
 

  
Abstract— We present a system capable of detecting cars in 

gray-valued videos of traffic scenes based on easy-to-compute 
orientation selective features derived from gradient filter outputs. 
The car detection system consists of two processing stages (Initial 
detection and Confirmation) and is embedded into a comprehen-
sive architecture of interacting modules optimized for various 
aspects of driver assistance applications. The Initial Detection 
stage uses a heuristic for generating hypotheses which are then 
presented to a single neural network (NN) classifier for Confir-
mation, which is trained on examples in a supervised way. We 
show that one can achieve approximate scale-invariance in the 
Confirmation stage by using approximately scale-invariant image 
features and training with differently sized examples. The NN 
used for Confirmation are optimized using a simple pruning algo-
rithm. The dependence of detection accuracy and network com-
plexity is investigated; we find that extremely simple networks 
give surprisingly good classification accuracies at very high speed.  

 
Index Terms—Pattern classification, object detec-

tion/recognition, multiplayer perceptrons 

I. INTRODUCTION 
n many applications in driver assistance systems, behaviour-
ally relevant objects in traffic scenes must be reliably de-
tected by image processing in order to generate high-level-

representations allowing, e.g., behaviour planning. Most 
prominent among behaviourally relevant objects are certainly 
cars and pedestrians. Real-world problems such as, for exam-
ple, visual pedestrian or car detection are considered to be 
very tough problems since objects can exhibit a very large 
amount of variability. Reasons include viewpoint dependency, 
intrinsic within-class variability,  object occlusions and image 
transformations due to lighting changes or insufficient sensor 
performance.  On the other hand, there are also advantages that 
can be exploited, namely the adherence to basic physical laws 
that is guaranteed, which makes sure that relevant objects be-
have in a predictable way. 
For cars and pedestrians there exist numerous proposals for 
detection and confirmation strategies, many of which address 
different issues of those mentioned previously. A perfectly 
accurate and universally reliable object detection system either 
for pedestrians or cars remains, however, elusive. In the fol-

 
Manuscript received December 15th, 2004.  
Alexander Gepperth and Johann Edelbrunner are with the Institut für Neuro-
informatik, Ruhr-Universität Bochum, 44780 Bochum, Germany. E-mail: 
{Johann.Edelbrunner, Alexander.Gepperth}@neuroinformatik.rub.de 
Thomas Bücher is with Viisage Technology AG, Universitätsstraße 160, 
44801 Bochum, E-mail: Thomas.Buecher@neuroinformatik.rub.de 

lowing paragraph, some interesting developments in these do-
mains are reviewed, concentrating on car and pedestrian classi-
fication rather than detection since classification is the focus of 
the work presented here. Given the vast amount of research 
which is being done in this domain, however, this is not in-
tended to be either a complete or a representative list, but 
merely a selection of interesting approaches which  serves to 
highlight the intrinsic properties of our own approach in con-
trast or accordance to those that are mentioned here.  
The most basic property that distinguishes different proposals 
from each other is the choice of features upon which the classi-
fication is based. In analogy to human and primate vision, 
classifications are performed using stereo information [16] as 
well as monocular image features such as the outline (shape) 
of objects [14], wavelet coefficients extracted by linear filter-
ing [8],[15] or Haar wavelet decomposition [13], principal 
component analysis [18] and local orientation coding tech-
niques [9],[19],  to name just a few.  
There are also systematic approaches to automatically select 
an optimal subset of image features from a given feature base 
using either evolutionary algorithms [18] or a procedure called 
“boosting” [13]. 
Another source of diversity are the methods employed to reach 
a classification decision: typical methods are template match-
ing [15], neural networks of various architectures [17], [19] 
and support vector machines [18].  
Driver assistance systems typically operate under real-time 
constraints, whereas high accuracy in object detection is never-
theless crucial. We propose a method to reliably and effi-
ciently detect cars within the driver assistance framework de-
veloped at our research group. The framework consists of a 
number of independent but interacting modules each of which 
performs a specialized analysis task on a video sequence that 
is common input to all modules. Our classification approach is 
based on local orientation coding derived from local edge in-
formation; classification is performed on monocular, gray-
valued  video sequences. The feature base was designed, i.e. 
not constructed using an automated procedure as mentioned 
previously, and the classification is done by an artificial neural 
network which learns from examples in a supervised way.  

