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ABSTRACT 
In this work, we provide a technique for efficiently exploring a pa- 
rametefized system-on-a-chip (SoC) architecture to find all Pareto- 
optimal configurations in a multi-objective design space. Globally, 
our approach uses a parameter dependency model of our target pa- 
rametefized SoC architecture to extensively prune non-optimal sub- 
spaces. Locally, our approach applies Genetic Algorithms (GAs) to 
discover Pareto-optimal configurations within the remaining design 
points. The computed Pareto-optimal configurations will represent 
the range of performance (e.g., timing and power) tradeoffs that 
are obtainable by adjusting parameter values for a fixed application 
that is mapped on the parameterized SoC architecture. We have 
successfully applied our technique to explore Pareto-optimal con- 
figurations for a number of applications mapped on a parameterized 
SoC architecture. 

Keywords 
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1. INTRODUCTION 
The growing demand for portable embedded computing devices 
is leading to new system-on-a-chip (SoC) architectures intended 
for embedded systems. Such SoC architectures must be general 
enough to be used across several different applications in order 
to be economically viable, leading to recent attention to parame- 
terized SoC architectures. On the other hand, embedded comput- 
ing devices, that are to be mapped onto these parametefized SoC 
architectures, often have very different design objectives such as 
different timing requirements or performance budgets. Therefore, 
parameterized SoC architectures must be optimally configured to 
meet varied timing requirements, power budgets, and, in general, 
multiple design objectives of a large class of applications. Conse- 
quently, there is a need for efficient multi-objective design space 
exploration approaches. 
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A typical parameterized SoC architecture will have a processor 
core, one or more caches, on-chip bus hierarchy, on-chip mem- 
ory, and a large number of peripheral cores that provide application 
specific functionality such as multi-media and communication pro- 
cessing. Each of these SoC cores is likely to be parameterized, 
enabling a designer to tune a core's settings for a specific appli- 
cation that is to be mapped on the parameterized SoC architecture. 
For example, the on-chip buses may be configured to use bus-invert 
[18] coding for low power, or the caches may be configured to use a 
greater or lesser degree of associativity for increased performance 
[13, 1]. An assignment of a value to each of these parameters will 
impact the overall timing, power, and other performance aspects of 
the system. Moreover, such performance impacts are highly de- 
pendent on the application running on the parameterized SoC ar- 
chitecture. Therefore, a designer must have a method for finding 
a feasible set of parameter values, referred to as a configuration 
of the parametefized SoC architecture, that meets the specification 
requirements. 

We outline an exploration approach that efficiently searches the en- 
tire configuration space and outputs Pareto-optimal configurations 
providing the designer with only the interesting configurations that 
result in a tradeoff between the interesting design objectives (e.g., 
timing and power). Our approach augments the parameter depen- 
dency design space exploration technique previously established i'n 
[6] with a novel Genetic Algorith/ns (GAs) approach for improved 
performance. 

The remainder of this paper is organized as follows. In Section 2, 
we define the problem and outline some background work. In Sec- 
tion 3, we give the GAs based design space exploration approach. 
In Section 4, we show our experimental results. In Section 5, we 
state our concluding remarks. 

2. BACKGROUND 
2.1 Problem Formulation 
We are given a parameterized SoC architecture composed of nu- 
merous interconnected parameterized computational, communica- 
tion, and memory elements. Each of these parameters can be as- 
signed a value from a finite set of values. A complete assignment of 
values to all the parameters is a configuration. A complete collec- 
tion of all possible configurations is the configuration space, (a.k.a., 
the design space). A partial collection of the configurations is a 
configuration subspace. We are also given a parameterized system- 
level model of the parameterized SoC architecture that when ex- 
ecuted can yield multiple performance metrics (e.g., timing and 
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power) of the system under current configuration. Such parame- 
terized simulation models have been outlined in [5, 17]. The prob- 
lem is to efficiently compute, with the aid of a system-level model, 
the Pareto-optimal configurations, with respect to the performance 
metrics of interest, for a fixed application executing on the param- 
eterized SoC architecture. For example, in the case of timing and 
power, a configuration is Pareto-optimal if no other configuration 
has better power for a given timing/speed. 

