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A Finite-Length Algorithm for LDPC Codes
Without Repeated Edges on the Binary Erasure
Channel

Sarah J. JohnsoMember IEEE

Abstract—This paper considers the performance, on the bi- erasure probabilities are derived in [4]-[6] for various RO
nary erasure channel, of low-density parity-check (LDPC) edes ensembles, when decoded iteratively with message-passing
without repeated edges in their Tanner graphs. A modificatio decoding. This finite-length analysis provides both a metho
to existing finite-length analysis algorithms is presentedor these . .
codes. to predict the average performance of the codes in an LDPC

ensemble, without the need for time-consuming simulations
0 . . . . and a context for better understanding the performance of
sis, iterative decoding, low-density parity-check codesnessage- . . f finite-| h
passing decoding. message-passing decoding of finite-length LDPC codes.

1 On the binary erasure channel a transmitted symbol is
either received correctly or completely erased, the latfién
probability e. If only one of the bits in any given code parity-
check equation is erased, the erased bit can be determined

A low-density parity-check (LDPC) code is a block codyactly by choosing the value which satisfies that paritgesh
defined by a sparse parity-check matiX, LDPC codes are g4 ation. Message-passing iterative decoding of an LDPC

typically decoded iteratively with message-passing de@d .o4e transmitted over a binary erasure channel, is a Bades
[1]. The Tanner graph T, of an LDPC code is a bi-partité i qing parity-check equations which check on only one atase
graph which represents the parity-check matrix. Each bit {fy "3 decode iteration all such parity-check equatiores a
the codeword corresponds to a column/of and abit VerteX foyng and the erased bits corrected. Due to the correction of
of 7', and each parity-check equation corresponds to a rowbqe pits, new parity-check equations checking on only one

H, and acheck vertepr. The(j,i)-th entry off'is 1’ and grased bit may be created and these are then used to correct
an edge connects theth bit vertex andj-th check vertex of ¢, ther erased bits in the subsequent iteration.

T, if the i-th codeword bit is included in thgth parity-check

equation. The LDPC code i8, 7)-regular if every bit vertex o, qry check vertex connected by a graph edge to a bit vertex in
is degreel and every check vertex is degreeAn irregular - s is connected to at least one other bit vertesSinA stopping
LDPC code has vertices with varying degrees, given by i3 s thus a set of codeword bits with the property that every
degree distribution o parity-check equation checking on a bit in the stopping set
For a given degree distribution, an LDPC code can Rg ks on at least two bits in the set. Consequently, if afef
defined by the permutatiofil, of Tanner graph edges betweely;s i 5 stopping set are erased, the message-passingedecod
the check and bit vertices. An LDPensemblés the set of iy he ynable to correct any of the erased stopping set bits.
all such permutations for a particular degree distributieor e, the collection of stopping sets in an LDPC Tanner
a given degree distribution, aexpurgatedensemble is the g.oh getermines exactly the erasure patterns for which the
subset of all edge permutations which also satisfy a pmcumessage-passing decoding algorithm will fail [4]. A staypi
constraint, such as not allowing certain edge configuration ¢ containing bit vertices is said to be sizev stopping set.
Using the concept of ensembles, the performance of infinite- | [4] the FL performance of regular LDPC ensembles is

length LDPC codes has been well studied and infinite-lengi\ijered. This is extended in [6] to allow for irregulat bi

irregular LDPC ensembles have been shown to be capaciiiyrees and in [5] to allow for expurgated ensembles. The

approaching [2]. In the special case of the binary erasifi jength ensembles considered in [4][6], which wel wil
channel (BEC), irregular LDPC codes are in fact capacity,| yraditional ensemblesnclude graphs with repeated edges.
achieving [3]. Using the BEC, some progress has also begfly; is permutations are allowed which include more than
made on understanding the performance of finite-length (FL)he oqge between the same two bit and check vertices. Since
LDPC codes. Using a combinatorial characterization of decorepeated edges cannot be represented in a binary pariek-che
ing failures, expressions for the exact average bit andkblog, a4y | DPC codes are not constructed with repeated edges
1This work is supported by the Australian Research Coundileurgrants in pr"flCtice'. A_‘S a consequenge, the _perfor.mance Pre.di?ted by
DP0449627 and DP0665742. S. Johnson is with the School aftreldl  traditional finite-length analysis algorithms is more pesstic
Engeering and Computer Science, The University of NetiaGallaghan  than the average performance of LDPC codes obtained, for
308, NSW Australia (emailsar ah. j ohnson@ewcast | e edu. au) example, by Monte Carlo simulation of randomly constructed

An earlier version of this work was presented in part at the@52@sia Pacific - ! e
Conference on Communications (APCC), Perth, Australiapkr 2005. LDPC codes with the required degree distribution.