An Initial Detection module for vehicles was already in ex-
istence within the general framework; goal of the work pre-
sented here is to show how hypotheses produced by the Initial 
Detection module (“regions of interest” – ROI) can be evalu-
ated (i.e. classified) by a Confirmation module.  

Real-time detection and classification of cars 
in video sequences 

Alexander Gepperth, Johann Edelbrunner, Thomas Bücher 

I



 

II. SYSTEM ARCHITECTURE 
Advanced Driver Assistance applications are either safety 

oriented, such as lane departure warning, lane change warning 
and pedestrian detection, or comfort oriented, such as e.g. traf-
fic sign detection. Among others, we have implemented spe-
cialized modules which carry out the aforementioned func-
tions. Common input to all modules are pre-processed data 
obtained from the input video image; by using a common fea-
ture basis, we ensure that the image need only be pre-proc-
essed once per frame, thereby facilitating real-time application. 

To make the car detection fast enough for real-time applica-
tions, the process of finding cars in image sequences is hierar-
chically organized. The different modules used for car detec-
tion are Initial Detection (different algorithms provide vehicle 
hypotheses, i.e. ROI), Confirmation (scale invariant evaluation 
of detected ROI) and Tracking (finds a given ROI in the fol-
lowing video frames). For a detailed description of the Track-
ing module, see [3], [10] and references therein. Obviously, 
the results of the different modules (except the feature extrac-
tion) are not independent and therefore a temporal coupling 
structure is implemented to increase the reliability of the car 
detection results. All specialized modules described use fea-
tures calculated in the pre-processing. In spite of the complex-
ity of the task, the Initial Detection guarantees fast data reduc-
tion. 

The ROI generated by the Initial Detection module are pre-
sented to the Confirmation module which generates a confi-
dence measure for each ROI indicating how likely it judges the 
ROI to contain a car. The number of initial hypotheses is 
thereby reduced depending on the “strictness” (which effec-
tively expresses the minimum confidence that will still be in-
terpreted as a “car present” decision) of the Confirmation 
module. This property is governed by a single threshold value 
which must be set according to the desired results. The re-
maining ROI are tracked; any incorrect hypotheses must be 
eliminated by heuristics governing the interaction of the Initial 
Detection, Confirmation and Tracking modules: The Tracking 
module output is continuously compared to hypotheses gener-
ated by the Initial Detection modules. A confidence value is 
maintained for each tracked ROI: the confidence is incre-
mented if the tracked object coincides with a confirmed hy-
pothesis, and decremented if it does not. When the confidence 
decays below a certain threshold, tracking is turned off for this 
particular ROI. It is then assumed that the hypothesis has be-
come invalid or has been invalid all along. Thus, incorrectly 
confirmed hypotheses can be eliminated effectively. This heu-
ristic takes several frames to discard incorrect hypotheses, 
besides the fact that tracking is a computationally expensive 
procedure. Therefore, it can make sense to use a more power-
ful classification function to save effort later. 

To summarize, the use of a Confirmation module yields the 
advantage of increased speed due to fewer false detections on 
the one hand, and on the other hand it provides an effective 
way to obtain an independent quality measure on tracked ROI, 
which can be used to calculate more accurate confidence val-
ues for each tracked ROI. 

III. IMAGE ANALYSIS AND FEATURE SELECTION 

A. Preprocessing 
The extraction of meaningful features is an important issue 

for any image processing algorithm. In contrast to the first 
driver assistance applications on the market (e.g. lane-depar-
ture-warning systems) where the preprocessing stage was di-
rectly linked to the application specific processing algorithms, 
the car detection and classification algorithms described in this 
paper are implemented in modules which run in the context of 
a whole driver assistance application. For such system archi-
tectures we propose to calculate a high-level feature basis 
which can be accessed by all image processing algorithms. 
This approach has a number of advantages: First of all, the 
development of robust task-specific algorithms is simplified 
significantly; secondly, assuming that the feature basis has 
certain invariance properties e.g. with respect to varying light-
ing conditions, such properties will be automatically in-
corporated in the task specific algorithms. And thirdly, de-
pending on the number of modules, even the whole processing 
time can be reduced due to simplified processing in additional 
task-specific image processing algorithms. Furthermore the 
calculation of the feature basis can be implemented on dedi-
cated hardware, so that a general purpose processing core can 
be used for the succeeding algorithms.  

