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Department of Electrical and Computer Engineering, SoC Research Lab, University of British Columbia, 2356 Main Mall, Vancouver, BC, Canada V6T1Z4

Received 1 August 2004; received in revised form 18 February 2005; accepted 20 March 2005

Abstract

Recently, the use of multiprocessor system-on-chip (MP-SoC) platforms has emerged as an important integrated circuit design trend for

high-performance computing applications. As the number of reusable intellectual property (IP) blocks on such platforms continues to

increase, many have argued that monolithic bus-based interconnect architectures will not be able to support the clock cycle requirements of

these leading-edge SoCs. While hierarchical system integration using multiple smaller buses connected through repeaters or bridges offer

possible solutions, such approaches tend to be ad hoc in nature, and therefore, lack generality and scalability. Instead, many different forms of

network on chip (NoC) architectures have been proposed in the past few years to specifically address this problem. We believe that the NoC

approach will ultimately be the preferred communication fabric for next generation designs. To support this conjecture, this paper

demonstrates, through detailed circuit design and timing analysis that different proposed NoC architectures to date are guaranteed to achieve

the minimum possible clock cycle times in a given CMOS technology, usually specified in normalized units as 10–15 FO4 delays. This is

contrasted with the bus-based approach, which may require several design iterations to deliver the same performance when the number of IP

blocks connected to the bus exceeds certain limits.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction and motivation

According to recent publications, e.g. [1–3], the

emergence of system-on-chip (SoC) platforms consisting

of large, heterogeneous sets of embedded processors is

imminent. As described in [2], a common design paradigm

emerging for SoC integration involves arrays of intellectual

property (IP) blocks, such as embedded processors

consisting of around 100 K gates, integrated according to

a specific interconnect template. Collectively, these plat-

forms are referred to as MP-SoC platforms [1], meaning that

multiple processors are integrated on the same SoC design.

While this is conceptually elegant, it implies a host of new

issues, in addition to the already existing issues of SoC

design. For example, embedded software and real-time

operating system design, hardware/software co-design,

system verification, configurability and programmability
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of such platforms must all be addressed in the context of

MP-SoC.

Another key element of such platforms is the nature of

the communication fabric. A common problem shared by all

interconnect topologies implemented in ultra deep sub-

micron (UDSM) technology is the communication latency

that arises from global wire delays. Even with repeater

insertion, the intra-chip propagation delay of long wires can

exceed the limit of one clock cycle [4,5] if the die size is

large enough. To overcome this problem, many large

designs today use first-in first-out (FIFO) buffers to

synchronously propagate data over long distances across

the chip. The FIFO insertion process is ad hoc in nature, and

therefore, not easily generalizable and scaleable. Wires need

to be divided into segments that have a propagation time

compatible with the clock cycle budget, and signals need to

propagate along these segments in a pipelined fashion.

To date, the most frequently used on-chip interconnect

architecture is the shared-medium arbitrated bus. Advan-

tages of shared-bus architectures include topological

simplicity, low silicon area requirements, and extensibility.

Some of the associated disadvantages as the number of IP

blocks increases include relatively large load per data-bus
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Fig. 1. Illustration of the FO4 metric.

Fig. 2. Clock period trend [8].
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line, long delay for data transfer, high energy consumption,

increasing complexity of the decoding/arbitration and low

bandwidth [6]. Every additional IP block connected to the

bus adds to the parasitic capacitance, in turn, causing

increased propagation delay. For a relatively long bus line,

the intrinsic parasitic resistance and capacitance can reach

excessive values [4,5]. As the bus length increases and/or

the number of IP blocks increases, the bus bit transfer delay

may exceed the specified clock cycle.

One solution for such cases is to introduce a hierarchical

architecture and split the bus into multiple shorter segments.

This approach also reduces the bottleneck caused by

relatively slower IP blocks, such as typical I/O devices.

Each shorter bus section can be viewed as effectively

constituting a pipeline stage with a propagation delay that

must fit within the clock cycle budget. However, the delay

of each stage in the case of a hierarchical bus-based system

depends on the parasitic capacitance due to the IP blocks

connected to the individual bus segments. Therefore, the

above methodology only yields a solution, where the timing

specifications and the interconnect design are tightly

coupled, and the solution will depend on the specific IP

blocks and their functional and parametric specifications.

The ad hoc nature of the latter solution presents several

disadvantages, particularly with regard to scalability and

design automation.

Based on the premise that a structured solution is an

effective way to manage complexity, the use of a network

on chip (NoC) has been proposed by many researchers [1,2,

15,19]. The NoC-based approach to the above-mentioned

interconnect problem provides a highly-structured, multi-

core SoC design methodology that can achieve aggressive

clock/data rates without incurring undue design effort. The

key is to use an on-chip interconnect topology resembling

the interconnect architecture of high-performance parallel

computing systems [3]. The common characteristic of these

kinds of architectures is that the functional IP blocks

communicate with each other through intelligent switches.

These switches should be designed to be reusable and their

primary role should be to ease the integration process of the

functional IPs. As such, the switches can be considered as

infrastructure IPs (I2Ps) [7] providing a robust data transfer

medium for the functional IP modules. Global signals,

spanning a significant portion of a die in more traditional

design styles, now only have to span the distance separating

infrastructure switches. This switch-based architecture

offers the advantage that the switches, along with the

inter-switch wire segments, can now form the basis for a

highly pipelined communication medium.

