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Abstract—Current methods for modeling, analysis, and design
of cyber-physical systems lack a unifying framework due to the
complexity and heterogeneity of the constituent elements and
their interactions. Our approach is to define relationships be-
tween system models at the architectural level, which captures the
structural interdependencies and some semantic interdependen-
cies between representations without attempting to comprehend
all of the details of any particular modeling formalism. This
paper addresses the issue of defining and evaluating consistency
between architectural views imposed by various heterogeneous
models and a base architecture (BA) for the complete system. This
notion of structural consistency ensures that the model elements
adhere to the cyber and physical types and the connections
between components present in the BA, which serves as the
unifying framework for model-based development. Consistency
checking between a model and the underlying system architecture
is formulated as a typed graph matching problem between
the connectivity graphs of the corresponding architectural view
and the system’s BA. The usefulness of the approach to check
system modeling assumptions is illustrated in the context of two
heterogeneous views of a quadrotor air vehicle.

Index Terms—system architecture; view consistency; graph
morphism; multi-domain modeling; cyber-physical systems;

I. INTRODUCTION

Current methods for modeling, analysis and design of cyber-
physical systems (CPSs) lack a unifying framework due to
the complexity and heterogeneity of the constituent elements
and their interactions. A wide variety of modeling formalisms
are used to capture salient features of these systems that are
each amenable to specific types of analysis. The relationships
among these various representations and the design implica-
tions derived from them are usually managed in an ad hoc
manner.

Model-based development (MBD) refers to the use of
computer-based, executable models to eliminate errors and
reduce uncertainty in the process of translating requirements
and specifications into working systems. The goal is to reduce
costly testing and costly redesign: catching errors in models
is significantly cheaper than finding them in the final system
or even in prototype implementations. Successful designs rely
on separations of concerns based on time scales, interface
protocols, imposition of constraints, and other mechanism to
facilitate a decomposition of the design problem into manage-
able and tractable subproblems. The most rigid and pervasive

separation in models of CPSs is the distinction between the
cyber and physical aspects of a system.

Ensuring consistent relationships between various system
models is an important part of the integrated MBD methodol-
ogy. Our approach is to define relationships between system
models at the architectural level, rather than developing a
universal modeling language or a meta-modeling framework
for translating between models from different formalisms. We
believe that an architectural approach provides the right level
of abstraction: one that captures the structure of and interde-
pendencies in a system without attempting to comprehend all
of the details of any particular modeling formalism. To enable
the representation of system dynamics and physical laws in
traditional system architectures, we have introduced the CPS
architectural style in [19]. The ability to describe both cyber
and physical elements in the same architectural framework
allows the architect to create a common base architecture (BA)
for a CPS. In [4], we have described how a system’s BA
provides a unified point of reference for multi-domain models
and how each system model can be defined as a view of the
BA.

In this paper, we address the issue of defining and evaluating
consistency between architectural views derived from various
heterogeneous models and the BA for the complete system.
Such a notion of consistency ensures that the model elements
adhere to the communication constraints and physical laws
between components present in the base architecture. This
guarantees that the models used for design and evaluation
are not based on assumptions about information or signal
flow pathways between elements that are inconsistent with
the underlying complete system design as reflected in the
BA. For structurally consistent models, analysis results based
on component connectivity in the model are valid for the
underlying system as well.

Consistency can be studied between a single model and the
underlying system or between multiple models of the same
system. Consistency of a single model with the architecture
makes it possible to relate (and subsequently use) verification
results derived from the model to the final system imple-
mentation. This is possible if the final run-time system is
generated in a systematic way to guarantee conformance to the
architecture. If multiple models describe the same system, then



the models should be based on consistent assumptions about
the system’s parts, including the parts that are abstracted away.
Only then can the different sub-systems designed using these
models be integrated, and the final composed system behavior
be the same as the behavior expected using the individual
model analysis results.

