
Multi-Objective Design Space Exploration Using Genetic
Algorithms

Maurizio Palesi
Dip. Ing. Informatica e delle Telecomunicazioni

University of Catania
V.le Andrea Doria, 6
95125 Catania, Italy

mpalesi@diit.unict.it

Tony Givargis
Center for Embedded Computer Systems

UC Irvine, Info. & Comp. Sci.
444 Computer Science Building

Irvine, CA 92697-3425
givargis@ics.uci.edu

ABSTRACT
In this work, we provide a technique for efficiently exploring a pa-
rametefized system-on-a-chip (SoC) architecture to find all Pareto-
optimal configurations in a multi-objective design space. Globally,
our approach uses a parameter dependency model of our target pa-
rametefized SoC architecture to extensively prune non-optimal sub-
spaces. Locally, our approach applies Genetic Algorithms (GAs) to
discover Pareto-optimal configurations within the remaining design
points. The computed Pareto-optimal configurations will represent
the range of performance (e.g., timing and power) tradeoffs that
are obtainable by adjusting parameter values for a fixed application
that is mapped on the parameterized SoC architecture. We have
successfully applied our technique to explore Pareto-optimal con-
figurations for a number of applications mapped on a parameterized
SoC architecture.

Keywords
Design space exploration, genetic algorithms, low power design,
Pareto-optimal configurations, and system-on-a-chip architectures

1. INTRODUCTION
The growing demand for portable embedded computing devices
is leading to new system-on-a-chip (SoC) architectures intended
for embedded systems. Such SoC architectures must be general
enough to be used across several different applications in order
to be economically viable, leading to recent attention to parame-
terized SoC architectures. On the other hand, embedded comput-
ing devices, that are to be mapped onto these parametefized SoC
architectures, often have very different design objectives such as
different timing requirements or performance budgets. Therefore,
parameterized SoC architectures must be optimally configured to
meet varied timing requirements, power budgets, and, in general,
multiple design objectives of a large class of applications. Conse-
quently, there is a need for efficient multi-objective design space
exploration approaches.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES'02. May 6-8, 2002, Estes Park, Colorado, USA.
Copyright 2002 ACM 1-58113-542...4/02/0005...$5.00.

A typical parameterized SoC architecture will have a processor
core, one or more caches, on-chip bus hierarchy, on-chip mem-
ory, and a large number of peripheral cores that provide application
specific functionality such as multi-media and communication pro-
cessing. Each of these SoC cores is likely to be parameterized,
enabling a designer to tune a core's settings for a specific appli-
cation that is to be mapped on the parameterized SoC architecture.
For example, the on-chip buses may be configured to use bus-invert
[18] coding for low power, or the caches may be configured to use a
greater or lesser degree of associativity for increased performance
[13, 1]. An assignment of a value to each of these parameters will
impact the overall timing, power, and other performance aspects of
the system. Moreover, such performance impacts are highly de-
pendent on the application running on the parameterized SoC ar-
chitecture. Therefore, a designer must have a method for finding
a feasible set of parameter values, referred to as a configuration
of the parametefized SoC architecture, that meets the specification
requirements.

We outline an exploration approach that efficiently searches the en-
tire configuration space and outputs Pareto-optimal configurations
providing the designer with only the interesting configurations that
result in a tradeoff between the interesting design objectives (e.g.,
timing and power). Our approach augments the parameter depen-
dency design space exploration technique previously established i'n
[6] with a novel Genetic Algorith/ns (GAs) approach for improved
performance.

The remainder of this paper is organized as follows. In Section 2,
we define the problem and outline some background work. In Sec-
tion 3, we give the GAs based design space exploration approach.
In Section 4, we show our experimental results. In Section 5, we
state our concluding remarks.