One of the challenges arising out of NoC design is to

constrain the delay of the pipeline units to a limit of one

clock cycle. The definition of a clock cycle is, of course,

based on the required performance of a digital circuit, but

this value changes from design to design, and from

technology to technology. One way to normalize the clock

cycle is to represent it in terms of a technology-independent
value that still provides information about the speed of the

design. The fanout-of-four (FO4) delay metric serves

exactly this purpose. It is defined as the delay of one

inverter driving four identical ones as shown in Fig. 1(a).

For specific values of the supply and threshold voltages of

the transistors, the FO4 delay is fixed for a given

technology. For example, for a 90 nm technology with

VDDZ1 V and VTZ0.3 V, the FO4 delay is approximately

40 ps, as is shown in Fig. 1(a). If the cycle time through the

combinational logic between two flip–flops (including flip–

flop overhead) is given as 1000 ps in a 90 nm technology, it

would be represented by 25 FO4 delay units, as illustrated in

Fig. 1(b). A design with a higher clock frequency would, of

course, have fewer than 25 FO4 delays between clock edges.

Clock frequencies of high-performance microprocessors

have improved by nearly 40% annually over the last decade.

This increase in clock frequency has come from technology

scaling and deeper pipelining of designs. The clock period

scaling trend is summarized in Fig. 2 following data

published by ITRS [8]. Around 1985, designs had roughly

100 FO4 delays per cycle. Since that time, the number has

been steadily declining in value, primarily due to pipelining

the computation, and has recently exhibited a tendency

towards saturation. In accordance with Fig. 2 and ITRS [8],

a, generally, accepted rule of thumb is that the clock cycle of

high performance SoCs will saturate at a value between 10

and 15 FO4 delay units. This is a reasonable target

saturation level since flip–flops incur overhead in the

range of 4–5 FO4 units, leaving only about 10 FO4 units

to carry out all necessary logic functions. It is difficult to

imagine clock cycles significantly below this level.
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Nevertheless, we will show that even this clock cycle

limit is achievable by proper design of the switch elements

and inter-switch wire segments of the NoC architecture.

This makes communication pipelining with a pre-specified

clock rate achievable regardless of the system size. On the

other hand, achieving this in a bus-based approach is

difficult. Hence, with a network on chip (NoC) architecture,

the SoC inter-block communication fabric can be designed

and optimized independently from the specific constituent

blocks (i.e. processing elements).
Fig. 4. Hierarchical buses.
2. Related work

SoC designs today predominantly use a shared-medium,

bus-based functional interconnects to integrate IP blocks.

The reason for this is that buses are well-understood, are

suitable for small SoC designs and have standardized

interfaces. Several industrial buses in use today have similar

characteristics. They consist of a high-performance system

backbone bus, able to sustain the bandwidth of the CPU and

other direct memory access devices, plus a bridge to a lower

speed bus on which lower bandwidth peripherals are

located. Three popular commercial bus configurations

include ARM AMBA [9] bus, Wishbone [10] and IBM

CoreConnect [11]. In the case of the Advanced Micro-

controller Bus Architecture (AMBA) [9], the high-speed

buses are the Advanced High-performance Bus (AHB) and

Advanced System Bus (ASB) and the lower speed bus is the

Advanced Peripheral Bus (APB). A typical AMBA

architecture is shown in Fig. 3(a).

Similarly, the IBM CoreConnect architecture provides

three different types of buses, namely Processor Local Bus

(PLB) for high-speed devices, On chip Peripheral Bus

(OPB) for peripherals, and Device Control Register (DCR)

Bus for status and configuration registers. Fig. 3(b) shows

the typical CoreConnect architecture. According to several

experts, including those found in [3,6], these bus-based

systems may suffer from drawbacks of limited scalability as

per the preceding discussion and arguments.

A few on-chip micro network proposals for SoC

integration can be found in the literature. Sonic’s Silicon

Backplane [12] is one example. In this architecture, the IP

blocks are connected to the communication medium

through specialized interfaces called agents. Each core

communicates with an agent using the Open Core Protocol

(OCP) [13]. MIPS Technologies has introduced an on-chip
switch integrating IP blocks in a SoC [14]. The switch called

SoC—it is intended to provide a high-performance link

between a MIPS processor and multiple third party IP cores.

The standard bus architecture works well when the

number of IP blocks to be integrated is relatively small. To

support higher degrees of integration, the single monolithic

bus-based architectures evolved to hierarchical structures,

where multiple smaller buses are integrated. This is

illustrated in Fig. 4. Conceptually, the approach is simple

but the design of such structures also tends to be ad hoc in

nature. In the short-term, this will continue to be a viable

solution. However, as the number of IP blocks grows, it too

will reach its limitations.

