Clearly, the developed fractional

power and bandwidth allocation algorithm performs close to optimum, even for highly

asymmetric communication links. As observed before, sub-optimum resource allocation

strategies, such as optimising power only or allocating equal resources to each link, exhibit

a poorer performance. As an example, for the highly asymmetric scenario of t2 > t1, r2 > r1

and the second link being 10dB stronger than the first link, the developed fractional capacity

allocation strategy performs by 30% better than the strategy of equal resources at an SNR

of 6dB in the first link. Furthermore, 80% transmission power can be saved when operating

at 2 bits/s/Hz.

Figure 3.19 is the equivalent to Figure 3.18 with the only difference that Nakagami

channels are deployed, where f1 = 5 (strong LOS) in the first and f2 = 1 (Rayleigh) in the

second stage. Again, the developed fractional resource allocation algorithm performs near

optimum. It can further be observed that the absolute capacities are slightly improved with

respect to the Rayleigh fading case, which is due to strong LOS channels in the first link.
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Figure 3.18: Achieved end-to-end capacity of various fractional resource allocation strategies
for a 2-stage relaying network over O-MIMO Rayleigh channels.
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Figure 3.19: Achieved end-to-end capacity of various fractional resource allocation strategies
for a 2-stage relaying network over O-MIMO Nakagami channels.

109



Unequal Sub-Channel Gains

If the channel attenuations within the vth stage are different, then the fractional power βv

allocated to that stage can be distributed among the transmitting elements in an optimum

manner. Since the distribution will influence the achieved capacity in the vth stage, the

end-to-end capacity optimisation process will also depend on it. This requires an optimum

distribution of power among the transmitting elements in each stage to be found, only after

which the above-derived allocation strategies can be applied.

The optimum power distribution is achieved by deploying water-filling in the spatial

domain, c.f. Section 2.3.2. Because of the fairly intricate expressions, neither an explicit nor

an iterative expression could be derived which determines an optimum allocation of power to

each transmit element. For slightly differing channel gains, it is hence suggested to allocate

equal transmit power to all transmit elements and use the average of all channel gains as the

input to the respective equations for the vth relaying stage, i.e. γv ≈ ∑uv
i=1 γv,i/uv, where

uv is the number of sub-channels in the vth stage, and γv∈(1,K),i∈(1,uv) are the associated

channel gains.

If, however, the channel attenuations within the same relaying stage differ drastically,

a numerical optimisation has to be performed. Interestingly, an approximate expression

for the power distribution could be obtained, the analysis of which is deemed to be an

interesting topic of future research.

To this end, the reader is reminded that with tv transmit and rv receive elements, there

are uv = tv · rv channels with unequal gain. It is hence the aim to allocate a fractional

power εv∈(1,K),i∈(1,tv) to each transmit element, where at any stage v

tv∑
i=1

εv,i ≡ 1 (3.33)

Since the power is distributed among the tv transmit antennas only, and not among all uv

sub-channels, eq. (2.78) needs to be rewritten as

Cv = Rv

tv∑
i=1

rv∑
j=1

K(i−1)rv+j · Ĉ0

(
εv,i · γ(i−1)rv+j

Rv

S

N

)
(3.34)

where, with reference to (2.76), the coefficients K(i−1)rv+j can be calculated as

K(i−1)rv+j =
tv∏

i′=1

rv∏
j′=1

εv,i · γ(i−1)rv+j

εv,i · γ(i−1)rv+j − εv,i′ · γ(i′−1)rv+j′

∣∣∣∣∣
(i′−1)rv+j′ �=(i−1)rv+j

(3.35)

It is conjectured here that the allocation εv∈(1,K),i∈(1,tv), which maximises (3.34) satisfying

constraint (3.33), can be approximated by

εv,i ≈
∏tv

i′=1,i′ �=i

(∑rv
j=1 γ(i′−1)rv+j

)−3

∑tv
k=1

∏tv
i′=1,i′ �=k

(∑rv
j=1 γ(i′−1)rv+j

)−3 (3.36)
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The approximation becomes apparent for very unbalanced channel gains, where the opti-

mum water-filling algorithm would allocate no power at all to the weakest sub-channels,

eq. (3.36), however, only suggests an asymptotically close to zero power allocation.

The performance of the conjectured transmit power distribution is assessed by means

of Figure 3.20 for the simple case of two transmit and one receive antenna, operating at

an SNR of 6dB. Since only one stage is investigated here, the subscript v is omitted to

simplify notation. Depicted is the power allocation ε1 to the first transmit antenna versus

the relative channel gain γ1 in the first sub-channel which, in this example, is the only

sub-channel from the first transmit antenna. The relative channel gain γ2 in the second

sub-channel has either been kept constant to γ2 = 1 or changed in dependency of γ1, i.e.

γ2 = 2 − γ1. In Figure 3.20 the numerically obtained exact power allocation is compared

against the conjectured power allocation given through (3.36).

It can be observed that in the region where both channel gains are approximately equal,

the conjectured power distribution strategy performs near-optimum. For this particular

case it was found that this region is spanned by ratios between both gains which do not

exceed 2:1. From the figure it is also apparent that if one channel gain is much bigger than

the other, then the optimum allocation yields no power for the weaker link, whereas the

conjectured distribution strategy does allocate some power.

However, the loss in precision has little impact onto the capacity of the respective stage as

demonstrated by means of Figures 3.21−3.22. Figure 3.21 depicts the achieved capacity for a

deployed Alamouti scheme with 2 transmit and 1 receive antenna versus the relative channel

gain γ1 in the first sub-channel, operating at an SNR of 6dB. The channel gain in the second

link is accordingly γ2 = 2−γ1. Three transmit power distribution algorithms are compared:

first, a numerically obtained optimum allocation; second, the conjectured allocation; and

third, an equal transmit power allocation as suggested for approximately equal channel

gains. It can be observed that optimum and conjectured allocation virtually yield the same

capacity over the entire range of γ1, whereas an equal transmit power allocation is only

close to optimum for both channel gains being approximately equal. For example, a ratio

between both channel gains of 1:4 yields a loss of 15% when the equal transmit power

distribution is deployed, instead of the optimum or near-optimum allocation.

Figure 3.22 demonstrates the validity of the conjecture if more than one receive antenna

is present. Here, the case of two transmit and two receive antennas is assumed, where the

respective channel gains are (fairly arbitrary) determined as follows: γ2 = 1.5, γ3 = 2− γ1,

γ4 = 0.5. It is further assumed that γ1 and γ2 are the gains of the sub-channels spanned from

the first transmit antenna towards the two receive antennas; similarly, γ3 and γ4 are the

gains from the second transmit antenna towards the two receive antennas. The algorithm

is again found to perform near optimum.
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The conjectured low complexity power distribution algorithm (3.36) renders numeri-

cal optimisation within the MTs superfluous, and yet accomplishes near-optimum perfor-

mance. With the obtained near-optimum capacities in each stage, the end-to-end capacity

maximising fractional power and bandwidth are obtained following the analysis outlined in

Section 3.3.1. The only difference is that in each stage (2.105) has to be replaced by

Λ(tv, rv) =
√

Rvπ√
tv

tv∑
i=1

rv∑
j=1

K(i−1)rv+j ·
√

εv,i · γv,(i−1)rv+j (3.37)

The applicability of the developed algorithms is assessed by means of a 3-stage dis-

tributed O-MIMO communication scenario as depicted in Figure 3.24. Here, each of the

terminals possesses only one antenna element. The s-MT communicates with the t-MT via

two VAA relaying tiers. The s-MT, being part of the first tier VAA, broadcasts data to the

second tier VAA. A mutual cooperation of the r-MTs within the second tier VAA accom-

plishes a (1×2) MIMO channel. The data is then Alamouti encoded and transmitted to the

third tier VAA, cooperation within which leads to a (2× 2) O-MIMO channel. Finally, the

data is again Alamouti encoded, which reaches the t-MT via a (2 × 1) O-MIMO channel.

The spatial distribution is such that the relative channel gains are different for each link,

which is reflected by different labels to each occurring wireless link in Figure 3.24. In the

second stage, for instance, the relative gains are γ2,1 = 0.4 and γ2,2 = 1.0 from the first

r-MT and γ2,3 = 1.0 and γ2,4 = 1.6 from the second r-MT, both of which accomplish a

distributed space-time block encoding with an outer Shannon channel code.
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The prior developed analysis allows the assignment of fractional resources to each MT

such as to accomplish near-optimum end-to-end capacity, the precision of which is assessed

in Figure 3.23. Depicted is the achieved end-to-end capacity versus the SNR in the first link;

the curves are labelled on p, where p = [0, 5, 10]dB, p = [0, 0, 0]dB and p = [0,−5,−10]dB.

The optimum end-to-end capacity is obtained via numerical optimisation, where both the

fractional bandwidth and power allocation per stage are optimised, as well as the distribu-

tion of the assigned power among the transmit elements.

Three further allocation strategies are compared against the optimum one. The first one

is the developed strategy of determining the near-optimum distribution of the power among

the transmit elements in each VAA relaying tier (here only the second and third) according

to (3.36), after which the fractional bandwidth and power is obtained according to (3.22)

and (3.13) assuming an O-MIMO Rayleigh fading channel with unequal channel gains. For

the second strategy, only the fractional resources per VAA relaying tier are determined; thus,

no water-filling is accomplished at each stage. The third strategy assumes no optimisation

at all, and resources are equally distributed among the MTs.

From Figure 3.23 it is clear that the first allocation strategy yields a near-optimum

end-to-end capacity. Furthermore, optimising the distribution of the transmit power per

relaying tier yields an additional performance benefit, e.g. a 10% rate gain at an SNR of

6dB or, alternatively, a 30% power gain at 0.2 bits/s/Hz for p = [0, 0, 0]dB. Performing

no optimisation at all yields by far the worst performance, e.g. the loss in rate mounts to

30% at an SNR of 6dB or, alternatively, 50% on transmission power is lost if a rate of 0.2

bits/s/Hz was to be maintained for p = [0, 0, 0]dB.

In summary, sufficiently precise fractional bandwidth and power allocation algorithms

have been developed for a variety of distributed-MIMO multi-stage networks communicat-

ing over ergodic channels. The exposed algorithms are of very low complexity, yet they

perform near-optimum. That renders a numerical optimisation within each mobile terminal

superfluous.

Note that the complexity of numerical optimisation routines is prohibitively high and

hence not applicable. For example, to find an optimum fractional bandwidth and power

allocation for a simple example as depicted in Figure 3.24, the numerical optimisation

required 5min per point on a Pentium III, 800MHz. That is in contrast to the developed

algorithms, which take a fraction of a second to be calculated.

Finally, the reader is reminded that the fractional bandwidth and power allocations de-

veloped are easily translated into fractional frame duration and power allocations according

to the analysis exposed in Section 3.2.3. That is, a fractional bandwidth αv translates into a

frame duration αv, whereas a fractional transmission power βv for an FDMA-based system

translates into a transmission power βv/αv for a TDMA-based system.
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3.4 Maximum Throughput for Non-Ergodic Channels

As thoroughly illuminated in Chapter 2, the capacitive behaviour of a non-ergodic channel is

entirely characterised by the rate Φ supported with probability 1−Pout(Φ). The normalised

(spectral) throughput Θ measured in [bits/s/Hz] is shown in Appendix 3.7 (Derivation IV)

to be

Θ ∝ Φ · (1 − Pout(Φ)
)

(3.38)

where the outage probability Pout(Φ) has been developed for various communication sce-

narios in closed form in Chapter 2. Clearly, for each dependency Pout on Φ, there exists an

optimum rate Φ such as to maximise the throughput Θ according to (3.38). Such rate Φ is

found by differentiating (3.38) to arrive at

1 − Pout(Φ) = Φ · ∂

∂Φ
Pout(Φ) (3.39)

which, with respect to the closed form expressions of the outage probabilities introduced

in Chapter 2, has proven to be impossible to obtain in explicit form. To this end, the

approximation of the outage probability introduced in Section 2.5.2 proves vital.

3.4.1 Transformation into Equivalent Ergodic Problem

It is demonstrated here, that the problem related to finding the maximum end-to-end

throughput over non-ergodic channels can be reduced to the developed analysis for er-

godic channels. The reduction comes at the expense of loss in precision, which is due to the

tractable approximations introduced in Section 2.5.2 to express the outage probability, i.e.

γ(r, x)
/
Γ(r) ≈ axb (3.40)

where r ∈ N is a parameter. The constants a and b are chosen such as to minimise the

approximation error; they depend on r and are tabled in Table 2.3 of Chapter 2.

The SIMO Channel

With approximation (3.40), the outage capacity of a SIMO channel given by (2.55) can be

expressed as

Pout(Φ) = γ
(
r,
(
2Φ − 1

)/(
S/N

))/
Γ(r) (3.41)

≈ a ·
(

2Φ − 1
S/N

)b

(3.42)

where a = a(r) and b = b(r). It is easily resolved in favour of Φ as

Φ (Pout) ≈ log2

(
1 + b

√
Pout

a

S

N

)
(3.43)
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The throughput Θ can hence be approximated as

Θ ≈ (1 − Pout) · log2

(
1 + b

√
Pout

a

S

N

)
(3.44)

≈ (1 − Pout) · 2b

√
Pout

a

√
S

N
(3.45)

where approximation (3.45) is due to the square root approximation of the logarithm. The

throughput-maximising outage probability is now obtained by differentiating (3.44) along

Pout. After some elementary manipulations, this yields

Pout ≈ 1
1 + 2b

(3.46)

which is a remarkable result because the outage probability is shown to be approximately

independent from the SNR, and hence from fractional power and bandwidth allocations.

The precision of (3.46) is assessed with the aid of Figure 3.25, which depicts a comparison

between the numerically obtained exact throughput-maximising outage probability and the

one given by (3.46) versus the number of receive elements at an SNR of 3dB, 6dB and 9dB.

It is observed that the approximation error does not exceed 10% for the SNRs chosen.

Inserting (3.46) into (3.44), and allocating a fractional bandwidth αv and a fractional

power βv to the vth relaying stage, the throughput of that stage experiencing a pathloss γv

can be expressed as

Θv ≈ αv ·
(

2b

1 + 2b

)
· log2

(
1 +

γv

b
√

a(1 + 2b)
βv

αv

S

N

)
(3.47)

Again, the end-to-end throughput will be dictated by the weakest link. The maximum

end-to-end throughput is hence achieved by equating the throughputs of all stages, and

maximising the set of equations with respect to the fractional bandwidth and power allo-

cations.

With reference to the ergodic cases it is shown here that, except for some multiplicative

factors, maximising the end-to-end throughput over non-ergodic channels is equivalent to

the problem of maximising the end-to-end capacity over ergodic channels. That allows

applying exactly the same fractional resource allocation strategies as derived before.

The MISO Channel

The precision of the approximated throughput-maximising outage probability given by (3.46)

suffers slightly for the MISO case, which is illustrated by means of Figure 3.26. Nonetheless,

it proves applicable to the optimisation problems as will be demonstrated below. Similarly

to the SIMO channel, the throughput of the vth MISO stage can hence be derived as

Θv ≈ αv ·
(

2b

1 + 2b

)
· log2

(
1 +

γv

t · b
√

a(1 + 2b)
βv

αv

S

N

)
(3.48)

where a = a(t) and b = b(t). The very same conclusions as for the SIMO channel hold.
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Figure 3.25: Comparison between exact and approximate throughput-maximising outage
probability versus the number of receive elements for a SIMO channel.
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probability versus the number of transmit elements for a MISO channel.
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The MIMO Channel

The MIMO channel is not dealt with because there is no closed-form expression for the out-

age probability over MIMO channels. An upper bound on the outage probability, however,

is obtained by replacing the available t × r MIMO channel with a 1 × r SIMO channel, on

which all optimisation problems are performed.

The O-MIMO Channel

For a STBC transmission over a channel with equal channel gains, the throughput of the

vth stage can similarly be derived as

Θv ≈ αv · R ·
(

2b

1 + 2b

)
· log2

(
1 +

1
tR

γv

b
√

a(1 + 2b)
βv

αv

S

N

)
(3.49)

where a = a(u) and b = b(u) for Rayleigh fading, and a = a(uf) and b = b(uf) for

Nakagami fading with fading parameter f , and u = t · r. The Rayleigh fading case with

unequal channel coefficients and no transmit power optimisation is obtained as

Θv ≈ αv · R ·
(

2b

1 + 2b

)
· log2


1 +

1
tR

γv

b
√

a(1 + 2b)
1

b

√∑u
i=1 Ki/γb

i

βv

αv

S

N


 (3.50)

where a = a(1) and b = b(1). If an optimum fractional transmit power εi∈(1,t) is deployed,

then the above equation can be written as

Θv ≈ αvR

(
2b

1 + 2b

)
log2


1 +

1
tR

γv

b
√

a(1 + 2b)
1

b

√∑t
i=1

∑r
j=1

K(i−1)r+j

(εi·γ(i−1)r+j)
b

βv

αv

S

N


 (3.51)

with K(i−1)r+j given by (3.35).

The cases of generic Rayleigh and Nakagami fading cannot be obtained in a similar

fashion which is due to the differing exponent of each summand when applying the ap-

proximated lower incomplete Gamma function to, e.g., eq. (2.95). That is not deemed to

be a serious limitation, as realistic scenarios with unequal channel gains can always be

approximated by a channel with equal gains.

A General Expression

The throughput of any of the aforementioned examples can be generalised to

Θv ≈ αvAv · log2

(
1 + γv

Bv

tv

βv

αv

S

N

)
(3.52)

where the respective Av and Bv are found by comparing (3.52) with (3.47)−(3.51). Eq. (3.52)

proves useful in deriving general fractional resource allocation algorithms, which can then

be applied to the required communication scenario.
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3.4.2 MIMO Relaying without Resource Reuse

The throughput of the vth SIMO stage with fractional bandwidth αv and fractional power

βv experiencing a channel attenuation γv is, with reference to (3.38) and (2.55), given as

Θv = Φv ·
[
1 − γ

(
rv,

2Φv/αv − 1

γv
βv

αv

S
N

)/
Γ(rv)

]
(3.53)

Utilising approximation (3.40), the throughput-maximising rate Φv over the vth stage can

be approximated as

Φv ≈ αv log2

(
1 +

γv

b
√

a(1 + 2b)
βv

αv

S

N

)
(3.54)

where a = a(rv) and b = b(rv). It is hence the aim to find fractional bandwidth and power

such as to maximise the end-to-end throughput. To this end, the allocation strategies of

optimised fractional bandwidth and power, equal bandwidth and optimised power, and

equal bandwidth and power are dealt with below.

Optimised Fractional Bandwidth and Optimised Fractional Power

The fractional bandwidth allocation αv can be found analogously as for the scenario of

MIMO relaying without resource reuse over ergodic channels. It is given as

αv =

∏
w �=v Aw log2

(
1 + γw

Bw
tw

βw

αw

S
N

)
∑K

k=1

∏
w �=k Aw log2

(
1 + γw

Bw
tw

βw

αw

S
N

) (3.55)

where the ratio between fraction power βw and fractional bandwidth αw is found to be

βv

αv
≈ K ·

∏
w �=v

3
√

γw/tw · A2
wBw∑K

k=1

∏
w �=k

3
√

γw/tw · A2
wBw

(3.56)

The fractional bandwidth αv of each stage is hence obtained by inserting (3.56) into (3.55).

Furthermore, there are two ways of determining the optimum communication rate. First,

eq. (3.55) and (3.56) are inserted into (3.53), after which a simple numerical sweep across

the rate is performed within each terminal to determine the rate Φv which yields maximum

throughput. Second, eq. (3.55) and (3.56) are inserted into (3.54), which determines the

approximate communication rate. The throughput is then determined by inserting the

obtained rate, together with fractional bandwidth and power into (3.54). For either case,

the total end-to-end throughput is determined by the minimum of the approximate Θv.

Equal Fractional Bandwidth and Optimised Fractional Power

With reference to the ergodic case, fractional resources are assigned to each stage such that

αv = 1/K (3.57)

βv ≈
∏

w �=v γw/tw · A2
wBw∑K

k=1

∏
w �=k γw/tw · A2

wBw

(3.58)
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Inserted into (3.54), this yields the approximate rate required to communicate at the vth

stage to achieve maximum throughput, which is then given through (3.53). Remember that

the obtained throughputs Θv do not entirely coincide because of the approximation chosen.