Note that in general the solution to a multi-objective optimization 
problem can not be obtained by simply considering the design ob- 
jectives separately. In practice, optimizing one design objective 
will adversely impact the optimality of other design objectives. The 
solution to such optimization problems falls under a class of strate- 
gies for multi-objective optimization. Multi-objective optimization 
(also called multi-criteria optimization, multi-performance or vec- 
tor evaluation) can be defined as the problem of finding [4] a vector 
of  decision variables (in our case a configuration vector that can be 
mapped on the parameterized system under study) which satisfies 
constraints and optimizes a vector function whose elements repre- 
sent the objective functions. These functions form a mathematical 
description of performance criteria which are usually in conflict 
with each other. Hence, the term "optimize" means finding a solu- 
tion which would give values for all the objective functions such as 
to be acceptable to the designer. 

2.2 Design Space Exploration 
The most straightforward but least efficient approach to determine 
the Pareto-optimal set of configurations of a parameterized SoC 
architecture with respect to a multi-objective design optimization 
criteria is to do an exhaustive search of the configuration space. 
This approach can be used only if the configuration space is lim- 
ited. However, it is not rare to find parameterized SoC architectures 
with tens of parameters [7] and exponentially many configurations. 
Moreover estimating performance metrics for each configuration 
requires costly simulation and analysis of the system. For example 
in the target parameterized SoC architecture used in this paper, the 
evaluation of timing and power consumption given a single config- 
uration requires on the average 1.5 sec. The configuration space of 
our experimental parameterized SoC architecture is of the order of 
1012 , therefore an exhaustive search requires times of  the order of 
tens of millions of years! 

When the configuration space is too large to be explored in an ex- 
haustive manner, heuristics must be used. One heuristic approach 
is to use evolutionistic techniques, such as GAs. GAs have found 
their way in many fields of VLSI design [14] at various levels of 
abstractions. For example, at the layout level, some partitioning 
[2], placement [16], and routing [12] techniques rely on GAs. At 
higher levels GAs have been used for power estimation [ 10], tech- 
nology mapping [I 1], and netlist partitioning [3]. At even higher 
levels GAs have been used for reliable chip testing through efficient 
test vector generation [15]. Generally, the design space exploration 
problem as well as these other VLSI problems listed here are in- 
tractable (i.e., no polynomial time algorithm can guarantee optimal 
solution) and belong to either the NP-complete or NP-hard cate- 
gories of problems. An approach based on GAs is very effective in 
solving such problems in a general and efficient way. 

2.3 Genetic Algorithms 
Evolutionary algorithms have been introduced by John Holland [9]. 
Since their introduction, a variety of evolutionary algorithms have 
been proposed [8]. The major ones are: GAs, evolutionary pro- 

gramming, evolution strategies, classifier systems, and genetic pro- 
grarnming. They all share a common conceptual base of simulat- 
ing the evolution of individual structures via processes of selection, 
mutation, and reproduction. 

GAs are based on the evolution of a population of individuals over 
a number of generations, Each individual of the population is as- 
signed a fitness value whose determination is problem dependent. 
At each generation, individuals are selected for reproduction based 
on their fitness value. Such individuals are crossed to generate new 
individuals, and the new individuals are mutated with some low 
mutation probability. 

The objective of GAs is to find the optimal solution to a problem. 
However, because GAs are heuristics, the solution found is not al- 
ways guarantied to be the optimal solution. Nevertheless, experi- 
ence in applying GAs to a great deal of problems has shown that 
often the goodness of the solutions found by GAs is sufficiently 
high. 

3. DESIGN EXPLORATION USING GA 
We propose an approach for the exploration of the configuration 
space of a parameterized SoC architecture that uses GAs. More 
specifically, we have chosen a generic GA framework called SPEA2 
[19], which, when applied to design space exploration, is very ef- 
fective in finding points that are along the actual Pareto-optimal 
front. Our task is to map the design space exploration problem to 
this particular GA framework. We do this mapping as follows: 

3. 

The representation of a configuration: a mapping between a 
possible configuration of the parametedzed SoC architecture 
and a chromosome of the GA. Here, we use a gene for each 
parameter of the pararneterized SoC architecture and allow 
that gene to assume only the values admissible by the pa- 
rameter it represent. 

