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Abstract

We establish lower bounds on the capacity of wireless ad hoc networks, which hold with
probability approaching unity as the number of nodesn approaches infinity.

We first focus on networks withn immobile nodes, developing a scheme that can achieve an
aggregate throughput that grows withn as n

1
2−ε, for any ε > 0, and under a general model of

fading.
We then extend our formulation to study the effects of mobility. We develop a scheme that can

achieve an aggregate throughput that grows asn
1
2−ε, for any ε > 0, while respecting a constant

upper bound on the packet delay which does not depend onn. We then identify a fundamental
throughput-delay tradeoff in mobile ad hoc networks. In particular, provided we tolerate packet
delays that are upper bounded bynd, where0 < d < 1, the same scheme can achieve an aggregate
throughput that grows asn

1+d
2 −ε, for any ε > 0. A general model of fading is assumed. Nodes

require no global topology or routing information, and only need to coordinate locally.
Keywords: Ad Hoc Network, Capacity, Delay, Fading, Mobility, Throughput, Wireless Com-

munication.

I. I NTRODUCTION

Ad hoc wireless networks consist of collections of mobile nodes communicating over a
wireless channel. Contrary to cellular networks, where the nodes are restricted to communi-
cate with a few strategically placed base stations, in wireless ad hoc networks any two nodes
are allowed to communicate directly. However, because of the nature of the wireless channel,
each node can effectively communicate with only some of the others, that typically lie in its
vicinity. On the other hand, the traffic requirements are taken to be arbitrary, therefore it is
necessary that nodes cooperate to forward packets to their final destinations.

The problem of determining fundamental limits on the performance of ad hoc networks
has only recently attracted the interest of researchers [1], [2], [3]. In a landmark paper,
the authors of [1] investigate the asymptotic behavior of the capacity of a class of two-
dimensional random networks as the number of nodesn approaches infinity, under a uniform
traffic assumption. Here, nodes are assumed immobile. The authors present a scheme that
achieveswith high probability ( w.h.p.), i.e., with probability approaching1 asn approaches
infinity, a communication rate equal to(n log n)−

1
2 , up to a multiplicative constant, from each

node to its randomly chosen destination. The authors also show that, with high probability,
then nodes cannot send data to their destinations with a per-node communication rate greater
than (n log n)−

1
2 , up to a (different) multiplicative constant.

The last result is disheartening since it suggests that, as the number of nodesn goes to
infinity, the per-node communication rate will necessarily go to zero. However, node mobility
can lead to dramatic improvements: In [2] the authors concentrate on a wireless network with
n mobile nodes. They show that, with high probability, in the absence of any constraint on
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the delay in the delivery of a packet, each node is guaranteed a fixed rate of communication
to its destination, which is not a function of the number of nodesn. The downside of this
result is that, as the number of nodes increases, so will the expected packet delay.

In this paper, we continue the investigation along the lines of [1] and [2]. In Section II
we specify our model for wireless ad hoc networks, we formally define their capacity, and
we introduce the concept of the order of a network. In Section III we introduce notation and
a couple of simple technical lemmas. In Section IV we start by concentrating on networks
with immobile nodes and with no fading. In Section V we extend our formulation to include
fading. In Section VI we present a throughput-delay tradeoff for the case of networks with
mobile nodes, and in the presence of flat fading. We conclude in Section VII. Throughout
the text, terms being defined are set inboldface. Some of the proofs are omitted, but all
proofs appear in [4].

II. N ETWORK MODEL, CAPACITY AND ORDER

A. Network model

We consider a collection ofn immobile nodesX1, X2, . . . , Xn, placed randomly, uniformly
and independently, in the two-dimensional area{(x, y) : −1

2
≤ |x|, |y| ≤ 1

2
}.

Regarding the traffic model, we assume that each node is the source of a single data stream,
and the destination of a single data stream. A node cannot be the source and destination of the
samestream. Apart from this restriction, all other combinations of sources and destinations
are equally probable. Alternative traffic models can easily be incorporated in our formulation
and are studied in [4].

