
1

A Reflective Model for Mobile Software Objects

Ophir Holder Israel Ben-Shaul

Technion — Israel Institute of Technology
Department of Electrical Engineering

Technion City, Haifa, 32000, ISRAEL.
{holder@tx, issy@ee}.technion.ac.il

Abstract
Mobile software objects are autonomous computational
entities that travel in large-scale and widely-distributed
heterogeneous systems, and whose functionality can be
attached to diverse computing environments. An object
model that supports mobile objects should have special
characteristics such as mutability of object’s structure
and semantics to facilitate adjustment to different envi-
ronments, self-containment of objects to allow their mi-
gration as autonomous units, and extensive support for
security. In this paper we discuss the requirements and
design guidelines of such a model, and present MROM, a
reflective model based on these guidelines. We also dis-
cuss MROM’s implementation and present a component
interoperability framework that was built on top of it, as
an example application of the model.

1. Introduction and motivation

The shift from LAN-based client-server computing to
global network-centric computing, involving large num-
ber of widely distributed and geographically dispersed
systems and applications, has created a new need, as well
as a new opportunity: the ability to transfer active data,
i.e., code, over the network. Mobile code can be exploited
in various ways. It can be used to overcome low-
bandwidth connections by shifting interactive and other
front-end computation closer to the user, as in Java Ap-
plets [1]. In the more general case, the decision as to how
to split the functionality of an application between com-
ponents (e.g., between a client and a server, or for bal-
ancing the load among multiple nodes) can be deferred
and made on-the-fly. This is particularly useful when the
type, number, identity and location of the participating
nodes, as well as the bandwidths between them, is not
known a priori, a typical situation in global and loosely-
coupled systems. Finally, another growing family of mo-
bile code applications involves execution of computa-
tional objects known as “agents”, which exhibit some

level of autonomy and/or intelligence in the form of
goals, plans, itinerary. etc. (see [11]).

A crucial step towards enabling mobile software has
been made with the emergence of the “write-once run-
everywhere” Java technology [1], which (almost) elimi-
nated the problem of heterogeneity in hardware and op-
erating system platforms. However, this is only a first
step. A comprehensive environment for the engineering
of mobile software requires a conceptual and a technical
framework: the former to enable modeling of individual
objects, their interaction with other (mobile or static)
objects, and their integration in a (possibly new or un-
known) environment; and the latter for actual creation,
transfer, host and execution of mobile objects.

As mentioned in [19] and [20], modeling distributed
systems as a collection of interacting encapsulated ob-
jects with private state and behavior, is increasingly
agreed as a proper and convenient approach for design-
ing frameworks for integration of distributed autonomous
and heterogeneous software components. This trend is
lead by increasing standardization efforts in areas such as
distributed computing, databases, and programming lan-
guages, both by official standards bodies such as ISO and
ANSI, as well as by industry consortia, such as the OSF
and OMG. Most object-oriented distributed frameworks
incorporate a unifying common object model which is
used as an agreed-upon set of abstractions that should be
supported by all participating components. However,
none of these models address the unique requirements of
mobile objects, mostly because they were not designed for
that purpose. We define the following requirements for a
model that supports mobile objects:

Self-representation. This is the basic reflective prop-
erty, which requires an object to be able to answer ques-
tions about itself regarding its structure and semantics.
This capability is important when the host environment
is not intimately familiar with the arriving object or even
with its interface, in which case it must be able to inter-
rogate the newcomer object, decide whether to invoke it,
and find out how to invoke it.

Copyright 1997 IEEE. Published in the Proceedings of ICDCS’97, May 27- 30, 1997 in Baltimore, Maryland. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center 445 Hoes Lane / P.O. Box 1331
Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

2

Mutability. Self-representation may be viewed as a
weak form of reflection. By mutability we refer to the
added capability to change an object’s structure and se-
mantics, dynamically. Mutability is necessary to enable
objects to adjust to the new context under which they are
intended to operate. This is particularly important when
the object may execute in different hosting environments,
and/or when some negotiation is needed in order to cre-
ate the initial interaction. We intentionally separate mu-
tability from self-representation even though they are
often considered collectively to comprise reflection. The
reason is that in the context of mobile objects, most ex-
isting approaches are limited to self-representation and
are immutable in that their structure and semantics re-
main fixed throughout the lifetime of the object. Muta-
bility also raises other issues regarding class-instance
relationships, addressed in Section 4.

