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A Potential Causal Association Mining Algorithm
for Screening Adverse Drug Reactions

in Postmarketing Surveillance
Yanqing Ji, Hao Ying, Senior Member, IEEE, Peter Dews, Ayman Mansour, John Tran,

Richard E. Miller, and R. Michael Massanari

Abstract—Early detection of unknown adverse drug reac-
tions (ADRs) in postmarketing surveillance saves lives and pre-
vents harmful consequences. We propose a novel data mining
approach to signaling potential ADRs from electronic health
databases. More specifically, we introduce potential causal as-
sociation rules (PCARs) to represent the potential causal rela-
tionship between a drug and ICD-9 (CDC. (2010). International
Classification of Diseases, Ninth Revision (ICD-9). [Online]. Avail-
able: http://www.cdc.gov/nchs/icd/icd9.html) coded signs or symp-
toms representing potential ADRs. Due to the infrequent nature of
ADRs, the existing frequency-based data mining methods cannot
effectively discover PCARs. We introduce a new interestingness
measure, potential causal leverage, to quantify the degree of asso-
ciation of a PCAR. This measure is based on the computational,
experience-based fuzzy recognition-primed decision (RPD) model
that we developed previously (Y. Ji, R. M. Massanari, J. Ager, J.
Yen, R. E. Miller, and H. Ying, “A fuzzy logic-based computational
recognition-primed decision model,” Inf. Sci., vol. 177, pp. 4338–
4353, 2007) on the basis of the well-known, psychology-originated
qualitative RPD model (G. A. Klein, “A recognition-primed deci-
sion making model of rapid decision making,” in Decision Making
in Action: Models and Methods, 1993, pp. 138–147). The potential
causal leverage assesses the strength of the association of a drug–
symptom pair given a collection of patient cases. To test our data
mining approach, we retrieved electronic medical data for 16 206
patients treated by one or more than eight drugs of our interest at
the Veterans Affairs Medical Center in Detroit between 2007 and
2009. We selected enalapril as the target drug for this ADR signal
generation study. We used our algorithm to preliminarily evaluate
the associations between enalapril and all the ICD-9 codes associ-
ated with it. The experimental results indicate that our approach
has a potential to better signal potential ADRs than risk ratio and
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leverage, two traditional frequency-based measures. Among the
top 50 signal pairs (i.e., enalapril versus symptoms) ranked by the
potential causal-leverage measure, the physicians on the project
determined that eight of them probably represent true causal
associations.

Index Terms—Adverse drug reactions (ADRs), data mining, fuzzy
logic, postmarketing surveillance, potential causal association rules
(PCARs), recognition-primed decision model (RPD).

I. INTRODUCTION

ADVERSE drug reactions (ADRs) represent a serious prob-
lem worldwide. They refer to drug-associated adverse in-

cidents in which drugs are used at an appropriate dose and
indication. They can complicate a patient’s medical condition
or contribute to increased morbidity, even death. Studies have
shown that ADRs contribute to about 5% of all hospital admis-
sions and represent the fifth most common cause of death in
hospitals [4]. In year 2000, for example, about 7000 deaths in
the U.S. were attributed to ADRs [5].

Even though premarketing clinical trials are required for all
new drugs before they are approved for marketing, these trials
are necessarily limited in size and duration, and thus are not ca-
pable of detecting rare ADRs. In general, if the occurrence rate
of a potential ADR is less than 0.1%, it cannot be recognized
by the premarketing randomized controlled trials due to their
limitation in size [6]. Hence, significant, life-threatening, un-
suspected ADRs that occur infrequently may never be observed
before the drug is introduced into the market where thousands
of patients are exposed to the drug.

Drug safety depends heavily on postmarketing surveillance.
In the U.S., current postmarketing methods primarily rely on
FDA’s (Food and Drug Administration) spontaneous reporting
system MedWatch. The limitations of this system are well de-
scribed [7]. MedWatch is a passive system that depends on
voluntary, spontaneous reports of suspected ADRs filed by
healthcare professionals, drug manufactures, and/or consumers.
Detection of an ADR generally relies on FDA’s retrospective
or concurrent review of patient cases. Because ADR reports
are filed at the discretion of the users of the system, it was
estimated that less than 10% of all ADR cases were reported
to MedWatch [8]. Moreover, the current surveillance system is
limited by latency and inconsistency [9]. Consequently, it may
require years to identify and withdraw problematic drugs from
the market, and results in unnecessary mortality, morbidity, and
cost.
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Data mining methods for the detection of suspected safety
problems from spontaneous reports have been studied and
practically implemented [10]. For example, the FDA cur-
rently adopts a data mining algorithm called multiitem gamma
Poissson shrinker [11] for detecting potential signals from its
spontaneous reports. Another important signal-detection strat-
egy is known as the Bayesian confidence propagation neural
network that has been used by the Uppsala Monitoring Center
in routine pharmacovigilance with its World Health Organiza-
tion database [12]. However, a large number of cases are needed
in order for the neural network approach to work. Various other
methods such as proportional reporting ratios [13], empirical
Bayes screening [14], reporting odds ratios [15], and incidence
rate ratios [16] have been used in the spontaneous reporting
centers of other nations (e.g., England and Australia). By uti-
lizing data mining techniques, these methods have shown better
performance than traditional methods even though the ability of
detecting a signal varies among them [17]. However, the perfor-
mance of these techniques could be highly situation dependent
due to the weaknesses and potential biases inherent in spon-
taneous reporting [18]. In addition, early generation of a new
signal can be very difficult because a large number of interest-
ing cases cannot be timely collected due to the underreporting
nature of the current reporting system.

