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ABSTRACT

This article surveys recent work in optical
switching technologies and presents a fast optical
circuit switch that intimately integrates the con-
trol electrics at the chip level using a novel
wafer-scale heterogeneous integration technique.

INTRODUCTION

The growth in data center traffic is demanding
higher capacity and more energy-efficient ways
of computing and moving data across servers.
Recent advances in silicon photonics open up
exciting opportunities to solve the bandwidth
limitation of both on-chip and off-chip wire
interconnects. On-chip photonic interconnects
have been proposed to link multi-core systems
to create a single logical compute node with
terascale processing capability in an energy-effi-
cient manner. Within the data center, packet
switching is commonly used to connect compute
servers because of low latency and high net-
work utilization. To achieve higher capacity,
higher energy efficiency, and lower cost, circuit
switching becomes attractive [1]. Micro electro-
mechanical systems (MEMS) optical network
switches can be large (nonblocking 320 x 320
port switches), but they are limited to switching
times of a few milliseconds [2]. The key for
faster switching is to integrate both active and
passive photonic devices with complementary
metal oxide semiconductors (CMOSs) and take
advantage of the economy of scale of mature
silicon manufacturing processes, thus lowering
the cost while simultaneously enhancing the
reliability of optoelectronic systems. The rest of
this article is organized as follows. We first sur-
vey the most recent work in the literature on
implementing optical switching alongside exist-
ing data center network infrastructures. We
then present a nanosecond-scale 2 x 2 switch
design integrated with semiconductor optical
amplifiers (SOAs) and power detectors, capable
of realizing the building block to construct larg-

er port count switch fabric. To control the
switch, a custom designed CMOS integrated
circuit (IC) was designed and tightly integrated
with the photonic IC via a versatile integration
process. Lastly, we discuss the scalability of the
switch design to high port counts in terms of
power consumption and device area, followed
by conclusions.

OPTICAL SWITCHING IN
DATA CENTERS

Data centers today employ electronic packet
switches for their networks. In data-intensive
applications, optical interconnects offer signifi-
cant advantages over their electrical counter-
parts in terms of power consumption and
latency. For example, optical interconnects
have been used extensively in recent record-
breaking higher-performance supercomputers.
Despite the apparent advantages, the deploy-
ment of optical interconnects in data centers
has been hampered by the relatively high cost
[3]. In the research community, there are many
teams pursuing the ultimate goal of optical
packet switching; however, the goal of all-opti-
cal packet switching in data centers remains
elusive[4]. One crucial issue is the lack of
power-efficient optical packet buffers needed to
store payloads when there is contention in the
network. More recently, researchers have been
studying the deployment of optical circuit
switches alongside traditional electronic packet
switches in a hybrid network configuration [1],
and they have found that in certain applica-
tions, the addition of the optical circuit network
can reduce network latency significantly. The c-
Through hybrid network architecture presented
in [S] represents a new paradigm in deploying
optical switching in data centers. c-Through is a
hybrid packet- and circuit-switched data net-
work architecture that augments a traditional
electrical packet switch hierarchy with a second
high-speed rack-to-rack circuit-switched optical
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Figure 1. 3-in diameter wafer-scale hybrid silicon process fabricated by Aurrion.

network. The optical switch cannot switch at
packet granularity. c-Through takes advantage
of relatively stable rack-to-rack traffic, and
using servers to buffer traffic so that the full
capacity of the optical link can be utilized.
Using servers to buffer packet traffic requires
modification of the server’s operating system
kernel, but the advantage is that it does not
require substantial modification to the applica-
tions running on the network in order to take
advantage of the capacity added by the optical
network.

Helios [6] is another work that studies the
applicability of optical circuit switches in data
centers. Like c-Through, Helios augments elec-
trical packet switches with a MEMS-based opti-
cal switch to alleviate heavy congestion when
there are hot spots in the network. The key dif-
ference between c-Through and Helios is that
Helios does not require individual servers to
buffer the network traffic. Instead, Helios is
designed to route a large volume of data between
server container pods, and it monitors the pack-
et switches’ built-in traffic flow counter to deter-
mine when to switch the flow to the optical
circuit switch. The advantage is that Helios does
not require modification of the server’s OS ker-
nel and can readily be adopted within the exist-
ing data center infrastructure.

The researchers behind Optical Switching
Architecture (OSA) [7] noted that the network
topology in c-Through encounters bottleneck
when two top-of-rack (ToR) switches want to
use the full bandwidth to simultaneously com-
municate with a third ToR switch because the
link bandwidth to each ToR is fixed. OSA
solves the bottleneck by using wavelength-divi-
sion multiplexing (WDM) to dynamically allo-
cate more bandwidth to a particular switch
when the demand arises. Essentially, OSA
extends the connectivity and available band-
width by using WDM.

