
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/224363947

A	Finite-Length	Algorithm	for	LDPC	Codes
Without	Repeated	Edges	on	the	Binary	Erasure
Channel

Article		in		IEEE	Transactions	on	Information	Theory	·	February	2009

DOI:	10.1109/TIT.2008.2008118	·	Source:	IEEE	Xplore

CITATIONS

3

READS

15

1	author:

Sarah	J	Johnson

University	of	Newcastle

87	PUBLICATIONS			927	CITATIONS			

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	Sarah	J	Johnson

Retrieved	on:	20	September	2016

https://www.researchgate.net/publication/224363947_A_Finite-Length_Algorithm_for_LDPC_Codes_Without_Repeated_Edges_on_the_Binary_Erasure_Channel?enrichId=rgreq-ab9c30f39e0145f2246c2a0937992a7a-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM2Mzk0NztBUzoxMDQ4OTM1ODcxMzI0MTdAMTQwMjAxOTk4ODEzNw%3D%3D&el=1_x_2
https://www.researchgate.net/publication/224363947_A_Finite-Length_Algorithm_for_LDPC_Codes_Without_Repeated_Edges_on_the_Binary_Erasure_Channel?enrichId=rgreq-ab9c30f39e0145f2246c2a0937992a7a-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM2Mzk0NztBUzoxMDQ4OTM1ODcxMzI0MTdAMTQwMjAxOTk4ODEzNw%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-ab9c30f39e0145f2246c2a0937992a7a-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM2Mzk0NztBUzoxMDQ4OTM1ODcxMzI0MTdAMTQwMjAxOTk4ODEzNw%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Sarah_Johnson15?enrichId=rgreq-ab9c30f39e0145f2246c2a0937992a7a-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM2Mzk0NztBUzoxMDQ4OTM1ODcxMzI0MTdAMTQwMjAxOTk4ODEzNw%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Sarah_Johnson15?enrichId=rgreq-ab9c30f39e0145f2246c2a0937992a7a-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM2Mzk0NztBUzoxMDQ4OTM1ODcxMzI0MTdAMTQwMjAxOTk4ODEzNw%3D%3D&el=1_x_5
https://www.researchgate.net/institution/University_of_Newcastle?enrichId=rgreq-ab9c30f39e0145f2246c2a0937992a7a-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM2Mzk0NztBUzoxMDQ4OTM1ODcxMzI0MTdAMTQwMjAxOTk4ODEzNw%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Sarah_Johnson15?enrichId=rgreq-ab9c30f39e0145f2246c2a0937992a7a-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM2Mzk0NztBUzoxMDQ4OTM1ODcxMzI0MTdAMTQwMjAxOTk4ODEzNw%3D%3D&el=1_x_7

1

A Finite-Length Algorithm for LDPC Codes
Without Repeated Edges on the Binary Erasure

Channel
Sarah J. Johnson,Member IEEE

Abstract—This paper considers the performance, on the bi-
nary erasure channel, of low-density parity-check (LDPC) codes
without repeated edges in their Tanner graphs. A modification
to existing finite-length analysis algorithms is presentedfor these
codes.

Index Terms—binary erasure channels, finite-length analy-
sis, iterative decoding, low-density parity-check codes,message-
passing decoding.

1

I. I NTRODUCTION

A low-density parity-check (LDPC) code is a block code
defined by a sparse parity-check matrix,H . LDPC codes are
typically decoded iteratively with message-passing decoding
[1]. The Tanner graph, T , of an LDPC code is a bi-partite
graph which represents the parity-check matrix. Each bit in
the codeword corresponds to a column ofH , and abit vertex
of T , and each parity-check equation corresponds to a row of
H , and acheck vertexof T . The(j, i)-th entry ofH is ‘1’, and
an edge connects thei-th bit vertex andj-th check vertex of
T , if the i-th codeword bit is included in thej-th parity-check
equation. The LDPC code is(l, r)-regular if every bit vertex
is degreel and every check vertex is degreer. An irregular
LDPC code has vertices with varying degrees, given by its
degree distribution.

For a given degree distribution, an LDPC code can be
defined by the permutation,Π, of Tanner graph edges between
the check and bit vertices. An LDPCensembleis the set of
all such permutations for a particular degree distribution. For
a given degree distribution, anexpurgatedensemble is the
subset of all edge permutations which also satisfy a particular
constraint, such as not allowing certain edge configurations.