2. BACKGROUND
2.1 Problem Formulation
We are given a parameterized SoC architecture composed of nu-
merous interconnected parameterized computational, communica-
tion, and memory elements. Each of these parameters can be as-
signed a value from a finite set of values. A complete assignment of
values to all the parameters is a configuration. A complete collec-
tion of all possible configurations is the configuration space, (a.k.a.,
the design space). A partial collection of the configurations is a
configuration subspace. We are also given a parameterized system-
level model of the parameterized SoC architecture that when ex-
ecuted can yield multiple performance metrics (e.g., timing and

6 7

power) of the system under current configuration. Such parame-
terized simulation models have been outlined in [5, 17]. The prob-
lem is to efficiently compute, with the aid of a system-level model,
the Pareto-optimal configurations, with respect to the performance
metrics of interest, for a fixed application executing on the param-
eterized SoC architecture. For example, in the case of timing and
power, a configuration is Pareto-optimal if no other configuration
has better power for a given timing/speed.

Note that in general the solution to a multi-objective optimization
problem can not be obtained by simply considering the design ob-
jectives separately. In practice, optimizing one design objective
will adversely impact the optimality of other design objectives. The
solution to such optimization problems falls under a class of strate-
gies for multi-objective optimization. Multi-objective optimization
(also called multi-criteria optimization, multi-performance or vec-
tor evaluation) can be defined as the problem of finding [4] a vector
of decision variables (in our case a configuration vector that can be
mapped on the parameterized system under study) which satisfies
constraints and optimizes a vector function whose elements repre-
sent the objective functions. These functions form a mathematical
description of performance criteria which are usually in conflict
with each other. Hence, the term "optimize" means finding a solu-
tion which would give values for all the objective functions such as
to be acceptable to the designer.

2.2 Design Space Exploration
The most straightforward but least efficient approach to determine
the Pareto-optimal set of configurations of a parameterized SoC
architecture with respect to a multi-objective design optimization
criteria is to do an exhaustive search of the configuration space.
This approach can be used only if the configuration space is lim-
ited. However, it is not rare to find parameterized SoC architectures
with tens of parameters [7] and exponentially many configurations.
Moreover estimating performance metrics for each configuration
requires costly simulation and analysis of the system. For example
in the target parameterized SoC architecture used in this paper, the
evaluation of timing and power consumption given a single config-
uration requires on the average 1.5 sec. The configuration space of
our experimental parameterized SoC architecture is of the order of
1012 , therefore an exhaustive search requires times of the order of
tens of millions of years!

When the configuration space is too large to be explored in an ex-
haustive manner, heuristics must be used. One heuristic approach
is to use evolutionistic techniques, such as GAs. GAs have found
their way in many fields of VLSI design [14] at various levels of
abstractions. For example, at the layout level, some partitioning
[2], placement [16], and routing [12] techniques rely on GAs. At
higher levels GAs have been used for power estimation [10], tech-
nology mapping [I 1], and netlist partitioning [3]. At even higher
levels GAs have been used for reliable chip testing through efficient
test vector generation [15]. Generally, the design space exploration
problem as well as these other VLSI problems listed here are in-
tractable (i.e., no polynomial time algorithm can guarantee optimal
solution) and belong to either the NP-complete or NP-hard cate-
gories of problems. An approach based on GAs is very effective in
solving such problems in a general and efficient way.

2.3 Genetic Algorithms
Evolutionary algorithms have been introduced by John Holland [9].
Since their introduction, a variety of evolutionary algorithms have
been proposed [8]. The major ones are: GAs, evolutionary pro-

gramming, evolution strategies, classifier systems, and genetic pro-
grarnming. They all share a common conceptual base of simulat-
ing the evolution of individual structures via processes of selection,
mutation, and reproduction.

GAs are based on the evolution of a population of individuals over
a number of generations, Each individual of the population is as-
signed a fitness value whose determination is problem dependent.
At each generation, individuals are selected for reproduction based
on their fitness value. Such individuals are crossed to generate new
individuals, and the new individuals are mutated with some low
mutation probability.

