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Preface

This volume contains the papers presented at SAT 2012, the 15th International
Conference on Theory and Applications of Satisfiability Testing, held during
June 16–20 in Trento, Italy. SAT 2012 was co-organized and hosted by Fon-
dazione Bruno Kessler (FBK) and the University of Trento (UniTN), Italy.

The SAT series originated in 1996 as a series of workshops, and later developed
into the primary annual meeting for researchers studying the propositional satis-
fiability problem. Importantly, here SAT is interpreted in a rather broad sense:
besides plain propositional satisfiability, it includes the domains of MaxSAT and
Pseudo-Boolean (PB) constraints, Quantified Boolean Formulae (QBF), Satisfi-
ability Modulo Theories (SMT), Constraints Programming (CSP) techniques for
word-level problems and their propositional encoding. To this extent, many hard
combinatorial problems can be encoded as SAT instances, in the broad sense men-
tioned above, including problems that arise in hardware and software verification,
AI planning and scheduling, OR resource allocation, etc. The theoretical and prac-
tical advances in SAT research over the past 20 years have contributed to making
SAT technology an indispensable tool in these domains. The topics of the confer-
ence span practical and theoretical research on SAT (in the broader sense above)
and its applications, and include, but are not limited to, theoretical issues, solving
and advanced functionalities, and applications.

SAT 2012 hosted two workshops: CSPSAT 2012 (Second International Work-
shop on the Cross-Fertilization Between CSP and SAT), and PoS 2012 (Third
International Workshop on Pragmatics of SAT), and four competitive events:
Max-SAT 2012 (7th Max-SAT Evaluation), PB12 (Pseudo-Boolean Competition
2012), QBFEVAL 2012 (QBF Competition 2012), and SAT Challenge 2012.

In SAT 2012 we introduced for the first time the possibility of submitting
tool-presentation papers, and of directly submitting poster-presentation papers
(2-page abstracts). Overall there were 112 submissions (88 full, 10 tool, and
14 poster papers). Each submission was reviewed by at least three Program
Committee members; for the fist time for SAT, the review process also involved
a rebuttal phase. The committee decided to accept 52 papers (29 full, 7 tool and
16 poster papers). Note that seven full papers were accepted as posters.

The program also included two remarkable invited talks:

– Aaron Bradley from the University of Colorado at Boulder, presented
“Understanding IC3”

– Donald Knuth from Stanford University presented “Satisfiability and The
Art of Computer Programming”

Given the interest of the scientific community outside SAT for the work of Donald
Knuth, his talk was open to non-SAT 2012 attendees, and included a question-
answering session on general topics in computer science.



VI Preface

SAT 2012 was co-located with the Second International SAT/SMT Summer
School, with a program over four days that hosted 16 speakers. The school gave
many students the opportunity to attend SAT 2012.

Our first thanks go to the Program Committee members and to the additional
reviewers, who did a thorough and knowledgeable job and enabled the assembly
of this body of high-quality work.

We thank the authors for their submissions, and for their collaboration in
further improving their papers. A special thank goes to our invited speakers,
Aaron Bradley and Donald Knuth, for accepting our invitation and for their
very stimulating contributions.

We thank the organizers of the school, of the workshops and of the compet-
itive events: Alberto Griggio and Stefano Tonetta for SAT/SMT School, Yael
Ben Haim and Yehuda Naveh for CSPSAT 2012, Daniel Le Berre and Allen Van
Gelder for PoS 2012, Josep Argelich, Chu Min Li, Felip Manya and Jordi Planes
for Max-SAT 2012, Vasco Manquinho and Olivier Roussel for PB12, Massimo
Narizzano for QBFEVAL 2012, Adrian Balint, Anton Belov, Matti Jarvisalo and
Carsten Sinz for SAT Challenge 2012.

A special thank goes to Martina Lorenzi, Silvia Malesardi, Moira Osti, and
to all the other members of the Ufficio Eventi of FBK and Ufficio Convegni of
UniTN, who largely contributed to the success of this event.

We also thank the developers and maintainers of the EasyChair conference
management system, which was of great help with the paper submission, review-
ing, discussion, and with the assembly of the proceedings.

We gratefully acknowledge the generous contributions of our sponsors (in
alphabetical order): IBM Research, IntelTM Corporation, Jasper Technologies,
Microsoft Research INRIA, Microsoft Research, NEC, plus the support of FBK,
of UniTN and of the SAT Association. SAT 2012 was held also under the aus-
pices of TrentoRise and of the European Association for Theoretical Computer
Science, Italian Chapter.

May 2012 Alessandro Cimatti
Roberto Sebastiani
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Understanding IC3�

Aaron R. Bradley

ECEE Department, University of Colorado at Boulder
bradleya@colorado.edu

Abstract. The recently introduced model checking algorithm, IC3, has
proved to be among the best SAT-based safety model checkers. Many
implementations now exist. This paper provides the context from which
IC3 was developed and explains how the originator of the algorithm
understands it. Then it draws parallels between IC3 and the subsequently
developed algorithms, FAIR and IICTL, which extend IC3’s ideas to the
analysis of ω-regular and CTL properties, respectively. Finally, it draws
attention to certain challenges that these algorithms pose for the SAT
and SMT community.

1 Motivation

In Temporal Verification of Reactive Systems: Safety, Zohar Manna and Amir
Pnueli discuss two strategies for strengthening an invariant property to be in-
ductive [13]: “(1) Use a stronger assertion, or (2) Conduct an incremental proof,
using previously established invariants.” They “strongly recommend” the use of
the second approach “whenever applicable,” its advantage being “modularity.”
Yet they note that it is not always applicable, as a conjunction of assertions can
be inductive when none of its components, on its own, is inductive. In this paper,
the first method is referred to as “monolithic”—all effort is focused on producing
one strengthening formula—while the second method is called “incremental.”

1.1 Monolithic and Incremental Proof Methods

A simple pair of transition systems clarifies the two strategies and the limitations
of the second:

1x , y := 1 , 1
2while ∗ :
3x , y := x + 1 , y + x

1x , y := 1 , 1
2while ∗ :
3x , y := x + y , y + x

The star-notation indicates nondeterminism. Suppose that one wants to prove,
for both systems, that P : y ≥ 1 is invariant.

Consider the first system. To attempt to prove the invariant property P , one
can apply induction:

� Work supported in part by the Semiconductor Research Corporation under contract
GRC 2271.

A. Cimatti and R. Sebastiani (Eds.): SAT 2012, LNCS 7317, pp. 1–14, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 A.R. Bradley

– It holds initially because

x = 1 ∧ y = 1︸ ︷︷ ︸
initial condition

⇒ y ≥ 1︸ ︷︷ ︸
P

.

– But it does not hold at line 3 because

y ≥ 1︸ ︷︷ ︸
P

∧x′ = x+ 1 ∧ y′ = y + x︸ ︷︷ ︸
transition relation

�⇒ y′ ≥ 1︸ ︷︷ ︸
P ′

.

The first step of an inductive proof of an invariant property is sometimes called
initiation; the second, consecution [13]. In this case, consecution fails. Hence, an
inductive strengthening of P must be found.

The first step in strengthening P is to identify why induction fails. Here, it’s
obvious enough: without knowing that x is nonnegative, one cannot know that
y never decreases. The assertion ϕ1 : x ≥ 0 is inductive:

– it holds initially: x = 1 ∧ y = 1⇒ x ≥ 0, and
– it continues to hold at line 3, where x is updated:

x ≥ 0︸ ︷︷ ︸
ϕ1

∧x′ = x+ 1 ∧ y′ = y + x︸ ︷︷ ︸
transition relation

⇒ x′ ≥ 0︸ ︷︷ ︸
ϕ′

1

.

Now P : y ≥ 1 is inductive relative to ϕ1 because consecution succeeds in the
presence of ϕ1:

x ≥ 0︸ ︷︷ ︸
ϕ1

∧ y ≥ 1︸ ︷︷ ︸
P

∧x′ = x+ 1 ∧ y′ = y + x︸ ︷︷ ︸
transition relation

⇒ y′ ≥ 1︸ ︷︷ ︸
P ′

.

This use of “previously established invariants” makes for an “incremental proof”:
first establish ϕ1; then establish P using ϕ1. Here, each assertion is simple and
discusses only one variable of the system. The inductive strengthening of P :
y ≥ 1 is thus x ≥ 0 ∧ y ≥ 1. Of course, the stronger assertion x ≥ 1 ∧ y ≥ 1
would work as well.

In the second transition system, neither x ≥ 0 nor y ≥ 1 is inductive on its
own. For example, consecution fails for x ≥ 0 because of the lack of knowledge
about y:

x ≥ 0 ∧ x′ = x+ y ∧ y′ = y + x �⇒ x′ ≥ 0 .

Establishing y ≥ 1 requires establishing the two assertions together:

– initiation: x = 1 ∧ y = 1⇒ x ≥ 0 ∧ y ≥ 1
– consecution: x ≥ 0 ∧ y ≥ 1 ∧ x′ = x+ y ∧ y′ = y + x⇒ x′ ≥ 0 ∧ y′ ≥ 1.

An incremental proof seems impossible in this case, as only the conjunction of
the two assertions is inductive, not either on its own. Thus, for this system, one
must invent the inductive strengthening of P all at once: x ≥ 0 ∧ y ≥ 1.

Notice that the assertion x ≥ 0 ∧ y ≥ 1 is inductive for the first transition
system as well and so could have been proposed from the outset. However, espe-
cially in more realistic settings, an incremental proof is simpler than inventing
a single inductive strengthening, when it is possible.
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1.2 Initial Attempts at Incremental, Inductive Algorithms

IC3 is a result of asking the question: if the incremental method is often better for
humans, might it be better for algorithms as well? The first attempt at addressing
this question was in the context of linear inequality invariants. Previous work
had established a constraint-based method of generating individual inductive
linear inequalities [7]. Using duality in linear programming, the constraint-based
method finds instantiations of the parameters a0, a1, . . . , an in the template

a0x0 + a1x1 + · · ·+ an−1xn−1 + an ≥ 0

that result in inductive assertions. A practical implementation uses previously
established invariants when generating a new instance [17]. However, an enumer-
ative algorithm generates the strongest possible over-approximation—for that
domain—of the reachable state space, which may be far stronger than what is
required to establish a given property.