The objective functions: a mapping between a configuration 
of the parameterized SoC architecture to a real value that is 
the measure of the performance metric that we want to op- 
timize (e.g. timing, and power). In a multi-objective opti- 
miization criteria, we would have an objective function for 
each objective. 

The convergence criterion: a criteria that determines when 
the evolution process of the GA should halt. One simple con- 
vergence criterion is to let the GA run for some fixed number 
of generations. While a simple criterion, it is not easy to 
determine the exact number of necessary iterations. To solve 
this problem we define a stop criterion based on distance con- 
vergence. The basic idea is to stop the evolution when there 
is no longer any appreciable improvement in the consecu- 
tive Pareto-optimal sets that are being found. The conver- 
gence criterion we propose uses a distance function [20] be- 
tween two Pareto-optimal sets to establish when the GA has 
reached convergence. Let C ~ and C" be two Pareto-optimal 
sets in the design space. The coverage function between C ~ 
and C" is 

fc(C',C") = I{c" E C"; 3 c' E C ' :  c' ~ c"}l 
Ic"] (l) 

and represents the fraction of points in C" that are dominated 
at least by one point in C ~. 
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IfCi is the Pareto-optimal set at generation i and G > 0 then 
we define the following convergence index: 

q(i,G) = fc(Ci+G,Ci)--fc(Ci,Ci+G) (2) 

As long as the evolutionary process improves the solutions 
found we continue to iterate (i.e., fc(Ci+G, Ci) > f¢(Ci, Ci+G) 
q(i, G) > 0). We could therefore perform an observation ev- 
ery G generations to evaluate q(g, G) and determine if it has 
a value below some user-defined threshold To, which would 
signal the stop condition. 

The main advantages of the use of GAs are are given below [ 14]: 

They are an adaptive approach in the sense that they are of  
general application and do not require detailed knowledge of  
the problem. 

They learn by experience, in the sense that they solve a prob- 
lem by successive refinement. 

They are inherently parallel in the sense that at each itera- 
tion they evaluate not one but a number of possible solutions, 
equal to the size of the population. 

They are efficient at solving complex problems: this is demon- 
strated by the fact that evolutionary algorithms are currently 
receiving growing interest from researchers with various back- 
grounds to solve problems of all kinds and levels of complex- 
ity. 

The complexity of the approach often lies in evaluation of the 
fitness functions of the individuals in each generation. This 
procedure can be parallelised quite simply, as it is possible to 
assign individual fitness values independently, so concurrent 
execution of this operation does not cause conflict. 

3.1 Exploration Algorithm 
Previously, it has been shown that by taking parameter interdepen- 
dencies into account, the design space can be extensively pruned 
[6]. Such parameter dependency awareness is deployed in a design 
exploration tool called Platune [6]. Platune works in two phases. In 
the first phase the design subspace defined by clusters of interde- 
pendent parameters are explored in an exhaustive manner to find the 
local Pareto-optimal set (LPOS). In the second phase these LPOS 
are merged and exhaustively searched to find the global Pareto- 
optimal set (POS). Platune works well as long as most of the pa- 
rameters are not interdependent, as this will result in a large num- 
ber of small clusters that can be feasibly searched in an exhaustive 
manner. But if the parameters are heavily interdependent, the ap- 
proach in Platune becomes infeasible. In this work, we substitute 
a GA based approach in place of  the exhaustive search used by 
Platune when the subspace to be searched is greater in size than 
some threshold T. Thus, our approach is a merger of the parame- 
ter dependency approach introduced in Platune with a GA search 
introduced in this work. 

The new algorithm works as follows. In the first phase, if the size 
o f  the configuration space C generated by a cluster is greater than 
T we apply GAs on that subspace, initializing the population with 
random configurations from C. Else we do an exhaustive search as 
shown in Algorithm I. 