Nodes communicate over a wireless channel of bandwidthW . Half-duplex transmission
is assumed, i.e., nodes cannot transmit and receive simultaneously. Each node can transmit
with any powerPi, provided it is less than the maximumP0. When nodeXi transmits with
power Pi, nodeXj receives the transmitted signal with powerGijPi, whereGij = Kd−α

ij .
K is a constant, the same for all nodes,dij is the distance between nodesXi andXj, and
α > 2 is thedecay exponent. For now, we do not incorporate fading in our model.

Let {Xt : t ∈ T } be the set of transmitting nodes at a given time, each nodeXt transmitting
with powerPt. Let us assume that nodeXj, j 6∈ T is receiving information fromXi, i ∈ T .
Then thesignal to interference and noise ratio (SINR)at nodeXj will be

γj =
GijPi

η +
∑

k∈T , k 6=i GkjPk

,

where η is the thermal noise power at the receiver, which is assumed the same for all
nodes. We assume that the transmission of the packet will be successful if and only if the
transmission rate used,Rj, satisfies the inequality

Rj ≤ fR(γj) ≡ W log2(1 +
1

Γ
γj) (1)

where log2(x) denotes the logarithm ofx, in base2. With Γ = 1, the receiver achieves
Shannon’s capacity. WithΓ > 1, (1) approximates the maximum rate that meets a given BER
requirement under a specific modulation and coding scheme such as coded MQAM [5].

B. Capacity and order

Let there be a communication scheme (that is consistent with the assumptions on the
topology, the channel, and the transceivers) under which each source can send traffic to its
destination with an end-to-end rate equal toλ. We will say that the rateλ is uniformly
achievable. We define thecapacity C of the network to be the supremum of all uniformly
achievable rates, multiplied by the number of nodesn. Therefore, the capacity is the supre-
mum of all aggregatethroughputs that can be carried by the network. Note that, since there
is randomness in the creation of the network, the capacity is a random variable. LetC(n)



be the sequence of capacities of the network versus the number of nodesn. C(n) may be
thought of as a random process.

We are now ready to define the order of a network. LetO be the set of real numberso
for which the following holds:

lim
n→∞

P [C(n) ≥ no] = 1. (2)

The order of the network is defined as the supremum ofO. In other words, the order is
the supremum of all powers ofn with which the aggregate throughput can increase, with
probability approaching1. We do not define the order as the maximum ofO, as this may
not exist. (For example this is the case whenO is an open set.) On the other hand, the
supremum of a set always exists. (By convention, the supremum of the empty set∅ is −∞.)
Using the supremum also yields another important gain: to establish a lower boundb on the
order, we do not need to come up with a scheme that achieves the lower bound, i.e., its
aggregate throughput increases asnb. Rather, it suffices to exhibit, for allε > 0, a scheme
whose aggregate throughput increases asnb−ε.

Note that the definitions of the capacity and the order are quite general, and mayin
principle be applied to a broad range of networks, even to those that are not wireless.

III. N OTATION AND TECHNICAL LEMMAS

We will use the symbols<a, >a, ≤a, ≥a to denote that the corresponding inequality will
only hold asymptotically, i.e., for sufficiently largen. For example,f(n) <a g(n) means
that there is an0 such thatf(n) < g(n) for all n > n0.

Whenever the parameterk appears in a relation without having previously been defined,
it will be assumed that the relation will hold for some real and positivek. The same will
hold for all parameters of the formki.

Unless specified otherwise, all limits we write will be forn →∞. We will say thatf(n)
approaches a fixed limitL exponentially fast with rate r if |f(n)−L| ≤a exp(−knr). We
then writef(n) →r L.