Using the concept of ensembles, the performance of infinite-
length LDPC codes has been well studied and infinite-length
irregular LDPC ensembles have been shown to be capacity-
approaching [2]. In the special case of the binary erasure
channel (BEC), irregular LDPC codes are in fact capacity-
achieving [3]. Using the BEC, some progress has also been
made on understanding the performance of finite-length (FL)
LDPC codes. Using a combinatorial characterization of decod-
ing failures, expressions for the exact average bit and block

1This work is supported by the Australian Research Council under grants
DP0449627 and DP0665742. S. Johnson is with the School of Electrical
Engineering and Computer Science, The University of Newcastle, Callaghan
2308, NSW Australia (email:sarah.johnson@newcastle.edu.au)
An earlier version of this work was presented in part at the 2005 Asia Pacific
Conference on Communications (APCC), Perth, Australia, October 2005.

erasure probabilities are derived in [4]–[6] for various LDPC
ensembles, when decoded iteratively with message-passing
decoding. This finite-length analysis provides both a method
to predict the average performance of the codes in an LDPC
ensemble, without the need for time-consuming simulations,
and a context for better understanding the performance of
message-passing decoding of finite-length LDPC codes.

On the binary erasure channel a transmitted symbol is
either received correctly or completely erased, the latterwith
probability ǫ. If only one of the bits in any given code parity-
check equation is erased, the erased bit can be determined
exactly by choosing the value which satisfies that parity-check
equation. Message-passing iterative decoding of an LDPC
code, transmitted over a binary erasure channel, is a process of
finding parity-check equations which check on only one erased
bit. In a decode iteration all such parity-check equations are
found and the erased bits corrected. Due to the correction of
these bits, new parity-check equations checking on only one
erased bit may be created and these are then used to correct
further erased bits in the subsequent iteration.

A stopping set, S, is a subset of bit vertices inT for which
every check vertex connected by a graph edge to a bit vertex in
S is connected to at least one other bit vertex inS. A stopping
set is thus a set of codeword bits with the property that every
parity-check equation checking on a bit in the stopping set
checks on at least two bits in the set. Consequently, if all ofthe
bits in a stopping set are erased, the message-passing decoder
will be unable to correct any of the erased stopping set bits.
Indeed, the collection of stopping sets in an LDPC Tanner
graph determines exactly the erasure patterns for which the
message-passing decoding algorithm will fail [4]. A stopping
set containingv bit vertices is said to be asize-v stopping set.

In [4] the FL performance of regular LDPC ensembles is
considered. This is extended in [6] to allow for irregular bit
degrees and in [5] to allow for expurgated ensembles. The
finite-length ensembles considered in [4]–[6], which we will
call traditional ensembles, include graphs with repeated edges.
That is, permutations are allowed which include more than
one edge between the same two bit and check vertices. Since
repeated edges cannot be represented in a binary parity-check
matrix, LDPC codes are not constructed with repeated edges
in practice. As a consequence, the performance predicted by
traditional finite-length analysis algorithms is more pessimistic
than the average performance of LDPC codes obtained, for
example, by Monte Carlo simulation of randomly constructed
LDPC codes with the required degree distribution.

In this paper a modified finite-length analysis is presented
for new LDPC ensembles, defined as the set of all permu-
tations, Π, except those which include repeated edges. The
finite-length analysis algorithm presented in this paper builds
upon the approach in [5, Section 3.2] and so this algorithm is
outlined in Section II, with a small initialization modification
presented in Section II-A. Section III then details the proposed
FL algorithm and compares its performance to Monte Carlo
simulation results.

II. T RADITIONAL FINITE-LENGTH ANALYSIS

The ensembles considered in [5, Section 3.2], and in the
remainder of this section, are the set of regular Tanner graphs
with M check vertices of degree at mostr, andN bit vertices
of degree l. We will say that the check vertices haver
‘sockets’ available for graph edges to connect to. As discussed
above, this ensemble definition allows a single bit vertex to
be connected to a single check vertex by more than one edge.

In general, FL analysis calculates the word erasure proba-
bility for an LDPC ensemble, given thatv bits are erased, by
calculating the total number of constellations on a fixed setof
v bit vertices,T (v), and the number of those constellations
which contain stopping sets,B(v). Then B(v)

T (v) gives the
conditional probability of unsuccessful decoding given that v
erasures occur.

In [5, 3.2] T (v) and B(v) are calculated combinatorially
with B(v) found by iteratively building up graphs one bit
vertex at a time and counting the total number of ways that
this can be done. We outline this process here as it forms the
basis for our modifications in the following sections.