The objective of GAs is to find the optimal solution to a problem.
However, because GAs are heuristics, the solution found is not al-
ways guarantied to be the optimal solution. Nevertheless, experi-
ence in applying GAs to a great deal of problems has shown that
often the goodness of the solutions found by GAs is sufficiently
high.

3. DESIGN EXPLORATION USING GA
We propose an approach for the exploration of the configuration
space of a parameterized SoC architecture that uses GAs. More
specifically, we have chosen a generic GA framework called SPEA2
[19], which, when applied to design space exploration, is very ef-
fective in finding points that are along the actual Pareto-optimal
front. Our task is to map the design space exploration problem to
this particular GA framework. We do this mapping as follows:

3.

The representation of a configuration: a mapping between a
possible configuration of the parametedzed SoC architecture
and a chromosome of the GA. Here, we use a gene for each
parameter of the pararneterized SoC architecture and allow
that gene to assume only the values admissible by the pa-
rameter it represent.

The objective functions: a mapping between a configuration
of the parameterized SoC architecture to a real value that is
the measure of the performance metric that we want to op-
timize (e.g. timing, and power). In a multi-objective opti-
miization criteria, we would have an objective function for
each objective.

The convergence criterion: a criteria that determines when
the evolution process of the GA should halt. One simple con-
vergence criterion is to let the GA run for some fixed number
of generations. While a simple criterion, it is not easy to
determine the exact number of necessary iterations. To solve
this problem we define a stop criterion based on distance con-
vergence. The basic idea is to stop the evolution when there
is no longer any appreciable improvement in the consecu-
tive Pareto-optimal sets that are being found. The conver-
gence criterion we propose uses a distance function [20] be-
tween two Pareto-optimal sets to establish when the GA has
reached convergence. Let C ~ and C" be two Pareto-optimal
sets in the design space. The coverage function between C ~
and C" is

fc(C',C") = I{c" E C"; 3 c' E C ' : c' ~ c"}l
Ic"] (l)

and represents the fraction of points in C" that are dominated
at least by one point in C ~.

68

IfCi is the Pareto-optimal set at generation i and G > 0 then
we define the following convergence index:

q(i,G) = fc(Ci+G,Ci)--fc(Ci,Ci+G) (2)

As long as the evolutionary process improves the solutions
found we continue to iterate (i.e., fc(Ci+G, Ci) > f¢(Ci, Ci+G)
q(i, G) > 0). We could therefore perform an observation ev-
ery G generations to evaluate q(g, G) and determine if it has
a value below some user-defined threshold To, which would
signal the stop condition.

The main advantages of the use of GAs are are given below [14]:

They are an adaptive approach in the sense that they are of
general application and do not require detailed knowledge of
the problem.

They learn by experience, in the sense that they solve a prob-
lem by successive refinement.

They are inherently parallel in the sense that at each itera-
tion they evaluate not one but a number of possible solutions,
equal to the size of the population.

They are efficient at solving complex problems: this is demon-
strated by the fact that evolutionary algorithms are currently
receiving growing interest from researchers with various back-
grounds to solve problems of all kinds and levels of complex-
ity.

The complexity of the approach often lies in evaluation of the
fitness functions of the individuals in each generation. This
procedure can be parallelised quite simply, as it is possible to
assign individual fitness values independently, so concurrent
execution of this operation does not cause conflict.

3.1 Exploration Algorithm
Previously, it has been shown that by taking parameter interdepen-
dencies into account, the design space can be extensively pruned
[6]. Such parameter dependency awareness is deployed in a design
exploration tool called Platune [6]. Platune works in two phases. In
the first phase the design subspace defined by clusters of interde-
pendent parameters are explored in an exhaustive manner to find the
local Pareto-optimal set (LPOS). In the second phase these LPOS
are merged and exhaustively searched to find the global Pareto-
optimal set (POS). Platune works well as long as most of the pa-
rameters are not interdependent, as this will result in a large num-
ber of small clusters that can be feasibly searched in an exhaustive
manner. But if the parameters are heavily interdependent, the ap-
proach in Platune becomes infeasible. In this work, we substitute
a GA based approach in place of the exhaustive search used by
Platune when the subspace to be searched is greater in size than
some threshold T. Thus, our approach is a merger of the parame-
ter dependency approach introduced in Platune with a GA search
introduced in this work.