Following [1], we say that an event sequence{An} occurswith high probability ( w.h.p.)
if P [An] → 1. Note that if{An} and{Bn} occurw.h.p., then{An ∩Bn} also occursw.h.p.
The following lemma, whose proof is a straightforward application of the union bound,
shows that the intersection of even polynomially many events also occursw.h.p, provided
the probability of these events goes to1 exponentially fast:

Lemma 1: Let{Anm}, wheren = 1, . . . and1 ≤ m ≤ M(n), be a collection of events for
which P [Anm] = P [An1] for all m = 1, . . . ,M(n), andP [An1] →r 1. Also letM(n) ≤a np.
ThenP [∩M(n)

m=1 Anm] →r 1.
This result will be used repeatedly in the following, sometimes without explicit mention.

Event sequences that go to1 (or 0) exponentially fast often appear in relation to large
deviations of random variables. An example appears in the following lemma, which is a
direct application of Chernoff’s bounds [6] (alternatively Sanov’s theorem [7]):

Lemma 2: LetB(n) be a sequence of binomially distributed random variables, with
number of attemptsa(n) and probability of success (per attempt)p(n), such that0 <a

p(n) <a 1 and a(n)p(n) ≥a knc, wherec > 0. Let β > 1. ThenP [ 1
β
a(n)p(n) < B(n) <

βa(n)p(n)] →c 1.

IV. A C ONSTRUCTIVELOWER BOUND ON THE ORDER

A. The cell lattice

We denote bybbxcc the greatest odd multiple of3 that is less than or equal tox. Let
0 < b < 1 andbbn b

2 cc = 2r +1. We divide the space occupied by the network into a regular
lattice of g(n) = (2r + 1)2 cells. The boundaries of the cells are formed by the lines

x = −1

2
+

i

2r + 1
, i = 0, . . . , 2r + 1, y = −1

2
+

j

2r + 1
, j = 0, . . . , 2r + 1.



Points on the boundary lines are assigned arbitrarily to one of the cells forming the boundary.
It is straightforward to show that

∀ε > 0, (1− ε)nb <a g(n) ≤ nb,

We denote the cells byc1, c2, . . . , cg(n). Each cell can be identified by its coordinates
(v1, v2) in the lattice, where−r ≤ v1, v2 ≤ r.

Let mi be the number of nodes in cellci. Since b < 1, the number of cells increases
polynomiallyslower than the number of nodes. This has the very nice implication that the
nodes become uniformly distributed in the cells exponentially fast:

Lemma 3: For allβ > 1, P [ 1
β
n1−b < mi < βn1−b ∀i] →(1−b) 1.

Proof: Pickβ > 1, and selectε > 0 such thatβ1 = β(1−ε) > 1. The number of nodesmi that
appear in a particular cellci follows the binomial distribution, with a number of tries equal to
a(n) = n and probability of successp(n) = 1

g(n)
. Sincea(n)p(n) = n

g(n)
≥ n1−b, Lemma 2

applies. Therefore,P [ 1
β1

a(n)p(n) < mi < β1a(n)p(n)] →(1−b) 1. Since β1a(n)p(n) <a

βn1−b and 1
β1

a(n)p(n) > 1
β
n1−b, we have thatP [ 1

β
n1−b < mi < βn1−b] →(1−b) 1. Noting

that the number of cells grows only polynomially fast, the result follows by Lemma 1.�

B. The routing rules

By Lemma 3, all cells are guaranteed to have at least one node (in fact many more) in
the limit of a large number of nodes. We are therefore justified to define the following rules
that govern the routing of data to their final destination:
(i) Direct transmission is allowed only between nodes that lie in the same cell, or in
neighboring cells (cells are calledneighbors if they share a common edge, so that each
cell has at most four neighbors).
(ii) Nodes that do not lie in the same or neighboring cells communicate by using nodes in
intermediate cells as relays. The message is first transmitted along cells whose x-coordinate
is the same as the x-coordinate of the source cell, until it arrives at a cell whose y-coordinate
is the same as the y-coordinate of the destination cell. Then, the message is transmitted along
cells whose y-coordinate is the same as the y-coordinate of the destination cell. In each of
the intermediate cells, one of the nodes in the cell is arbitrarily selected to act as the relay
of the packet.