Firstly, a v-bit subgraph,T , of a Tanner graph containsv
bit vertices, all of thevl edges emanating from them, and all
of the check vertices connected to one or more of these edges.
The total number,T (v), of all possible subgraphs on a fixed
set ofv bit vertices is given by [5]:

T (v) = (vl)!

(

Mr

vl

)

, (1)

as there are in totalMr available sockets to choose for the
vl graph edges, which can be done in

(

Mr
vl

)

ways, and(vl)!
possible permutations of these edges.

The total number of possible subgraphs on a fixed set ofv
bit vertices which are a stopping set is given by [5]

coef(g(x, r, t), vl)(vl)!, (2)

where
g(x, r, t) = ((1 + x)r − 1 − rx)t,

and coef(g(x), i) denotes the coefficient ofxi in g(x). The
term coef(g(x, r, t), vl) gives the number of ways thatvl
edges can be allocated tot check vertices withr sockets such
that each check vertex receives two or more edges. The term
(vl)! counts all the possible permutations of these edges.

Erasing thev bits corresponding to a stopping set will cause
the message passing decoder to fail, but so too will erasingv
bits such that some subset of thev bits erases a stopping set.
To incorporate these potential decoding failures,B(v) is found
by starting with the known stopping sets in (2) and iteratively

building up larger subgraphs by adding one bit vertex at a
time and counting the total number of ways that this can be
done. To track stopping sets, we track the number of degree-1
check vertices inT , denoted bys, and the number of degree
≥ 2 check vertices inT , denoted byt. Using this notation, the
subgraphs,T , which are stopping sets are easily seen to be the
subgraphs withs = 0. The termA(v, t, s, X) is used to denote
the number of stopping sets of size≤ v within a subgraphT
containingv unordered degree-l bit vertices,t check vertices
with degree≥ 2 ands degree-1 check vertices.B(v) is then
found by summing the contribution for a givenv over every
possibles and t.

A(v, t, s, X) is initialized by the total number of possible
stopping sets with size exactlyv, from (2) [5]:

A(v, t, 0, X) = coef(g(x, r, t), vl)
(vl)!

v!(l!)v

(v

N

)X

, (3)

where the factor
(

v
N

)X
calculates the weighted number stop-

ping sets, which is necessary if the bit error rate (X = 1),
rather than the word error rate (X = 0), is required. For
expurgated ensembles without stopping sets of size smaller
than Smin, or greater thanSmax, these stopping sets are
discounted by settingA(v, t, 0, X) = 0 if v < Smin or
v > Smax [5].

Next,A(v, t, s, X) can be calculated for all values ofs and
t, by examining every way an extra bit vertex can be added
to each sizev − 1 subgraph and tracking the values fors and
t for each of the newly formed size-v subgraphs.

When adding the new degree-l bit vertex, thel new edges
can either: i) create∆s new degree-1 check vertices, increas-
ing s by ∆s; ii) add edges toσ of the existing degree-1
check vertices, decreasings by σ and increasingt by σ (called
coveringthe degree-1 check vertices); iii) add∆t new degree-
2 check vertices, increasingt by ∆t; iv) add τ edges to cover
free slots in the existing check vertices with degree≥ 2; v)
add φ extra edges to free slots in the∆t + σ newly created
check vertices with degree≥ 2; or some combination of the
above where

l = ∆s + σ + 2∆t + τ + φ.

For example, Fig. 1 shows a possible addition of bit vertices
to an existing subgraph. Note thatv, s, andt will denote the
final number of each vertex type after the extra bit vertex has
been added. The number of each vertex type in the original
subgraph, to which a bit vertex is being added, are thusv′ =
v − 1, s′ = s + σ − ∆s, andt′ = t − ∆t − σ.

If ∆s + ∆t new check vertices are created there are
(

t+s
∆t+∆s

)(

∆t+∆s
∆t

)

choices of location for them. For the∆s
new degree-1 check vertices there arer ways to choose the
check vertex socket which can be done inr∆s ways. Which
of the s + σ − ∆s original degree-1 vertices to cover can be
chosen in

(

s+σ−∆s
σ

)

ways. Then theσ+2∆t+φ = l−∆s−τ
edges allocated to the∆t + σ new degree-2 vertices must be
added so that each check vertex has at least two sockets filled.
This can be done in

coef(f(x), l − ∆s − τ)

t = 2 t = 4s = 2 s = 1 t = 4 s = 2

Fig. 1. Addition of two degreel = 3 vertices, in bold, to a subgraph which originally containedv = 2 bit vertices,s = 2 degree-1 check vertices, and
t = 2 degree≥ 2 check vertices. The three extra edges of the fist additional vertex are divided asσ = 1 and∆t = 2, to give a subgraph witht = 4 and
s = 1. The three extra edges of the second additional vertex are divided asτ = 2 and∆s = 1, to give a final subgraph witht = 4 ands = 2.