The new algorithm works as follows. In the first phase, if the size
o f the configuration space C generated by a cluster is greater than
T we apply GAs on that subspace, initializing the population with
random configurations from C. Else we do an exhaustive search as
shown in Algorithm I.

Algori thm 1 GAPlatune: an iteration of the 1 st phase
Require: C: set of configurations to be explored
Ensure: LPOS: local Pareto-optimal set of the cluster C

if [C[> T then
GA.InitRandomPopulation (C);
LPOS = GA.Evolve0;

else
LPOS = ExhaustiveSearch(C);

end if

In the second phase, given two clusters Ci and Cj and the respective
LPOSs (LPOSi and LPOSj), if the size of the configuration space
generated by merging LPOSi and LPOSj is greater than T then the
GA is applied. In this case, differently from the first phase, the ini-
tial population of the GA is initialized with the configurations from
LPOSi and LPOSj. Else if the size of the configuration space is less
than T an exhaustive search is applied, as shown in Algorithm 2.

Algorithm 2 GAPlatune: an iteration of the 2nd phase

Require: LPOSi, LPOSj: Pareto-optimal set of the clusters Ci and
ci

Ensure: LPOSij: local Pareto-optimal set obtained by merging the
clusters Ci and Cj
C = LPOSi x LPOSj;
if ICI > Z then

GA.InitPopulation(LPOSi,LPOSj):
LPOSij = GA.Evolve0;

else
LPO$ij = ExhaustiveScarch(C);

end if

3.2 Algorithm Evaluation
To evaluate the quality of the obtained results we define a good-
ness index as being the average distance (as a percentage) between
the approximated Pareto-optimal set (A) obtained using the mixed
approach described above and the actual Pareto-optimal set (O) ob-
tained by performing exhaustive only searches as done in Platune
[6]. For the following discussion, and Without loss of generality,
we assume that the metrics of interest are timing (i.e., execution
time) and power.

Let .X and 0 be ordered sets of power, and timing pairs, sorted in
increasing values of power. As the power and timing values are
on different scales, the components of each point in the set 0 t2
A are normalized to the maximum power and timing values, thus
obtaining the normalized sets On ed .,qn, as shown in Figure l(a)
and (b).

Let d(T, On) be the distance between a point T E ~ and the poly-
line generated by On. This distance is 0 if T is not dominated by
any point in .~.n. If, on the other hand, T is dominated by at least
one point in On then S(T) C On is the set of the pairs (Qi, Qi+l)
such that the angles ct and 13 respectively formed by the lines pass-
ing through T and Qi and through T and Qi+l with the line joining
Qi and Qi+l (see Figure 2(a)) is less than 90 degrees.

I f S # 0 then d(T, On) is the minimum distance between T and the
segments defined in g:

a(T, On) = min{ds(r,s) :S E S}

69

Execu t ion T ime
(a)

J

m a x e

I=(1.0,1.0)
. 1.0

0

N

0

Z

1.0
N o r m a l i z e d Execu t ion T i m e

(b)

Figure 1: Pareto-optimal set and approximated pareto-optimal
set; (a) before normalization, (b) after normalization.

where the function ds(T,S) returns the distance between a point T
and the line passing between the two points in S.

I fS = 0 (as in Figure 2(b)) then d(T, On) is the minimum Euclidean
distance between T and each point in On :

d(T, On) = min{dp(T,Q) : Q E On}

where the function dp (T, Q) returns the Euclidean distance between
the point T and the point Q.