Since the streams that are routed through a particular cell create load for the nodes in that
cell, it is important to have an estimation of their number. We have the following lemma:

Lemma 4: Letsi be the number of streams arriving at (and possibly going through) cell
ci. ThenP [si < 3n1− b

2 ∀i] →(1− b
2
) 1.

C. The time division

By the construction of the cell lattice, ifn is the number of nodes in the network, there
will be g(n) = bbn b

2 cc2 = (2r + 1)2 cells, g(n) being a multiple of9. Therefore, we may
divide theg(n) cells perfectly into nine sub-lattices. We index the nine sub-lattices by the
pairs(i, j), where−1 ≤ i, j ≤ 1. The cells belonging to sub-lattice(i, j) are all those whose
coordinates are(i+3k1, j +3k2), for somek1, k2 ∈ Z. In Fig. 1(a) we have shaded the cells
belonging to one of the9 sub-lattices.

We divide time into frames, and each frame into nine slots. Each slot corresponds to a
sub-lattice. At any time during that slot, only one node from each cell of the sub-lattice is
allowed toreceive(but many nodes in that cell may receive consecutively). As specified by
the routing protocol, the transmitter of that transmission will have to lie in the same cell, or
in one of the four neighboring cells. The transmitter will be transmitting with the maximum
powerP0.

We will clearly need a lower bound on the Signal to Interference and Noise Ratio (SINR)
at each receiver. Intuitively, such a bound exists, as the time division scheme spaces out the
interferers. In fact, we can prove the following:



Lemma 5: In the absence of fading, the SINRγi at any nodeXi, wherei = 1, . . . , n, is
asymptotically lower bounded by a fixed constantγmin, which is not a function ofn.

D. A lower bound on the order

We will refer to the algorithm specified in Sections IV-A to IV-C as thebasic scheme.
Theorem 1: The basic scheme achieves, with probability approaching1 as n → 1, an

aggregate throughputT (n) = k1n
b
2 for any b < 1. Therefore, the ordero of the wireless ad

hoc network is lower bounded byo ≥ 1
2
.

Proof: By Lemma 5, each receiver is asymptotically guaranteed a reception rate of at least
Rmin = fR(γmin) = W log2(1 + γmin). In addition, by Lemma 4 each cell will need to
serve less than3n1− b

2 streams with high probability. By Lemma 3, there will be, with high
probability, a node in every cell to forward the packets of these streams. Noting that, due to
the time division scheme, each cell will be able to receive packets during only one out of
nine slots, each stream is guaranteed,w.h.p., a rate equal toW log2(1+γmin)

27n1− b
2

. Multiplying by n

we see that an aggregate rateT (n) = W
27

log2(1 + γmin)n
b
2 is asymptotically achievable. The

bound on the order follows trivially. �

V. FADING

Until now, we have assumed that the transmissions are not subject to any type of fading,
so that the received power is a deterministic function of the distance between the transmitter
and the receiver. Here, we introduce flat fading, and show that the scheme introduced in
Section IV can be modified so that its aggregate throughput is reduced by a factor smaller
thannε, for any ε > 0.

A. Fading model

We assume that when nodeXi transmits with powerPi, nodeXj receives the transmitted
signal with powerGijPi, where nowGij = Kd−α

ij fij. The extra factorfij is the fading
coefficient, a non-negative random variable that models fading, and does not change with
time. We assume thatE[fij] = 1, and thatfij = fji. We take the distinctn(n−1)

2
fading

coefficients to be independent and identically distributed (iid). We also assume that their
complementary cumulative distribution functionF c(x) has a thin, exponentially decaying
tail. Formally:

F c(x) ≡ P [fij > x] ≤ exp[−qx] ∀x > x1, (3)

for some real and positive parametersq, x1. In addition, we make the very mild assumption
that there is afmedian > 0 such thatP [fij ≥ fmedian] ≥ 1

2
. Both of these assumptions

are satisfied by most distributions used to model fading. In fact, they are satisfied by the
Nakagami, Rayleigh, and Ricean distributions [4].