The next section summarizes the concept of architectural
views that relate heterogeneous system models to the BA.
Section III describes how we transform architectures into typed
graphs of components and connectors. Section IV introduces
the concept of architectural view consistency and formulates it
as a typed graph matching problem. The applicability of view
consistency in system design is discussed in Section V, while
the tool framework being developed is detailed in Section VI.
In Section VII, we illustrate the structural consistency for the
control and software views in the context of the STARMAC
quadrotor. Section VIII describes related work in this area,
and the concluding section discusses ongoing work to extend
our approach to semantic multi-domain model consistency for
CPSs.

II. HETEROGENEOUS MODELS AS ARCHITECTURAL
VIEWS

The approach proposed here focuses specifically on archi-
tectural views that represent the architectures of system models
as abstractions and refinements of the underlying shared BA.
In this context, well-defined mappings between a view and
the BA can be used as the basis for identifying and managing
the dependencies among the various models and to evaluate
mutually constraining design choices. We define our idea of
an architectural view (defined in [4]) as follows:

Definition 1. An architectural view V for a design perspective
M is a tuple < CV ,RM

V ,RV
BA > where:

• CV is the component-connector configuration of the view,
with the types, semantics, and constraints defined by the
design perspective of the view

• RM
V is a relation that associates elements in the model

with elements in CV
• RV

BA is a relation that associates elements in CV with
elements in the BA

Common design views for the embedded control systems
domain are the control, software, hardware, and physical
views. For example, a control view of a system would contain
a set of components and connectors that are relevant to control
analysis and design. The control view consists of controller,
estimator, sensor, actuator, and sample and hold components,
along with the associated ports. The connectors in a control
view represent signal flows between the connected compo-
nents. Similarly, a software view consists of components
that represent the software for the control and estimation
algorithms implemented in the final system, along with the
embedded software communicating with the system’s sensors
and actuators. Connectors in the software view represent either
(buffered or unbuffered) data, or events (or messages) between
communicating software components.

An architectural view for a given design perspective ab-
stracts away from the implementation details of the specific
tool that the domain model is created in.RM

V defines the trans-
lation from entities existing in a specific modeling language to
the particular view’s components and connectors. The relation
is either one-to-one or an encapsulation of model entities, as
defined by the modeler’s choice of grouping. It effectively
creates a “componentized” version of the model and allows
grouping of multiple elements in the model to a single element
in the view.
RV

BA is an encapsulation/refinement relation, which enables
the system architect to group specific components and connec-
tors in the view and map them to subparts of the BA. Some
correspondences are declared explicitly by the architect while
other correspondences are inferred, based on the semantics of
the underlying view perspective. One-to-many (encapsulation)
and many-to-one (refinement) maps are allowed. However,
many-to-many maps are not allowed since this can lead to
inconsistent connections being hidden inside the encapsulated
components.

For each view-to-BA relation, RV
BA, certain element map-

pings are not allowed. For example, a plant component in
the control view is not allowed to be mapped to a cyber
component in the BA, and vice-versa, since a plant (and its
associated model) is a physical domain concept only. However,
a controller component in the view can be mapped to a
(set of) cyber or physical components in the BA, since the
final controller could be implemented either in software or
hardware on the final system. Such mapping rules are defined
for each view (and hence each modeling perspective) with
the help of a domain expert. These rules prevent arbitrary
encapsulations and refinements between view and BA entities.
The component-connector structures resulting from carrying
out element encapsulations on a view and on a BA are called
an encap-view and an encap-BA, respectively.

III. TYPED GRAPH MORPHISMS

We use undirected, typed graphs to represent the topology of
a system architecture. Mapping architectures into typed graphs
allows us to leverage well-studied tools in graph theory that
evaluate the topological similarity between two structures.

Definition 2. Let VG be the set of vertices and EG be the set of
edges. Let Λ and Σ be posets which define the fixed alphabets
for the vertex and edge labels respectively. A typed graph G
(over Λ and Σ) is a tuple < VG, EG, sG, tG, lvG, leG > where
sG and tG : EG → VG are the source and target functions,
and vlG : VG → Λ, and elG : EG → Σ are the vertex labeling
and edge labeling functions, respectively.