True NoC architectures began to appear in the literature

in 2001. Instead of building a multi-processor (MP) SoC

around an ad hoc interconnection of multiple buses,

different parallel computing architectures were mapped to

the SoC domain. Consequently, most of the NoC

architectures proposed by researchers in this domain

evolved from parallel processing structures, e.g. [15,16,18,

19]. Kumar [15] has proposed a mesh-based interconnect

architecture named CLICHÉ. Dally et al. [16] suggested a

Torus-based architecture. Both of these architectures consist

of an m!n mesh of switches interconnecting computational

resources (IPs) placed along with the switches. Each switch

is thereby connected to four neighboring switches and one

IP block. In this case, the number of switches is equal to the

number of IPs. Saastamoinen [17] describes the design of a

reusable switch to be used in future SoCs. The interconnect

architecture is however not specifically discussed. Guerrier

and Greiner [18] proposed the use of a tree-based

interconnect (SPIN) and addressed system level design

issues. In [19] and [20], the authors describe an interconnect

architecture based on Butterfly Fat-Tree (BFT) topology for

a networked SoC, as well as the associated design of the

required switches and addressing mechanisms. This paper

quantitatively discusses the effect of the system size on
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the achievable clock cycle duration in a multi-core SoC

environment.
3. Achievable clock cycle in a bus segment

We now return to the bus-based SoC and develop a

simplified model to analyze how system size affects the

achievable clock cycle. In this situation, multiple IP blocks

share the same transmission media. As the number of

connected IP blocks increases, the capacitance attached to

the bus wires increases correspondingly. For ease of

analysis (but without loss of generality), we assume this

extra capacitance to be evenly distributed along the wire and

model it as a parasitic capacitance.

This negatively impacts propagation delay and, ulti-

mately, the achievable clock cycle. Viewed another way,

this limits the number of IP blocks that can be connected to

the bus and, thereby, the system scalability.

As many existing on-chip buses are multiplexer-based

[9–11], they are basically unidirectional, and can therefore,

easily be buffered. Attaching IP blocks to a bus adds an

equivalent parasitic capacitance of CIP per unit length of

wire to an existing capacitance of Cw per unit length due to

the wire itself. As a result, the driving capability of the bus is

negatively affected, and buffer insertion is required to

accommodate a number of IPs beyond a certain threshold

while still satisfying a propagation delay of one clock cycle.

If a bus wire is divided into Nbus segments, then each wire

segment will have a capacitance of (CwCCIP) per unit

length. The configuration of the wire with inserted buffers

(repeaters) is shown in Fig. 5.

We now derive the delay equation for this situation. First,

without any parasitic wire and IP capacitance and

resistance, the total delay Dinv would simply be

Dinv Z Nbustinv Z NbusðCG CCJÞReqn (3.1)

where CGCCJ is the total gate and junction capacitance

of the inverter, respectively, and Reqn is the equivalent

driving resistance of the inverter. Second, if we consider

the wire and parasitic capacitance by themselves, we

would represent it as a lumped p-model and derive the
(1) (2)
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where Rw is the wire resistance per unit length and Lbus is the

total length of the bus. Finally, when the inverter and

parasitics are combined in each stage, we obtain a delay

using Elmore [22] that is the sum of the above equations,

plus and additional term representing the interactions

between buffer and wire.

Therefore, the delay in the buffered bus wire Dbuffered can

be computed according to the following equation

Dbuffered Z Nbustinv

C CGRwm C
ðCw CCIPÞReqn

m

� �
Lbus

C0:4RwðCw CCIPÞ
L2

bus

Nbus

(3.3)

where tinv is the delay of an inverter sized for equal rise and

fall propagation delays, m is the size of the inverters, CG is

the gate capacitance of the minimum size inverter, Reqn is

the resistance of n-type diffusion region in U/g, Rw and Cw

are the resistance and capacitance per unit length of the

wire, respectively, and Lbus is the bus length. The values of

m and Nbus that minimize Dbuffered have been used in

subsequent calculations. Consequently, the achievable

clock cycle will be 1/Dbuffered. This approach of delay

modelling optimizes the delay along a bus segment

assuming uniformly distributed load. However, if the IP

blocks load the bus wires non-uniformly then the buffers can

have different sizes and spacings, depending on the specific

parasitics distribution.

Using this equation, it is possible to study the variation of

the clock cycle as a function of the value of CIP and establish

limits on the performance of the bus-based approach. The

particular case of 130 nm technology node for a fixed bus

length is shown in Fig. 6. From the figure, it is evident that

as CIP increases beyond a certain value, the clock cycle

exceeds the limit of, say, 15 FO4 delay units. In this respect,

the threshold value of CIP can be considered as a metric for
(Nbus)

RW

Cw+CIP

m RW

Cw+CIP

Lbus

Nbus

Lbus

Nbus

ire segment.



Fig. 6. Variation of delay with parasitic capacitance CIP for a fixed bus

length.
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the scalability of a bus-based system as it relates to how

many IP blocks can be attached to a bus before the delay

exceeds one clock cycle. However, due to heterogeneous

nature of constituent IP cores in a SoC (DSPs, MPEG

decoders, memories etc.), it is not possible to quantify, a

priori, the number of IPs that can be connected to a bus

segment. Rather, by knowing CIP and the types of IPs that

need to be integrated for a particular application, we will be

able to determine whether the clock cycle is achievable.

