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Abstract

Given a univariate complex polynomial f(z) of degree n with rational
coefficients expressed as a ratio of two integers < 2", the root problem is
to find all the roots of f(z) up to specified precision 27#. In this paper
we assume the arithmetic model for computation. We give an algorithm
for the real root problem: where all the roots of the polynomial are real.
Our real Toot algorithm has time cost of O(nlog® n(log n + log b)), where
b = m + p. Our arithmetic time cost is thus O(n log3 n) even in the
case of high precision b < 291, This is within a small polylog factor
of optimality, thus (perhaps surprisingly) upper bounding the arithmetic
complexity of the real root problem to nearly the same as basic arithmetic
operations on polynomials.

The symmetric tridiagonal problem is given a n X n symmetric tridiag-
ona matrix, with 3n nonzero rational entries each expressed as a ratio of
two integers < 2™ find all the eigenvalues up to specified precision 27#.
Using known efficient reductions from the symmetric tridiagonal eigen-
value problem to the real root problem, we also get an O(nlog® n(logn +
log b)) arithmetic time bound for the symmetric tridiagonal eigenvalue
problem.

We require only # = O(n(b 4 n)) bits of precision to carry out our
computations. The Boolean complexity of our algorithms are a multi-
plicative factor of M () more, where M (7) = O(x(log 7)loglog 7) is the
bit complexity for multiplication of integers of length =.
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Proceedings of the 34rd IEEE Symposium on Foundations of Computer Science, Palo Alto,
CA (1993). Supported by ARPA/ISTO Grant N00014-91-J-1985, Subcontract KI-92-01-0182
of DARPA/ISTO prime Contract N00014-92-C-0182, NSF Grant NSF-TRI-91-00681, NASA
subcontract 550-63 of prime Contract NAS5-30428, and US-Israel Binational NSF Grant 88-
00282/2.



1 Introduction

1.1 Definition of the Root Finding Problem

Let the log-precision of a rational number x be m if # can be expressed as a
ratio of two integers < 2™. Let f(#) be an univariate polynomial

n

flx) = Zcixi

i=0

of degree n with each coefficient ¢; given within log-precision m. The root finding
problem is: given b, approximate all the roots of f(x) within given log-precision
1, where b = m + . The real root finding problem is the root finding problem
given a polynomial with all real roots.

For our model of computation, we assume the algebraic random access ma-
chine (RAM)} where each arithmetic or logical operation such as addition, sub-
traction, multiplication, division, and comparison can be done in one step. The
time complexity bound of an algorithm is defined to be the number of these
steps of the algebraic RAM. We define space complezity as the number of mem-
ory locations used, where we can store a single rational number in each memory
location.

1.2 Application of the Real Root Problem: the Symmetric
Eigenvalue Problem

The real root problem has many applications, and one of the most important
of these i1s the symmetric eigenvalue problem : given a symmetric matrix, find
all the eigenvalues; which are all real in this case. The real eigenvalues are used
for many engineering and scientific applications, including vibration analysis in
structures, stability analysis, etc. The eigenvalues are the roots of the character-
istic polynomial of the matrix. Many large matrices occurring in practice have
a special structure which allow the characteristic polynomial to be computed
quickly, for example

1. dense structured matrices (e.g. Toeplitz and bounded displacement rank
matrices), with O(n?lognloglogn) algorithms (see Pan [Pa 90]),

2. sparse with 0(71210g2 n) algorithms (see Canny, Kaltofen and Laksman
[CKL 89])

3. tridiagonal or banded.



The symmetric tridiagonal matriz eigenvalue problem is the problem of find-
ing all the eigenvalues of an n X n symmetric tridiagonal matrix
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The real roots problem has an efficient reduction to and from the symmetric
tridiagonal matrix eigenvalue problem, which has been attributed to Hald [H 76]
and described in [KM 86, BP 91, BP 92, BG 92] and also by JaJa [J 92], p428,
homework 8.37. (This relationship is well-known among numerical analysts and
they are encountered in different computational problems as inverse eigenvalue
problems, orthogonal polynomials, Sturm sequences, three-term recurrences,
Fuclidean scheme and Lanczos algorithm.) This reduction from the symmetric
tridiagonal matrix eigenvalue problem for the above matrix A to the real roots
problem requires us to compute the characteristic polynomial det (AI — A).
We sketch here this efficient reduction, with arithmetic cost O(nlog2 n). For
each i =1,...,n let p;(A) = det (A — A®), where A is the i x i submatrix
consisting of the first ¢ rows and the first ¢ columns. Note that po(A) = 1,
p1(A) = A=by, and p;(A) = (A=b;)pi—1(A)—a?p;_2(A). This recurrence equation
(see JaJ& [J 92]) can be solved for p,(A) =det (AT — A) within arithmetic work
O(nlog®n), or in parallel time O(log? n) using O(n logn) processors.

(The reverse reduction of the polynomial root-finding problem for a polyno-
mial f(x) to the symmetric tridiagonal matrix eigenvalue problem, performed
by means of the Euclidean remainder scheme, can be found in Hald [H 76]. This
reverse reduction is used also in [BP 91, BP 92, BG 92], and shown to have
Boolean cost O(M (n)M (nm)logn). The arithmetic cost for this reduction is
easily be seen to be O(nlog”n). The Euclidean scheme can be applied to f(x)
and f'(z) or equivalently, to f(¢) and g(z) where f'(x;)g(x;) > 0, f(z;) = 0.
The computation of this reduction can be performed by means of the ” quotient-
tree” procedure of [BT 90] (sect. 8.1), in fact the 2 x 2 matrices s; yield all the
quotients and the leading coefficients of the remainders, i.e., the entries of the
tridiagonal. Recovering the coefficients of the polynomial, given the entries of
the matrix is described in [BP 91, BP 92, BG 92] (comments after algorithm
3.1.) and this problem can be equivalently solved by means of the technique of

[KM 86].)



1.3 History of the Root Problem and Previous Work in
the Arithmetic Model

The problem of root finding is a classical problem, dating at least to the era of
the Greeks, with modern applications in many areas of science and engineering.