A(v, t, s, X) =
l

∑

∆s=1

l−∆s
∑

σ=0

⌊(l−∆s−σ)/2⌋
∑

∆t=0

l−∆s−σ−2∆t
∑

τ=0

A(v − 1, t − ∆t − σ, s + σ − ∆s, X)

(

t + s

∆t + ∆s

)

(

∆t + ∆s

∆t

)

coef(f(x), l − ∆s − τ)

(

r(t − ∆t − σ) − ω

τ

)(

s + σ − ∆s

σ

)

r∆s ∆s

s
(4)

whereω = (v − 1)l − (s + σ − ∆s) [5].

ways where

f(x) = ((1 + x)r−1 − 1)σ((1 + x)r − 1 − rx)∆t.

Lastly, the extraτ edges are allocated to remaining slots in the
original degree≥ 2 check vertices. There are(t − ∆t − σ)r
slots in thet−∆t−σ original check vertices with degree≥ 2,
however the existingv − 1 bit vertices are using

ω = (v − 1)l − (s + σ − ∆s)

of these slots. Thus the free slots can be chosen in

Nτ =

(

r(t − ∆t − σ) − ω

τ

)

ways. Finally, assuming that an extension with parameter∆s
is counted∆s times, the same constellation, with parameter
s, can be constructed ins different ways giving the∆s

s term
[5].

Putting this altogether and recursively adding one bit vertex
at a time in (4) calculates (for a givenv, s, and t) the
contribution of all the possible stopping set constellations
including those stopping sets on some subset of thev bits.

Finally, B(v, X) sums the contribution for a givenv over
every possibles and t. ThusB(v, 0) denotes the number of
stopping sets of sizev or less, on a fixed set ofv degree-l bit
vertices [5]:

B(v, X) = v!(l!)v
M
∑

t=0

M−t
∑

s=0

(

M

t + s

)

A(v, t, s, X). (5)

The ensemble average bit,P (ǫ, X = 1), and word,
P (ǫ, X = 0), erasure rates following decoding is the prob-
ability that an erasure of sizee will occur multiplied by the
probability that such an erasure will include a stopping set[5]:

P (ǫ, X) =

N
∑

e=0

(

N

e

)

ǫe(1 − ǫ)N−e B(e, X)

T (e)
. (6)

A. A small initialization modification

The process described above may count subgraphs that,
while not the expurgated stopping sets themselves, contain
them as subgraphs. For example, initialization via (3) can
expunge graphs of sizev < Smin which are stopping sets.
However, the expression (2) may include graphs of size
v ≥ Smin which are themselves stopping sets but which also
contain as subgraphs stopping sets of size less thanSmin. In
this first modificationA(v, t, s, X) and T (v) are initialized
recursively to avoid the inclusion of these expurgated stopping
sets.

We define a new functionC(v, t, 0) in (7) to calculate the
number of possible stopping sets onv bits recursively so that
stopping sets onv bits which contain subgraphs which are
stopping sets with sizev′ < Smin are not included.C(v, t, s)
is initialized with the single empty graph,C(0, 0, 0) = 1, and
graphs are built up one bit vertex at a time, in a similar manner
to (4), with the exception that subgraphs with boths = 0 and
v ≤ Smin or ≥ Smax, i.e. the expurgated stopping sets, are
not included.

ThenC(v, t, 0) is used to initializeA(v, t, s, X):

A(v, t, 0, X) =
C(v, t, 0)

v!

(v

n

)X

. (8)

Similarly, T (v) counts the total number of ways a subgraph
on v message vertices can be constructed as:

T (v) = v!(l!)v
M
∑

t=0

M−t
∑

s=0

(

M

t + s

)

C(v, t, s)

v!
. (9)

AgainT (v) is calculated usingC(v, t, s) to avoid the inclusion
of graphs, which, while not expurgated graphs themselves,
contain them as subgraphs. Equations (4)-(6) are unchanged.