A Component-Connector Graph (CCG) is a typed graph
created from an architecture that retains the connectivity
constraints of the architectural elements.

Definition 3. A CCG of an architecture is a typed graph G
such that:
• VG is the set of components, connectors, ports, and roles

in the architecture.



• EG is the set of edges, which define which ports(roles)
are contained in each component(connector) and the
attachments between the ports and roles.

• Λ is the set of component, connector, port, and role types
as defined by the style of the architecture.

• Σ = {contains, attachment, binding} is the set of edge
types in the typed graph.

The types of edges correspond to the following possible
connections between architectural entities:
• contains: This edge exists between a compo-

nent(connector) node and its port(role) nodes. The
edge represents the fact that each port(role) belongs to a
particular component(connector).

• attachment: This edge exists between a port and a role.
The edge represents a port-role attachment relation in the
architecture.

• binding: This edge represents a binding relation between
an internal port(role) and a boundary port(role). This
situation occurs when a component has (one or more)
representations or when a set of components or connec-
tors is encapsulated as a single entity.

Figure 1 shows an example of (a) a simple architecture, and
(b) the associated typed graph representation.

A typed graph morphism is a structure-preserving corre-
spondence between two typed graphs that maps adjacent nodes
in one typed graph to adjacent nodes with consistent types in
the other typed graph.

Definition 4. Let G and H be two typed graphs. Let vG ∈ VG

and eG ∈ EG be a vertex and an edge, respectively, of G.
A typed graph morphism (from G to H) M : G → H is a
pair < MV : VG → VH ,ME : EG → EH > such that the
following properties hold:

1) MV(sG(eG)) = sH(ME(eG))
2) MV(tG(eG)) = tH(ME(eG))
3) vlG(vG) <= vlH(MV(vG))
4) elG(eG) <= elH(ME(eG))

If (ME ,MV ) are injective (one-to-one), the morphism is
known as a monomorphism. If they are bijective (one-to-one
and onto), the morphism is an isomorphism. The cardinality
of a morphism is the number of feasible mappings.

The posets associated with the CCGs of the BA and each
view enable the architect to define which element types in
the BA are semantically compatible with those in a particular
view. This graph labeling lets the morphism algorithm detect
incompatible mappings of view components to the BA. These
definitions and there application are illustrated for the quadro-
tor application in VII.

IV. STRUCTURAL CONSISTENCY

In this section we answer the question: What does it mean
for an architectural view to be structurally consistent with the
BA of a cyber-physical system?

Definition 5. An architectural view V is structurally consistent
with the BA if there exists a typed graph morphism from the

CCG of the encap-view to the CCG of the encap-BA, where
the typed graph morphism conforms to the element mappings
defined by the architect via the relation RV

BA.

As illustrated in Fig. 2, the consistency check between a
view and the BA is transformed into a typed graph matching
check between the respective CCGs. An architect can choose
whether he wants a weak or strong structural consistency,
based on whether the typed graph matching is a monomor-
phism or an isomorphism, respectively.

Weak consistency enforces that: (i) every component in the
view should be accounted for in the BA, and (ii) every com-
munication pathway and physical connection existing between
view elements should be allowed in the BA, by the presence of
corresponding connectors. As a result, the view (and hence the
model) cannot allow incorrect assumptions about the existence
of and connectivity between system elements, if this is not
defined in the BA.

Strong consistency satisfies all the properties of the weak
form. In addition, it imposes the constraint that every element
in the BA must be represented in the view in some manner.
This implies that the view must take into account every part
of the complete system, even if some parts are represented in
an abstract fashion. In this sense, the strong consistency is a
completeness check, rather than a sufficiency check.

View consistency involves combining architectural elements
in structurally and semantically meaningful ways. For exam-
ple, to decide the morphism between the view and BA typed
graphs, we have to group heterogeneous elements in both
typed graphs, and then carry out the typed graph matching
algorithm. These groupings involve encapsulation of com-
ponents, composition of connectors, and possibly combining
ports and roles. Except for component encapsulation in a
limited sense, none of the operations are currently formally
well-defined for architectures in the CPS domain. Hence, to
have a formal notion of structural consistency, such abstraction
operations on architectural elements have to be meaningfully
defined as well.