B. A lower bound on the order

Under the basic scheme, each node with a packet waiting to be relayed through a neigh-
boring cell will arbitrarily pick one of the nodes in that cell as the relay. In the absence of
fading, the choice of relay is not critical. With fading, the choice is clearly important, as
the power gains from one node to various nodes of the neighboring cell may be drastically
different. Fortunately, by Lemma 3 there are many potential receivers for a transmitter to
choose from.

We therefore use the basic scheme with a single modification on the routing rules. Specif-
ically, when it is the turn of a node to transmit, the transmitter will pick as the receiver any
of the nodes in the target cell, among those whose link with the transmitter has a fading
coefficient greater than or equal to the median of the distribution,fmedian. (By the definition
of the median, the probability that a node in the cell will satisfy this requirement is at
least 1

2
.) If such node does not exist, the packet is dropped. This rule is extremely intuitive:



nodes plainly avoid transmitting to nodes with poor fading coefficient. There is, however,
a complication. Once a packet arrives to its destinationcell, it may not find itself at its
destinationnode. This can easily be amended as follows: Let the packet be in nodeX1, and
have a destination nodeX2, both being in the same cellci. The packet will be transmitted
two more times, once to an intermediate nodeX3, and then from the intermediate node
to the destination nodeX2. The intermediate node is chosen among the nodes in cellci,
such that the fading coefficients of both links are greater than the median of the fading
distribution. If no such node exists, the packet is dropped. We will refer to this algorithm as
the spatial-diversity scheme.

For a given number of nodesn, there is a positive probability that the packets of some
of the streams will have to be dropped, since at some point along the way no node may be
found to satisfy the restriction we place on the fading coefficients. However, as the number
of nodes increases, this probability goes to zero, as we now show:

Let β > 1, and letpUh
if be the probability that the packets of streami will be dropped,

conditioned on the event that the source ish cells away from the destination (i.e.,h + 2
hops away, counting the extra2 hops in the last cell), and on the eventU = { 1

β
n1−b < mi <

βn1−b}. Note that, by Lemma 3,P [U ] →(1−b) 1. Then:

pUh
if =

h+1∑
l=1

P (packet is dropped right beforel-th hop)

≤ h(
1

2
)

1
β

n1−b

+ (
3

4
)

1
β

n1−b−2 (using the conditioning onU )

≤ 2n
b
2 exp[−(log 2)

1

β
n1−b] + (

4

3
)2 exp[− log(

4

3
)
1

β
n1−b] (sinceh < 2n

b
2 )

≤ exp[−k1n
1−b].

Noting that this upper bound does not depend on the number of hops, we can remove the
conditioning onh. SinceP [U ] →(1−b) 1, we can also dispense with the conditioning onU :
Let pif be the probability that the packets of streami will be dropped. Then:

pif ≤ P [U ] exp[−k1n
1−b] + (1− P [U ]) ≤a exp[−k2n

1−b].

Combining this result with the union bound, we have that the probability that the packets of
any stream are dropped,pf , goes to0 exponentially fast:

pf ≤ npif ≤ n exp[−k2n
1−b] ≤ exp[−k2

2
n1−b] →(1−b) 0. (4)

Equation (4) implies that, by taking advantage of the existing spatial diversity, all nodes will
be using strong paths and no packet will be dropped with high probability. However, a bound
on the interference experienced by the receivers is also required. Such a bound can be easily
derived, by virtue of the exponentially thin tail of the fading distribution. Indeed, focusing on
an arbitrary fading coefficient, we have, using (3), thatP [fij ≤ nε] ≥ 1− exp[−qnε]. Noting
that there aren(n−1)

2
fading coefficients (i.e, polynomially many), we can use Lemma 1 to

arrive at:
P [max{fij} ≤ nε] →ε 1. (5)

We now are now ready to state the main result of the section:
Theorem 2: In the presence of fading, the spatial-diversity scheme can achieve, with

probability approaching1 as n → ∞, an aggregate throughputT (n) = k2n
b
2
−ε for any

b < 1 and ε > 0. Therefore, the ordero is lower bounded byo ≥ 1
2
.

