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For 21 European leaf-floras (with a focus on Central Europe), which span a stratigraphic range from the Late Eocen
Pliocene, paleoclimate estimates have been calculated using five different quantitative techniques: (a) leaf margin analysis
using a regression model based on data from East Asia, (b) the multivariate Climate Leaf Analysis Multivariate Programm (C
technique, based on data from East Asia and N.-America, (c) a recently developed multivariate technique based on modern E
vegetation (ELPA), (d) a provisional LMA regression model based on the vegetation of several wet localities from N.-
(LMA2), and e) the Coexistence Approach (CA), a technique based on comparisons with the nearest living relatives (NLRs)
taxa. According to our results there seems to be certain discrepancies where the different techniques are comp
paleotemperatures estimates, depending mainly on the stratigraphic age of the floras. For Paleogene floras, both multivar
physiognomic techniques are in rather good agreement with CA, although both techniques may differ considerably from each
contrast, for the Neogene, CLAMP shows a tendency to produce estimates that are considerably colder than CA, wherea
provides generally warmer estimates, and is in better agreement with CA and other independent evidence. Our res
interpretations add some caveats to temperature reconstructions based on leaf physiognomy, especially when applied to E
floras from older periods (i.e. Paleogene, Cretaceous). Possible changes of the relationship between climate and leaf physi
over time should be taken into account as a possible source of error whenever such techniques are used. There is the possibility
actual correlation between climate and leaf form may be modified by long-time evolutionary responses or floral changes, le
erroneous paleoclimate estimates, if a calibration data-set is used, which is not suited for the region and time-interval in q
However, further research will be needed to test whether such changes in the relationship between climate and leaf physiogno
time can also be detected on other continents, or whether this is a problem restricted to Europe.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction
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Understanding paleoclimate may be essential
understanding of future climatic situations e
during contemporary and future global climate
For the terrestrial realm, fossil plants are ge
considered to represent excellent paleoclimatic p
Consequently, in recent decades a number of d
techniques have been developed for the estima
paleoclimate parameters relying on fossil plant r
Unlike taxonomically based techniques establis
comparisons with the nearest living relatives (N
fossil plants (e.g., Kershaw and Nix, 1988; Mos
and Utescher, 1997; Mosbrugger, 1999), non-ta
ically based techniques depending on corre
between certain climatic parameters and leaf p
nomy are considered by many authors to re
powerful and reliable tools for the estima
paleoclimatic parameters. This is because such m
are considered to be independent of the
identification of fossil leaves (e.g., Wolfe, 1979
Wing and Greenwood, 1993; Wolfe, 1995; Wilf
Wolfe and Spicer, 1999; Roth-Nebelsick et al.,
Despite the general acceptance of leaf physio
methods by many authors, there is still intense de
the applicability of certain leaf physiognomic
ques for the reconstruction of Cenozoic paleote
tures (e.g. Boyd, 1994; Mosbrugger and Utesche
McIver and Basinger, 1999). For example,
applications of leaf physiognomic techniques to
floras of the European and Asian Neogene yielde
annual temperatures (MAT) which were consi
lower than those derived by other paleobo
techniques (e.g. NLR techniques), and also tha
indicated by independent geological and paleonto
evidence (e.g. Mosbrugger and Utescher,
Utescher et al., 2000; Kvaček et al., 2002; Lian
2003; Kowalski and Dilcher, 2003; Uhl et al., 2

Kowalski and Dilcher (2003) suggested th
physiognomic reconstruction techniques may
underestimate paleotemperatures since paleoflo
dominated by leaves fromwet environments, whic
a greater proportion of toothed leaves in
vegetation than has been documented from “st
correlations between climate and leaves from les
habitats, a fact first recognized by Burnham et al.
To overcome such a bias, Kowalski and Dilcher
proposed an alternative, though provisional, reg
model for these floras, based on a modern cal
data-set derived from wet environments. Althou
approach yielded temperature estimates for bot
and modern assemblages that were closer to
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ture estimates for a number of European N
paleofloras left the discussion still open (e.g. Mos
and Utescher, 1997; Utescher et al., 2000; Kvače
2002; Liang et al., 2003; Kowalski and Dilcher
Uhl et al., in press). Further, considering paleote
ture reconstructions not only from the Neogene,
from the Paleogene of Europe, it is evident that i
cases the estimates derived from leaf physio
techniques are actually in good agreement wit
paleoclimatic evidence, despite the fact that at lea
of these Paleogene floras certainly also originate
wet environments (e.g. Uhl et al., 2003; Roth-Ne
et al., 2004; Kvaček and Walther, 2004). To e
whether these observations can be generalized or
compared the paleotemperature estimates derive
several quantitative techniques for thirteen Neog
eight Paleogene floras from Europe. For this purp
used methods based on different modern calibrati
sets originating from different continents, to see w
there are any systematic patterns.