We chose to extract horizontal gradients, vertical gradients, 
energy of gradients, contour points including a quantized local 
orientation and line segments including the mean energy along 
each segment. The features up to the contour points are repre-
sented in terms of images and are calculated by the well known 
Canny edge detector [5]. For efficiency reasons, we use sepa-
rable filters resulting in two 1D-convolutions for each gradient 
direction. It turned out that using a smoothing kernel of size 3 
and gradient kernel of size 5 leads to good results.. For effi-
cient access of sparse contour points, a linked data structure is 
used which is established during the non-maximum suppres-
sion algorithm of the Canny-Filter. The line-segments are ob-
tained by a clustering algorithm that makes use of this linked 
representation; the involved calculations are not presented here 
as they are beyond the scope of this paper (but see [2]). Each 
line-segment is represented by the image coordinates of its 
end-points and the mean gradient energy along that line and 
therefore provides an extremely sparse coding of an image 
contour. For typical road scenarios the average number of line-
segments obtained varies between 250 and 500 (image size: 
496x256, minimal line-length: 5 pixels). 

B. Features for Classification 
1) Histograms 

To allow for a real time decision process, the data provided 
by the pre-processing must be processed further, while still 
providing enough information for reliable classification. The 
outcome of this process shall be termed feature set in what fol-
lows. A sub-optimal choice of extraction procedure can sig-
nificantly reduce classification performance; because of this, 
some effort was made to identify suitable features. 

An upper boundary on the complexity of the feature extrac-
tion is set by the required calculation time, since we are inter-



 

ested in real-time decisions. This excludes common methods 
in image processing like Gabor or Fourier transforms, which 
need not be a disadvantage provided it is possible to identify 
cars using only “primitive” features. We are not assuming this 
is true for more general object recognition applications. 

In order to make our object recognition invariant with re-
spect to scaling, we demand that this invariance is already in-
corporated into the generation of the feature sets. In the course 
our investigations, we identified an extraction method which is 
equally favourable in terms of processing time as well as suit-
ability for classification. We will call this method the “Set of 
Orientation Energies” or SOE method. It will be described in 
detail further below. 

First of all, the ROI is subdivided into a fixed number of 
rectangular regions which we term receptive fields in analogy 
to biological image processing. From each receptive field a set 
of numbers is extracted by the chosen feature extraction 
scheme. The concatenated set of numbers extracted from all 
receptive fields in a ROI represents the feature set corre-
sponding to that ROI. The point is that the number of receptive 
fields does not depend on ROI size: the larger the ROI, the 
larger the receptive fields. This incorporates already at a fun-
damental level the requirement of scale invariance: the feature 
set does not reveal the size of the ROI it was calculated from. 

It is evident that a finer subdivision of a ROI gives higher 
spatial resolution and therefore more precise spatial informa-
tion; on the other hand, it leads to greater processing costs and 
larger feature sets, which in turn slow down the classification 
process. We determined the optimal subdivision by increasing 
the number of receptive fields from 1 until classification re-
sults stopped improving.  

The SOE method simply computes the sum of energies of 
all identically oriented edges in a receptive field and normal-
izes this sum by the total energy of edges within the receptive 
field. Orientations are quantized, that is, ranges of angles are 
mapped onto integers, thus effectively reducing the number of 
possible orientations. The output of the algorithm is a number 
for each orientation, indicating the ratio between oriented en-
ergies of that particular orientation and the total (= summed) 
energy of all orientations, and is therefore a number between 0 
and 1. By analyzing the problem class and doing some ex-
periments, we verified that four orientations are sufficient; the 
algorithm therefore produces 4 numbers per receptive field.  

2) Invariance properties 
To assess the invariance properties of SOE, we compute 

features from ROI in natural as well as artificial video se-
quences and from respective transformed versions, using a 7x7 
subdivision of the ROI. The transformations are scaling (of 
ROI and image) and translation (of the ROI). Results are 
measured on ROI containing vehicles/objects in two video 
sequences. One sequence is synthetic, the other recorded on a 
highway. Results are averaged over all frames of each se-
quence. 