Index Terms—binary erasure channels, finite-length analy-

I. INTRODUCTION

A stopping setS, is a subset of bit vertices i for which



In this paper a modified finite-length analysis is presentddilding up larger subgraphs by adding one bit vertex at a
for new LDPC ensembles, defined as the set of all permtime and counting the total number of ways that this can be
tations, IT, except those which include repeated edges. Thene. To track stopping sets, we track the number of degree-1
finite-length analysis algorithm presented in this papeidbu check vertices iri/’, denoted bys, and the number of degree
upon the approach in [5, Section 3.2] and so this algorithm s 2 check vertices ir¥’, denoted by. Using this notation, the
outlined in Section II, with a small initialization modifitan subgraphs?, which are stopping sets are easily seen to be the
presented in Section II-A. Section Ill then details the egd subgraphs withs = 0. The termA(v, ¢, s, X) is used to denote
FL algorithm and compares its performance to Monte Carthe number of stopping sets of sizev within a subgraphl/”

simulation results. containingv unordered degrekbit vertices,t check vertices
with degree> 2 and s degree-1 check vertice®(v) is then
II. TRADITIONAL FINITE-LENGTH ANALYSIS found by summing the contribution for a givenover every

The ensembles considered in [5, Section 3.2], and in tﬂgssmles andt.
remainder of this section, are the set of regular Tannerhgrap A(v,t, s, X) is initialized by the total number of possible
with M check vertices of degree at mostand N bit vertices stopping sets with size exactly from (2) [5]:
of degreel. We will say that the check vertices have () o \X
‘sockets’ available for graph edges to connect to. As diseds ~ A(v,,0, X) = coef(g(x,7,1), Ul)v'(l')v (N) (3
above, this ensemble definition allows a single bit vertex to hl
be connected to a single check vertex by more than one edghere the factov(%)x calculates the weighted number stop-
In general, FL analysis calculates the word erasure proljing sets, which is necessary if the bit error rafé £ 1),
bility for an LDPC ensemble, given thatbits are erased, by rather than the word error rateX( = 0), is required. For
calculating the total number of constellations on a fixedo$et expurgated ensembles without stopping sets of size smaller
v bit vertices,T'(v), and the number of those constellationghan S,.,;,, or greater thanS,,.., these stopping sets are
which contain stopping setsB(v). Then ?gj)) gives the discounted by settingd(v,¢,0,X) = 0 if v < Sy OF
conditional probability of unsuccessful decoding giveatth v > Sp.., [5].

erasures occur. _ _ Next, A(v,t, s, X) can be calculated for all values sfand
In[5, 3.2] T(v) and B(v) are calculated combinatorially; 1y examining every way an extra bit vertex can be added
with B(v) found by iteratively building up graphs one bity aach siza) — 1 subgraph and tracking the values foand

vertex at a time and counting the total number of ways thaks, each of the newly formed sizesubgraphs.
this can be done. We outline this process here as it forms th

basis for our modifications in the following sections.
Firstly, a v-bit subgraph,7, of a Tanner graph contains

?Nhen adding the new degréesit vertex, thel new edges
can either: i) creaté\s new degreet check vertices, increas-

bit vertices, all of thevl edges emanating from them, and alilng Sk by _AS; iizj add e_dges too ;f the e?(iStng deg:le%—
of the check vertices connected to one or more of these edgc@seC vertices, decreasindy o and increasing by o (calle

The total numbe of all possible subgraphs on a ﬁxeacov'eringthe degree-1 check vertices); iii) add new degree-
set ofv bit vertici(ig)given bs [5]: grap 2 check vertices, increasingby At; iv) add r edges to cover

free slots in the existing check vertices with degree; v)
T(v) = (vl)! (MT) 1) add ¢ extra edges to free slots in th&t + o newly created
ol )’ check vertices with degree 2; or some combination of the

as there are in totaMr available sockets to choose for thétPove where

vl graph edges, which can be done(i‘}ffl'") ways, and(vl)! I = As+0+20t+7+ ¢,

possible permutations of these edges. . _ B . _
The total number of possible subgraphs on a fixed set ofFor example, Fig. 1 shows a possible addition of bit vertices

bit vertices which are a Stopping set is given by [5] to an existing Subgraph. Note tha,ts, andt will denote the
final number of each vertex type after the extra bit vertex has
coef(g(z,r,t),vl)(vl)!, (2)  peen added. The number of each vertex type in the original
where subgraph, to which a bit vertex is being added, are tHus
g(:c,r,t) _ ((1+$)r 7177.1.)2 v—1, s = s+ o0 — As, andt’ =t — At —o.