The fundamental theorem of algebra states that every polynomial of degree
n over the field of complex numbers has n roots. The first rigorous construc-
tive proof of the fundamental theorem of algebra, which can be viewed as an
algorithm for the root problem with a correctness proof, is due to Lehmer in
1961. Gargantini and Henrici [GH 72] gave an O(n3b) arithmetic time algo-
rithm. The seminal work of Schonhage [S 82] gave a description and analysis
of many techniques for root finding, with detailed precision analysis in the bit
complexity model. Since then, there has been some progress toward precisely
bounding the arithmetic complexity of the root problem. Let b = m + p. Al-
though the algorithm of Schénhage [S 82] was not analyzed in the arithmetic
model, it can be seen to require O(n? logo(l)(bn)) arithmetic operations, which
is O(nzlogo(l) n) in the case of precision b < n?1). Renegar [R 87] gave a
O((n + logh)n? logn) arithmetic time algorithm, which is O(n®logn) in the
case of precision b < n°M), but is an improvement in the case of extremely
large (super-polynomial) precision. Pan [P 87] gave an O(n”?logblogn) arith-
metic time algorithm based in part on the methods of Schonhage, which is the
best known bound for the sequential arithmetic complexity of the root problem.
Pan [P 89] recently investigated the complexity of the real root problem in the
arithmetic model, achieving processor bounds n? with O(log? n(log? n + log b))
parallel time, but no improvement on his previous sequential bounds for the gen-
eral root problem. Ben-Or and Tiwari [BT 90] investigated the bit complexity
of the real root problem. Bini and Pan [BP 91, BP 92] recently developed an
efficient algorithm (which they view as a matrix reformulation of the Ben-Or
and Tiwari [BT 90] algorithm) for the symmetric tridiagonal matrix eigenvalue
problem, which has arithemetic time cost O(n log? n log? b). Using the known ef-
ficient reduction from the real root problem to the symmetric tridiagonal matrix
eigenvalue problem describe in Subsection 1.2, their resulting real root algo-
rithm has the same arithemetic time cost of O(nlog2 nlog? b), thus has time
bound O(nlog4 n) in the case of precision b < n®W). In contrast, our real
root algorithm has arithmetic time cost of O(nlog? n(logn + logh)) and thus
O(nlog®n) in the case of precision b < n?(1). See the Conclusion (section 13)
of our paper for a discussion of the Boolean complexity of these algorithms.

1.4 Techniques used to Solve Root Problems

The following technical definitions will be of use in the discussion of root finding
techniques below. For any fixed ¢,0 < € < 1/2, an interval [s, s'] on the real
line is an e-splitting interval for the roots of f(x) if the interval [s, s'] contains



exactly ¢ roots of f(x), for some 7, where
en<i<(l—en.

(See Figure 1). The e-splitting is balanced if € is a constant independent of n.
For any real «a, 0,6 > 0, an interval

I=]a—6 a4+
is o-isolated with respect to the roots of f(z) if the larger interval
[a—(1+0),a+(1+0)8]

has no further roots of f(x) other than those contained already in I (See Figure
2). An interval is well isolated if it is o-isolated, for ¢ > Q(1/n) and is highly
isolated if it is o-isolated, for o > Q(1).

The techniques used in root finding algorithms (also see the recent text of
Mignotte [M 92] for an excellent survey) are:

1. Sturm defined in 1829 a sequence of polynomials known as the Sturm
sequence, which can be used for counting the number of roots on interval
of the real line. In 1988, Ben-Or, Feig, Kozen and Tiwari [BFK 86]
showed that given a polynomial of all n real roots, a Sturm sequence can
be used to find a point on the real line that gives a balanced splitting of the
roots into sets whose size is a constant fraction of n. In particular, they
found a 1/4-splitting interval. This gave them a divide and conquer NC
algorithm for the real root problem. Ben-Or and Tiwari [BT 90] gave an
efficient implementation of this parallel algorithm for the real root problem
in the bit complexity model. Subsequently, Neff [N 90] generalized this
technique to find all the roots in NC' in the case where the polynomial
has complex roots.

2. Geometric techniques for search and exclusion on the complex plane were
developed by Lehmer and Weyl (see [H 70]) and require analytic map-
pings (such as translation, deflation and inversion) on the variable of a
polynomial which can be efficiently computed by reduction to convolution
and thus FFT.

3. A method due to Turin in 1968 [T 68, T 75, T 84] can be used to deter-
mine approximations to the magnitudes of all the roots of a polynomial.
Schénhage [S 82] gave an efficient implementation of Turin’s method.

4. Schonhage [S 82] developed efficient techniques based on the method of
Turin for finding a well isolated interval (which, however, may not be a
nontrivial splitting interval). Pan [P 89] gave an algorithm, requiring at
least quadratic time, for finding a well isolated, balanced splitting interval.



5. An algorithm known as Graeff’s Method,(see [H 70]) but which is actually
due to Dandelin, 1826, can be used to separate the roots by repeated
powering while still maintaining the same degree. Graeff’s Method can
be used to find a highly isolated splitting interval. After the roots are
determined in the powered polynomial then the roots must be extracted
for the original polynomial, requiring 2n root proximity tests.

6. Turin’s method [T 68, T 75, T 84] can also be used to determine if a
given point is in the proximity of a root. This method requires at least
quadratic time to determine which of 2n points are in the proximity of n
roots.

7. It was shown in the early 1800s (also see Henrici [H 74]) that the Cauchy
contour integration formula gives the power sums of the roots within the
integration contour. Schénhage [S 82] showed that if the roots are highly
isolated and thus sufficiently far from the contour, then the contour in-
tegration can be done by reduction to DFT. This gives a relatively low
precision approximation to the power sums. (Also, even if the roots are
not sufficiently far from the contour, the contour integration can still be
done within appropriate accuracy by careful choice of the discrete points
used to approximate the contour integral; see Ben-Or, Feig, Kozen and

Tiwari [BFK 86], and Neff [N 90].)

8. The coefficients of a factored polynomial can be efficiently determined
from the power sums by use of a triangular Toeplitz linear system known
as Newton’s identities. Thus a polynomial can be split into two factor
polynomials by Cauchy contour integration followed by solution of a tri-
angular Toeplitz system.

9. Newton’s iteration method for finding a root within high accuracy from an
approximation with low accuracy was analyzed in the average case in the
works of Smale [S 81, S 85, S 86] and Shube, Smale [SS 85, SS 86], and
can be efficiently applied to improve the precision of approximations to all
roots by use of multipoint evaluation. Also, Newton’s iteration method
was used by Schénhage [S 82] to exponentially improve the accuracy of
polynomial splitting.

1.5 Organization of this paper

Section 1, the introduction, defines the root finding problem, discusses related
history and previous work, looks at application to the symmetric eigenvalue
problem, and examines techniques used to solve root problems. Section 2 sum-
marizes our real root algorithm. Section 3 presents some preliminary results
for arithmetic on polynomials, translation, deflation, and inversion operations
on polynomials, reduction to simplified root finding problems, bounds on roots



(root separation), and bounded precision polynomial approximation. Section
4 deals with Sturm sequences and root isolation, while sections 5 and 6 deal
with approximating the magnitudes of all the roots and finding a well-isolated
e-splitting interval, respectively. Section 7 discusses obtaining a highly isolated
interval by polynomial powering, while section 8 discusses FFT approximations
to contour integrals. Section 9 describes polynomial splitting using the New-
ton identities. Section 10 deals with high accuracy calculations using Newton
iteration, specifically polynomial splitting and improving the accuracy of root
approximations. Section 11 discusses fast root proximity verification. Section
12 describes an application of the real root problem: the symmetric eigenvalue
problem in sparse and structured matrices. Finally, sections 13 and 14 are the
conclusion and acknowledgments.

2 Summary of Our Real Root Algorithm

We will use all the above techniques for our real root finding algorithm.

