
Enforcing Applicability of Real-time Scheduling
Theory Feasibility Tests with the use of

Design-Patterns

Alain Plantec1, Frank Singhoff1, Pierre Dissaux2, and Jérôme Legrand2

1 LISyC, University of Brest, UEB, 20 av. Le Gorgeu, 29238 Brest, France
alain.plantec,frank.singhoff@univ-brest.fr

2 Ellidiss Technologies, 24 quai de la douane, 29200 Brest, France
pierre.dissaux,jerome.legrand@ellidiss.com

Abstract. This article deals with performance verifications of architec-
ture models of real-time embedded systems. We focus on models verified
with the real-time scheduling theory. To perform verifications with the
real-time scheduling theory, the architecture designers must check that
their models are compliant with the assumptions of this theory. Unfor-
tunately, this task is difficult since it requires that designers have a deep
understanding of the real-time scheduling theory. In this article, we in-
vestigate how to help designers to check that an architecture model is
compliant with this theory. We focus on feasibility tests. Feasibility tests
are analytical methods proposed by the real-time scheduling theory. We
show how to explicitly model the relationships between an architectural
model and feasibility tests. From these models, we apply a model-based
engineering process to generate a decision tool what is able to detect from
an architecture model which are the feasibility tests that the designer can
apply.

1 Introduction

Performance verifications of embedded real-time architectures can be performed
with the real-time scheduling theory. Real-time scheduling theory provides an-
alytical methods, called feasibility tests, which make possible timing constraints
verifications. A lot of feasibility tests have been elaborated during the last 30
years in order to provide a way to compute different performance criteria such
as worst case task response time, processor utilization factor and worst case
blocking time on shared resources.

Each criterion requires that the target system fulfils a set of specific assump-
tions that are called applicability constraints. Thus, due to the large number
of feasibility tests and due to the large number of applicability constraints, it
may be difficult for a designer to choose the relevant feasibility test for a given
architecture to analyze. Then, it appears that in many practical cases, no such
analysis is performed with the help of real-time scheduling theory although ex-
perience shows that it could be profitable.

In order to help the designer, we have proposed, in [4], a set of architecture
design-patterns that allows early performance verifications of architecture mod-
els. These design-patterns model usual communication paradigms of multi-tasked
real-time software. Given a particular architecture model, these design-patterns
are used in order to choose the relevant set of feasibility tests. We have defined
four design-patterns called Synchronous data flows, Ravenscar, Blackboard and
Queued buffer. For each design-pattern, several feasibility tests can be applied.
For example, in the case of the Synchronous data flows design-pattern, we have
listed 10 feasibility tests that can be applied in 64 possible cases, depending
on the parameters of each architecture components (tasks, processors, shared
resources, etc). It implies that only defining a set of design-patterns may not
be enough to really help the designer to automatically perform performance
verifications with feasibility tests.

In this article, we investigate how to automatically check that an architecture
model is compliant with a design-pattern, in order to ensure that a particular set
of feasibility tests is relevant. We show how to explicitly model the relationships
between an architectural design-pattern and the compliant feasibility tests. From
these models, we apply a model-based engineering process to generate a decision
tool which is able to identify, from an architecture model, the feasibility tests
the designer is allowed to compute. Then, this decision tool helps the designer to
choose the feasibility tests that he is allowed to apply to his architecture models.

This article is organized as follows. In section 2, we introduce our design-pattern
approach. Section 3 presents an example: the Synchronous data flows design-
pattern. In section 4, we explain how the decision tool is currently implemented
and how we plan to integrate it into a schedulability tool called Cheddar. Then,
section 5 is devoted to related works and we conclude and present future works
in section 6.