As electronic patient data become more easily accessible in
various healthcare organizations, they may provide a new source
of information from which ADR signals could be generated
much earlier [19]. In this paper, we mine potential ADR sig-
nals using an extensive data source that contains administrative
data, pharmacy, and clinical laboratory data. We propose a new
data mining method where the association between a drug and
a symptom for each patient case is a value between [0, 1], in-
stead of a binary number used by other mining methods in the
literature [20]. Rather than simply mining the temporal associ-
ation between drug–symptom pairs, we attempted to mine the
more difficult potential causal association rules (PCARs). The
word “potential” is necessary because whether or not a mined
association portrays a real causal relationship is uncertain. Con-
firming a causal relationship between a drug and an ADR is
challenging because multiple unrelated causes may result in
similar outcomes. We defined a new interestingness measure
called potential causal leverage where the contribution of each
case to the measure depends on the degree of potential causal
association between the drug and the symptom within that case.

In our approach, the degree of causality for a drug–symptom
pair within each case is evaluated by a computational fuzzy
recognition-primed decision (RPD) model [2] that we devel-
oped earlier on the basis of psychology-originated qualitative
RPD model [3]. In this model, experiences played a key role.
Four ADR detection experiences were acquired through the
joint efforts of our engineering and medical team members af-
ter careful analysis of the relevant literature. Each experience
corresponded to one of the four causality categories (i.e., very
likely, probable, possible, and unlikely) and was characterized
by the values of four cues: temporal association, dechallenge,
rechallenge, and other explanation. The critical temporal associ-
ation assumed that cause preceded effect, or that drug treatment

preceded occurrence of a presumed adverse response. Dechal-
lenge was defined as the relationship between withdrawal of the
drug and abatement of the adverse effect. Rechallenge described
the relationship between reintroduction of the drug followed by
recurrence of the adverse event. Other explanations denoted al-
ternative explanations by concurrent disease or other drugs. The
degree of potential causal association for a drug–symptom pair
within a particular case was obtained by matching the cue values
extracted from the case with the cue values in each experience.
For more details of the fuzzy RPD model as well as concrete
examples, the reader is referred to our previous work [2].

The effectiveness of our data mining strategy was evaluated
using electronic patient data retrieved from the Veterans Affairs
Medical Center in Detroit. Our preliminary results are presented
in Section IV followed by Section V. Note that the scope of
this paper is to provide an automated, efficient method that
expedites prioritization of all possible signal pairs that require
extensive, labor-intensive analytical exercises. The ADR signals
generated using our new data mining algorithm will require
more thorough epidemiological analyses in order to sort through
possible causative factors, including drugs, and to quantify the
boundaries of uncertainty around suspect drugs.

II. PROBLEM FORMULATION AND A NOVEL POTENTIAL

CAUSAL-LEVERAGE MEASURE

An association rule is an implication expression in the form
of X → Y , where X and Y are two event sets and they are
disjoint (i.e., X ∩ Y = φ), meaning that they share no common
events [21]. Both X and Y may contain one or more events.
An association rule indicates that the presence of X implies
the presence of Y. If X and Y have temporal relationship, a
temporal constraint is often applied to the association rule. Such

an association rule, represented as X
T→Y , is called the temporal

association rule, where
T→ denotes that Y occurs after X within

a time window T in the same event sequence.
In the literature, association rule mining is usually based on

two measures: support and confidence. The support of an as-
sociation rule supp(X → Y ) is the proportion of sequences in
which both X and Y occur at least once, among all the event se-
quences. This measure indicates how often a rule is applicable
to a given set of event sequences. The importance of this mea-
sure lies in the fact that if a rule has very low support, it may
occur simply by chance and thus would be uninteresting. The
confidence of an association rule is defined as conf(X → Y ) =
supp(X → Y )/supp(X →), where supp(X →) is the propor-
tion of sequences that contain X. This measure determines how
frequently Y appears in those event sequences that contain X.
That is, given an association rule X → Y , the higher the con-
fidence, the more likely it is for Y to be present in sequences
that contain X. Given these two measures, the association rule
mining problem can be formalized as finding those rules whose
support and confidence are greater than prespecified thresholds
minsupp and minconf, respectively.

In the context of ADR signal generation using electronic pa-
tient data, a health database often contains many patient records,
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each of which can be considered as an event sequence where
various events such as drug prescription, occurrence of a symp-
tom, and laboratory test occur at different times. However, the
previous two frequency-based measures cannot be used to effec-
tively find the association between a drug and an ADR because
of the inherently low frequency of ADRs. For example, brom-
fenac (Duract) was a nonsteroidal antiinflammatory agent that
was removed by the FDA from the market in 1998, less than 1
year after it was introduced. Bromfenac caused serious hepato-
toxicity in only 1 in 20 000 patients taking the drug for longer
than 10 days [22]. This type of rare and delayed drug reac-
tions is very difficult to be detected during the premarketing
clinical trials because most new drugs are approved after an av-
erage of only 1 500 patient exposures and usually for relatively
short exposure periods. Thus, detection of these low-frequency
ADRs requires many more exposures and can only be possibly
achieved in postmarketing surveillance. If the two aforemen-
tioned measures were used, their corresponding thresholds min-
supp and minconf would have to be set very small in order to
detect these ADRs. This would result in a higher rate of false
drug-ADR associations and also make the computational cost
of the algorithm extremely high [20], [21].