Proof: Pick an arbitraryε > 0. Let us concentrate on a receiving nodeXi. Because of the
restriction we place on which paths may be used, ifSi is the received power of the useful



signal without fading andSF
i is the received power with fading, we will haveSF

i ≥ fmedianSi.
In addition, by (5), andw.h.p., all fading coefficients will be smaller thannε. Therefore, ifIi

is the interference power atXi with no fading andIF
i is the interference power atXi with

fading, we will have thatIF
i ≤ nεIi. These bounds will hold uniformly, i.e. for all receptions,

andw.h.p.. Noting that the thermal noise power is not affected by the presence of fading, all
nodes are guaranteed,w.h.p., a minimum SINRγF

min equal to

γF
min(n) =

fmedian

nε
γmin, (6)

whereγmin is the minimum SINR in the absence of fading of Lemma 5. Therefore,w.h.p.,
each receiver is guaranteed a rateRF

min(n) = fR(γF
min(n)) = W log2(1 + γF

min(n)).
By Theorem 4, a maximum of3n1− b

2 streams will be arriving at each cell. For a few of
these, specifically those whose destination lies in the cell, three receptions will be required,
according to the routing rules. Therefore, a maximum of3× (3n1− b

2 ) receptions will have to
take place in each cell. Noting that each cell will be receiving in only one of every nine slots,
we see that each stream is guaranteed,w.h.p., a rate equal toW log2(1+γF

min(n))

81n1− b
2

. Multiplying by

the number of streamsn, an aggregate rateT (n) = W
81

log2(1+γF
min(n))n

b
2 is asymptotically

achievable. SubstitutingγF
min(n) from (6), and using the limitlimx→0

log2(1+x)
x

= log2(e) we
arrive at the result. �

VI. N ODE MOBILITY

Before formally presenting the capacity results under node mobility, it is worthwhile
discussing the basic idea behind them, which in fact is very simple: It was shown in [2] that a
number of simultaneous transmissions on the order ofn is possible, with a transmission rate
that does not decrease withn, if all nodes transmit to their nearest neighbors. In addition,
because of the mobility of the nodes, two transmissions are enough for a packet: once to
a relay (that happens to be the nearest neighbor of the source) and once more to the final
destination, whenever this happens to be the nearest neighbor of the relay. (One transmission
would also be enough, but the number of source-destination pairs that are also nearest
neighbors is not on the order ofn.) Therefore, an aggregate throughput on the order of
n is possible. However, under this scheme each packet will have to remain in its relaying
node for a time increasing also liken, since the chance of the relay being the closest neighbor
with the destination is1

n
(of course, to make this argument formal we need to specify the

mobility model in detail). The motivation for our schemes is simple: If more nodes could
receive the packet (and act as potential relays), rather than just one, maybe the packet would
not have to wait that much time. But for more nodes to receive the packet, it is necessary that
fewer nodes transmit, so that the transmitted signals experience less interference and reach
further. However, this will reduce throughput. In other words, it is clear that, in principle,
there can be a tradeoff between delay and throughput.

Fortunately, we already have developed the mathematical structure required to capture this
tradeoff, in the form of the cell lattice: With the proper time division, there can be one
transmission per cell, and all nodes in the cell will correctly decode it. If we decrease the
number of cells (by decreasingb), there will be fewer transmissions (aroundnb), but more
recipients per transmission (aroundn1−b). So the throughput will decrease but so will the
average delay per packet, since more nodes will be acting as relays, and this is exactly the
tradeoff we want to capture.

A. Network model

All the assumptions of Sections II and V continue to hold. However, nodes are no longer
immobile, but rather move inside the square region according to a stationary and ergodic
process that has the following properties:



(i) There is a duration of times, such that within this time interval, all nodes remain immobile,
so that the power gains of all links remain constant, even in the presence of fading.
(ii) There is a duration of timeS, such that after the passing of an interval of lengthS,
the positions of all nodes become perfectly reshuffled. In other words, after the lapse of an
interval equal toS, the nodes are again randomly, uniformly and independently redistributed.
For convenience, we takeS to be a large integer multiple ofs, i.e., S = Ns.