Initialization : C(v, t, s) = 0 except for C(0, 0, 0) = 1,

Then : ∀ v ∈ {0, . . .N}, t ∈ {0, . . . , M} and s ∈ {0, . . . , M − t} : s > 0 and/or Smin ≤ v ≤ Smax

C(v, t, s) =

l
∑

∆s=0

l−∆s
∑

σ=0

⌊(l−∆s−σ)/2⌋
∑

∆t=0

l−∆s−σ−2∆t
∑

τ=0

C(v − 1, t − ∆t − σ, s + σ − ∆s)

(

t + s

∆t + ∆s

)

(

∆t + ∆s

∆t

)

coef(f(x), l − ∆s − τ)

(

r(t − ∆t − σ) − ω

τ

)(

s + σ − ∆s

σ

)

r∆s (7)

III. F INITE-LENGTH ANALYSIS FOR ENSEMBLES WITHOUT

REPEATED EDGES

The new ensembles considered in this section are the set
of regular Tanner graphs withM check vertices of degree at
mostr, andN bit vertices of degreel, with the condition that
a single bit vertex can be connected to a single check vertex
by at most one edge. This ensemble definition more closely
maps to the LDPC codes commonly used in practice, such
as those from [7], which are never constructed with repeated
edges.

The explicit addition of repeated edges in FL analysis can
be avoided by setting∆t and φ to zero, however repeated
edges may still be added ifr > 3 when τ is greater than 1
(consider the second vertex added in Fig. 1). This is because
the number of ways theseτ edges can be added is counted by
choosingτ of the free slots in the degree≥ 2 check vertices
even if two of the free slots are contained in the same vertex.
Here upper and lower bounds on the number of ways these
τ edges can be added, without allowing repeated edges, are
derived.

The upper bound is derived by assuming that the existing
edges are evenly distributed amongst thet− σ check vertices
and then counting the number of waysτ edges can be added to
τ different check vertices. An uneven distribution of free slots
in the check vertices will give fewer options for allocatingthe
τ edges.

In the existing graph onv−1 bit vertices there are(v−1)l
edges, however,s + σ − ∆s of them are allocated to thes +
σ − ∆s degree-1 check vertices and so there are

ω = (v − 1)l − s − σ + ∆s

edges into the existingt − σ degree≥ 2, check vertices.
Assuming an even distribution of thew edges into the existing
t−σ check vertices, each vertex has(r− ω

t−σ) free slots. Which
τ check vertices to cover use can be chosen in

(

t−σ
τ

)

ways
and the slot to use for each check chosen in(r− ω

t−σ)τ ways
giving

Nτ ≤

(

t − σ

τ

) (

r −
ω

t − σ

)τ

. (10)

Nτ can be lower bounded by assuming the most uneven
distribution of existing edges to thet−σ check vertices. Given
ω edges intot − σ check vertices, and at least 2 edges into
each check vertex, the maximum number,a, of check vertices

which can be full are

a =

⌊

ω − 2(t − σ)

r − 2

⌋

.

The remaining check vertices have only 2 edges each, except
for a single check vertex which has any extra remaining extra
edges allocated to it to give

b = 2 + (ω − 2(t − σ) − (r − 2)a)

of its slots taken. Thus in total there area full check vertices,
one half full check vertex, and the remainingt − σ − a − 1
check vertices that have only two slots taken.

Choosingτ of the t − σ − a check vertices with only two
slots taken, to add one edge to each, can be done in

(

t − σ − a − 1

τ

)

ways while choosing one of the free slots in each of the chosen
vertices can be done in(r− 2)τ ways. However, one of theτ
edges could also be allocated to the half empty vertex. In this
case that slot can be chosen in(r−b) ways and the remaining
τ − 1 edges allocated to the degree-2 check vertices in

(

t − σ − a − 1

τ − 1

)

(r − 2)τ−1

ways. Thus in total

Nτ ≥

(

t − σ − a − 1

τ − 1

)

(r − 2)τ−1(r − b)

+

(

t − σ − a − 1

τ

)

(r − 2)τ . (11)

The recursions for the new FL analysis are given in (12)
and (13). The recursions in (12) and (13) are actually less
computationally demanding than the original computationsin
(4) and (7) because there are half as many summations.