One way to deal with this scalability problem is to split

the bus into smaller segments. A bus of shorter length can

support more parasitic capacitance, CIP, arising from

attached IP blocks (assuming that the bus can physically

accommodate them). Fig. 7 shows the delay along a bus

segment as a function of Lbus for a 130 nm technology node,

but here we assume a fixed value of CIP. Again, beyond a

certain limit, a 15 FO4 cycle time cannot be achieved.
Fig. 7. Variation of delay with bus length for a fixed CIP.
In reality, the two graphs of Figs. 6 and 7 should be

combined to provide a three-dimensional view of the delay

characteristics. In Fig. 8, we show, for illustrative purposes,

the delay characteristics as a function of both Lbus and CIP

for the same technology node (130 nm). From the figure, the

trend is that more parasitic capacitance CIP can be supported

by reducing the length of the bus. On the other hand, for any

bus length, CIP will be constrained by the target 15F04 limit.

As an example, when the bus length is 6 mm, then the

allowable parasitic capacitance is 20 fF/mm; when the bus

length is increased to 10 mm then the parasitic capacitance

reduces to 8 fF/mm to keep the delay along the wire segment

within the specified limit of 15 FO4.

Based on this analysis, a single conventional shared bus-

based system will not easily be able to achieve the clock

cycle predicted in ITRS in high performance MP-SoCs. The

relatively long bus needs to be split into smaller

components. The lengths of each section of the shorter

buses can be designed such that they are able to individually

support a clock cycle of 15 FO4. The multiple, relatively

shorter, buses can be integrated using repeaters or bridges.

For larger SoCs, the use of multiple hierarchical bus-

based systems is recommended and, ultimately, it can be

viewed as a form of network of chip. However, unless they

are constrained to have certain topological characteristics a

priori, such bus-based networks will vary widely

(depending on the specific SoC), and will therefore, possess

ad hoc characteristics. For more robust and scalable

solutions to this problem, we propose that a design

methodology for a structured network be imposed.
4. NoC-based structured interconnect architectures

Over the past few years, a number of NoC architectures

have been proposed by different research groups. They can

be classified into two basic groups: derivatives of generic

fat-trees and the k-ary n-cubes. The SPIN and BFT belong

to the first group while CLICHÉ, Torus and the Folded

Torus fall into the second category. In the following
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subsections, we provide a brief review of these architec-

tures. In the illustrative examples, the functional IP blocks

are denoted by white squares, while the infrastructure IPs

(switches) are denoted by dark squares.
1

0

Fig. 11. BFT architecture.
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a

4.1. Spin

Guerrier and Greiner [18] have proposed a generic

interconnect template called Scalable, Programmable,

Integrated Network (SPIN) for on-chip packet switched

interconnections, where they have used a generic fat-tree

architecture to interconnect IP blocks. In this fat-tree, every

node has four sons and the parent is replicated four times at

any level of the tree. Fig. 9 shows the basic SPIN

architecture with 16 functional IP blocks and Fig. 10

shows the corresponding conceptual block diagram. The

size of the network grows as (N log N)/8, where N denotes

the number of functional IP blocks integrated [18]. The

functional IP blocks reside at the leaves and the I2Ps

(switches) reside at the vertices.
Fig. 12. BFT block diagram.
4.2. BFT

We recently proposed another type of network archi-

tecture for SoCs-based on the Butterfly Fat-Tree (BFT) [19],

as shown in Fig. 11. In our network, the IPs are placed at the

leaves and switches placed at the vertices. A pair of

coordinates labels each node, (l,p), where l denotes a node’s
Fig. 9. SPIN architecture.
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Fig. 10. Block diagram of SPIN.
level and p denotes its position within that level. In general,

at the lowest level, there are N IPs with addresses ranging

from 0 to (NK1). The pair (0, N) denotes the locations of IPs

at that lowest level. Each switch, denoted by S (l, p) has four

child ports and two parent ports. The IPs are connected to N/

4 switches at the first level. The number of levels depends on

the total number of IPs, i.e. for N IPs, the number of levels

will be log4N. In the jth level of the tree, there are N/2jC1

switches. For a very large system size, the number of

switches in the butterfly fat-tree architecture converges to a

constant independent of the number of levels [19]. A

conceptual block diagram of the BFT architecture with 16

functional IP blocks is shown in Fig. 12.
4.3. CLICHÉ

Kumar et al. [15] have proposed a mesh-based

interconnect architecture called Chip-Level Integration of

Communicating Heterogeneous Elements (CLICHÉ). This

architecture consists of an m!n mesh of switches

interconnecting computational resources (IPs) placed

along the X- and Y-axes. Each switch, except those at the

edges, is thereby connected to four neighboring switches

and one functional IP block. In this case, the number of

switches is equal to the number of functional IPs. The

resources and the switches are connected through com-

munication channels. A channel consists of two uni-

directional links between the switches or between a switch

and a functional IP (Fig. 13).
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Fig. 15. Folded Torus.
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4.4. Torus

Dally et al. [16] have proposed a 2D Torus as an NoC

architecture. The Torus architecture is basically the same as

the mesh; the only difference being that the switches at the

edges are connected to the switches at the opposite edge

through a wrap-around channel [23]. Each switch has five

ports, one connected to the local functional IP and the others

connected to the closest neighboring switches. The long

end-around connections can yield excessive delays

(Fig. 14). However, this can be avoided by folding the

Torus as shown in Fig. 15 [26].
5. Switch architecture

Before carrying out the timing analysis of NoC

architectures, it is important to describe the details of the

switches that are used in the communication path between

IP blocks. We do not discuss the functional IP blocks

themselves, since they are dependent on the specific

application. However, for the purposes of this paper, they

may be considered as a set of embedded processors.