Another pitfall of using the support and confidence measures
is that the detected associations with relatively high frequen-
cies may not be interesting. The reason is that symptoms of a
potential ADR cannot be easily distinguished from those of an
underlying disease in electronic health databases, since both are
coded using the same ICD-9 codes [1]. Thus, if a drug is used to
treat a disease, the drug and the disease can be easily detected as
an association using these measures. However, this association
is expected and not interesting.

Interesting measures like leverage and its variations have been
used to mine temporal associations between drugs and symp-
toms [20], [23]. The leverage of an association rule is defined
as

leverage(X → Y ) = supp(X → Y ) − supp(X →)

× supp(→Y ) (1)

where supp(→Y ) is the proportion of sequences that contain Y.
This measure indicates the proportion of sequences exhibiting
the association between X and Y in excess of those that would
be expected if X and Y were independent of each other. To
mine temporal association rules, a temporal constraint can be
embedded into the measure. That is,

leverage(X
T→Y ) = supp(X

T→Y ) − supp(X
T→)

× supp(
T→Y ) (2)

where supp(X
T→Y ) represents the proportion of sequences in

which Y occurs after X within a T-sized window. supp(X
T→)

and supp(
T→Y ) denote the proportion of sequences that contain

X and Y, respectively, among all the T-constrained sequences.
While this measure can express the temporal association be-
tween two events, it cannot effectively represent the potential

TABLE I
MEMBERSHIP OF EACH CAUSALITY CATEGORY FOR SAMPLE SIGNAL PAIRS

(PID MEANS PATIENT IDENTIFICATION NUMBER)

causal relationship between a drug and a symptom. Hence, a
new measure needs to be introduced.

Our strategy is to utilize an experience-based model (i.e.,
the computational fuzzy RPD model) to capture the potential
causality between X and Y. We introduce PCAR, denoted by

X
C→Y , meaning that X potentially causes Y. The degree of

potential causality of an event pair in each event sequence is
determined by the fuzzy RPD model in which temporal associa-
tion is only one of the four parameters that are used to assess the
strength of causal association between two events. Note that the
RPD model employs “situation-experience matching” decision
rules to determine how well the current situation matches var-
ious prior experiences. Specifically, for each interesting drug–
symptom pair, the values of four cues (i.e., temporal association,
other explanation, dechallenge, and rechallenge) are abstracted
from the related electronic patient record. These cue values then
match the cue values in the four defined experiences, each of
which corresponds to a unique category of causality (i.e., very
likely, probable, possible, and unlikely). A similarity value be-
tween the current pair and each of the experiences is obtained
using a similarity measure developed in our previous work [2].
The similarity measure was defined as the weighted sum of all
the local similarities between each pair of cue values associated
with the same cue in the two sets of cue values. The calcula-
tion of a local similarity depends on the type of the associated
cue that can be fuzzy, nominal, or quantitative. After that, these
similarity values are normalized so that their sum is equal to 1.
These normalized values are then used to represent the member-
ship values of corresponding categories of causality between the
drug of interest and symptom. For example, if the normalized
similarity value between a pair and the experience exhibiting
“probable” association is 0.4, we would say that the causality of
the drug–symptom pair is “probable” with a membership value
of 0.4. Table I gives several sample drug–symptom pairs as well
as their membership values related to each causality category.
Note that, given a particular drug, there may exist none, one, or
multiple drug–symptom pairs within each patient case. Patient
3, 6, and 7 in the table do not contain drugs and/or symptoms
of our interest.
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Let μv , μp , μo , and μu represent the membership values of
causality categories “very likely,” “probable,” “possible,” and
“unlikely,” respectively. Then, the quadruple μ = {μv , μp , μo ,
μu} can be used to characterize the potential causality of a
drug–symptom pair. In order to define a causality-based lever-
age measure, we combine the membership values of the four
causality categories into one number using weighted sum and
define the degree of causality of a pair as

C<drug, symptom> = μv × wv + μp × wp + μo × wo

+ μu × wu (3)

where wv , wp , wo , and wu are the weights for μv , μp , μo , and
μu , respectively. In this study, we set {wv , wp , wo , wu} as {1.0,
0.667, 0.333, 0.0} based on two considerations. First, causality
categories representing stronger causal associations should have
higher weights. That is, wv > wp > wo > wu must be satisfied.
Second, the range of C<drug, symptom> should be [0, 1]. That
is, C<drug, symptom> should be 0 for the extreme situation μ =
{0,0,0,1} where the evidence in a patient record strongly shows
“unlikely” association of the pair. If all the evidence in the
patient supports “very likely” association (i.e., μ = {1,0,0,0}),
C<drug , symptom> should be 1. Otherwise, C<drug, symptom> is
between 0 and 1. Given the aforementioned weights for μv , μp ,
μo , and μu , the causality of pair <drugA, symptom1> in patient
1 can be calculated as follows:

C1
<drugA , symptom1> = 0.6 × 1.0 + 0.2 × 0.667 + 0.15

× 0.333 + 0.05 × 0.0 = 0.783

where the superscription 1 indicates the patient identification
number (PID).

In general, if the experience-based fuzzy RPD model classi-
fies the causality between X and Y into m categories, the degree
of causality is defined as

C<X,Y > =
m∑

i=1

μi × wi (4)

where μi is the membership of the ith causality category for the
pair, and wi represent the corresponding weight when converg-
ing all the causality categories into one. Moreover,

m∑

i=1

μi = 1.