. L. L If As + At new check vertices are created there are
and coef(g(x), ) denotes the coefficient of* in g(z). The (L )(AtJrAs) choices of location for them. For thAs

i At+As At
term coef(g(z,7,¢),vl) gives the number of ways thatl ol degree- check vertices there aneways to choose the

tehdgies cr;n l;)]e all(llocatted ztazhgck vtertlces witlr so deEIS ;ECht check vertex socket which can be doneri® ways. Which
?'eac tC eﬁ thver ex r_::-)?elves wto t‘.)r morfet;:- ges.d € Mhe s + o — As original degreet vertices to cover can be
(vl)! counts all the possible permutations of these edges. ., ... in(*+7~2%) ways. Then ther + 2A¢ + ¢ = |~ As—7

Erasing thev bits corresponding to a stopping set will causgdges allocated to thAt + o new degree vertices must be

the message passing decoder to f_aul, but so too will Erasing, yded so that each check vertex has at least two sockets filled
bits such that some subset of thévits erases a stopping Selrhis can be done in

To incorporate these potential decoding failuB$y) is found
by starting with the known stopping sets in (2) and iterdyive coef(f(x),l — As—T)



N, 48, 8.

t=2 s=2 t=4 s=1 t=4 s=2

Fig. 1. Addition of two degreé = 3 vertices, in bold, to a subgraph which originally containee-= 2 bit vertices,s = 2 degreet check vertices, and
t = 2 degree> 2 check vertices. The three extra edges of the fist additioegtbx are divided as = 1 and At = 2, to give a subgraph withh = 4 and
s = 1. The three extra edges of the second additional vertex aigedi asT = 2 and As = 1, to give a final subgraph with= 4 ands = 2.

1 1-As [(I=As—0)/2] |-As—c—2At

A(v,t, s, X) Z Z Z Z A(v1’tAt0—78+0—A87X)<AItfiSAS>

As=1 0=0 At=0 T=

(AtXtASO vef(F(@).1 — _T)(r(t—At—a)—w)(S+U—AS)TAs% )

T g

wherew = (v — 1)l — (s + o — As) [5].

ways where A. A small initialization modification
fl@)= (1 +a) = 1)7((L+2)" =1 —ra).

Lastly, the extrar edges are allocated to remaining slots in the The process described above may count subgraphs that,
original degree> 2 check vertices. There ar¢ — At —o)r  while not the expurgated stopping sets themselves, contain
slots in thet — At — o original check vertices with degree2, them as subgraphs. For example, initialization via (3) can

however the existing — 1 bit vertices are using expunge graphs of size < S, which are stopping sets.
w=(-1)1—(s+0— As) However, thg expression (2) may ipclude graphs .of size
v > Smin Which are themselves stopping sets but which also
of these slots. Thus the free slots can be chosen in contain as subgraphs stopping sets of size less $han In
rt—At—o) —w this first modificationA(v, ¢, s, X) and T'(v) are initialized
Ny = - recursively to avoid the inclusion of these expurgatedstop
sets.

ways. Finally, assuming that an extension with paraméater

is countedAs times, the same constellation, with parameter We define a new functiod'(v, ¢,0) in (7) to calculate the

s, can be constructed in different ways giving the% term number of possible stopping sets oibits recursively so that

[5]. stopping sets onv bits which contain subgraphs which are
Putting this altogether and recursively adding one bitesert stopping sets with size’ < S.,;, are not includedC'(v,t, s)

at a time in (4) calculates (for a given, s, and t) the is initialized with the single empty grapki;(0,0,0) = 1, and

contribution of all the possible stopping set constellagio graphs are built up one bit vertex at a time, in a similar manne

including those stopping sets on some subset ofvthés. to (4), with the exception that subgraphs with beth- 0 and
Finally, B(v, X) sums the contribution for a givemover v < Smin OF > Shax, i.€. the expurgated stopping sets, are

every possibles and¢. Thus B(v,0) denotes the number of not included.

