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Abstract 
At iGrid2005, we conducted a live demonstration where our Grid scheduling system co-allocated computing 
and network resources with advance reservation through Web services interfaces using the Grid Resource 
Scheduler (GRS), the Network Resource Management System (NRM), which is capable of GMPLS network 
resource management, and a GMPLS-based network test-bed, for the first time. The goal of the G-lambda 
project is to define a standard Web services interface (GNS-WSI) between GRS and NRM that is acceptable 
for both application service providers and commercial network operators, and which can be used as a tool 
for realizing new and emerging commercial services. 
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1. Introduction 
The maturity of the Grid infrastructure technology now allows deployment of large-scale high performance 
computing applications over distributed computing resources from different organizations. However, when 
application users actually perform computation over the Grids, they encounter many problems. The causes are 

as follows: 
 The current, best-effort Internet is easy to use, but it is unstable. 
 While optical network technology and dedicated optical paths can provide high quality communication, the 

provisioning of network resources is not automated. It often requires ‘human negotiations’ using e-mail or 
fax before the computation can take place. 

 A ‘Superscheduler,’ capable of co-allocation of computing resources from different organizations, is 
premature. Users have to allocate resources by negotiating with computing resource managers, again, by 
e-mail or fax. 

To address these issues, we propose and demonstrate a Web services-based Grid scheduling system that is 
capable of co-allocation of computing and network resources with advance reservation, leveraging a 
GMPLS-controlled optical network. GMPLS [2] control plane enables the automated network provisioning over 
the multi-layers using is a GMPLS protocol suite that unifies the control plane of various types of network 
equipments, such as optical cross-connects (OXCs), time-division multiplexing cross-connects (TDM-XCs), IP 
routers, and so on. Our Grid scheduling system consists mainly of the Grid Resource Scheduler (GRS) and the 
Network Resource Management system (NRM). GRS calls on NRM to request optical paths on a 
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GMPLS-controlled network, and coordinates the required network and computing resources with advance 
reservation.  
Our contribution is that we actually conducted an experiment of coordination of both computing and network 
resources with advance reservation automatically using real clusters and a real network. Six clusters in southern 
part of Japan which are connected by GMPLS network are used for this experiment. In the experiment at 
iGrid2005; (1)a user submits a requirement on Grid resources to GRS, (2)GRS searches all the computing and 
network resources for available timeframe of required resources and co-allocates the resources with advance 
reservation by negotiating NRM and CRMs, (3)NRM provides abstraction of physical GMPLS-based lambda 
paths resources for GRS and allows automatic provisioning of the resources at the reserved time, and (4)the user 
program is executed over the actual provisioned resources. Our proposed Web services-based Grid scheduling 
system is able to provide a suitable set of dedicated computing and network bandwidth resources automatically 
for each user requirement through the GUI with easy operation, showing the feasibility of the system and its 
architecture. We also point out some important issues for future resource reservation services, including a 
messaging protocol between GRS and NRM, debugging, dynamic routing of lambda paths, and fault tolerance. 
The goal of the G-lambda project[1] is to define a standard Grid Network Service - Web Services Interface 
(GNS-WSI) between GRS and NRM, which is acceptable for both application service providers and commercial 
network operators, and which can be used as a tool for realizing new and emerging commercial services. 

2. A Web Services-based Grid scheduling system architecture 
Fig. 1 shows an overview of our Web services-based Grid scheduling system, where not only computing 
resources, but also network resources that connect computing resources, are recognized as part of the managed 
resources, and are dealt with integrally. In other words, the required network bandwidth is reserved through the 
co-functioning of the GRS, which reserves overall resources, and the NRM, which flexibly establishes optical 
paths, with adequate bandwidth between defined locations, all using the defined interface. 
For network control, GMPLS technology, which is currently undergoing standardization for the control of 
optical paths, is applied. GMPLS makes it possible to connect geographically distributed computers and/or 
storage devices freely on an as-necessary basis, using the appropriate transmission bandwidth. Furthermore, the 
potential for cost reduction, as well as drastic enhancement of both computation efficiency and usability, is 
anticipated. 
Since resources to be provided and managed in a Grid environment are geographically distributed, the network 
connecting these resources is likely to extend over several regions and countries, and thus may be provided by 
multiple network operators. Therefore, it is important to have a common interface among network operators to 
enable the exchange of information that is required for co-functioning between the GRS and the NRM. We have 
defined the basic functions of such an interface in the Grid Network Service Web Services Interface (GNS-WSI). 
The details of the Grid scheduling system architecture are shown in Fig. 2. 