2 The design-pattern approach

During the last decades, a lot of emphasis has been given to software modeling
techniques, in a continuous move from traditional coding activities to higher level
of abstractions. Several standardized languages such as the MARTE profile for
UML [17] or the AADL language [21] provide a set of categorized components
that are appropriate for real-time system and software modeling activities. These
modeling languages allow not only the applicative architecture to be described,
but also its interaction with the underlying executive. As an example, a thread is
a kind of AADL component which can be scheduled by the run-time executive.

Nevertheless, although it becomes now easier to describe real-time archi-
tectures, their validation still remains a subject of investigation. For instance,
the lack of a single property may sometimes be enough to prevent a real-time
architecture from being properly processed by a schedulability analysis tool.

This is why, the next step in the improvement of the development process
of real-time systems consists in providing to the end user a set of predefined

composite constructs that match known real-time scheduling analysis methods.
The composite constructs we have studied correspond to the various inter-task
communication paradigms that can be applied in an architecture and that can
be considered as real-time design-patterns.

Four design-patterns that are compliant with the real-time scheduling theory
are proposed in [4]. These design-patterns are:

1. Synchronous data flows design-pattern: this first design-pattern is the
simplest one. Task share data by clock synchronizations: each task reads
data at dispatch time or writes data at complete time. This design-pattern
does not require the use of shared data components.

2. Ravenscar design-pattern: the main drawback of the previous pattern is
its lack of flexibility at run time. Each task will always execute read and write
data at pre-defined times, even if useless. In order to introduce more flexi-
bility, asynchronous inter-task communications is proposed with this design-
pattern: tasks access shared data components asynchronously according to
priority inheritance protocols.

3. Blackboard design-pattern: Ravenscar allows task to share data pro-
tected by semaphores. Semaphores can be used to build various synchro-
nization protocols such as critical section, barrier, readers-writers, private
semaphore, producers-consumers and others [28]. The blackboard design-
pattern implements a readers-writers synchronization protocol.

4. Queued buffer design-pattern: in the blackboard design-pattern, at any
time, only the last written message is made available to the tasks. Queued
buffer allows to store all undelivered messages in a memory unit.

Each of these design-patterns models a typical communication and synchro-
nization paradigm of multi-tasked real-time software. Design-patterns are spec-
ified with a set of constraints on the architecture model to verify. There are two
types of constraints expressed in a design-pattern: Architectural constraints and
Property constraints.

– Architectural constraints are restrictive rules which specify the kind of ar-
chitectural element that are allowed. As an example, a design-pattern can
forbid declaration of a shared data component or a buffer in a model. They
may also constraint component connections.

– Property constraints are related to the architecture components properties
and constraint further their value. As an example, a design-pattern can as-
sume that the quantum3 property of a processor component must be equal
to zero.

For each design-pattern, according to their architectural and property con-
straints, we have identified which feasibility tests the designer can compute to
perform the verification of his architecture.

3 A quantum is a maximum duration that a task can run on a processor before being
preempted by another.

With this approach, the designer can verify its real-time system architecture
in two steps: (1) he first looks for the design-pattern which is matching his
architecture. Then (2), assuming that a matching design-pattern is found, the
designer can compute all the feasibility tests associated with this design-pattern.

3 Example of the Synchronous data flows design-pattern

In order to specify our architecture models, we are using the AADL modeling
language. AADL is a textual and graphical language for model-based engineer-
ing of embedded real-time systems that has been published as SAE Standard
AS-5506 [21]. AADL is used to design and analyze software and hardware archi-
tectures of embedded real-time systems. Many tools provide support for AADL:
Ocarina implements Ada and C code generators for distributed systems [10],
TOPCASED, OSATE and Stood provide AADL modeling features [5,3,22], the
Fremont toolset and Cheddar implement AADL performance analysis meth-
ods [26,25]. An updated list of supporting tools can be found on the official
AADL web site http://www.aadl.info.