A property-directed, rather than enumerative, approach is to guide the search
for inductive instances with counterexamples to the inductiveness (CTIs) of the
given property [5]. A CTI is a state (more generally, a set of states represented by
a cube; that is, a conjunction of literals) that is a counterexample to consecution.

In the first system above, consecution fails for P : y ≥ 1:

y ≥ 1 ∧ x′ = x+ 1 ∧ y′ = y + x �⇒ y′ ≥ 1 .

A CTI, returned by an SMT solver, is x = −1 ∧ y = 1. Until this state is
eliminated, P cannot be established. The constraint system for generating an
inductive instance of the template ax+by+c ≥ 0 is augmented by the constraint
a(−1) + b(1) + c < 0. In other words, the generated inductive assertion should
establish that the CTI x = −1 ∧ y = 1 is unreachable. If no such assertion
exists, other CTIs are examined instead. The resulting lemmas may be strong
enough that revisiting this CTI will reveal an assertion that is inductive relative
to them, finally eliminating the CTI. But in this example, the instance x ≥ 0
(a = 1, b = 0, c = 0) is inductive and eliminates the CTI.

In the context of hardware model checking, this approach was developed
into a complete model checker, called FSIS, for invariance properties [4]. Rather
than linear inequality assertions, it generates clauses over latches. While the al-
gorithm for generating strong inductive clauses is not trivial, understanding it
is not essential for understanding the overall model checking algorithm, which is
simple. The reader is thus referred to previous papers to learn about the clause-
generation algorithm [4, 3]. Consider finite-state system S : (i, x, I(x), T (x, i, x′))
with primary inputs i, state variables (latches) x, a propositional formula I(x)
describing the initial configurations of the system, and a propositional formula
T (x, i, x′) describing the transition relation, and suppose that one desires to es-
tablish the invariance of assertion P . First, the algorithm checks if P is inductive
with two SAT queries, for initiation and consecution, respectively:

I ⇒ P and P ∧ T ⇒ P ′ .
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If they hold, P is invariant. If the first query fails, P is falsified by an initial state,
and so it does not hold. If consecution fails—the likely scenario—then there is a
state s that can lead in one step to an error; s is a CTI.

The inductive clause generation algorithm then attempts to find a clause
c that is inductive and that is falsified by s. If one is found, c becomes an
incremental lemma, ϕ1, relative to which consecution is subsequently checked:

ϕ1 ∧ P ∧ T ⇒ P ′ .

If consecution still fails, another CTI t is discovered, and again the clause gen-
eration algorithm is applied. This time, however, the generated clause need only
be inductive relative to ϕ1, in line with Manna’s and Pnueli’s description of in-
cremental proofs. In this manner, a list of assertions, ϕ1, ϕ2, . . . , ϕk, is produced,
each inductive relative to its predecessors, until P ∧

∧
i ϕi is inductive.

But what is to be done if no clause exists that both eliminates s and is
inductive? In this case, the target is expanded: the error states grow from ¬P to
¬P ∨ s; said otherwise, the property to establish becomes P ∧ ¬s. Every CTI is
handled in this way: either a relatively inductive clause is generated to eliminate
it, or it is added to the target. The algorithm is complete for finite-state systems.

One important, though subtle, point in applying the incremental method is
that the invariance property, P , that is to be established can be assumed when
generating new inductive assertions. That is, a generated assertion need only
be inductive relative to P itself. For suppose that auxiliary information ψ is
inductive relative to P , and P is inductive relative to ψ:

ψ ∧ P ∧ T ⇒ ψ′ and ψ ∧ P ∧ T ⇒ P ′ .

Then clearly ψ ∧ P itself is inductive.
In the second transition system of Section 1.1, this extra information makes

a difference. Consider consecution again for P :

y ≥ 1 ∧ x′ = x+ y ∧ y′ = y + x⇒ y′ ≥ 1 .

It fails with, for example, the CTI x = −1 ∧ y = 1. While x ≥ 0 eliminates this
CTI, it is not inductive on its own. However, it is inductive relative to P :

y ≥ 1︸ ︷︷ ︸
P

∧ x ≥ 0︸ ︷︷ ︸
ϕ1

∧x′ = x+ y ∧ y′ = y + x︸ ︷︷ ︸
transition relation

⇒ x′ ≥ 0︸ ︷︷ ︸
ϕ′

1

.

By assuming P , an incremental proof is now possible. Once sufficient strength-
ening information is found, this seemingly circular reasoning straightens into an
inductive strengthening.

However, this trick does not fundamentally strengthen the incremental proof
methodology. There are still many situations in which the purely incremental
approach is impossible.1 Experiments with FSIS made it clear that this weakness
had to be addressed.
1 Consider, for example, a similar transition relation with three variables updated ac-
cording to x, y, z := x + y, y + z, z + x. Neither x ≥ 0 nor z ≥ 0 is inductive
relative to P : y ≥ 1.
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1.3 Other SAT-Based Approaches

This section considers the strengths and weaknesses, which motivate IC3, of
other SAT-based approaches.

At one extreme are solvers based on backward search. Exact SAT-based sym-
bolic model checking computes the set of states that can reach an error, relying
on cube reduction to accelerate the analysis [14]. Conceptually, it uses the SAT
solver to find a predecessor, reduces the resulting cube, and then blocks the
states of that cube from being explored again. At convergence, the blocking
clauses describe the weakest possible inductive strengthening of the invariant.
Sequential SAT similarly reduces predecessor cubes, but it also reduces state
cubes lacking unexplored predecessors via the implication graph of the associ-
ated (unsatisfiable) SAT query [12]. This latter approach computes a convenient
inductive strengthening—not necessarily the weakest or the strongest. FSIS is
like this latter method, except that, when possible, it uses induction to reduce
a predecessor state cube, which can allow the exploration of backward paths to
end earlier than in sequential SAT, besides producing stronger clauses.

The strength of pure backward search is that it does not tax the SAT solver.
Memory is not an issue. Its weakness is that the search is blind with respect
to the initial states. In the case of FSIS, its selection of new proof obligations
is also too undirected; some predecessors trigger more informative lemmas than
others, but FSIS has no way of knowing which. Perhaps because of this lack of
direction, successful modern SAT-based model checkers, other than IC3, derive
from BMC [1]. BMC is based on unrolling the transition relation between the
initial and error states. Thus, the SAT solver considers both ends in its search.

While BMC is strong at finding counterexamples, it is practically incomplete.
Interpolation (ITP) [15] and k-induction [18] address this practical incomplete-
ness. The latter combines BMC (which becomes initiation) with a consecution
check in which the transition relation is unrolled k times and the property is
asserted at each non-final level. When that check fails, k is increased; in a finite-
state context, there is a k establishing P if P is invariant. In practice, the suf-
ficient k is sometimes small, but it can also be prohibitively large. Like exact
model checking, k-induction cannot find a convenient strengthening; rather, its
strengthening is based on a characteristic of the transition system.

ITP goes further. Rather than unrolling from the initial states (BMC) or
applying induction directly (k-induction), it unrolls from the current frontier
Fi, which contains at least all states at most i steps from an initial state. If
the associated SAT query is unsatisfiable, the algorithm extracts an interpolant
between Fi and the k-unrolling leading to a violation of P , which serves as the
(i + 1)-step over-approximation Fi+1. If the query is satisfiable, the algorithm
increases k, yielding a finer over-approximating post-condition computation. The
size of the unrolling that yields a proof can be smaller in practice than that
of k-induction. Tuning the interpolant finder can allow it to find convenient
assertions, potentially accelerating convergence to some inductive strengthening.

BMC-based approaches have the advantage of giving meaningful consider-
ation to both initial and error states. However, they have the disadvantage of
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being monolithic. They search for a single, often complex, strengthening, which
can require many unrollings in practice, overwhelming the SAT solver.

IC3 addresses the weaknesses of both types of solvers while maintaining their
strengths. Like the backward search-based methods, it relies on many simple
SAT queries (Section 2.1) and so requires relatively little memory in practice.
Like the BMC-based methods, it gives due consideration to the initial and error
states (Section 2.2). It can be run successfully for extended periods, and—for
the same reasons—it is parallelizable. Compared to FSIS, it uses the core idea
of incrementally applying relative induction but applies it in a context in which
every state cube is inductively generalizable. Hence, induction becomes an even
more powerful method for reducing cubes in IC3.

2 IC3

Manna’s and Pnueli’s discussion of incremental proofs is in the context of man-
ual proof construction, where the ingenuity of the human is the only limitation
to the discovery of intermediate lemmas. In algorithms, lemma generation is
typically restricted to some abstract domain [8] such as linear inequalities [9] or
a fixed set of predicates [10]. Thus, the case in which a CTI cannot be elimi-
nated through the construction of a relatively inductive assertion arises all too
frequently, making FSIS, in retrospect, a rather naive algorithm.

The goal in moving beyond FSIS was to preserve its incremental character
while addressing the weakness of backward search and the weakness of the in-
cremental proof method: the common occurrence of mutually inductive sets of
assertions that cannot be linearized into incremental proofs. In other words, what
was sought was an algorithm that would smoothly transition between Manna’s
and Pnueli’s incremental methodology, when possible, and monolithic inductive
strengthening, when necessary.

This section discusses IC3 from two points of view: IC3 as a prover and IC3
as a bug finder. It should be read in conjunction with the formal treatment
provided in the original paper [3]. Readers who wish to see IC3 applied to a
small transition system are referred to [19].

2.1 Perspective One: IC3 as a Prover

IC3 maintains a sequence of stepwise over-approximating sets, F0 =
I, F1, F2, . . . , Fk, Fk+1, where each set Fi over-approximates the set of states
reachable in at most i steps from an initial state. Every set except Fk+1 is a
subset of P : Fi ⇒ P . Once Fk is refined so that it excludes all states that can
reach a ¬P -state in one transition, Fk+1, too, is strengthened to be a subset
of P by conjoining P to it. Fk is considered the “frontier” of the analysis. A
final characteristic of these sets is that Fi ∧ T ⇒ F ′

i+1. That is, all successors of
Fi-states are Fi+1-states.