In the following, we assume the input polynomial has degree n, with each
coefficient given within log-precision m, and we wish to approximate all the
roots within given log-precision p.

Our main result is

Theorem 2.1 There s an algorithm for the real root problem which has arith-
metic time cost O(n log? n(logn+logh), where b = m+p, using arithmetic steps
with log-precision

7= O(n(p+ m+n)).

Proof :

Will use all the above techniques for our Real Root Algorithm. Because of
the large number of details of our Real Root Algorithm, will present it in three
stages of increasing detail and complexity.

A Naive Version of our Real Root Algorithm is summarized below:

INPUT A monic polynomial f(x) with degree n and log-precision m.

OUTPUT A set S of n rationals approximating the roots of f(x) within
log-precision .

Goal: Split polynomial f(x) = f1(z)f2(x) into factors fi(x), fa(x) where

deg(fi(x)) > en,

deg(fa(2)) < (1 —€)n,

for constant €,0 < e < 1
We will use log-precision # = O(n(p + m + n)).

1. Get high accuracy approximation to factors fi(z), fo(#) with error < 277,



2. recursively factor fi(z)fz(2), with error < 277,

In fact we do not actually split f(z), and instead recursively split a related
polynomial f(y), and then recover the roots of f(x) from the roots of f(y) We
outline our slighly more detailed our real root algorithm below.

Outline of Our Real Root Algorithm

INPUT A monic polynomial f(x) with degree n and log-precision m.

OUTPUT A set S of n rationals approximating the roots of f(x) within
log-precision .

We will use log-precision # = O(n(p + m + n)).

1. Eliminate any multiple zeros.

2. Construct from f(z) a poly f(y) of deg n with highly isolated balanced
splitting interval I.

3. Get high accuracy approximation to factors fl(y), fz(y) of f(y) = fl(y)fz(y)
with deg(f1(y)), deg(f2(y)) both bounded by n5/6.

4. Recursively approximate factor fi(y), f2(y), giving set S’ of n high accu-
racy approx roots of f(y).

5. From S, using our fast root proximity tests, construct a set S of n high
accuracy approximates to the roots of f(z).

We now outline the operations of Step [2]: Finding a highly isolated balanced
splitting interval I.

[2.1] Approximate magnitudes of all roots of f(z) by Turin’s method.

[2.2]Compute the Sturm sequence and sign sequence, so we can count roots
on real intervals fast.

[2.3] Find a 1/4-splitting point using a improved algorithm.

[2.4]Find a well isolated balanced splitting interval I, again using our im-
proved algorithm.

[2.5]Use Graefl’s method to construct a poly f(y) deg n with highly isolated
balanced splitting interval I.

[2.6]Compute by the Sturm sequence method the number n’ of roots of f(y)
within 1.

Note:

Steps [2.3] and [2.4] use our improved O(n log” n) time algorithms, and these
steps and the final step [5] require our fast root proximity tests (This improves
on previous quadratic time algorithms of [Pan,89]).

We next outline the operations of Step [3]: Get high accuracy approx to
factors fi(y), f2(y) of f(y).

[3.1]Do Cauchy contour integration via FFT, using highly isolated balanced
splitting interval I.



[3.2]Solve NewtonUs equation which is a triangular Toeplitz system. This
gives approx coef of factors of f(y) within error < 2n/(1 + o)".

[3.3]Using Newton Tterations, Get high accuracy approximations to factors
of f(y) within error < 277,

We give further details of our real root algorithm below. (Note we have
renumbered the steps of algorithm, so the steps are in sequence.) The corre-
sponding sections give detailed description and proof of each step. All calcula-
tions are to be made using log-precision # = O(n(y + m + n)).

INPUT A monic polynomial f(x) with degree n and log-precision m.

OUTPUT A set S of n rationals approximating the roots of f(x) within
log-precision .

1. Eliminate any multiple zeros, by computing

_J@
ged(f(x). f'(x))

in time O(nlog” n) by applying Lemmas 3.1 and 3.2 and replacing f(z)
with this new polynomial, which has the same distinct roots as f(z), but
no multiple roots. Reassign n to be the degree of the new f(z). (See

Subsection 3.3)

2. A real point s is a 1/4-splitting point if s is between the 7th and ¢ 4+ 1th
roots for some
n/4 <i<3n/4.

Find a 1/4-splitting point for the roots of f(x) guaranteed by Lemma
4.4 in time O(nlog2 n). Here we first compute the Sturm sequence in
time O(n log” n) by Lemma 4.1. Then we determine of the sign sequence
of the Sturm sequence, which i1s computable by multipoint evaluation in
time O(nlog® n) (Lemma 3.2). Then we apply Lemma 4.5 using O(logn)
stages of binary search to determine the 1/4-splitting point from the lin-
ear coefficients of the Sturm sequence of f(z) At each stage we use the
precomputed sign sequence of the Sturm sequence (described in Lemma
4.2) to count the number of roots within an interval. Thus each stage
takes O(n) time. The total time for all O(logn) stages and including
precomputation, is O(nlog? n).

3. Approximate the magnitudes of all the roots by Turin’s method in time
O(nlog2 n) by applying Lemma 5.1. This determines the magnitude of
each root r; of f(x) to be within an interval



4. Find a well isolated 1/6-splitting interval I, using the previously computed
1/4-splitting point and the approximate magnitudes of all the roots. Here
we use our improved O(nlog2 n) time algorithm given by Lemma 6.1
(improving on the previous more than quadratic time algorithm of Pan

[P 89]).

5. Use Graeff’s method to construct in time O(nlog2 n) a polynomial f(y)
of degree n with a highly isolated 1/6-splitting interval I. f(y) is con-
structed by p = O(logn) stages of polynomial multiplication described in
Lemma 7.1 requiring O(nlogn) time per multiplication stage by Lemma
3.1. The variable transformation

P(z) =y

involves various scalar calculations including reciprocals and taking 2°-th
powers of scalars.

6. Compute by the Sturm sequence method the number n’ of roots of f(y)
within 7.

7. Let I be the circle of diameter length(f) on the complex plane intersecting
the real line at the end points of the interval I. For each k = 1,...,n/,
approximately evaluate the (complex) Cauchy contour integral:

f)
Fy) dy

1 k
T /ZEFZ

giving an approximation to the k-th power sum sp of the roots of f(y)
To approximately evaluate the integral, shift and deflate the polynomial
f(y) by the variable mapping

y—(y— center(f))/radius(f)

so the resulting mapped interval is now [—1, 1]. This requires time O(n logn)
by Lemmas 3.3, 3.4 and 3.5. Then evaluate the Cauchy contour integral
of the transformed polynomial at the nth roots of unity, using a FFT in
O(nlogn) time. By Lemma 8.1 the error is

<2n/(1+40)",
for some constant o > 0.

8. Using the Newton Identities given in Lemma 9.1 construct a triangular
Toeplitz system relating the power sums of the n’ roots of f(y) within
the interval I and the coefficients of a monic polynomial with these same

10



10.