The main drawback of graph pattern-matching lies in its in-
herent computational complexity. The subgraph isomorphism
and the monomorphism problem is known to be NP-complete
[9]. In fact, a naive graph matching algorithm, which generates
each possible mapping from the n nodes in the pattern to the
m nodes in the target and tests whether these mappings are
graph homomorphisms, requires in the worst case O(mn) tests
[24]. The complexity of this problem usually considerably less
for typed graphs since the graph labels eliminate many of
the alternatives that need to be evaluated. In our application,
the complexity is reduced further by leveraging user-defined
correspondences of elements in the view and BA, which
creates a partial map from where a typed graph morphism
algorithm begin its search. We currently use the VF2 algorithm
[14], which uses a computationally efficient heuristic, and
is significantly faster than the standard Ullman algorithm in
many cases [13]. For subgraph isomorphism with n nodes, the
best case complexity of the algorithm is O(n2) and the worst



Fig. 1. Example of a Component-Connector Graph.

Fig. 2. Defining view consistency as a typed graph morphism check.



case is O(n×n!). In addition, VF2 has a memory complexity
of O(n), making it useful for working with large graphs.

V. APPLICABILITY TO SYSTEM DESIGN

The CPS architecture provides the reference structure for
all models used for design and verification. Adherence to the
component-port-connector structure of the CPS architecture
assures that the structure of each architectural view is consis-
tent with the functional decomposition of the system as repre-
sented by the architecture. However, as noted, the architectural
views need not have the same structure as the CPS reference
architecture. Ports and connectors between components in an
architecture view are associated with the ports and connectors
in the CPS architecture. These associations can be many-to-
one in either direction. The important constraint is that the
presence or absence of ports and connectors in either the
architectural view or the CPS architecture must be reflected
in the other structure. Such a constraint rules out the possi-
bility that a view can introduce a back-door communication
channel, not present in the reference structurea property called
communication integrity in software architectures [16].

Correspondence between components, ports and connectors
in the architectural views and the CPS architecture would
be defined by the engineers who construct the verification
models. When inconsistencies are detected, that is, when a
morphism between the view and the CPS architecture cannot
be established, the designer needs to make modifications to
bring the architectural view for the verification model into
compliance with the CPS architecture.

We can interpret an architectural view as a way of iden-
tifying which parts of the complete system are represented
in the model, and which parts are abstracted away. From
the modeler’s perspective, some parts of the BA are “in
focus” and some parts are “blurred”. The focused parts are
the portions where the modeler insists that there be a fine-
grained correspondence between the elements in the view and
those in the BA. The blurred parts are the portions where this
correspondence is coarser. This translates to a fluid notion
of consistency between each view and the BA, and across
different views of the same system.

This architectural approach is different from traditional
approaches to consistency, which are typically defined within
the context of a specific modeling formalism. For example,
it is common to use bisimulation relations between labeled
transition systems to check that the two systems enter equiv-
alent states at all times, for the same input event pattern.
Our definition of consistency enforces that each system model
makes valid assumptions about the topology of the underlying
system, resulting in equivalent component connectivity and
physical signal flows. However, it is a “light weight” notion
of consistency in that it does not address whether two compo-
nents will exhibit the same behavior since system behavior
cannot be expressed simply as a topological constraint on
components. (The concluding section discusses our current
research into using the architectural framework to evaluate

stronger semantic relationships between models, including
consistency with respect to behavioral semantics.)

The BA is assumed to be constructed from validated
stakeholder/system requirements. Hence, the BA contains only
components and connectors that can be traced back to partic-
ular system-level requirements. By enforcing that each view
maintain consistency with the BA, we obtain a way to carry
out requirements traceability for the corresponding model as
well. Checking consistency guarantees models do not contain
extraneous elements, or connections between elements, that
are not mandated by some system-level requirement. This
gives the design team a mechanism to assure that decisions
and future changes made at the system architecture level are
reflected correctly in the models used for system design and
evaluation.