Self-containment. This requirement is related to
autonomy. Since a mobile object is intended to execute in
different locations, it must contain all the functionality in
itself and minimize dependence in the host environment.
For example, a long-lived persistent mobile object should
contain its own persistence scheme and be able to write
itself to disk on a space allocated for it by the host envi-
ronment, as well as read itself into memory following
some bootstrap procedure initiated by the host environ-
ment. Self containment also implies decentralization,
since the overall computation and state of the system is
necessarily distributed in the autonomous objects, hence
not centralized.

Security. Given a very large universe of objects in
which mobile objects may execute in domains with
varying levels of trust, a security model (including poli-
cies, not only mechanisms) must be associated with the
object model. Note that security concerns are mutual.
That is, not only should the host environment be able to
restrict the operation of the mobile object, the mobile
object should also be able to restrict access by the host
environment (particularly with respect to access to self-
changing operations) as in encapsulation. This observa-
tion suggests coupling encapsulation with security.

Weak Typing. Mutability implies that no long-term
guarantee regarding the exact structure and semantics of
an object should be made in advance, but rather should
be left to be finalized in runtime, as done in other high
level programming languages such as Scheme and
Prolog. Another reason for weakly constraining types is
the heterogeneity of the objects and the bottom-up style
of the creation of mobile-based applications, which im-
plies that the object model should support generic coer-
cion to facilitate the high level of abstraction (e.g., to
transform a value that is represented as HTML text into
an integer, when arithmetic operation should be per-
formed on that value).

Identity and Naming. As mentioned before, the
model should not be limited by the number, size, or geo-
graphical dispersion of the objects in the system. Thus,
there should be built-in decentralized mechanisms for
assigning distinct names for objects.

Advanced Features. In this category we include is-
sues of persistence, synchronization mechanisms to allow
implementation of concurrent programming models, and
atomicity to facilitate consistent computations.

This paper presents a model for mobile objects, fo-
cusing mainly on the first three requirements, namely
self-representation, mutability and self-containment.
Persistence, security and naming are the subjects of other
papers ([16], [17]). Section 2 compares our work to other
object models; Section 3 presents the actual model; Sec-
tion 4 highlights issues related to the implementation of
the model; Section 5 describes the use of the imple-
mented object model in HADAS, a framework that sup-
ports mobile objects and was built using the object model.
Section 6 summarizes our contributions.

2. Related work

While not designed to support mobile software objects in
the first place, object models of popular distributed com-
puting frameworks seem to be the most widely available
infrastructures for utilization of such objects.

In CORBA [21], [23] the Dynamic Invocation Inter-
face (DII) mechanism can be regarded as supporting
some level of reflection. DII allows dynamic lookup of a
desired interface in an interface repository, and getting
all the required information from the repository so that a
request on an object that implements the interface can be
built. This feature, along with the ability to dynamically
change the repository, allows dynamic changes in the
meaning of a certain interface. CORBA does not limit an
interface to be implemented only by one object, which
can be viewed as providing several semantics to the same
interface. Nevertheless, reflection is not explicitly sup-
ported by CORBA and the core object semantics, such as
the invocation mechanism, is not subject to any manipu-
lations. Security is also not explicitly supported by the
model, but rather left for object implementers.

The Distributed Component Object Model (DCOM),
which serves as the base for Microsoft’s component com-
puting framework (OLE, or ActiveX), incorporates some
level of reflection through the use of Interfaces [7], [6],
[21]. An interface in DCOM is a set of functions bounded
to a certain object which implements them. Each object
may introduce several interfaces and a user may query
any one of them using the QueryInterface function,
which belongs to a default interface supported by every

3

object. QueryInterface can be regarded as a reflec-
tive method, since it practically changes the semantics of
the object as being seen by its user. However, while an
object’s interface can be changed in runtime (e.g., a new
interface can be added) object’s implementation can not.
Rather, such changes require recompilation of the ob-
ject’s source code. Furthermore, there is no notion of a
fixed behavior for an object since objects are entities un-
known to their users (only the interfaces are known).
Thus, an object that supports a certain interface in a par-
ticular time can be changed and appear later without
support for that interface, introducing inconsistency. As
with CORBA, the issue of security is not explicitly sup-
ported by the model, but left for object implementation.