11.

n’ roots. Solve this triangular Toeplitz system in time O(nlogn), thus
determining approximate factor polynomial f(y) and

F2(y) = F(w)/ fi(y)

where

deg(f1(y)) > n/6,
deg(f2(y)) < n5/6,
with coefficient error between f(y) and fl(y)fz(y) at most 2n/(1 + o)".

Using O(log 7) stages (where # = O(n(p+ m+n))) of Newton’s Tteration
method (Lemma 10.1), compute a high accuracy polynomial splitting to
exponentially improve the accuracy of the previous low accuracy poly-
nomial splitting. This yields approximate factor polynomials fl(y), fz(y)
where

deg(f1(y)) > n/6,
deg(f2(y)) < n5/6,

and the error between the coefficients of f(y) and fl(y)fz(y) Is at most
277, FEach stage requires polynomial multiplication and division taking
time O(nlogn) by Lemma 3.1. Therefore, the total time is

O(nlognlogm) = O(nlognlog(u+ m+ n))
assuming all calculations are made using log-precision

7= O(n(p+ m+n)).

Apply our Real Root Algorithm recursively on polynomials fl(y), fz(y),
finding high accuracy approximations to the n roots 71,...,7, of fl(y)
and f2(y) which differ from the roots of f1(y) by at most 277.

Compute in O(n logn) time the set

of at most 2n rational points, containing a n size subset
S={r,. .., "}

consisting of high accuracy approximations to the n roots {ry,...,r,} of
f(z), which differ from the roots of f(z) by at most 277. The inverse
variable transformation ®~!(y) involves taking 2°-th roots. Since there

11



can be two possible real 2°-th roots of a real number, S contains at most
2n points. Fach such scalar root computation can be done by p = O(logn)
stages of taking square roots, which requires O(logn) time since square
root is considered a basic operation in the arithmetic model of computa-
tion.

12. Find and output a set S of high accuracy approximations to the n roots
of f(x) by evaluating f(z) at each point x € S, and testing if f(z) is suf-
ficiently small, say < 277 This can be done by a multipoint evaluation
algorithm (stated in Lemma 3.2) in time O(nlog®n) (improving on the
previous more than quadratic time root proximity test of Pan [P 87, P 89]
based on Turin’s test). We prove the correctness of our surprisingly simple
root proximity verification test in Theorem 11.1.

Note that computing the 2”-th roots in step 11 requires an additive term of
0(p) = O(logn)

further log-precision. Our algorithm will recurse at most O(logn) levels, thus
requiring us to increase the required log-precision of calculations in the overall
real root finding algorithm by an additive factor of only O(log2 n).
In addition to the above comment, the extensive precision analysis of Schonhage
[S 82], Ben-Or, Feig, Kozen and Tiwari, [BFK 86] as stated by Lemmas 3.8,
3.9, limit the required precision of all calculations made by our algorithm to
log-precision
7= O(n(p+ m+n)).

We have shown in the steps above that each recursive decomposition of a
polynomial of degree n requires time at most

O(n(logn)(logn + log 7)) < O(n(logn)(logn + logb)),
where b = m + p, since
log m < O(log(n(p + m + n))) < O(logn + log(n*(su + m))) < Olog n + logb).
Thus, a recurrence equation for the arithmetic time complexity is:

T(n) <T(n')+ T(n—n")+ O(nlogn(logn + logb)),

where

n/6 <n' < nb/6,
and T(1) = O(1). Thus,
T(n) < O(nlog® n(logn + logh)),
proving our main Theorem 2.1. |

By the known efficient reduction from the symmetric tridiagonal eigenvalue
problem to the real root problem described in Subsection 1.2,

12



Corollary 2.1 There is an algorithm for the symmetric tridiagonal eigenvalue
problem which has arithmetic time cost O(n log” n(logn+logb), where b = m4p,
using arithmetic steps with log-precision

7= O(n(p+ m+n)).

3 Preliminary Results

3.1 Arithmetic on Polynomials

All the polynomials considered in this paper are assumed univariate unless oth-
erwise indicated. The following are well known results (see [AHU 74])

Lemma 3.1 There is an O(nlogn) time algorithm for multiplication and divi-
ston of two polynomials.

Lemma 3.2 There is an O(nlog2 n) time algorithm for computing the n point
evaluation and also greatest common divisor(ged) of two polynomials.

3.2 Translation, Deflation and Inversion Operations on
Polynomials

There are efficient algorithms for analytic mappings such as translation, defla-
tion, inversion, etc. of a polynomial. These will be used in our root finding
algorithm. Let f(x) be a polynomial of degree n. In each of these operations we
wish to compute, without loss of precision, the coefficients of the new polynomial
given the coefficients of the original polynomial.

Lemma 3.3 There is an O(nlogn) time algorithm for the variable translation

mapping
r—z—a,

for real «, resulting in translated polynomaial
9(y) = fly — ).

Lemma 3.4 There is an O(n) time algorithm for the variable deflation map-
ping x — x/a, for real o, resulting in polynomial g(y) = f(y/«).

Lemma 3.5 There is an O(n) time algorithm for the variable inversion map-
ping
z— 1/a,

for real «, resulting in translated polynomaial

g(y) =" F(1/y).

13



3.3 Reduction to Simplified Root Finding Problems

Here we review classical techniques for reduction to simplified root finding prob-
lems. A polynomial f(x) is monic if its highest order coefficient is 1, so it can

be written
n

[I@-r)

i=1
where the r; are the roots. Obviously, any polynomial can be made monic by
dividing out the highest order coefficient without altering the roots. Also, any
polynomial with rational coefficients can obviously be made into a polynomial
with integer coefficients by simply multiplying the denominators of the rational
coefficients.

Given a univariate polynomial f(z) of degree n with complex coefficients, we
can construct a polynomial f(x)f*(z) (where the coefficients of f*(z) are the
complex conjugates of the coefficients of f(x)) of degree 2n with real coefficients
containing all the roots of f(x), thus efficiently reducing the problem of root
finding in complex polynomials to the problem of root finding in polynomials
with real coefficients.

A simple root r of a polynomial f(z) is a root with no multiplicity. Given an
univariate polynomial f(z) of degree n with n’ distinct zeros, we can construct
a polynomial

f(z)

ged(f(z), f'(x))
with exactly the same distinct n’ roots but no multiplicities, thus efficiently
reducing the problem of root finding in polynomials with multiple roots to the
problem of root finding in polynomials with only simple roots.
Thus, throughout this paper we generally assume the given polynomial f(#)
i1s monic and has only integer coefficients and simple roots, say

ry<<rog<...<7Tp.

3.4 Bounds on Roots: Root Separation

The root separation of a polynomial is the minimum distance between any two
distinct roots. Mahler,1964 proves:

Lemma 3.6 The minimum root separation of a polynomial of degree n and
coefficient log-precistion m is lower bounded by

\/gn—(n+2)/22—m(n—1) < 2—(2n logn+mn).