Switches are an integral part of all the NoC topologies

and we assume that all of them use essentially the same

switching circuitry to provide for a uniform comparison.
A
re

a

Area

Fig. 14. Torus.
The overall design of the switches depends on the adopted

data transfer (switching) methodology. Wormhole switch-

ing, where the packets are divided into fixed length flow

control units (flits) is assumed here. The first flit, i.e. header

flit, of a packet contains routing information. Header flit

decoding enables the switches to establish the path and

subsequent flits simply follow this path in a pipelined

fashion. As a result, each incoming data flit of a message

packet is simply forwarded along the same output channel,

as the preceding data flit and no packet reordering is

required at destinations. If a certain flit faces a busy channel,

subsequent flits also have to wait at their current locations.

One drawback of this simple wormhole switching

method is that the transmission of distinct messages cannot

be interleaved or multiplexed over a physical channel.

Messages must cross the channel in their entirety before the

channel can be used by another message. This will decrease

channel utilization if a flit from a given packet is blocked in

a buffer. By introducing virtual channels [23] in the input

and output ports we can increase channel utility consider-

ably. If a flit belonging to a particular packet is blocked in

one of the virtual channels, then flits of alternate packets can

use the other virtual channel buffers, and hence, ultimately,

the physical channel. The canonical architecture of a switch

having virtual channels is shown in Fig. 16.

The different components of the switch port are shown in

Fig. 17. It mainly consists of input/output FIFO buffers,

input/output arbiters, multiplexer (MUX) and demultiplexer

(DEMUX) units, and a routing block. Each physical input

port has more than one virtual channel, uniquely identified

by its virtual channel identifier. Flits may simultaneously

arrive at more than one virtual channel. As a result, an

arbitration mechanism is necessary to allow only one virtual
Fig. 16. Virtual-channel switch.
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channel to access a single physical port. Similarly, flits from

more than one input port may simultaneously try to access a

particular output port. Hence, another arbiter is required at

each output port. The routing logic block determines the

output port to be taken by an incoming flit, i.e. the next node

to be followed in the path.

The operation of the switch consists of one or more

processes depending on the nature of the flit. In the case of a

header flit, the sequence of the processes is: (1) input

arbitration; (2) routing; and (3) output arbitration. In the

case of body flits, switch traversal replaces the routing

process as the routing decision based on the header

information is maintained for the subsequent body flits.

This sequence of processes is conceptually shown in Fig. 18

for the header, data, and tail flits. Clearly, this processing

sequence can be executed in a pipelined fashion, which is

desirable in a NoC context.
6. Communication pipelining

A common characteristic of all the NoC architectures is

that the whole communication medium can be divided into

accurately predictable stages. The structured inter-switch

wire segments together with the switches establish a highly

pipelined communication infrastructure as shown in Fig. 19.
input
arbitration

output
arbitrationrouting

switch
traversal

input
arbitration

output
arbitration

Header Flits

Data/Tail Flits

Fig. 18. Intra-switch pipeline stages.
In terms of interconnect wire delay, the NoC architectures

offer the advantage that the wires between IP blocks and

between switches are logically structured. Therefore, their

lengths and delays are largely predictable and consistent

across the entire network. This is a compelling feature of

any structured approach to design.

The switches (I2Ps) required in each of the network

architecture solutions mentioned previously consist of

multiple stages. We can differentiate between two types of

delays, namely inter- and intra-switch. Through detailed

circuit level design and analysis, we can constrain the delay

of each pipelined stage to be within the ITRS suggested

limit of 15 FO4 delay units. By doing this, and ensuring that

wire delays also comply with this target, we can guarantee

that the communication network will operate at any

reasonable clock frequency.

6.1. Wire delay between switches

Using the earlier example layouts shown for the various

NoC architectures, we will now determine the longest inter-

switch wire that arises for each of them under the specific

placement constraints. After determining the longest inter-

switch wire segments that arises in each of the topologies,

we determine the delay in sending data across each such

wire segment. If the delay along the longest inter-switch

wire segment can be constrained to be within the assumed

clock cycle limit of 15 FO4, then the delay along all the

other shorter inter-switch wire segments will follow suit.

The inter-switch wire lengths depend on the specific

topology adopted for the SoC infrastructure and the system

size. The number of IPs interconnected in a single SoC will

vary from one technology node to another, and also depend

on the specific architecture. Letting AIP denote the area of
Functional IP (embedded processor)
Infrastructure IP (switch)

Fig. 19. Pipelined data transfer.