Another noteworthy object model is that of the Java
language [1]. Java combined with its Remote Method
Invocation (RMI) package [26] forms a framework for
construction of distributed systems, based on the Java
object model. The basic Java object model has no explicit
support for reflection. However, some level of reflection
is supported in JDK 1.1 [14] as part of the API. Though
supplying facilities for querying object’s structure, such
as to examine its methods and their signatures, this API
does not support mutability, e.g., it does not allow opera-
tions on existing objects that may change their semantics.
Java was designed with great emphasis on security, and
this issue is tightly coupled with its object model through
the use of the SecurityManager class. The entities
subject to security restrictions are system resources such
as files, sockets, etc. Our approach is to regard methods
and data-items as subject to those restrictions and apply
security checks on one action only — method invocation.

Extensive research has been conducted on reflection
in object-oriented languages. The primary goal is to
achieve maximum semantic flexibility combined with
clean design. This objective is very hard to achieve while
keeping the system simple and efficient. Indeed, as ana-
lyzed in [12], complex architectures where reflective
functionality is assigned to special meta-objects, which
themselves can have meta-objects that control their own
behavior, is common in these languages. In addition, as
justified in [18], implementation using a meta-circular
interpreter architecture [2], usually on top of LISP, is
common to most of these languages (e.g., 3-KRS [18],
ObjVlisp [10] and CLOS [15]). This approach also im-
poses a significant price on performance. Open C++ [9]
and Choices [22], on the other hand, presents a simpler
and relatively efficient approach which adds some level
of reflection to C++ for particular applications
(distributed programming and operating system, respec-
tively). Since our focus is in facilitating a distributed
framework, as opposed to reflection in itself, we adopt
the Open C++ and Choices approach of relieving flexi-

bility and robustness, while preferring to include reflec-
tive features only where we think they are required.

3. The mutable reflective object model
(MROM)

Several key issues are involved in designing an object
model that fulfills the unique requirements of mobile
objects, as outlined in Section 1. The most important
issue concerns the level of mutability (subsuming self-
representation which is needed for any level of mutabil-
ity). That is, to what degree can an object's structure and
semantics be altered. Note that we refer here to object-
based changes, as opposed to changes made to a class
which apply to all of its instances, as in class evolution
(e.g., [4]). This distinction is important because object-
level mutability implies that an object may be modified in
such a way that it does not follow the structure of its
original class, thereby weakening type-safety and intro-
ducing potential runtime errors due to mismatch between
the caller's formal expectation of an object's structure
(both data and methods), and the actual structure (formal
and actual are analogous to formal vs. actual parame-
ters). Moreover, unrestricted mutability provides no
guarantee as to what functionality or data an object will
have at a certain time, thus reducing the usability of such
an object. In particular, no security measures can be en-
forced on such an object, if it can change them on its
own. Finally, structural mutability bears some price on
performance, because it implies that technically there
must be an internal mechanism to lookup the location of
an item before accessing it (e.g., via a pair of get and
set operations), whereas in static structures the location
is determined at compile time as a fixed offset. On the
other hand, as motivated earlier, mutability of structure
and functionality is essential in order to adjust to the spe-
cific circumstances and constraints of the context under
which the object has to operate.

Our approach balances these conflicting require-
ments, by splitting an object into two sections, fixed and
extensible . Data items and methods defined in the fixed
section of the object are treated as conventional items,
and may not be changed during the object's lifetime
(which may be arbitrary long, particularly if the object is
persistent). This portion of the object should be used to
store its fundamental state and behavior that comprises
the core functionality of the object. In contrast, the exten-
sible section comprises the mutable portion of the object
through which object's structure and behavior can be
changed, and into which new items (data or methods)
can be added, removed or changed. This portion can be
utilized to attach (detach) data and functionality on-the-

4

fly. For example, one methodology of using extensible
items in the design of certain kind of mobile objects
(which we are actually exploring in the HADAS project)
may be to place interface-related functionality in the
extensible section, which then can be adjusted to the in-
terface requirements of the object with which it interacts.
Finally, an important aspect of the distinction between
the fixed and the extensible sections of an object is with
respect to object specialization, or inheritance. The fixed
section represents the stable portion of the object whose
structure and behavior is always guaranteed to exist, thus
can be used for specialization by the programmer. Items
of the extensible portion, on the other hand, are subject to
changes in runtime, thus can not be counted on to have
any certain semantics at any given time.