Cauchy in 1929 (see Householder, 1970 [H 70]) showed that

Lemma 3.7 Given a polynomial with coefficient log-precision m, the mazimum
magnitude of any root is < 2™,
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3.5 Bounded Precision Polynomial Approximation

Let f(x) be an approximation of f(x) up to log-precision 7, that is, the coeffi-
cients of f(x) differ from the coefficients of f(z) by at most 277, where

7= O(n(p+ m+n)).

The following can be proven using the fact that a polynomial with real coeffi-
cients has roots which are either real or complex conjugate pairs.

Lemma 3.8 (Householder, 1970 [H 70], [BFK 86]) The roots of f(x) differ
from the roots of f(x) by at most 27H.

Lemma 3.9 (Houscholder,1970 [H 70], [BFIK 86]) If the minimum root sep-
aration of f(x) is > 27# and f(x) has all distinct real roots, then so does f(x).

The following Lemmas are due to Schénhage [S 82], and Ben-Or, Feig,
Kozen and Tiwari, 1986 [BFK 86].

Lemma 3.10 Given a monic polynomial f(x) of degree n with coefficient log-
precision m, and suppose fi(x), ..., fo(x) are monic polynomials such that the
polynomial

has degree n — 1 and coefficient log-precision m = n(m 4+ p + 2logn + 4), then
fi(z), ..., fa() need to have at most coefficient log-precision nm.

Lemma 3.11 Given a monic polynomial f(x) of degree n with coefficient log-
precision m, and suppose fi(x), ..., fo(2) are the approxzimate linear factors of
f(x) using log-precision O(n(logn + m+ p)), then the cocefficient size of

s < 27H.

In this paper we are mostly interested in the arithmetic complexity but we do
not ignore the bit complexity. These above results limit the required precision
all calculations need to be made to log-precision # = O(n(p + m + n)).

4 Sturm sequences and Root Isolation

Recall the following definitions: For any ¢,0 < ¢ < 1/2, an interval [s, s'] on
the real line is an e-splitting interval for the roots of f(x) if the interval [s, s']

15



contains exactly ¢ roots of f(x), for some ¢, where en < i < (1 —¢)n (see Figure
1). The e-splitting is balanced if € is constant.
A Sturm sequence of polynomials fy(), f1(#) is the sequence of polynomials

fo(x)af1($)’ . afk($)
where for: = 1,2,.. .k — 1

bl

fiv1(z) = qi(x) fi(x) — fi1(2),

the ¢;(x) are linear, and f; () is constant. Sturm defined this sequence in 1829.
See [BP 60] for a survey on Sturm sequences.

The (standard) Sturm sequence of polynomial f(x) is defined to be the Sturm
sequence of

f(@) = fo(x), ['(x) = fi(w).

Since f'(x) has degree n — 1, the Sturm sequence of f(#) has length k£ = n.
Note that the Sturm sequence of fo(x), fi(z) is similar to the remainder
sequence generated by the Fuclidean algorithm for the ged(fo(z), fi(2)) except
that in the case of the Sturm sequence, fiy1(#) is the negative of the remain-
der of the division of f;_1(z) by fi(z). Therefore, by simple modification (see
Schwartz [Sc 80] for details) of the usual HGCD algorithms (see [AHU 74])

used to compute ged,
Lemma 4.1 The Sturm sequence can be computed in time O(nlog2 n).

Note: The precision required of the Sturm sequence as defined above can be
quite high; but this can be easily remedied by use of additional indeterminants as
linear factors, yielding a Sturm sequence computation requiring lower precision;

see Collins [C 66] and [BFK 86] and also Ben-Or and Tiwari [BT 90] for
details.

The applications of Sturm sequences use the following lemma, attributed
to Rolle; see Marden, 1966 [M 66], Collins and Loos [CL 82], and Mignotte
[M 92]:

Lemma 4.2 If f(z) has real coefficients and all roots are real, then the roots
of f'(z) are all real and they strictly interleave the roots of f(z).

For a real a, let V; be the number of sign variations of the Sturm sequence

Jo(a), fi(a),. .., fr(a),

that is, the number of times

fila) - fiya(a) <0.

The following is proven using the result of Rolle:
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Lemma 4.3 (Jacobson, 1974) For any interval [a,b] of the real line, the number
of real roots in this interval 1s Vy, — V3.

Let the zeros of the linear terms ¢;(x) be ordered
Yi, SYin <o S Y
and let the roots of f(x) be ordered
r<rg<...<Tp.

For any fixed ¢,0 < € < 1/2, a point s on the real line is an e-splitting point for
the roots of f(x) if r; < s < 141 for some

en<i<(l—en.
Ben-Or, Feig, Kozen and Tiwari [BFK 86] prove the remarkable result that:
Lemma 4.4 There is a j such that y;; is a 1/4-splitting point for the roots of
f(z)

Using a binary search of O(logn) stages on the sequence
Yion S ¥Yin <o S Y

and applying Lemma 4.3 to count the number of roots of f(#) in the appropriate
interval considered at each stage of this binary search, we get

Lemma 4.5 There is an O(nlog2 n) algorithm for finding a 1/4-splitting point
for the roots of f(x).

5 Approximating The Magnitudes Of All the
Roots

A method due to Turin in 1968 [T 68, T 75, T 84] can be used to determine
approximations to the magnitudes of all the roots of a polynomial. Schonhage
[S 82] describes an algorithm which uses Turin’s method to approximating the
magnitudes of all the roots by a certain ratio. This algorithm takes an input
a polynomial f(z) of degree n, and for each root r of f(z), determines the
magnitude of 7 to be within an interval [L, U], where

U/(2n) < 2nL.

Pan [P 89] shows this algorithm takes O(nlogn) time using a reduction to 2D
convex hull, for which there are many known O(nlogn) time algorithms[PS 85].
Pan [P 87] observes that ¢ = O(log(log(2n)/log(1 — 7?))) iterations of Gra-
eff’s method (which is a technique involving polynomial powering described in
Section 7) improves these root bounds to ratio (1 4 7). Since for v = 1/n°)]
¢ = O(logn), this gives the following result:
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Lemma 5.1 Given a polynomial of degree n, there is a O(nlog2 n) algorithm
which, for all i = 1,...n, determines the magnitude of each root r; of f(x) to
be within an interval [L;, U;], where

Ui < Li(1+7),

for v =1/n°0),

6 Finding A Well-Isolated e-Splitting Interval

Recall the following definitions: For any real o, 0,6 > 0, an interval I = [ov —
8, o + 8] is o-isolated with respect to the roots of f(x) if the larger interval

[0 — (14 0)8,a+ (14 0)é]

has no further roots of f(#) other than those contained already in I (see Figure
2). An interval is well isolated if it is o-isolated, for ¢ > Q(1/n) and is highly
isolated if it is o-isolated, for ¢ > §(1). The following is an improvement
of Pan’s [P 89] quadratic time algorithm for finding a well isolated balanced
splitting interval.