A limitation of research such as c-Through,
Helios, and OSA is that they use MEMS opti-
cal switches, which have configuration time on
the order of milliseconds, so in actual network
traffic they are only used when there are large
flows of traffic that tend to be stable for a rela-
tively long time. To overcome this limitation,
the researchers of Helios presented a follow-up
project, Mordia [8], where microsecond switch-
ing-time switches are implemented. The idea is
to route as much as possible of the traffic in the
data center through the optical paths, and with

a fast switch, smaller packets can be routed if
the switching time overhead is small. Time-divi-
sion multiplexing (TDM) is a way to share the
available network bandwidth among multiple
hosts to realize all-to-all connectivity without
having to connect them physically with cables.
With slow MEMS switches, TDM is not effi-
cient as the switching time creates large over-
head. In contrast, a fast switch reduces that
overhead and makes TDM feasible. Mordia
demonstrated the application of TDM with an
optical switch. Another limitation with slow
switches is the amount of buffer memory
required. For instance, at millisecond switching
time and 10 Gb/s Ethernet, the buffer size is on
the order of a few gigabytes, but with a
microsecond scale switch, the buffer reduces to
a few megabytes, which is much more practical
to implement.

INTEGRATED OPTICAL SWITCH

Traditional silicon-on-insulator (SOI) photonic
integrated circuits (PICs) with active silicon
switches [9] have high fabrication yield, low
propagation loss, and relatively low switch
insertion loss compared to III-V switches. How-
ever, the number of switches that can be cas-
caded to build a larger switch fabric is limited
by total insertion loss. SOI PICs do not have an
efficient gain element to compensate for the
loss. Therefore, to make large port count switch
fabric possible, it is advantageous to use a pro-
cess that contains passive SOI waveguides and
interferometers, active silicon PIN injection
modulators, and heterogeneously integrated
ITI-V SOAs. The SOI wafer can be bonded to
the III-V wafer using the process described in
[10]. The gain characteristics of SOAs can vary
due to process variation, temperature, and
aging effects. Therefore, it is desirable to have
the ability to tune each SOA independently
through either one-time calibration or periodic
offline calibration, or continuously controlled
via closed loop feedback. Figure 1 shows the
proposed 2 x 2 Mach-Zehnder interferometer
(MZI)-based switch element (SE) with active
feedback power equalization fabricated in a
wafer-scale hybrid silicon process. The integrat-
ed SOAs can provide up to 15 dB of optical
gain. A reverse biased SOA is used as a power
detector, which has dark current of 6.5 nA [11].
The 2 x 2 MZI can be switched on a nanosec-
ond timescale, which is many orders of magni-
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Figure 2. Block diagram of the electronic controller.

tude faster than MEMS counterparts, while
consuming milliwatt-scale power. Since the
switch itself performs fast circuit switching, it is
independent of packet formats. Packet buffer-
ing, routing, and contention resolution can be
processed on the server side using the system
architectures presented in [5-8].

CMOS CONTROLLER IC

A custom IC was designed in a 130 nm CMOS
process. The IC is designed to perform optical to
electrical conversion of the header information,
automatic optical power equalization and it also
integrates drivers that changes the state of the 2
x 2 MZI switches. Figure 2 shows a functional
block diagram of the IC interfacing with the 2 x 2
switch as well as the external FPGA for signal
processing.

A network session begins with an optical
header requesting a destination port. The optical
signal is converted to an electrical current by a
photodiode. The small current is amplified by a
transimpedance amplifier (TIA); further amplifi-
cation is performed by a set of limiting ampli-
fiers (LAs) to overcome the switching threshold
of the clock and data recovery (CDR) unit. The
CDR recovers the timing information in relation
to the bits received so that proper decoding can
be performed. The receiver is especially designed
to process bursts of data as fast as possible with-
out the need for a long preamble time. The
header information is routed to an external field
programmable gate array (FPGA) to determine
whether the requested port is available. If the
port is not available, the request is dropped and
retransmission is needed. If the request is grant-
ed, the FPGA then instructs the switch driver on
the IC to change the state of the 2 x 2 switch.
The switching needs to be completed within a
few nanoseconds to take full advantage of the
fast optical switch.