For an upper bound onC(v, t, s), Nτ from (10), is substi-
tuted into (12) while for a lower bound onC(v, t, s) Nτ from
(11) is substituted into (12). Similarly, for an upper bound
on A(v, t, s, X), Nτ from (10), is substituted into (12) and
(13) and while for a lower bound onA(v, t, s, X) Nτ from
(11) is substituted into (12) and (13). An upper bound on
P (ǫ, X) in (6) is found by using the upper bound onNτ when
calculatingB(v) and the lower bound when calculatingT (v).
Similarly a lower bound onP (ǫ, X) in (6) is found by using
the lower bound onNτ when calculatingB(v) and the upper
bound when calculatingT (v). Applying this modification
gives FL analysis which is both a more accurate predictor of

https://www.researchgate.net/publication/3079763_Good_Error-Correcting_Codes_based_on_Very_Sparse_Matrices?el=1_x_8&enrichId=rgreq-ab9c30f39e0145f2246c2a0937992a7a-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM2Mzk0NztBUzoxMDQ4OTM1ODcxMzI0MTdAMTQwMjAxOTk4ODEzNw==

Initialization : C(v, t, s) = 0 except for C(0, 0, 0) = 1,

Then : ∀ v ∈ {0, . . .N}, t ∈ {0, . . . , M} and s ∈ {0, . . . , M − t} : s > 0 and/or Smin ≤ v ≤ Smax

C(v, t, s) =
l

∑

∆s=0

l−∆s
∑

σ=0

C(v − 1, t − σ, s + σ − ∆s)

(

t + s

∆s

)

r∆s

(

s + σ − ∆s

σ

)

(r − 1)σNτ (12)

A(v, t, 0, X) =
C(v, t, 0)

v!

(v

n

)X

then ∀ v ∈ {0, . . .N}, t ∈ {0, . . . , M} and s ∈ {1, . . . , M − t}

A(v, t, s, X) =

l
∑

∆s=1

l−∆s
∑

σ=0

A(v − 1, t − σ, s + σ − ∆s, X)

(

t + s

∆s

)

r∆s

(

s + σ − ∆s

σ

)

(r − 1)σNτ
∆s

s
(13)

whereτ = l − σ − ∆s.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Channel Erasure Probability

B
it

E
ra

su
re

 R
at

e

Traditional FL

New FL − no repeated edges

Monte−Carlo Ensemble Avg

Fig. 2. The ensemble average erasure correction performance of (3,6)-regular,
rate-1/2, length-32 LDPC codes on a binary erasure channel. Shown is the
results of: traditional FL (solid curves); modified FL (dashed curves) and
Monte-Carlo simulation (no curve).

the performance of typical LDPC codes and computationally
simpler. This prediction improvement is a result of choosing an
ensemble definition which more accurately models the LDPC
codes used in practice, while the computation simplification
is because fewer parameters are required for the modified FL
analysis.

Figs. 2-4 show the ensemble average performance of finite-
length, rate-1/2, LDPC code ensembles on a binary erasure
channel. Both the upper and lower bounds for the new FL
algorithm are plotted, however, the bounds are sufficiently
tight that the difference between the two can only be seen
at large channel erasure probabilities. Monte Carlo simulation
results, averaged over randomly chosen codes from the ensem-
ble, constructed using the method from [7], [8], are compared
to the FL analysis results. The modified FL analysis algorithm
presented in this paper accurately predicts the performance of
regular LDPC ensembles.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Channel Erasure Probability

B
it

E
ra

su
re

 R
at

e

Traditional FL

New FL − no repeated edges

Monte−Carlo Ensemble Avg

Fig. 3. The ensemble average erasure correction performance of (3,6)-regular,
rate-1/2, length-200 LDPC codes on a binary erasure channel. Shown isthe
results of: traditional FL (solid curves); modified FL (dashed curves) and
Monte-Carlo simulation (no curve).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Channel Erasure Probability

B
it

E
ra

su
re

 R
at

e

Traditional FL

New FL − no repeated edges

Monte−Carlo Ensemble Avg

Fig. 4. The ensemble average erasure correction performance of (3,6)-regular,
rate-1/2, length-1000 LDPC codes on a binary erasure channel. Shown is the
results of: traditional FL (solid curves); modified FL (dashed curves) and
Monte-Carlo simulation (no curve).

https://www.researchgate.net/publication/3079763_Good_Error-Correcting_Codes_based_on_Very_Sparse_Matrices?el=1_x_8&enrichId=rgreq-ab9c30f39e0145f2246c2a0937992a7a-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM2Mzk0NztBUzoxMDQ4OTM1ODcxMzI0MTdAMTQwMjAxOTk4ODEzNw==

IV. CONCLUSION

In this paper we have presented a modified finite-length
analysis for the performance of LDPC codes without repeated
edges on the binary erasure channel. Comparison to Monte
Carlo simulation results shows that the new finite-length anal-
ysis algorithms accurately predict the performance of regular
LDPC ensembles on the binary erasure channel.