We define the support of a PCAR, supp(X
C→Y ), as the accu-

mulated votes over all sequences. That is, it is calculated by first
summing all votes of each sequence divided by the total number
of sequences. The vote of a sequence is a function of causality
between X and Y. That is,

supp(X
C→Y ) =

∑n
j=1 αj

<X,Y >

n
(5)

where n is the total number of sequences, and αj
<X,Y > repre-

sents the vote of the jth sequence with respect to the pair <X,Y>.

αj
<X,Y > is defined as

αj
<X,Y > =

{
Cj

<X,Y > , if Cj
<X,Y > > θ

0, otherwise
(6)

where Cj
<X,Y > is the degree of causality between X and Y in

the jth sequence. θ is the user-specified threshold, which ensures
that if the causality of pair <X, Y> is low in a sequence, this
sequence will not be considered when calculating the support
of the PCAR. The purpose of the inclusion of parameter θ is
to exclude those false associations as much as possible based
on the assumption that they normally obtain lower values for
Cj

<X,Y > . The selection of θ for the ADR problem will rely on
either domain experts (e.g., physicians and drug safety officers)
or experiments. In the latter case, our interestingness measure
will be used to detect one or more known ADR signals when
θ takes various values. The appropriate value for θ will be the
one that ranks high for the known drug–ADR pairs among all
the pairs in a database. Note that if a sequence does not contain
both X and Y, the causality between X and Y is 0. One can see
that the contribution of each sequence to the support measure
becomes gradual as opposed to binary. That is, the higher the
degree of association between X and Y in a sequence, the more
the sequence contributes to the measure. This definition of the
support measure is more reasonable in the ADR detection and
likely many other medical applications than its traditional def-
inition where the contribution of sequence to the measure is
either 0 or 1.

As an example, we now compute the support of the PCAR

drugA
C→ symptom1 using the data in Table I. We assume that

θ is equal to 0.2. The degree of causality of pair <drugA,
symptom1> in patient 1 was already calculated earlier. Since
0.783 > 0.2 in patient 1, α1

<drugA ,symptom1> = 0.783. The
causality of pair <drugA, symptom1> in patient 4 is computed
as follows:

C4
<drugA , symptom1> = 0.0 × 1.0 + 0.1 × 0.667 + 0.2

× 0.333 + 0.7 × 0.0 = 0.133.

Since the value is less than θ = 0.2, α4
<drugA ,symptom1> = 0.0.

Similarly, we can get C7
<drugA ,symptom1> = 0.467, which is

larger than θ. Thus, α4
<drugA ,symptom1> = 0.467. None of the

other patient cases contains the pair <drugA, symptom1>. Their

votes are zeros. Therefore, the support of the PCAR drugA
C→

symptom1 is

supp(drugA
C→ symptoml) =

0.783 + 0.467
8

= 0.156.

Next, we introduce a new interestingness measure, potential
causal leverage, based on the aforementioned definition of the
support of a PCAR. The potential causal leverage of a PCAR is
given as

potential causal leverage(X
C→Y ) = supp(X

C→Y )

− supp(X
C→) × supp(→ Y ) (7)
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where supp(X
C→) is the proportion of sequences whose votes

are not equal to 0 with respect to the pair <X,Y>. Based
on the earlier discussions, only the votes in patients 1 and 7

are greater than 0 when computing supp(drugA
C→ symptom1).

Thus, supp(drugA
C→) = 2/8 = 0.25. Given the data shown in

Table I, supp(→symptom1) = 4/8 = 0.5 since four cases contain
symptom1. Hence,

potential causal leverage(drugA
C→ symptom1)

= 0.156 − 0.25 × 0.5 = 0.031.

As a comparison, we also calculated the potential causal lever-

age of another PCAR—drugA
C→ symptom2:

potential causal leverage(drugA
C→ symptom2)

= 0.19 − 0.25 × 0.375 = 0.096.

Therefore, drugA has a stronger association with symptom2 than
with symptom1 based on our potential causal-leverage measure,
even though pair <drugA, symptom1> has a higher frequency
than pair <drugA, symptom2>. Note that, in Table I, there
are three cases containing <drugA, symptom1>, but only two
cases containing <drugA, symptom2>. The supports for tra-
ditional association rules drugA→ symptom1 and drugA →
symptom2 are 3/8 and 2/8, respectively. Their confidences are
3/5 and 2/5, respectively. That is, drugA has a stronger asso-
ciation with symptom1 than with symptom2, according to the
traditional support and confidence measures. We believe that
our result is more reasonable because, even though fewer cases
contain the pair <drugA, symptom2>, they exhibit higher accu-
mulated degree of causality. Moreover, common high-frequent
illnesses (e.g., fever) often coexist with a drug by chance in the
databases, but they can be mistakenly classified as ADR sig-
nals if the traditional frequency-based measures are used. As
mentioned earlier, premarketing clinical trials fail to detect rare
ADRs which have to rely on postmarketing surveillance after
more patients expose to the drug. Our measure can deal with the
infrequent nature of ADRs better than the traditional association
rule mining measures.

To see the difference between our potential causal-leverage
measure and the traditional leverage measure, we also calculated
the latter for the two association rules drugA→ symptom1 and
drugA → symptom2 as follows:

leverage(drugA → symptom1) = supp(drugA → symptom1)

− supp(drugA →) × supp(→ symptom1)

=
3
8
− 5

8
× 4

8
= 0.0625

leverage(drugA → symptom2) = supp(drugA → symptom2)

− supp(drugA →) × supp(→ symptom2)

=
2
8
− 5

8
× 3

8
= 0.0156.