Table 1

Maximum number of 100 K IP blocks in different technology nodes

Technology node 130 nm 90 nm 65 nm 45 nm 32 nm

Max. no. of 100 K

gates IP blocks

500 1000 2500 7500 10,000

Table 2

Distribution of functional and infrastructure IP blocks

Technology node

(nm)

No. of functional IPs No. of I2Ps

BFT SPIN Mesh/Torus/

Octagon

BFT SPIN Mesh/Torus/

Folded Torus

130 428 400 375 214 300 375

90 856 800 750 428 600 750

65 2142 2000 1875 1071 1500 1875

45 6426 6000 5625 3213 4500 5625

32 8568 8000 7500 4284 6000 7500
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the functional IP blocks and AI2P denote the area of the

switches, then

AreaSoC Z N1AIP CN2AI2P (6.1)

where N1 and N2 are the number of functional and

infrastructure IPs, respectively, and AreaSoC is the total

area of the SoC under consideration. For a BFT, N1Z2N2;

for SPIN architecture N1Z(4/3)N2; and for all the others

under consideration here, N1ZN2. These numbers help to

determine the distribution of functional and infrastructure IP

blocks in a SoC. Assuming IP blocks consisting of 100 K

gates, Table 1 shows the maximum number of 100 K gates

IP blocks that can be integrated in a single SoC in different

ITRS technology nodes [4,21]. There are plenty of

evidences in support of IP blocks amounting to such sizes

[21]. The values of the number of IP blocks shown in

Table 1 are obtained by dividing the maximum number of

gates1 that can be integrated in a 20 mm!20 mm die in

different technology nodes by 100 K gates [8].

From our implementation, we found that the switches

consist of 27–30 K gates depending on the specific

architecture considered. Consequently, the distribution of

functional and infrastructure IP blocks for the different

NoCs is indicated in Table 2.

The wire lengths between switches in the BFT and the SPIN

architectures depend on the levels of the switches. On the other

hand, the number of switch levels can be expressed as a

function of system size (N) as levelsZlog4 N for both, where N

is the number of functional IP blocks in a SoC. The inter-switch

wire length is given by the following expression [21]

waC1;a Z

ffiffiffiffiffiffiffiffiffiffi
Area

p

2levelsKa
(6.2)
1 Here, we considered a two-input minimum-sized NAND structure as a

reference gate.
where waC1,a is the length of the wire spanning the distance

between level a and level aC1 switches, where a can take

integer values between 0 and (levelsK1). Table 3 shows the

inter-switch wire lengths for the BFT and SPIN architectures in

all the technology nodes assuming a die size offfiffiffiffiffiffiffiffiffiffi
Area

p
Z20 mm. In the table, ! indicates that the particular

inter-switch wire is not present in the given technology node.

From Table 3, the longest inter-switch wire length in the

BFT and SPIN is 10 mm.

In CLICHÉ, the inter-switch wire lengths can be

determined from the following expression:

w Z

ffiffiffiffiffiffiffiffiffiffi
Area

p

ffiffiffiffi
N

p
K1

(6.3)

As the system size N, which is the number of functional

IP blocks, varies among the technologies in CLICHÉ, the

inter-switch wire lengths differ for the different technology

nodes. However, in a specific technology node all of them

are of same length. In the Torus architecture, all the inter-

switch wire lengths are the same as those for the CLICHÉ

except for the wraparound wires, which will have a length offfiffiffiffiffiffiffiffiffiffi
Area

p
Z20 mm. In the Folded Torus, all the inter-switch

wire lengths are double those for the CLICHÉ architecture

[28]. Table 4 shows the inter-switch wire lengths in the case

of CLICHÉ, Torus and Folded Torus architectures for

different ITRS technology nodes.

As before, we can compute the intrinsic RC delay of a

wire according to the equation below [22]

Dunbuffered Z 0:4RwCwL2 (6.4)

where L is the wire length. In different technology nodes, the

corresponding FO4 delay can be estimated as 425!Lmin,

where Lmin is the minimum gate length in each technology

node [8]. For long wires, the intrinsic delay will easily

exceed the 15 FO4 limit. In those cases, the delay can, at

best, be made to increase linearly with wire length by



Table 3

Inter-switch wire lengths in mm (Tree-based architectures)

Technol-

ogy node

(nm)

No. of

levels

W11,10 W10,9 W9,8 W8,7 W7,6 W6,5 W5,4 W4,3 W3,2 W2,1

130 6 ! ! ! ! ! 10.000 5.000 2.500 1.250 0.625

90 7 ! ! ! ! 10.000 5.000 2.500 1.250 0.625 0.312

65 9 ! ! 10.000 5.000 2.500 1.250 0.625 0.312 0.156 0.078

45 10 ! 10.000 5.000 2.500 1.250 0.625 0.312 0.156 0.078 0.039

32 11 10.000 5.000 2.500 1.250 0.625 0.312 0.156 0.078 0.039 0.019

800
15FO4 130 nm

15FO4 90 nm

15FO4 32 nm

15FO4 45 nm

15FO4 65 nm

32 nm 45 nm 65 nm 90 nm 130 nm

700

600

500

400

300

200

D
el

ay
 [p

s]
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inserting buffers. If the wire is divided into n segments and n

inverters are inserted, then the total delay of the buffered

wire will be according to the following expression [22]

(which is similar to the one given earlier for bus-based

systems):

Dbuffered Z ntinv C CGRwm C
CwReqn

m

� �
L C0:4RwCw

L2

n

(6.5)

where m is the relative size of the inverters with respect to

the minimum sized inverter, tinv is the delay of an inverter

driving another identical inverter, CG is the gate capacitance

of the minimum size inverter, Reqn is the resistance of n-type

diffusion region in U/g, Rw and Cw are the resistance and

capacitance per unit length of the wire, respectively, and L is

the wire length.