This description so far should be relatively familiar. Forward BDD-based
reachability [16], for example, computes exact i-step reachability sets, and if any
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such set ever includes a ¬P -state, the conclusion is that the property does not
hold. ITP also computes i-step reachability sets, and like IC3’s, they are over-
approximating. However, when ITP encounters an over-approximating set that
contains a ¬P -state, it refines its approximate post-image operator by further
unrolling the transition relation, rather than addressing the weaknesses of the
current stepwise sets directly. The crucial difference in the use of these sets
between IC3 and ITP is that IC3 refines all of the sets throughout its execution.2

Putting these properties together reveals two characteristics of the reach sets.
First, any state reachable in i steps is an Fi-state. Second, any Fi-state cannot
reach a ¬P -state for at least k − i + 1 steps. For example, an Fk+1-state can
actually be a ¬P -state, and an Fk-state may reach an error in one step. But an
Fk−1-state definitely cannot transition to a ¬P -state (since Fk−1 ∧ T ⇒ F ′

k and
Fk ⇒ P ).

Now, the property to check is whether P is inductive relative to Fk. Since
Fk ⇒ P , the following query, corresponding to consecution for P relative to Fk,
is executed:

Fk ∧ T ⇒ P ′ . (1)

Suppose that the query succeeds and that Fk is itself inductive: Fk ∧ T ⇒ F ′
k.

Then Fk is an inductive strengthening of P that proves P ’s invariance.
Now suppose that the query succeeds but that Fk is not inductive. Fk+1 can

be strengthened to Fk+1 ∧ P , since all successors of Fk-states are P -states. Ad-
ditionally, a new frame Fk+2 is introduced. IC3 brings in monolithic inductive
strengthening by executing a phase of what can be seen as a simple predicate
abstraction (propagateClauses [3]). Every clause that occurs in any Fi is treated
as a predicate. A clause’s occurrence in Fi means that it holds for at least i
steps. This phase allows clauses to propagate forward from their current posi-
tions. Crucially, subsets of clauses can propagate forward together, allowing the
discovery of mutually inductive clauses. For i ranging from 1 to k, IC3 computes
the largest subset C ⊆ Fi of clauses such that the following holds (consecution
for C relative to Fi):

Fi ∧ T ⇒ C′ .

These clauses C are then conjoined to Fi+1. Upon completion, Fk+1 becomes
the new frontier. Many of the stepwise sets may be improved as lemmas are
propagated forward in time. If Fk = Fk+1, then Fk is inductive, which explains
how Fk is determined to be inductive in the case above.

Finally, suppose that query (1) fails, revealing an Fk-state s (more generally,
a cube of Fk-states) that can reach a ¬P -state in one transition; s is a CTI.
In other words, the problem is not just that Fk is not inductive; the problem
is that it is not even strong enough to rule out a ¬P -successor, and so more

2 Of course, one might implement ITP to reuse previous over-approximating sets, so
that it too could be seen to refine them throughout execution. Similarly, one might
use transition unrolling in IC3. But for completeness, ITP relies on unrolling but not
continual refinement of all stepwise sets, whereas IC3 relies on continual refinement
of all stepwise sets but not unrolling.
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reachability information must be discovered. IC3 follows the incremental proof
methodology in this situation: it uses induction to find a lemma showing that s
cannot be reached in k steps from an initial state. This lemma may take the form
of a single clause or many clauses, the latter arising from analyzing transitive
predecessors of s.

Ideally, the discovered lemma will prove that s cannot ever be reached. Less
ideally, the lemma will be good enough to get propagated to future time frames
once P becomes inductive relative to Fk. But at worst, the lemma will at least
exclude s from frame Fk, and even Fk+1

3.
Specifically, IC3 first seeks a clause c whose literals are a subset of those of ¬s

and that is inductive relative to Fk; that is, it satisfies initiation and consecution:

I ⇒ c and Fk ∧ c ∧ T ⇒ c′ .

Such a clause proves that s cannot be reached in k + 1 steps. However, there
may not be any such clause. It may be the case that a predecessor t exists that
is an Fk-state and that eliminates the possibility of a relatively inductive clause.
In fact, t could even be an Fk−1-state.

4

Here is where IC3 is vastly superior to FSIS, and where it sidesteps the
fundamental weakness of the incremental proof method. A failure to eliminate s
at Fk is not a problem. Suppose that a clause c is found relative to Fk−2 rather
than Fk−1 or Fk (the worst case):

I ⇒ c and Fk−2 ∧ c ∧ T ⇒ c′ .

Because c is inductive relative to Fk−2, it is added to Fk−1: no successor of
an (Fk−2 ∧ c)-state is a ¬c-state. If even with this update to Fk−1, s still can-
not be eliminated through inductive generalization (the process of generating a
relatively inductive subclause of ¬s), then the failing query

Fk−1 ∧ ¬s ∧ T ⇒ ¬s′ (2)

reveals a predecessor t that was irrelevant for Fk−2 but is a reason why inductive
generalization fails relative to Fk−1. This identification of a reason for failure of
inductive generalization is one of IC3’s insights. The predecessor is identified
after the generation of c relative to Fk−2 so that c focuses IC3 on predecessors
of s that matter for Fk−1. The predecessor t is not just any predecessor of s: it
is specifically one that prevents s’s inductive generalization at Fk−1. IC3 thus
has a meaningful criterion for choosing new proof obligations.

Now IC3 focuses on t until eventually a clause is produced that is inductive
relative to frame Fk−2 and that eliminates t as a predecessor of s through frame
Fk−1. Focus can then return to s, although t is not forgotten. Inductive general-
ization of s relative to Fk−1 may succeed this time; and if it does not, the newly
discovered predecessor would again be a reason for its failure.

3 The clause eventually generated for s relative to Fk strengthens Fk+1 since it is
inductive relative to Fk.

4 However, it cannot be an Fk−2-state, for then s would be an Fk−1-state, and its
successor ¬P -state an Fk-state. But it is known that Fk ⇒ P .
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It is important that, during the recursion, all transitive predecessors of s
be analyzed all the way through frame Fk. This analysis identifies mutually in-
ductive (relative to Fk) sets of clauses. Only one of the clauses may actually
eliminate s, but the clauses will have to be propagated forward together since
they support each other. It may be the case, though, that some clauses are too
specific, so that the mutual support breaks down during the clause propaga-
tion phase. This behavior is expected. As IC3 advances the frontier, it forces
itself to consider ever more general situations, until it finally discovers the real
reasons why s is unreachable. It is this balance between using stepwise-specific
information and using induction to be as general as possible that allows IC3 to
synthesize the monolithic and incremental proof strategies into one strategy.

2.2 Perspective Two: IC3 as a Bug Finder

Although IC3 is often inferior to BMC for finding bugs quickly, industry ex-
perience has shown that IC3 can find deep bugs that other formal techniques
cannot. This section presents IC3 as a guided backward search. While heuristics
for certain decision points may improve IC3’s performance, the basic structure of
the algorithm is already optimized for finding bugs. In particular, IC3 considers
both initial and error states during its search. The following discussion develops
a hypothetical, but typical, scenario for IC3, one which reveals the motivation
behind IC3’s order of handling proof obligations. Recall from the previous section
that IC3 is also intelligent about choosing new proof obligations.

Suppose that query (1) revealed state s, which was inductively generalized
relative to Fk−2; that query (2) revealed t as an Fk−1-state predecessor of s; and
that t has been inductively generalized relative to Fk−3. At this point, IC3 has
the proof obligations {(s, k− 1), (t, k− 2)}, indicating that s and t must next
be inductively generalized relative to Fk−1 and Fk−2, respectively. As indicated
in the last section, neither state will be forgotten until it is generalized relative
to Fk, even if s happens to be generalized relative to Fk first.

At this point, with the proof obligations {(s, k − 1), (t, k − 2)}, it is fairly
obvious that until t is addressed, IC3 cannot return its focus to s; t would still
cause problems for generalizing s relative to Fk−1. While focusing on t, suppose
that u is discovered as a predecessor of t during an attempt to generalize t
relative to Fk−2. Although t cannot be generalized relative to Fk−2, u may well
be; it is, after all, a different state with different literals. Indeed, it may even be
generalizable relative to Fk. In any case, suppose that it is generalizable relative
to Fk−2 but not higher, resulting in one more proof obligation: (u, k−1). Overall,
the obligations are now {(s, k − 1), (t, k − 2), (u, k − 1)}.

The question IC3 faces is which proof obligation to consider next. It turns out
that correctness requires considering the obligation (t, k − 2) first [3]. Suppose
that t and u are mutual predecessors.5 Were (u, k − 1) treated first, t could

5 The current scenario allows it. For t’s generalization relative to Fk−3 produced a
clause at Fk−2 that excludes t, which means that the generalization of u relative to
Fk−2 ignores t. Therefore, it is certainly possible for u to be generalized at Fk−2,
leaving obligation (u, k − 1).
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be discovered as an Fk−1-state predecessor of u, resulting in a duplicate proof
obligation and jeopardizing termination. But one might cast correctness aside
and argue that u should be examined first anyway—perhaps it is “deeper” than
s or t given that it is a predecessor of t.

Actually, the evidence is to the contrary. The obligations (u, k − 1) and
(t, k − 2) show that u is at least k steps away from an initial state (recall that
u has been eliminated from Fk−1), whereas t is at least only k − 1 steps away.
That is, IC3’s information predicts that t is “closer” to an initial state than is u
and so is a better state to follow to find a counterexample trace.

Thus, there are two characteristics of a proof obligation (a, i) to consider:
(1) the length of the suffix of a, which leads to a property violation, and (2) the
estimated proximity, i+ 1, to an initial state. In the example above, s, t, and u
have suffixes of length 0, 1, and 2, respectively; and their estimated proximities
to initial states are k, k − 1, and k, respectively. Both correctness and intuition
suggest that pursuing a state with the lowest proximity is the best bet. In the case
that multiple states have the lowest proximity, one can heuristically choose from
those states the state with the greatest suffix length (for “depth”) or the shortest
suffix length (for “short” counterexamples)—or apply some other heuristic.