Having defined the distance between each point in ..%, and On, we
can define the average distance between the sets On and An:

1 dm(O.,~)= F~ ~ d(T,O~)
T E A ,

To have an idea of the percentage difference between A and O,
we have to relate d (On, .~) to the maximum distance between the

1.0

0

v~ . f

E

Z

I=(1.0,1.0)
- 0 . - .

O, O. ct.~,y.5>90*

• •
"e T

Q i - , ' ~ _ ~ Q,

Qi . , . ~ ' ~ ' Q ' o A

~ - - ~ 0

N o r m a l i z e d Execu t ion Timle 0
(a)

1.0

° ~

E

Z

• •

Normalized Execution Timle 0
(b)

Figure 2: Distance between a point and a polyline. (a) The
angles ~ [~, T, and 5 are less than 90 degrees, so .5(T) =
{(Qi-i,Qi),(Qi, Qi+l)}. (b) There is no line passing through
T and crossing in a perpendicular direction a segment of the
polyline O.

point I = (1.0,1.0) and the points in the set On U..~.

dm(On,.~) a~(On,.,~) =]00x
max{dp(l,T) : T E OUA}

(3)

We use the evaluation technique outlined here in the next section to
evaluate the quality of our exploration approach.

4. E X P E R I M E N T S
We have applied both the dependency/exhaustive approach, used
by Platune, (DA) and the mixed approach, presented in this work,
(MA) to a highly parameterized SoC architecture shown in Fig-
ure 3. Our target architecture consists of a MIPS R3000 processor,
an instruction cache (IS), a data cache (D$), on-chip memory, and
various busses connecting the CPU and the caches as well as the
caches and the on-chip memory. Each component of this architec-
ture is parameterized as shown in Figure 3. Note that these param-
eters refer to architectural or micro-architectural features and are

70

technology independent. There are a total of 19 parameters gener-
ating a space of 5.97 x 10]2 possible configurations.

The methodology proposed has been validated in terms of both the
quality of the solutions found and efficiency of execution. The
index used to measure the quality of the solutions is the average
distance (as a percentage) of the approximated Pareto-optimal set
(APOS) found by MA from the POS found by DA (using Equa-
tion 3). Efficiency is measured by counting the number of simula-
tions required to complete the exploration.

Exploration of the configuration space is confined to the subspace
obtained by fixing the voltage scale parameter, as voltage scaling
is usually performed dynamically. For each benchmark the explo-
ration is performed using both DA and MA. In the latter case the
internal and external population is set as comprising of 50 individu-
als, using a crossover probability of 0.9 and a mutation probability
of 0.01. With regard to the convergence criterion, the term G in
condition 2 is set to 3 while the convergence threshold Tc is set
to 0.05. Four tests are carried out for each benchmark with four
different threshold values: T=100, 200, 400 and 800.

Table 1 shows the results obtained by running a set of benchmarks
from the Motorola PowerStone suite (a collection of embedded and
portable applications) for both DA and MA approaches. The first
column states the benchmark name. The second column states the
CPU time required to evaluate a configuration of the system when
it executes that application (etime). This time has been measured
using the unix command t ±me on a Athlon 800 MHz workstation
with 256 MB of RAM running Linux. The third column shows
the number of configuration visited using the DA to find the POS
(evals). The remaining columns refers to the results obtained using
the MA for four different thresholds (T=100, 200, 400 and 800).
For each threshold the three columns represent the number of con-
figurations visited to extract the APOS, the average distance (as a
percentage) of the APOS from the POS (d%), and the percent sav-
ing in terms of the simulation time with respect to DA (s%). From
the efficiency point of view, on average, we obtain 80% savings in
the number of simulations. On the other hand the average distance
from the POS is less than I% for all threshold values. The last
line. in the table gives the arithmetical average of the values in each
column.