For the investigation of translation invariance, ROI are 
shifted to the left and to the right by fixed percentages of their 
width. Without loss of generality, we consider only left/right 
shifts since by construction, ROI always have marked lower 
edges in the image. For testing scale invariance, we downsam-
ple and smooth the image by appropriate linear filters ([6]) and 
reduce ROI dimensions by the same factor. 

We define two error measures describing the deviation be-
tween a feature set and its transform. One is essentially the 
mean squared error (MSE) normalized by the average of the 
original feature set, but correcting for the fact that the 4 num-
bers that are generated per receptive field are not independent 
(they must add up to 1.0). Therefore, the MSE is halved; we 
call this method corrected MSE. The other measure (we named 
it binary deviation) takes the relative ordering of the orienta-
tions into account. First, it transforms the feature sets to be 
compared into binary feature sets by substituting a value of 
1.0 if an element is among the two (absolutely) strongest 
within a RF, and 0 if it is not. The MSE between the binary 
feature sets is given back as an error measure, producing a 
number between 0.0 and 1.0.  

The results on synthetic images (a sample of which is shown 
in Picture 1) are shown in Fig. 1. Note that the method is al-
most invariant to translation until 20% of ROI width. The rea-
son is that, with a 7x7 receptive field configuration, one re-
ceptive field corresponds to 28% of ROI width. As long as 
critical features stay within the same receptive fields, no 
changes can occur. Notable is furthermore the low error intro-
duced by scaling.  

  

 

 
Picture 1:  Example of synthetic and real-world video sequences used for the 
testing of invariances. Typical objects that were used for feature extraction are 
in boxes. 

0
1
2
3
4
5
6
7
8

1,00 1,50 2,00

Shrinking factor

Er
ro

r

0

10

20

30

40

50

60

0 20 40 60

Translation Percentage

Er
ro

r

 
Fig. 1.  Errors introduced into a feature set by scaling (left) and translation 
(right). Measurement was done on synthetic images Shown is the binary 
deviation (triangles) and the corrected MSE (squares). Both measures are 
explained in the text. 



 

Results on real-world images (Fig. 2) are poorer, as might 
be expected since translation introduces new and unpredictable 
content into an ROI instead of empty background in synthetic 
images. At first glance the method seems to perform poorly 
under scaling in particular, but at second glance one can per-
ceive that the structure of a feature set remains quite unaf-
fected. This becomes apparent when considering binary fea-
ture sets which contain 4 numbers per RF: a one if the angle 
index (running from 0 to 3) is among the two strongest in the 
RF or a zero if it is not. These binary feature vectors exhibit a 
deviation of only about 15 under 50% scaling, and this is, in 
our opinion, the reason why classification performance is quite 
independent of ROI size (see later sections, especially Fig. 4). 

IV. GENERATION OF INITIAL HYPOTHESES 
The generation of vehicle hypotheses is the first processing 

stage within an architecture for car detection. In this section, 
the algorithms generating the ROI presented to the Confirma-
tion module are briefly depicted. 

We developed two different algorithms for generating initial 
vehicle hypotheses, which are based on different image fea-
tures. One algorithm employs the line-segments calculated in 
the preprocessing stage for producing a list of potential vehicle 
positions: The middle of each approximately horizontal line-
segment serves as a starting position for searching lateral vehi-
cle boundaries. Based on the location of the line-segment in 
the image, the image region occupied by a vehicle at that loca-
tion is estimated. In this region a one-dimensional signal is 
calculated by vertically projecting horizontal gradient infor-
mation. Extraction of local maxima, analysis of maxima posi-
tions and signal values finally leads to either acceptance or 
rejection of that region. The other strategy for calculating po-
tential vehicle positions utilizes estimates of lane borders pro-
vided by another module and is therefore based on higher-level 
knowledge. It evaluates a robust measure of mean gray-value 
in each row (up to a maximal predefined distance from the 
ego-vehicle) for each lane, resulting in hypotheses for vertical 
vehicle positions for each detected lane. In order to suppress 
false detections due to horizontal shadows, the same mecha-
nism for evaluating the presence of horizontal vehicle bounda-
ries as in the algorithm outlined first is employed. 