Lemma 6.1 There is an O(nlog2 n) algorithm given a 1/4-splitting point, for
finding a o-isolated 1/6-splitting interval for the n real roots of f(x), where
o=2/((1+0)n), for any constant 6 > 0.

Proof : Let vy < ry < ... < ry be the roots of f(x). Let v = In(1 4+ 8)/n,

where In is the natural logorithm. Compute by Lemma 4.4 a rational s which
is a 1/4-splitting point for the roots of f(x). Construct the shifted polynomial

9(y) = fly—s).

(Note: the purpose of shifting by s is to insure the root distances are determined
from s rather than 0. Also, note that it suffices for us to find a splitting interval
for the shifted polynomial g(y), since for any interval containing & roots of g(y)
the corresponding interval shifted by s contains k roots of f(x).) Compute by
Lemma 5.1 the approximate root magnitudes of ¢(y), giving foreach i = 1,...n,
a lower bound L; and upper bound U; = L;(1 4+ ) of the distance from s of
each root r; of f(x) :
Li <|ri — 8| < U;,

with
L1 <Ly <...<L,.

Let Uy = 0. We will consider the gaps between consecutive bounding intervals
for the roots of g(y). We define gap 7 to be the interval [U;, Liy1] if Liz1 > U
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and otherwise the empty interval of length 0. (See Figure 3.) The length of gap
118
Gi = max(O, Li+1 - Uz)

for 0 < ¢ < n—1 and let the length of gap n be G,, = co. We say gap k
dominates gaps t,...,7, for © < j, if gap k has the largest length among these
gapst,...,J.

Claim: Suppose for k +1 < k’, gap k dominates gaps 0,...,k' — 1, but ¥’ = n
or gap k does not dominate the gap k. If there are exactly R roots of g(y) of
magnitude at least Lyy1 and at most Uy, where en < R and € < 1/2, then one
of

I+ = [Lk‘-l—la Uk’]aI_ = [_Uk"a _Lk‘-l—l]

is a o-isolated €/2-splitting interval for ¢(y). (See Figure 4a.) If there are
exactly R’ roots of ¢g(y) of magnitude at least Ly11 and at most U,, where
én< R <(1—=¢)nand € < 1/2, then one of

I/ = [_Uk‘a Uk’]a I// = [_Uk"a Uk‘]

is a o-isolated €' /2-splitting interval for g(y), where o = 2/((1 + 8)n). (See
Figure 4b.)
Proof : In accordance with the assumptions of the claim, we have

Gy > Gy

foreach i =0,...,k'—1. Foreach i =k+1,...,k" — 1, we have the recurrence
equation:

Uip1 < (Ui + Gr)(1 +7),
giving the bound

kl
Up < Gr Y _(1+7) <nGp(1+7)" < nGi(1+0)

i=1

since

1+ <e

and
(1+7)" <(1+ 7)(1/7)(771) <M<+

for v = In(1 4+ 6)/n. Thus we have

for o = 2/((1 + 6)n), so the intervals It I~ each have radius 6 = |IT]/2 =
[771/2 < G1/(20). Also we have

|I/| = |I//| < 2Ux < 277,Gk(1 + 9) < Gk/O',
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so the intervals I' " each have radius & = |I'|/2 = |I"|/2 < Gi/o, where
8" > 6. Hence Gy > od’, so the intervals

[Uk’;Uk’ + O'(S/], [—Ukl — O'(S/,—Ukl],

[Ligr— 06", Liya], [=Ligr, —Ligr + 06']

contain no roots (see figures 4a and 4b). Thus each of the intervals T, 1~ I’ "
are surrounded by empty intervals of size ¢&’ > ¢é containing no roots, so it
follows that each of these intervals are o-1solated. Suppose there are exactly R
roots of magnitude at least Liiq and at most Ugs, where en < R for ¢ < 1/2.
By the pigeon hole principal, either (i) at least R/2 of these R roots are non-
negative or (ii) at least R/2 of these R roots are non-positive. If R < (1 — é)n,
then one of the intervals It or I~ has at least B/2 > (¢/2)n roots and at most
R < (1 — €)n roots of g(y). Else if R > (1 — €)n, then one of the intervals I+
or I~ has at least R/2 > (1 — €)n/2 roots and (since s is a 1/4-splitting point,
both [—o0, s] and [s, 00] have at most 3n/4 roots each) at most 3n/4 roots of
g(y). Since €/2 < 1-3/4 = 1/4 for € < 1/2, we conclude in either case that one
of the intervals It or I~ is a o-isolated ¢/2-splitting interval of g(y).

Now suppose there are exactly R’ roots of magnitude at least Ly41 and at
most Uy, for ¢€n < R < (1 —€)n and ¢ < 1/2. By the pigeon hole principal,
either (i) at most R’/2 of these R’ roots are non-negative or (ii) at most R'/2 of
these R’ roots are non-positive. Then one of the intervals I’ or I” has at least
n— R > ¢'nroots and at most R'/24+(n—R') =n—R'/2 < (1 —¢€/2)n roots.
Since ¢ > 1 — (1 —¢/2) = €/2, we conclude one of the intervals I’ or I" is a
o-isolated € /2-splitting interval of ¢(y). This completes the proof of the Claim.

We will use the above claim to complete our proof of Lemma 6.1 as follows.
Fix a gap ki, for 0 < k1 < [2n/3], which dominates gaps 0,...,[2n/3|. Let ks
be the minimum number > |2n/3| such that gap k1 does not dominate the gap
ko, but dominates the gaps [2n/3|+1,..., k2 — 1 (note that if gap k1 dominates
all the gaps |2n/3] +1,...,n— 1, then k2 = n).

CASE 1. Consider the case that k1 < |n/3]. Let

It = [Lk1+1a Ukz]aI_ = [_Ukza _Lk1+1]'

Since there are I roots of magnitude at least Ly, 41 and at most Uy,, where
n/3 < R, all the requirements in first part of the claim are satisfied for ¢ = n/3,
so either It or I~ is o-isolated 1/6-splitting interval.

CASE 2. Next consider the case that k1 > [n/3]. Let

I/ = [_Ukw Ukl]’ I// = [_Uku Uk2]

Since there are R’ roots of magnitude at least Ly, 11 and at most U,, where
n/3 < R < 2n/3, all the requirements in the second part of the claim are
satisfied for ¢ = n/3, so either I’ or I" is o-isolated 1/6-splitting interval.
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In either case, we can determine which interval to use by applying Lemma

4.3.
i

7 Obtaining a Highly Isolated Interval by Poly-
nomial Powering

The following 1s known as Graeff’s Method, but is actually due to Dandelin,
1826. Given a monic polynomial fo(x) = [[i—;(z — r;) of degree n, let

fz(l‘) = fz’—1(\/5) : fi—1(—\/5)
for 7 > 0. Note that

(r=12).

1

file) = (=D)"

so fi(x) has the same degree n but the roots of fi(x) are the squares of the
roots of fo(x). Thus, for any i > 0, f;(z) = (=)™ [/, (z — r?'), so fi(x) has

the same degree n but the roots of fi(x) are the 2'th powers of the roots of
fol).