The end-to-end throughput will therefore be dominated by the smallest of all.

Equal Fractional Bandwidth and Equal Fractional Power

In this case, resources in terms of fractional bandwidth and power are allocated such that

αv = 1/K (3.59)

βv = 1/K (3.60)

which is expected to yield inferior performance when compared to any of the previous

resource allocation algorithms.

Performance

The derived allocation strategies for general MIMO channels without resource reuse are

assessed by means of Figures 3.27−3.29, which depict the throughput behaviour for a 2-

stage relaying network only. The 3-stage case was found to exhibit the same characteristics

and was thus omitted here; more stages require a numerical optimisation of several weeks

with current computing power.

Explicitly, Figure 3.27 depicts the normalised end-to-end throughput in [bits/s/Hz] ver-

sus the SNR in [dB] in the first link. The throughput of a numerically obtained optimum

resource allocation is compared against the throughput achieved by the developed frac-

tional resource allocation strategies. It can be seen that optimised fractional power and

bandwidth, given through (3.55) and (3.56), yields near-optimum end-to-end throughput

for any of the chosen communication configurations. Similar to the ergodic case, optimising

fractional power only yields a slightly inferior performance when compared to the aforemen-

tioned cases. Finally, optimising neither fractional bandwidth nor power results in drastic

end-to-end performance losses. For p = [0, 10]dB, for example, the gains in communication

rate are more than 40% at an SNR of 6dB or, alternatively, 65% less power is needed to

support 0.6 bits/s/Hz.

The curves in Figure 3.27 have been obtained by applying the respective fractional

resources to (3.53), after which a numerical sweep has been performed to obtain the

throughput-maximising rate at each stage. In contrast to this, Figure 3.28 depicts the same

communication scenario as above with the only difference that the approximate throughput-

maximising rate is found first via (3.54) with the respective fractional resources, after which

the approximate throughput is determined again through (3.54). The precision of that ap-

proach suffers negligibly at the benefit of no optimisation required to assign fractional

resources and to determine the near-optimum communication rate.
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Finally, Figure 3.29 depicts the throughput behaviour of the asymmetric 2-stage com-

munication scenario with four antenna elements in the relaying tier, i.e. (1×4)/(4×1). The

developed fractional resource allocation strategies were again found to perform sufficiently

well.

3.4.3 MIMO Relaying with Resource Reuse

It is the aim here to develop fractional resource allocation strategies which maximise the

end-to-end throughput over non-ergodic channels where resources in terms of fractional

bandwidths are reused in Z interference zones. As for the ergodic case, no satisfactory

fractional bandwidth and power allocation strategy could be derived. For that reason, the

case of equal bandwidth and optimised power is dealt with only.

Equal Fractional Bandwidth and Optimised Fractional Power

Equal fractional bandwidth implies that the same bandwidth is assigned to each relaying

stage within an interference zone. With reference to the ergodic case, this leads to the

following fractional bandwidth and power allocation

αv∈(1+Kz−1,Kz+Kz−1) = 1/Kz (3.61)

βv ≈
∏Z

z=1

∏Kz+Kz−1

w=1+Kz−1,w �=v γw/tw · A2
wBw/Kz∑K

k=1

∏Z
z=1

∏Kz+Kz−1

w=1+Kz−1,w �=k γw/tw · A2
wBw/Kz

(3.62)

which, when inserted into (3.53), allows determining the throughput-maximising rate. The

smallest of all Θv then determines the end-to-end throughput.

Equal Fractional Bandwidth and Equal Fractional Power

The trivial case of equal fractional bandwidth per interference zone and equal power for

each relaying stage yields for the fractional resources

αv∈(1+Kz−1,Kz+Kz−1) = 1/Kz (3.63)

βv = 1/K (3.64)

which, when inserted into (3.53), allows determining the throughput-maximising rate. The

smallest of all Θv then determines the end-to-end throughput.

Performance

The performance of the developed algorithms is exposed in Figure 3.30, which depicts the

end-to-end throughput versus the SNR in the first link for a 3-stage (1× 4)/(4× 1)/(1× 1)

relaying network where the fractional bandwidth is reused in the third stage. Although only

the power was optimised, the performance is near-optimum for any of the chosen channel

conditions, i.e. p = [0, 5, 10]dB, p = [0, 0, 0]dB and p = [0,−5,−10]dB.
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Figure 3.27: Achieved end-to-end throughput of various fractional resource allocation strate-
gies utilising a simple numerical optimisation of the rate in each stage for a 2-stage network.
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Figure 3.28: Achieved end-to-end throughput of various fractional resource allocation strate-
gies utilising an approximation for the rate in each stage for a 2-stage network.
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Figure 3.29: Achieved end-to-end throughput of various fractional resource allocation strate-
gies for a 2-stage network.
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Figure 3.30: Achieved end-to-end throughput of various fractional resource allocation strate-
gies for a 3-stage network with resource reuse.
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3.4.4 O-MIMO Relaying

The fractional resource allocation strategies over O-MIMO channels with and without re-

source reuse are derived in the same fashion as for the above MIMO channels. Additionally,

reference can be taken from the allocation strategies developed for ergodic O-MIMO chan-

nels. Again, the allocation for O-MIMO channels with equal channel gains differs from

the case of unequal channel gains. The cases of Rayleigh and Nakagami fading with equal

channel gains are dealt with below, as well as the case of unequal channel gains for Rayleigh

fading only. Note that, in contrast to the ergodic counterpart, the exposed approach is not

applicable to generic channel gains obeying any fading statistics.

Equal Sub-Channel Gains

For equal sub-channel gains, the coefficients Av and Bv have to be replaced for the respective

fractional resource allocation strategy throughout (3.55)−(3.58). These can be determined

from (3.49) as

Av = Rv ·
(

2bv

1 + 2bv

)
(3.65)

Bv =
1

Rv

1
bv
√

av(1 + 2bv)
(3.66)

where av = av(uv) and bv = b(uv) for the Rayleigh fading case, and av = av(uvfv) and

bv = b(uvfv) for the Nakagami fading case. The performance is demonstrated with the aid

of Figure 3.31. In contrast to the ergodic case, the deployment of more than two transmit

antennas yields benefits, which is the reason why this has been considered here.

Explicitly, Figure 3.31 shows the attained end-to-end throughput of a 2-stage relaying

system versus the SNR in the first link for various resource allocation algorithms over O-

MIMO Rayleigh fading channels. In the first stage, a SIMO communication is realised with

one transmit and four receive elements. The second stage deploys a sporadic 3/4-rate STBC

four transmit and 1 receive element.

Clearly, the developed fractional power and bandwidth allocation algorithm performs

close to optimum, even for highly asymmetric communication links. As observed before,

sub-optimum resource allocation strategies, such as optimising power only or allocating

equal resources to each link, exhibit a poorer performance. Furthermore, as expected, the

realised end-to-end throughput utilising STBCs is inferior to the respective general MIMO

cases depicted in Figure 3.29.

Unequal Sub-Channel Gains

Similar to the ergodic case, unequal sub-channel gains require the application of spatial

water-filling to the transmit power at each relaying stage prior to optimising fractional

bandwidth and power.
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It is hence the aim to find fractional transmit power allocations εv∈(1,K),i∈(1,t) such as to

maximise

Θv = Φv ·

1 −

tv∑
i=1

rv∑
j=1

K(i−1)rv+j · γ
(

1,
2Φv/Rv/αv − 1

εv,i·γv,(i−1)rv+j

Rv

βv

αv

S
N

) (3.67)

with K(i−1)rv+j given by (3.35). A Lagrangian approach is unfortunately again not possible.

Interestingly, as for the ergodic case, a near-optimum water-filling strategy could be attained

by the author which is dealt with in the Appendix 3.7 (Derivation V) to this chapter.

The therein conjectured fractional transmit power allocation, however, is fairly complex to

deal with. Since algorithmic simplicity is vital for a successful application of the derived

strategies, a simplistic approach similar to the ergodic case is suggested here. That implies

that equal transmit power is allocated to all transmit elements and the average of all channel

gains is used as an input to the respective equations for the vth relaying stage, i.e.

γv ≈
uv∑
i=1

γv,i/uv (3.68)

where uv is the number of sub-channels in the vth stage, and γv∈(1,K),i∈(1,uv) are the associ-

ated channel gains. Thereafter, the above derived fractional resource allocation strategies

are deployed to obtain maximum throughput.

The applicability of (3.68) is assessed for the scenario as depicted in Figure 3.24. To

this end, Figure 3.32 depicts the achieved end-to-end throughput versus the SNR in the

first link; the curves are labelled on p, where p = [0, 5, 10]dB, p = [0, 0, 0]dB and p =

[0,−5,−10]dB. The optimum end-to-end capacity is obtained via numerical optimisation,

where both the fractional bandwidth and power allocation per stage are optimised, as well

as the distribution of the assigned power among the transmit elements.

Two further allocation strategies are compared against the optimum one. The first one

deploys (3.68), after which the fractional bandwidth and power is obtained for (3.50) as-

suming an O-MIMO Rayleigh fading channel with equal channel gains. The second strategy

assumes no optimisation at all, and resources are equally distributed among the MTs.

From Figure 3.32 it is clear that the suggested averaging approach still yields a near-

optimum end-to-end throughput. Performing no optimisation at all results in significant

performance losses, e.g. the loss in rate mounts to 60% at an SNR of 6dB or, alternatively,

65% less transmission power is required if a rate of 0.8 bits/s/Hz was to be maintained for

p = [0, 5, 10]dB.

In summary, sufficiently precise fractional bandwidth and power allocation algorithms

have been developed for a variety of distributed-MIMO multi-stage networks communicating

over non-ergodic channels. The exposed algorithms are of very low complexity, yet they

perform near-optimum. That renders a numerical optimisation within each mobile terminal

superfluous.
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Figure 3.31: Achieved end-to-end throughput of various fractional resource allocation strate-
gies over Rayleigh O-MIMO channels for a 2-stage network.
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Figure 3.32: Achieved end-to-end throughput versus SNR in the first link for a 3-stage
O-MIMO relaying network with unequal channel gains as specified in Figure 3.24.
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3.5 Frequency Selective Channels

The analysis of this chapter has so far concentrated on the narrowband fading channels.

It was hence assumed that the symbol duration is much larger than the delay spread of

the channel. Modern communication systems, however, accomplish symbol durations much

shorter than the channel delay spread. This yields a frequency selective channel, which

requires special attention. Further analysis concentrates on general frequency selective

MIMO channels, after which the analysis of OFDM-based systems is illuminated.

3.5.1 Generic Frequency Selectivity

A frequency selective channel is characterised by the frequency dependent channel transfer

function H(f) over a given bandwidth W . The cause of frequency selectivity, as well

as its dependency on the system assumptions is beyond the scope of this thesis. The

interested reader is referred to the vast amount of excellent contributions available in this

field, e.g. [37, 61].

The analysis exposed below is mainly based on the concise and insightful contribution

by [62], wherein it is shown that the capacity of a frequency selective channel assuming

perfect channel state information at the receiver is given as

C = max
S(f)

∫
W

EH(f)

{
log2 det

(
Ir +

H(f)S(f)HH(f)
N

)}
df (3.69)

where capacity maximising codewords x(f) have to be determined with a given covariance

matrix

S(f) = E{x(f)xH(f)} (3.70)

which satisfies the power constraint∫
W

tr
(
S(f)

)
df ≤ S (3.71)

In [62] it is shown that the statistics of H(f) do not depend on the frequency f , which

reduces the wideband capacity (3.69) to the narrowband capacity given by (2.23). Explicitly,

Theorem 6 in [62] states that “frequency selectivity does not affect the ergodic capacity of

wideband MIMO channels”.

That is an important result, as the entire analysis developed for the ergodic narrowband

channels can directly be translated to the wideband case. The analysis of non-ergodic

frequency selective MIMO channels, however, is very intricate. It is deemed to be an

interesting topic of future research.

In summary, the same fractional bandwidth, frame duration and power allocation strate-

gies hold for the ergodic wideband case as for the ergodic narrowband case. Therefore, no

matter the obtained fractional bandwidth α, the same capacity can be achieved irrespective

of the frequency selectivity of the channel.
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3.5.2 OFDMA-Based Systems

In practical systems, frequency selectivity causes inter symbol interference (ISI) which is

known to affect the system performance in a detrimental manner. Practical wideband

transceivers therefore utilise either code division multiple access (CDMA) or orthogonal

frequency division multiple access (OFDMA) as an access technique to mitigate a frequency

selective channel. That applies to SISO, as well as MIMO channels.

An analysis of the functioning and capacity of CDMA-based systems is certainly beyond

the scope of this thesis. The interested reader is, e.g., referred to [63, 64]. It shall only be

noted that TDMA-based relaying is easier implemented in a CDMA-based channel access

system. Note finally that the same fractional frame duration and power allocation strategies

hold as already derived for the narrowband ergodic and non-ergodic cases.

Of higher practical importance for a deployment in high-data rate relaying networks,

is OFDMA. It is understood to be orthogonal frequency division multiplexing (OFDM)

combined with TDMA or FDMA as a channel access or relaying scheme. An OFDM symbol

devides a wideband signal of bandwidth W into L independent sub-carriers of bandwidth

W/L. Each of the sub-carriers is narrowband and hence does not exhibit any ISI. Such

advantageous property comes at the expense of a required transform, namely the Fourier

transform, and an additional cyclic prefix which diminishes the spectral efficiency of the

system. The analysis of the functioning of an OFDM system is beyond this thesis, where

the interested reader is referred to [65].

A TDMA-based relaying approach allows one to apply the previously derived fractional

frame duration and power allocation strategies without any changes. That means that

the vth relaying stage transmits a given number of OFDM symbols with power βv/αv over

a fractional frame duration of length αv, where each OFDM symbol occupies the entire

bandwidth W . Note that the discrete nature of samples representing an OFDM symbol in

time allows only discrete realisations of αv. This poses no limitations in the time domain

where the absolute fractional frame durations of αv can be adjusted such as to maintain

the theoretically derived ratios between all αv at arbitrary precision.

An FDMA-based relaying system, however, is fairly restricted by the discrete number

of samples representing an OFDM symbol in frequency. Here, only a discrete fraction αv

of all sub-carriers is utilised to form an OFDM symbol to be transmitted at each stage.

Additionally, a simple implementation of OFDM requires the number of sub-carriers to be

a power of two, which facilitates a fast Fourier transform. That may cause additional losses

in precision.
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For example, the channel conditions in a 2-stage relaying network are assumed to yield

α1 = 1/3 and α2 = 2/3. With 64 sub-carriers available, an optimum allocation requires

21.3 sub-carriers to be used for the first stage, and 42.6 sub-carriers for the second stage.

That is technically not feasible; instead, 21 and 43 sub-carriers will be allocated to each

stage, respectively. The loss in precision for this case is only 1%. For an increasing number

of sub-carriers, the allocation error will clearly decrease. However, if the number of sub-

carriers has to be a power of two, then the allocation yields 32 and 32 sub-carriers for each

stage, which causes a maximum allocation error of 50%.

Figure 3.33 assesses the degradation in performance due to the discrete number of

OFDM sub-carriers available. The studied communication scenario is equivalent to the

case analysed in Figure 3.18. It shows the attained capacity of a (1 × 2)/(2 × 4) O-MIMO

relaying system versus the SNR in the first link for various resource allocation algorithms

over Rayleigh fading channels. Not to clutter the figure, only the channel distribution of

p = [0, 10]dB is studied. Furthermore, to enhance the resolution, only an SNR from 6dB to

10dB has been considered.

It can be observed that with only four sub-carriers available, the precision of the derived

fractional resource allocation suffers dramatically. For an increasing SNR, this case even

approaches the non-optimised case. However, increasing the number of sub-carriers already

to 16, the precision of the algorithm is almost restored. Finally, with 32 sub-carriers, there is

virtually no difference between the discrete and continuous fractional bandwidth allocation.

Note that the fractional transmission power remains a continuous value. It can therefore

be concluded that with currently prevailing OFDM systems with a fairly large number of

sub-carriers, the precision of the developed fractional allocation algorithms will not suffer.

That is a very attractive property, as it allows applying the deduced strategies to any

OFDM-based relaying system.

Figure 3.34 demonstrates the loss in precision if the number of allocated sub-carriers

have to be a fraction of two. The fractional bandwidth in the first hop is found to be

α1 ≈ 0.65 in the studied SNR region and for p = [0, 10]dB. Having four sub-carriers, the

only feasible fractional bandwidth allocation is to allocate two sub-carriers to the first hop,

and another two to the second one. The same applies for the case of 16 and 32 sub-carriers,

i.e. fractional resources have to be equally shared unless some sub-carriers remain unused.

This resource sharing rule will apply to any number of sub-carriers which, with reference

to Figure 3.34, causes a drastic performance degradation. Here, a rate loss of 20% occurs

at an SNR of 6dB or, alternatively, 35% more power is required to maintain 2 bits/s/Hz.

This section only hinted at the potential application of the developed fractional resource

allocation strategies, which were found to be applicable to realistic transceiver systems based

on CDMA or OFDMA.
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Figure 3.33: Achieved end-to-end capacity with quantised fractional bandwidth for a 2-stage
relaying network over O-MIMO Rayleigh channels.
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Figure 3.34: Achieved end-to-end capacity with quantised fractional bandwidth of power of
two for a 2-stage relaying network over O-MIMO Rayleigh channels.
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3.6 Conclusions

3.6.1 Summary

The analysis in this chapter exposed a variety of techniques deemed to be vital in providing

maximum throughput in distributed-MIMO multi-stage relaying networks. The developed

techniques heavily relied upon the analysis provided in Chapter 2, which was applied here

to derive low-complexity near-optimal fractional resource allocation strategies matched to

the prevailing communication scenario. Again, it was the aim to maintain a logical pro-

ceeding throughout the chapter, ranging from a thorough introduction to the topic, to the

development of different strategies for ergodic and non-ergodic communication channels,

towards a discussion on the implication of frequency selective channels.

In Section 3.1, a sufficiently concise introduction to the topic of resource allocation has

been given. It was shown that the problem formulation per sé has already been known

for some years; however, no satisfactory explicit resource allocation strategies had been

developed so far. All previous analyses were of a theoretical nature, the solution to which

had to be obtained numerically. The explicit fractional allocation strategies developed here

were hence justified and put into the context of existing techniques.

The role of Section 3.2 was manyfold; first, the general system model comprising a re-

generative distributed-MIMO multi-stage relaying network without resource reuse was thor-

oughly introduced; second, this deployment model was then extended to networks where

resource reuse is allowed; and third, the equivalence between TDMA and FDMA-based

relaying networks was proven. The latter allowed the simplification of subsequent analysis,

since the fractional resource allocations developed for one access scheme are easily trans-

latable to the other one. The analysis throughout the remaining part of the chapter thus

concentrates on FDMA-based relaying, where fractional bandwidths α and fractional pow-

ers β were derived. An equivalent TDMA-based system requires fractional frame durations

α and fractional powers β/α.

Section 3.3 constitutes an important milestone as it derives the explicit fractional re-

source allocation rules for ergodic channels such as to maximise the end-to-end throughput

which, in the ergodic case only, is equivalent to the end-to-end capacity. The cases of dis-

tributed MIMO and O-MIMO relaying with and without resource have been considered.

The derivation of the explicit algorithms relied on the approximation of MIMO capacity, as

shown in Section 2.5. The developed algorithms were extensively tested over a variety of

scenarios, i.e. a different number of relaying stages, different number of antennas per stage,

different channel attenuations and statistics. Despite the utilised approximation, the algo-

rithms were found to yield near-optimum end-to-end throughput. The latter was obtained

via lengthy numerical optimisation.
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Section 3.4 explored fractional allocation strategies for non-ergodic channels to maximise

end-to-end throughput. To this end, the problem has been transformed to the previously

analysed ergodic case by means of the approximation shown in Section 2.5. Again, the devel-

oped explicit fractional allocation strategies were shown to yield near-optimum throughput

for distributed MIMO and O-MIMO relaying systems.