stopping sets of size or less, on a fixed set af degreef bit

vertices [5]: ThenC(v,t,0) is used to initializeA(v, t, s, X):

MM Aw,1,0,x) = B0 (297 ®)
B(v, X) = v(I!)" Z Z <t ) v,t,5,X).  (5) v! n
+ Similarly, T'(v) counts the total number of ways a subgraph
The ensemble average biP(e, X = 1), and word, ONnv message vertices can be constructed as:
P(e, X = 0), erasure rates following decoding is the prob- M M-t
ability that an erasure of size will occur multiplied by the v Z Z ( )#‘9) 9)
probability that such an erasure will include a stoppingsgt t=0 s=0
N o/N v Ble, X) AgainT(v) is cglculateq using’(v, t, s) to avoid the inclusion
P(e, X) = Z ( ) (1—¢) T (6) of graphs, which, while not expurgated graphs themselves,

e=0 contain them as subgraphs. Equations (4)-(6) are unchanged



Initialization : C(v,t,s) =0 except for C(0,0,0) =1,
Then: V v €{0,...N}, t €{0,...,M} and s €{0,...,M —¢} : s>0 and/or Smin < v < Smax
I 1-As |[(I-As—0)/2] I-As—c—2At

C(v,t,s)iz Z Z Z C’(vl,tAto,er(rAs)(AzisAs)

As=0 o=0 At=0 T7=0

(At;&) coef(f(x).1 - As — 1) (r(t —At—o)— w) (s + UC: As) A7)

T

IIl. FINITE-LENGTH ANALYSIS FOR ENSEMBLES WITHOUT which can be full are
REPEATED EDGES VQ(tU)J
a=|——7

r—2

The new ensembles considered in this section are the §B8€ remaining check vertices have only 2 edges each, except
of regular Tanner graphs with/ check vertices of degree atfor a single check v_ertex yvhlch has any extra remaining extra
mostr, and N bit vertices of degre& with the condition that €dges allocated to it to give
a single bit vertex can bel connected to a_single check vertex b=2+ (w—2(t—0)— (r—2)a)
by at most one edge. This ensemble definition more closely
maps to the LDPC codes commonly used in practice, suehits slots taken. Thus in total there ardull check vertices,

as those from [7], which are never constructed with repeatefie half full check vertex, and the remaining- o —a — 1
edges. check vertices that have only two slots taken.

The explicit addition of repeated edges in FL analysis can Choosingr of the £ — o — & check vertices with on_ly two
be avoided by setting\t and ¢ to zero, however repeatedSIOtS taken, to add one edge to each, can be done in
edges may still be added if > 3 whenr is greater than 1 t—oc—a—1
(consider the second vertex added in Fig. 1). This is because ( )
the number of ways theseedges can be added is counted b%

choosingr of the free slots in the degree 2 check vertices vertices can be done ifr — 2)” ways. However, one of the

even if two of the free slots are contained in the same vertegageS could also be allocated to the half empty vertex. B thi

Here upper and lower bounds on the number of ways thecsfse that slot can be chosen(in-b) ways and the remaining

7 edges can be added, without allowing repeated edges, are edges allocated to the degree-2 check vertices in

T

ays while choosing one of the free slots in each of the chosen

derived.

The upper bound is derived by assuming that the existing <t Toman 1> (r—2)7!
edges are evenly distributed amongst theo check vertices -1
and then counting the number of waygdges can be added toways. Thus in total
7 different check vertices. An uneven distribution of freetsl o —a—1
in the check vertices will give fewer options for allocatitig N, > < ) (r—2)""Yr —b)
T edges. T—1

isti ; ; t—o—a—1

In the existing graph om — 1 bit vertices there arév — 1)l +< ) (r—2)". (11)
edges, however + o — As of them are allocated to the+ 4
o — As degree-1 check vertices and so there are The recursions for the new FL analysis are given in (12)

and (13). The recursions in (12) and (13) are actually less
w=@-1)l-s—0+As computationally demanding than the original computations