Finally, we assume that the whole communication period will last for a time interval of
length equal to2nDS, whereD is an arbitrary integer, greater than unity.

B. Constant delay constraint

As in Section IV, we divide the area of the network into a regular lattice ofg(n) = bbn b
2 cc2

cells. Now, however, we require that0 < b < 1
2
. The cells are again divided into the nine

sub-lattices(i, j) where−1 ≤ i, j ≤ 1.
As shown in Fig. VII(a), we divide time into identical frames, with each frame consisting

of N mini-frames. Each mini-frame will have a duration equal tos, and will consist of9
slots, each of durations

9
. In each of the slots, only nodes lying in a corresponding sub-lattice

are allowed totransmit(and only with maximum power). The rest will have to remain silent.
In addition to this time division, which is on the 9 slots of each mini-frame, we superimpose

another, distinctly different time-division, which is on theN mini-frames of each frame.
Specifically, theN mini-frames within the frame are logically independent: packets that are
transmitted, received, created, etc., in a given mini-frame are stored in the memory of the
nodes forN − 1 mini-frames, and then brought back forward for the corresponding mini-
frame of the next frame. We thus createN independent virtual channels, with the nodes
communicating using each of them independently. As a result, the topology in each of these
virtual channels becomes totally decorrelated every other mini-frame, as opposed to every
N mini-frames.

In the following, we suppress all reference to the “outer” time division, and we concentrate
on a single virtual channel. Therefore, our “working model” becomes that of Fig. VII(b). It
should be understood, though, that the nodes will be executing the same algorithm indepen-
dently, and concurrently, in each of theN virtual channels.

The algorithm executed in each of theN virtual channels is as follows: All nodes pick
a commonβ > 1. In the first, third, and generally all odd mini-frames, nodes wait for the
slot in which they are allowed to transmit (this depends on which sub-lattice the node lies).
They then transmit a packet, with rateRmin(n) = fR(Cγ

min(n)), whereγF
min(n) is given by

(6), for a time duration equal to s
9βn1−b . Nodes that lie in the same cell coordinate among

themselves, and transmit their packets consecutively. If there are more thanβn1−b nodes in
any cell, then some of the packets will not be transmitted and will be dropped. We call this
a type-I error. The transmitted packets will possibly be received successfully by some of the
other nodes lying in the same cell. These will act as relays in the subsequent mini-frame.

In the second, fourth, and generally all even-numbered mini-frames, each destination will
wait for the slot in which nodes in its cell can transmit, and then will receive the packet
intended for itself, by one of the relays lying in the same cell, that successfully received the
packet in the previous mini-frame, and has a sufficiently strong path to the destination. We
say that a type-II error occurs if there are more thanβn1−b nodes in a cell, so that some of
them will not have the time to receive their packets. We say that a type-III error occurs when,
for a specific packet, there is no relay with sufficiently strong paths between both itself and
the source, and itself and the destination, so that the packet never makes it to the destination.
At the end of each even-numbered mini-frame, nodes discard all packets remaining in their
buffers. We will refer to this algorithm as themobility scheme.

Regarding the packet delay, we assume that packets are created just before it is their node’s
turn to transmit. (Delays due to random arrival times and queuing are beyond the scope of



this work – such issues are discussed in [8].) We then note that each packet will arrive at
its destination within an interval(N + 1)s after its transmission from the source. Therefore,
packet delays are smaller than a maximumdmax = (N + 1)s. This bound does not depend
on the number of nodesn, but rather on the underlying mobility model: it is slightly longer
than the decorrelation time of the topology.

We are now ready to present our first main result on the capacity of networks with node
mobility, whose proof appears in [4]:

Theorem 3: Under the mobility scheme, no errors of any type occur, with probability going
to 1 as the number of nodesn goes to infinity. In addition, the mobility scheme achieves
an aggregate throughput equal toT (n) = k3n

b−ε, for any b < 1
2

and ε > 0, with an upper
bound on the acceptable packet delay equal todmax = (N + 1)s. Therefore, the order of
the wireless ad hoc network, when there is an upper bound on the acceptable packet delay
equal todmax = (N + 1)s, is lower bounded byo ≥ 1

2
.