So far, analysis has been applicable to the flat fading channel. This constraint has been

loosened in Section 3.5, in which the analysis has been extended to frequency selective chan-

nels. It has been shown that frequency selectivity does not influence the ergodic capacity,

which allows the application of previously derived fractional resource allocation strategies

also to these type of channels. The section is finalised with a brief glimpse into the capacity

behaviour of realistic systems, here an OFDMA system. The application of the developed

fractional bandwidth allocation to the selection of the number of utilised sub-carriers has

been dealt with. It was shown that for an increasing number of sub-carriers, the allocation

error caused by the discrete nature of the number of available sub-carriers diminishes. It

has also been shown that if the number of chosen sub-carriers must be a power of two,

such as to facilitate a fast Fourier transform, then the allocation error caused may seriously

diminish the potential end-to-end capacity.

3.6.2 Contributions

This chapter opens the way to explicit fractional resource allocation strategies for large-

scale distributed-MIMO multi-stage communication networks. To this end, the research

contributions can be summarised as follows:

1. An explicit algorithm has been developed which yields near-optimum fractional band-

width, optimum frame duration and optimum power allocations over ergodic MIMO

channels without resource reuse. It is summarised as a flowchart in Figure 3.7. Similar

flowcharts hold for the algorithms listed below.

2. An explicit algorithm has been developed which yields equal fractional bandwidth or

equal frame duration but optimum power allocations over ergodic MIMO channels

without resource reuse.

3. An explicit algorithm has been developed which yields equal fractional bandwidth or

equal frame duration but optimum power allocations over ergodic MIMO channels

with resource reuse.

4. All of the above-mentioned algorithms were developed for O-MIMO channels with

equal and unequal channel gains.
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5. Additionally, a near-optimum transmit power distribution per relaying stage has been

conjectured for O-MIMO channels with unequal channel gains (similar to the water-

filling principle).

6. The problem of finding optimum resources for non-ergodic channel has been trans-

formed to the ergodic cases; therefore, all of the above-mentioned allocation strategies

are applicable to communication scenarios over non-ergodic channels.

3.6.3 Future Research

Numerous questions and problems remain open in the field of MIMO information theory.

Related to the problematic of distributed-MIMO capacity, the following topics are deemed

to be worthwhile pursuing as future research:

1. Conjecture on Optimum Transmit Power. A rigorous analysis of the conjectured near-

optimum fractional transmit power allocation for ergodic (equation (3.36)) and non-

ergodic (equation (3.87)) channels still needs to be performed.

2. Throughput Generic Rayleigh/Nakagami. The developed approximation failed for the

outage probability of generic Rayleigh and Nakagami fading channels. It is thus

desirable to obtain a satisfactory solution for the near-optimum end-to-end throughput

for these type of fading channels.

3. Multi-User. So far, only the case of a single source wishing to communicate with a

single sink has been considered. The problem formulation and its solution(s) needs

to be generalised to the multi-user environment.

4. Realistic Systems. CDMA and OFDMA-based system should further be explored in

terms of optimised resource allocation for various communication conditions.

5. Impact of Correlation. So far, uncorrelated channels have been assumed. A further

study could incorporate fractional resource assignments in dependency of the prevail-

ing channel correlation.

6. Impact of Beamforming. Similarly, a deployment of beamforming could be investi-

gated from a Shannon point of view.

7. Local Channel Knowledge. So far, it has been assumed that each terminal has a uni-

versal knowledge of the channel attenuations of the entire relaying chain. Of interest

could be the development of optimised resource allocation strategies the input to which

incorporates only adjacent channel gains, which are reported via feedback channels.

8. Resource Reuse. A development of optimum resource reuse zones could be important.
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3.7 Appendix

Derivation I. To prove (3.13), all capacities given by (3.12) are equated, which yields

C = C1 = . . . = CK . Without loss of generality, (3.13) is proven for v = K. With the

constraint given by (3.9), the K equated capacities can be written as(
1 −

K∑
v=2

αv

)
Eγ1

{
m1 log2

(
1 + γ1

β1

α1

S

N

)}
= αKEγK

{
mK log2

(
1 + γK

βK

αK

S

N

)}

α2Eγ2

{
m2 log2

(
1 + γ2

β2

α2

S

N

)}
= αKEγK

{
mK log2

(
1 + γK

βK

αK

S

N

)}
...

αK−1EγK−1

{
mK−1 log2

(
1 + γK−1

βK−1

αK−1

S

N

)}
= αKEγK

{
mK log2

(
1 + γK

βK

αK

S

N

)}
The above-given equations can be rewritten as

α2 = αK ·
EγK

{
mK log2

(
1 + γK

βK
αK

S
N

)}
Eγ2

{
m2 log2

(
1 + γ2

β2

α2

S
N

)} (3.72)

...

αK−1 = αK ·
EγK

{
mK log2

(
1 + γK

βK
αK

S
N

)}
EγK−1

{
mK−1 log2

(
1 + γK−1

βK−1

αK−1

S
N

)} (3.73)

which inserted into the top equation yields
1 −

K∑
v=2

αK ·
EγK

{
mK log2

(
1 + γK

βK
αK

S
N

)}
Eγv

{
mv log2

(
1 + γv

βv

αv

S
N

)}

 = αK ·
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mK log2

(
1 + βK

αK
· γK · S

N

)}
Eγ1

{
m1 log2

(
1 + β1
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· γ1 · S

N

)}
Resolving for αK gives

αK =
E−1

γK

{
mK log2

(
1 + γK

βK
αK

S
N

)}
∑K

v=1 E−1
γv

{
mv log2

(
1 + γv

βv

αv

S
N

)} (3.74)

which is equivalent to

αK =

∏K−1
w=1 Eγw

{
mw log2

(
1 + γw

βw

αw

S
N

)}
∑K

k=1

∏
w �=k Eγw

{
mw log2

(
1 + γw

βw

αw

S
N

)} (3.75)

This concludes the proof.

Derivation II. To prove that
∑K

k=1
βk
αk

≈ K, the capacity given by (3.12) is approximated

utilising (2.97), which yields

Cv ≈ αv ·
√

βv√
αv

·
√

S

N
·Eγv

{
mv

√
γv/tv

}
=

√
αv ·

√
βv ·

√
S

N
·Eγv

{
mv

√
γv/tv

}
(3.76)

This suggests that the optimisation problem given by (3.11) is approximately symmetric to

αv and βv. Therefore, αv ≈ βv and βv

αv
≈ 1, from which (3.17) follows. The results presented

throughout the chapter verify this approximation.
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Derivation III. Equations (3.20)-(3.21) can be rewritten as

3
√

γ1 · Λ2(t1, r1) ·
[
K −

K∑
v=2

βv

αv

]
= 3

√
γ2 · Λ2(t2, r2) · β2

α2
(3.77)

...

3
√

γ1 · Λ2(t1, r1) ·
[
K −

K∑
v=2

βv

αv

]
= 3

√
γK · Λ2(tK , rK) · βK

αK
(3.78)

which can be rearranged to

3
√

γ1 · Λ2(t1, r1) ·
[
K −

K∑
v=2

βv

αv

]
= 3

√
γK · Λ2(tK , rK) · βK

αK
(3.79)

3
√

γ2 · Λ2(t2, r2) · β2

α2
= 3

√
γK · Λ2(tK , rK) · βK

αK
(3.80)

...

3
√

γK−1 · Λ2(tK−1, rK−1) · βK−1

αK−1
= 3

√
γK · Λ2(tK , rK) · βK

αK
(3.81)

Applying the same procedure as in Derivation I, finally yields (3.22).

Derivation IV. It is shown here that the throughput Θ relates to communication rate Φ

and associated outage probability Pout(Φ) via

Θ ∝ Φ · (1 − Pout(Φ)
)

(3.82)

To this end, let Φ′ be the amount of information in [bits] sent with reliability 1− Pout over

a bandwidth W and time duration T → ∞. Therefore, from the Φ′ sent bits in average

only Φ′ · (1 − Pout) reach the receiver. The normalised throughput can hence be written as

Θ ∝ lim
T→∞

Φ′ · (1 − Pout

)
WT

(3.83)

The Φ′ ·Pout bits which do not reach the receiver have to be re-sent, requiring an additional

transmission time of Pout. With a single re-transmission, eq. (3.83) is expressed as

Θ ∝ lim
T→∞

Φ′ − Φ′ · Pout + Φ′ · Pout ·
(
1 − Pout

)
WT (1 + Pout)

= lim
T→∞

Φ′

WT
· 1 − P 2

out

1 + Pout
(3.84)

Again, from the Φ′ · Pout re-sent bits, Φ′ · P 2
out do not reach the receiver and thus requiring

re-transmission with an additional transmission time of P 2
out. This process is repeated n

times, where n → ∞, which yields

Θ ∝ lim
n→∞ lim

T→∞
Φ′

WT
· 1 − (Pout)

n

1 +
∑n−1

i=1 (Pout)
i

= lim
n→∞ lim

T→∞
Φ · 1 − (Pout)

n

1 +
∑n−1

i=1 (Pout)
i

(3.85)

It is now straightforward to prove that

1 − (Pout)
n = (1 − Pout) ·

(
1 +

n−1∑
i=1

(Pout)
i

)
(3.86)

which concludes the proof.
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Derivation V. It is conjectured here that the allocation εv∈(1,K),i∈(1,tv), which maximises

eq. (3.67) satisfying constraint (3.33), can be approximated by

εv,i ≈
∏tv

i′=1,i′ �=i

(∑rv
j=1 γ(i′−1)rv+j

)−{3,1/3}

∑tv
k=1

∏tv
i′=1,i′ �=k

(∑rv
j=1 γ(i′−1)rv+j

)−{3,1/3} (3.87)

where the exponent is chosen from the set {3, 1/3} such that the outage probability

Pout(Φv) =
tv∑

i=1

rv∑
j=1

K(i−1)rv+j · γ
(

1,
2Φv/Rv − 1

εv,i·γv,(i−1)rv+j

Rv

S
N

)
(3.88)

is minimised. The reason behind the two possible exponents lies in the non-linear behaviour

of the outage probability rooted in Telatar’s conjecture (c.f. Section 2.3.4). Recall that

for a fixed communication rate, the number of antenna elements utilised for the actual

transmission process changes in dependency of the available SNR. For the current analysis,

the power in the sub-channels changes which triggers the optimum number of transmit

antennas to change. This in turn may cause the change in exponent; however, more studies

have to be conducted to draw a conclusive statement.

The performance of the conjectured transmit power distribution is assessed by means

of Figures 3.35 and 3.36. Explicitly, Figure 3.35 depicts the outage probability at Φ = 2

bits/s/Hz for a deployed Alamouti scheme with 2 transmit and 1 receive antenna versus the

relative channel gain γ1 in the first sub-channel, operating at various SNRs and γ2 = 2−γ1.

Compared are three transmit power distribution algorithms: first, a numerically obtained

optimum allocation; second, the conjectured allocation; and third, an equal transmit power

allocation as suggested for approximately equal channel gains. It can be observed that

optimum and conjectured allocation virtually yield the same outage probability over the

entire range of γ1. It can further be observed that at low outage probabilities, i.e. high

SNR, the power distribution has marginal effect on the outage probability. A non-optimised

transmit power only yields higher outage probabilities compared to the optimum case when

the SNR is very low, and hence the optimum outage probability fairly high.

Figure 3.36 demonstrates the validity of the conjecture if more than one receive antenna

is present. Here, the case of two transmit and two receive antennas is assumed, where the

respective channel gains are (fairly arbitrary) determined as follows: γ2 = 1.5, γ3 = 2− γ1,

γ4 = 0.5. It is further assumed that γ1 and γ2 are the gains of the sub-channels spanned

from the first transmit antenna towards the two receive antennas; similarly, γ3 and γ4 are

the gains from the second transmit antenna towards the two receive antennas. The same

observations as above can be made.
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Figure 3.35: Outage probability for optimum, near-optimum and non-optimised transmit
power distribution for deployed Alamouti scheme with one receive antenna.
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Chapter 4

Link Level Performance

4.1 Introduction

The previous chapter dealt with the maximum achievable throughput over distributed-

MIMO multi-stage communication networks taking into account certain communication

conditions, e.g. whether the channel is ergodic or non-ergodic. In all the cases, however,

the analysis was based on the notion of capacity which implied that transceivers of infinite

complexity are available to the system designer.

The link level performance, on the other hand, assesses the behaviour of realistic trans-

ceivers in terms of error-rates versus the receiver signal-to-noise ratio (SNR). Error rates of

interest are the bit-error-rate (BER), symbol-error-rate (SER) and frame-error-rate (FER).

BER and SER are of importance when comparing various modulation or coding schemes,

whereas modern packet based systems are gauged by the FER.

A simple communication system is a modulator/demodulator utilising binary phase-

shift keying (BPSK), which operates over a wireless channel with a spectral efficiency of

1 bit/s/Hz. With reference to Figure 2.9 in Chapter 2, the SNR required to support such

capacity over an ergodic Rayleigh fading channel amounts to 1dB.

To find an equivalent SNR at which communication is error-free for transceivers of finite

complexity is not unique, as the error of such systems only decreases asymptotically with

an increasing SNR. Therefore, to guarantee an error-free link, the SNR has to approach

infinity (for the given additive Gaussian noise model). That has obviously little meaning

for a system designer, which is the reason why finite complexity transceivers are said to

yield a virtually error-free communication when the achieved error-rate falls below a certain

threshold. For subsequent analysis, the BER threshold is assumed to be 10−5.

As will be shown in Section 4.3, the SNR required to allow for a virtually error-free com-

munication with the above-defined threshold amounts to 44dB. The chosen low-complexity

transceiver therefore operates 43dB away from the offered capacity limit. This large gap can

be mitigated by introducing appropriate coding, which can only be met with an increase in

transceiver complexity.
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Various codes have been designed ever since Shannon published his famous mono-

gram [1]. They range from low-complexity block codes, to trellis codes with an increase in

decoding complexity [47]. For decades, none of the designed codes performed closer than

3dB to the theoretically predicted capacity limit. This gap could finally be closed with the

introduction of turbo codes [36].

As for multiple-input-multiple-output (MIMO) channels, a first step towards the offered

capacity was the introduction of space-time block codes (STBCs) with the concatenation of

an outer code as described above [66]. This was followed by Tarokh’s design guidelines to

construct space-time trellis codes (STTCs) [17]. Space-time turbo codes are also available

which allow one to approach the promised MIMO capacity bounds [4].

A thorough deployment analysis of the vast variety of available codes within the context

of distributed-MIMO multi-stage relaying networks is certainly beyond the scope of this

thesis. Therefore, subsequent analysis only concentrates on the deployment of STBCs.

Other classes of codes are then a straightforward extension, where simply the union bound

of the STBC needs to be replaced by the union bound of the specifically deployed code.

The aim here is to derive fractional resource allocation strategies tailored to finite com-

plexity transceivers. The derivations are related to those already exposed in Chapter 3 for

transceivers of infinite complexity. Of interest is the derivation of fractional frame dura-

tion, power and modulation order for each stage such as to achieve maximum end-to-end

throughput.

It is also interesting to see whether the previously derived allocation strategies are

applicable to finite complexity transceivers. It will be shown that the strategies are indeed

applicable to the few analysed scenarios.

This chapter is organised as follows. In Section 4.2, the system model is introduced

which includes a brief description of the transceiver and channel models. In this section,

the developed simulation platform is also presented, which is then used throughout the

chapter to verify various analytical results.

The derivation of error-rates, as well as some new twists relating to the analysis of

distributed systems, are presented in Section 4.3. The analysis includes the derivation of

BERs, SERs and FERs for space-time block encoded systems communicating over Rayleigh

or Nakagami fading channels with different sub-channel gains.

Near-optimum allocation strategies are derived in Section 4.4, where it is assumed that a

decision on an erroneously received packet is drawn at the t-MT. In Section 4.5, the analysis

is then extended to the case where the decision on the correctness of a packet is drawn at

each relaying stage. The derived fractional resource allocation strategies are then tested by

means of a few case studies in Section 4.6. It is shown that relaying only yields performance

gains until a given SNR threshold. Finally, conclusions are drawn in Section 4.7.
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4.2 System Model

The general system model obeys the same topology as depicted in Figure 3.1, i.e. a source

MT (s-MT) communicates with a target MT (t-MT) via a given number of relaying MTs

(r-MTs). Spatially adjacent r-MTs are grouped into relaying Virtual Antenna Arrays (r-

VAAs), the exact configuration of which has been thoroughly explained in Chapter 3. The

system configurations described there-in are sufficiently precise for dealing with the capacity

of such networks.

However, the deployment of realistic transceivers requires further explanations of how

such system would work in reality. It is hence the aim of this section to provide this missing

information. Of interest here are the transmitter and receiver used, as well as the prevailing

communication channel.

4.2.1 Transceiver Model

The functional blocks of the transceivers forming the distributed-MIMO multi-stage relaying

network are depicted in Figure 4.1. The top of Figure 4.1 relates to the source VAA

containing the s-MT; the middle relates to an arbitrary relaying VAA tier; and the bottom

relates to the target VAA containing the t-MT. In the figure, each VAA tier is shown

to consist of three terminals; it is, however, understood that any reasonable number of

terminals can be accommodated.

Specifically, the information source passes the information to a cooperative transceiver,

which relays the data to spatially adjacent r-MTs belonging to the same VAA. Again, this

is assumed to happen over an air interface distinct from the interface used for inter-stage

communication or an air interface not requiring any optimisation, and is not considered

further. It is also assumed that these cooperative links are error-free due to the short com-

munication distances. Each of the terminals in the VAA perform distributed encoding of

the information according to some prior specified rules. That information is then transmit-

ted from the spatially distributed terminals after having been synchronised. Note that the

problem related to synchronisation is beyond the scope of this thesis.

Any of the relaying VAA tiers functions as follows. First, each r-MT within that VAA

receives the data which is optionally decoded before being passed onto the cooperative

transceiver. Ideally, every terminal cooperates with every other terminal; however, any

amount of cooperation is feasible. If no decoding is performed, then an unprocessed or

a sampled version of the received signal is exchanged with the other r-MTs. Note that

unprocessed relaying is equivalent to transparent relaying. After cooperation, appropri-

ate decoding is performed. The obtained information is then re-encoded in a distributed

manner, synchronised and re-transmitted to the following relaying VAA tier.
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Figure 4.1: Functional blocks of the source VAA (top), the vth relaying VAA (middle) and
the target VAA (bottom).
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As for the target VAA, the functional blocks are exactly the opposite to the source VAA.

All terminals receive the information, possibly decode it, then pass it onto the cooperative

transceivers which relay the data to the target terminal. The data is processed and finally

delivered to the information sink.

The functional blocks of the distributed transcoder, i.e. encoder and decoder, are now

elaborated on in more detail. To this end, the encoder and decoder are shown in Figure 4.2.

Generally, the role of a channel encoder is to insert sufficient redundancy into the signal

to mitigate the detrimental effects of noise and the fading channel. The insertion of redun-

dancy decreases the data rate, where (with a good channel code) a decrease in rate comes

along with an increase in coding gain. Together with the additional complexity, these need

to be traded-off to yield optimum performance in terms of the BER versus Eb/N0, where

Eb is the information bit energy and N0 is the noise power spectral density.

The channel code is traditionally accomplished by means of a convolutional code, which

‘convolutes’ the redundancy into the original signal stream. Nowadays, it is considered to

be a low complexity code and is often found to be available within communication chip-sets.

Another class of codes are the block codes. These generate the redundant information from

the original data stream, after which it is inserted into it. A more complex class of codes

are turbo codes, which were shown to operate near the Shannon capacity. For a proper

functioning and mathematical description of these codes, refer to [67].

Cooperative Encoder

Binary

Information Bits

Channel

Encoder

Space-Time

Encoder

Encoded
Inform. Symbols

to each Antenna

Control #1 Control #2

Cooperative Decoder

direct symbols

Space-Time

Decoder

Channel

Decoder

Control #3 Control #4

cooperative symbols Binary
Information Bits

Figure 4.2: Distributed Encoder and Decoder.
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The channel encoder may also consist of two or more concatenated codes, which are

preferably connected by interleavers which break long error sequences. For example, trellis

codes are known to produce a cluster of errors, which could then be corrected by appropriate

block codes.

A channel encoder within a distributed encoder does not normally differ from a non-

distributed encoder; however, it is generally possible to design channel codes which reflect

the distributed nature of the encoding process. Example trellis codes are introduced in [31],

where the encoder requires some form of control as to decide which code to employ.