Algori thm 1 GAPlatune: an iteration of the 1 st phase 
Require: C: set of configurations to be explored 
Ensure: LPOS: local Pareto-optimal set of the cluster C 

if [C[ > T then 
GA.InitRandomPopulation (C); 
LPOS = GA.Evolve0; 

else 
LPOS = ExhaustiveSearch(C); 

end if 

In the second phase, given two clusters Ci and Cj and the respective 
LPOSs (LPOSi and LPOSj), if the size of the configuration space 
generated by merging LPOSi and LPOSj is greater than T then the 
GA is applied. In this case, differently from the first phase, the ini- 
tial population of  the GA is initialized with the configurations from 
LPOSi and LPOSj. Else if the size of the configuration space is less 
than T an exhaustive search is applied, as shown in Algorithm 2. 

Algorithm 2 GAPlatune: an iteration of the 2nd phase 

Require: LPOSi, LPOSj: Pareto-optimal set of the clusters Ci and 
ci  

Ensure:  LPOSij: local Pareto-optimal set obtained by merging the 
clusters Ci and Cj 
C = LPOSi x LPOSj; 
if ICI > Z then 

GA.InitPopulation(LPOSi,LPOSj): 
LPOSij = GA.Evolve0; 

else 
LPO$ij = ExhaustiveScarch(C); 

end if 

3.2 Algorithm Evaluation 
To evaluate the quality of the obtained results we define a good- 
ness index as being the average distance (as a percentage) between 
the approximated Pareto-optimal set (A) obtained using the mixed 
approach described above and the actual Pareto-optimal set (O) ob- 
tained by performing exhaustive only searches as done in Platune 
[6]. For the following discussion, and Without loss of generality, 
we assume that the metrics of interest are timing (i.e., execution 
time) and power. 

Let .X and 0 be ordered sets of power, and timing pairs, sorted in 
increasing values of power. As the power and timing values are 
on different scales, the components of  each point in the set 0 t2 
A are normalized to the maximum power and timing values, thus 
obtaining the normalized sets On ed .,qn, as shown in Figure l(a) 
and (b). 

Let d(T, On) be the distance between a point T E ~ and the poly- 
line generated by On. This distance is 0 if T is not dominated by 
any point in .~.n. If, on the other hand, T is dominated by at least 
one point in On then S(T) C On is the set of the pairs (Qi, Qi+l) 
such that the angles ct and 13 respectively formed by the lines pass- 
ing through T and Qi and through T and Qi+l with the line joining 
Qi and Qi+l (see Figure 2(a)) is less than 90 degrees.  

I f S  # 0 then d(T, On) is the minimum distance between T and the 
segments defined in g: 

a(T, On) = min{ds(r,s) :S E S} 
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Figure 1: Pareto-optimal set and approximated pareto-optimal 
set; (a) before normalization, (b) after normalization. 

where the function ds(T,S) returns the distance between a point T 
and the line passing between the two points in S. 

I fS  = 0 (as in Figure 2(b)) then d(T, On) is the minimum Euclidean 
distance between T and each point in On : 

d(T, On) = min{dp(T,Q) : Q E On} 

where the function dp (T, Q) returns the Euclidean distance between 
the point T and the point Q. 

Having defined the distance between each point in ..%, and On, we 
can define the average distance between the sets On and An: 

1 dm(O.,~)= F~ ~ d(T,O~) 
T E A ,  

To have an idea of  the percentage difference between A and O, 
we have to relate d (On, .~ )  to the maximum distance between the 

1.0 

0 

v~ . f  

E 

Z 

I=(1.0,1.0) 
- 0 . -  . . . . . . . . . . . . . . . . . . . . .  

O, O. ct.~,y.5>90* 

• • 
"e T 

Q i - , ' ~ _ ~  ..... Q, 

Qi . , . ~ ' ~ ' Q  ' o  A 

~ - - ~ 0  

N o r m a l i z e d  Execu t ion  Timle 0 
(a) 

1.0 

° ~  

E 

Z 

• ..... • 

Normalized Execution Timle 0 
(b) 

Figure 2: Distance between a point and a polyline. (a) The 
angles ~ [~, T, and 5 are less than 90 degrees, so .5(T) = 
{(Qi-i,Qi),(Qi, Qi+l)}. (b) There is no line passing through 
T and crossing in a perpendicular direction a segment of the 
polyline O. 

point I = (1.0,1.0) and the points in the set On U..~. 

dm(On,.~) a~(On,.,~) = ]00x 
max{dp(l,T) : T E OUA} 

(3) 

We use the evaluation technique outlined here in the next section to 
evaluate the quality of our exploration approach. 