2.1. The Grid Network Service Web Services Interface (GNS-WSI) 
As a preliminary interface, we defined the following polling-based operations using WSDL: 
netResourceReservation allocates paths requested by GRS to physical links between OXCs with advance 
reservation. GRS sends a requirement for network resources such as the site ID of each endpoint, bandwidth, 
reservation time, delay, and the levels of fault recovery for each path. netResourceModification modifies the 
specifications of previously reserved paths such as bandwidth and reservation time. netResouceRelease releases 
reserved paths. netResourceReservationStatusQuery returns the current status of requested paths. This query 
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operation notifies GRS if the reservation, modification, or release request succeeded or if the reserved path 
connections are actually established at the reservation time. netResourceQuery and netAvailableResourceQuery 
returns the availability of paths during a period specified by GRS. 

 

Fig. 1 Overview of the Grid Scheduling system. 

 
Fig. 2. The details of the Grid scheduling system architecture. 

 
2.2. The Grid Resource Scheduler (GRS) 
We have developed a WSRF (Web Services Resource Framework)-based Grid Resource Scheduler (GRS) that is 
capable of co-allocation of computing and network resources with advance reservation. WSRF, standardized by 
OASIS[7], is an interface for an open framework for modeling and accessing stateful resources using Web 
services. Computing resources are reserved through Computing Resource Managers (CRM), and network 
resources are reserved through the Network Resource Management System (NRM), as shown in Fig. 1. To 
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co-allocate computing and network resources, GRS negotiates with the CRM of the required computing 
resources and the NRM provided by network operators and co-allocates the resources for each user requirement. 
We have implemented a prototype of GRS using Globus Toolkit 4 (GT4)[4][5], a WSRF reference 
implementation written in Java. As shown in Fig. 2, GRS consists of the following modules: The Client API and 
GUI are programming and graphical user interfaces. The Web Service Module provides a reservation service 
interface based on WSRF. This module creates a Reservation Resource instance for each user reservation request, 
stores the instance in the Data Management Module, and returns the end point reference (EPR) to the user. EPR 
is a reference to access each Reservation Resource and contains the URI of the GRS Web service module and 
the reservation ID for the request. The user accesses the EPR to get the current scheduling status and the result. 
The Reservation Resource is a reservation service entity made available for each user reservation request. The 
Data Management Module stores the state of each reservation process persistently, and guarantees recovery from 
failures. The Scheduling Module negotiates with CRM and NRM and co-allocates suitable computing and 
network resources for each user requirement. If the Scheduling Module cannot find resources to meet the user 
specified deadline, the Web Service Module returns the “Reservation Failed” status to the user and the user 
re-submits a new reservation request. The Computing Resource Reservation Management module manages the 
status of advance reservations on each site managed by CRM. 
A scheduling scheme for co-allocation with advance reservation of both computing and network resources is a 
serious issue for Grids. A scheduler has to find when and where resources are available for each user 
requirement such as the number of clusters, the number of CPUs for each cluster, network bandwidth between 
the clusters, duration and deadline for reservation timeframe. Developing a effective scheduling scheme is future 
work. At this point, we employ a depth-first search scheme to find required resources and the earliest timeframe 
to meet the user-specified deadline by using both information on the number of available CPUs during the 
specified period provided by CRMs and network resource availability for the specified network bandwidth 
during the specified period provided by NRM. 

2.3. The Network Resource Management System (NRM) 
To enable a lambda-based grid network service (GNS) over a GMPLS optical network infrastructure for grid 
applications, NRM, developed by KDDI R&D Laboratories, is configured with three key functional modules. In 
the Web Service Module, NRM provisions the GNS-WSI defining service conditions and procedure based on the 
WSDL. By using indirect invocation with the GNS-WSI, and RPC-based SOAP/HTTP messaging between 
NRM and a global grid brokering system, GRS achieves discovery of network resources, reservation of 
dedicated lambda paths, and modification of the network service.  In the Mediation Module, NRM provides 
resource abstraction and local scheduling functionalities to mediate between the requirement from GRS and the 
network resource.  In the mediation process, NRM virtualizes GMPLS-controlled dynamic optical networks as 
lambda paths between cluster sites for grid applications.  Scheduling of lambda paths is also conducted in the 
mediation module.  In the Network Control Module, NRM controls GMPLS routers as network edge devices 
through the network control interface to activate required lambda paths and to monitor their states and 
performance. Through the network control module, NRM can synchronize the signaling and operational states of 
the lambda paths in the actual GMPLS network. Those statuses of the lambda path are retrieved when the 
lambda path is activated and deactivated. 