The role of a space-time encoder is to utilise the additional spatial dimension created by

sufficiently spaced antenna elements to increase the system performance. If each antenna

element is used to transmit independent data streams, then such spatial multiplexing tech-

nique is referred to as BLAST [30]. Clearly, the data rate of such a system increases linearly

with the number of transmit antennas; however, the lack of spatial redundancy makes it

more susceptible to noise and interference when compared to coding techniques described

below.

If, instead, the additional spatial domain is used to provide redundant information, then

such a spatial encoding technique is referred to as space-time coding. The computationally

simple space-time block codes (STBCs) have already been introduced in Chapter 2, where

they were shown to orthogonalise the MIMO channel. More complex codes are space-time

trellis codes (STTCs), or space-time turbo codes. Note that space-time codes (STCs) can

also be concatenated with an outer channel code to yield additional performance gains as

described above.

The functionality of distributed space-time codes (STCs) differs from a traditional de-

ployment because only a fraction of the entire space-time codeword is transmitted from any

of the spatially distributed terminals. The transmission across all terminals then yields the

complete space-time codeword. Therefore, a control signal to each distributed space-time

encoder is essential, as it tells each of them which fraction of the entire space-time codeword

to pass onto the transmitting antenna(s). This is indicated as Control #2 in Figure 4.2.

This control information is assumed to be available to the space-time encoder, and is thus

not discussed further in this thesis.

The cooperative decoder can be realised as the inversion of all processes at the coopera-

tive transmitter. Here, the space-time decoder is fed with the signals directly received from

the available antenna(s), as well as the information received via the cooperative links from

adjacent terminals. Again, a control signal is needed which specifies the type of information

fed into the space-time decoder, to allow for optimum decoding. For example, the control

signal could inform the decoder that the relayed signals are a one bit representation of the

sampled soft information available at the respective cooperative relaying terminals.
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After the space-time decoding process, the information is passed on to the channel

decoder which performs the inverse process to the channel encoder. In a cooperative

transcoder, the produced binary information output may then be fed into the cooperative

encoder, to get relayed to the next VAA tier.

In subsequent analysis, a more realistic relaying access scheme based on TDMA is as-

sumed. Therefore, the entire bandwidth W is utilised by all relaying links, whereas only a

fraction of the total frame duration T is used by each stage to relay the information to the

consecutive stage.

A brief overview of the potential application of VAAs with realistic encoding schemes

has been presented. It is clear that neither an in-depth analysis to these codes can be

exposed here nor can all possible code combinations be assessed. Further analysis and

assessments therefore concentrate on a few examples, i.e. only the cases of no encoding and

space-time block encoding. The performance of space-time trellis codes and the effect of an

outer channel code has been left open for future research.

4.2.2 Channel Modelling

A signal travelling from a transmitter to a receiver via a wireless channel is known to

be influenced by pathloss, shadowing and fading. Assuming a flat (narrow-band) fading

channel, a transmitted complex symbol sTx is received as

sRx = γ · ς · f · sTx (4.1)

where the scalar γ is the pathloss, the scalar ς is the experienced shadowing, and f is the

instantaneous fading which is generally complex.

Pathloss γ

Pathloss is a deterministic effect and is known to decay exponentially with distance d, where

the decay factor is often referred to as the pathloss coefficient, and it is henceforth denoted

as n. The pathloss can thus be related to distance and pathloss coefficient as

γ ∝ d−n (4.2)

Friis transmission formula [37] shows that n = 2 for free-space propagation. The pathloss

coefficient n for environments other than free-space depends on the operational frequency,

the environment, as well as the distance between transmitter and receiver. Various sophis-

ticated models have been developed to account for these input dependencies [37]. For this

thesis, it is assumed that 2 ≤ n ≤ 4, where an increasing n corresponds to an increasing

clutter density around the transmitter and/or receiver. This effect can be attributed to

shadowing, as explained below.
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Shadowing ς

Shadowing is a random effect and is therefore characterised by its probability density func-

tion (pdf) which is known to be lognormal, i.e. [37]

pdfς(ς) =
10

log 10
1√
2πσ2

ς

1
ς

e
− (10 log10(ς)−µς )2

2σ2
ς (4.3)

Here, µς and σ2
ς are the mean and variance of the underlying Gaussian process, respectively.

The lognormal pdf is attributed to the random nature of multiplicative reflections which,

when expressed in [dB], yields a Gaussian distribution. Clearly, for an increasing distance d,

the number of reflection increases, thereby causing σ2
ς to increase and µς to decrease. The

later is traditionally incorporated into the pathloss, which explains why highly cluttered

environments yield a steeper pathloss curve. The variance is traditionally measured and

it also depends on the operational frequency, the environment, and the distance between

transmitter and receiver. Typical values range from σ2
ς = 3dB for a lightly cluttered en-

vironment and/or short communication distances, to σ2
ς = 16dB for a densely cluttered

environment and/or large communication distances [68].

Fading f

The small-scale fading f can be categorised into four classes: (1) slow and flat fading; (2)

fast and flat fading; (3) slow and frequency selective fading; and (4) fast and frequency-

selective fading. With the narrowband assumption, only the first two cases are considered

here. The characteristic of a slow fading channel is that the transmitter could potentially

be provided with feedback from the receiver to allow for an optimum transmission. This is

obviously only possible if the channel is sufficiently slow-fading, sometimes also referred to

as quasi-static. In statistical terms, this means that the channel coherence time is larger

than the feedback cycle.

A slow fading channel is simulated as being constant over a given frame length, where the

channel realisations are independent from frame to frame. The channel realisations of a fast

fading channel, on the other hand, are independent samples for each symbol transmitted.

Both cases are somewhat ideal; however, they serve well to assess the performance within

which a realistic channel would perform.

Flat fading, whether slow or fast, is characterised by the pdf of the envelope or power

fading process. For outdoor communication scenarios with no line-of-sight (nLOS), the pdf

was often found to obey a Rayleigh distribution (envelope)/central-χ2 distribution (power).

For outdoor communication scenarios with line-of-sight (LOS), the pdf was often found

to obey a Ricean distribution (envelope)/non-central-χ2 distribution (power). Finally, for

indoor communication scenarios, the pdf was often found to obey a Nakagami distribution

(envelope)/Gamma distribution (power).
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4.2.3 Simulation Platform

A generic simulation platform has been written in C++ by the author, which is utilised

to obtain error rates for various communication scenarios discussed in subsequent sections.

The simulation platform has the functionalities listed below for transmitter, channel and

receiver; most of these are self-explanatory and are thus not explained for the sake of brevity.

Note that some of the listed features are not required for the described analysis; however,

they may prove useful for any future link level analysis related to distributed networks.

Transmitter

• any number of bits per data packet

• any number of packets per transmission (jointly encoded)

• channel code: uncoded, half-rate convolutional code (constraint length 7)1

• time interleaver (block and random)2

• modulation: BPSK, QPSK, 16QAM, 64QAM, 256QAM

• SNR normalisation: Eb/N0, Es/N0, S/N

• channel access: MC-CDMA (in frequency) + TDMA (in time)

• any number of sub-carriers, spreading factor

• frequency interleaver (block and random)

• space-time block encoder:

- full-rate for real signal constellations (R = 1, t = 1, . . . , 8),

- half-rate for complex signal constellations (R = 1/2, t = 1, . . . , 8),

- sporadic 3/4-rate for complex signal constellations (R = 3/4, t = 3, 4)

• any number of cyclic prefix samples

MC-CDMA stands for Multi Carrier Code Division Multiple Acces, TDMA for time division

multiple access. The flexibility of the platform allows one to simulate a pure TDMA system

by setting the number of sub-carriers to one. An OFDMA system is obtained by choosing

the number of sub-carriers greater than one and setting the spreading factor to one.
1The convolutional encoder and decoder have been obtained from Panos Fines.
2The time and frequency interleaver have been obtained from Dr. Fatin Said.
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Channel

• Gaussian / fading

• any power delay profile (delay, power)

• normalisation: none, over power delay profile

• per tap: Rayleigh (Jakes), Ricean, Nakagami

• any Doppler shift

• any oversampling

• any correlation between adjacent Tx and/or Rx antennas

Jake’s fading model assumes a scatter ring around the receiver, which does not always occur

in reality [37]. In principle, it is possible to perform slight modifications to the platform

such that each tap experiences a different angular power distribution.

Receiver

• perfect channel estimation

• imperfect channel estimation:

- any pilot power

- any number of pilots per estimate

- Wiener filtering in frequency

• space-time block decoder for any number of antennas

• signal combiner: ORC, EGC, MRC, MMSEC

• hard and soft Viterbi decoding

• BER, SER, PER

The mentioned combining methods are orthogonality restoring combining (ORC), equal

gain combining (EGC), maximum ratio combining (MRC) and minimum mean square error

combining (MMSEC). Although not further used throughout the remainder of the thesis, it

shall be noted that ORC (downlink only) and MMSEC (uplink and downlink) are applicable

in a MC-CDMA system [69]. The EGC receiver requires only an estimate of the phase which

makes it a low-complexity receiver for M-PSK modulation schemes. The MRC receiver is

optimum for a single user scenario [47], and is therefore used within this thesis. The platform

has undergone strict benchmarking against results in [47, 69, 70].
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4.3 Error Rates for Distributed STBCs

The theory behind the performance analysis of various coding and modulation schemes is

far too broad to be considered here in sufficient depth. The interested reader is referred to

references [4, 39, 45, 46, 47].

Subsequent analysis relating to the error rates of STBC transceivers of finite complexity

serves the purpose of this thesis, which is (1) the derivation of fractional resource allocation

rules for finite complexity transceivers; and (2) how precisely the derived fractional resource

allocation strategies perform when applied to realistic systems. Note that given a STBC

encoded system, the performance of an uncoded SISO system is obtained by setting the

number of transmit and receive elements to one.

4.3.1 Symbol Error Rates

The space-time encoder, as depicted in Figure 4.2, is realised by means of a STBC which

has already been introduced in Chapters 2 and 3. In there, the STBC has been used to

orthogonalise the MIMO channel, a property which will become apparent below.

A typical space-time encoded MIMO system with t transmit and r receive antennas is

shown in Figure 4.3, which was referred to as an O-MIMO system in Chapters 2 and 3.

Here, b · s information bits are fed into the modulator, which Gray-maps b = log2 M con-

secutive bits onto an M-PSK or M-QAM signal constellation, thereby producing s symbols,

i.e. x1, x2, . . . , xs. To remind the reader, these are subsequently space-time encoded with

an orthogonal space-time coding matrix G of size d × t, where d is the number of symbol

durations required to transmit the space-time code word, and t is the number of trans-

mit elements. At each time instant k = 1, . . . , d, the space-time encoded symbol ck,i ∈ G is

transmitted from the ith transmit element, where i = 1, . . . , t. The reduction in transmission

rate is R = s/d.

The space-time code generator matrix G therefore maps the symbols x1, x2, . . . , xs onto

a transmitted space-time matrix X of dimensions t × d, i.e.

x1, x2, . . . , xs
G�−→ X (4.4)

which is transmitted over a flat fading r × t space-time channel. The latter can be casted

into a matrix H given by (2.13) in Chapter 2, which allows writing the received signal in

+
Binary

Information Bits
Modulator

Orthogonal

Space-Time

Encoder G

t x r

MIMO

Channel

Noise

Combiner and

ML Receiver
Demodulator

Soft/Hard

Information Bits

Figure 4.3: A space-time block encoded MIMO system (O-MIMO).
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matrix form [39]

Y = HX + N (4.5)

with N being the r × d receive noise matrix. The covariance matrix of the noise obeys

E
{
NNH

}
= d · N · Ir×r, where N is the total noise power per sample in space and time.

Under the condition of perfect CSI at the receiver, the problem of detecting X given Y is

shown in [17] and [39] to be equal to minimising the maximum likelihood (ML) decision met-

ric ‖Y − HX‖ over all possible symbols x1, x2, . . . , xs. The complexity therefore increases

linearly with the total number of antennas r × t and exponentially with the modulation

order M and the codeword duration d.

In [39], however, it is proven that the orthogonality of the space-time code generator

matrix G allows decomposing the ML problem into s parallel ML decision metrics for each

of the originally sent symbols xl∈(1,s). The optimum decision metrics can be found in [39,

page 102]. The complexity therefore increases exponentially only with the modulation order

M , which constitutes a great simplification to the detection process.

Using Theorem 7.3 in [39], it can been shown that the instantaneous SNR ρ per symbol

xl∈(1,s) at detection is given as

ρ =
1
R

λ

t

S

N
=

λ

t

Es

N0
= log2(M)

λ

t

Eb

N0
(4.6)

where λ � ‖H‖2 (c.f. equations (2.62)), S is the average transmitted signal power, Es

is the average transmitted symbol energy, Eb is the average transmitted bit energy, N

is the average receiver power, and N0 is the average receiver noise power density. The

instantaneous SNR ρ is a random process due to the randomness of the power of the

instantaneous channel realisations λ. Therefore, a given modulation scheme will yield a

probability of error conditioned on ρ, i.e. P (e|ρ). The average error probability P (e) can

then be obtained as

P (e) =
∫ ∞

0
P (e|ρ) · pdfρ(ρ) dρ (4.7)

which is central to numerous problems relating to the BER or SER of communication

systems. The conditioned error probability is often represented by intricate functions, such

as the Marcum Q-function, which make it difficult to calculate the integral in (4.7). In [51],

an alternative representation of (4.7) has been introduced which relies on the moment

generating function (MGF) φρ(s) of the instantaneous SNR ρ. With reference to (4.6), it

is clear that

φρ(s) ≡ φ 1
R

λ
t

S
N

(s) (4.8)

which proves useful, because the MGF φλ(·) has already been exposed in Section 2.4.2 for

Rayleigh and Nakagami fading channels with equal, unequal and generic channel gains.
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The closed solution to (4.7) for generic M-PSK and M-QAM schemes is based on ref-

erences [51] and [70]. From [51], one can obtain the average SER for coherent M-PSK to

be

Ps(e) =
1
π

∫ π M−1
M

0
φρ

(
gPSK

sin2 θ

)
dθ (4.9)

where gPSK � sin2(π/M). Considering (4.8), this can be rewritten as

Ps(e) =
1
π

∫ π M−1
M

0
φ 1

R
λ
t

S
N

(
gPSK

sin2 θ

)
dθ (4.10)

Similarly, the SER for coherent M-QAM is given as [51]

Ps(e) =
4q

π

∫ π/2

0
φ 1

R
λ
t

S
N

(
gQAM

sin2 θ

)
dθ − 4q2

π

∫ π/4

0
φ 1

R
λ
t

S
N

(
gQAM

sin2 θ

)
dθ (4.11)

where gQAM � 3/2/(M −1) and q � 1−1/
√

M . The SERs are now obtained in closed form

for O-MIMO communication scenarios previously analysed in Chapter 2.

Rayleigh Fading - Equal Sub-Channel Gains

For equal sub-channel gains γ1 = . . . = γu � γ, the MGF of the instantaneously experienced

SNR can be expressed as

φ 1
R

λ
t

S
N

(s) =
1(

1 − 1
R

γ
t

S
N · s

)u (4.12)

where u � t · r. The elegant analysis in [70] allows expressing the SER of M-PSK in closed

form as

Ps(e) = φ 1
R

λ
t

S
N

(− gPSK

)[ 1
2
√

π

Γ(u + 1/2)
Γ(u + 1) 2F1

(
u, 1/2; u + 1;

(
1 +

gPSK

R

γ

t

S

N

)−1
)

+
√

1 − gPSK

π
F1

(
1/2, u, 1/2 − u; 3/2;

1 − gPSK

1 + gPSK
R

γ
t

S
N

, 1 − gPSK

)]

(4.13)

where 2F1(a, b; c; x) is the generalised hypergeometric function with 2 parameters of type 1

and 1 parameter of type 2 [44] (§9.14.1); it is sometimes referred to as the Gauss hypergeo-

metric function [44] (§9.14.2). The function F1(a, b, b′; c; x, y) is a hypergeometric function

of two variables [44] (§9.180.1); it is sometimes referred to as the Appell hypergeometric

function. To simplify subsequent analysis, eq. (4.13) is denoted as PPSK(u, t, R, γ, S/N, M).

Similarly, the SER of M-QAM is shown to be [70]

Ps(e) = φ 1
R

λ
t

S
N

(− gQAM

) 2q√
π

Γ(u + 1/2)
Γ(u + 1) 2F1

(
u, 1/2; u + 1;

(
1 +

gQAM

R

γ

t

S

N

)−1
)

− φ 1
R

λ
t

S
N

(− 2gQAM

) 2q2

π(2u + 1)
F1

(
1, u, 1; u + 3/2;

1 + gQAM

R
γ
t

S
N

1 + 2gQAM

R
γ
t

S
N

, 1/2

) (4.14)

To simplify subsequent analysis, eq. (4.14) is denoted as PQAM(u, t, R, γ, S/N, M).
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The M-QAM SERs are plotted for communication scenarios with different spectral effi-

ciency throughout Figures 4.4−4.7. The Monte-Carlo simulations have been accomplished

with the previously described C++ simulation platform, where the simple case of a single

sub-carrier has been simulated.

The mathematical software used is Matlab which contains the Gauss hypergeometric

function 2F1. It is, however, very difficult to use; furthermore, it does not include the

Appell hypergeometric function F1. Both functions have hence been implemented by the

author, where their series representations have been utilised, i.e. [44] (§9.14.1)

2F1(a, b; c; x) =
∞∑

n=1

(
a
)
n

(
b
)
n(

c
)
n
n!

xn (4.15)

and [44] (§9.180.1)

F1(a, b, b′; c; x, y) =
∞∑

n=1

∞∑
k=1

(
a
)
n+k

(
b
)
n

(
b′
)
k(

c
)
n+k

n!k!
xnyk (4.16)

where

(
a
)
n

� Γ(a + n)
Γ(a)

(4.17)

is the Pochhammer symbol [44] (page x1iii). All sums have been truncated after 11 terms,

which was found to yield a high precision over the entire SNR range under consideration.

Figure 4.4 depicts the SER versus the SNR in [dB] labelled on the number of receive

antennas for transmission schemes exhibiting a spectral efficiency of 2 bits/s/Hz. Here,

the solid lines represent the analytically derived SER, whereas the markers correspond to

specific points obtained by means of Monte-Carlo simulations. For all configurations, the

simulations clearly corroborate the analytical results. Furthermore, increasing the number

of receive antennas obviously enhances the performance of the transceiver.

The reader is reminded that STBCs do not provide any coding gain, but only diver-

sity gain. From the analysis on O-MIMO channels (c.f. Chapter 2), the diversity gain is

known to saturate with an increasing number of total antenna elements. This is once again

corroborated by means of Figure 4.4. Having only one receive antenna, i.e. r = 1, the

diversity gain provided by the half-rate STBC outweighs the loss in transmission rate. For

example, to achieve a SER of 10−5, the full-rate QPSK scheme requires 30dB, whereas the

half-rate 16-QAM scheme with 4 transmit antennas needs only 25dB, thereby saving 5dB

transmission power. With four receive antennas, however, diversity is already saturated

(fairly) independent of the number of transmit antennas. That explains why the full-rate

scheme now outperforms the half-rate schemes. For example, to achieve a SER of 10−5,

the full-rate QPSK scheme requires 10dB, whereas the half-rate 16-QAM scheme with 4

transmit antennas needs 2.5dB more transmission power.
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Figure 4.4: SER versus SNR labelled on the number of receive antennas for systems oper-
ating at 2 bits/s/Hz.
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Figure 4.5: SER versus SNR labelled on the number of receive antennas for systems oper-
ating at 3 bits/s/Hz.
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Figure 4.6: SER versus SNR labelled on the number of receive antennas for systems oper-
ating at 4 bits/s/Hz.
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Figure 4.7: SER versus SNR labelled on the number of receive antennas for systems oper-
ating at 6 bits/s/Hz.
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Figure 4.5 depicts the SER versus the SNR [dB] labelled on the number of receive

antennas for transmission schemes exhibiting a spectral efficiency of 3 bits/s/Hz. Although

not shown here, the Monte-Carlo simulations coincide again with the analytical results.

The same explanations as above hold to explain the tendencies of the performance curves.

Clearly, the 3/4-rate STBC outperforms any other code for a low number of receive antennas,

whereas the full rate code performs almost as good as the 3/4-rate code.