From this perspective, IC3 employs inductive generalization as a method of
dynamically updating the proximity estimates of states that lead to a violation
of the property. Inductive generalization provides for not only the update of
the proximities of explicitly observed CTI states but also of many other states.
When Fk ∧ T ⇒ P ′ holds, all proximity estimates of ¬P -predecessors are k+ 1,
and so another frame must be added to continue the guided search.

The bug-finding and proof-finding perspectives agree on a crucial point: even
if the initial CTI s has been inductively generalized relative to Fk, its transitive
predecessors should still be analyzed through Fk in order to update their and
related states’ proximity estimates. A consequence of this persistence is that IC3
can search deeply even when k is small.

3 Beyond IC3: Incremental, Inductive Verification

Since IC3, the term incremental, inductive verification (IIV) has been coined
to describe algorithms that use induction to construct lemmas in response to
property-driven hypotheses (e.g., the CTIs of FSIS and IC3). Two significant
new incremental, inductive model checking algorithms have been introduced.
One, called FAIR, addresses ω-regular (e.g., LTL) properties [6]. Another, called
IICTL, addresses CTL properties [11]. While this section does not describe each
in depth, it attempts to draw meaningful parallels among IC3, FAIR, and IICTL.
Most superficially, FAIR uses IC3 to answer reachability queries, and IICTL uses
IC3 and FAIR to address reachability and fair cycle queries, respectively.

An IIV algorithm can be characterized by (1) the form of its hypotheses, (2)
the form of its lemmas, (3) how it uses induction, and (4) the basis of general-
ization. For IC3, these characterizations are as follows:
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1. Hypotheses: Counterexamples to induction (CTIs). When consecution fails,
the SAT solver returns a state explaining its failure,which IC3 then inductively
generalizes, possibly after generating and addressing further proof obligations.

2. Lemmas: Clauses over state variables. A clause is generated in response to a
CTI, using only the negation of the literals of the CTI.

3. Induction: Lemmas are inductive relative to stepwise information.
4. Generalization: Induction guides the production of minimal clauses—clauses

that do not have any relatively inductive subclauses. The smaller the clause,
the greater is the generalization; hence, induction is fundamental to gener-
alization in IC3.

FAIR searches for reachable fair cycles, or “lasso” counterexamples. The funda-
mental insight of FAIR is that SCC-closed sets can be described by sequences of
inductive assertions. In other words, an inductive assertion is a barrier across the
state space which the system can cross in only one direction. A transition from
one side to the other is a form of progress, since the system can never return to
the other side. FAIR is characterized as an IIV algorithm as follows:

1. Hypotheses: Skeletons. A skeleton is a set of states that together satisfy all
Büchi fairness conditions and that all appear on one side of every previously
generated barrier. The goal is to connect the states into a “lasso” through
reachability queries.

2. Lemmas: An inductive assertion. Each lemma provides one of two types
of information: (1) global reachability information, which is generated when
IC3 shows that a state of a skeleton cannot be reached; (2) SCC information,
which is generated when IC3 shows that one state of the skeleton cannot
reach another. In the latter case, all subsequent skeletons must be chosen
from one “side” of the assertion.

3. Induction: SCC-closed sets are discovered via inductive assertions.
4. Generalization: Proofs constructed by IC3 can be refined to provide stronger

global reachability information or smaller descriptions of one-way barriers.
Furthermore, new barriers are generated relative to previous ones and tran-
sect the entire state space, not just the “arena” from which the skeleton was
selected. Exact SCC computation is not required.

IICTL considers CTL properties hierarchically, as in BDD-based model check-
ing [16], but rather than computing exact sets for each node, it incrementally
refines under- and over-approximations of these sets. When a state is unde-
cided for a node—that is, it is in the over-approximation but not in the under-
approximation—its membership is decided via a set of SAT (for EX nodes),
reachability (for EU nodes), or fair cycle (for EG nodes) queries. IICTL is char-
acterized as an IIV algorithm as follows:

1. Hypotheses: A state is undecided for a node if it is included in the upper-
bound but excluded from the lower-bound. If it comes up during the analysis,
its status for the node must be decided.

2. Lemmas: Lemmas refine the over- and under-approximations of nodes, either
introducing new states into under-approximations or removing states from
over-approximations.
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3. Induction: Induction is used to answer the queries for EU and EG nodes.
4. Generalization: Generalization takes two forms. For negatively answered

queries, the returned proofs are refined to add (remove) as many states
as possible to the under-approximations (from the over-approximations) of
nodes, rather than just the motivating hypothesis state. For positively an-
swered queries, the returned traces are generalized through a “forall-exists”
generalization procedure, again to decide as many states as possible in ad-
dition to the hypothesis state.

All three algorithms are “lazy” in that they only respond to concrete hypotheses
but are “eager” in that they generalize from specific instances to strong lemmas.
Furthermore, all hypotheses are derived from the given property, so that the
algorithms’ searches are property-directed.

4 Challenges for SAT and SMT Solvers

The queries that IIV methods pose to SAT solvers differ significantly in character
from those posed by BMC, k-induction, or ITP. There is thus an opportunity for
SAT and SMT research to directly improve the performance of IIV algorithms.

IC3 is the first widespread verification method that requires highly efficient
incremental solvers. An incremental interface for IC3 must allow single clauses
to be pushed and popped; it must also allow literal assumptions. IIV algorithms
pose many thousands to millions of queries in the course of an analysis, and
so speed is crucial. FAIR requires even greater incrementality: the solver must
allow sets of clauses to be pushed and popped.

IIV methods use variable orders to direct the generation of inductive clauses.
An ideal solver would use these variable orders to direct the identification of the
core assumptions or to direct the lifting of an assignment.

The inductive barriers produced in FAIR provide opportunities for general-
ization (in the cycle queries [6]) but are not required for completeness. Using
all such barriers overwhelms the solver, yet using too few reduces opportunities
for generalization. Therefore, currently, a heuristic external to the solver decides
whether to use a new barrier or not. Ideally, a solver would provide feedback
on whether a group of clauses has been used or not for subsequent queries.
Those clause groups that remain unused for several iterations of FAIR would be
removed. This functionality would allow direct identification of useful barriers.

IIV algorithms gradually learn information about a system in the form of
lemmas. Thus, a core set of constraints, which includes the transition relation,
grows and is used by every worker thread. On a multi-core machine, replicat-
ing this set of constraints in each thread’s solver instance uses memory—and
memory bandwidth—poorly, and this situation will grow worse as the number
of available cores grows. An ideal solver for IIV algorithms would provide access
to every thread to a growing core set of constraints. Each thread would then
have a thread-specific view in which to push and pop additional information for
incremental queries.
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Finally, IC3 has shown itself to be highly sensitive to the various behaviors
of SAT solvers. Swapping one solver for another, or even making a seemingly
innocuous adjustment to the solver, can cause widely varying performance—even
if the average time per SAT call remains about the same. For example, a SAT
solver that is too deterministic can cause IC3 to dwell on one part of the state
space by returning a sequence of similar CTIs, so that IC3 must generate more
lemmas. Identifying the desirable characteristics of a solver intended for IC3 will
be of great help.

5 What’s Next?

Fundamentally, IC3 should not be seen as a clause-generating algorithm. Rather,
the insight of IC3 is in how it can harness seemingly weak abstract domains to
produce complex inductive strengthenings. At first glance, it seems that IC3’s
abstract domain is CNF over state variables. In fact, the abstract domain is
conjunctions of state variables (over the inverse transition relation; see next
paragraph), which is, practically speaking, the simplest possible domain.

If that perspective seems unclear, think about how IC3 works: to address CTI
s, it performs what is essentially a simple predicate abstraction over the inverse
of the transition relation, where the predicates are the literals of s. This process
produces a cube d ⊆ s—that is, a conjunction of a subset of the predicates—that
lacks ¬d-predecessors (within a stepwise context Fi); therefore, the clause ¬d is
inductive (relative to Fi). It is the incremental nature of IC3 that produces, over
time, a conjunction of clauses.

Recalling the linear inequality domain [5] seems to confuse the issue, how-
ever. Where are the disjunctions in that context? To understand it, consider the
polyhedral domain [9]. If it were to be used in the same way as the state variable
domain of IC3, then each CTI would be analyzed with a full polyhedral analysis,
each lemma would take the form of a disjunction of linear inequalities, and IC3
would produce proofs in the form of a CNF formula of linear inequalities. That
approach would usually be unnecessarily expensive. Clearly, the polyhedral do-
main is not being used. Instead, the domain is much simpler: it is a domain of
half-spaces.6

Therefore, the next step, in order to achieve word-level hardware or software
model checking, is to introduce new abstract domains appropriate for IC3—
domains so simple that they could not possibly work outside the context of IC3,
yet sufficiently expressive that IC3 can weave together their simple lemmas into
complex inductive strengthenings.

Acknowledgments. Thanks to Armin Biere, Zyad Hassan, Fabio Somenzi, and
Niklas Een for insightful discussions that shaped my thinking on how better to
explain IC3, and to the first three for reading drafts of this paper.

6 A Boolean clause can be seen as a half-space over a Boolean hypercube. The author
first pursued inductive clause generation (in FSIS) because of the parallel with linear
inequalities.
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Abstract. Stochastic local search solvers for SAT made a large progress
with the introduction of probability distributions like the ones used by
the SAT Competition 2011 winners Sparrow2010 and EagleUp. These
solvers though used a relatively complex decision heuristic, where prob-
ability distributions played a marginal role.

In this paper we analyze a pure and simple probability distribution
based solver probSAT, which is probably one of the simplest SLS solvers
ever presented. We analyze different functions for the probability distri-
bution for selecting the next flip variable with respect to the performance
of the solver. Further we also analyze the role of make and break within
the definition of these probability distributions and show that the gen-
eral definition of the score improvement by flipping a variable, as make
minus break is questionable. By empirical evaluations we show that the
performance of our new algorithm exceeds that of the SAT Competition
winners by orders of magnitude.

1 Introduction

The propositional satisfiability problem (SAT) is one of the most studied NP-
complete problems in computer science.One reason is thewide range of SAT’s prac-
tical applications ranging from hardware verification to planning and scheduling.
Given a propositional formula in conjunctive normal form (CNF) with variables
{x1, . . . , xN} the SAT-problem consists in finding an assignment for the variables
such that all clauses are satisfied.