2. Material and methods

2.1. Material

For this meta-analysis we have chosen 21 Eu
leaf-floras (with a focus on Central Europe) whi
a stratigraphic range from the Late Eocene
Pliocene (cf. Table 1). The floras have been s
based on the following criteria:

1) diversity of the flora, with well known tax
composition

2) extremely good preservation and documenta
leaf physiognomy

3) coverage of a wide area of depositional enviro
by individual floras.

Stratigraphic and taxonomic details for the ind
floras, aswell as their depositional settings can be f
the citations given in Table 1 andwill not be repeat

2.2. Methods

We applied several frequently used leaf p
nomic techniques including (a): leaf margin a
(LMA1) (using a regression model established b
and Greenwood (1993); based on data from Ea
from Wolfe (1979)) and (b) the multivariate C
Leaf Analysis Multivariate Program (CLAMP
nique (based on data from East Asia and N.-A
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Table 1
Palaeofloras considered in the present study

Locality Age Depositional literature environment

1. Berga/Thuringia Pliocene fluviatile–lacustrine (?) Mai and Walther (1988)
2. Willershausen Pliocene lacustrine Knobloch, 1998; Knobloch and Gregor, 2000;

Gregor and Storch, 2000
3. Frankfurt Pliocene lacustrine (?) Mädler (1939)
4. Hambach 9A Late Miocene fluviatile Utescher et al. (2000) a

5. Garzweiler 8o Late Miocene fluviatile Utescher et al. (2000) a

6. Hambach 8u Late Miocene fluviatile Utescher et al. (2000) a

7. Hambach 7f Late Miocene fluviatile Utescher et al. (2000) a

8. Bergheim 7o Late Miocene fluviatile Utescher et al. (2000) a

9. Frechen 7o Late Miocene fluviatile Utescher et al. (2000) a

10. Sprendlingen Late Miocene fluviatile Meller (1989)
11. Schrotzburg Middle Miocene fluviatile Hantke, 1954; Uhl et al., 2003, 2006 a, b, c, d

12. Kövágó-oldal Middle Miocene lacustrine Erdei and Hir, 2003; Traiser, 2004 a, b, c, d

13. Wackersdorf Early Miocene fluviatile–lacustrine Knobloch and Kvaček (1976)
14. Enspel Late Oligocene lacustrine (maar lake) Köhler, 1998; Utescher et al., 2000 a

15. Kleinsaubernitz Late Oligocene lacustrine (maar lake) Walther, 1999; Uhl et al., 2003 a, c

16. Monod-Rivaz Late Oligocene lacustrine Berger, 1994; Traiser, 2004 a, b, d

17. Hammerunterwiesenthal Early Oligocene lacustrine (maar lake) Walther (1998)
18. Kundratice Early Oligocene lacustrine (maar lake) Kvaček and Walther (1998)
19. Haselbach Early Oligocene fluviatile–lacustrine Mai and Walther, 1978; Roth-Nebelsick et al., 2004 a

20. Weiβelster Basin Late Eocene fluviatile–lacustrine Mai and Walther (1985)
21. Stare Sedlo Late Eocene fluviatile–lacustrine Knobloch et al. (1996)
a CA values taken from this publication.
b CLAMP value taken from this publication.
c LMA1 value taken from this publication.
d ELPA value taken from this publication.
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recently developed multivariate ordination tec
based on modern European vegetation (Europe
Physiognomic Approach, ELPA) (Traiser, 2004;
et al., 2005; Uhl et al., in press), and (d) the prov
LMA regression model (LMA2) developed by K
and Dilcher (2003) (for a detailed discuss
techniques a, b, and c see Uhl et al. (2006) and c
therein).

In most cases the leaf physiognomic compos
the floras was scored based on descriptio
illustrations from the literature (cf. Table 1).
case of the localities Monod-Rivaz and Kövag
leaf physiognomy was scored directly from v
specimens (Traiser, 2004). In a few cases existing
derived from leaf physiognomic techniques hav
taken from the literature (cf. Table 1).