One can see that the traditional leverage measure comes to
the same conclusion (i.e., drugA has a stronger association with

Fig. 1. Algorithm for mining causal association rules (the term cases refers
to those patient records containing the drug of interest and noncases refers to
other patient records).

Fig. 2. Sample signal pairs within a patient case.

symptom1 than with symptom2) as the traditional support and
confidence measures. The reason is that all these measures have
the same drawback: the degree of association of the pair in
each case is not considered. That is, each patient case con-
tributes equally to the measures as long as that case contains the
drug–symptom pair of interest. Therefore, the traditional lever-
age measure cannot effectively handle the infrequent nature of
ADRs either.

III. MINING PCARS

In this section, we develop a data mining algorithm to search
for PCARs based on our potential causal-leverage measure.
Specifically, we will explore how to mine a clinically oriented
electronic database in order to find out the strengths of asso-
ciations between a drug of interest and various symptoms. We
assume that patient data are stored in various tables in a rela-
tional database. In the following descriptions, we use the term
cases to refer to those records containing the drug of interest
and noncases to refer to other records.

Fig. 1 shows an overall picture of the algorithm. First, each
record is classified as either case or noncase, depending on
whether it contains the drug of interest. Next, each case is
searched for all possible drug–symptom pairs based on drug
start dates and diagnosis dates. As discussed earlier, in a typ-
ical electronic health database, one cannot easily differentiate
the underlying disease from a potential ADR, both of which
are encoded in the ICD-9 codes and have diagnosis dates in
the database. For example, cough (ICD-9 code 786.2) could
represent either an ADR caused by a drug-like enalapril or sim-
ply a cough related to some other conditions. Moreover, since
each patient case records the patient’s history for a long pe-
riod of time, the same drug may be prescribed many times and
thus multiple drug start dates may exist for it. Similarly, there
may exist multiple diagnosis dates for the same condition or
ADR. Therefore, we must compare each start date of the drug
of interest with each diagnose date of a condition/symptom. A
drug–symptom pair is recognized if the symptom occurs at least
once after one of the start dates of the drug within a certain
period of time (e.g., 90 days). If we assume enalapril is our drug
of interest, Fig. 2 shows that two pairs are found within one
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case. In this case, since the ICD-9 code 729.1 (myalgia) occurs
before all the start dates of enalapril, it does not form a pair
with the drug. The ICD-9 code 786.2 (cough) occurs after the
first start date of enalapril in 24 days. Thus, a pair is found, i.e.,
enalapril—786.2. The code 276.7 (hyperkalemia) occurs twice
after the second start date of enalapril. A pair is formed between
the drug and the closest occurrence of 276.7.

After a pair is found, its degree of association is assessed using
the fuzzy RPD model. Four cues (i.e., temporal association,
other explanation, dechallenge, and rechallenge) are utilized in
this process. Their values are extracted from patient cases using
fuzzy rules. For example, the cue temporal association is a
fuzzy variable whose value is obtained using fuzzy rules like
“if the time duration between taking a drug and occurrence of a
symptom is short, then temporal association is likely.” Readers
are referred to our previous paper [2] for all the fuzzy rules used
in this study.

After the cue values of a pair are extracted from a case, we
use the feature-matching procedure introduced in Section II to
transform the data of a pair to the format shown in Table I. We
then compute the support and potential causal leverage for all
the pairs, each of which implies a possible PCAR. To further
increase the accuracy of our data mining algorithm, we also
use a frequency threshold δ to exclude those pairs with very
high frequencies since they may generate false signal pairs.
They are primarily those pairs between the drug of interest and
the symptoms caused by the underlying diseases treated by the
drug. Since ADRs are infrequent and usually have much lower
frequencies than those pairs, the exclusion of the pairs will
unlikely eliminate any true signals. Finally, instead of setting an
explicit threshold for the potential causal-leverage measure, we
rank all the PCARs in the decreasing order of the measure and
ask the program to return the most interesting rules.

IV. EXPERIMENT

A. Experiment Setting

To evaluate the effectiveness of our new data mining strat-
egy, we retrieved the electronic data of all the patients who
received at least one of the eight drugs of our interest in the
Veterans Affairs Medical Center in Detroit during the time pe-
riod from September 4, 2007 to September 16, 2009. There were
six cholesterol or “statin” drugs (i.e., rosuvastatin, atorvastatin,
fluvastatin, lovastatin, pravastatin, and simvastatin) and two an-
giotensin converting enzyme inhibitor or “ACEI” drugs (i.e.,
captopril, and enalapril). Event data such as dispensing of drug,
office visits, and certain laboratory tests were retrieved for all
the patients. For each event, certain details were obtained. For
example, the data for dispensing of drug include the name of
the drug, quantity of the drug dispensed, dose of the drug, drug
start date, drug schedule, and the number of refills.