4. E X P E R I M E N T S  
We have applied both the dependency/exhaustive approach, used 
by Platune, (DA) and the mixed approach, presented in this work, 
(MA) to a highly parameterized SoC architecture shown in Fig- 
ure 3. Our target architecture consists of a MIPS R3000 processor, 
an instruction cache (IS), a data cache (D$), on-chip memory, and 
various busses connecting the CPU and the caches as well as the 
caches and the on-chip memory. Each component of this architec- 
ture is parameterized as shown in Figure 3. Note that these param- 
eters refer to architectural or micro-architectural features and are 
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technology independent. There are a total of 19 parameters gener- 
ating a space of 5.97 x 10 ]2 possible configurations. 

The methodology proposed has been validated in terms of both the 
quality of the solutions found and efficiency of execution. The 
index used to measure the quality of the solutions is the average 
distance (as a percentage) of the approximated Pareto-optimal set 
(APOS) found by MA from the POS found by DA (using Equa- 
tion 3). Efficiency is measured by counting the number of simula- 
tions required to complete the exploration. 

Exploration of the configuration space is confined to the subspace 
obtained by fixing the voltage scale parameter, as voltage scaling 
is usually performed dynamically. For each benchmark the explo- 
ration is performed using both DA and MA. In the latter case the 
internal and external population is set as comprising of 50 individu- 
als, using a crossover probability of 0.9 and a mutation probability 
of 0.01. With regard to the convergence criterion, the term G in 
condition 2 is set to 3 while the convergence threshold Tc is set 
to 0.05. Four tests are carried out for each benchmark with four 
different threshold values: T=100, 200, 400 and 800. 

Table 1 shows the results obtained by running a set of benchmarks 
from the Motorola PowerStone suite (a collection of embedded and 
portable applications) for both DA and MA approaches. The first 
column states the benchmark name. The second column states the 
CPU time required to evaluate a configuration of the system when 
it executes that application (etime). This time has been measured 
using the unix command t ±me on a Athlon 800 MHz workstation 
with 256 MB of RAM running Linux. The third column shows 
the number of configuration visited using the DA to find the POS 
(evals). The remaining columns refers to the results obtained using 
the MA for four different thresholds (T=100, 200, 400 and 800). 
For each threshold the three columns represent the number of con- 
figurations visited to extract the APOS, the average distance (as a 
percentage) of the APOS from the POS (d%), and the percent sav- 
ing in terms of the simulation time with respect to DA (s%). From 
the efficiency point of view, on average, we obtain 80% savings in 
the number of simulations. On the other hand the average distance 
from the POS is less than I% for all threshold values. The last 
line. in the table gives the arithmetical average of the values in each 
column. 

Figure 4 shows the cumulative distribution of the average distances 
of the APOS from the POS for different threshold values. For each 
threshold over 95% of the APOS have a distance less than 1% from 
the POS. In particular lower thresolds (such as T=100 and T=200) 
give better results than higher thresholds (T=400 and T=800). 

To summarize, experiments with a number of benchmarks show 
that using the GAs we obtain a Pareto-optimal set that is within 1% 
of the actual set but with less effort, namely, an 80% reduction in 
simulation time. 

5. CONCLUSION 
We have outlined an approach that uses GAs to improve the perfor- 
mance of existing design space exploration algorithms that seek to 
find Pareto-optimat configurations of parameterized SoC architec- 
tures while taking into account multiple design objectives. Specif- 
ically, our approach replaces the exhaustive component of the pa- 
rameter interdependency based approach called Platune [6] by re- 
placing it with a technique that is based on a GA framework called 
SPEA2 [19]. Experiments show that on the average a saving of 

9 ~ s  

/:~i~ ~ - . . . .  

8 

60 

0 ~ 2 3 4 S e 7 

Figure 4: Percent cumulative distribution of the distances be- 
tween APOS and POS for different threshold values. 

80% in simulation time is achievable while still maintaining explo- 
ration results that are within 1% of those generated by an exhaustive 
approach. 
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