Stochastic local search (SLS) solvers operate on complete assignments and
try to find a solution by flipping variables according to a given heuristic. Most
SLS-solvers are based on the following scheme: Initially, a random assignment
is chosen. If the formula is satisfied by the assignment the solution is found. If
not, a variable is chosen according to a (possibly probabilistic) variable selection
heuristic, which we further call pickVar. The heuristics mostly depend on some
score, which counts the number of satisfied/unsatisfied clauses, as well as other
aspects like the “age” of variables, and others. It was believed that a good

A. Cimatti and R. Sebastiani (Eds.): SAT 2012, LNCS 7317, pp. 16–29, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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flip heuristic should be designed in a very sophisticated way to obtain a really
efficient solver. We show in the following that it is worth to “come back to
the roots” since a very elementary and (as we think) elegant design principle
for the pickVar heuristic just based on probability distributions will do the job
extraordinary well.

It is especially popular (and successful) to pick the flip variable from an un-
satisfied clause. This is called focussed local search in [11,14]. In each round, the
selected variable is flipped and the process starts over again until a solution is
eventually found. Depending on the heuristic used in pickVar SLS-solvers can be
divided into several categories like GSAT, WalkSAT, and dynamic local search
(DLS).

Most important for the flip heuristic seems to be the score of an assign-
ment, i.e. the number of satisfied clauses. Considering the process of flipping one
variable, we get the relative score change produced by a candidate variable for
flipping as: (score after flipping minus score before flipping) which is equal to
(make minus break). Here make means the number of newly satisfied clauses
which come about by flipping the variable, and break means the number of
clauses which become false by flipping the respective variable. To be more pre-
cise we will denote make(x, a) and break(x, a) as functions of the respective flip
variable x and the actual assignment a (before flipping). Notice that in case of
focussed flipping mentioned above the value of make is always at least 1.

Most of the SLS solvers so far, if not all, follow the strategy that whenever the
score improves by flipping a certain variable from an unsatisfied clause, they will
indeed flip this variable without referring to probabilistic decisions. Only if no
improvement is possible as is the case in local minima, a probabilistic strategy
is performed, which is often specified by some decision procedure. The winner of
the SAT Competition 2011 category random SAT, Sparrow, mainly follows this
strategy but when it comes to a probabilistic strategy it uses a probability distri-
bution function instead of a decision procedure [2]. The probability distribution
in Sparrow is defined as an exponential function of the score. In this paper we
analyze several simple SLS solvers that use only probability distributions within
their search.

2 The New Algorithm Paradigm

We propose a new class of solvers here, called probSAT, which base their prob-
ability distributions for selecting the next flip variable solely on the make and
break values, but not necessarily on the value of (make minus break), as it was
the case in Sparrow. Our experiments indicate that the influence of make should
be kept rather weak – it is even reasonable to ignore make completely, like in
implementations of WalkSAT. The role of make and break in these SLS-type
algorithms should be seen in a new light. The new type of algorithm presented
here can also be applied for general constraint satisfaction problems and works
as follows.
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Algorithm 1. ProbSAT

Input : Formula F , maxTries, maxFlips
Output: satisfying assignment a or UNKNOWN
for i = 1 to maxTries do1

a← randomly generated assignment2

for j = 1 to maxFlips do3

if (a is model for F ) then4

return a5

Cu ← randomly selected unsat clause6

for x in Cu do7

compute f(x, a)8

var ← random variable x according to probability f(x,a)∑
z∈Cu

f(z,a)9

flip(var)10

return UNKNOWN;11

The idea here is that the function f should give a high value to variable x
if flipping x seems to be advantageous, and a low value otherwise. Using f the
probability distribution for the potential flip variables is calculated. The flip
probability for x is proportional to f(x, a). Letting f be a constant function
leads in the k-SAT case to the probabilities ( 1k , . . . ,

1
k ) morphing the probSAT

algorithm to the random walk algorithm that is theoretically analyzed in [12]. In
all our experiments with various functions f we made f depend on break(x, a)
and possibly on make(x, a), and no other properties of x and a. In the follow-
ing we analyze experimentally the effect of several functions to be plugged in
for f .

2.1 An Exponential Function

First we considered an exponential decay, 2-parameter function:

f(x, a) =
(cm)make(x,a)

(cb)break(x,a)

The parameters are cb and cm. Because of the exponential functions used here
(think of cx = e

1
T x) this is reminiscence of the way Metropolis-like algorithms

(see [14]) select a variable. We call this the exp-algorithm. Notice that we separate
into the two base constants cm and cb which allow us to find out whether there
is a different influence of the make and the break value – and there is, indeed.

It seems reasonable to try to maximize make and to minimize break. There-
fore, we expect cm > 1 and cb > 1 to be good choices for these parameters.
Actually, one might expect that cm should be identical to cb such that the above
formula simplifies to cmake−break = cscorechange for an appropriate parameter c.

To get a picture on how the performance of the solver varies for different
values of cm and cb, we have done a uniform sampling of cb ∈ [1.0, 4.0] and
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Fig. 1. Parameter space performance plot: The left plots show the performance
of different combinations of cb and cm for the exponential (upper left corner) and the
polynomial (lower left corner) functions. The darker the area the better the runtime of
the solver with that parameter settings. The right plots show the performance variation
if we ignore the make values (correspond to the cut in the left plots) by setting cm = 1
for the exponential function and cm = 0 for the polynomial function.

of cm ∈ [0.1, 2.0] for this exponential function and of cm ∈ [−1.0, 1.0] for the
polynomial function (see below). We have then ran the solver with the different
parameter settings on a set of randomly generated 3-SAT instances with 1000
variables at a clause to variable ratio of 4.26. The cutoff limit was set to 10
seconds. As a performance measure we use par10: penalized average runtime,
where a timeout of the solver is penalized with 10·(cutoff limit). A parameter
setting where the solver is not able to solve anything has a par10 value of 100.
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In the case of 3-SAT a very good choice of the parameters is cb > 1 (as
expected) and cm < 1 (totally unexpected), for example, cb = 3.6 and cm = 0.5
(see Figure 1 left upper diagram and the survey in Table 1) with a small variation
depending on the considered set of benchmarks. In the interval cm ∈ [0.3, 1.8]
the optimal choice of parameters can be described by the hyperbola-like function
(cb − 1.3) · cm = 1.1. Almost optimal results were also obtained if cm is set to 1
(and cb to 2.5), see Figure 1, both upper diagrams. In other words, the value of
make is not taken into account in this case.

As mentioned, it turns out that the influence of make is rather weak, there-
fore it is reasonable, and still leads to very good algorithms – also because the
implementation is simpler and has less overhead – if we ignore the make-value
completely and consider the one-parameter function:

f(x, a) = (cb)
−break(x,a)

We call this the break-only-exp-algorithm.

2.2 A Polynomial Function

Our experiments showed that the exponential decay in probability with growing
break-value might be too strong in the case of 3-SAT. The above formulas have
an exponential decay in probability comparing different (say) break-values. The
relative decay is the same when we compare break = 0 with break = 1, and
when we compare, say, break = 5 with break = 6. A “smoother” function for
high values would be a polynomial decay function. This led us to consider the
following, 2-parameter function (ε = 1 in all experiments):

f(x, a) =
(make(x, a))cm

(ε+ break(x, a))cb

We call this the poly-algorithm. The best parameters in case of 3-SAT turned
out to be cm = −0.8 (notice the minus sign!) and cb = 3.1 (See Figure 1, lower
part). In the interval cm ∈ [−1.0, 1.0] the optimal choice of parameters can be
described by the linear function cb + 0.9cm = 2.3. Without harm one can set
cm = 0, and then take cb = 2.3, and thus ignore the make-value completely.

Ignoring the make-value (i.e. setting cm = 0) brings us to the function

f(x, a) = (ε+ break(x, a))−cb

We call this the break-only-poly-algorithm.

2.3 Some Remarks

As mentioned above, in both cases, the exp- and the poly-algorithm, it was a
good choice to ignore the make-value completely (by setting cm = 1 in the exp-
algorithm, or by setting cm = 0 in the poly-algorithm). This corresponds to the
vertical lines in Figure 1, left diagrams. But nevertheless, the optimal choice in



Probability Distributions 21

both cases, was to set cm = 0.5 and cb = 3.6 in the case of the exp-algorithm (and

similarly for the poly-algorithm.) We have 0.5make

3.6break ≈ 3.6−(break+make/2). This
can be interpreted as follows: instead of the usual scorechange = make− break
a better score measure is −(break +make/2).

The value of cb determines the greediness of the algorithm. We concentrate
on cb in this discussion since it seems to be the more important parameter.
The higher the value of cb, the more greedy is the algorithm. A low value of
cb (in the extreme, cb = 1 in the exp-algorithm) morphs the algorithm to a
random walk algorithm with flip probabilities ( 1k , . . .

1
k ) like the one considered

in [12]. Examining Figure 2, almost a phase-transition can be observed. If cb falls
under some critical value, like 2.0, the expected run time increases tremendously.
Turning towards the other side of the scale, increasing the value of cb, i.e. making
the algorithm more greedy, also degrades the performance but not with such an
abrupt rise of the running time as in the other case.

3 Experimental Analysis of the Functions

To determine the performance of our probability distribution based solver we
have designed a wide variety of experiments. In the first part of our experiments
we try to determine good settings for the parameters cb and cm by means of
automatic configuration procedures. In the second part we will compare our
solver to other state-of-the-art solvers.

3.1 The Benchmark Formulae

All random instances used in our settings are uniform random k-SAT problems
generated with different clause to variable ratios, which we denote with α. The
class of random 3-SAT problems is the best studied class of random problems
and because of this reason we have four different sets of 3-SAT instances.