Given a well isolated e-splitting interval I = [ — 8, o« + 8] for the roots of
flx), let £ = a4y, and let

90(y) = y" fla+1/y)/ f(a)

be the monic polynomial of degree n derived from f(z). Let p = o logn, for any
constant ¢ > 0. Applying Graeff’s Method to gy, we compute

9:(¥) = 9i-1 (/) 9i-1(=/Y)

for i = 1,2,...,p, resulting in a degree n polynomial f(y) = ¢,(y) which has
roots which are the 2°th powers of the roots of go(y). Note that the correspond-
ing interval I for f(y) is o-isolated, e-splitting interval for the roots of f(y)
The variable transformation ®(z) = y involves scalar calculations including
reciprocals and taking 2°-th powers of scalars.

Lemma 7.1 Given well isolated e-splitting interval I for the roots of f(x), for
any constant o > 0, there is an O(nlog2 n) algorithm for constructing a degree
n polynomial f(y) and an interval I which is a o-isolated e-splitting interval for
the roots of f(y) Furthermore, a set of 2n points containing all the roots of
f(x) can be obtained by the inverse variable transformation

<I>_1(y) ==z

mwvolving scalar calculations including reciprocals and taking 2°-th roots of scalars.
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8 FFT Approximations to Contour Integrals

Let r1,..., 7, be the real roots of monic polynomial f(x) within the interval I.
Let T be a circle on the complex plane of diameter length(I) and such that the
endpoints of interval I are on T' (see figures ba and 5b).

The Cauchy formula states that if I is a closed curve on the complex plane,
then

o LG,
k‘zwm/m )"

where

k k
Sp=r+...+r,

is the kth power sum of the roots in I.

Schénhage [S 82], (also see Pan [P 87]) shows

Lemma 8.1 IfT' is the unit disk and interval I 1s o-isolated, then the integral
can be approzimated by the Nth roots of unity within error < 2n/(1+ U)N.

First shift and deflate the polynomial f(z) by the variable mapping
z — (# — center(I))/radius(I)

so the resulting mapped interval is [—1, 1] Then evaluate the Cauchy contour
integral at the roots of unity by a FFT in O(nlogn) time, thus giving:

Lemma 8.2 Gliven a degree n polynomial f(x) and an interval I which is a
o-isolated interval for the roots of f(x), for a constant ¢ > 0, then in time
O(nlogn) the n power sums of the roots of f(x) can all be computed within
precision < 2n/(1 4 o).

9 Polynomial Splitting Using The Newton Iden-

tities
Given the power sums sy, ..., s, of a monic polynomial
n
fo) ="',
i=0
with ¢, = 1, the coefficients of f(z) can be related to the power sums s1,..., s,

of the roots of f(#) by the following linear system, known as Newton’s Identities:

1 Cn—1 51
51 2 Cn—2 S9
59 51 3 Cn_3 — 53
Sn Spn—1 51 n Cp Sn
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Lemma 9.1 Given power sums of a monic polynomial f(x) within precision
< 2n/(1 + o), we can compute the coefficients of f(x) within the same order
of accuracy.

This linear system is nearly a triangular Toeplitz system, and can be solved
by applying known O(nlogn) algorithms [BP 86].

Lemma 9.2 Given a degree n polynomial f(x) and an interval I which is a o-
isolated e-splitting interval for the roots of f(x), for a constant o > 0,0 < e < 1,
then in time O(nlogn), f(x) can be approzimately separated into a product
g1(2)ga2(x) where
en < deg(g1(2)),
deg(g2(2)) < (1 = €)n,

and the coefficient error between f(x) and g1(x)g2(z) is at most 2n/(1+ o)".

10 High Accuracy Calculations Using Newton
Iteration

10.1 High Accuracy Polynomial Splitting Using Newton
Iteration

We will apply the Newton’s iteration method developed by Schénhage [S 82]
to exponentially improve the accuracy of a low accuracy polynomial splitting.

Lemma 10.1 Given a degree n polynomial f(x) and an interval I which is a o-
isolated e-splitting interval for the roots of f(x), for constants o > 0,1 > ¢ > 0,
and where f(x) is approzimately separated into fi(x)f2(x) where

en < deg(fi(»)),

deg(fa(2)) < (1 —€)n,

and coefficient error between f(x) and fi(z)fa(x) is at most 2n/(1+4 o)", then
in time O(nlognlogm), f(x) can be approzimately separated as fi(x)fa(2),
where

en < deg(fi(x)), deg(f2(x)) < (1 — e)n,
so that the coefficient error between f(x) and fi(x)fa2(2) is at most 277,
Note that this algorithm requires O(log ) stages, where each stage requires
polynomial multiplication and division taking time O(nlogn) by Lemma 3.1.

Therefore the total time is O(nlognlogm). We can apply this lemma to obtain
arbitrarily high precision polynomial splittings.
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10.2 Improving the Accuracy of Root Approximations Us-
ing Newton Iteration

Optionally, we can also apply a Newton’s iteration method developed by Schonhage
[S 82] to exponentially improve the accuracy of low accuracy root approxima-
tions.

Lemma 10.2 Given a degree n polynomial f(x) with n approzimate roots which
have distance from the roots of at most 1/(140)" for ¢ > 0 then in time
O(nlognlogm), we can find n approzimate roots

fl, R )
which have distance from the roots of at most 277,

Note that this algorithm requires O(log ) stages, where each stage requires
n point polynomial evaluation (Lemma 3.2) taking time O(nlog2 n). By this
method however, the total time is O(n log? nlog 7).

11 Fast Root Proximity Verification

Note that there may be two real N-th roots of a real number, for N > 2. Thus,
to apply Lemma 7.1, we need a way to test, given a real point, whether it
is close to a root of f(x). (see figure 6.) Pan [P 87, P 89] utilized a costly
proximity test due to Turin requiring (n log2 n) time per test, and a total time
of Q(n? log? n) time for the 2n tests. The following improves on Turin’s test:

Theorem 11.1 Let f(x) be a polynomial of degree n with all real roots and with
real coefficients of log-precision m. Let S be a set of real points where we wish
to test which points are within a giwen sufficiently small distance 2=7 of a root
of f(x), where # = O(n(p + n + m)). Then all these tests can be done in time
O(nlog®n).

Proof :  We reduce the task to multipoint evaluation, for which there are
O(nlog® n) time algorithms (Lemma 3.2).

Lemma 11.1 Given a polynomial f(z) of degree n with all real roots and coef-
ficient log-precision m, if we find a real o such that |f(«)| < 277, for sufficiently
large T, then the closest distance Ay, from o to a root of f(x) is at most 2M°7
forn =1 and at most n2"~(T=mtn(n+)/2)/n forn 5 1,

Proof : For fixed m, 3 > 1, we show by induction on n that if « is further than

A, = n2"P from a root of f(z) then |f(a)| > 277 for 7, = B+ m — 1 and

m=nf+m—nn+1)/2 for n>1
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(see Figures 7,8).
In the base case n =1, f(x) = ¢p + c12 is a linear function with ¢; # 0, so

[f'(2)] = les| > 287
Thus |f(#)] grows by a rate of at least 27 so
[f(a)] > |er] Ay > 2772178 > 277

form =8+m—1.