Similar conclusions can be drawn for Figure 4.6 and Figure 4.7, which depict transmis-

sion schemes with a spectral efficiency of 4 bits/s/Hz and 6 bits/s/Hz, respectively.

Rayleigh Fading - Unequal Sub-Channel Gains

In Chapter 2, eq. (2.75), the MGF was shown to be

φ 1
R

λ
t

S
N

(s) =
u∑

i=1

Ki · φ 1
R

λi
t

S
N

(s) (4.18)

with constants Ki

Ki =
u∏

i′=1,i′ �=i

γi

γi − γi′
(4.19)

where γi is the average channel gain of the ith path. This allows one to derive the closed

form SER for distributed STBCs, where all the channel gains differ. With the simplified

notation, the respective error rates can be expressed as

Ps(e) =
u∑

i=1

Ki · PPSK/QAM(1, t, R, γi, S/N, M) (4.20)

These are illustrated in Figure 4.8 and Figure 4.9, the equivalent scenarios to which have

already been dealt with in Section 2.4.2.

Explicitly, Figure 4.8 depicts the SER versus the SNR in [dB] for the distributed Alam-

outi scheme with one receive antenna only. As before, the power of the unequal channel

coefficients is chosen such that γ1 + γ2 ≡ 2 and γ1 : γ2 = 2 : 1, i.e. γ1 = 4/3 and γ2 = 2/3.

The cases are depicted where only the channel with power γ1 is utilised, and where only

the channel with power γ2 is utilised, and where the distributed Alamouti STBC is utilised.

The latter is corroborated by numerical simulations.

Clearly, the distributed scenario provides the diversity gain even for this case of unbal-

anced channel gains, whereas the single links exhibit a less steep error curve. The gain of

the distributed case at a SER of 10−5 mounts to approximately 20dB. The large value is

due to the fact that the current transceiver structure does not operate at the capacity limit.

If it operated at capacity limit, then the gain would have been only 3dB over the weaker

link, as predicted by Figure 2.14.
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Figure 4.8: SER versus SNR for a distributed Alamouti system operating at 2 bits/s/Hz;
γ1 + γ2 ≡ 2 and γ1 : γ2 = 2 : 1.
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Figure 4.9: SER versus the normalised power γ1 in the first link for a distributed Alamouti
system operating at 2 bits/s/Hz; SNR=30dB and γ2 = 2 − γ1.
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Figure 4.9 depicts the SER versus the normalised power γ1 in the first link for the

distributed Alamouti scheme with an SNR of 30dB. Furthermore, depicted are the cases

where communication happens only over either of the single links, where γ2 = 2 − γ1. The

SER of the distributed case are found to be two decades better than any of the single

links, for most of the scenarios. Similar observations can be made for higher order STBCs.

The simple example demonstrates the advantages of distributed communication networks

operating with transceivers of finite complexity.

Rayleigh Fading - Generic Sub-Channel Gains

To remind the reader, in this case there are g ≤ u distinct sub-channel gains, which are

were referred to as γ̂i∈(1,g) with each of them being repeated νi∈(1,g) times. In this case, the

MGF was shown to be

φ 1
R

λ
t

S
N

(s) =
g∑

i=1

νg∑
j=1

Ki,j · φj

1
R

λ̂i
t

S
N

(s) (4.21)

where the coefficients Ki,j are given in (2.81). The respective error rates are hence expressed

as

Ps(e) =
g∑

i=1

νg∑
j=1

Ki,j · PPSK/QAM(j, t, R, γ̂i, S/N, M) (4.22)

which is not further illustrated.

Nakagami Fading - Equal Sub-Channel Gains

Given a Nakagami fading factor f , the respective error rates can be similarly derived as

above with the MGF given through (2.87), which yields

Ps(e) = PPSK/QAM(fu, ft, R, γ, S/N, M) (4.23)

which is illustrated in Figure 4.10 and Figure 4.11.

Explicitly, Figure 4.10 depicts the performance of the scenario already discussed in

Chapter 2 by means of Figure 2.18. The SER versus SNR in [dB] for various communication

scenarios is shown utilising 4-QAM (QPSK) and two receive antennas. The cases with and

without Alamouti transmit diversity are compared for f = 1 (Rayleigh) and f = 10 (strong

LOS), as well as the performance over a Gaussian channel. Similar to the capacity, the

Nakagami fading factor f can be traded against the number of antenna elements involved.

This is obvious as the STBC communication system only provides diversity gain, which is

not required for strong LOS scenarios. For example, having one transmit antenna under

strong LOS conditions (f = 10) yields a 5dB power gain over a scenario with two transmit

and nLOS conditions (f = 1) at a SER of 10−5.
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Figure 4.10: SER versus SNR for a distributed Alamouti system operating at 2 bits/s/Hz;
γ1 + γ2 ≡ 2 and γ1 : γ2 = 2 : 1.
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Figure 4.11 depicts the SER versus the Nakagami fading parameter f for systems with

one receive antenna operating at 3 bits/s/Hz and an SNR of 20dB. With reference to

Figure 4.5, it is obvious that the diversity gain saturates very fast with increasing f , and the

robustness offered by lower modulation schemes becomes more predominant. Therefore, the

SERs of the half-rate 64-QAM schemes are inferior to the SERs of the 3/4-rate and full-rate

schemes. It can also be observed that at a Nakagami fading factor f = 7 the performance of

the 16-QAM 3/4-rate scheme with three transmit antennas equates the performance of the

full-rate 8-PSK scheme, enforcing the above statement. It can be expected that for f > 10,

the full-rate code outperforms any of the other STBCs.

Nakagami Fading - Unequal Sub-Channel Gains

Finally, the respective error rates for a Nakagami fading channel with different sub-channel

gains γi∈(1,u) and different fading factors fi∈(1,u) can be derived from (2.90) as

Ps(e) =
u∑

i=1

fi∑
j=1

Ki,j · PPSK/QAM(j, jt, R, γi, S/N, M) (4.24)

where the coefficients Ki,j are obtained by performing partial fractions on (2.90). This case

is not further illustrated here.

Nakagami Fading - Generic Sub-Channel Gains

The respective SERs for the case of generic sub-channel coefficients is similarly obtained as

for the Rayleigh channel with unequal sub-channel gains, and is thus also omitted here.

4.3.2 Bit Error Rates

The derived dependencies relate the average transmitted signal power to the SER. The exact

BER of generic M-PSK and M-QAM schemes, however, is difficult to obtain. Analysis

is greatly simplified if the bits are Gray-mapped onto the symbol, i.e. adjacent symbol

constellation points differ only by one bit [47]. In that case, the BER Pb(e) is easily related

to the SER via [47]

Pb(e) ≈ Ps(e)
log2(M)

(4.25)

at low BERs or SERs.

The performance of the numerically obtained exact BERs are compared with the approx-

imate BERs given by (4.25) in Figure 4.12. Simulated is a system equivalent to Figure 4.4,

i.e. with a spectral efficiency of 2 bits/s/Hz. The exact and approximate BERs clearly

converge for an increasing SNR.
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Figure 4.12: Exact and approximate BER versus SNR for systems with two receive antennas
operating at 2 bits/s/Hz.
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Figure 4.13: Exact (simulation) and approximate (analysis) FER versus SNR for systems
with two receive antennas operating at 2 bits/s/Hz over fast-fading channels.
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4.3.3 Frame Error Rates

A frame is assumed to consist of B bits which, when transmitted, forms D = B/ log2(M)

symbols. A frame error occurs if at least one of the D symbols is in error. Since transmission

happens over a wireless fading channel, the FER needs to be conditioned on the random

channel realisations ρ � (ρ1, . . . , ρD) at each of the D symbols. A D-dimensional integration

with respect to the joint pdfs of ρi∈(1,D) then yields the FER, i.e.

Pf (e) =
∫ ∞

0
Pf (e|ρ) pdfρ(ρ) dρ (4.26)

Due to the channel induced memory, a closed form of (4.26) is difficult to obtain. The mem-

oryless space-time block encoding and the memoryless fading channel used here, however,

allows one to assume that occurring symbol errors are independent, which yields for the

FER

Pf (e) = 1 −
∫

· · ·
∫

ρ

D∏
i=1

(
1 − Ps(e|ρi)

) · pdfρ1(ρ1) . . . pdfρD(ρD) dρ1 . . . dρD (4.27)

Performing the integrations finally results in Pf (e) = 1−(1−Ps(e)
)D. Note that the derived

FER also holds for ergodic fading channels with memory for D → ∞. The derived FER

also holds approximately for fast fading channels with D · Ts � Tc, where Ts is the symbol

duration and Tc is the channel coherence time. It also holds for slow fading channels with

time interleavers of sufficient depth, which may span over several frames. The role of the

interleaver is to break the memory introduced by the slow fading channel, and therefore

make it appear fast fading.

The FER is illustrated in Figure 4.13 versus the SNR for systems operating at 2 bits/s/Hz

with two receive antennas over fast fading channels. The frame length has been chosen to

be B = 100 bits; the QPSK modulated frame is therefore D = 50 symbols long, whereas

the 16-QAM frame only D = 25 symbols. Clearly, the QPSK full-rate STBC matches the

numerically obtained FER almost entirely. The 16-QAM half-rate STBCs, however, slightly

deviate from the exact results, which is due to D · Ts not being sufficiently greater than Tc.

For completeness, one FER curve in Figure 4.13 corresponds to the quasi-static case

(slow fading without interleaver) of an Alamouti transmitter with two receive antennas.

Here, the channel was kept constant over the entire frame of D = 50 symbols. The quasi-

static (slow) fading case clearly outperforms the ergodic (fast) fading case. To explain

this, note that (4.26) can be written as Pf (e) = Eρ {Pf (e|ρ)} = Eρ {f(Ps(e|ρ))}, where

the function f(·) relating Pf (e|ρ) with Ps(e|ρ) can be shown to be a concave function

in its argument. This allows Jensen’s inequality [21] to be invoked to arrive at Pf (e) =

Eρ {f(Ps(e|ρ))} ≤ f(Eρ {Ps(e|ρ)}) = 1 − (
1 − Ps(e)

)D, which indicates that the FER of a

memoryless signal over arbitrary channels is smaller than over an ergodic channel.
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4.4 Maximum Throughput for End-to-End Transmission

The error rates obtained in the previous section are utilised here to derive fractional resource

allocation rules assuming that a decision on the correctness of the received signal is done at

the t-MT. This should not be confused with transparent relaying, where the information is

simply amplified and forwarded. It is also in contrast to a stage-by-stage detection, where

a decision on the correctness of the received signal is done at each stage; this case will be

dealt with in Section 4.5.

If all r-MTs per stage cooperate and cooperation takes places at a sufficiently high SNR,

then the signal samples from the previous stage are the same for all r-MTs. Therefore, if an

error occurs in the signal from the previous stage, then that error is the same in all r-MTs

belonging to the same stage. This applies not only for STBCs, but for any type of coding

chosen.

Such a scenario provides a great simplification to analysis, since the errors in consecutive

stages become independent. This is in contrast to a generic relaying process with partial

cooperation (clustering), where one r-MT may have a more reliable estimate than another

r-MT in the same relaying VAA, leading to error-dependencies between the stages.

Subsequently, the problem of maximising the end-to-end throughput is shown to be

equivalent to the problem of minimising the end-to-end BER. The fractional resource allo-

cation rules are then derived for the cases of full and partial cooperation.

4.4.1 Problem Simplification

It is assumed here that the source MT (s-MT) transmits B bits per frame to the target

MT (t-MT) via K relaying stages. With reference to (3.38), the normalised end-to-end

throughput can be expressed as

Θ = min
v∈(1,K)

{
α′

vRv log2(Mv)
} · (1 − Pf,e2e(e)

)
(4.28)

where α′
v, Rv and Mv are the fractional frame duration, STBC rate and modulation index

of the vth stage respectively, and Pf,e2e(e) is the end-to-end FER.

Eq. (4.28) has to be understood as follows. If there were no losses between a directly

communicating s-MT and t-MT, then all of the B bits reach the receiver; the throughput

normalised by the total number of sent bits hence amounts to 1. The use of a modulation

scheme with index M and a STBC with rate R during a fractional frame duration α′ to

accomplish such link results in a throughput, normalised by the utilised time and frequency,

as 1 ·α′ ·R · log2(M) [bits/s/Hz]. It is then diminished by the loss caused by the end-to-end

FER Pf,e2e(e). For a communication system with K relaying stages, the weakest link in the

chain determines the throughput, hence minv∈(1,K)

{
α′

vRv log2(Mv)
}
. It is thus the aim to

derive optimum resource allocation strategies, which maximise the end-to-end throughput.

162



To this end, note that Pf,e2e(e) is a function of Mv∈(1,K) and Rv∈(1,K) (hence also

minv∈(1,K){α′
vRv log2(Mv)}) and the fractional transmission power allocated to each stage.

Optimising (4.28) w.r.t. these parameters is very complex, which is the reason why the

optimisation process is performed in three stages.

First, the modulation indices Mv∈(1,K) are fixed and the limiting case where SNR→ ∞
is considered. This reduces (4.28) to

Θ = min
v∈(1,K)

{
α′

vRv log2(Mv)
}

(4.29)

where the fractional frame durations α′
v need to be chosen such as to maximise Θ under

constraint
∑K

v=1 α′
v = 1. This is clearly achieved by equating all α′

vRv log2(Mv), which

results in

α′
v =

∏K
w=1,w �=v Rw · log2(Mw)∑K

k=1

∏K
w=1,w �=k Rw · log2(Mw)

(4.30)

Second, it is shown now that under the current assumptions the throughput is maximised

by minimising the end-to-end BER. To this end, the normalised throughput is expressed in

terms of the end-to-end BER Pb,e2e(e) which, assuming independent bit errors, gives

Θ = min
v∈(1,K)

{
α′

vRv log2(Mv)
} · (1 − Pb,e2e(e)

)B (4.31)

Defining a non-decreasing (in Θ) metric

Θ′ � exp

[
log
(
Θ/ minv∈(1,K)

{
α′

vRv log2(Mv)
})

B

]
− 1 (4.32)

it can easily be shown that

Θ′ ≈ −Pb,e2e(e) (4.33)

Therefore, to maximise the end-to-end throughput, one has to minimise the end-to-end bit

error rate by optimally assigning fractional transmission power to each relaying stage. The

BER at each stage is related with the occurring SER via (4.25), where for low error rates

one symbol error causes one bit error.

Third, the optimum modulation order Mv∈(1,K) has to be determined in dependency of

the previously derived fractional resource allocations. This is easily done by permuting all

possible modulation orders at each stage such as to maximise the end-to-end throughput.

Since the number of modulation orders will be limited, such optimisation is feasible without

consuming too much computational power.

Subsequently, the second step is performed assuming either total or partial (clustered)

cooperation in each stage. The near-optimum fractional power allocation rules are first de-

rived, then assessed in terms of their precision; finally, the maximum achievable throughput

will be illustrated by means of a few examples.
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4.4.2 Full Cooperation at each Stage

Under the assumption of full cooperation, each of the K relaying stages experiences in-

dependent BERs Pb,v∈(1,K)(e) caused by independent SERs Ps,v∈(1,K)(e). A bit from the

s-MT is received correctly at the t-MT only when at all stages the bit has been transmitted

correctly3. The end-to-end BER can therefore be expressed as

Pb,e2e(e) = 1 −
K∏

v=1

(
1 − Pb,v(e)

)
(4.34)

which, at low BERs at every stage, can be approximated as

Pb,e2e(e) ≈
K∑

v=1

Pb,v(e) (4.35)

≈
K∑

v=1

Ps,v(e)
log2(Mv)

(4.36)

where Mv is the modulation order at the vth stage. Further analysis concentrates on the

case of Rayleigh fading with equal channel gains per relaying stage; other cases are a

straightforward extension to the exposed analysis. Assuming that each stage is allocated a

fractional power β′
v, the above-given dependency can be expressed as

Pb,e2e(e) ≈
K∑

v=1

Ps,v

(
uv, tv, Rv, γv, β

′
v · S/N, Mv

)
log2

(
Mv

) (4.37)

where the SERs Ps,v(·) = PPSK/QAM(·) are given through (4.13) and (4.14), respectively.

Furthermore, uv � tv · rv, tv and rv are the number of transmit and receive antennas in the

vth stage, Rv is the rate of the STBC, γv is the average attenuation experienced, S is the

total power given to deliver the information from source to sink, and N is the noise power.

The optimisation process has only to be performed w.r.t. the fractional power allocation

β′
v∈(1,K). Even so, the optimisation process is very intricate. To simplify analysis further,

an upper bound to the derived SERs for M-PSK and M-QAM is invoked. To this end, the

integrant of (4.10) is upper-bounded by its largest argument, which occurs at θ = π/2. The

SER for M-PSK in the vth relaying stage is hence upper-bounded as

Ps,v(e) ≤
Mv−1

Mv(
1 + β′

v
gPSK,v

Rv

γv

tv
S
N

)uv
(4.38)

where gPSK,v = sin2(π/Mv). The end-to-end BER for an M-PSK modulation scheme can

finally be upper-bounded as

Pb,e2e(e) ≤
K∑

v=1

Mv − 1
Mv log2(Mv)

(
1 + β′

v

gPSK,v

Rv

γv

tv

S

N

)−uv

(4.39)

3The cases where two or more wrong bits may result again in a correct bit is neglected here.
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Following a similar approach, the upper bound for the end-to-end BER of an M-QAM

modulation can be derived as

Pb,e2e(e) ≤
K∑

v=1

2qv

log2(Mv)

[(
1 + β′

v

gQAM,v

Rv

γv

tv

S

N

)−uv

+ (4.40)

qv

2

(
1 + 2β′

v

gQAM,v

Rv

γv

tv

S

N

)−uv
]

�
K∑

v=1

2qv

log2(Mv)

(
1 + β′

v

gQAM,v

Rv

γv

tv

S

N

)−uv

(4.41)

where gQAM,v = 3/2/(Mv−1) and qv = 1−1/
√

Mv. Note that in (4.41) the second summand

appearing in (4.40) was neglected due to qv/2 < 1 and (1 + 2x)−uv being much less than

(1+x)−uv for x sufficiently large and uv ≥ 1. Either modulation scheme results in an upper

bound unified below as

Pb,e2e(e) ≤
K∑

v=1

Av

(
1 + Bvβ

′
v

)−uv (4.42)

The constants Av and Bv are obtained by comparing (4.42) with (4.39) or (4.41) to arrive

at

Av =

{
Mv−1

Mv log2(Mv) for M-PSK
2qv

log2(Mv) for M-QAM
(4.43)

and

Bv =

{
gPSK,v

Rv

γv

tv
S
N for M-PSK

gQAM,v

Rv

γv

tv
S
N for M-QAM

(4.44)

In Appendix 4.8 (Derivation I), it is shown that the fractional power allocations β′
v∈(1,K)

have to obey

β′
v ≈

[
K∑

w=1

α′
w

(
u−1

v A−1
v Buv

v

u−1
w A−1

w Buw
w

) 1
umax+1

]−1

(4.45)

where umax = arg max(u1, . . . , uK).

The performance of the developed algorithm is assessed by means of Figures 4.14−4.17

for M-QAM schemes only. Note that if reference is made to the non-optimised scenario,

then only the fractional transmission power is meant not to be optimised since the frame

duration is easily related to the modulation order.

Explicitly, Figure 4.14 depicts the end-to-end BER versus the SNR in the first link in

[dB] for various 2-stage communication scenarios deploying the developed fractional power

allocation strategy (4.45), which is also compared against a numerically obtained optimum

and a non-optimum allocation.
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The first scenario, where t1,2 = r1,2 = 1, M1,2 = 4 (QPSK) and p = [0, 0]dB, is entirely

symmetric which leads to the same performance for all three allocation strategies. The

second scenario is the same as the first, with the only difference that the channel in the

second stage is now 10 times stronger than in the first stage, i.e. p = [0, 10]dB. The resulting

non-symmetric scenario reveals a performance difference between the optimised (solid lines)

and non-optimised (dashed line) power allocation.

It can be observed that the optimum and developed allocation strategy yield the same

performance for any of the depicted configurations. Furthermore, the gain of an optimised

system over a non-optimised system is highest for very asymmetric cases; here, for t1 =

2, r1 = 2, t2 = 2, r2 = 1, M1 = 256, M2 = 64 and p = [0, 10]dB. At a target end-to-end BER

of 10−5, about 1dB in power can be saved.