Figure 4 shows the cumulative distribution of the average distances
of the APOS from the POS for different threshold values. For each
threshold over 95% of the APOS have a distance less than 1% from
the POS. In particular lower thresolds (such as T=100 and T=200)
give better results than higher thresholds (T=400 and T=800).

To summarize, experiments with a number of benchmarks show
that using the GAs we obtain a Pareto-optimal set that is within 1%
of the actual set but with less effort, namely, an 80% reduction in
simulation time.

5. CONCLUSION
We have outlined an approach that uses GAs to improve the perfor-
mance of existing design space exploration algorithms that seek to
find Pareto-optimat configurations of parameterized SoC architec-
tures while taking into account multiple design objectives. Specif-
ically, our approach replaces the exhaustive component of the pa-
rameter interdependency based approach called Platune [6] by re-
placing it with a technique that is based on a GA framework called
SPEA2 [19]. Experiments show that on the average a saving of

9 ~ s

/:~i~ ~ -

8

60

0 ~ 2 3 4 S e 7

Figure 4: Percent cumulative distribution of the distances be-
tween APOS and POS for different threshold values.

80% in simulation time is achievable while still maintaining explo-
ration results that are within 1% of those generated by an exhaustive
approach.

6. REFERENCES
[1] D. Albonesi. Selective cache ways: On-demand cache

resource allocation. MICRO, 1999.

[2] C. J. Alpert, L. W. Hagen, and A. B. Kahng. A hybrid
multilevel/genetic approach for circuit partitioning. In Fifth
ACM/SIGDA Physical Design Workshop, pages 100-105,
Apr. 1996.

[3] C.J. Alpert and A. B. Kahng. Recent developments in netlist
partitioning: A survey. VLSlJournal, 19(1-2):1-81, 1995.

[4] C. A. C. Coello. A comprehensive survey of
evolutionary-based multiobjective optimization techniques.
Knowledge and Information Systems. An International
Journal, 1(3):269-308, Aug. 1999.

[5] T. Givargis, E Vahid, and J. Henkel. Fast cache and bus
power estimation for parametrized system-on-a-chip design.
In Design Automation and Test in Europe (DATE), Mar.
2000.

[6] T. Givargis, E Vahid, and J. Henkel. System-level
exploration for pareto-optimal configurations in
parameterized systems-on-a-chip. In International
Conference on Computer Aided Design, Nov. 2001.

[7] R.E. Gonzalez. Xtensa: A configurable and extensible
processor. IEEE Micro, pages 60--70, 2000.

[8] J. HeitkOtter and D. Beasley. The hitch-hiker's guide to
evolutionary computation.
http : //surf. de. uu. net/encore/www/, Apr. 12
2001.

[9] J. H. Holland. Adaption in Natural and Artificial Systems.
MI: University of Michigan Press, 1975.

[10] Y.-M. Jiang, K.-T. Cheng, and A. Krstic. Estimation of
maximum power and instantaneous current using a genetic
algorithm. In Proceedings of lEEE Custom Integrated
Circuits Conference, pages 135-138, May 1997.

71

MIPS
R30O0

; : / . i

oo= I I : : l i

u ~ i ' t I : i] i ,

as~ati taly: 1.2,4,8.16 i I i
8~o :4 .8 ~ i l i

width: 4,8,16.32
e~'¢lxJing: binary, gray, invert

Memory

Figure 3: Reference architecture and its parameters.

g31ax 2.61 27382 3052 0.01 88.9 2657 0.02 90.3 3778 0.00 86.2 3712 0.061531,.IO 86.4
12.22 15996 2481 0,11 84.5 2801 0.01 82.5 2855 0,01 82.2 2912 0.1904200 81.8 JP~8

qua 0.O9
bent 0.13
=dpcm O.M
b[it 0.17
~ompr~s 0.54

02 c~
des 0.18
engine 1.18
fir 0,13
poc~ag 0.68
= c t x ~ a 0.65
A~ragc IA7

Table 1: Average distance between
thresholds.