A related but separate issue to consider is how muta-
bility is achieved. Here too, there are two main alterna-
tives: external and internal. The former refers to changes
which are made by the system, i.e., outside the object,
whereas the latter refers to changes which are made by
the object itself. Note that this is orthogonal to the aspect
of who initiates the change: in either case, the initiator
may be the object itself or an external requester. Our
(significant) choice here is to adopt the reflective ap-
proach, namely, to allow the object to change its own
structure. The main reason for this choice is to satisfy
self-containment (and autonomy). Since an object may
move and operate in different territories, it must be self-
contained, particularly with respect to controlling its own
structure and behavior. Technically, this means that each
object must contain meta-methods for the manipulation
of the structure and semantics of itself, and for method
invocation. Self containment implies that we refrain from
separating the meta-methods in a distinct meta-object, as
in [18], and bundle them inside the o bject.

More specifically, our reflective facilities include the
following meta-methods:

 • getDataItem /setDataItem/addDataItem
/deleteDataItem  These operations are
used to examine and manipulate the data elements
of an object, but not their values (which are ac-
cessed using ordinary get and set). Thus, they
are only applicable on items which are defined as
extensible. add and delete are straightforward,
adding new data members and deleting existing
ones, respectively. getDataItem returns a de-
scription of the data item and a handle that can be
used by setDataItem to change its properties
such as security access or encapsulation, name, or
their dynamic type, if any.

 • getMethod/setMethod/addMethod/
deleteMethod  These are the analogous op-
erations on methods, with similar semantics. There

is no conceptual reason for creating two sets of
commands; the sole reason is to avoid name con-
flicts between data items and methods.

 • invoke  This is the most important meta-
method. It implements method invocation and is
used to invoke any method of the object, including
meta-methods. The only exception is invoke it-
self, which may or may not be invoked by a copy of
itself, as explained below.

The combination of reflection and mutability raises
another interesting possibility: to enable a class designer
to make meta-methods also extensible, i.e., mutable.
While meta-mutability (i.e., the ability to change the ob-
ject-changing methods) might seem far-fetched for the
domain of mobile software objects, where most current
reflective approaches are still restricted to introspection
only, this approach may indeed have important practical
uses. For example, it may be desirable to change the
invoke method (using setMethod) in such a way
that an object contacts another (possibly remote)
“approval” object prior to the actual invocation, or alter-
natively it contacts a “charging” object from which the
invoked object was rented (following Yourdon's “code
renting” concept [28]). To enable such flexibility, it
should be possible to place meta-methods, including in-
voke , in the extensible section. This powerful approach
introduces the problem of circularity when applied to
invocation, in that the (meta)invoke method has to be
itself invoked. We solve this problem by adding an extra
level of indirection, and by implementing a “primitive”,
level 0 invocation mechanism, with identical semantics
as the basic meta-invoke method (the base invocation
semantics are explained below). If no modifications are
desirable, only level 0 is used. To modify the invocation,
an extra level 1 invocation is created, which is invoked
form level 0. In fact, nothing in the model prevents the
creation of arbitrary levels of invocation, although we
have not encountered yet practical situations that de-
manded more than two levels. This technique is analo-
gous to implementing a reflective language using a meta-
circular interpreter in that semantic consistency between
the self-representation of the system and the system itself
is being kept by implementing a copy of the meta-
behavior in another non-reflective language and imple-
menting the meta-behavior in terms of that copy, as dis-
cussed in [18] and implemented in CLOS [15]. We now
turn to the explanation of the semantics of the core level
0 method invocation mechanism, which may be viewed
in the general case as the stopping condition of the recur-
sive invocation mechanism.

5

3.1 Level 0 invocation

This mechanism incorporates built-in support in two
main aspects which are particularly relevant to our appli-
cation domain: wrapping, and security. Wrapping refers
to support for adjusting and/or integrating a computa-
tional object into the (new) environment under which it
operates. For example, if the method involves operating a
remote CORBA object, a preparation operation should be
invoked to generate and install that object’s stub (a fairly
complex operation that involves local compilation). An-
other domain in which wrapping is common is software
engineering environments (e.g., Oz [5], Field [25]) and
workflow management systems [13], which typically
incorporate mechanisms to integrate external tools into
the environment. To facilitate wrapping, each method
can be wrapped with pre- and post-procedures, which are
called before and after the invocation of the body of the
method, respectively. These procedures can be attached
to the method dynamically (by invoking the setMethod
meta-method). Another use of pre- and post-procedures
is as assertions on the method, similarly to the approach
taken in [24] to add assertions to C++. To enable such
behavior, both operations always return a boolean value.
A False return value from pre-procedure prevents from
invoking the body of the method and a False from a post-
procedure raises an exception.