VI. TOOL FRAMEWORK FOR CONSISTENCY CHECKING

We are extending the AcmeStudio [21] framework to create
prototype tools that implement our approach to multi-view
consistency. AcmeStudio is a framework for creating archi-
tecture design environments. It is written as a plug-in to the
Eclipse framework and permits one to define domain-specific
architectural styles and link in analysis tools that may be
invoked by the user to analyze systems in those styles.

The design flow for our approach is shown in Fig. 3. A
newly created multi-view editor in AcmeStudio allows the
system architect to study the BA and any system view side-by-
side. The view can be created in any of the four perspectives
currently being implemented to construct architectural views
of models, namely, the control, physical, software, and hard-
ware architectural styles. Additional design perspectives can
be added by defining the appropriate architectural style for
the perspective, along with the rules for permissible mappings
between elements of the view and elements of the BA. The
view is assumed to have been created independently from an
existing system model.

The architect can define the relation RV
BA between the

architectural view for a model and the BA by selecting
corresponding sets of elements from windows showing the
view and the BA. The element mappings are checked against
the correspondence rules for that perspective, and any detected
violations are reported to the architect. Once a consistent
mapping relation has been created, it is stored in a metadata
file specific to each view and BA. Any external plug-in can
access this file and use the mapping information to carry
out view-specific analyses. We are also implementing a typed
graph morphism checker plug-in that checks view consistency
by comparing the CCGs of the view and the BA. The
plug-in traverses the BA and the view architecture instances
in AcmeStudio, and extracts element connectivity and type
information from each of them. It uses this information to
create the respective CCGs. The plug-in also reads the element
correspondences contained in the view metadata file to carry
out required element encapsulations on each CCG. View
consistency is checked by verifying if a morphism exists
between the two typed graphs. If it does not, then the set



Fig. 3. Design flow using AcmeStudio for view consistency checking.

of maximally matched subgraphs between the view and BA is
returned. We have implemented the algorithm for maximally
matched subgraphs by extending the VF2 algorithm’s local
heuristic search criterion.

We are currently studying how best to map the information
contained in this set back to BA and view in the multi-view
editor. We would like the architect to be able to spot the
inconsistent elements and take corrective action based on the
returned partial matches.

VII. QUADROTOR ARCHITECTURE: STRUCTURAL VIEW
CONSISTENCY

The Stanford Testbed of Autonomous Rotorcraft for Multi-
Agent Control (STARMAC) [11] is a quadrotor platform
developed to test algorithms that enable autonomous operation
of aerial vehicles. The aircraft has four rotors for actuation,
arranged symmetrically about its body frame. The vehicle
has a sensor suite consisting of an inertial measurement
unit (IMU), a Global Positioning System (GPS) unit, and
sonar. It implements a hierarchical control system, with a
low-level attitude controller (AC) and a high-level position
controller (PC). A remote ground station controller (GSC)
generates reference trajectories for the quadrotor to follow,
and has joysticks for control-augmented manual flight. The
two onboard controllers communicate through a serial link.
Communications between the PC and the GSC are managed
over a WiFi network, using the UDP protocol.

The BA of the quadrotor is modeled in the CPS style,
which allowed us to represent both the cyber components
(control algorithms and real-time software) and the physical
dynamics (forces and torques imparted to the vehicle frame
from physical sources). A more detailed description of the
complete quadrotor CPS architecture is provided in [5]. The
STARMAC design team had documented the software sub-
systems and the hardware architecture of the vehicle. We
modeled the quadrotor physical dynamics in MapleSim from
first principles, as well as studying the vehicle dynamics from
existing control system models in Simulink. The BA of the
quadrotor was created from these documents and models.

The control view was then derived from the existing
Simulink models for the complete system. The software view
was created by studying the source code (written in C) of the
real-time programs that implement the position and attitude
controllers, and the communication protocol with onboard
sensors of the STARMAC. The rest of this section describes
how structural consistency with the BA is checked for the
control and software views of the quadrotor.