Fig. 20 reports buffered global wire delay, Dbuffered, versus

wire length in successive technology nodes. The wire

capacitance and resistance values are scaled for each

technology according to ITRS [8]. From the plots, in the

case of BFT and SPIN, the longest inter-switch wires can be

driven by a clock of period of 15 FO4 after proper buffer

insertion. Our analysis also shows that most of the inter-

switch wires in case of BFT and SPIN need not be buffered

[20]; shadings in Table 3 denotes the wire segments that need

to be buffered. The only apparent exception occurs at the

32 nm technology node for the wire segment between levels

11 and 10 of the communication network. These wire

segments are projected to be 10 mm long, whereas the

maximum buffered wire length that can be driven by a clock

of 15 FO4 in this particular technology node is 8 mm. There

are techniques available to resolve this issue such as in [28],

but undoubtedly new techniques will be developed by the

time the industry reaches the 32 nm technology node.
Table 4

Inter-switch wire lengths for CLICHÉ, Torus and Folded Torus

Technology

nodes (nm)

Inter-switch wire length

CLICHÉ (mm) Torus (mm)a Folded Torus

(mm)

130 1.1 1.1 2.2

90 0.73 0.73 1.46

65 0.46 0.46 0.92

45 0.27 0.27 0.54

32 0.23 0.23 0.46

a With the exception of wrap-around wires.
Considering the same die size, inter-switch wires for the

CLICHÉ architecture need not be buffered. The wrap-around

wires in the Torus need buffer insertion, and, from Fig. 18, in

some cases their delays will exceed the limit of one clock

cycle even with buffer insertion. Once again, this can be

overcome through the same procedure of [28]. In the case of

the Folded Torus architecture the inter-switch wires need not

be buffered. The delay will always be less than 15 FO4.

The above analysis illustrates the important feature of the

NoC architectures, whereby all the inter-switch wire lengths

and corresponding delays can be determined a priori.

Moreover the parasitic capacitance due to the functional IP

blocks does not load these wire segments directly.

Consequently, the delay along these segments can be

determined independently of the processing nodes. The

regular structure of NoC topologies simplifies the layout and

even with first-order placement solutions as depicted in

Figs. 10, 12–15, the timing constraints of high performance

SoC designs can be relatively easily met.

6.2. Circuit delay through the switches

The switches principally have three stages: input arbiter,

routing (switch traversal) and output arbiter. The particular
100

0
5 10 15 20

Global Wire length (buffered) [mm]

25 30 35 40 45

Fig. 20. Buffered global wire delay in different technology nodes.

X p12 p13 p14

p21 X p23 p24

p31 p32 X p34

p41 p42 p43 X

Fig. 21. Priority matrix.
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Fig. 22. (a) Block diagram of an arbiter; (b) one element of the priority matrix.
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design of these blocks varies from one architecture to

another. Through circuit-level design and analysis we show

that the delay in each of these stages for all the topologies

under consideration can be constrained within the limit of

10–15 FO4.
6.2.1. Arbiter

The arbiter circuit essentially consists of a priority matrix

[24], which stores the priorities pij of the requesters and

grants generation circuits used to grant (gnti) resources to

requesters. The priority matrix stores priorities between n

requesters in a binary n!n matrix. The structure of the

matrix in case of four requesters is shown in Fig. 21. The

priority of a requester with respect to itself does not have any

physical significance and hence the elements along the main

diagonal in the priority matrix are void and denoted by X.

Each matrix element [i, j] records the binary priority

between each pair of inputs. For example, suppose requester

i has a higher priority than requester j, then the matrix

element [i, j] will be set to 1, while the corresponding matrix

element [j, i] will be 0. A requester will be granted the

resource if no other higher priority requester is bidding for

the same resource. Once a requester succeeds in being

granted a resource, its priority is updated and set to be the

lowest among all requesters. The block diagram of the

matrix arbiter and the circuit diagram to implement one

element of the priority matrix are shown in Fig. 22.

The delay of the arbiter circuit depends on the number of

requesters. For the input arbiter, the number of virtual

channels governs the number of requesters. The primary

role of the virtual channels is to increase channel utilization

so that overall throughput of the system increases [25,27]. In

[27], it is shown that for a multi processing system- under
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Fig. 23. Block diagram of the LCA routing circuit.
different data patterns, throughput shows a saturating trend

if the number of virtual channels is increased beyond four.

Each extra virtual channel beyond this limit does not

significantly improve system throughput. Consequently in

our design, we set the number of virtual channels to four.

Hence for all the NoC architectures, we need a 4:1 arbiter at

the input.

The output arbiter depends on the total number of ports in

a switch for a particular architecture. If a switch has k ports

then a (kK1):1 arbiter is needed at each output port.