V. 5 REQUIREMENTS ON A CONFIRMATION MODULE 
For the implementation of the Confirmation module, we de-

mand the following properties: 
--adaptivity: can be trained by examples 
--flexibility: able to generalize when dealing with previously 

unseen data 
--good performance: capable of real-time decisions  
--robustness: invariant to scale, translation and a wide range 

of lighting conditions. 
--independency: should not rely on other modules 
In the light of the explanations given so far, it is evident that 

the last three constraints are fulfilled by construction: the per-
formance constraint is taken care of by the way input features 
for the Confirmation module are generated, provided only that 
the confirmation itself can be implemented efficiently (which 

shall be shown later). The robustness constraint is satisfied on 
the one hand by using the results of the pre-processing stage 
which already exhibit a great deal of invariance properties, and 
on the other hand by the invariance properties of the feature 
sets extracted from each ROI which serve as inputs to the Con-
firmation module. Lastly, the independence property is en-
sured by the fact that only the input feature sets determine the 
decision of the Confirmation module.  

The first two constraints are satisfied by our implementation 
of the classification function within the Confirmation module 
which will be described in the next section. 

VI. THE CONFIRMATION MODULE 
The previously stated requirements on the Confirmation 

module do not specify a particular implementation, and indeed 
several alternatives present themselves, most prominently mul-

tilayer perceptrons (MLP) and support vector machines 
(SVM). For now, we will focus on issues that are independent 
of this particular choice. 

A. Training data 
The Confirmation module is required to decide whether a 

ROI that is presented contains a car or not, therefore distin-
guishing two classes of objects (cars and not-cars) from each 
other. Training examples consisting of a ROI and a class label 
(0.0 or 1.0) were generated from a significant number of dif-
ferent videos of typical highway scenes. We generated four 
disjunct datasets termed Dtrain, Dval, Dtest and Dextern, all contain-
ing 5000 examples, which are randomly taken from a larger 
database of over 100000 examples. 50% of the examples in 
each set are positive examples. The positive examples were 
labelled manually, the negative examples were produced using 
the Initial Detection module: for each frame of a video se-
quence, its output (a collection of ROI) was compared to the 
previously labelled positive examples. All ROI that did not 
coincide (within a certain tolerance range) were added to the 
database as negative examples. In this way, it is ensured that 
the negative examples used for training are comparable to 
those encountered during application. Furthermore, if the Ini-
tial Detection module should be altered, negative examples can 
simply be generated automatically by using the new Initial 
Detection module.  

The positive examples must fulfill a number of specifica-
tions. Positive examples must have a certain width/height ratio 
(close to 1 for cars), contain only cars and no trucks; they must 

0
10
20
30
40
50
60
70
80
90

1,00 1,50 2,00

Shrinking  factor

Er
ro

r

0

5

10

15

20

25

30

35

40

10 20 30 40 50 60

Translation percentage

Er
ro

r

 
Fig. 2. Errors introduced into a feature set by scaling (left) and translation 
(right). Measurement was done on real-world images. Shown is the binary 
deviation (triangles) and the corrected MSE (squares). 



 

include the pronounced lower edge of cars, enclose all of the 
rear view of a car tightly and vary over all scales. The last 
condition is a precaution: although the feature sets are roughly 
invariant to scaling, it is prudent to account for small devia-
tions by including training examples of all sizes. For negative 
examples, all conditions are fulfilled by construction.  

All our training data (the video sequences as well as the 
specification of the training examples) are available on our 
group’s homepage (www.neuroinformatik.rub.de/group/ 
Mesa), as well as the necessary software to manage the train-
ing data. 

B. Decision making 
We expect the output of the Confirmation module to be a 

continuum of values between the labels for the two classes. In 
order to interpret this as a decision in favour of a particular 
class, a threshold is defined, and the decision for a particular 
class is then expressed by a module output that exceeds or 
does not exceed the chosen threshold.  