An AADL model describes both the hardware part and the software part
of an embedded real-time system. Basically, an AADL model is composed of
components with different categories: data, threads or processes (components
modeling the software side of a specification), processors, devices and buses
(components modeling the hardware side of a specification). A data component
may represent a data structure in the program source text. It may contain sub-
programs such as functions or procedures. A thread is a sequential flow of control
that executes a program and can be implemented by an Ada task or a POSIX
thread. AADL threads can be dispatched according to several policies: a thread
may be periodic, sporadic or aperiodic. An AADL process models an address
space. In the most simple case, a process contains threads and data. Finally,
processors, buses and devices represent hardware components running one or
several applications.

This section presents one of the simplest design-patterns: the Synchronous
data flows design-pattern. First, we specify the design-pattern by its architec-
tural and property constraints. Then, we present the feasibility tests that are as-
signed to this design-pattern. In the sequel, we also illustrate this design-pattern
with a compliant AADL model.

3.1 Specification of the Synchronous data flows design-pattern

The Synchronous data flows design-pattern is inherited from Meta-H. An AADL
architecture model is compliant with this design-pattern if it is only composed
of process, thread, sub-program and processor components. We also assume that
the architecture model meets the constraints expressed by the following seven
rules:

Rule 1: All threads are periodic.

http://www.aadl.info

Rule 2: We assume that threads are scheduled either by a fixed priority scheduler
or by EDF [14]. In the case of a fixed priority scheduler, any kind of priority
assignment can be used (Rate Monotonic or Deadline Monotonic) but we assume
that all threads have different priority levels.

Rule 3: The scheduler may be either fully preemptive or non preemptive.

Rule 4: We assume that the scheduler do not use quantum (see the POSIX 1003
scheduling model [7]).

Rule 5: Thread communications do not make use of any data component, of any
shared resource or buffer and there is no connection between threads and data
components.

Rule 6: Threads are independent: thread dispatches are not affected by the
inter-thread communications. In this synchronization schema, communications
between threads are achieved by pure data flows with AADL data ports: each
thread reads input data at dispatch time and writes output data at completion
time.

Rule 7: Each processor owns only one process and there is no virtual processor.
This rule expresses that there is no hierarchical scheduling (see the ARINC 653
standard [1]).

3.2 Feasibility tests assigned to the Synchronous data flows
design-pattern

For an AADL model compliant with Synchronous data flows, we can perform
performance analysis with real-time scheduling theory feasibility tests. For this
design-pattern, we can check performances by computing two performance cri-
teria: (1) the worst case response time of each thread and (2) the processor
utilization factor. For such a purpose, we have assigned 10 feasibility tests to
compute these performance criteria [23].

However, it does not mean that for each AADL model compliant with this
design-pattern, we can apply the 10 feasibility tests. For a given AADL model,
depending on the value of the AADL component properties, we will be able to
apply one or several feasibility tests among this set of feasibility tests. We have
identified 64 different cases depending on component properties values, which
represent applicability assumptions of the feasibility tests. This shows that even
for this simplest design-pattern, choosing the right feasibility test to apply may
be difficult for architecture designers.

One of these feasibility tests is called the ”worst case response time feasibility
test” and consists in comparing the worst case response time of each thread with
its deadline.

For this feasibility test, the thread components of the Synchronous data flows
design-pattern are defined by three parameters: their deadline (Di), their period

(Pi) and their capacity (Ci). Pi is a fixed delay between two release times of the
thread i. Each time the thread i is released, it has to do a job whose execution
time is bounded by Ci units of time. This job has to be ended before Di units
of time after the thread release time.

Joseph and Pandia [13] have proposed a way to compute the worst case
response time of a thread with pre-emptive fixed priority scheduling by equation:

ri = Ci +
∑

∀j∈hp(i)

⌈
ri

Pj

⌉
· Cj (1)

Where ri is the worst case response time of thread i and hp(i) is the set of
threads that have a higher priority level than thread i.

This feasibility test is one of the most simple tests which can be applied to
the Synchronous data flows design-pattern. This test has several applicability
assumptions. For example, this test assumes that deadlines are equal to periods
and that all threads have an equal first release time.