A. Control View

The Simulink model is functionally correct, i.e the con-
trol system achieves attitude and position tracking within
the performance requirements. However, the model is not
architecturally consistent, i.e, it does not respect the connec-
tivity constraints imposed by the BA. There are two sets of



Fig. 4. Consistency between control view and BA.

discrepancies in the Simulink model, which are highlighted
in Fig. 4. The first type of discrepancy, marked by a solid
circle, is caught by the weak consistency check. It is due to
the connection existing in the control view between the sensor
output from the GPS and the Robostix. The Robostix then
passes these signals to the Gumstix. However, according to the
BA topology, the GPS is connected to the position controller
directly.

The second set of discrepancies are caught by the strong
consistency check, and are highlighted by dotted circles.
One discrepancy is because of a connection between the
STARMAC block and the Robostix which represents height
readings from the sonar sensor. This connection is present
in the BA between the Attitude Ctrl and the encapsulated
element containing the VehicleFrame and Sonar components
but is missing in the control view. The second discrepancy is
because of a data connector from the position controller to
the ground station that is present in the BA and missing in the
control view. This connector represents telemetry data that the
vehicle periodically sends to the ground station for mission
status updates.

As a result, there is a mismatch between how the hard-
ware and software components are connected on the physical
vehicle and the topology assumed by the Simulink model.
Such architecture-level mismatches are caught by the view
consistency definition, since the misplaced/missing connector
will prevent a CCG morphism between the view and the
BA. The reason that the Simulink model works correctly
in this instance is because of two reasons. The first is that

the Robostix block passes the GPS signals untouched to the
Gumstix. The second is that the height readings are obtained
from an alternative sensor (the GPS), without using the sonar
sensors.

The ramifications of these mismatches could be serious.
Suppose, for example, that the stability of the attitude con-
troller (Robostix block) was verified based on the assumption
that the GPS signal would be directly available to it. When
the final quadrotor system is implemented based on the actual
hardware architecture, the attitude controller has no access to
the GPS sensor. Hence, the stability results obtained in the
control view would not be applicable to the actual system.
This is an unintended and potentially dangerous consequence
of view inconsistency.

The missing connection from the sonar sensor to the attitude
controller can also have serious consequences. Since there
is an assumption in the current Simulink model that height
readings are only obtained from the GPS, the Robostix block
contains an LQG controller based on a linearized version of the
quadrotor. However, the Robostix control code implemented
manually on the actual vehicle is much more complex, based
on an LQG controller for attitude, augmented with a nonlinear
sliding mode algorithm for height control [23]. This approach
was necessitated because the low-cost sonar sensor suffers
from non-Gaussian noise in the form of frequent false echoes
and dropouts. The inconsistency between the sensor character-
istics assumed in the control view and the sensors being used
on the quadrotor leads to an inconsistency between the control
algorithm in the design and the implemented controller on the



vehicle.
The missing data connector from the position controller to

ground station is an example of a communication between
components that is neglected in the control view, since it
does not contribute to the functional correctness of the control
algorithm. However, it has an impact of the specification of
the bandwidth and the quality of the wireless link between
the vehicle and the ground station, as well as on the execution
time of the position controller component.

Structural consistency can be applied in a hierarchical
manner between a view and the BA. For example, suppose
that the consistency check succeeds between the control view
and the BA. The architect can further check if the internal
structure of the Robostix controller in the Simulink model is
consistent with the internal architecture (called representation
in AcmeStudio) of the Attitude Ctrl in the BA. We assume,
of course, that both these components do have an internal
structure present. We can follow the same procedure as for
the view-BA case. A new ‘view’ is created from the internal
elements of the Robostix and the ‘baseline architecture’ now
becomes the representation of Attitude Ctrl. A consistency
check can be carried out between the CCG of the ‘view’
and the CCG of the ‘baseline architecture’. In this way, the
consistency check can be invoked in a top-down manner to
check consistency between elements (and sub-elements) of the
view and the BA.