The underlying assumption that justifies this simple method 
is that the degree of match between objects and learned models 
is at least approximately encoded by the euclidean distance be-
tween the module output and the corresponding class label. If 
this assumption holds, we expect the module outputs to be 
strongly centered around the class labels (in this case we ob-
tain a strongly bimodal distribution), and an optimal threshold 
can be applied that separates the outputs with minimal error. 
This assumption needs to be checked explicitely. 

C. Implementation of the classification function 
For the implementation of the classifier, a MLP is used 

which converges onto a single output neuron. We make this 
choice because we expect better performance than from SVM 
while obtaining comparable classification accuracies. We use 
one hidden layer, and all activation functions are of logistic 
sigmoidal type. For training, we use a modified form of the 
Rprop learning algorithm [4]. The layers are fully connected, 
and all neurons in the input layer are origins of shortcuts (con-
nections that bypass one or more layers) to the output neuron.  

Initially, we generate a population of NN with different pa-
rameter values and topologies. Each member of the population 
is subjected to an iterated optimization loop, a step of which 
consists of NN training and subsequent magnitude-based prun-
ing [7]. This simple pruning heuristic was chosen because ini-
tial attempts using a sensitivity-based method yielded poorer 
results at higher computational cost and were therefore aban-
doned. For a review of pruning techniques refer to [7]. The 
goal of this procedure is to obtain a NN that has as few con-
nections as possible (because execution speed scales linearly 
with the number of connections in our implementation, see 
Fig. 3) while still being capable of the best possible classifica-
tion. Motivated by general statements about the learning ca-
pacity of MLP [7], the unoptimized NN have about 5000 con-
nections. Since it is a difficult issue to show analytically which 
number and size of hidden layers is optimal for a specific 
problem [1], [7], we make no attempt to tackle it but leave this 
to an improved optimization technique. For this purpose, evo-
lutionary NN optimization methods seem the methods of 
choice to us. For a comparision of magnitude-based pruning to 

an evolutionary NN optimization method combining the abili-
ties to reduce and increase the size and complexity of the NN, 
see [20]. 

Inputs to the net are the feature sets that are generated in the 
previous processing step of feature extraction, so the input 
layer must have precisely that dimensionality.  

For the implementation of the NN we use the ReClaM 
package of the freely available SHARK library (http://shark-
project.sourceforge.net).  

D. NN Training 
For training, we use the MSE as an error measure. As usual, 

weights are initialized to random small values between –0.05 
and 0.05 with each NN using a different seed value for the 
random number generator. MSE on Dtrain is minimized for 100 
epochs, whereupon the net with the best MSE on Dval is se-
lected as training result. Convergence is very fast; in general, 
no more than 10 epochs are needed until training achieved an 
overall error smaller than 10% on Dval.  

E. Optimization 
We set the size of the initial population of NN to 250. The size 
of the hidden layer is chosen to lie between 20 and 25. After 
every training step, we apply magnitude-based pruning to all 
NN. One pruning step consists of the elimination of a percent-
age of weights; we eliminate those 10% of weights that have 
the smallest absolute value.  

0,0E+00
2,0E-05
4,0E-05
6,0E-05
8,0E-05
1,0E-04
1,2E-04
1,4E-04
1,6E-04

0 1000 2000 3000 4000 5000

Number of connections

Ex
ec

ut
io

n 
sp

ee
d 

(s
)

 
Fig. 3.  Dependence of execution speed on NN complexity 

0

500

1000

1500

2000

2500

3000

0 50 100

Roi size in pixel

F(
x)

0

1

2

3

4

5

6

7

0 50 100

Minimal ROI size

 C
la

ss
. e

rro
r

 
Fig. 4.  Dependence of classification accuracy on ROI size. Left: size dis-
tribution of examples in Dtest. Car ROI are depicted by squares, non-car ROI 
by triangles. F(x) denotes the cumulative distribution function, i.e. the number 
of ROI wider than x. Right: classification accuracy plotted against the lower 
bound on ROI width 



 

All evaluations of optimization results are performed using 
the classification error (CE) on Dtest. The result of the optimi-
sation is a statement about the network capacity needed for this 
particular problem class: it turns out that the number of con-
nections can be reduced by approximately 55% while retaining 
optimal CE, i.e. comparable to those obtained by repeatedly 
training the unoptimized NN with different initializations and 
choosing the best one as reference. At 10% of the original 
connections, NN are still capable of an overall CE of about 
95%. But, surprisingly, even NN with fewer than 2% of the 
original connections are able to produce CE of about 90%.  