3.3 Example of an AADL model compliant with the Synchronous
data flows design-pattern

1thread T1 end T1;
2

3thread implementation T1. impl
4properties
5Dispatch Protocol => Periodic;
6Compute Execution time => 1 ms . . 2 ms;
7Deadline => 10 ms;
8Period => 10 ms;
9Cheddar Properties: : Fixed Priority => 128;
10end T1. impl;
11

12thread T2 end T2;
13

14thread implementation T2. impl
15properties
16end T2. impl
17

18process implementation process0. impl
19subcomponents
20a T2 : thread T2. impl;
21end process0. impl
22

23processor implementation rma cpu. impl
24properties
25Scheduling Protocol => Rate Monotonic Protocol;
26Cheddar Properties: : Preemptive Scheduler => True;
27Cheddar Properties: : Scheduler Quantum => 0 ms;
28end rma cpu. impl;

Fig. 1. Part of an AADL model

Figure 1 shows a part of an AADL model. This example is composed of
several periodic threads defined into a process and that are run on a single pro-

cessor. AADL component are always specified by a type definition (line number
1) and a component implementation (from line 2 to line 9). The model also
contains several AADL properties. Some properties of thread components de-
fine deadlines, periods, capacities and the thread priority. The properties of the
processor component defines how the scheduler works. In this example, the pro-
cessor embeds a preemptive Rate Monotonic scheduler with a quantum equal to
zero (from line 24 to line 27).

This AADL model is compliant with the Synchronous data flows design-
pattern because all rules of the section 3.1 are met. We assume that the designer
has previously checked the compliance of this model with this set of rules.

Fig. 2. A screenshot of Cheddar, a tool which implements several feasibility tests

To compute feasibility tests of the Synchronous data flows design-pattern, we
are using Cheddar. Cheddar is a framework which aims at providing performance
analysis of concurrent real-time applications [25]. With Cheddar, a real-time ap-
plication is modeled as a set of processors, shared resources, buffers and tasks.
Cheddar is able to handle architecture models described by an AADL specifica-
tion and also by its own simplified architecture design language. Cheddar already
implements numerous feasibility tests [23]. Figure 2 shows a screenshot of Ched-
dar. The top part of this window displays the scheduling analysis of the model
of figure 1 and the bottom part shows the feasibility tests results computed for
this AADL model.

4 A decision tool to check the compliance of an AADL
model with the design-patterns

In the previous section, we have presented a design-pattern and an AADL model
that is compliant with it. To automatically perform performance verifications of
an AADL model with Cheddar, we have assumed that designers are able to
check the compliance of their AADL models with a design-pattern. This task is,
however, not easy for users who are not experts on real-time scheduling theory.
To facilitate this task, we propose a second tool, called decision tool, which is
able to automatically perform this compliance analysis.

Fig. 3. AADL model analyzer overview

We plan to integrate this decision tool as a new functionality of Cheddar. As
depicted by figure 3, within Cheddar, the decision tool will be able to automati-
cally detect which design-pattern a real-time system is compliant with and then
to automatically compute the relevant feasibility tests.

So far, the design-patterns are themselves currently elaborated. Thus, for
now we are using a prototype of the decision tool. This prototype is built with
the Platypus tool. In this section we first briefly describes the Platypus tool and
its usage for prototyping the decision tool. Then we explain how Cheddar will
be enriched with the decision tool.

4.1 Prototyping within Platypus

Platypus [20] is a software engineering tool which embeds a modeling environ-
ment based on the STEP standard [11]. First of all, Platypus is a STEP en-
vironment, allowing data modeling with the EXPRESS language [12] and the
implementation of STEP exchange components automatically generated from
EXPRESS models. Platypus includes an EXPRESS editor and checker as well
as a STEP file reader, writer and checker.