The IC also supports power equalization by
using a built-in low-frequency TIA and an SOA
driver. The low-frequency TIA is designed to
convert slow-changing variation of optical power
detected by a photodiode to a frequency varia-

tion, essentially converting amplitude informa-
tion to time variation, or current to frequency
conversion. The advantage is that it can cover a
broad range of input amplitudes without saturat-
ing, and the output signal level can readily inter-
face with CMOS logic without using an
analog-to-digital converter. The SOA driver is a
digitally controlled switch that drives a pro-
grammable amount of current to the SOA to
change the gain level. Closed loop feedback
enables the automatic power control that com-
pensates the losses in the 2 x 2 switch due to
variations in process, runtime temperature
changes, and aging effects. The power gain also
enables the ability to cascade many of these 2 x
2 switches to build larger switch fabric, which is
one of the main goals of this work. Table 1 sum-
marizes the key performance characteristics of
each functional block.

HETEROGENEOUS ELECTRONIC AND
PHOTONIC INTEGRATION

Recent developments in the field of silicon pho-
tonics have enabled development of a highly
integrated electronic-photonic platform. Howev-
er, it is very difficult to realize active optical
components, such as lasers and photodetectors,
in silicon photonics. We aim to design a process
of integration that is robust and can enable inte-
gration of III-V semiconductor photonics devices
with silicon CMOS and silicon photonics to take
advantage of the high-speed operation of optical
devices and the economy of scale of the mature
silicon manufacturing process. Traditional
approaches to integration can be summarized as
follows:
* Embedding the photonic layer into the
metal interconnect layers [12]
* Combined electronic and photonic front-
end [13]
* Backside fabrication of photonic compo-
nents [14]
In the first method, the photonic layer is con-
nected to the metal layer of the electronics, and
the substrate of the photonic layer is then
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Figure 3. Integrated electronic and photonic chip with metalized contacts inter-

facing both chips.

removed. However, the most serious drawback
of this approach is that length scales between
electronics and photonic devices are large, result-
ing in underutilized silicon area and leading to
high cost and low yield.

In the front-end process photonics and elec-
tronics structures share the chip footprint, lead-
ing to moderate integration density. Some
disadvantages of this approach are that the ther-
mal budget of the process needs to be rather
high to enable high-temperature processes.
However, active devices still need to be external
to this system.

In the backside fabrication photonic layers
are integrated on the backside of CMOS wafer.
The backside approach is developed by Austria-
microsystems within the frame of the Photonics
Electronics Functional Integration on CMOS
(HELIOS) European Project. In this integration
method it is difficult to fabricate on-chip lasers;
thus, they are externally bonded onto the chip,
making the packaging specific to laser assembly.
Also, mismatch in the thermal expansion coeffi-
cients of the two materials is a serious concern.
One of the key disadvantages of back-end or
front-end integration is that one is constrained
to use compatible electronic and photonic tech-
nologies rather than the best-in-class technolo-
gies in both domains.

In this section we describe our initial efforts
in integrating both active and passive photonic
devices with CMOS by developing a new tech-
nique of integration inspired by VCSIT [15]. In
this method, PIC fabrication is independent of
CMOS chip fabrication, enabling the use of
best-in-class processes for both technologies.
The CMOS chip is integrated in the PIC by
etching a cavity in the PIC, placing the CMOS
chip in it, planarizing it, and establishing metal-
lic contacts.

The process begins with forming the cavities

Burst mode receiver

Performance

summary
Bandwidth 2.5 GHz
Preamble time 13 ns

Power consumption

43.6 mW per channel

Area 0.23 mm?
Switch driver

Area 0.01 mm?2

Rise time 3.8 ns (20-80%)

Power consumption

150 mW per driver

Adjustable output Yes

High power supply

2t Yes
rejection

Current-to-frequency converter

Input current range 10 pA to 1.5 mA

Area 0.005 mm?
SOA driver

Control word width 6 bits
Minimum current 3.3 mA
Maximum current 223 mA
Switching speed 10 MHz
Area 0.015 mm?

Table 1. Performance summary of the CMOS con-
troller IC.

in the photonic wafer on the location where the
electronic chips are to be integrated. A thin
layer of polydimethysiloxane (PDMS) elastomer
is spun onto the wafer to serve as the hard mask.
The etch area is exposed by imprinting the elec-
tronic chip, expulsing the PDMS underneath the
chip, and simultaneously heating the chip to
induce crosslinking of PDMS surrounding the
chip. This is accomplished using a flipchip bond-
er, with the arm of the bonder holding the chip
and heating it. The hard mask is formed by cur-
ing all the remaining PDMS. With the sites
exposed, the deep reactive ion etch (DRIE)
Bosch process is used to define the cavities.
Once the cavities are formed, the electronic chip
is dropped into the wafer. Alignment between
the electronic chip and the photonic wafer is
accomplished by aligning the metal contact pads
using an infrared optical microscope. The front
side of the wafer is aligned with the electronic
chip. Since the electronic chip is made thinner,
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Figure 4. Test setup for the automatic equalization loop.