When talking about results, we clarify some terms first since 
they are not used coherently in the literature: We denote as 
false positive/negative rate the percentage of positive/negative 
examples that are classified wrongly. Analogously, the true 
positive/negative rate denotes the percentage of correctly clas-
sified positive or negative examples. 

Fig. 4 (right) supports an assertion we made earlier: the ap-
proximate independence of the CE on ROI size. What one can 
furthermore perceive is that CE actually falls below 3% when 
excluding ROI smaller than 30 pixels. As shown by Fig. 4 
(left), such ROI are quite common and their influence on the 
classification error is therefore notable, whereas they typically 
do not contain cars but artefacts produced by the Initial Detec-
tion. Fig. 5 shows the dependence of the classification error as 
well as the false positive and false negative rates as a function 
of the applied decision threshold. As can be perceived from 
the figures, the best overall classification error is 3,8%. Of 
course it can make sense to accept a higher overall error rate in 
order to minimize the false negative or false positive rates, 
depending on the demands of an application. Fig. 6 (left) 
shows representative optimization results. Notable is the clear 
trade-off between NN complexity and classification accuracy.  

Fig. 6 (right) shows the receiver-operator characteristic 
(ROC) [11] of the best optimized NN.  

VII. PERFORMANCE, BENEFITS 
On a Pentium II PC with 1 Ghz under Windows NT, using 

the MS Visual C 6.0 compiler, the largest NN from the opti-
misation runs takes about 0,15 ms for one classification. The 
smallest optimized net that gives overall classification errors 
of under 6% takes 0,022 ms per classification. This results 
from the fact that the net has only about 10% the number 
weights compared to the unoptimized NN, with a correspond-

ing order-of-magnitude increase in speed. The smallest NN 
that yields an overall classification error of under 10% needs 
10-4 ms for a classification. These extremely fast classification 
times make the optimized NN applicable for brute-force search 
methods that scan the whole image at multiple scales to relia-
bly detect all objects of interest. It should be noted, however, 
that we do not expect this result to be extensible to other ob-
jects than cars since our investigation suggests that the prob-
lem class is easily separable.  

Together with the time needed for feature extraction, which 
is (averaged over all ROI in the training sets) 0.3 ms, the ob-
ject detection module takes between 0,3 ms and 0,45 ms for 
one operation, depending on the complexity of the classifica-
tion NN. Another point is that the optimisation procedure gen-
erates a sequence of classifiers that can be applied successively 
to candidate ROI, thus generating hypotheses of increasing 
reliability at negligible computational cost, since the feature 
set needs to be calculated only once. Classifiers of differing 
accuracy and complexity can be selected to enhance different 
modules of the system according to speed and accuracy re-
quirements. 

VIII. CONCLUSION  
We have shown that car classification is a task that can be 
solved to very good accuracy and at high speeds by NN classi-
fiers. From the front of trade-off solution we obtained, NN can 
be selected according to different demands on speed and clas-
sification accuracy. Extremal NN containing only a few dozen 
connections are still able to give reasonable accuracy at negli-
gible computational cost. These findings make it plain that car 
detection and classification can easily operate even under real-
time constraints. In the face of the enormous variety of possi-
ble traffic situations, it is, however, not to be expected that the 
approach described here can lead to perfect detection accuracy 
under all circumstances. Therefore, further studies will be de-
voted to the issue of how the performance of the whole driver 
assistance framework can be improved by the enhanced object 
detection, and how to make object detection more stable by 
considering additional information provided by other modules 
and information sources. 

IX. REFERENCES 

[1]  E Baum and D Haussler. What size network gives valid generaliza-
tions? Neural Computation, 1:151-160, 1989. 