In Platypus, a meta-model consists in a set of EXPRESS schemas that can
be used to describe a language. The main components of the meta-model are
types and entities.

From an EXPRESS schema and a data set made of instances of entities
described by the EXPRESS schema, Platypus is able to check the data set con-
formity by evaluating the constraint rules specified in the EXPRESS model.

Fig. 4. The decision tool prototype within Platypus

Thus, given that the design-patterns are specified with EXPRESS, the de-
cision tool prototype directly benefits from the Platypus STEP generic frame-
work. The figure 4 shows the prototype components and the data flow when
an architecture model is analyzed. The prototype is first made of the shared
meta-model named Cheddar meta-model schema. This meta-model specifies the
internal Cheddar representation of a real-time architecture to verify. Then, each
design-pattern is composed of two models which are defined in order to further
constraint the Cheddar meta-model. These models correspond to the two kinds
of constraints as explained in the section 2. In the figure 4, they are specified by
the architectural constraints and property constraints schemas.

Due to the current usage of the prototype, in order to be analyzed, an AADL
architecture model must be encoded as an XML or a STEP data exchange file
conforming to the Cheddar meta-model. Cheddar can be used for that purpose.
Then, each design-pattern is evaluated separately. Evaluating a design-pattern
consists in interpreting all rules specified in the architectural constraints and
property constraints schemas.

4.2 Design-pattern modeling framework

As depicted by figure 5, the modeling framework is made of three main lay-
ers: (1) the Architecture resources, (2) the Feasibility test resources and (3) the
Feasibility test design-patterns layers. Each of these layers are made of one or
several EXPRESS schemas. This section briefly describes them and gives some
illustrative EXPRESS samples.

Fig. 5. The three layers of the Design-pattern modeling framework

The Architecture resources layer This layer is the most generic one, it
contains the specification of all domain entities which are used for architectures
modeling. Indeed, it is specified independently of any design-pattern. It mainly
contains the Cheddar meta-model. A particular real-time architecture is made
of instances of this meta-model because it specifies the internal representation
of a real-time architecture within Cheddar. As depicted by the figure 6, it is
composed of entities such as Generic Task or Generic Scheduler but also Buffer
or Processor. These entities store all attributes that are required for the analysis
of an AADL architecture model.

1SCHEMA Tasks;
2ENTITY Periodic Task SUBTYPE OF (Generic Task) ;
3Period : Natural type;
4J i t t e r : Natural type;
5ENDENTITY; . . .
6ENDSCHEMA;
7

8SCHEMA Schedulers;
9TYPE Preemptive Type = ENUMERATION OF
10(fully preemptive , non preemptive, partial ly preemptive) ;
11ENDTYPE;
12

13ENTITY Generic Scheduler;
14Quantum : Natural type;
15Preemptivity : Preemptive Type;
16ENDENTITY; . . .
17ENDSCHEMA;
18

19SCHEMA Processors . . . ENDSCHEMA;
20SCHEMA Buffers . . . ENDSCHEMA;

Fig. 6. Part of the Cheddar Meta-model

The Feasibility test resources layer This is the intermediate layer which
makes use of entities of the Architecture resources layer and in addition is made
of new entities, functions and rules which are reusable across several design-
patterns.

1SCHEMA Period Equal Deadline Constraint;
2USE FROM Tasks;
3

4RULE Period Equal Deadline FOR (Periodic Task) ;
5WHERE
6SIZEOF (QUERY (p <∗ Periodic Task | p. Period <> p. Deadline)) = 0;
7ENDRULE;
8ENDSCHEMA;

The Period Equal Deadline constraint concerns only the set of all Periodic Task instances. This

constraint is satisfied if there is no Periodic Task instance which have a period value which is

different from its deadline.

Fig. 7. EXPRESS model of the Feasibility tests resources layer

As an example, the Period Equal Deadline constraint is shown in the figure 7.
This constraint is typically reusable for several design-patterns. It is specified by
an EXPRESS rule which ensures that, for each instance of the Periodic Task
entity, the value of the Period and of the Deadline attributes are equal.