ACKNOWLEDGEMENT

The author would like to thank Prof. Rudiger Urbanke
for helpful comments on finite-length analysis of expurgated
ensembles and for pointing out that the FL initialization
process required modification. I am also very grateful to the
Associate Editor, Prof. T. Richardson, for his many helpful
suggestions.

REFERENCES

[1] R. G. Gallager, “Low-density parity-check codes,”IRE Trans. Inform.
Theory, vol. IT-8, no. 1, pp. 21–28, January 1962.

[2] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of
capacity-approaching irregular low-density parity-check codes,” IEEE
Trans. Inform. Theory, vol. 47, no. 2, pp. 619–637, February 2001.

[3] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman,
“Efficient erasure correcting codes,”IEEE Trans. Inform. Theory, vol. 47,
no. 2, pp. 569–584, February 2001.

[4] C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, and R.L. Urbanke,
“Finite-length analysis of low-density parity-check codes on the binary
erasure channel,”IEEE Trans. Inform. Theory, vol. 48, no. 6, pp. 1570–
1579, June 2002.

[5] T. J. Richardson and R. L. Urbanke, “Finite-length density
evolution and the distribution of the number of iterations on
the binary erasure channel,” unpublished manuscript, available at
〈http://lthcwww.epfl.ch/papers/RiU02.ps〉.

[6] H. Zhang and A. Orlitsky, “Finite-length analysis of LDPC codes with
large left degrees,” inProc. International Symposium on Information
Theory (ISIT’2002), Lausanne, Switzerland, June 30 - July 5 2002, p.
p. 3.

[7] D. J. C. MacKay, “Good error-correcting codes based on very sparse
matrices,”IEEE Trans. Inform. Theory, vol. 45, no. 2, pp. 399–431, March
1999.

[8] R. M. Neal, 〈www.cs.toronto.edu/∼radford/〉.

Sarah Johnson received the B.E. degree in electrical engi-
neering (with honours and university medal) in 2000, and PhD
in 2004, both from the University of Newcastle, Australia.
She then held a postdoctoral position with the Wireless Signal
Processing Program, National ICT Australia. Currently sheis
with the University of Newcastle, Australia. Sarah’s research
interests are in the field of information theory and error
correction, and in particular the area of low-density parity-
check and repeat-accumulate codes.