The total number of patients retrieved was 16 206 (15 605
males and 601 females). Their average age was 68.0. To test
our data mining algorithm, we selected a drug whose associated
potential ADRs have a relative high occurrence frequency since
ADRs generally occur infrequently and the size of our database

is moderate. In general, if the occurrence rate of a potential ADR
is greater than 1%, it can be easily detected in a premarketing
clinical trial. As we mentioned in Section I, if the occurrence
rate of a potential ADR is less than 0.1%, it normally cannot
be detected. If the rate is between 0.1% and 1%, the ADR may
or may not be detected depending on the size of the premarket-
ing clinical trial. Thus, the occurrence rate of a potential ADR
is generally less than 1% in postmarketing surveillance. More-
over, to generate a valid signal, the interestingness measure is
often used along with another criteria—the count of drug–ADR
pairs being greater than or equal to 3 [13]. That is, even if the
calculated interesting measure for a pair is high (e.g., higher
than a predefined threshold), the pair cannot be considered as
a valid signal if there are less than three patient cases that are
evaluated as containing the potential ADR. This requires at least
300 (3/0.01 = 300) cases in order to generate a valid signal even
if the occurrence rate is 1%. Owing to these considerations, we
picked the drug enalapril to test the proposed algorithm since
1021 patients were found taking the drug at least once in the
database and the number of its known potential ADRs had rela-
tive high occurrence rates [24], [25]. One thousand two hundred
and ninety distinctive ICD-9 codes were found to be associated
with this drug for these patients.

All the data were deidentified and stored in a Microsoft
Access database. Java database connectivity (JDBC) [26], an
application programming interface for the Java programming
language, was used to access the database. JDBC could wrap
a structured query language (SQL) statement [27], send it to
the database, and retrieve the desired data. Fuzzy rules and
fuzzy reasoning were implemented using the freeware Fuzzy-
Jess [28], a Java-based fuzzy inference engine. It allowed the
user to use the Java language to define membership functions,
set antecedent and consequent of a fuzzy rule, and made a fuzzy
inference.

B. Experimental Results

It might be necessary to briefly describe the nature of the
ground truth for ADRs before we present our experimental
results. For some potential ADRs, there only exist a limited
number of reports about their associations with particular drugs
in the literature due to their infrequent nature and the difficul-
ties establishing causal relationships. In many other cases, even
if the statistical information is available, it is still difficult to
say whether a drug is associated with a symptom. For exam-
ple, the premarketing clinical studies for enalapril indicate that
the incidence of asthenia for patients who took enalapril and
placebo was 1.1 and 0.9, respectively [29]. In this example, we
are not certain whether asthenia is an ADR of enalapril since
the number 1.1 is only slightly larger than 0.9. Because of these
reasons, clinicians normally use linguistic terms such as “pos-
sible,” “probably,” and “very likely” to describe the association
between a drug and a potential ADR.

The potential causal-leverage values were calculated for
each of the pairs between enalapril and all the 1290 distinctive
ICD-9 codes involved with this drug. All the pairs were ranked
in decreasing order according to their potential causal-leverage
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TABLE II
ICD-9 CODES FOUND TO INDICATE POSSIBLE ADRS ASSOCIATED WITH DRUG

ENALAPRIL AMONG THE TOP 50 SIGNAL PAIRS RANKED ACCORDING TO THE

POTENTIAL CAUSAL-LEVERAGE VALUES

values. The top 50 pairs were evaluated by the physicians on
our project team, and eight of them were found to be possi-
ble ADRs. Table II shows the ICD-9 codes of these eight pairs
as well as their descriptions, and the corresponding potential
causal-leverage values and ranks. These ICD-9 codes repre-
sent “possible” ADRs that might be caused by enalapril ex-
cept “276.7” (hyperpotassemia) which is considered as a “very
likely” ADR by our physicians. Physicians often are uncertain
about the causal relationship between a drug and a symptom
due to the fact that the same syndrome or ADR may be caused
by various other conditions. More details regarding this issue
are provided in Section V.

We also examined the ICD-9 codes that occurred more fre-
quently than the threshold δ in the same patient cases (i.e., those
pairs excluded by the frequency threshold). We set δ to 0.01
since the frequencies of ADRs are generally lower than 1%. To
exclude those high-frequency pairs, we simply assign −1 to the
potential causal leverage of the pairs to flag them. Note that
the normal value of the potential causal leverage of a pair is
between −1 and 1. Twenty-two out of 1290 ICD-9 codes were
found to be excluded. Our physicians determined that none of
them were potential ADRs. This indicated that the frequency
threshold δ was at an appropriate level and did not eliminate
true signal pairs.

Since different ICD-9 codes may represent the same (or sim-
ilar) diagnoses, we also clustered the data mining results into
a manageable number of categories based on the clinical clas-
sifications system (CCS) for the ICD-9-CM fact sheet [30].
Developed at the Agency for Healthcare Research and Quality,
the CCS can group over 13600 ICD-9 codes into 285 mutually
exclusive and clinically meaningful categories. We accumulated
the potential causal-leverage values of the ICD-9 codes that be-
longed to the same CCS category and then ranked the resulting
categories according to the accumulated leverage values. The
1290 ICD-9 codes coexisting with enalapril in our database
were grouped into 127 CCS categories. Among the top 50 cat-
egories, 14 of them were found to be possible ADRs associated
with enalapril. These categories as well as their corresponding
accumulated potential causal-leverage values and rankings are
shown in Table III. Again, these categories only represent “pos-
sible” ADRs. Besides the reason given earlier, another reason is
that a category may represent multiple symptoms and only one

TABLE III
CLINICAL CLASSIFICATION CATEGORIES FOUND TO INDICATE POSSIBLE ADRS

ASSOCIATED WITH DRUG ENALAPRIL AMONG THE TOP 50 CLASSIFICATION

CATEGORIES RANKED ACCORDING TO THE ACCUMULATIVE POTENTIAL

CAUSAL-LEVERAGE VALUES

TABLE IV
RANKS FOR TWO ICD-9 CODES 276.7 AND 786.2 WHEN THRESHOLD θ TAKE

DIFFERENT VALUES

or some of them are known to be potentially associated with the
drug.