The results obtained from the leaf physio
methods are compared to estimates derived fr
Coexistence Approach (CA), a quantitative tec
based on the NLR Approach (Mosbrugger and U
1997) representing a source of information indep
from leaf physiognomy. In some cases existi
values were taken from the literature (cf. Table

To provide an assessment of the deviations f
CA results, we divided the estimates derived fr
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relying on standardized errors: 1) absolute agr
with CA, 2) up to 2 °C warmer, 3) up to 2 °C co
more than 2 °C warmer, and 5) more than 2 °C
than CA. When available, information on
estimates provided by previous studies, based
on general comparisons with selected NLRs, is

However, it should be emphasized here, that
procedure does not imply a priori that the CA es
are implicitly “true”, although the reliability
method has been shown repeatedly not only
European Neogene (e.g. Mosbrugger and U
1997; Utescher et al., 2000; Uhl et al., 2003,Mos
et al., 2005; Uhl et al., 2006), as well as the Pa
(e.g. Pross et al., 1998; Utescher et al., 2000; Uh
2003; Roth-Nebelsick et al., 2004; Kvaček and W
2004; Mosbrugger et al., 2005). Here we use it
only as a widely supported and reliable so
information about paleotemperatures, which
considered to be independent from leaf physiogn

3. Results

The results of the applications are shown in
and Fig. 1. CLAMP estimates derived for mos
Paleogene floras, as well as for one Early Mioc
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Table 2
Quantitative comparison of MAT estimates for the different floras and methods

=overlap with CA; =up to 2 °C colder than CA; =up to 2 °C warmer than CA; XXX=more than 2 °C colder than CA;
XXX=more than 2 °C warmer than CA. CA = Coexistence Approach; LMA

1

= Leaf Margin Analysis (regression model from Wing and
Greenwood, 1993); LMA

2

= Leaf Margin Analysis (provisional regression model for riparian elements from Kowalski and Dilcher, 2003);
ELPA = European Leaf Physiognomic Approach; Orig. estimate=previous estimates from the literature (cf. Table 1).
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with estimates derived by CA. Only two Paleoge
eleven Neogene CLAMP estimates are colder th
estimates (Table 2). Five out of eight LMA1 estim
Paleogene floras are in good agreement w
estimates, and two are significantly warmer a
colder. For the Neogene, five LMA1 estimates agr
CA, two are warmer and six colder (Table 2). U
provisional LMA2 regression model for wet e
ments we find that for the Paleogene five estim
significantly warmer and only two are in agreeme
CA. For the Neogene, three floras are warmer, fiv
than CA and five agree with estimates derived fr
technique (Table 2). Concerning ELPA,we see tha
Paleogene three estimates are significantly warm
CA estimates and five agree. For the Neogen
estimate is warmer and three colder than CA, w
eight ELPA estimates agree with CA estimates (T
but
A
for
A
ne
ith
the
n-
are
ith
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his
the
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ne
eas
2).

nomic methods to produce estimates which agr
those of the CA for Paleogene floras, but which ar
than CA estimates for Neogene floras. LMA2 a
lesser degree ELPA also show a tendency towards
estimates for Paleogene floras. In contrast to th
physiognomic methods, ELPA also produces es
which are mostly in agreement with those of CA (T
for the Neogene floras. Nevertheless, as me
above, the CA estimates are not considered a p
be implicitly true. But the reliability of this method
European Neogene and Paleogene has been a
repeatedly by various authors, and estimates deriv
this technique are usually in good agreemen
qualitative and quantitative temperature-data
form other geological and paleontological eviden

Nevertheless, when we compare our CLAM
mates withMATestimates given in previouswork
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Fig. 1. Graphical comparison of MATestimates derived from LMA (•), CLAMP(□), ELPA (Δ), CA (dark grey boxes) and “original estimates” based
on comparison with NLRs, taken from preceding publications on individual floras (cf. Table 1) (dotted boxes).
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climatic requirements of selected NLRs, we s
CLAMP estimates are mostly in agreement wit
estimates for Paleogene floras, or come very c
these estimates (i.e. Stare Sedlo, Kundratice) (T
Fig. 1). Interestingly, CLAMP is also in good ag
with some of the Neogene estimates from previou
(Table 2, Fig. 1). LMA estimates are only occasio
agreement with estimates given in previous pu
works and generally show a greater variabili
estimates derived from all other techniques (T
Fig. 1). For most of the floras analyzed, ELPA p
estimates that are warmer than the “original” es
given in previous published reports. Only for tw
(i.e. Monod-Rivaz, Willershausen) do the ELP
mates agree with these old estimates and only in o
(Berga) does ELPA provide a colder estima
estimates are similar to the old estimates, altho
some cases there are slight differences. In som
however, CA estimates are somewhat warmer,
warmer upper limits than the old estimates, altho
stratigraphic tendency can be seen at this time.