3. Overview of the iGrid2005 demonstration 
At the iGrid2005 showcase in San Diego, we conducted a live demonstration where a user submitted a request 
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for Grid resources to the GRS from the GUI, the GRS negotiated with the NRM and co-allocated suitable 
computing and network resources simultaneously with advance reservation, and a scientific application program 
was executed over the reserved resources. The GUI and the GRS were run on a laptop PC in San Diego, the 
NRM was located in Tokyo, and all the network and computing resources were located in Japan. We used the 
GMPLS network deployed over JGN II, an advanced network test-bed in Japan. Clusters distributed over six 
locations in Japan (Tsukuba, Akihabara, Kamifukuoka, Kanazawa, Osaka, and Fukuoka) were connected over 
this network, as shown in Figure 3. As an application program executed over the reserved resources, we 
employed a molecular dynamics simulation implemented with both the grid middleware Ninf-G2[3] developed 
by AIST, and Globus Toolkit 2 (GT2)[4][6]. 

 

Fig. 3. Network and cluster configuration. 

3.1. Experimental environment 
We used the IP/photonic GMPLS network deployed over JGN II which consists of optical cross-connects 
(OXCs) and GMPLS IP routers. Since the GMPLS label switched path (LSP) carrying IP traffic is switched at 
the photonic layer with optical switches, we define this architecture as IP/photonic GMPLS network. In this 
paper, we call the GMPLS LSP switched at the photonic layer as lambda path..OXCs and IP routers were 
distributedly controlled by standard-based GMPLS protocols rather than centralized management plane-based 
network control. 
In this demonstration, we did not utilize the E-NNI signaling or routing. Although the network consists of two 
administrative domains, we utilized single domain-based GMPLS signaling. The route of each LSP was strictly 
specified at the ingress node. Each GMPLS nodes were connected with Gigabit Ethernet-based Traffic 
Engineered (TE)-links with the lambda switching type. Single lambda path with 1-Gbit/s bandwidth was 
configured between routers. In this demonstration, all the lambda paths were managed and controlled by single 
NRM. To provision lambda paths, NRM activated the lambda path by accessing the initiator GMPLS router, and 
then the GMPLS router initiated GMPLS RSVP-TE signaling to provision the lambda path.  
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(a) The requirement editor.   (c) The map view. 

     

(b) The reservation timetable (left: cluster status, right: network status). (d) The application panel. 

Fig. 4. The GUI windows shown at iGrid2005. 

3.2. The flow of the demonstration 
In the demonstration, a user specifies the required number of clusters and the number of CPUs for each cluster, 
the bandwidth required for paths, and the duration and deadline of the computation through the requirement 
editor shown in Fig. 4(a). The GRS will automatically assign a concrete cluster for each requirement, but users 
can also specify some of them manually. From the requirement editor, the user of this system has to input 
detailed requirements on resources such as bandwidth and the number of CPU at this point. For the future, Grid 
application service providers (ASP) with knowledge about application programs provide “services”, abstraction 
of computing, for the end-users. The end-user sends abstract requirements on the service to Grid ASP and the 
Grid ASP transforms the user requirements into detailed requirements and sends them to GRS for the end-user. 
The user requirements are sent to the GRS through the editor and the computing resources and the GMPLS 
network resources are reserved as the result of inter-working between the GRS and the NRM with SOAP on 
HTTP. After the advance reservation by GRS is completed, the result shows up on the reservation timetable as 
shown in Fig. 4(b). The table shows the reservation status of cluster CPUs and network paths. The left-hand side 
indicates the number of reserved CPUs on each cluster and the right-hand side indicates the network bandwidth 
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of the reserved paths between the clusters. The center horizontal line stands for the current time, and it is moving 
and approaching the reservation time.  
Fig. 4(c) is the map view showing the current status of the network. The path status shown on the map is taken 
directly from the network itself by snooping the GMPLS control packets. When the reservation time comes, the 
allocated lambda paths will be established and shown on the map. Finally, a molecular dynamics simulation is 
executed using the reserved computers and lambda paths, and the result is will show up on the application panel 
shown in Fig. 4(d). 

3.3. Discussion 
From the iGrid2005 demonstration, we learned the following: 

 It is important to improve the messaging protocol between GRS and NRM. In the iGrid2005 demonstration, 
high-latency communication between the GRS and the NRM with SOAP was an acceptable performance 
for the response time in a demonstration. That is, the duration between submission of a resource 
requirement from the GUI and display of the reservation results on the GUI was acceptable here. However, 
user requirements on large-scale Grid resources will cause an enormous number of the SOAP messages 
back and forth, and thus the response time will increase rapidly. To reduce the number of transmissions, we 
have to develop a messaging protocol suitable for a large set of resources. 

 A lock-and-release reservation process is important for future operational needs. We deployed a single GRS 
and a single NRM in the first experiment, but N GRSs and M NRMs will be deployed over the Grid in the 
future. Under such conditions, GRSs send requirements on network resources to NRMs at the same time 
and compete to secure the same network resources for their users. This competition tends to cause 
inconsistency between network resource information discovered by a GRS and actual network resource 
status. Therefore, we have to prepare a suitable lock-and-release reservation process using temporal 
reservation and confirmation, which avoids overbooking and over allocation of network resources. 