https://www.researchgate.net/publication/3489260_Low-Density_Parity-Check_Codes?el=1_x_8&enrichId=rgreq-ab9c30f39e0145f2246c2a0937992a7a-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM2Mzk0NztBUzoxMDQ4OTM1ODcxMzI0MTdAMTQwMjAxOTk4ODEzNw==
https://www.researchgate.net/publication/3489260_Low-Density_Parity-Check_Codes?el=1_x_8&enrichId=rgreq-ab9c30f39e0145f2246c2a0937992a7a-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM2Mzk0NztBUzoxMDQ4OTM1ODcxMzI0MTdAMTQwMjAxOTk4ODEzNw==
https://www.researchgate.net/publication/3080325_Design_of_capacity-approaching_irregular_low-density_parity-check_codes?el=1_x_8&enrichId=rgreq-ab9c30f39e0145f2246c2a0937992a7a-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM2Mzk0NztBUzoxMDQ4OTM1ODcxMzI0MTdAMTQwMjAxOTk4ODEzNw==
https://www.researchgate.net/publication/3080325_Design_of_capacity-approaching_irregular_low-density_parity-check_codes?el=1_x_8&enrichId=rgreq-ab9c30f39e0145f2246c2a0937992a7a-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM2Mzk0NztBUzoxMDQ4OTM1ODcxMzI0MTdAMTQwMjAxOTk4ODEzNw==
https://www.researchgate.net/publication/3080325_Design_of_capacity-approaching_irregular_low-density_parity-check_codes?el=1_x_8&enrichId=rgreq-ab9c30f39e0145f2246c2a0937992a7a-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM2Mzk0NztBUzoxMDQ4OTM1ODcxMzI0MTdAMTQwMjAxOTk4ODEzNw==
https://www.researchgate.net/publication/3958660_Finite-length_analysis_of_LDPC_codes_with_large_left_degrees?el=1_x_8&enrichId=rgreq-ab9c30f39e0145f2246c2a0937992a7a-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM2Mzk0NztBUzoxMDQ4OTM1ODcxMzI0MTdAMTQwMjAxOTk4ODEzNw==
https://www.researchgate.net/publication/3958660_Finite-length_analysis_of_LDPC_codes_with_large_left_degrees?el=1_x_8&enrichId=rgreq-ab9c30f39e0145f2246c2a0937992a7a-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM2Mzk0NztBUzoxMDQ4OTM1ODcxMzI0MTdAMTQwMjAxOTk4ODEzNw==
https://www.researchgate.net/publication/3958660_Finite-length_analysis_of_LDPC_codes_with_large_left_degrees?el=1_x_8&enrichId=rgreq-ab9c30f39e0145f2246c2a0937992a7a-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM2Mzk0NztBUzoxMDQ4OTM1ODcxMzI0MTdAMTQwMjAxOTk4ODEzNw==
https://www.researchgate.net/publication/3958660_Finite-length_analysis_of_LDPC_codes_with_large_left_degrees?el=1_x_8&enrichId=rgreq-ab9c30f39e0145f2246c2a0937992a7a-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM2Mzk0NztBUzoxMDQ4OTM1ODcxMzI0MTdAMTQwMjAxOTk4ODEzNw==
https://www.researchgate.net/publication/3080699_Finite-length_analysis_of_low-density_parity-check_codes_on_the_binary_erasure_channel?el=1_x_8&enrichId=rgreq-ab9c30f39e0145f2246c2a0937992a7a-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM2Mzk0NztBUzoxMDQ4OTM1ODcxMzI0MTdAMTQwMjAxOTk4ODEzNw==
https://www.researchgate.net/publication/3080699_Finite-length_analysis_of_low-density_parity-check_codes_on_the_binary_erasure_channel?el=1_x_8&enrichId=rgreq-ab9c30f39e0145f2246c2a0937992a7a-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM2Mzk0NztBUzoxMDQ4OTM1ODcxMzI0MTdAMTQwMjAxOTk4ODEzNw==
https://www.researchgate.net/publication/3080699_Finite-length_analysis_of_low-density_parity-check_codes_on_the_binary_erasure_channel?el=1_x_8&enrichId=rgreq-ab9c30f39e0145f2246c2a0937992a7a-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM2Mzk0NztBUzoxMDQ4OTM1ODcxMzI0MTdAMTQwMjAxOTk4ODEzNw==
https://www.researchgate.net/publication/3080699_Finite-length_analysis_of_low-density_parity-check_codes_on_the_binary_erasure_channel?el=1_x_8&enrichId=rgreq-ab9c30f39e0145f2246c2a0937992a7a-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM2Mzk0NztBUzoxMDQ4OTM1ODcxMzI0MTdAMTQwMjAxOTk4ODEzNw==
https://www.researchgate.net/publication/3079763_Good_Error-Correcting_Codes_based_on_Very_Sparse_Matrices?el=1_x_8&enrichId=rgreq-ab9c30f39e0145f2246c2a0937992a7a-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM2Mzk0NztBUzoxMDQ4OTM1ODcxMzI0MTdAMTQwMjAxOTk4ODEzNw==
https://www.researchgate.net/publication/3079763_Good_Error-Correcting_Codes_based_on_Very_Sparse_Matrices?el=1_x_8&enrichId=rgreq-ab9c30f39e0145f2246c2a0937992a7a-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM2Mzk0NztBUzoxMDQ4OTM1ODcxMzI0MTdAMTQwMjAxOTk4ODEzNw==
https://www.researchgate.net/publication/3079763_Good_Error-Correcting_Codes_based_on_Very_Sparse_Matrices?el=1_x_8&enrichId=rgreq-ab9c30f39e0145f2246c2a0937992a7a-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM2Mzk0NztBUzoxMDQ4OTM1ODcxMzI0MTdAMTQwMjAxOTk4ODEzNw==
https://www.researchgate.net/publication/220680366_Efficient_erasure_correcting_codes?el=1_x_8&enrichId=rgreq-ab9c30f39e0145f2246c2a0937992a7a-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM2Mzk0NztBUzoxMDQ4OTM1ODcxMzI0MTdAMTQwMjAxOTk4ODEzNw==
https://www.researchgate.net/publication/220680366_Efficient_erasure_correcting_codes?el=1_x_8&enrichId=rgreq-ab9c30f39e0145f2246c2a0937992a7a-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM2Mzk0NztBUzoxMDQ4OTM1ODcxMzI0MTdAMTQwMjAxOTk4ODEzNw==
https://www.researchgate.net/publication/220680366_Efficient_erasure_correcting_codes?el=1_x_8&enrichId=rgreq-ab9c30f39e0145f2246c2a0937992a7a-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM2Mzk0NztBUzoxMDQ4OTM1ODcxMzI0MTdAMTQwMjAxOTk4ODEzNw==