B. Software View

The FSP model of the quadrotor studies the concurrent
behavior of the position and attitude controller and the sensors
they access. The position controller and ground station are
together modeled as the POS CTRL FSP process which sends
setpoint events (with some jitter in the sending time) to the
attitude controller, while concurrently reading data from the
GPS SENSOR process. The ATT CTRL process receives a
setpoint event, reads data from the IMU SENSOR process,
then computes and sends the actuator command for each
motor, in a single loop. Each sensor is modeled as a primitive
FSP process that sends readings at a fixed rate, in terms of
the number of tick events of a local clock. The current attitude
controller software on the quadrotor has a safety check that
stops all the motors if either (1) the IMU stops sending data
or (2) no packet is received from the position controller within
a fixed interval of time. To keep the attitude controller’s timer
from being reset, the position controller periodically sends a
’heartbeat’ packet to it. This protocol is modeled by forcing
POS CTRL to send one heartbeat event after a fixed number
of tick events have elapsed. If ATT CTRL does not receive
this event within a defined interval of time, it will enter into
the reset state and generate a stopMotors event.

The FSP model is constructed to check properties such as:
for a position controller that does and does not implement
the heartbeat mechanism, is there any sequence of events that
lead to the stopMotors command being issued by the attitude
controller. This FSP specification is analyzed by the Labeled
Transition System Analyser [15] tool. The analysis tells us

that the property is violated if a POS CTRL is used, which
does not implement the heartbeat protocol.

To create the software view for the FSP model, the
POS CTRL and ATT CTRL processes are each represented
by a Controller software component. The SENSOR processes
are each mapped to a SensorAdapter component, which
represents the embedded software/firmware running on each
sensor device. The events being shared between processes are
modeled as either event or data connectors, depending on the
semantics of the data communication. The communication of
the heartbeat packet is modeled as a data connector between
the position and attitude controllers. This data communication
assumption is critical to the safe operation of the actual,
implemented system. However, it does not appear in the
control view (or the hardware or physical view either), since
the control algorithm assumes ideal communication between
the two controllers.

As an illustration of the graph labeling posets, consider the
software view of the quadrotor (Fig. 5), where a particular
connector specifies a communication protocol between control
components, and hence has a data or event type associated
with it. The architect can define that such a connector be
mapped only to a send-receive or publish-subscribe connector
type in the BA, which are both mechanisms for components
to communicate. However, the software connector should
not be mapped to a mechanical connector (or any physical
connector) in the BA. This gives the architect a mechanism
to associate semantically meaningful entities between the two
system structures being compared.

Figure 5 also shows the mapping between the software view
and the BA. A weak consistency check fails since the heartbeat
data connector has not been currently modeled in the BA.
Once the BA is modified to include this connector between the
position and attitude controller, the consistency check with the
control view will fail, since the heartbeat connector does not
match any of the existing connectors in the control model. This
discrepancy can make the system designer aware of this critical
communication assumption implemented in the software of the
quadrotor.

VIII. RELATED WORK

Multiple efforts have focused on supporting multi-view,
model-based system development. The field of computer au-
tomated multiparadigm modeling (CAMPaM) is introduced
in [17], and the current issues that need to be addressed are
outlined, along with a survey of promising approaches.

The Vanderbilt model-based prototyping toolchain provides
an integrated framework for embedded control system de-
sign [18]. It provides support for multiple views, such as
functional Simulink/Stateflow models, software architecture,
and hardware platform modeling along with deployment. The
toolchain’s ESMoL language has a time-triggered semantics,
which restricts the functional view to Simulink blocks that can
only execute periodically. There is currently no support for
additional views (e.g., physical or verification models), nor a
notion of consistency between additional system views.



Fig. 5. Consistency between software view and BA.