The Feasibility test design-patterns layer Each model of this layer is called
a design-pattern model, it concerns a particular design-pattern and is made of one
or several EXPRESS schemas which reuse parts of the other layers. In addition,
each design-pattern model defines very specific rules that represent constraints
which have to be checked for the related design-pattern.

1SCHEMA Data Flow Constraints;
2USE FROM Tasks; USE FROM Schedulers; USE FROM Buffers;
3

4RULE All Tasks Are Periodic FOR (Generic Task) ;
5WHERE
6R1 : SIZEOF (QUERY (t <∗ Generic Task |
7NOT (’TASKS. PERIODIC TASK’ IN TYPEOF (t)))) = 0;
8ENDRULE;
9. . .
10RULE No Shared Ressource FOR (Generic Resource, Buffer) ;
11WHERE
12R5 : (SIZEOF (generic resource) = 0) AND (SIZEOF (Buffer) = 0);
13ENDRULE;
14ENDSCHEMA;

Fig. 8. EXPRESS model for the Synchronous data flows design-pattern

As an example, the Data Flow Constraints EXPRESS schema shown in fig-
ure 8 is for the Synchronous Data Flows design-pattern. Only the rules 1 and 5
given for this design-pattern are shown (see section 3.1 page 4): the Rule 1 is
specified by the All Tasks Are Periodic EXPRESS constraint and the Rule 5 by
the No Shared Ressource one.

4.3 Toward an implementation within Cheddar

As we are currently elaborating EXPRESS models for the work presented in
this article. It is very efficient to be able to directly test them from the Platypus
modeling environment itself.

But having to use Cheddar together with Platypus is not comfortable for
end-users and Platypus, as a STEP based data modeling environment, is not
user friendly enough. We plan to use a model driven engineering process in
order to automatically generate the decision tool in Ada, the implementation
language of Cheddar. For such a purpose, Platypys will have to handle EXPRESS
models of figures 6, 7 and 8. Today, Cheddar is already partly automatically
generated by Platypus from EXPRESS models of the figure 6. As an example,
the Cheddar meta-model schema is used in order to produce the core components
of Cheddar [19,24].

5 Related works

This article has shown an approach to check that an architectural model of a
real-time system is compliant with a set of constraints. Many other approaches
also investigated how to perform such verifications.

First, UML together with its standard constraint language OCL could be
used for the purpose of designing and building feasibility test checkers.

Second, in [8], Gilles and al. have proposed a similar constraint language for
AADL. The proposed language is called REAL (REAL stands for Requirement
Enforcement Analysis Language). REAL is developed by Télécom-Paris-Tech
and ISAE. It should be adopted as an annex of the AADL standard. This lan-
guage is then specifically designed for the modeling of real-time architectures.
REAL allows to express various type of constraints on AADL architecture and
their authors have shown that it can express some of the applicability constraints
of the real-time scheduling theory.

Another approach of a similar move towards more analyzable constructs
built on top of a modeling language can be found in the history of the HOOD
method [15]. The first versions of this modeling approach defined a quite ba-
sic concept of component (called HOOD objects) which aimed at representing
more or less an Ada 83 package. In 1995, two specializations of HOOD were
specified: HOOD 4 [16] which targets Object-Oriented programming languages
and especially Ada 95, and HRT-HOOD [2] which goal is to comply with the
Ada Ravenscar model (now included into Ada 2005 [27]). In both cases, the
original concepts and principles of the HOOD methodology have been kept, and

specific composite constructs have been identified in order to support properly
Ada 95 tagged types or Ravenscar cyclic, sporadic and protected objects. More
recently, in the context of the IST-ASSERT project, Panunzio and al. [18] pro-
posed to integrate some HRT-HOOD components with UML models. For such
a purpose, they have proposed an engineering process based on a meta-model
called RCM (RCM stands for Ravenscar Computational Model). In this process,
performance verifications are performed with the MAST framework [9], which
also implements several feasibility tests.