  

0

20

40

60

80

100

120

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Threshold

C
la

ss
ifi

ca
tio

n 
Er

ro
r

 
Fig. 5.  Error measures depending on applied decision threshold. False positives 
re depicted by circles, false negatives by squares. The overall classification error 
is indicated by triangles. 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50

Classification error

N
r o

f c
on

ne
ct

io
ns

0,5

0,6

0,7

0,8

0,9

1

1,1

0 0,5 1

false positive percentage

tru
e 

po
si

tiv
e 

pe
rc

en
ta

ge

 
Fig. 6.  Left: Typical optimisation results. Right: Receiver-operator char-
acteristic of the best optimized NN 



 

[2]  T Bücher, C Curio, H Edelbrunner, C Igel, D Kastrup, I Leefken, G 
Lorenz, A Steinhage and W von Seelen. Image processing and be-
haviour planning for intelligent vehicles. IEEE Transactions on 
industrial electronics, 90(1):62-75, 2003. 

[3]  G.A. Klanderman D.P. Huttenlocher and W.J. Rucklidge. Compar-
ing images using the hausdorff distance. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 15(9):850-863, 1993. 

[4]  Christian Igel and Michael Hüsken. Empirical evaluation of the im-
proved Rprop learning algorithm. Neurocomputing, 50(C):105-123, 
2003. 

[5]  J.F.Canny. A computational Approach to Edge Detection. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 8:679-
698, November 1986. 

[6]  B. Jähne. Digital Image Processing - Concepts, Algorithms, and 
Scientific Applications, 3rd Edition. Springer Verlag, Berlin, 3rd 
edition, 1995. 

[7]  Russel D. Reed and Robert J. Marks. Neural Smithing – Supervised 
Learning in Feedforward Artificial Neural Networks. MIT Press, 
Cambridge, Massachusetts, 1999. 

[8]  H Schneiderman and T Kanade. A statistical method for 3d object 
detection applied to faces and cars. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR 2000), 2000. 

[9]  A Shashua, Y Gdalyahu and G Hayun. Pedestrian detection for 
driving assistance systems: Single-frame classification and system 
level performance. In IEEE Intelligent vehicle symposium (IV2004), 
2004. 

[10]  M Werner. Objektverfolgung und Objekterkennung mittels der 
partiellen Hausdorff-Distanz. Number 574 in Reihe 10. Fortschritt-
Berichte VDI, 1999. 

[11]  XH Zhou, NA Obuchowski, and DK McClish. Statistical methods 
in diagnostic medicine, pp. 15-164. John Wiley & Sons, 1 edition, 
2002. 

[12] P Viola, MJ Jones and D Snow. Detecting Pedestrians Using Pat-
terns of Motion and Appearance. Proceedings of the Ninth IEEE 
International Conference on Computer Vision (ICCV 2003), 2003.  

[13] P Viola and MJ Jones. Rapid Object Detection using a Boosted 
Cascade of Simple Features. Proceedings IEEE Conf. on Computer 
Vision and Pattern Recognition (CVPR 2001), 2001 

[14] D Gavrila and V Philomin. Real-time object detection for smart 
vehicles. In Proceedings of the ICCV 1999, 87-93, 1999.  

[15] M Oren, C Papageorgiou, P Sinha, E Osuna, and T Poggio. Pedes-
trian detection using wavelet templates. In Proc. Computer Vision 
and Pattern Recognition, pp. 193-199, Puerto Rico, June 16-20 
1997. 

[16] U Franke and I Kutzbach. Fast Stereo Based Object Detection for 
Stop&Go Traffic. Proc. Intelligent Vehicles Conf. '96,  pp. 339-344, 
1996. 

[17] C Wöhler and JK Anlauf. Real-time object recognition on image 
sequences with the adaptable time delay neural network algorithm -
applications for autonomous vehicles. Image and Vision Comput-
ing, vol. 19, no. 9-10, pp. 593-618, 2001. 

[18] Z Sun, G Bebis and R Miller. Object detection using feature subset 
selection. Pattern Recognition 37, pp. 2165 –2176, 2004. 

[19] C Goerick, D Noll and M Werner. Artificial neural networks in real-
time car detection and tracking applications, Pattern Recognition 
Lett.17, pp.335 –343, 1996. 

[20] A Gepperth and S Roth. Applications of multi-objective structure 
optimization. To appear in Proceedings of the 13th European Sym-
posium on Artificial Neural Networks, Bruges, April 27-29, 2005. 

 