Pre- and post-procedures can also be used as a con-
venient reflection facility. For example, one way to im-
plement the charging mechanism mentioned earlier is to
add level 1 (meta)invoke method with its pre-procedure
performing the required charging. Since the pre-
procedure is on the invoke method itself, it applies to
the invocation of all methods in the object, as opposed to
specific methods. The reader may wonder why not
change the pre- and post-procedures of level 0 invoca-
tion, which avoids the need to create level 1 invocation.
The answer is, that even though level 0 possess the same
semantics as level 1 (before it is changed), its represen-
tation is not visible and non-reflective, is not accommo-
dated for change, and can be implemented in a more effi-
cient way. Changing level 0 invocation would be analo-
gous to allowing LISP programmers to change the se-
mantics of the language by modifying the base inter-
preter, as opposed to changing the meta-circular LISP
interpreter written in LISP.

The second built-in feature of the base invocation
mechanism is inherent support for security. Here we take
a unique approach: coupling security with encapsulation.
By that we mean that controlled access to each data-item
or method should serve both for visibility purposes — as
with ordinary object-oriented programming languages —
as well as for ensuring legitimacy of getting and setting

data-items and of invoking methods, operations whose
execution may be restricted for a specific group of other
objects. Since the scope of participants in a computation
is the whole universe, including ones from trusted as well
as from untrusted domains, the granularity of access
availability should be the single object, as opposed to
classified as either public, private, or other inheritance-
related visibility categories (e.g., protected). Thus, each
method has associated with it an access control list
(ACL) that specifies which other objects can access it. for
more details on the security mechanism, see [16], [17].

Altogether, the basic method invocation mechanism
consists of three phases:

1. Lookup locate and fetch a method's handle.
2. Match  match security information.
3. Apply  invoke the operation on the method, con-

sisting of the following phases:

3.1. Pre-proc  invoke the pre-procedure.
3.2. Body  transfer control to body of method.
3.3. Post-proc  invoke the post-procedure.

Figure 1 (on the next page) illustrates the invocation
mechanism combined with its own meta-mutability. It
depicts a two-level invocation of the method Mfoo of
object Obar , where meta_invoke is a modified invo-
cation mechanism. Notice the process of passing argu-
ments, where the method Mfoo is sent as a parameter to
meta_invoke , and is later invoked by it (following
level 0 invocation).

To summarize, reflection and invocation are separate
yet intertwined aspects of our model: the invocation
mechanism facilitates reflection (by means of pre- and
post-procedures), and the reflection mechanism facili-
tates modification of the invocation mechanism. It is up
to the object designer to choose none, either one, or both
of these mechanisms to create and modify a highly ad-
justable yet internally consistent and secure object.

4. Implementation of MROM

MROM is implemented in Java, the obvious choice given
its support for security and platform-neutral object-code.
However, while playing a major role as an enabling tech-
nology, Java is used only as an underlying implementa-
tion system with no linkage between its own object model
and MROM’s. Both data-items and methods are imple-
mented as Java classes. The data-item class holds the
actual MROM (untyped) datum as a Java data-member
and the method class holds MROM method components
(body, pre- and post-procedures) as Java methods.

6

Obar.Mfoo(arg1,arg2,...)

Invoke(”Mfoo”,arg1,arg2,...)

body(”Mfoo”,arg1,arg2,...)

body(arg1,arg2,...)

Lookup the meta_invoke method

Lookup the Mfoo method

Match security info for meta_invoke

Match security info for Mfoo

Execute meta_invoke ’s pre-procedure

Execute Mfoo ’s post-procedure

Execute meta_invoke ’s post-procedure

Execute Mfoo ’s pre-procedure

Execute meta_invoke ’s body

Execute Mfoo ’s body

⇓

Assuming
meta_invoke
exists

Figure 1 - Two Levels Invocation

Following the weak typing requirement, MROM methods
receive an arbitrary number of untyped objects as pa-
rameters. This is realized by passing an array of Java
objects as a single parameter to the body of all methods.