Figure 4.15 is similar in its nature to Figure 4.14, with the only difference that a three-

stage network is scrutinised. Similar observations can be made for these scenarios, where

gains of almost 4dB can be observed. This corroborates the importance of the derived

allocation strategy.

The throughput of a two-stage system is illustrated by means of Figure 4.16, which

utilises the fractional resource allocation strategies (4.30) and (4.45). The system deployed

has the number of bits fixed to B = 100; furthermore, for all configurations M1,2 = 4

(QPSK) and p = [0, 10]dB. It can be observed that in the region of low SNR, the developed

allocation strategy performs worse than the optimum one. This is obvious, as the fractional

frame durations have been derived assuming the SNR → ∞.

For most of the transitional region from zero-throughput to maximum-throughput, how-

ever, the derived allocations yield near-optimum throughput. In contrast, no optimisation

exhibits drastic losses in the transitional region. For example, given the scenario with

t1,2 = r1,2 = 2 operating at an SNR in the first link of 6dB, around 0.4 bits/s/Hz are lost

which mounts to approximately 40%.

Observe also that the cases of full-rate STBC in each stage yield the same maximum

throughput, whereas the case with the 3/4-rate STBC has a lower maximum throughput,

notwithstanding the fact that it has the strongest link with (2 × 4)/(4 × 4). This is due to

the limiting spectral efficiency of the STBC with a rate less than one. Clearly, the strength

of the link determines the rate with which the system approaches the limiting throughput

for the SNR → ∞. This limit will be calculated in the consecutive section.

The precision of the fractional allocation algorithm for fixed modulation indexes allows

a final numerical optimisation to be performed in each relaying stage over all possible mod-

ulation indexes. The low complexity of (4.30) and (4.45) guarantees that such optimisation

comes at little additional computational power.

166



0 5 10 15 20 25 30 35 40

10
−4

10
−3

10
−2

10
−1

10
0

E
nd

−
to

−
E

nd
 B

E
R

SNR [dB]

Optimum (numerical)
Near−Optimum (algorithm)
Non−Optimised

t
1
 = 1, r

1
 = 2, M

1
 = 4

t
2
 = 2, r

2
 = 2, M

2
 = 4

p = [0, 10]              

t
1
 = 1, r

1
 = 1, M

1
 = 4

t
2
 = 1, r

2
 = 1, M

2
 = 4

p = [0, 10]              

t
1
 = 1, r

1
 = 1, M

1
 = 4

t
2
 = 1, r

2
 = 1, M

2
 = 4

p = [0, 0]               

t
1
 = 2, r

1
 = 2, M

1
 = 256

t
2
 = 2, r

2
 = 1, M

2
 = 64 

p = [0, 10]                

Figure 4.14: Comparison between optimum and near-optimum, as well as non-optimised
end-to-end BER for various configurations of a two-stage relaying network.
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167



0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
nd

−
to

−
E

nd
 T

hr
ou

gh
pu

t [
bi

ts
/s

/H
z]

SNR [dB]

Optimum (numerical)
Near−Optimum (algorithm)
Non−Optimised

t
1
 = 2, r

1
 = 4  

t
1
 = 4, r

2
 = 4  

R
1
 = 1, R

2
 = 3/4

t
1
 = 2, r

1
 = 2

t
1
 = 2, r

2
 = 2

R
1
 = 1, R

2
 = 1

t
1
 = 1, r

1
 = 1

t
1
 = 1, r

2
 = 1

R
1
 = 1, R

2
 = 1

B = 100         
p = [0, 10]     
M

1
 = 4, M

2
 = 4

Figure 4.16: Comparison between optimum and near-optimum, as well as non-optimised
end-to-end throughput for various configurations of a two-stage relaying network.

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

E
nd

−
to

−
E

nd
 T

hr
ou

gh
pu

t [
bi

ts
/s

/H
z]

SNR [dB]

Near−Optimum with Optimised Modulation Index
No Optimisation

p = [0, 10]          
t
1
 = 2, r

1
 = 2     

t
2
 = 2, r

2
 = 2     

M
1,2

 = 256

M
1,2

 = 64

M
1,2

 = 16

M
1,2

 = 4

M
1,2

 = 2

Figure 4.17: Numerically optimised modulation index where M1,2 = (2, 4, 16, 64, 256) to
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Such numerical optimisation was performed for a 2-stage network with p = [0, 10]dB

and t1,2 = r1,2 = 2. Each stage could choose a modulation index belonging to the set

M1,2 = (2, 4, 16, 64, 256); this leads to 25 possible combinations which are calculated in a

fraction of a second. The performance gains in terms of increased throughput are clear from

Figure 4.17, where the near-optimum adaptive modulation per stage is compared against

various fixed combinations. At any SNR, the developed algorithm clearly outperforms any

of the fixed configurations.

For example, if the system was to operate at an SNR in the first link of 20dB, then the

best but fixed modulation index can only reach 2 bits/s/Hz; in this case either 16-QAM or

64-QAM in both stages. The optimum selection is 64-QAM with an optimised fractional

power allocation, which yields a performance benefit of 30%.

4.4.3 Partial Cooperation at each Stage

Partial cooperation at each relaying stage results in parallel MIMO channels, all of possibly

different strength. An example of such clustering process has been depicted in Figure 3.6

for a particular relaying stage. An analogous example to Figure 3.24 is depicted by means

of Figure 4.18 with none of the involved r-MTs cooperating among each other.

Here, the first stage spans two independent SISO channels with average attenuation γ1,1

and γ1,2, respectively. Each of these channels causes independent BERs, denoted as P1,1

and P1,2, respectively. Similarly, the second stage spans two independent MISO channels,

where the first MISO channel consists of channels with average attenuations γ2,1 and γ2,3,

and the second MISO channel consists of channels with average attenuations γ2,2 and γ2,4.

Furthermore, assuming an error free input into the second VAA relaying tier, the BERs at

the output of the MISO channels are P2,1 and P2,2. Finally, the third stage spans a single

MISO channel with a BER P3,1.

Note that the r-MTs belonging to the same stage need to communicate at the same

rate; furthermore, they obviously need to know which part of the space-time block code to

transmit. Although already previously stated, it is assumed that synchronisation among all

terminals is perfect.

To obtain the exact end-to-end BER is not trivial, as an error in the first stage may

propagate to the t-MT; however, it may also be corrected at the next stage. Referring to

Figure 4.18, for example, it is assumed that the same information bit is erroneously received

over the link denoted as (1, 1) and correctly for (1, 2). Then, the STBC formed by (2,1)

and (2,3) has as its input one erroneous and one correct information bit. Assuming that

γ2,3 � γ2,1, then the error does not further propagate since it will be outweighed by the

correct bit. Alternatively, if γ2,3 � γ2,1, then there is a large likelihood that the error

propagates.
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Figure 4.18: 3-stage distributed O-MIMO communication system without cooperation.

This creates dependencies between the error events at each stage in dependency of the

modulation scheme used, the prevailing channel statistics, the average channel attenua-

tions, as well as the STBC chosen. The fairly complex interdependencies call for suitable

simplifications, which are exposed and justified below.

Generally, it is desirable to develop an approximation which decouples the error events

at the respective stages. To this end, it is assumed that the system operates at low error

rates which causes only one error event at a time in the entire network. Let us assume that

an error occurs in link (1,1); however, (1,2) is error free. Then the probability that the error

propagates further is related to the strengths of channels (2,1) and (2,3). It is intuitive and

hence conjectured here that the probability that such error propagates is proportional to

the strength of the STBC branch it departs from, here (2,1) for one of two MISO channels,

and (2,2) for the other one.

Therefore, the probability that an error which occurred in link (1,1) with probability

P1,1 propagates through the O-MISO channel spanned by (2,1) and (2,3) is approximated

as P1,1 · γ2,1/(γ2,1 + γ2,3), where the strength of the erroneous channel (2,1) is normalised

by the total strength of both sub-channels. To capture the probability that such an error

propagates until the t-MT, all possible paths in the network have to be found and the

original probability of error weighed with the ratios between the respective path gains.

Taking the above-said into account and assuming that at high SNRs only one such error

will occur at any link, the end-to-end BER for the network depicted in Figure 4.18 can be

expressed as

Pb,e2e(e) ≈
[
P1,1(e)

(
γ2,1

γ2,1 + γ2,3

γ3,1

γ3,1 + γ3,2
+

γ2,2

γ2,2 + γ2,4

γ3,2

γ3,1 + γ3,2

)
+ (4.46)

P1,2(e)
(

γ2,4

γ2,2 + γ2,4

γ3,2

γ3,1 + γ3,2
+

γ2,3

γ2,1 + γ2,3

γ3,1

γ3,1 + γ3,2

)]
+[

P2,1(e)
(

γ3,1

γ3,1 + γ3,2

)
+ P2,2(e)

(
γ3,2

γ3,1 + γ3,2

)]
+
[
P3,1(e)

]

170



This can be simplified to

Pb,e2e(e) ≈
[
ξ1,1P1,1(e) + ξ1,2P1,2(e)

]
+ (4.47)[

ξ2,1P2,1(e) + ξ2,2P2,2(e)
]

+[
ξ3,1P3,1(e)

]

where ξv,i is the probability that an error occurring in link (v, i) will propagate to the t-MT.

This result is easily generalised to networks of any size and any form of partial cooperation.

To this end, remember that there are Qv∈(1,K) cooperative clusters at the vth stage, each

of which will yield an error probability of Pv∈(1,K),i∈(1,Qv). The end-to-end BER is hence

approximated as

Pb,e2e(e) ≈
K∑

v=1

Qv∑
i=1

ξv,iPv,i(e) (4.48)

where the probabilities ξv,i are easily found from the specific network topology. The BERs

Pv,i(e) can be found from (4.25) and any of the previously derived SERs with an appropriate

number of transmit and receive antennas per cluster, as well as prevailing channel condi-

tions. The applicability of the derived end-to-end BER is assessed by means of Figures 4.19

and 4.20.

Explicitly, Figure 4.19 compares the numerically obtained and derived end-to-end BER

versus the SNR in the first link for a two-stage network as depicted in Figure 4.18 without

the second stage. For all simulations, QPSK has been used. The graphs are labelled on the

respectively utilised channel gains. It can be observed that the derived BER differs from

the exact one for low SNRs; however, for an increasing SNR, both curves converge.

Figure 4.20 compares the numerically obtained and derived end-to-end BER versus the

SNR in the first link for a three-stage network as depicted in Figure 4.18. The curves are

again labelled on the channel gains. From Figure 4.20 it is clear that the derived end-to-end

BER holds with high precision for a variety of different scenarios.

The derived end-to-end BERs in form of (4.48) allow one to assign optimum fractional

powers β′
v∈(1,K) such that, together with the fractional frame durations α′

v∈(1,K), near-

optimum end-to-end throughput is achieved. The fractional frame durations are clearly

independent of the channel statistics or the degree of cooperation in the high SNR mode;

therefore, eq. (4.30) holds for α′
v∈(1,K). The fractional power allocations are derived as

follows.

Without loss of generality, let us assume that all links obey Rayleigh fading and have

a different channel gain. The error rates are then governed by (4.20), where u has to be

replaced by the number of sub-channels created in each of the Qv clusters. The fractional

power allocations are derived in Appendix 4.8 (Derivation II) as
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Figure 4.19: Numerically obtained and derived end-to-end BER versus the SNR in the first
link for a two-stage network without cooperation.
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Figure 4.20: Numerically obtained and derived end-to-end BER versus the SNR in the first
link for a three-stage network without cooperation.
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β′
v ≈




K∑
w=1

α′
w

√√√√√√√√√√

Qv∑
i=1

∑
j∈i

ξ−1
v,i K

−1
v,i,jA

−1
v Bv,i,j

Qw∑
i=1

∑
j∈i

ξ−1
w,iK

−1
w,i,jA

−1
w Bw,i,j




−1

(4.49)

where the notation j ∈ i represents the jth sub-channel belonging to the ith cluster. The

partial expansion coefficients Kv,i,j in the vth stage for the ith cluster can be written as

Kv,i,j =
∏

j′∈i,j′ �=j

γv,j

γv,j − γv,j′
(4.50)

which has uv,i multiplicative terms. The constant Av is given by (4.43), whereas

Bv,i,j =

{
gPSK,v

Rv

γv,j∈i

tv
S
N for M-PSK

gQAM,v

Rv

γv,j∈i

tv
S
N for M-QAM

(4.51)

This case is not further illustrated.

Note that no waterfilling has been deployed prior to the above optimisation; however,

numerically obtained simulation results indicate that waterfilling for the transmit power at

each stage does not yield notable performance gains, which is the reason why it has been

omitted for the above analysis.

4.5 Maximum Throughput for Stage-by-Stage Detection

In contrast to the previous section, the decision on the correctness of a received symbol or

frame of symbols is accomplished at every relaying stage. This approach is a step closer

to the capacitive approach taken in Chapter 3, where throughput was maximised assuming

decoding and re-encoding at each stage.

Subsequently, the fractional resource allocation rules assuming full cooperation at each

relaying stage are derived assuming a frame-by-frame detection. The case of partial coop-

eration is then a straightforward extension, and thus not considered further. Finally, the

allocation strategies derived in Chapter 3 for transceivers of infinite complexity are mapped

onto allocation strategies for finite transceivers.

4.5.1 Full Cooperation at each Stage

It is assumed here that a decision on the correctness of the received signal is accomplished at

frame level, which is easily realised by adding a cyclic redundancy check (CRC) of negligible

overhead to each transmitted frame. Therefore, the vth relaying stage receives a frame of

duration Dv containing symbols of modulation order Mv, which are STBC encoded with a

rate Rv. Not to cause any congestion, the average throughput at each stage has to be the

same, while the average end-to-end throughput ought to be maximum.
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It is therefore again the aim to find fractional resource allocation rules such as to max-

imise the end-to-end throughput; however, now tailored to a stage-by-stage detection. With

reference to (4.28) and the above-said, the normalised throughput at the vth stage can be

expressed as

Θv = α′
vRv log2(Mv) ·

(
1 − Ps,v(e)

)Dv (4.52)

≈ α′
vRv log2(Mv) ·

(
1 − DvPs,v(e)

)
(4.53)

where α′
v is the fractional frame duration, Rv is the rate of the STBC, Mv is the modulation

order, Ps,v(e) is the SER, and Dv ∈ N is the frame duration in symbols used in the vth

stage. Defining D to be the total length of the frame used for communication from s-MT

to t-MT, Dv can be related to the fractional frame duration α′
v as Dv = α′

vD.

Note that with an increasing fractional frame length Dv∈(1,K), the normalised through-

put clearly decreases which is due to the increased probability of error. However, the sig-

nalling overhead inherent to each transmitted frame also decreases, and so does the strength

of a potential outer channel code. The system designer should hence determine an optimum

(according to certain constraints) frame length, after which the exposed resource allocation

algorithms are applied. An optimum choice of such frame duration is clearly beyond the

scope of this thesis.

Adapting similar arguments as in Chapter 3 and the previous section, the resource

allocation strategies have to guarantee that the throughput is the same at each of the

K relaying stages, i.e. Θ1 = . . . = ΘK � Θ. Further analysis concentrates on the case of

Rayleigh fading with equal channel gains per relaying stage; other cases are a straightforward

extension to the exposed analysis.

Under these assumptions, the throughput in each stage can be upper-bounded by

Θv � α′
vRv log2(Mv) ·

(
1 − α′

vAvD

(1 + Bvβ′
v)

uv

)
(4.54)

where Av differs from the Av in (4.43) by log2(Mv) due to the SER (and not the BER), i.e.

Av =

{
Mv−1

Mv
for M-PSK

2qv for M-QAM
(4.55)

and Bv is given by (4.44). Following the same approach as before, the fractional frame

durations are obtained as

α′
v =

∏K
w=1,w �=v Rw · log2(Mw)∑K

k=1

∏K
w=1,w �=k Rw · log2(Mw)

(4.56)

and the fractional power allocations are derived in Appendix 4.8 (Derivation III)

β′
v ≈


 K∑

w=1

α′
v

(
α′

v
−1

α′
w
−1

A−1
v Buv

v

A−1
w Buw

w

) 1
umax



−1

(4.57)

where umax = arg max(u1, . . . , uK).
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The performance of the developed algorithm is assessed by means of Figures 4.21−4.23

for M-QAM schemes only. M-PSK has been omitted here to limit the number of simulation

results; however, they were found to exhibit the same performance trends as the M-QAM

schemes. Note further that, unless otherwise stated, the number of bits sent by the s-MT

in one frame has been fixed to B = 100.

Explicitly, Figure 4.21 depicts the normalised end-to-end throughput in [bits/s/Hz] ver-

sus the SNR which occurs in the first link in [dB]. Not to simulate an entirely symmetric

scenario, the strength of the channel in the second stage is 10 times stronger than the first

one, i.e. p = [0, 10]dB. Furthermore, the modulation scheme has been fixed to QPSK in

either stage. The performance of the numerically obtained optimum throughput is com-

pared against the throughput obtained by means of the allocation rules (4.56) and (4.57)

for a varying number of transmit and receive antennas in each stage. The algorithms clearly

perform near-optimum.

It can also be observed that the throughput saturates, which can be attributed to the

limiting spectral efficiency of a QPSK scheme. For a high SNR, the SER at each stage is

negligible; the limiting throughput Θ∞ can hence be obtained from (4.56) and (4.54) as

Θ∞ � Θ(SNR → ∞) =
∏K

w=1 Rw · log2(Mw)∑K
k=1

∏K
w=1,w �=k Rw · log2(Mw)

(4.58)

which, when applied to the full-rate examples in Figure 4.21, yields

Θ∞ =
1 · log2(4) · 1 · log2(4)
1 · log2(4) + 1 · log2(4)

= 1 bit/s/Hz (4.59)

and which, when applied to the 3/4-rate example, yields

Θ∞ =
1 · log2(4) · 3/4 · log2(4)
1 · log2(4) + 3/4 · log2(4)

= 0.86 bits/s/Hz (4.60)

Both results are confirmed by Figure 4.21. Furthermore, Θ∞ = 1 bit/s/Hz is approached

faster by the (1× 2)/(2× 1) configuration when compared to (1× 1)/(1× 1). This is clearly

attributed to the faster decay in the SER probability for increasing SNR.

Comparing Figure 4.21 with its equivalent for the end-to-end transmission, i.e. Fig-

ure 4.16, the throughput of the stage-by-stage transmission and detection is higher in the

transitional region. This is due to the fact that a stage-by-stage transmission does not

re-transmit erroneous frames.

Figure 4.22 depicts the throughput of a (2 × 2)/(2 × 2) full-rate configuration with a

varying modulation index in each stage, where p = [0, 10]dB. Explicitly, compared are the

cases where the first (weaker) stage uses QPSK, whereas the second (stronger) stage varies

its modulation from QPSK to 256-QAM. Also, depicted is the case where the first (weaker)

stage uses 64-QAM and the second (stronger) stage 256-QAM.
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Figure 4.21: Comparison between optimum, near-optimum and non-optimised end-to-end
throughput of a two-stage relaying network, assuming stage-by-stage detection.
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Figure 4.22: Optimum, near-optimum and non-optimised end-to-end throughput for a two-
stage relaying network with fixed modulation index.
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Figure 4.23: Numerically optimised modulation index where M1,2 = (2, 4, 16, 64, 256) to
yield near-optimum end-to-end throughput, compared to non-optimised systems.
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Figure 4.24: Numerically optimised modulation index where M1,2 = (2, 4, 16, 64, 256) to
yield near-optimum end-to-end throughput, compared to non-optimised systems; R2 = 3/4.
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In the limiting cases, the respective Θ∞ are clearly reached, which means that the (64-

QAM)/(256-QAM) scheme yields highest throughput and the (4-QAM)/(4-QAM) scheme

the lowest throughput. Of interest, however, is the zone where the throughputs cross,

i.e. SNR<15dB. This zone is due to the trade-off between throughput, i.e. preferably a

high modulation index, and susceptibility to errors, i.e. preferably a low modulation index.

Furthermore, the large difference in throughput between (64-QAM)/(256-QAM) and (4-

QAM)/(256-QAM) indicates that the spectral efficiency is really the limiting factor for

SNR → ∞. Therefore, if there is a distributed-MIMO multi-stage network operating at a

high SNR, and there is one stage which is using a modulation index lower than any other

stage in the network, then it may make sense not to incorporate that stage into the relaying

process. The derivations of the conditions under which such stage should be excluded is

beyond the scope of this thesis.