1. 3sat1k[15]: 103 variables at α = 4.26 (500 instances)
2. 3sat10k[15]: 104 variables at α = 4.2 (500 instances)
3. 3satComp[16]: all large 3-SAT instances from the SAT Competition 2011

category random with variables range 2 · 103 . . . 5 · 104 at α = 4.2 (100
instances)

4. 3satExtreme: 105 . . . 5 · 105 variables at α = 4.2 (180 instances)

The 5-SAT and 7-SAT problems used in our experiments come from [15]: 5sat500
(500 variables at α = 20) and 7sat90 (90 variables at α = 85). The 3sat1k,
3sat10k, 5sat500 and 7sat90 instance classes are divided into two equal sized
classes called train and test. The train set is used to determine good parameters
for cb and cm and the second class is used to report the performance. Further
we also include the set of satisfiable random and crafted instances from the SAT
Competition 2011.
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Table 1. Parameter setting for cb and cm: Each cell represents a good setting for
cb and cm dependent on the function used by the solver. Parameters values around
these values have similar good performance.

3sat1k 3sat10k 5sat500 7sat90

exp(cb, cm) 3.6 0.5 3.97 0.3 3.1 1.3 3.2 1.4
poly(cb, cm) 3.1 -0.8 2.86 -0.81 - -
exp(cb) 2.50 2.33 3.6 4.4
poly(cb) 2.38 2.16 - -

3.2 Good Parameter Setting for cb and cm

The problem that every solver designer is confronted with is the determination
of good parameters for its solvers. We have avoided to accomplish this task by
manual tuning but instead have used an automatic procedure.

As our search space is relatively small, we have opted to use a modified version
of the iterated F-race [5] configurator, which we have implemented in Java. The
idea of F-race is relatively simple: good configurations should be evaluated more
often than poor ones which should be dropped as soon as possible. F-race uses
a family Friedman test to check if there is a significant performance difference
between solver configurations. The test is conducted every time the solvers have
been run on an instance. If the test is positive poor configurations are dropped,
and only the good ones are further evaluated. The configurator ends when the
number of solvers left in the race is less than 2 times the number of parameters
or if there are no more instances to evaluate on.

To determine good values for cb and cm we have run our modified version of
F-race on the training sets 3sat1k, 3sat10k, 5sat500 and 7sat90. The cutoff time
for the solvers were set to 10 seconds for 3sat1k and to 100 seconds for the rest.
The best values returned by this procedure are listed in Table 1. Values for the
class of 3sat1k problems were also included, because the preliminary analysis of
the parameter search space was done on this class. The best parameter of the
break-only-exp-algorithm for k-SAT can be roughly described by the formula
cb = k0.8.

For the 3sat10k instance set the parameter space performance plots in Fig-
ure 2 looks similar to that of 3sat1k (Figure 1), though the area with good
configurations is narrower, which can be explained by the short cutoff limit of
100 seconds used for this class (SLS solvers from the SAT Competition 2011 had
an average runtime of 180 seconds on this type of instances).

In case of 5sat500 and 7sat90 we have opted to analyze only the exponential
function because the polynomial function, other than in the 3SAT case, exhibited
poor performance on these sets. Figure 3 shows the parameter space performance
plot for the 5sat500 and 7sat90 sets. When comparing these plots with those
for 3-SAT, the area with good configurations is much larger. For the 7-SAT
instances the promising area seems to take almost half of the parameter space.
The performance curve of the break-exp-only algorithm is also wider than that
of 3-SAT and in the case of 7-SAT no clear curve is recognizable.
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Fig. 2. Parameter space performance plot: The runtime of the solver using dif-
ferent function and for varying cb and cm on a the 3sat10k instances set

4 Evaluations

In the second part of our experiments we compare the performance of our solvers
to that of the SAT Competition 2011 winners and also to WalkSAT SKC. An
additional comparison to a survey propagation algorithm will show how far our
probSAT local search solver can get.

4.1 Soft- and Hardware

The solvers were run on a part of the bwGrid clusters [4] (Intel Harpertown
quad-core CPUs with 2.83 GHz and 8 GByte RAM). The operating system was
Scientific Linux. All experiments were conducted with EDACC, a platform that
distributes solver execution on clusters [1].
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Fig. 3. Parameter space performance plot: The runtime of the exp-solvers with
different functions and varying cb and cm on a the 5sat500 instances at the top and on
the 7sat90 instances bottom

4.2 The Competitors

The WalkSAT SKC solver is implemented within our own code basis. We use
our own implementation and not the original code provided by Henry Kautz,
because our implementation is approximately 1.35 times faster. We have used
version 1.4 of the survey propagation solver provided by Zecchina1, which was
changed to be DIMACS conform. For all other solvers we have used the binaries
from the SAT Competition 20112.

1 http://users.ictp.it/~zecchina/SP/
2 http://www.cril.univ-artois.fr/SAT11/

solvers/SAT2011-static-binaries.tar.gz

http://users.ictp.it/~zecchina/SP/
http://www.cril.univ-artois.fr/SAT11/solvers/SAT2011-static-binaries.tar.gz
http://www.cril.univ-artois.fr/SAT11/solvers/SAT2011-static-binaries.tar.gz
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Parameter Settings for Competitors. Sparrow is highly tuned on our target
set of instances and incorporates optimal settings for each set within its code.
WalkSAT has only one single parameter, the walk probability wp. In case of
3-SAT we took the optimal values for wp = 0.567 computed in [7]. Because
we could not find any settings for 5-SAT and 7-SAT problems we have run our
modified version of F-race to find good settings. For 5sat500 the configurator
reported wp = 0.25 and for 7sat90 wp = 0.1. The survey propagation solver was
evaluated with the default settings reported in [17].

4.3 Results

We have evaluated our solvers and the competitors on the test set of the instance
sets 3sat1k, 3sat10k, 5sat500 and 7sat90 (note that the training set was used only
for finding good parameters for the solvers). The parameter setting for cb and
cm are those from Table 1 (in case of 3-SAT we have always used the parameters
for 3sat10k). The results of the evaluations are listed in Table 2.

Table 2. Evaluation results: Each cell represents the par10 runtime and the number
of successful runs for the solvers on the given instance set. Results are highlighted if
the solver succeeded in solving all instances within the cutoff time, or if it has the best
par10 runtime. Cutoff times are 600 seconds for 3sat1k, 5sat500 and 7sat90 and 5000
seconds for the rest.

3sat10k 3satComp 3satExtreme 5sat500 7sat90

exp(cb, cm) 46.6 (998) 93.84 (500) - 12.49 (103) 201.68 (974)

poly(cb, cm) 46.65 (996) 76.81 (500) - - -

exp(cb) 53.02 (997) 126.59 (500) - 7.84 (103) 134.06 (984)

poly(cb) 22.80 (1000) 54.37 (500) 1121.34 (180) - -

Sparrow2011 199.78 (973) 498.05 (498) 47419 (10) 9.52 (103) 14.94 (103)

WalkSAT 61.74 (995) 172.21 (499) 1751.77 (178) 14.71 (103) 69.34 (994)

sp 1.4 3146.17 (116) 18515.79 (63) 599.01 (180) 5856 (6) 6000 (0)

On the 3-SAT insatances, the polynomial function yields the overall best per-
formance. On the 3-SAT competition set all of our solver variants exhibited the
most stable performance, being able to solve all problems within cutoff time. The
survey propagation solver has problems with the 3sat10k and the 3satComp prob-
lems (probably because of the relatively small number of variables). The good per-
formance of the break-only-poly-solver remains surprisingly good even on the 3sa-
tExtreme set where the number of variables reaches 5 · 105 (ten times larger than
that from the SAT Competition 2011). From the class of SLS solvers it exhibits
the best performance on this set and is only approx. 2 times slower than survey
propagation. Note that a value of cb = 2.165 for the break-only-poly solver further
improved the runtime of the solver by approximately 30% on the 3satExtreme set.

On the 5-SAT instances the exponential break-only-exp solver yields the best
performance being able to beat even Sparrow, which was the best solver for
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5-SAT within the SAT Competition 2011. On the 7-SAT instances though the
performance of our solvers is relatively poor. We observed a very strong variance
of the run times on this set and it was relatively hard for the configurator to
cope with such high variances.

Overall the performance of our simple probability based solvers reaches state-
of-the-art performance and can even get into problem size regions where only
survey propagation could catch ground.

Scaling Behavior with N . The survey propagation algorithm scales linearly
with N on formulas generated near the threshold ratio. The same seems to hold
for WalkSAT with optimal noise as the results in [7] shows. The 3satExtreme
instance set contains very large instances with varying N ∈ {105 . . . 5 · 105}. To
analyze the scaling behavior of our probSAT solver in the break-only-poly variant
we have computed for each run the number of flips per variable performed by
the solver until a solution was found. The number of flips per variable remains
constant at about 2·103 independent of N . The same holds for WalkSAT, though
WalkSAT seems to have a slight larger variance of the run times.

Results on the SAT Competition 2011 Random Set. We have compiled
an adaptive version of our probSAT solver and of WalkSAT, that first checks the
size of the clauses (i.e. k) and then sets the parameters accordingly (like Spar-
row2011 does). We have ran this solvers on the complete satisfiable instances set
from the SAT Competition 2011 random category along with all other competi-
tion winning solvers from this category: Sparrow2011, sattime2011 and EagleUp.
Cutoff time was set to 5000 seconds. We report only the results on the large set,
as the medium set was completely solved by all solvers and the solvers had a
median runtime under one second. As can be seen from the results of the cactus
plot in Figure 4, the adaptive version of probSAT would have been able to win
the competition. Interestingly is to see that the adaptive version of WalkSAT
would have ranked third.

Results on the SAT Competition 2011 Satisfiable Crafted Set. We have
also ran the different solvers on the satisfiable instances from the crafted set of
SAT Competition 2011 (with a cutoff time of 5000 seconds). The results are
listed in Table 3. We have also inculded the results of the best three complete
solvers from the crafted category. The probSAT solver and the WalkSAT solver
performed best in their 7-SAT break-only configuration solving 81 respectively
101 instances. The performance of WalkSAT could not be improved by changing
the walk probability. The probSAT solver though exhibited better performance
with cb = 7 and a switch to the polynomial break-only scheme, being then able
to solve 93 instances. With such a high cb value (very greedy) the probability of
getting stuck in local minima is very high. By adding a static restart strategy
after 2 · 104 flips per variable the probSAT solver was then able to solve 99
instances (as listed in the table).