Finally, PPOOA proposes a similar approach [6]. PPOOA is an architectural
style for concurrent object oriented architectures. PPOOA is implemented as an
extension of UML and provide several coordination mechanisms such as buffers,
semaphores, transporters, Ada rendezvous and others. All these coordination
mechanisms are similar to our design-patterns.

6 Conclusion

Feasibility tests of real-time scheduling theory may be difficult to be used by
system designers. In this article, we investigate how to increase their usability
with an approach based on design-patterns.

In this approach, we have defined a list of design-patterns and a set of feasibil-
ity tests is assigned to each design-pattern. When a designer wants to perform
a performance analysis of an AADL model, he must check that his model is
compliant with one of these design-patterns. If the model is actually compliant
with a design-pattern then he can call Cheddar to automatically compute the
feasibility tests assigned to the selected design-pattern.

However, checking compliance of his models to the design-patterns may be
difficult to achieve, especially if designers are not expert on real-time schedul-
ing theory. To automatically check compliance, we propose a framework, called
decision tool, which relies on the Platypus environment.

In the current implementation of our approach, designers have to handle two
different tools: Cheddar and the decision tool. In a next step, we plan to integrate
the decision tool into Cheddar. Having only one tool to deal with should facilitate
the performance analysis of AADL models.

A second future work is related to the list of design-patterns. Indeed, we only
have investigated how to check compliance with the Synchronous data flows
design-pattern. In the next months, we will do the same work for the other
design-patterns: Ravenscar, Queued Buffer and BlackBoard [4].

Finally, in this approach, we expect to verify if an AADL model is fully
compliant with a set of design-patterns. But in some cases, architectural models
of practitioners may be compliant with none of the proposed design-patterns.
Then, we plan to investigate how the designers can eventually be helped with a
set of metrics. These metrics should allow the designers to compare their AADL
models with our design-patterns and to improve their models in order to be
compliant with the real-time scheduling theory.

References

1. Arinc: Avionics Application Software Standard Interface. The Arinc Committee
(January 1997)

2. Burns, A., Wellings, A.: HRT-HOOD: A Design Method for Hard Real-time Sys-
tems. Real Time Systems journal 6(1), 73–114 (1994)

3. Dissaux, P.: Using the AADL for mission critical software development. 2nd Euro-
pean Congress ERTS, EMBEDDED REAL TIME SOFTWARE Toulouse (January
2004)

4. Dissaux, P., Singhoff, F.: Stood and Cheddar : AADL as a Pivot Language for
Analysing Performances of Real Time Architectures. Proceedings of the European
Real Time System conference. Toulouse, France (January 2008)

5. Farail, P., Gaufillet, P., Canals, A., Camus, C.L., Sciamma, D., Michel, P., Crégut,
X., Pantel, M.: TOPCASED : An Open Source Development Environment for
Embedded Systems. Chapter 11, From MDD Concepts to Experiments and Illus-
trations, ISTE Editor pp. 195–207 (September 2006)

6. Fernandez, J.L., Marmol, G.: An Effective Collaboration of a Modeling Tool and
a Simulation and Evaluation Framework. 18th Annual International Symposium,
INCOSE 2008. Systems Engineering for the Planet. The Netherlands. (June 2008)

7. Gallmeister, B.O.: POSIX 4 : Programming for the Real World . O’Reilly and
Associates (January 1995)

8. Gilles, O., Hugues, J.: Expressing and enforcing user-defined constraints of AADL
models. pp. 337–348. International workshop on AADL and UML. In the pro-
ceedings of the 15th IEEE International Conference on Engineering of Complex
Computer Systems, University of Oxford, UK (March 2010)