The precision of the fractional allocation algorithm for fixed modulation indexes allows

performing a final numerical optimisation in each relaying stage over all possible modulation

indexes. The low complexity of (4.56) and (4.57) guarantees that such optimisation comes

at little additional computational power.

Such numerical optimisation was performed for a 2-stage network with p = [0, 10]dB

and t1,2 = r1,2 = 2. Each stage could choose a modulation index belonging to the set

M1,2 = (2, 4, 16, 64, 256); this leads to 25 possible combinations which are calculated in a

fraction of a second. The performance gains in terms of increased throughput are clear from

Figure 4.23, where the near-optimum adaptive modulation per stage is compared against

various fixed combinations.

Figure 4.24 is equivalent to Figure 4.23 with the only difference that t1 = 2, r1 = 4, R1 =

1 and t2 = 4, r2 = 2, R2 = 3/4. Although the limiting throughput is lower in comparison to

the previous case due to the loss in rate, the limiting throughput is reached for a lower SNR.

For example, if a system required a normalised throughput of 2 bits/s/Hz, then the current

scenario would require an SNR of 12dB, whereas the previous scenario almost 15dB.

4.5.2 Mapping of (αv, βv) to (α′
v, β

′
v,Mv)

The circle is now closed by mapping the previously derived fractional resource allocation

rules for transceivers operating at capacity limit, to system operating with transceivers of

finite complexity, i.e.

(αv, βv) �−→ (α′
v, β

′
v, Mv) (4.61)

A successful mapping would allow utilising the fractional resource allocation rules derived for

Shannon transceivers operating over MIMO or O-MIMO relaying with or without resource

reuse for the same systems with limited complexity. Two different mappings are suggested.
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First, it is assumed that the modulation index Mv∈(1,K) is fixed at all stages. With

reference to the previous section, the determination of the fractional frame duration α′
v∈(1,K)

is hence trivial and assumed to be given in form of (4.56). Of importance here is to allocate

the fractional power β′
v∈(1,K) utilising the theory developed in Section 3.3.1, where β′

v ≈
βv/α′

v and βv is the fractional power determined for an FDMA-based relaying system with

the same parameters as the current TDMA-based relaying system. Such successful mapping

is shown in Figure 4.25, which is the equivalent to Figure 4.21. The performance clearly

differs; however, it outperforms the cases without any transmit power optimisation.

Second, it is assumed that the throughput-maximising modulation index Mv∈(1,K) needs

to be determined in each stage. Remember that previously all possible Mv needed to be

permutated to determine the maximum throughput. Although not a serious burden for

systems with, e.g., 5 different modulation orders, i.e. O = 5, and 2-3 stages, i.e. K = 2, 3;

however, it may be a serious limit for systems with more than 3 stages, as the number of

combinations increases with OK . Also, despite the simplicity of the previously introduced

algorithms, it is always an aim of the system designer to simplify these even further.

To this end, an allocation is suggested which increases only linearly in O. Without loss

of generality, it is assumed that Rv∈(1,K) = 1. Then, according to (4.56), the fractional

frame allocation and modulation order for all stages relate as follows

α′
v log2(Mv) = constant (4.62)

Therefore, a small α′
v requires a large Mv. To proceed, it is suggested to sort all α′

v in

descending order which, without loss of generality, yields α′
1 ≥ . . . ≥ α′

K . Further, the

Kth stage is allocated the highest possible modulation order Mmax, e.g. MK = Mmax =

256. All the other stages then allocate their modulation orders according to (4.62), which

obviously requires some rounding. The throughput is determined, after which the Kth

stage is allocated the next smallest modulation order, e.g. MK = 64. Again, the remaining

modulation orders obeying (4.62) and the achieved throughput are determined. This process

is repeated for all O modulation orders. Finally, the one with the highest throughput is

chosen. Clearly, such proceeding requires only O combinations, instead of OK as before.

The achieved end-to-end throughput of such proceeding is depicted in Figure 4.26, which

is the equivalent configuration already described by means of Figure 4.23. The achieved

throughputs deviate, with the throughput optimised for a realistic transceiver generally

being larger than for a Shannon transceiver. Nonetheless, results are satisfactory close.

These examples demonstrate that the error behaviour of finite complexity transceivers

scales approximately the same way as the capacity limit of transceivers of infinite complex-

ity. This is a remarkable, however not obvious result. More research, however, has to be

undertaken before a conclusive statement can be made. This is left open for future research.
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Figure 4.25: Comparison between achieved throughput utilising fractional resource alloca-
tions derived for realistic and Shannon transceivers (power only).
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Figure 4.26: Comparison between achieved throughput utilising fractional resource alloca-
tions derived for realistic and Shannon transceivers for M1,2 = (2, 4, 16, 64, 256).
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4.6 Case Studies

The resource allocation rules derived throughout this chapter are now applied to certain

specific scenarios. For these, the conditions under which relaying yields performance gains

over direct communication is assessed. It will also be demonstrated that further performance

benefits are obtained when utilising the given algorithms.

This thesis has so far dealt with the performance of systems experiencing instantaneous

attenuations due to fading, where the average power of such a fading channel was associated

with the channel gain or pathloss as defined in (4.2). The occurring fades indicate that

there is some form of mobility present in the communication network, which will prompt

the channel gains to change over time. It is assumed here that the mobility of the introduced

distributed-MIMO multi-stage communication network is limited such that an update of

the experienced average channel gains is feasible within each of the involved MT. To derive

an upper bound on such mobility is not straightforward as it depends on many system

assumptions; it is hence left for future research.

The channel in most realistic communication scenarios also undergoes shadowing as

introduced in Section 4.2.2. Shadowing, as pathloss, changes in the spatial domain. Again,

it is assumed that the mobility of the network is restricted so that an update of the average

channel gains caused by pathloss and shadowing is feasible. Since shadowing is a random

process, a rigorous approach needs to incorporate its pdf into the capacity and error rate

analysis. The complexity of the lognormal shadowing process, however, makes such an

analysis very difficult (particularly for distributed-MIMO systems) which is the reason why

a numerical approach has been opted for here. Further case studies relate to scenarios with

and without shadowing. Prior to that, however, the SNR gains due to relaying are derived,

and shown to be dependent on the pathloss coefficient n.

4.6.1 SNR Relaying Gains

The normalised throughput of systems operating with realistic transceivers is subsequently

analysed. Networks of different configurations are compared, i.e. number of antennas per

VAA relaying tier, position of the relaying tiers with respect to the t-MT and s-MT, etc.

To allow for a fair comparison between various relaying schemes, the SNR at each

relaying stage is obtained with reference to the SNR a direct communication system would

experience. Furthermore, the total energy E to deliver information from source to sink is

assumed to be the same for all analysed configurations. Under this condition, remember that

an FDMA-based relaying system requires each r-MT to allocate a fractional transmission

power of βv∈(1,K), whereas a TDMA-based system allocates to each r-MT a fractional

transmission power of βv∈(1,K)/αv∈(1,K), c.f. Section 3.2.3.
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Under these assumptions, the directly received power SRx at the t-MT assuming a

transmission power STx at the s-MT, can be expressed as

SRx ∝ STx · d−n
0 (4.63)

where d0 is the distance between s-MT and t-MT and n is the pathloss coefficient. Similarly,

the received power at the vth relaying stage can be expressed as

SRx,v ∝ STx,v · d−n
v (4.64)

where dv is the distance spanning the vth relaying stage, and the pathloss coefficient is

assumed to be the same for all relaying stages. Since a fractional power βv of the total

power STx is assigned to the vth stage assuming FDMA-based relaying, the respective

received power is given as

SRx,v ∝ βv · STx · d−n
v (4.65)

which, with reference to (4.63), yields

SRx,v = βv · SRx ·
(

d0

dv

)n

(4.66)

To arrive at the SNR for the vth relaying stage, eq. (4.66) is divided by the noise power

αvN , which finally yields

SNRv =
βv

αv
·
(

d0

dv

)n

· S

N
(4.67)

where S/N is the SNR experienced at the t-MT if direct communication took place. Exactly

the same relation is derived for a TDMA-based relaying system. Since αv ≈ βv, the SNR

gain is hence mainly dictated by the ratio between the respective distances and the pathloss

coefficient.

4.6.2 Scenarios without Shadowing

The achieved end-to-end throughput of a direct communication system is compared against

the achieved throughput of a two-stage relaying system by means of Figures 4.27−4.34.

Explicitly, Figure 4.27 investigates the achieved throughput versus the SNR in the direct

link in dependency of the pathloss index n = 2, 3, 4. The packet size is B = 100 bits, the

modulation order in all links is M0,1,2 = 4, d1,2 = 0.5 d0 and t0,1,2 = r0,1,2 = 1. Here, the

subscript 0 relates to the direct communication scenario.

It can be observed that the normalised throughput for SNR → ∞ reaches 2 bits/s/Hz

for the direct communication scenario, and only 1 bit/s/Hz for the relaying case. This is

obvious since resources have to be shared for the relaying system, whereas the direct link

can utilise the full bandwidth and frame duration.
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Nonetheless, a threshold SNR can be observed until which the relaying system outper-

forms the direct system. This is in the region where the error term 1 − D0Ps,0(e) in (4.52)

dominates over the normalised throughput term R0 log2(M0). In this region, however, the

relaying links perform already nearly error-free due to the SNR advantage derived in (4.59).

The threshold SNR is easily calculated where, without loss of generality, only full-rate

STBCs are assumed. With reference to (4.54), the equated throughputs are expressed as

log2(M1) log2(M2)
log2(M1) + log2(M2)

(
1 − A1D1

(1 + B1β′
1)

u1

)

= log2(M0)
(

1 − A0D0

(1 + gQAM,0/t0 · SNRth)
u0

)
(4.68)

which can easily be resolved in favour of the threshold SNR. In the limiting case that the

relaying stages already perform error free, i.e. A1D1

(1+B1β′
1)

u1 → 0, this can be approximated as

SNRth ≈ t0
gQAM,0


 u0

√√√√ D1A1

1 − 1
log2(M0)

log2(M1) log2(M2)
log2(M1)+log2(M2)

− 1


 (4.69)

For the scenario depicted in Figure 4.27, the approximate threshold SNR is calculated as

20dB which deviates from the exact crossover by 2dB.

Figure 4.28 compares the achieved throughput for a direct communication system with

M0 = 4, t0 = r0 = 1 and B = 100. Various relaying configurations are shown for com-

parison, where first the number of antenna elements in the relaying stage is increased to

r1 = t2 = 2, and then the modulation order in the second stage is increased from QPSK to

16QAM and 64QAM. All scenarios are assumed to have a pathloss coefficient of n = 4 [68].

It can be observed that strengthening the relaying links by introducing a second antenna

element in the relaying terminal causes the throughput to level off faster than for the single

antenna case; however, it does not shift the threshold SNR significantly. In contrast, in-

creasing the modulation order in the second link allows increasing the achieved throughput,

as well as shifting the threshold SNR towards higher SNRs.

Figure 4.29 depicts the achieved throughput versus the distance in the first link nor-

malised by the total distance in [%], i.e. d1/d0 · 100%. The following scenario is assumed:

t0 = 1, r0 = 1, M0 = 4; t1 = 1, r1 = 2, M1 = 4; t2 = 2, r2 = 1, M2 = 16; B = 100 and n = 4.

For a low direct link SNR of 10dB, the direct link clearly achieves a close to zero

throughput. The relaying system, on the other hand, yields significant gains over the direct

case which depend on the exact location of the relaying stage. The end-to-end throughput is

non-symmetric because the links are asymmetric in O-MIMO gains and modulation order.

For a higher direct SNR of 20dB, the gains achieved due to relaying are clearly diminished.

Figure 4.30 exhibits a similar performance, where the same scenario as above has been

simulated with the modulation orders in each stage reversed, i.e. M0,1 = 16 and M2 = 4.
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Figure 4.27: End-to-end throughput for a direct communication link and two-stage relaying
links with varying pathloss coefficient.
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Figure 4.28: End-to-end throughput for a direct communication link and two-stage relaying
links with a varying relaying scenario.
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Figure 4.29: End-to-end throughput versus distance of first direct link normalised by the
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The remaining simulations relate to the communication scenario depicted in Figure 4.31.

Here, the MTs are placed randomly in the shaded area of size a × b which are placed at

distance c from each other, thereby realising a two-stage distributed-MIMO communication

system. Direct communication happens without the relaying stage, here the second relaying

VAA tier. Relaying is accomplished by means of one or two cooperating r-MTs. It is

assumed that the two cooperating r-MTs are spatially close together, thereby experiencing

approximately the same pathloss from the s-MT and towards the t-MT.

All simulations use a packet length of B = 100 and a pathloss coefficient of n = 4;

the dimensions of the shaded areas are (fairly arbitrary) set to a = b = 50 with a mutual

distance of c = 100. The terminal placement within these areas obey a uniform distribution.

Furthermore, for all simulations, the optimum combination of modulation orders is obtained

for every SNR by trying all possible combinations out of M = (4, 16, 64, 256).

Figure 4.32 depicts the achieved end-to-end throughput versus the SNR in the direct

link in [dB] for a scenario as depicted in Figure 4.31 with only one r-MT and one antenna

per stage, i.e. t0,1,2 = r0,1,2 = 1. Compared are the cases of direct communication, relaying

with optimised frame duration and power, relaying with optimised frame duration only, and

the cases of non-optimised fixed modulation indices.

As expected, a threshold SNR is observed above which relaying does not achieve any

gains, here SNRth = 29dB. Below that SNR, the throughput with optimised frame duration

and power is highest, closely followed by the case of optimised frame duration only. This is

expected because the links are fairly symmetric with t0,1,2 = r0,1,2 and a, b < c. Furthermore,

the fixed modulation schemes are outperformed by any of the optimised schemes.

In dependency of the region of operation, the gains achieved by optimisation can be

significant. For instance, if one wished to maintain a normalised throughput of 2 bits/s/Hz,

then direct communication would require an SNR of 24dB. An equivalent relaying system,

however, would require only 20dB.
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Figure 4.31: Possible terminal positions for a 2-stage distributed O-MIMO communication
system with two cooperating r-MTs.
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Figure 4.32: End-to-end throughput for a scenario as depicted in Figure 4.31 with only one
r-MT and one antenna per stage.
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Figure 4.33: End-to-end throughput for a scenario as depicted in Figure 4.31 with two
r-MTs and two antennas in s-MT and t-MT.
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Figure 4.34: End-to-end throughput for a scenario as depicted in Figure 4.31 with two
r-MTs and one antenna in s-MT and t-MT.
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Figure 4.35: End-to-end throughput for a scenario with shadowing as depicted in Figure 4.31
with two r-MTs and one antenna in s-MT and t-MT.
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Or, if a direct communication scenario operated at 20dB, then it would be able to achieve

approximately 1.2 bits/s/Hz; an equivalent relaying system, however, achieves 2 bits/s/Hz.

This clearly demonstrates the benefit of the developed optimisation algorithms.

Figure 4.33 is equivalent to Figure 4.32 with the only difference that now the s-MT and

t-MT are in possession of two antenna elements, and there are two cooperating r-MT in

the relaying stage. The threshold SNR clearly decreased, here to approximately 16dB. This

can be directly observed from (4.68), where u0 is increased from u0 = 1 to u0 = 2. It is also

intuitively clear, because the stronger direct communication link now reaches its limiting

throughput faster.

Nonetheless, high gains can be observed when operating below the threshold SNR. For

instance, if the direct link operated at and SNR of 5dB, then the achieved throughput is only

0.3 bits/s/Hz. An equivalent relaying scenario, however, achieves around 1.6 bits/s/Hz.

From the above it is clear that relaying yields more gains when the relaying stages are

stronger compared to the direct link, i.e. there are more antenna elements available in the

relaying link than for the direct link. The performance of such configuration is depicted

in Figure 4.34, where the s-MT and t-MT posses only one antenna element, whereas the

relaying stage contains two cooperating r-MTs.

The threshold SNR does not change much in comparison to Figure 4.32 since the relaying

scenario operates almost at the limiting throughput in both cases. Nonetheless, a shift of

almost 2dB can be observed. Also, the case depicted here achieves the limiting throughput

for a lower SNR. Therefore, compared to the scenario assessed in Figure 4.32, the gains

due to an optimised relaying system are higher as long as the system operates below the

threshold SNR.

For instance, if one wished to maintain a normalised throughput of 2 bits/s/Hz, then

direct communication would require an SNR of 24dB. An equivalent relaying system now

requires only 12dB (in contrast to the 20dB before). A saving of 12dB is hence achieved.

4.6.3 Scenario with Shadowing

Finally, the case of shadowed links is considered here. It was assumed that the shadowing

variance of all links is 12dB. This corresponds to an indoor communication scenario at

frequencies of around 2 GHz [68].

The achieved end-to-end throughput is depicted in Figure 4.35, which is the equivalent to

Figure 4.34 with added shadowing. It can be observed that shadowing does not significantly

change the throughput. This is attributed to the fact that the shadowing experienced at

both r-MTs is the same due to the close spatial proximity. It is certainly an interesting topic

of future research to evaluate the influence of shadowing when the terminals are sufficiently

apart such as to experience uncorrelated (or slightly decorrelated) shadowing.
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4.7 Conclusions

4.7.1 Summary

This chapter finalised the analysis of distributed-MIMO multi-stage communication net-

works, where the emphasis has been on transceivers utilising space-time block coding only.

The error-rates of such transceivers have been derived, which were then shown to be vital in

determining fractional resource allocation rules such as to maximise the normalised end-to-

end throughput in dependency of the communication scenario. These strategies have then

been tested by means of a few selected communication scenarios.

In Section 4.1, the topic of optimising fractional resources for transceivers of finite com-

plexity has been introduced. The differences to Shannon transceivers have been highlighted,

with the main difference being that transceiver complexity can be traded against perfor-

mance. It was also shown that the concept of error-free transmission does not apply to finite

complexity transceivers with the given additive noise models. For that reason a threshold

error rate needs to be defined, below which the system is assumed to operate error-free.

The content of Section 4.2 can be viewed as preliminaries, where the transceiver model

used has been introduced in Section 4.2.1, the channel models used in Section 4.2.3 and

the simulation platform in Section 4.2.3. As for the transceiver model, it has been assumed

that detection, decoding and re-encoding takes place at each stage, whereas a decision

on an erroneously received signal can be done at each stage or at the target receiver. It

was further assumed that the signalling, controlling the distributed encoding and decoding

process, functions perfectly, and so do all synchronisation algorithms.

The narrowband channel model was assumed to consist of a pathloss (or channel gain)

coefficient, a shadowing coefficient, as well as a fading coefficient. Although most of the

analysis in this thesis has neglected the random effects of shadowing, it has been included

in a few numerical studies at the end of the chapter. Also, the features of the simulation

platform have been listed, the generality of which allows testing of the link level performance

of a variety of distributed-MIMO multi-stage communication scenarios.

Section 4.3 has been dedicated to the derivation of error rates for distributed O-MIMO

scenarios. Closed form expressions of SERs for M-PSK and M-QAM over Rayleigh and

Nakagami fading channels with unequal channel gains have been derived, where analysis

was based on the closed form expressions for equal channel gains found in literature. The

SERs have been derived by means of the moment generating functions already derived and

utilised in Chapter 2. Finally, the relationship between the SER, BER and FER has been

exposed. It has been demonstrated that a closed form expression of the FER is difficult

to obtain under generic fading conditions; however, the expressions simplify greatly for an

ergodic fading channel. A fast fading channel for large frame length, as well as a slow fading
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channel with sufficient interleaver depth, can be approximated as an ergodic channel which

simplified consecutive analysis.

In Section 4.4, it was assumed that a source MT (s-MT) transmits a packet of B bits to

the target MT (t-MT) via a given number of relaying VAAs (r-VAAs). Since the modulation

order may vary from stage to stage, the effective frame length may also be different. It has

been assumed that each relaying stage detects and space-time re-encodes the packet, where

a final decision on the correctness of the B bits is performed at the t-MT.