The high greediness level needed forWalkSAT and probSAT to solve the crafted
instances indicates that this instances might be more similar to the 7-SAT in-
stances (generally to higher k-SAT). A confirmation of this conjecture is that
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Fig. 4. Results on the “large” set of the SAT Competition 2011 random instances

Sparrow with fixed parameters for 7-SAT instances could solve 103 instances vs.
104 in the default setting. We suppose that improving SLS solvers for random in-
stances with large clause length would also yield improvements for non random
instances.

To check weather the performance of SLS solvers can be improved by prepro-
cessing the instances first, we have run the preprocessor of lingeling [3], which
incorporates all main preprocessing techniques, to simplify the instances. The
results unluckily show the contrary of what would have been expected (see Table
3). None of the SLS solvers could benefit from the preprocessing step, solving
equal or less instances.

Table 3. Results on the crafted satisfiable instances: Each cell reports the
number of solved instances within the cutoff time (5000 seconds). The first line shows
the results on the original instances and the second on the preprocessed instances.

sattime Sparrow WalkSAT probSAT MPhaseSAT clasp SArTagnan
(complete) (complete) (complete)

Crafted 107 104 101 99 93 81 46
Crafted pre. 86 97 101 95 98 80 48

5 Comparison with WalkSAT

In principle, WalkSAT [10] also uses a certain pattern of probabilities for flipping
one of the variables within a non-satisfied clause. But the probability distribution
does not depend on a single continuous function f as in our algorithms described
above, but uses some non-continuous if-then-else decisions as described in [10].

In Table 3 we compare the flipping probabilities in WalkSAT (using the noise
value 0.57) with the break-only-poly-algorithm (with cb = 2.3) and the break-
only-exp-algorithm (with cb = 2.5) using a few examples of break-values that
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might occur within a 3-CNF clause. Even though the probabilities look very
similar, we think that the small differences renders our approach to be more
robust in case of 3-SAT and 5-SAT.

Table 4. Probability comparison of WalkSAT and probSAT: The first columns
show some typical break-value combinations that occur within a clause in a 3-SAT
formula during the search. For the different solvers considered here the probabilities
for the each of the 3 variables to be flipped are listed.

breaks WalkSAT break-only-poly break-only-exp

0 0 0 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
0 0 1 0.5 0.5 0 0.46 0.46 0.08 0.42 0.42 0.16
0 1 1 1.0 0 0 0.72 0.14 0.14 0.56 0.22 0.22
0 1 2 1.0 0 0 0.79 0.15 0.06 0.64 0.26 0.1
0 2 2 1.0 0 0 0.88 0.06 0.06 0.76 0.12 0.12
1 1 1 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
1 1 2 0.4 0.4 0.19 0.42 0.42 0.16 0.42 0.42 0.16
1 2 2 0.62 0.19 0.19 0.56 0.22 0.22 0.56 0.22 0.22
1 2 3 0.62 0.19 0.19 0.63 0.24 0.13 0.64 0.26 0.1

6 Summary and Future Work

We introduced a simple algorithmic design principle for a SLS solver which does
its job without heuristics and “tricks”. It just relies on the concept of probability
distribution and focused search. It is though flexible enough to allow plugging
in various functions f which guide the search.

Using this concept we were able to discover a non-symmetry regarding the
importance of the break and make-values: the break-value is the more important
one; one can even do without the make-value completely.

We have systematically used an automatic configurator to find the best pa-
rameters and to visualize the mutual dependency and impact of the parameters.

Furthermore, we observe a large variation regarding the running times even on
the same input formula. Therefore the issue of introducing an optimally chosen
restart point arises. Some initial experiments show that performing restarts, even
after a relatively short period of flips (e.g. 20N) does give favorable results on
hard instances. It seems that the probability distribution of the number of flips
until a solution is found, shows some strong heavy tail behavior (cf. [9],[13]).

Plugging in the age property into the distribution function and analyze how
strong its influence should be is also of interest.

Finally, a theoretical analysis of the Markov chain convergence and speed of
convergence underlying this algorithm would be most desirable, extending the
results in [12].
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An Overview. In: Bartz-Beielstein, T., et al. (eds.) Empirical Methods for the
Analysis of Optimization Algorithms, pp. 311–336. Springer, Berlin (2010)

6. Hoos, H.H.: An adaptive noise mechanism for WalkSAT. In: Proceedings of AAAI
2002, pp. 635–660 (2002)

7. Kroc, L., Sabharwal, A., Selman, B.: An Empirical Study of Optimal Noise and
Runtime Distributions in Local Search. In: Strichman, O., Szeider, S. (eds.) SAT
2010. LNCS, vol. 6175, pp. 346–351. Springer, Heidelberg (2010)

8. Li, C.-M., Huang, W.Q.: Diversification and Determinism in Local Search for Satis-
fiability. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 158–172.
Springer, Heidelberg (2005)

9. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms.
Information Proc. Letters 47, 173–180 (1993)

10. McAllester, D., Selman, B., Kautz, H.: Evidence for invariant in local search. In:
Proceedings of AAAI 1997, pp. 321–326 (1997)

11. Papadimitriou, C.H.: On selecting a satisfying truth assignment. In: Proceedings
FOCS 1991, pp. 163–169. IEEE (1991)
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Abstract. Most state of the art SAT solvers for industrial problems
are based on the Conflict Driven Clause Learning (CDCL) paradigm.
Although this paradigm evolved from the systematic DPLL search algo-
rithm, modern techniques of far backtracking and restarts make CDCL
solvers non-systematic. CDCL solvers do not systematically examine all
possible truth assignments as does DPLL.

Local search solvers are also non-systematic and in this paper we show
that CDCL can be reformulated as a local search algorithm: a local search
algorithm that through clause learning is able to prove UNSAT. We
show that the standard formulation of CDCL as a backtracking search
algorithm and our new formulation of CDCL as a local search algorithm
are equivalent, up to tie breaking.

In the new formulation of CDCL as local search, the trail no longer
plays a central role in the algorithm. Instead, the ordering of the literals
on the trail is only a mechanism for efficiently controlling clause learning.
This changes the paradigm and opens up avenues for further research and
algorithm design. For example, in QBF the quantifier places restrictions
on the ordering of variables on the trail. By making the trail less impor-
tant, an extension of our local search algorithm to QBF may provide a
way of reducing the impact of these variable ordering restrictions.

1 Introduction

The modern CDCL algorithm has evolved from DPLL, which is a systematic
search through variable assignments [4]. CDCL algorithms have evolved through
the years, various features and techniques have been added [10] that have demon-
strated empirical success. These features have moved CDCL away from exhaus-
tive search, and, for example, [9] has argued that modern CDCL algorithms are
better thought of as guided resolution rather than as exhaustive backtracking
search.

New features have been added as we have gained a better understanding of
CDCL both through theoretical developments and via empirical testing. For
example, the important technique of restarts was originally motivated by theo-
retical and empirical studies of the effect of heavy-tailed run-time distributions
[7] on solver run-times.
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Combinations of features, however, can sometimes interact in complex ways
that can undermine the original motivation of individual features. For exam-
ple, phase saving, also called light-weight component caching, was conceived
as a progress saving technique, so that backtracking would not retract already
discovered solutions of disjoint subproblems [12] and then have to spend time
rediscovering these solutions. However, when we add phase saving to restarts,
we reduce some of the randomization introduced by restarts, potentially limit-
ing the ability of restarts to short-circuit heavy-tailed run-times. Nevertheless,
even when combined, restarts and phase saving both continue to provide a useful
performance boost in practice and are both commonly used in CDCL solvers.

When combined with a strong activity-based heuristic, phase saving further
changes the behavior of restarts. In this context it is no longer obvious that
restarts serve to move the solver to a different part of the search space. Instead,
it can be shown empirically that after a restart a large percentage of the trail
is re-created exactly as it was prior to the restart, indicating that the solver
typically returns to the same part of the search space. In fact, there is evidence to
support the conclusion that the main effect of restarts in current solvers is simply
to update the trail with respect to the changed heuristic scores. For example, [14]
show that often a large part of the trail can be reused after backtracking. With
the appropriate implementation techniques reusing rather than reconstructing
the trail can speed up the search by reducing the computational costs of restarts.

In this paper we examine another feature of modern SAT solvers that ties
them with the historical paradigm of DPLL: the trail used to keep track of the
current set of variable assignments. We show that modern SAT solvers, in which
phase savings causes an extensive recreation of the trail after backtracking, can
actually be reformulated as local search algorithms.

Local search solvers work with complete truth assignments [15], and a single
step usually consists of picking a variable and flipping its value. Local search
algorithms have borrowed techniques from CDCL. For example, unit propagation
has been employed [6,8,2], and clause learning as also been used [1]. However,
such solvers are usually limited to demonstrating satisfiability, and often cannot
be used to reliably prove UNSAT. Our reformulation of the CDCL algorithm
yields a local search algorithm that is able to derive UNSAT since it can perform
exactly the same steps as CDCL would. It also gives a different perspective on
the role of the trail in CDCL solvers. In particular, we show that the trail can be
viewed as providing an ordering of the literals in the current truth assignment, an
ordering that can be used to guide clause learning. This view allows more flexible
clause learning techniques to be developed, and different types of heuristics to be
supported. It also opens the door for potentially reformulating QBF algorithms,
which suffer from strong restrictions on the ordering of the variables on the trail.