the cavity is filled with spin-on glass (SOG). The
front side is passivated with SU8 and planarized
using chemical mechanical polishing (CMP).
Contacts between the electronic chip and the
photonic wafer are lithographically defined;
therefore, dense interconnects can be realized.
The process ensures that the gap between the
electronic chip and the photonic wafer is small
so that metal lines can be defined across the
chip boundary without breaking. Figure 3 shows
a micrograph of the integrated chip. The small
CMOS electronic chip can be seen embedded
into the photonic chip with gold interconnects
contacting the pads on both chips.

The proposed integration technique decou-
ples the electronic and photonic fabrication pro-
cessing, giving designers of photonic systems the
freedom to choose the best technology available
in a cost-effective manner. For instance, while
CMOS is preferred for digital information pro-
cessing, gallium arsenide (GaAs) can be used in
radio frequency (RF) and high-voltage applica-
tions.

DEMONSTRATION OF THE
AUTOMATIC EQUALIZATION
CONTROL

A test setup to demonstrate the automatic gain
control loop operating on modulated data is
shown in Fig. 4. A 1550 nm laser signal is modu-
lated at 10 Gb/s and amplified to 15 dBm. The
signal is then wavelength filtered and sent
through an optical attenuator to vary the input
power at the facet of the PIC. The electronic IC
monitors the detector current and adjusts the
SOA current to give constant output power. The
PIC output signal is amplified, wavelength fil-
tered, and monitored on an optical spectrum
analyzer and an oscilloscope. Figure 5 shows the
measured output optical power as a function of
the input power with the control loop turned on.
The system regulates the output to about -6
dBm, excluding coupling losses on the facets

Output power at SOA (dBm)

-10 T T T

-20 -10 0
Input power at SOA (dBm)

20

-10

=15

SOA gain (dB)

Figure 5. Result with automatic power equalization.

(-16 dB). From 0 to 25.4 dBm input, the average
output is —6.98 dBm with standard deviation of
0.33 dB.

SCALING TO
HIGHER-PORT-COUNT SWITCHES

To support data-center-scale networks, the
switch port count must be able to scale. Figure 6
shows the switch loss as a function of port count,
assuming Benes and dilated Benes network con-
figurations. To make the switch cascadable, the
switch losses must be compensated using SOAs.
As shown in this work, the SOA can compensate
for up to 12 dB of loss. For example, to build a
32 x 32 port switch, two SOAs are necessary per
port. As the number of ports increases, the num-
ber of SOAs required also increases. Scaling
beyond 32 ports remains challenging. For
instance, at 1024 ports, a Benes arrangement
requires up to 19 stages of switches. New design
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techniques to improve crosstalk from the SEs
and the amplified spontaneous emission (ASE)
from the SOAs will be needed.

Figure 6 shows the total power consumption
for Benes and dilated Benes networks, including
the electronic power consumption. If a 32 x 32
switch were to be built today, it would consume
about 8.7 W of power. At 100 Gb operation, it
would consume 273 mW per port, or about 2.7
pJ/b/port. In contrast, the state-of-the-art elec-
tronic crossbar switch, represented by Vitesse
V(CS-3144-12, consumes 1.3 W/port at 100 Gb, or
13.1 pJ/b/port. In comparison, the photonic switch
consumes 4.8x lower power. Clearly, scaling the
photonic switch to larger port counts is advanta-
geous for data centers. The estimated area for the
entire photonic integrated circuit for a 32 x 32
switch would be able to fit in a footprint of 32 x
12 mm? of chip area, while the electronics would
fit in a silicon area of 34 x 27 mm?2. Furthermore,
the combination of space switching with TDM
and WDM can enable multiplicative scaling of
the number of ports, thus enabling data center
scaling networks that otherwise might not be fea-
sible to build with a single technology.

CONCLUSIONS

Scaling data center network capacity to meet the
ever increasing data demands in a sustainable
fashion will require technologies that can switch
and route data efficiently. Optical networks have
remarkable properties, such as low loss and high
bandwidth, that make them suitable for long-
haul communication infrastructures and are

increasingly being deployed in data centers.

Using electronics closely integrated with the

photonic integrated circuit is important to scal-

ing to large switch sizes because:

* The integration of electronics and photonics
allows low-power high-impendence drives
in high-speed switches.

» The integration of electronics for a “smart”
photonics chip allows drive and bias levels
of individual 2 x 2 switches to be optimized
along with maintaining appropriate optical
power levels throughout the chip.
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