Results from both LMA regression models
great variability, a fact that is probably related
high susceptibility of this technique to taph
disturbances (e.g. Uhl et al., 2003, 2006). In c
both multivariate techniques show smaller var
with ELPA almost constantly providing warm
mates than CLAMP (mean difference 3.6 °C), a
for some floras CLAMP estimates are in fact
than ELPA estimates (cf. Table 2, Fig. 1).

4. Discussion

According to our results there seems to be a
discrepancy in the comparability of the d
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depending largely upon the stratigraphic age
flora. For Paleogene floras, both multivaria
physiognomic techniques are in rather good agr
with CA, although both techniques may differ
erably from each other. In contrast, for the N
CLAMP shows a tendency to produce estimates
considerably colder than CA, whereas ELPA, ge
provides warmer estimates, and is better in agr
with CA. A possible explanation for the tend
CLAMP to produce colder temperature estimate
Neogene may be due to an intrinsic shortcomin
underlying dataset.Within this dataset,MATand
of the individual calibration floras show a
correlation (r2 =0.898) and as demonstrated in p
studies, the Neogene cooling in Europe, as repr
by CA estimates, is most pronounced for CMM
than MAT (e.g. Utescher et al., 2000; Mosbrugge
2005). Considering the close correlation o
parameters in the CLAMP calibration dataset (in
to the climate dataset provided by New et al. (199
for ELPA; cf. Traiser, 2004; Traiser et al., 2005) it
possible that CLAMP estimates for MAT are bi
least to some part, by a decrease of CMMT, lead
possible underestimation of MAT values.

Although such an explanation may be possibl
is an additional explanation, which may also in
the reliability of leaf physiognomic techniques: r
it has been repeatedly demonstrated that in the
vegetation the relationship between leaf physio
(i.e. leaf margin type) and climate is substanti
same for N.-America, S.-America, East-As
Europe (e.g. Wilf, 1997; Wiemann et al.,
Gregory-Wodzicki, 2000; Burnham et al.,
Kowalski, 2002; Traiser et al., 2005). Never
some minor differences between these different
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2005), and in the case of Africa (e.g. Jacobs
2002) and Australia (Greenwood et al., 2004
larger differences of this relationship became o
Although Greenwood et al. (2004) observed alm
same slope in the linear regression between leaf
type and MAT as seen on other continen
proportion of non-entire (toothed) taxa was
lower as seen on the other continents. Despite
crepancies, this result indicates that the evolu
response of leaf form to climate (i.e. temperatur
be globally convergent. In the case of Austra
discrepancies may be explained by the different
tionary and climatic history of this continent du
Cenozoic. This may indicate that the relat
between climate and leaf physiognomy changed
the Cenozoic within Australia, a possibility that
also be considered for Europe and the rest of the
During the Paleogene–Neogene transition a sig
floral change took place in Europe (e.g. Mai,
gradually replacing many “paleotropical” el
typical for European Paleogene floras with
“arctotertiary” elements (e.g. Mai, 1995; Kvac
Walther, 2001). This change may have had a
influence on the relationship between climate a
physiognomy within European vegetation. Fo
such a possible explanation we can conclude
relationship represented by the LMA and C
calibration datasets may be well suited for Eu
Paleogene floras, whereas the ELPA calibration
may probably be better suited for European N
floras (although the latter dataset still has to be
provisional; Traiser et al., 2005).

Our results and interpretations add some cav
temperature reconstructions based on leaf physio
especially when applied to European floras from
periods (i.e. Paleogene, Cretaceous). Possible cha
the relationship between climate and leaf physio
over time should be taken into account as a p
source of error whenever such techniques are use
an interpretation contradicts at first sight (at least
the assumption, underlying all attempts to reco
quantitative paleoclimate parameter from angi
leaf physiognomy, that convergent evolution of le
in response to climate is more influential than ev
ary constraints based upon phylogeny. Although
evidence that the evolutionary response of leaf
climate (i.e. temperature) may be globally con
(e.g. Greenwood et al., 2004), there is also the po
that the actual correlation between climate and le
may be modified by long-term evolutionary respo
floral changes. This would lead to erroneous paleo
99,
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suited for the region and time-interval in ques
already proposed by Wolfe and Upchurch (1987)
Late Cretaceous of North America. These author
southern hemispheric calibration data-set for lea
iognomic analysis of Late Cretaceous floras from
America, because these fossil assemblages, as
modern southern hemispheric vegetation, are dom
by evergreen taxa, whereas Northern hemisperic
tion data-sets have high percentages of deciduo
However, further research will be needed to test w
the proposed changes in the relationship between
and leaf physiognomy over time can also be dete
other continents, or whether this is a problem re
to the European Tertiary and the Cretaceous o
America.
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