Now consider an f(z) of arbitrary degree n > 1. Since we have assumed
that f(z) has real coefficients and all roots are real, by Rolle’s result (Lemma
4.2), the roots of f'(x) are all real and they strictly interleave the roots of f(z).
Choose r to be the root of f(x) either just below « or just above «, such that
f/(x) is not zero between « and r. Let I be the interval between « and r, not
containing r but containing «. Thus, there are at most two roots, say ri, 72 of
f/(x) where r1,7r2 are not on I but are of distance < A,_; from a point on I.
Let I’ be the points of T of distance > A,,_; from a root of f/(x). Note that

1] > Ay — 28,1 > 02" % —(n—1)2. 200~ D=7
>2" P (n—(n-1))>2""F

Since f'(z) has degree n — 1, by the induction hypothesis, |f/(z)| > 2771
for all x € I of distance > A,,_; = (n — 1)2"~!=# from r; or ro. Thus

[f(a)] > 2772 1] > (277=1)(2070) > 277 P T > 97T

for 7, requiring 7, to satisfy the recurrence equation 7, = 7,1 + 8 — n for
n>1,and 4 = 4+ m — 1. This gives

Tn:Tl—l—zn:(ﬁ—i):(ﬁ—I—m—1)+((n—1)ﬁ+1—n(n+1)/2)

=nf+m-—n(n+1)/2 for n>1

12 Application of the Real Root Problem: the
Symmetric Eigenvalue Problem in Sparse
and Structured Matrices

Root finding has many applications, and one of the most important of these is

finding the eigenvalues of a matrix. The eigenvalues are the roots of the charac-
teristic polynomial of the matrix, which can found by a symbolic computation
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on the determinant. The characteristic polynomial of a matrix A is det(A —1X),
where A is an indeterminant.

Here consider various such classes of sparse and structured matrices oc-
curring in practice which have special structure that allow the characteristic
polynomial to be computed significantly faster than time O(n®). We can apply
Theorem 2.1 to efficiently solve the symmetric eigenvalue problem for these
classes of matrices. Thus, given efficient algorithms for the real root problem,
we get efficient algorithms for the symmetric eigenvalue problem for these classes
of matrices.

Eigenvalues are used in many engineering and scientific applications, in-
cluding vibration analysis in structures, stability analysis, etc. The symmetric
eigenvalue problem is: given a symmetric matrix (or more generally, a Hermitian
matrix), find all the eigenvalues; which are all real in this case. Symmetric ma-
trices and the corresponding symmetric eigenvalue problems occur naturally and
frequently in applications and in fact most application programs for eigenvalues
are for the symmetric eigenvalue problem. For example in most of the cases
where the matrices are derived from the solution of discretized PDEs, circuit
problems, structure problems, and in signal processing, the resulting matrices
are generally symmetric. Moreover, many large matrices occurring in practice
have a special structure which allow the characteristic polynomial to be com-
puted in nearly quadratic time. In addition to be generally symmetric, they
often fall into one of two classes:

1. Dense structured matrices (see [BA 80, BGY 80, PR 87]). A matrix A
is Toeplitz if A;; = Asqr j4+1 for each k where the matrix elements are
defined. Define an n x n matrix to have displacement rank r if it can
be written as the sum of r terms, where each term is the product of a
lower triangular Toeplitz matrix and an upper triangular Toeplitz matrix.
Structured matrices, and in particular Toeplitz and bounded displacement
rank matrices arise frequently in signal processing, coding theory, data
compression, and algebraic computation applications. Pan [Pa 90] gave
O(n?lognloglogn) algorithms for computing the characteristic polyno-
mial of these class of matrices.

2. A class of n x n matrices is sparse if they have O(n) non-zeros. Sparse ma-
trices arise from, for example, VLSI circuit problems, structure problems
and discretization of d = 2,3 dimensional PDEs; Canny, Kaltofen and
Laksman [CKL 89] have applied Wiedemann’s method of solving sparse
linear systems (see [KS 91]) to computing the characteristic polynomial
of sparse matrices in O(n?log® n) time.

26



13 Conclusion

We have upper bounded the arithmetic complexity of the real root problem to
be nearly the same as basic arithmetic operations on polynomials. We have
shown that there is an algorithm for the real root problem which has time cost
O(nlog® n(logn +logb)) in the arithmetic model where b = m+ . This is with
polylog factors of optimality. There are number of immediate extensions:

1. improving the sequential boolean complexity of the real root problem,
2. improving the parallel complexity of the real root problem.

We have shown that our real root algorithm requires only the moderate
bound of # = O(n(p+ m —+ n)) bits of precision to carry out our computations,
similar that required by other related root finding algorithms. Thus the Boolean
complexity of our algorithm is a multiplicative factor of M(7) more than our
arithmetic complexity, where

M(7) = O(x(log ) loglog 7)

is the bit complexity for multiplication of integers of length 7. Ben-Or and
Tiwari [BT 90] investigated the Boolean complexity of the real root problem,
giving, for b = m + p and ¥ = n + b, a bound of

O(nlog? nM (nb")) log® b) < O(n?b'(log? b)(log ') log? nloglog b’

Boolean operations. Bini and Pan [BP 91, BP 92] recently developed an effi-
cient algorithm for the symmetric tridiagonal matrix eigenvalue problem, which
has Boolean cost of O(n?M (b) log” b) = O(n*b(log® b) loglog b). Using the known
efficient reduction from the real root problem to the symmetric tridiagonal ma-
trix eigenvalue problem describe in Subsection 1.2 the resulting real root al-
gorithm of Bini and Pan [BP 91, BP 92] has the same Boolean cost as for
the symmetric tridiagonal matrix eigenvalue problem. Although Bini and Pan
modestly view their work as a matrix reformulation of the Ben-Or and Tiwari
[BT 90] algorithm, in fact they have a reduction in Boolean cost which remains
the best known Boolean cost bound. In contrast, our real root algorithm has a
single logarithmic factor more Boolean complexity, namely

O(M (nb")nlog® nlog ') = O(n?b' (log” n)(log® b') loglog b').

Thus there remains the open problem of further reducing the Boolean cost of
the real root problem.

Our real root algorithm can be executed in parallel. Our most costly op-
eration which respect to parallel arithmetic complexity in the O(logn) recur-
sive levels 1s the Sturm sequence evaluation. In a subsequent paper we show
that parallelization of the techniques of this paper and application of a parallel
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algorithm of Reif [R 93d] for inverse of various structured matrices including
Toeplitz can be used to get an efficient parallel arithmetic algorithm for the real
root problem.

It remains an open problem to determine a similarly efficient algorithm in
the arithmetic model for the general root problem with complex roots.
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