The fixed and extensible portions of MROM objects
are implemented using four Java objects called item
containers. An item container is a set of name-and-value
pairs, where the value is either one of the object's data-
items or one of its methods. The extensible portion of an
MROM object consists of two extensible containers,
whose pairs can be added, removed and their value can
be replaced in runtime. The fixed portion consists of two
containers on which none of the previous manipulations
are available.

The MROM objects themselves are also implemented
as Java classes that hold the above four containers. Level
0 invocation is implemented as a Java method of the
MROM object class, which is used to perform all
(MROM) invocations.

Static (not in run-time) specialization of MROM ob-
jects is achieved using Java sub-classing. Copying the
containers of the super-class to the sub-class, as well as
adding items (recall that adding items to the fixed con-
tainers is impossible in runtime), are done in the sub-

class constructor. Since implemented as Java classes,
static specialization of MROM data-items and methods is
also possible through sub-classing. Note that the mutable
nature of MROM objects provides means of dynamic (in-
runtime) specialization by the ability to add new fields
and to change existing fields, which gives an effect
similar to that of inheritance in prototype-based lan-
guages (e.g., Self [27] and Cecil [8]).

5. The HADAS framework

HADAS (Heterogeneous, Autonomous, Distributed Ab-
straction System) [3] is an interoperability framework
that is aimed at facilitating the construction of network-
centric applications by means of interoperability pro-
gramming. Specifically, HADAS provides support in four
levels of interoperability: (i) Integration of pre-existing
components into the framework as entities that can be
referenced and accessed by other components, as well as
be able to reference other integrated components.
(ii) Communication level that includes agreements over
low-level protocols, marshaling schemes, component
identification and location mechanisms, as well as mid-
dleware solutions for bridging and/or mediating syntactic
mismatches in data formats, argument passing, etc.
(iii) Configuration level that includes notations and
utilities for establishing (dynamic) agreements between
components as well as managing the (dynamic) bindings
between them, separately from the programming of the
components themselves. (iv) Coordination, the highest
level, is concerned with semantic interoperability, al-
lowing to specify control- and data-flow between
(integrated, interconnected and configured) components.
 HADAS incorporates MROM as its base object model
both for abstracting the application components them-
selves, as well as for the system’s internal structure. Each
logical “site” in HADAS is represented as an InterOper-
ability Object (IOO). This object serves as a container of
both a collection of components and of multi-site In-
terOperability Programs, and as a primary contact point
for other IOOs for components interaction. Depicted in
Figure 2, the state of an IOO includes the following ob-
jects: (i) Home: A container whose data-items are APpli-
cation Objects (APOs) that encapsulate real applications,
both legacy and native-HADAS. (ii) Vicinity: A container
whose data-items are objects called IOO Ambassadors,
each representing a remote IOO with which a coopera-
tion agreement has been established. (iii) Interop: A
(methods) container whose methods are coordination-
level programs (not shown in the figure).

7

Figure 2 - HADAS External View

APOs also have Ambassadors (AMBs in the figure)
which reside in remote sites. An Ambassador is an object
that has been instantiated in the origin APO and has
been deployed in a “foreign (IOO) territory”, but is
owned and maintained by its origin APO. Each Ambas-
sador thus has exactly one origin and is hosted by exactly
one IOO.

Establishing cooperation agreements between two
components involves binding and configuration activi-
ties. The basic methods used to create agreements are:

 • Link — An IOO method that establishes connection
between two IOOs. A successful invocation of this
method installs an Ambassador of another IOO, at
the Vicinity component of the IOO whose Link has
been invoked. This operation is a prerequisite for
any further cooperation between the two IOOs.

 • Import/Export — The purpose of these operations
is to establish the connection between a remote
APO and a local IOO, for later invocation by an
interoperability program. An Import operation at
the requesting IOO is handled by an Export opera-
tion at the receiving IOO. Export verifies that the
requested APO is accessible to the requesting IOO,
instantiates the proper APO Ambassador object, and
sends it to the requesting IOO. When the Ambassa-
dor arrives (as data) the importing IOO unpacks it,
passes to it an installation context and invokes the
Ambassador, which in turn installs itself in the new
environment.