edges into the existing — o degree> 2, check vertices. (4) and (7) because there are half as many summations.
Assuming an even distribution of the edges into the existing FOr an upper bound of'(v,?, s), N- from (10), is substi-
t—o check vertices, each vertex has- ) free slots. Which tuted into (12) while for a lower bound ofi(v,?, s) N from
+ check vertices to cover use can be Choser(tl:rfr) ways (11) is substituted into (12). Silmllarly,.for an upper bound
and the slot to use for each check chosefrin- ;)" ways O A(v,t,5, X), N; from (10), is substituted into (12) and
giving (13) gnd Wh||_e for a lower bound od(v,t,s, X) N, from
t—o w \7 (11) is substituted into (12) and (13). An upper bound on
N: < ( ) ( ) - (10)  P(e, X) in (6) is found by using the upper bound 83 when
calculatingB(v) and the lower bound when calculatiifv).
N, can be lower bounded by assuming the most unev&milarly a lower bound orP(e, X) in (6) is found by using
distribution of existing edges to thte-o check vertices. Given the lower bound onV, when calculatingB(v) and the upper
w edges intot — o check vertices, and at least 2 edges intbound when calculating’(v). Applying this modification
each check vertex, the maximum numberof check vertices gives FL analysis which is both a more accurate predictor of

T t—o
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Initialization : C(v,t,s) =0 except for C(0,0,0) =1,
Then: V v €{0,...N}, t €{0,...,M} and s €{0,...,M —¢} : s>0 and/or Smin < v < Smax

LI t+ s\ asfs+0o—As -
C(U,t,s)zz ZC(U—l,t—a,s—i—a—As) L (r—1)°N, (12)

g
As=0 o=0

A(v,tv()’X) = M (v

X
: —) then V v € {0,...N}, t €{0,...,M} and s € {1,...,M —t}
V. n

I I-As
t - A A
A(v,t,8,X) = Z Z A(U—l,t—a,s—i—a—As,X)( +S)7“AS(S+U 8)(7“—1)‘7 T?S (13)

As o
As=1 o0=0

wherer =1 — o — As.

Bit Erasure Rate
=
o
T
Bit Erasure Rate
=
o
T

100 Traditional FL i Traditional FL
New FL - no repeated edges 107k New FL - no repeated edges 4
¢ L3 Monte—-Carlo Ensemble Avg ¢ Monte—Carlo Ensemble Avg
10° I I I I I I I I I 107 L L L L L L L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Channel Erasure Probability Channel Erasure Probability

Fig. 2. The ensemble average erasure correction perfoer(8,6)-regular, Fig. 3. The ensemble average erasure correction perfoerar(8,6)-regular,

rate-1/2, length-32 LDPC codes on a binary erasure channel. Showmeis trate- /2, length-200 LDPC codes on a binary erasure channel. Shothe is
results of: traditional FL (solid curves); modified FL (dashcurves) and results of: traditional FL (solid curves); modified FL (dashcurves) and
Monte-Carlo simulation (no curve). Monte-Carlo simulation (no curve).

10°

the performance of typical LDPC codes and computational 42 ]
simpler. This prediction improvement is a result of chogsn
ensemble definition which more accurately models the LDF 2+
codes used in practice, while the computation simplificatic g
is because fewer parameters are required for the modified 0
analysis.

Bit Erasure R

Figs. 2-4 show the ensemble average performance of fini 1°}
length, ratet/2, LDPC code ensembles on a binary erasu

channel. Both the upper and lower bounds for the new F * | Traditional FL i
algorithm are plotted, however, the bounds are sufficient .| New FL - o repeated edges ]
tight that the difference between the two can only be se O Monte-Carlo Ensemble Avg
at large channel erasure probabilities. Monte Carlo sitimia  10* ] ‘ ] ‘ ] ‘ ] ‘ ]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
results, averaged over randomly chosen codes from the ens Channel Erasure Probabilty

ble, constructed using the method from [7], [8], are comdar%_ — o i ORI, 6) |

. ) . . 1g. 4. € ensembple average erasure correction perio ,0)-regular,
to the FL apalygs results. The mOdlfled_FL analysis algmlthrate—l/Z, length-1000 LDPC codes on a binary erasure channel. Srotei
presented in this paper accurately predicts the perforeahc results of: traditional FL (solid curves); modified FL (dashcurves) and

regular LDPC ensembles. Monte-Carlo simulation (no curve).
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IV. CONCLUSION

In this paper we have presented a modified finite-length
analysis for the performance of LDPC codes without repeated
edges on the binary erasure channel. Comparison to Monte
Carlo simulation results shows that the new finite-lengthl-an
ysis algorithms accurately predict the performance of laagu
LDPC ensembles on the binary erasure channel.
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