9. Harbour, M.G., Garc̀ıa, J.G., Gutiérrez, J.P., Moyano, J.D.: MAST: Modeling
and Analysis Suite for Real Time Applications. pp. 125–134. Proc. of the 13th
Euromicro Conference on Real-Time Systems, Delft, The Netherlands, (June 2001)

10. Hugues, J., Zalila, B., Pautet, L., Kordon, F.: Rapid Prototyping of Distributed
Real-Time Embedded Systems Using the AADL and Ocarina. In 18th IEEE/IFIP
International Workshop on Rapid System Prototyping (RSP’07), Porto Allegre,
Brazil (Jun 2007)

11. ISO 10303-1: Part 1: Overview and fundamental principles (1994)

12. ISO 10303-11: Part 11: edition 2, EXPRESS Language Reference Manual (2004)

13. Joseph, M., Pandya, P.: Finding Response Time in a Real-Time System. Computer
Journal 29(5), 390–395 (1986)

14. Liu, C.L., Layland, J.W.: Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environnment. Journal of the Association for Computing Machinery
20(1), 46–61 (January 1973)

15. Masson and Prentice-Hall: HOOD Reference Manual release 3.1, HOOD User
Group (1993)

16. Masson and Prentice-Hall: HOOD Reference Manual release 4.0, HOOD User
Group (1995)

17. OMG: A UML Profile for MARTE, Beta 1. OMG Document Number: ptc/07-08-04
(Aug 2007)

18. Panunzio, M., Vardanega, T.: A Metamodel-Driven Process Featuring Advanced
Model-Based Timing Analysis . Proceedings of the 12th International Conference
on Reliable Software Technologies, Ada-Europe. Geneva, LNCS springer-Verlag
(June 2007)

19. Plantec, A., Singhoff, F.: Refactoring of an Ada 95 Library with a Meta CASE Tool.
ACM SIGAda Ada Letters, ACM Press, New York, USA 26(3), 61–70 (November
2006)

20. Platypus Technical Summary and download. http://cassoulet.univ-brest.fr/mme/
(2007)

21. SAE: Architecture Analysis and Design Language (AADL) AS 5506. Tech. rep.,
The Engineering Society For Advancing Mobility Land Sea Air and Space,
Aerospace Information Report, Version 2.0 (January 2009)

22. SEI: OSATE : An extensible Source AADL Tool Environment. SEI AADL Team
technical Report (December 2004)

23. Singhoff, F.: A taxonomy of real-time scheduling theory feasibility tests.
LISyC Technical report, number singhoff-01-2010, Available at http://beru.univ-
brest.fr/~singhoff/cheddar (Feb 2010)

24. Singhoff, F., Plantec, A.: Towards User-Level extensibility of an Ada library : an
experiment with Cheddar. Proceedings of the 12th International Conference on
Reliable Software Technologies, Ada-Europe. LNCS springer-Verlag, Volume 4498,
pages 180-191, Geneva (June 2007)

25. Singhoff, F., Plantec, A., Dissaux, P., Legrand, J.: Investigating the usability of
real-time scheduling theory with the Cheddar project. Journal of Real-Time Sys-
tems, Springer Verlag 43(3), 259–295 (November 2009)

26. Sokolsky, O., Lee, I., Clark, D.: Schedulability Analysis of AADL models . Interna-
tional Parallel and Distributed Processing Symposium, IPDPS 2006, Volume 2006,
(Apr 2006)

27. Taft, S.T., Duff, R.A., Brukardt, R.L., Ploedereder, E., Leroy, P.: Ada 2005 Refer-
ence Manual. Language and Standard Libraries. International Standard ISO/IEC
8652/1995(E) with Technical Corrigendum 1 and Amendment 1. LNCS Springer
Verlag, number XXII, volume 4348. (2006)

28. Tanenbaum, A.: Modern Operating Systems. Prentice-Hall (2001)

	Enforcing Applicability of Real-time Scheduling Theory Feasibility Tests with the use of Design-Patterns