The previously derived error rates have been utilised to derive fractional resource allo-

cation algorithms such as to maximise the end-to-end throughput. It has been shown that

the rigorous optimisation process is fairly intricate, which was the reason why the process

was split into three stages. First, the modulation order in each stage has been fixed, after

which the fractional frame durations have been determined. In a second step, the fractional

power allocations have been determined. Finally, all available modulation orders in each

stage have been permutated to yield the maximum end-to-end throughput.

The second step has been shown to be equivalent to minimising the end-to-end BER,

which has been performed for the scenarios of full and partial cooperation at each relaying

stage. The case of full cooperation could be reduced to a similar problem as already en-

countered for the capacitive maximisation of Chapter 3, which yielded the fractional power

allocations. The scenario with partial cooperation (or clustering) at each stage was shown

to cause error dependencies between the stages; a suitable simplification has hence been

suggested, which was sufficiently justified and assessed by means of various communication

scenarios. This allowed finally to derive the throughput-maximising fractional power allo-

cations for the case of partial cooperation. Simulation results for selected communication

scenarios have confirmed the applicability and precision of the developed algorithms where,

in dependency of the communication scenario, significant gains can be achieved compared

to the case of no optimisation.

In contrast to Section 4.4, it has been assumed in Section 4.5 that the decision on the

correctness of a received frame is accomplished at each stage. Such deployment is in-line

with the relaying process introduced in Chapter 3, where transceivers of infinite complexity

had been assumed at each stage. The case of full cooperation has been dealt with only,

where the analysis on the derivation of fractional power and frame duration was shown to

be similar to the case of end-to-end transmission.

As mentioned before, the only difference to the analysis exposed in Chapter 3 has been

the complexity of the transceivers utilised. It was hence tested whether the fractional re-

source allocation rules derived for transceivers of infinite complexity were applicable to such

simple transceivers as the one utilised in this section. To this end, two mapping strategies

have been investigated in Section 4.5.2. The first one mapped the fractional power derived
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for a Shannon transceiver onto the fractional power of a STBC transceiver assuming the

modulation order (and hence fractional frame duration) given. The second one, however,

mapped the fractional resources of a Shannon transceiver onto the modulation index, frac-

tional frame duration and transmission power. Since the mapping from two parameters

on three parameters is not unique, a linear search over the modulation order has to be

performed. The achieved throughput has been shown to coincide with sufficient precision,

indicating that the fractional resource allocation rules scale proportionally, thereby being

fairly independent on the complexity of the transceiver.

Finally, some case studies with the previously derived allocation strategies have been

performed in Section 4.6. To this end, the SNR gains due to relaying have been derived

first. This was then applied to studying the achieved throughput for systems operating on

a stage-by-stage basis. It could be observed that relaying only yields benefits until a certain

threshold SNR, which was also derived and assessed. The crossover in the throughput

curves is explained with the limited normalised throughput of relaying systems due to the

required resource sharing, which is not needed for direct communication.

The throughput has also been studied for a system which experiences shadowing. Al-

though not analysed before, numerical results could confirm that relaying yields even greater

performance gains in the presence of shadowing.

4.7.2 Contributions

The contributions by the author to the research community can be summarised as follows:

1. Closed form expressions for the symbol error rate of space-time block encoded systems

operating over Rayleigh and Nakagami fading channels with different channel gains

have been derived.

2. Given a distributed-MIMO multi-stage communication system with full cooperation

at each relaying stage, where the decision on erroneously received data is performed

at the target MT, a three-step strategy for obtaining optimised fractional resources in

terms of modulation order, frame duration and transmission power has been exposed.

3. The above allocation strategy has been extended to the case of partial cooperation,

where the exact end-to-end bit error rate has been simplified such as to allow an

analytical formulation of the optimisation problem.

4. Given a relaying system where the decision on erroneously received data is performed

at each relaying stage, again a three-step strategy for obtaining optimised fractional

resources in terms of modulation order, frame duration and transmission power has

been exposed.
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5. Mapping rules have been established which map the fractional resource allocation rules

derived in Chapter 3 for transceivers of infinite complexity to allocation rules appro-

priate for transceivers of finite complexity. This mapping yields further simplifications

of the above-mentioned three-step algorithm.

6. Relaying does only yield throughput gains until a certain threshold SNR, which de-

pends on the actual communication scenario. This threshold SNR has been calculated

for a specific scenario, which can be obtained in total analogy for any communication

scenario.

4.7.3 Future Research

To the belief of the author, this chapter really only touched the tip of the iceberg. The theory

outlined here can be used to find fractional allocation rules for any type of transceiver, any

form of cooperation, any channel, etc. A non-exhaustive list of future research topics can

be found below.

1. General Coding. The outlined derivations can be extended to any form of coding,

i.e. potentially concatenated trellis and block codes, space-time block and trellis codes,

as well as their differential realisations.

2. Local Channel Knowledge. Again, it might be important to find optimum allocation

strategies if not all channel gains are known to the allocation algorithm.

3. Multi-User. Also, the extension to the multi-user scenario is desirable which would

allow one or more r-MTs to be used by more than one relaying chain.

4. Error Dependency. The susceptibility of the derived allocation strategies to channel

gain estimation errors is also an important topic. Such errors could be caused by

erroneous measurements, by a corrupted feedback channel which reports all channel

gains to all MTs, or by high mobility which renders the channel estimates outdated.

5. Mobility. The latter is an important topic on its own. Here, it is interesting to quantify

the maximum terminal mobility in the network without compromising the allocation

strategies.

6. Terminal Selection Process. So far, it has been assumed that a given topology is given

to which the allocation strategies have been applied. It is also vital to study the

conditions under which the network benefits if a given terminal is included into the

network.

7. Waterfilling. Finally, it may also prove useful in deriving the optimum transmit power

allocation for STBCs operating over channels with different gains.
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4.8 Appendix

Derivation I. To prove (4.45), eq. (4.42) is rearranged as follows

Pb,e2e(e) ≤ A1

(1 + B1β′
1)

u1
+

K∑
v=2

Av

(1 + Bvβ′
v)

uv
(4.70)

=
A1(

1 + α′
1
−1B1α′

1β
′
1

)u1
+

K∑
v=2

Av

(1 + Bvβ′
v)

uv
(4.71)

=
A1(

1 + α′
1
−1B1

(
1 −∑K

v=2 α′
vβ

′
v

))u1
+

K∑
v=2

Av(
1 + Bvβ′

v

)uv
(4.72)

where the constraints
∑K

v=1 α′
vβ

′
v = 1 for a TDMA-based relaying system have been used,

c.f. Section 3.2.3, below equation (3.4). The above-given representation allows one to pro-

ceed as already outlined in the appendix of Chapter 3. Without loss of generality, the

fractional power allocation β′
K for the last relaying stage will be derived. To obtain the

optimum fractional power allocations which yield a minimum end-to-end BER, eq. (4.72)

is differentiated K − 1 times along βv∈(2,K). The obtained K − 1 equations are equated to

zero to arrive at

u1A1α
′
1
−1B1(

1 + α′
1
−1B1

(
1 −∑K

v=2 α′
vβ

′
v

))u1+1 =
u2A2B2(

1 + B2β′
2

)u2+1 (4.73)

...

=
uKAKBK(

1 + BKβ′
K

)uK+1 (4.74)

For low target SERs, Bvβ
′
v � 1 for any v ∈ (1, K), which allows rearranging the above

equations to

α′
1
−u1Bu1

1

u1A1

(
1 −

K∑
v=2

α′
vβ

′
v

)u1+1

=
BuK

K

uKAK

(
β′

K

)uK+1 (4.75)

Bu2
2

u2A2

(
β′

2

)u2+1 =
BuK

K

uKAK

(
β′

K

)uK+1 (4.76)

...
B

uK−1

K−1

uK−1AK−1

(
β′

K−1

)uK−1+1 =
BuK

K

uKAK

(
β′

K

)uK+1 (4.77)

The above set of equations is difficult to resolve in closed form in favour of any β′
v∈(1,K).

To this end, the (umax + 1)-st square root is taken of eqs. (4.75)−(4.77), where umax =

arg max(u1, . . . , uK). The choice of umax is motivated by the fact that the error in ap-

proximating (β′
v)

y by β′
v for 0 < β′

v < 1 and y ≤ 1 is smaller compared to the case when

y > 1. Since such approximation is vital in further steps, it has to be made sure that the
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approximation error for the above equations is minimised. This justifies the choice of umax,

as it guarantees that y = (uv + 1)/(umax + 1) ≤ 1 for any v ∈ (1, K). Eqs. (4.75)−(4.77)

can hence be recast into

α′
1
−1
(

Bu1
1

u1A1

) 1
umax+1

(
1 −

K∑
v=2

α′
vβ

′
v

)
≈

(
BuK

K

uKAK

) 1
umax+1 (

β′
K

)
(4.78)
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) 1
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(
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K

uKAK

) 1
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β′
K

)
(4.79)

...(
B

uK−1

K−1

uK−1AK−1

) 1
umax+1 (

β′
K−1

) ≈
(

BuK
K

uKAK

) 1
umax+1 (

β′
K

)
(4.80)

Eqs. (4.79)−(4.80) are now easily resolved in favour of β′
2, . . . , β

′
K ,

β′
2 ≈ β′

K

(
u−1

K A−1
K BuK

K

u−1
2 A−1

2 Bu2
2

) 1
umax+1

(4.81)

...

β′
K−1 ≈ β′

K−1

(
u−1

K A−1
K BuK

K

u−1
K−1A

−1
K−1B

uK−1

K−1

) 1
umax+1

(4.82)

which, when inserted into (4.78), yield

β′
K ·

K∑
v=1

α′
v

(
u−1

K A−1
K BuK

K

u−1
v A−1

v Buv
v

) 1
umax+1

= 1 (4.83)

where β′
K is now obtained and shown to be equivalent to (4.45) for v = K. Other coefficients

are similarly obtained. This concludes the proof.

Derivation II. To prove (4.49), recall that the end-to-end BER is approximated as

Pb,e2e(e) ≈
K∑

v=1

Qv∑
i=1

ξv,iPv,i(e) (4.84)

where the weights ξv,i are derived in dependency of the network topology. With reference

to (4.20), the BER of the ith cluster in the vth stage can be expressed as

Pv,i(e) =
∑
j∈i

Kv,i,j · PPSK/QAM(1, tv, Rv, γv,j , S/N, Mv) (4.85)

where the expansion coefficients are given in (4.50). With reference to the analysis exposed

in Section 4.4.2, it can be upper-bounded as

Pv,i(e) ≤
∑
j∈i

Kv,i,jAv

1 + Bv,i,jβ′
v

(4.86)
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where the coefficients Av are given by (4.43) and Bv,i,j by (4.51). Inserting (4.86) into (4.84)

yields

Pb,e2e(e) ≤
K∑

v=1

Qv∑
i=1

∑
j∈i

ξv,iKv,i,jAv

1 + Bv,i,jβ′
v

(4.87)

The same procedure is now followed as already outlined in Derivation I, where (4.70) is

extended by the additional sums; furthermore, Av is replaced by ξv,iKv,i,jAv and uv by 1,

which finally yields (4.49).

Derivation III. To prove (4.57), the throughputs (4.54) are equated to yield
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...
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K

)uK

)

which, when inserting the fractional frame durations α′
v given by (4.56), is equivalent to

α′
1A1D

(1 + B1β′
1)

u1
= (4.89)

...

=
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KAKD(
1 + BKβ′
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)uK

For a fairly high SNR, the above-given equations can be approximated by

α′
1A1D

(B1β′
1)

u1
= (4.90)

...

=
α′

KAKD(
BKβ′

K

)uK

Using the same arguments as for Derivation I, the (umax)th-root is taken of (4.90) to arrive

at

β′
1

(
α′

1
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A−1
1 Bu1

1

) 1
umax ≈ (4.91)
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(
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) 1
umax

which, under constraint
∑K

v=1 α′
vβ

′
v = 1, yields (4.57).
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Chapter 5

Concluding Remarks

It was the aim of this thesis to pose and answer many unsolved questions relating to the

understanding of relaying communication systems. As with any scientific work, it has

brought up more questions than is has solved, some of which are illuminated below. Before

that, however, the contributions of the thesis are glued together to give a better picture of

the choice of the research conducted.

In this thesis, the concept of Virtual Antenna Arrays has been introduced which was

then applied to relaying networks, thereby introducing distributed-MIMO multi-stage com-

munication networks. It has been demonstrated that such a deployment yields significant

gains in data throughput independent of the complexity of the available transceivers. A

prerequisite for achieving a higher data throughput is the deployment of suitable communi-

cation protocols. These have been derived in form of fractional resource allocation strategies

for a wide variety of communication scenarios.

An understanding of the Shannon capacity offered by each relaying stage played a central

role in deriving the allocation strategies, which was the sole purpose of Chapter 2. It has

been reiterated that the appropriate capacity measure for ergodic channels is the Shannon

capacity, whereas for non-ergodic channels the outage probability for a given communication

rate is appropriate. Consecutive analysis throughout the thesis therefore distinguished

between these two types of channels.

Although the topic of MIMO capacity has been the research focus for nearly a decade,

novel results on the general MIMO capacity over ergodic flat Rayleigh fading channels have

been obtained in Chapter 2. This is attributed to the solution of the capacity integral,

which allowed expressing the MIMO capacity in closed form. The same integral was then

utilised to derive closed form expressions for the capacity of space-time block encoded

MIMO channels obeying Rayleigh or Nakagami fading with arbitrary channel gains. The

later case was referred to as orthogonalised MIMO (O-MIMO) channel, because space-time

block codes are known to orthogonalise the MIMO detection problem into parallel SISO

detection problems.
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In a similar manner, the outage probabilities for O-MIMO channels obeying Rayleigh

and Nakagami fading with arbitrary channel gains have been obtained. Finally, at the end of

Chapter 2 suitable approximations to the MIMO and O-MIMO capacities and outage prob-

abilities have been introduced. These proved vital in a later stage to derive the fractional

allocation rules, because the approximations allowed to decouple the intricate expressions

attributed to the MIMO gain from the fractional power, bandwidth and frame duration.

The analysis has then been extended to the multi-stage communication scenario in Chap-

ter 3. The aim was to develop communication protocols which maximised the end-to-end

data throughput for a given network topology. Further analysis was then split into ergodic

and non-ergodic channels. As for the ergodic channel realisations, it has been shown that

maximising the end-to-end throughput is equivalent to maximising the end-to-end capacity

for the weakest links in the network. The previously exposed exact and approximate ex-

pressions of the MIMO capacity allowed to derive fractional power, bandwidth and frame

duration allocation strategies which guaranteed near-optimum end-to-end throughput. Not

only were the cases of MIMO and O-MIMO relaying considered, but also the possibility to

reuse resources in form of bandwidth or frame duration after a given number of relaying

stages.

The theory behind non-ergodic channel realisations turned out to be slightly more in-

volved. It was first shown that the end-to-end throughput is related to the communication

rate in each stage as well as its associated outage probability. The previously exposed

approximation of the outage probability, however, allowed simplifying the problem to the

cases encountered for ergodic channels. This enabled the derivation of fractional resource

allocation rules for the same scenarios as described above.

The merits of the derived allocation strategies are their simplicity and precision, thereby

rendering a numerical optimisation within each relaying mobile terminal superfluous. The

strategies were assessed by means of numerous communication scenarios, all of which con-

firmed that significant gains in terms of throughput are achieved when comparing to non-

optimised relaying systems.

In contrast to previous analysis, Chapter 4 was dedicated to relaying systems consisting

of finite complexity transceivers. In the introduction to the chapter, it has been shown that

such systems are usually quantified by means of error rates versus the signal-to-noise ratio

at the detection instant. The different performance measure was the reason why different

allocation strategies were expected to achieve optimum end-to-end throughput with such

systems. It was also expected that for an increasing complexity of channel and space-

time codes, the allocation strategies derived for infinite and finite-complexity transceivers

converge. An investigation into different classes of codes was beyond the scope of the thesis.
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Instead, this thesis has dealt with distributed-MIMO multi-stage space-time block en-

coded communication systems only. The derived fractional resource allocation rules relied

on upper bounds of the occurring error rates, which allows one to extend the analysis to

any form of coding as long as the respective upper bounds are given.

The upper bounds required to derive the allocation rules were obtained from closed form

expressions of the symbol error rate for space-time block encoded systems operating over

Rayleigh and Nakagami fading channels with arbitrary channel gains. These have been

derived using analysis exposed in the open literature, as well as in Chapter 2.

Consecutively, resource allocation rules in terms of modulation order, fractional power

and fractional frame duration were derived assuming a packet based transmission from

source to sink. Distinction was then made between relaying systems, where erroneous

packets are discarded at the target terminal only or on a stage-by-stage basis. To simplify

the derivation of the allocation strategies, only ergodic channels have been assumed which

can observed for large block lengths and fast fading channels (or, slow fading channels with

appropriate interleavers).

The derived algorithms were then assessed by means of a few selected communication

scenarios. For these scenarios, it could be shown that considerably higher throughputs

are achieved when compared to non-optimised systems. Finally, two mapping strategies

were investigated which perform a suitable mapping of the fractional resources derived in

Chapter 3 onto the resources derived in Chapter 4. It was found that the mapping yields

almost equivalent results in terms of throughput, indicating that capacity and error rates

scale in a similar fashion.

From this summary it is clear that research on distributed-MIMO multi-stage communi-

cation systems is far from complete. This is mainly due to the fact that the here investigated

PHY layer performs only a fraction of the functionalities needed to accomplishes a modern

relaying communication system. The analysed single-link scenarios therefore need to be

extended to the multi-link case, where more than one source terminal communicates with

more than one target terminal over common relaying terminals. Control mechanisms above

the PHY layer hence need to be invoked, which are traditionally accomplished by means of

two fairly decoupled entities, i.e. the radio resource management (RRM) and the medium

access control (MAC).

The RRM is mainly responsible for assigning radio resources to each user (or traffic flow)

in dependency of the users’ traffic characteristics, also taking into account the scheduling

conditions reported by the MAC and the channel conditions reported by the PHY. The

MAC, on the other hand, simply schedules the data of all users onto the same physical

medium such that interference is minimised and the throughput is still (near-)optimum for

all users.
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Clearly, the herein derived fractional resource allocation strategies are the basis for

any further work on suitable throughput maximising and interference minimising MAC

protocols. They can also be utilised to design PHY and MAC assisted routing protocols,

where the capacity offered at the PHY and MAC layers is taken into account to influence

the packet routing path from the information source towards the information sink.

In a further step, the allocation strategies should not only reflect the channel conditions

at each relaying stage, but also the statistical nature of the transmitted data traffic. Con-

versely, one could also think of the possibility that the allocation strategies influence the

packet length and statistics at the source to match the PHY characteristics of the relaying

network, and thereby achieving further throughput benefits.

Of imminent practical interest is additionally the derivation of resource allocation strate-

gies for networks with mutual interference. From an information theoretical point of

view, this clearly leads to layered architectures where the interference is cancelled itera-

tively [27, 30]. Realistic networks, however, have rarely the opportunity to use such com-

plex transceivers, which is the reason why simple and explicit resource allocation strategies

would be of great benefit.

Finally, appropriate distributed coding schemes need to be investigated which allow

approaching the capacity bounds promised by the allocation protocols of Chapter 3. Some

steps in this direction have already been paced by the work reported in [31]; however, much

more effort is needed to design robust and low-complexity coding schemes.

A final word on the potential applications of the derived communication protocols. In

a cellular deployment, one can think of deploying multi-stage VAAs to enhance the high

data rate coverage area of a BS. The algorithms could also be used to relay data from

hot-spots to less congested areas, e.g. during or after a football match where everybody in

the stadium wishes to communicate with a friend somewhere outside. Furthermore, with

the ever increasing amount of wireless local area networks (W-LANs), the algorithms can

be utilised to accomplish a highly efficient provision of data services to users out of direct

access point range.

Finally, with emerging personal area networks (PANs) these algorithms may also find

their application. Assume, for instance, a lecture theatre full with students each of which

possesses a PAN. The total data throughput of such a scenario, where any PAN may wish

to communicate with any other PAN in the network, can drastically be increased if referring

to the developed algorithms or extensions thereof.

In conclusion, the ultimate purpose of this thesis was to positively contribute to scien-

tific knowledge, clarify several aspects relating to distributed-MIMO multi-stage relaying

networks, and hopefully, to pose many questions that may catch the imagination of future

researchers.
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ber 2003, submitted.

[7] On the Approximation of MIMO Capacity
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