Our physicians also evaluated the remaining 77 CCS cate-
gories. Only two of them (i.e., bronchitis and syncope) were
possible ADRs. Their rankings were 69 and 93, respectively.

We also examined how threshold θ affected our inter-
estingness measure in ranking two ICD-9 codes (276.6—
hyperpotassemia and 786.2—cough) whose associations with
enalapril were considered as “very likely.” Table IV gives their
ranks when θ takes a value between 0.0 and 0.3. The result
indicates that the threshold does improve the performance of
our measure when it changes from 0.0 to 0.05 or 0.1. The two
ICD-9 codes respond to the threshold a little bit differently.
While 276.6 reaches its highest rank at θ = 0.1, 786.2 obtains
its highest rank at θ = 0.25. The ranks for both codes become
lower when θ = 0.3. Based on the data in the table, any value
between 0.1 and 0.25 seems to be appropriate for θ. In general,
θ should be assigned a value that makes most known potential
ADRs have higher ranks.

C. Comparing Our Measure With Two Traditional Measures—
Risk Ratio and Leverage

To establish the value of our new interestingness measure,
we compared the ranks generated by our measure and two other
measures for the two ICD-9 codes 276.7 and 786.2. These two
measures are risk ratio and leverage without considering causal-
ity. Risk ratio is defined as the probability that a case coexists
with the ICD-9 code relative to the probability that a noncase
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TABLE V
COMPARISON OF RANKS GENERATED BY THREE INTERESTINGNESS MEASURES

FOR TWO ICD-9 CODES WHOSE ASSOCIATION WITH ENALAPRIL ARE KNOWN

TO BE “VERY LIKELY”

coexists with the same ICD-9 code. The risk ratio represents
a common method for investigating dichotomous variables and
potential causal associations between an exposure of interest
(drug) and outcome of interest (ADR). It generally relies on
estimating the frequency or incidence of the outcome among an
exposed cohort relative to the incidence of the outcome among
an unexposed cohort. The magnitude of the risk ratio may vary
from 0 to infinity. When the ratio is less than 1, the frequency or
incidence of the outcome of interest is less in the exposed cohort
than in the unexposed cohort and suggests that the exposure is
“protective.” When the risk ratio is over 1.0, the incidence of
the outcome is greater in the exposed cohort than in the un-
exposed cohort. For drugs that produce potential ADRs, we
anticipate that the incidence of ADRs will be greater in the
exposed cohort (those receiving drug) than in the unexposed co-
hort (those not receiving drug). This measure has been used by
the Medicines Control Agency in the U.K. to generate signals
of possible unrecognized hazards based on their spontaneous
reporting database.

Having established an estimate for the risk ratio and the es-
timate is greater than 1.0, we must ask whether the estimate is
significant. Can the estimate that is greater than 1.0 be attributed
to chance, or is it sufficiently greater to require further scrutiny?
For statistical inference in these experiments, we calculated 95%
confidence intervals for the estimated risk ratio [31]. For the ex-
periments described later when the boundaries for the 95% con-
fidence intervals exceed 1, it can be assumed that the estimated
risk ratio is unlikely to have occurred by chance. The risk ra-
tio for hyperpotassemia (ICD-9 276.6) is 1.45 (95% confidence
interval is [1.00, 2.10]). In the clinical setting, this represents
a very weak association between drug and outcome (potential
ADR). The risk ratio for cough (ICD-9 786.2) is 0.56 (95%
confidence interval [0.26, 1.05]) and would be regarded as no
association between drug and outcome (potential ADR). These
unimpressive estimates for the risk ratio are reflected in the low
ranks reported for risk ratios in Table V. These low estimates of
association between drug and potential ADR would not likely
warrant labor-intensive studies of causation without other bio-
logical evidence for a causal association.

The definition of the traditional leverage measure is already
given in Section II. Table V shows the comparison results gen-
erated by the three measures. For the leverage measure, while it
ranks hyperpotassemia as 28, it ranks cough as low as 1239. We
believe the main reason for this discrepancy is that among the
1021 patients who were taking enalapril, only 30 of them are
coded as having hyperpotassemia, and only 11 of them coded as

having cough. That is, the frequency of hyperpotassemia among
the patients taking enalapril is 2.73 times higher than that of
cough. This indicates that the traditional leverage measure can
still reasonably rank high for those potential ADRs with high
frequency. But it fails to distinguish those potential infrequent
ADRs from other symptoms. Risk ratio and leverage repre-
sent two typical frequency-based interestingness measures. By
looking at the ranks of the two “very likely” ADRs (i.e., 276.7
and 786.2), our potential causal-leverage measure performed
much better when compared to the risk ratio and leverage mea-
sures. The results also suggest that our measure has a much
stronger ability to identify infrequent potential ADRS than the
two frequency-based measures.