Theorem 3 states that a non-trivial aggregate throughput, that increases roughly liken
1
2 ,

is possible when nodes are mobile, even with a constant upper bound on the acceptable
packet delay and without the nodes using global routing and topology information. This
aggregate throughput happens to be the aggregate throughput that nodes would roughly
achieve if they were using the spatial-diversity scheme, properly modified to handle node
mobility, and assuming that they had access to global topology information. However, for
large networks and high node mobilities, such information comes at a prohibitive cost, or is
just impossible to acquire. But network designers need not despair: Theorem 3 states that the
same aggregate throughput is achievable, with no need for routing or topology information,
provided a packet delay roughly equal to the topology decorrelation time is tolerated. To
summarize, the mobility scheme looks far more appropriate than traditional route discovery
protocols, in large networks with high node mobility.

C. Polynomially increasing delay constraint

In Section VI-B it was shown that a non-trivial aggregate throughput is possible even
with a constant upper bound on the delay. It is natural to ask how much better we can do
if larger delays are tolerated, in particular delays that increase with the number of nodes.
Looking back at the mobility scheme, it is clear that the aggregate throughput is limited by
our requirement that the number of relays per packet (which is aroundn1−b) be larger than
the number of cells (which is aroundnb). If this requirement is relaxed, packets may need
to spend more than one slot at a relay, but since there are now more cells, and hence more
simultaneous transmissions, the aggregate throughput increases. In fact, the following holds:

Theorem 4: The mobility scheme can achieve an aggregate throughput equal toT (n) =
k4n

d+1
2
−ε for any ε > 0, with an upper bound on the acceptable packet delay equal to

dmax = (4Ns)nd, that holds for all created packets,w.h.p.. Therefore, under this bound on
the delay, the order of the wireless ad hoc network is lower bounded byo ≥ 1+d

2
.

Theorem 4 suggests a fundamental tradeoff between the acceptable packet delay and the
achievable per-node throughput: If we are willing to tolerate larger delays, our throughput
will increase. In particular, ignoring constant factors and arbitrarily small powers ofn, if we
tolerate delays on the order ofnd, where thedelay exponentd ∈ (0, 1), we can achieve
aggregate throughputs on the order ofnt, where thethroughput exponent t is equal to
t = d+1

2
. Therefore, we can achieve any point on the open line intervalAB of Fig. 1(b).

Theorem 3 shows that point A is also achievable. Point B can be achieved by a scheme very
similar to that of [2].

VII. C ONCLUSIONS

We derive lower bounds on the capacity of ad hoc wireless networks with a large number
of nodes. Following [1] and [2], our approach is to construct schemes that achieve a given
per-node throughput with probability approaching unity as the number of nodes increases. We



first study networks with immobile nodes, possibly in the presence of fading. We then study
networks where the nodes are mobile, the channel exhibits fading, and delay constraints
are placed on the delivery of packets. Our investigation leads to the establishment of a
fundamental tradeoff between packet delay and throughput.

We take the strategic decision, very early on, to concentrate on theexponentof n. This is
plain from our definition of order. Therefore, we sacrifice the ability to discern any factor
of the capacity that is slower than polynomial (notably logarithmic), but our proofs become
simpler. Tighter bounds, that maintain logarithmic factors but are somewhat lengthier, appear
in [4].
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Fig. 1. (a) One of the9 sub-lattices of cells appears shaded. Only nodes in the sub-lattice are allowed to receive in the
corresponding slot, and only from nodes in the same or neighboring cells. The neighbors of cellcj appear striped.(b) A
fundamental tradeoff between the packet delays and the per-node achievable throughput.
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Fig. 2. (a) The frame structure used in the mobility scheme.(b) The frame structure of each of theN virtual channels.
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