The approach in semantic anchoring [7] to transform be-
tween system models concentrates on the specification of the
dynamic semantics of domain-specific modeling languages.
The method is based on the observation that a broad category
of component behaviors can be represented by a small set
of basic behavioral abstractions such as Finite State Ma-
chines (FSMs), Timed Automata and others. The underly-
ing assumption is that the behavior of these abstractions is
well understood and precisely defined. The methodology and
toolchain are described in [6]. In contrast, our work focuses
on architecture-level view comparison, not on meta-modeling
or model transformations.

The ModelicaML profile is an attempt to integrate UML and
Modelica for modeling and simulation of system requirements
and design [20]. Similar work has been done for UML and
Simulink [22]. SysML is a UML 2.0 profile, specialized for
systems engineering applications [1]. There is an ongoing
effort to integrate Modelica with SysML for physical domain
modeling [12]. However, in all these approaches, there does
not exist an easy way to incorporate physical dynamical
models into the overall framework. For example, SysML flow
ports do not have a well-defined semantics to model flows of
physical quantities (energy or torque). In addition, there are no
consistent rules or guidelines on how to define relationships
between multiple views in any of these frameworks.

The EAST-ADD [4] is a UML2.0/SysML-based ADD for
automotive embedded software and systems. Its goal is to
integrate system information on different abstraction levels and

for different automotive application domains. EAST-ADD is
an information structure that can be used within a tool and
for model exchange but is not a tool itself. The focus of the
language is on software design, with support for hardware
modeling. Current aspects covered include system structure,
behavior, requirements, and to some extent environment mod-
eling. However, it has no support for the types of view
consistency that are addressed in our approach.

In [10], the approach is to create a multi-view integration
layer that consists of a set of support tools to facilitate
the coupling between views, a data management layer for
the storage of inter-view relations and shared information
and support tools that facilitate combined code-generation.
However, currently the only two formalisms supported seem
to be 20-Sim and gCSP.

Ptolemy II is a tool that enables the hierarchical integration
of multiple “models of computation” in a single system, based
on an actor-oriented design [3]. Actors are software or hard-
ware modules that communicate with each other through timed
events [2]. Even though Ptolemy II supports hierarchy and
incorporation of multiple formalisms at the detailed simulation
level, it is not possible to define architectural styles or high-
level design tradeoffs. Ptolemy is primarily a simulation tool,
rather than an architecture description framework.

SysWeaver [8] is a model-based development tool that
includes a flexible code generation scheme for distributed
real-time systems. The functional aspects of the system are
specified in Simulink and translated into a SysWeaver model



to be enhanced with timing information, the target hardware
model and its communication dependencies. The translation
from Simulink is not completely automated if closed-loop
controllers are present. Sysweaver’s computational framework
semantics is restricted to tasks that exchange information
via message-passing (time or event-based). There is also no
support in SysWeaver for a physical plant modeling view.

IX. DISCUSSION

This paper presents a new tool for evaluating the consistency
between the base architecture for a cyber-physical system
and the heterogeneous models used for the design of such
complex systems. Consistency is defined in terms of the
relationships between the structure of the models represented
as architectural views of the base architecture constructed in
a CPS architectural style that includes both the cyber and
physical elements of the complete system. This notion of
structural consistency assures that models are topologically
consistent with the system-level design, and also semantically
consistent in terms of the types of components and connectors
used in the model architecture. Extensions to the Acmestudio
tool for architectural description languages support this multi-
view support with a plug-in to evaluate inter-view consistency
through typed graph morphisms.

Structural consistency is a lightweight notion of consistency
to assures designers are not making inappropriate assumptions
about the system structure and basic component and connector
semantics. We are currently extending this architectural ap-
proach to address a richer set of consistency issues that arise in
multi-model development. One direction of research concerns
the introduction of architectural annotations that represent the
assumptions made in the construction of models that reflect
system-level assumptions incorporated into annotations the
base architecture. This will provide a means of verifying the
consistency between assumptions made in different models,
and a framework for evaluating the coverage of analysis
models relative to system-level assumptions. We are also
investigating annotations to capture the verification results
generated from different model formalisms and a logical
framework for integrating these results to verify system-level
properties.
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