Ambassadors, which play an important role in the
HADAS architecture, are an example of mobile software
objects that exploit MROM’s capabilities. In particular,
object mutability can be used to dynamically determine
how to split a component’s functionality between the
APO and the Ambassador. The dynamic migration of
functionality (methods) and data from the APO to its
ambassador and vice versa, can be done using the meta-

methods. Furthermore, updates in APO’s functionality
can be done dynamically without interference with on-
going computations that need the APO, by adding meth-
ods and data items to the APO and its Ambassador on the
fly. Such dynamic update is possible, of course, only in
the extensible sections of the Ambassador. Any behavior
and state of the Ambassador that has to remain un-
touched in order to maintain its consistency is defined in
the fixed section of the object.

The natural connection between security and encap-
sulation in a distributed framework can be exemplified in
the relationship between IOOs and Ambassadors. As
stated previously, Ambassador’s semantics should be
updated only by its origin. This implies that its meta-
methods should be invisible to the host IOO as a matter
of programming policy (encapsulation issue), and should
not be invoked by that IOO to protect the Ambassador
and its origin from malicious intervening (security issue).
The opposite direction also exemplifies this point. The
Ambassador, as a servant for its host IOO, should not see
most of IOO’s methods (encapsulation) and as an invad-
ing entity, should not be granted permission to manipu-
late the IOO (security). MROM’s combination of security
and encapsulation facilitates this duality.

As an example for the use of dynamic changes in
semantics of invocation, consider a database APO whose
methods return employees information. This APO may
include a method that changes the invocation mechanism
in all its Ambassadors such that upon every invocation, a
message stating that the database is down for mainte-
nance is being echoed. Before shutting-down the data-
base, its administrator can invoke this method to update
the Ambassadors, such that users at remote sites can have
instant meaningful results for their queries, instead of
long waiting and misunderstood error messages. Note
how autonomy of both the database and its remote clients
is being preserved. The activity of database shut-down
should not be approved in advance by the administrator,
and applications that uses query results can continue to
work since meaningful responses are being returned.

HADAS is fully implemented in Java (50K lines of
code) and uses some of its advanced features such as RMI
and serialization. For more details on HADAS and its
architecture see [3], [16], [17].

6. Conclusions and future work

New opportunities for construction of very-large-scale
distributed systems are presenting new challenges in dis-
tributed software design. We are evidencing a shift from
centralized, top-down construction, which is adequate for
systems composed of homogeneous standard-based com-

Link
IOO1

Import
Export

Home
Vicinity

IOO2 IOO3

AMB3

AG2

AG1

AMB4

AMB5

APO2

APO1

IOO2

Home
Vicinity

IOO3

AG3

APO4

APO3

AG4

8

ponents, to decentralized, highly dynamic, bottom-up
construction, (re)using heterogeneous and autonomous
components. The concept of a mobile software object,
which can migrate in a wide-scale distributed system,
carry its functionality to foreign environments, allow
those environments to discover dynamically how to inter-
act with it, and adjust its own structure and behavior to
fit the particular needs of the host, is essential to realize
this computing paradigm shift.

The main contribution of this work is in identifying
the key design guidelines for an object model that facili-
tates mobile software objects, in designing a model
(MROM) based on these guidelines, and in implementing
a framework for component interoperability as an appli-
cation of the model. The guidelines identified are:
(i) Mutability through reflection, which facilitates dy-
namic changes in object semantics while not requiring
the system to rebuild itself, thereby also preserving com-
ponent autonomy. (ii) Security coupled with encapsula-
tion, thus becoming an element of the model instead of
an ad-hoc add-on. And (iii) splitting objects into fixed
and extensible sections, to enable dynamic changes while
preserving core functionality immutable, thus balancing
between dynamic evolution and the fixed base of func-
tionality needed by all extenders.

We are currently evaluating performance overhead
incurred by our reflective model and exploring various
optimizations since the issue of efficient implementation
of MROM is important for its practical deployment.
Other future directions include the development of meth-
odologies, tools and protocols to aid in the design and
implementation of applications, and building more prac-
tical applications involving mobile objects. One step
further would be to build a programming language
around MROM that facilitates “mobile programming”.

References

[1] K. Arnold and J. Gosling. The Java Programming Language.
Addison-Wesley, 1996.

[2] H. Abelson, G. Sussman, J. Sussman. Structure and Inter-
pretation of Computer Programs. MIT Press, 1985.

[3] I. Ben Shaul, A. Cohen, O. Holder and B. Lavva. HADAS: A
network-centric framework for interoperability programming.
Technical Report EE Pub No. 1079, Technion, Department of
Electrical Engineering, January 1997.