13231 2359 0.02 82.2 2377 0,00 82.0 2967 O.C~ 77.6 4183 0.1&57300 6 8 4
22642 2318 0.01 89.8 3183 0.01 85.9 2338 0.01 89.7 4276 0.1532600 81.1
14694 2535 0.01 82.7 3143 0.OI 78.6 3122 O.CO 78.8 3193 0,2.672900 78.3
37787 2928 0.02 92.3 3254 0.01 91,4 3,406 0.00 91.0 2979 0 . 0 9 6 ~ 0 0 92,1
14035 2607 0.01 81.4 3237 0.02 76.9 3475 0.00 75.2 3373 0.8247200 76.0
21205 3577 0.01 83.1 3503 0.01 83.5 3446 0.00 83,7 2517 0,2054900 88.1
21970 2513 0.01 88,6 2143 0.02 90.2 3822 0.01 82,6 3933 0.2510100 82.1
15532 2910 0.03 81.3 2655 O,01 82.9 3349 0.00 78,4 3711 0.15-12900 76,1
16832 3150 0.05 81.3 3659 0,01 78.3 2929 O.CO 82,6 3210 0.2118100 80.9
19102 2228 0.02 8 8 3 2807 0.00 85.3 30'70 0.00 83.9 3388 0.1118200 82.3
19102 2830 0.01 85.2 3103 0.01 83.8 2942 0.00 84.6 2801 0.15025O0 85.3
19962 2730 0.02 85.3 2963 0.01 84.0 3192 O.CO 82.8 3399 0.2264385 81.5

APOS and POS and a saving in terms of simulation time between MA and DA for different

[11] V. Kommu and I. Pomenraz. GAFAP: Genetic algorithm for
FPGA technology mapping. In European Design Automation
Conference, pages 300.--305, 1993.

[12] J. Lienig and K. Thulasiraman. A genetic algorithm for
channel routing in VLSI circuits. Evolutionary Computation,
1(4):293-311, 1993.

[13] A. Malik, B. Moyer, and D. Cermak. A programmable
unified cache architecture for embedded applications. In
International Conference on Compilers, Architecture, and
Synthesis for Embedded Systents, 2000.

[14] P. Mazumder and E. M. Rudnick. Genetic Algorithms for
VLSI Design, Layout & Test Automation. Prentice Hall, Inc.,
1999.

[15] D. Saab, Y. Saab, and J. Abraham. Automatic test vector
cultivation for sequential vlsi circuits using genetic
algorithms. IEEE Transactionsn Computer-Aided Design,
15(10):1278.-1285, Oct. 1996.

[16] K. Shahookar and P. Mazumder. A genetic approach to
standard cell placement using metagenetic parameter
optimization. IEEE Transactions on Computer-Aided
Design, 9:500--511, May 1990.

[17] T. Simunic, L. Benini, and G. D. Micheli. Cycle-accurate
simulation of energy consumption in embedded systems. In
• ACM Press, editor, Proceedings of the 36th Conference on
Design Automation, pages 867-872, New Orleans, LA, USA,
June21-25 1999.

[18] M. R. Stan and W. P. Burleson. Bus invert coding for low
power I/O. IEEE Transactions on VLSI Systems, pages
49--58, Mar. 1995.

[19] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving
the performance of the strength pareto evolutionary
algorithm. Technical Report TIK-Report 103, Computer
Engineering and Communication Networks Lab, Swiss
Federal Institute of Technology (ETH) Zurich, Gloriastrasse
35, CH-8092, May 2001.

[20] E. Zitzler and L. Thiele. Multiobjective evolutionary
algorithms: A comparative case study and the strength pareto
approach. IEEE transactions on Evolutionary Computation,
4(3):257-271, Nov. 1999.

7 2