 A debugging methodology has to be developed for the scheduling system, especially for GMPLS lambda 
path configuration. Global co-allocation scheduling systems, like our prototype system, consist of multiple 
segments, GUI, GRS, NRM, clusters, and GMPLS-controlled networks, and it is difficult to find the cause 
of problems. The debugging methodology for lambda path level failures, especially, has not been fully 
developed. While the map view shown in Fig. 4(c) helped us to find which lambda paths had failed to 
establish connections over GMPLS easily in the just completed experiment, the method to monitor the 
GMPLS network we deployed was not scalable and reliable. To address the debugging issue, we should 
improve and standardize a monitoring method for the lambda path level and more detailed fault 
management and fault notification procedures will be also required for the GNS-WSI specification. 

 The GMPLS lambda paths can be dynamically routed using the open shortest path first (OSPF)-based route 
calculation method. This functionality of the GMPLS routing protocol enhances the survivability and the 
resource utilization of the lambda networks. However, this functionality was not effectively utilized for the 
demonstration, since the conditions of the network latency negotiated between GRS and NRM might 
change after the routing operation because of re-allocation caused by any failures. As a solution of this 
issue, the route of the lambda path was explicitly specified and fixed in the GMPLS network. To discuss the 
feasibility of utilizing the dynamic routing functionality, the significance and tolerance of the network delay 
need to be clarified from the applications’ viewpoint. 

 Fault tolerance of resource reservation is a serious issue for the next step. Though advance reservation of 
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the lambda paths succeeded in our experiments, the path connection at the specified reservation time 
sometimes failed because of errors caused by bugs of composed modules or actual GMPLS messaging. In 
this case, the processes of our application program implemented with Ninf-G and GT2 were not able to 
notice those errors and kept on running and waiting for establishment of their communication. To resolve 
this situation, we set the start time of the application program some dozens of seconds late and 
implemented a monitor functionality such that GRS asks NRM if the reserved lambda paths are actually 
established at the specified reservation time and notifies users through the GUI in case of error. In the 
future, we have to support fault tolerance of resource reservation and mechanisms to notify users in 
advance of inevitable errors, and find methods to compensate users if required. 

4. Related work 
The CANARIE project aims to accelerate Canada’s advanced Internet development. CANARIE has deployed 
CA*net4, an educational lambda path network, in Canada, and has developed the UCLP (User Controlled 
LightPaths) software[10] that allows end-users to treat network resources as software objects, and provision and 
reconfigure lambda paths. While the UCLP end-user can select a network configuration directly, our scheduling 
system automatically selects and configures suitable computing and light path resources for each user 
requirement on available resources, and supports advance reservation. 
The VIOLA project has a similar motivation in co-allocating resources on Lambda-Grids[11]. VIOLA proposes a 
WS-Negotiation/-Agreement standardized by a GGF[9]-based MetaScheduler for UNICORE-based Grids[12]. 
We have developed a Grid resource scheduler based on WSRF, and a Web services-based NRM capable of 
GMPLS network resource management, and we demonstrated this Grid scheduling system at iGrid2005. 
AppLeS[13] proposes a scheduling scheme that a scheduler estimates performance of specific applications using 
prediction about the status of computing and network resources provided by a Grid monitoring system such as 
NWS[14]. AppLeS provide non-dedicated resources and the estimated performance is not guaranteed. 
The paper [15] described co-allocation requirements on Computational Grids and developed a general resource 
management architecture for the simultaneous co-allocation of multiple resources. The paper[15] does not argue 
how their co-allocator provides guaranteed network resources. Our contribution is to define a Web 
services-based network service interface and to realize co-allocation of guaranteed computing and network 
resources by interworking with NRM, capable of automatic provisioning of lambda paths network over the 
actual network test-bed. 

5. Conclusions 
We have defined a preliminary interface between a Grid resource scheduler and a network resource management 
system, GNS-WSI, and have developed the prototype system, a Web Services-based Grid scheduling system that 
allows us to co-allocate computing and network resources over Lambda-Grids. We conducted a live 
demonstration using GRS, NRM, and a GMPLS-based network test-bed, JGN II, at iGrid2005. Our proposed 
Grid scheduling system is able to provide a suitable set of dedicated computing and network bandwidth 
resources automatically for each user requirement through the GUI with easy operation, showing the feasibility 
of the system and its architecture. We also point out some important issues for future resource reservation 
services. In the future, we will focus on detailed specifications of the GNS-WSI, aiming to make this interface 
both open, and a global standard. 
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