[4] J. Banerjee and W. Kim. Semantics and implementation of
schema evolution in object-oriented databases. Proceedings
of the ACM SIGMOD Annual Conference on the Manage-
ment of Data, pp. 311-322, May 1987.

[5] I. Ben-Shaul and G. Kaiser. A Paradigm for Decentralized
Process Modeling. Kluwer Academic Publishers, 1995.

[6] N. Brown and C. Kindel. Distributed Component Object
Model Protocol - DCOM/1.0. Internet Draft, May 1996.
http://www.microsoft.com/oledev/olecom/dcomspec.txt

[7] K. Brockschmidt. Inside OLE. Microsoft Press, 1995.
[8] C. Chambers. Object-oriented multi-methods in Cecil.

ECOOP ’92 Conference Proceedings, pp. 33-56, 1992.
[9] S. Chiba and T. Masuda. Designing an extensible distributed

language with a meta-level architecture. ECOOP ’93 Confer-
ence Proceedings, pp. 482-501, 1993.

[10] P. Cointe. MetaClasses are first classes: the ObjVlisp model.
OOPSLA ’87 Conference Proceedings, Published as
SIGPLAN Notices, 22(12):156-165, October 1987.

[11] First International Conference on Autonomous Agents
(Agents ’97), Marina del Rey, California, February 5, 1997.

[12] J. Ferber. Computational reflection in class based object
oriented languages. OOPSLA ’89 Conference Proceedings,
SIGPLAN Notices, 24(10):317-326, October 1989.

[13] D. Georgakopoulos, M. Hornick and A. Seth. An overview of
workflow management: from process modeling to workflow
automation infrastructure. Distributed and Parallel Data-
bases, 3:119-153, 1995.

[14] Java Core Reflection. Available as: http://www.javasoft.com/
products/jdk/1.1/docs/guide/reflection/index.html

[15] G. Kiczales, J. des Rivieres and D. G. Bobrow. The Art of the
Metaobject Protocol. MIT Press, 1992.

[16] B. Lavva, O. Holder and I. Ben Shaul. Object management
for network-centric systems with mobile objects. Technical
Report EE Pub No. 1078, Technion, Department of Electrical
Engineering, January 1997.

[17] B. Lavva, O. Holder and I. Ben Shaul. Persistence and secu-
rity support for distributed systems with mobile software
objects. Position Paper. Accepted for publication in the 3rd
International Workshop on Next Generation Information
Technologies and Systems (NGITS’97), June 1997.

[18] P. Maes. Concepts and experiments in computational reflec-
tion. OOPSLA ’87 Conference Proceedings, published as
SIGPLAN Notices, 22(12):147-155, December 1987.

[19] F. Manola. Metaobject protocol concepts for a ‘RISC’ object
model. Technical Report TR-0244-12-93-165, GTE Labora-
tories Incorporated, December 1993.

[20] F. Manola. Interoperability issues in large-scale distributed
object systems. ACM Computing Surveys, 27(2):268-270,
June 1995.

[21] F. Manola. X3H7 object model feature matrix. Technical
Report X3H7-93-007v10, GTE Laboratories Incorporated,
February 1995. Also available as: http://info.gte.com/ftp/doc/
activities/x3h7.html

[22] P. Madany, P. Kougiouris, N. Islam, and R.H. Campbell.
Practical examples of reification and reflection in C++. Pro-
ceedings of the International Workshop on New Models for
Software Architecture, November 1992.

[23] J. Nicol, C. Wilkes and F. Manola. Object orientation in
heterogeneous distributed computing systems. Computer,
26(6):57-67, June 1993.

[24] S. Porat and P. Fertig. Class assertions in C++. Journal of
Object Oriented Programming, 8(2):30-37, May 1995.

[25] S. Reiss. Connecting tools using message passing in the
FIELD environment. IEEE Software, 7(4):57-66, July 1990.

[26] Java Remote Method Invocation. Available as:
http://www.javasoft.com:80/products/jdk/1.1/docs/guide/rmi/
index.html.

[27] D. Ungar and R. B. Smith. Self: the power of simplicity.
OOPSLA ’87 Conference Proceedings, SIGPLAN Notices,
22(12):227-242, December 1987.

[28] E. Yourdon. Java, the Web, and software development. Com-
puter, 29(8):25-30, August 1996.