V. DISCUSSION

Establishing sound scientific evidence for linkages between
cause (drug) and effect (ADR) presents many challenges. For
this discussion, we highlight two rate-limiting steps that our
approach attempts to address. First, an important step in con-
firming causal relationships between drug and ADR depends
on accumulating multiple cases in which the signal pair (i.e.,
ADR and drug) has been observed and occurred in an appropri-
ate chronological sequence. Because clinicians ordering a drug
may overlook a potential causal link between drug and ADR, or
because physicians and pharmacists fail to report suspect signal
pairs, this step may be delayed for years following introduction
of the new drug. Second, after identifying a sufficient number
of suspect cases (signal pairs), more thorough epidemiological
analyses must be conducted to sort through possible causative
factors, including drugs, and to quantify the boundaries of un-
certainty around suspect drugs. This step requires the gathering
of more detailed clinical information from each case and the de-
sign and execution of analytical studies that are labor intensive
and rate limiting. For any given case, there are often multiple
factors that might cause or contribute to the outcome of interest
(ADR). This complexity is compounded by the observation that
the FDA receives more than 400 000 such reports for multi-
ple drugs each year [32]. In short, resources are insufficient to
conduct analytical studies for all of the suspect signal pairs.

Our approach addresses two of the rate-limiting steps de-
scribed earlier. First, the experience-based computational fuzzy
RPD model—by circumventing the current passive reporting
system—can significantly accelerate this rate-limiting step for
identification and accumulation of pertinent cases that exhibit
causality with respect to a signal pair. Second, our data mining
technique—based on the potential causal-leverage measure—
can sort and prioritize disparate signal pairs. Prioritizing poten-
tially significant signal pairs should improve the efficiency of
identifying and executing appropriate epidemiological analyses
that are required to confirm causal relationships. Therefore, we
want to emphasize that, like the other data mining methods,
our method primarily focuses on shortening the long list of po-
tential drug–ADR pairs. The highly ranked symptoms can be
considered as ADR hypotheses. Their values and significance
will be subject to further analysis (e.g., epidemiology study)
and case review and interpretation by drug safety professionals
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experienced in the nuances of pharmacoepidemiology and clin-
ical medicine [33].

The experimental results in Table V demonstrated that our
potential causal-leverage measure outperformed traditional in-
terestingness measures such as risk ratio and leverage. Com-
pared with traditional data mining methods used in this field,
the value of our approach lies in its ability to capture suspect
causal relationships. Traditional data mining approaches sim-
ply find the statistical correlation between two events X and
Y . They do not specify whether X causes Y , or vice versa,
or whether a third event causes the coexistence of X and Y .
Our approach utilizes an experience-based fuzzy RPD model
to capture the potential causal nature of a drug–symptom pair
within each patient case. The causalities for all the cases are
then incorporated into an interestingness measure (i.e., poten-
tial causal leverage). This measure can not only capture the
potential causality of a pair but also address the infrequency
issue. The reason is that, for a drug–symptom pair of interest,
the contribution of each patient case to this interestingness mea-
sure depends on the strength of causality between the drug and
the symptom within that case. Hence, relatively infrequent pairs
may get a high value for the interestingness measure as long as
each supporting case exhibits high causality.

Despite the advantages of our approach discussed earlier,
some frequently occurring symptoms may still be falsely ranked
high based on the potential causal leverage. The reason is that,
in many cases, it is very difficult to capture the actual causal-
ity of a signal pair due to the complexity, incompleteness, and
potential bias of the data. As examples, we list three situa-
tions that complicate the causality capturing process as follows:
1) if two drugs are often prescribed together, it is difficult to
determine which one causes a symptom of interest based on the
time-related cue values such as temporal association and rechal-
lenge. 2) Frequently prescribed drugs are often temporally as-
sociated with symptoms by coincidence. 3) Alternatively, some
potential ADRs may not be recorded in a health database, which
make any data mining approach ineffective in discovering the
potential ADRs.

Our experimental results suggest that existing data mining
measures used for generating potential signals based on spon-
taneous reports will have limited utility when mining electronic
health database. The risk ratio, for example, failed to effectively
rank the two known signals in our study. One reason for this dis-
parity is that data from spontaneous reports are clean and simple
since the data are filtered by reporters and the reported data only
include the relevant information at the time point when the sus-
pected adverse event occurred. Electronic health data contain
all data collected and entered for each patient including large
amounts of data that is irrelevant to the ADR problem. Another
important reason is that the causality of each reported drug–
symptom pair is already implied by the corresponding report.
That is, a report is normally filed only after the reporter has cer-
tain evidence (e.g., reasonable temporal association) about the
causal relationship of the suspected pair. Therefore, even though
measures like risk ratio cannot capture the potential causal re-
lationship of a pair, they can still be used to signal potential
signals using spontaneous reports. Electronic health data are

much more complex and potentially significant drug–symptom
pairs for any given patient will be obscured by multiple irrele-
vant pairs. For example, one complexity is that symptoms of a
potential ADR cannot be differentiated from those of an under-
lying disease, both of which are encoded using the same ICD-9
codes in electronic health databases. For a drug–symptom pair,
the associated symptom may be caused by the disease and be
manifest after the drug therapy is initiated.

VI. CONCLUSION

We have introduced a knowledge representation PCAR and
developed a new interestingness measure, potential causal
leverage, to quantify the degree of possible causality of a PCAR.
Based on this novel measure and an experience-based fuzzy
RPD model, we have developed a data mining algorithm to
search an electronic health database for potential ADR signals.
Experimental results showed that our method could improve
the efficiency of identifying a reduced list of signal pairs that
will more likely prove to be clinically significant causal rela-
tionships when subjected to more rigorous analyses. Its value
will be further tested by searching for different signal pairs in
different electronic health databases.
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