Consequently for BFT and SPIN we need 5:1 and 7:1 arbiter

at the output respectively and for CLICHÉ, Torus and

Folded Torus a 4:1 arbiter is needed at each output port.
6.2.2. Routing block

The hardware implementation of the routing block

depends on the specific routing algorithm adopted. In the

case of BFT and SPIN, the LCA (least common ancestor)

based [23] routing algorithm is followed. In this case, the

first step in the implementation of the routing logic involves

the bit-wise comparison (XOR) of the source and

destination addresses taking the most significant, i.e. MZ
(log2NK2 l) bits, where N is the number of functional IP

blocks in the system and l denotes the level number of the

switch. Subsequently, the result of the comparison is

checked, i.e. whether any ‘1’ results from the bitwise

XOR operation. The basic structure of the hardware block

implementing the LCA algorithm is shown in Fig. 23.

The routing algorithm adopted for the CLICHÉ, Torus

and the Folded Torus is the e-cube dimension order routing

[23]. Here, the addresses of all the nodes are divided into

two groups representing the X- and Y-coordinates. At each

node, the X and Y parts of the destination addresses are
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Fig. 24. Block diagram of the e-cube routing circuit.



Fig. 25. Switch traversal circuit.
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compared with the corresponding parts of the current nodes

to determine the next node in the path. The hardware

implementation of the e-cube algorithm is as shown in

Fig. 24.

6.2.3. Switch traversal

Routing decisions are made once the header flit reaches

the switch and subsequent body flits just follow the same

path. Consequently, from Fig. 17, the switch traversal

process involves a chain of multiplexers and demultiplexers

as shown in Fig. 25.

6.3. Experimental results

We developed VHDL models for the complete switches

in all the topologies mentioned above and synthesized them

using Synopsys’ synthesis tool in a CMOS 0.13 m standard-

cell based technology. We used Synopsyse Prime Time to

determine the delay along the critical path in all the building

blocks of the switches. The results are shown in Table 5. To

have a technology-independent measure of the delays we

also converted the absolute values obtained from Prime

Time timing analysis tool to FO4 delay units.

Due to the fact that there are four virtual channels at the

inputs, irrespective of the NoC architecture, the delay of

the input arbitration block has the same value for all of

them. Furthermore, in the case of CLICHÉ, Torus and
Table 5

Delay through the switches

NoC architec-

ture

Delay of the intra-switch pipelined stages

Input arbitration (ti.a.) Routing (tr)

(ps) FO4 units (ps) FO4 units

SPIN 500 9 360 6.5

CLICHÉ 500 9 331 6

Torus 500 9 331 6

Folded Torus 500 9 331 6

BFT 500 9 276 5

t r <1

t w <15FO4

t st i.a.
t i.a.<15FO4 t s.t.<1

t w

Fig. 26. Delays associated with the
Folded Torus, the number of ports in a switch is identical,

and thus, the delays of the output arbitration block are equal.

These results indicate that the delay associated with each

stage of operation of the switch is well within the ITRS-

suggested limit of 15 FO4, and can therefore, be driven by a

clock with a period of 15 FO4.

The structured inter-switch wires and the processes

underlying the switch operations yield four types of

pipelined stages. Together, these four types characterize

the functionality of the communication fabric. This is

illustrated in Fig. 26. Through careful design and analysis,

we have shown how to constrain the delays of each of these

stages such that they are bounded by the clock period limits

suggested by ITRS [8] for high performance multi-core SoC

platforms.
7. Conclusions

Multi-core SoC platforms are emerging as the trend for

future SoC designs. A single monolithic bus-based archi-

tecture cannot generally meet the clock cycle requirements

for these systems. One solution is to simply split up the single

bus into a network of interconnected smaller buses. Ad hoc

solutions tend to constitute locally optimized solutions that

are not easily automated, portable, or scalable. The NoC

design paradigm overcomes this clock cycle limitation

problem based on a highly-structured architecture.

In this paper, we present compelling arguments for the

adoption of structured NoC-based topologies as interconnect

fabric as they greatly simplify the design process and

provide predictable timing characteristics. A complete SoC

interconnection network can be constructed by dividing

the communication medium into multiple pipeline stages.

From detailed circuit level design and analysis, we
Switch traversal (ts.t.) Output arbitration (to.a.)

(ps) FO4 units (ps) FO4 units

310 5.6 608 11

221 4 500 9

221 4 500 9

221 4 500 9

275 5 555 10

5FO4

t r

.t.
5FO4 t o.a.<15FO

t o.a.

t

pipelined stages on data path.
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demonstrated that for all the NoC topologies considered here,

these stages can be clocked with a minimum feasible time

period of 15 FO4 delay units irrespective of the system size.

It can be argued that this clock cycle constraint can also

be achieved in a hierarchical bus-based system. However,

multiple design iterations may be required due to the fact

that the IP blocks directly affect the achievable clock cycle

by capacitively loading the communication fabric. On the

other hand the clock cycle requirement can be met

independently of the IP blocks in NoC architectures. This

would allow a decoupling of the design and optimization of

the communication fabrics and the functional IP blocks.

In effect, we have demonstrated how network on chip

(NoC) types of interconnect architectures overcome the

inherent non-scalability associated with traditional bus-

based systems. Any perceived constraints of the structured

architectures are well outweighed by the performance

benefits and other portability, scalability, and design

automation benefits.
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