Section 2 examines the existing CDCL algorithm and describes our intuition
in more detail. Section 3 presents a local search formulation of the modern CDCL
algorithm and proves that the two formulations are equivalent. Section 4 presents
some simple experiments which suggest further directions for research. Section
5 concludes the paper.
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Algorithm 1: Modern CDCL algorithm

Data: φ—a formula in CNF
Result: true if φ is SAT, false if φ is UNSAT

1 π ← ∅ ; C ← ∅ while true do
2 π ← unitPropagate(φ ∪C, π)
3 if reduce(φ ∪C, π) contains an empty clause then
4 c′ ← clauseLearn(π,φ ∪C)
5 if c′ = ∅ then return false

6 C = C ∪ {c′}
7 π = backtrack(c′)
8 else if φ is true under π then return true

9 else
10 v ← unassigned variable with largest heuristic value
11 v ← phase[v]
12 π.append(v)

13 end
14 if timeToRestart() then backtrack(0)

15 end

2 Examining the CDCL Algorithm

A modern CDCL algorithm is outlined in Algorithm 1. Each iteration starts
by adding literals implied by unit propagation to the trail π. If a conflict is
discovered clause learning is performed to obtain a new clause c′ = (α → y).
The new clause is guaranteed to be empowering, which means that it is able
to produce unit implications in situations when none of the old clauses can [13].
In this case, c′ generates a new implication y earlier in the trail, and the solver
backtracks to the point where the new implication would have been made if the
clause had previously been known. Backtracking removes part of the trail in
order to add the new implication in the right place. On the next iteration unit
propagation will continue adding implications, starting with the newly implied
literal y. If all variables are assigned without a conflict, the formula is satisfied.
Otherwise, the algorithm picks a decision variable to add to the trail. It picks
an unassigned variable with the largest heuristic value, and restores its value
to the value it had when it was last assigned. The technique of restoring the
variable’s value is called phase saving. We will say that the phase of a variable
v, phase[v], is the most recent value it had; if v has never been assigned, phase[v]
will be an arbitrary value set at the beginning of the algorithm; if v is assigned,
phase[v] will be its current value.

Lastly, sometimes the solver restarts: it removes everything from the trail
except for literals unit propagated at the top level. This might be done according
to a set schedule, or some heuristic [3].

As already mentioned, after backtracking or restarting, the solver often recre-
ates much of the trail. For example, we found that the overwhelming majority
of assignments Minisat makes simply restore a variable’s previous value. We



Off the Trail: Re-examining the CDCL Algorithm 33

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100 120 140 160

Assignments and flips in Minisat (millions)

assignments
flips

Fig. 1. Assignments and flips on both solved and unsolved (after a 1000s timeout)
instances of SAT11 dataset. Sorted by the number of assignments.

have ran Minisat on the 150 problems from the SAT11 dataset of the SAT com-
petition, with a timeout of 1000 seconds. Figure 1 shows the distribution of
assignments Minisat made, and the number of “flips” it made, where flips are
when a variable is assigned a different value than it had before. On average, the
solver performed 165.08 flips per conflict, and 3530.4 assignments per conflict.
It has already been noted that flips can be correlated with the progress that the
solver is making [3].

Whenever the solver with phase saving backtracks, it removes variable as-
signments, but unless something forces the variable to get a different value, it
would restore the old value when it gets to it. So, we can imagine that the solver
is working with a complete assignment, which is the phase settings for all the
variables phase[v], and performing a flip from ¬l to l only in one of the following
cases. (1) l is implied by a new conflict clause. (2) l is implied by a variable
that was moved up in the trail because its heuristic value was upgraded. Or (3)
l is implied by another “flipped” variable. Phase saving ensures that unforced
literals, i.e., decisions, cannot be flipped.

In all of these cases l is part of some clause c that is falsified by the current
“complete” assignment (consisting of the phase set variables); c would then be-
come its reason clause; at the point when l is flipped, c is the earliest encountered
false clause; and l is the single unassigned variable in c (i.e., without c, l would
have been assigned later in the search). As we will see below, we can use these
conditions to determine which variable to flip in a local search algorithm.

Note that we will not consider the randomization of decision variables in this
paper, although this could be accommodated by making random flips in the
local search algorithm. The benefits of randomizing the decision variables are
still poorly understood. In our experiments we found that turning off random-
ization does not noticeably harm performance of Minisat. Among ten runs with
different seeds, Minisat solved between 51 and 59 instances, on average 55. With
randomization turned off, it solved 56.
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Algorithm 2: Local Search

Data: φ - a formula in CNF
Result: true if φ is SAT, false if φ is UNSAT

1 while true do
2 I ← initValues()
3 while φ|I contains false clauses do
4 if timeToRestart() then break
5 v ← pickVar(I)
6 flip(v)

7 end

8 end
9 return true

3 Local Search

Algorithm 2 presents a generic local search algorithm. A local search solver works
with a complete assignment I. At each stage in the search, it picks a variable
and flips its value. There are different techniques for choosing which variable to
flip, from simple heuristics such as minimizing the number of falsified clauses
[15], to complicated multi-stage filtering procedures [16].

Typically, the algorithm tries to flip a variable that will reduce the distance
between the current complete assignment and a satisfying assignment. However,
estimating the distance to a solution is difficult and unreliable, and local search
solvers often get stuck in local minima. It was noted that it is possible to escape
the local minimum by generating new clauses that would steer the search. Also,
if new non-duplicated clauses are being generated at every local minimum, the
resulting algorithm can be shown to be complete. An approach exploiting this
fact was proposed, using a single resolution step to generate one new clause at
each such point [5]. The approach was then extended to utilize an implication
graph, and incorporate more powerful clause learning into a local search solver,
resulting in the CDLS algorithm [1]. However, as we will see below, CDLS cannot
ensure completeness because the clause learning scheme it employs can generate
redundant clauses.

The main difficulty for such an approach is the generation of an implication
graph from the complete assignment I. The first step consists of identifying
once-satisfied clauses. A clause c is considered to be once-satisfied by a literal
x and a complete assignment I if there is exactly one literal x ∈ c that is true
in I (c ∩ I = {x}).

Theoretically, any clause cf with ¬x ∈ cf that is false under I can be resolved
with any clause co that is once-satisfied by literal x. This resolution would pro-
duce a non-tautological clause cR which is false under I and which can potentially
be further resolved with other once-satisfied clauses. However, in order to be use-
ful, the algorithm performing such resolutions needs to ensure that it does not
follow a cycle or produce a subsumed clause.
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In order to avoid cycles, it is sufficient to define some ordering ψ on variables
in I, and only allow the resolution of falsified clauses cf and once-satisfied clauses
co when all of the false literals in co precede the satisfying literal in the ordering
ψ. However, a simple ordering does not ensure that the new clauses are useful.

Clause learning can be guided more effectively by considering the effects of
unit propagation. We define an ordering ψ on the complete assignment I to be
a sequence of literals ψ = {x1, x2, . . . , xk} from I (∀i.xi ∈ I). A literal xi ∈ ψ is
implied in ψ if there is some clause (¬xj1 , . . . ,¬xjn , xi) with j1 < j2 < · · · <
jn < i. In this case jn is called an implication point for xi (the implication
point is 0 if the clause is unit). xi is said to be implied at k if k is the smallest
implication point for xi.

Finally, an ordering ψ will be said to be UP-compatible if for any xi ∈ ψ, if
xi is implied at jn, then it must appear in the ordering ψ as soon after jn as pos-
sible. In particular, UP-compatibility requires that any literals between xi and
its smallest implication point jn, i.e., the literals xjn+1 , . . . , xi−1, also be implied
in ψ. For example, for a set of clauses (a), (¬a,¬b,¬c), (¬c, d), the orderings
{a, c, d, b} and {c, d, b,¬a} are UP-compatible, but {c, d, b, a} or {c, b, d,¬a} are
not. In the first case, a is implied by the clause (a), but follows non-implied c.
In the second, d is implied by c with (¬c, d), but follows non-implied b.

A CDCL solver that ignores all conflicts would produce a UP-compatible or-
dering. However, not every UP-compatible ordering can be produced by a CDCL
solver. This is because the definition considers only the given assignment, and
does not take into account falsified clauses. So, it is possible that for some literal
xi, ¬xi is implied by a smaller prefix of the assignment, but this implication is
ignored because it disagrees with the current assignment.

Given a complete assignment I and a UP-compatible ordering ψ we can define
a decision literal to be any literal in ψ that is not implied. For each xi ∈ ψ,
we can define the decision level of xi to be the number of decision literals in
{x1, x2, . . . , xi}. For each implied literal, we can say that its reason is the clause
that implied it. Note that the reason clauses are always once-satisfied by I. So,
the ordering ψ gives us an implication graph over which clause learning can be
performed as in a standard CDCL solver.

Consider a false clause c = (¬xc1 ,¬xc2 , . . . ,¬xcn) with c1 < c2 < . . . < cn.
If ¬xcn had been in I, it would have been implied at the same decision level
as xcn−1 . We will call such ¬xcn a failed implication. We will say that xcn is
f-implied at a decision level i if it is a failed implication at the decision level i
but not earlier.

The scheme used by CDLS [1] is to construct a derived partial interpre-
tation I ′. Let i be the first decision at which a failed implication ¬xf occurs
due to some clause (β,¬xf ). I

′ is then the prefix of ψ up to and including all
variables with decision level i. If xf ∈ I ′, then xf and ¬xf are implied at the
same decision level, and clause learning can be performed as usual. We will call
this kind of failed implication conflicting. In this case the execution is identi-
cal to a corresponding run of a CDCL solver, so the resulting clause is subject
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to all the guarantees a CDCL solver provides. In particular, the new clause is
guaranteed to be empowering [13].

If xf /∈ I ′ then ¬xf does not cause a conflict. It is a failed implication sim-
ply because it is incompatible with the current assignment. We shall call this
kind of failed implication a non-conflicting implication. In CDLS the learning
scheme is only applied when no variable flip is able to reduce the number of
falsified clauses. So, there must be some clause (α, xf ) that is once-satisfied by
xi. CDLS then extends I ′ by including decisions {α− I ′} as assumptions. In the
new I ′, both α and β are falsified, so both xf and ¬xf are implied, which causes
a conflict that can be used as a starting point for clause learning. However, no
guarantees apply to the new clause in this case. Because the added assumptions
are not propagated, it is possible that the newly generated clause is not only not
empowering, but is actually subsumed by existing clauses. For example, suppose
the formula contains clauses (x1, x2, c), (x1, x2,¬x3) and (¬x3,¬c). Suppose that
the current assignment contains (¬x1,¬x2, x3, c). If x3 is chosen as the first deci-
sion, the conflict immediately occurs because ¬c is a failed implication at the first
level. The implication graph, after adding the necessary assumptions, contains
only two clauses, (¬x3,¬c) and (x1, x2, c). The resulting clause, (x1, x2,¬x3),
repeats a clause already in the database.

Instead of stopping at the first failed implication, we could use a larger prefix
of ψ. Namely, we could apply learning to the first conflicting failed implication.
However, this would not guarantee an unsubsumed new clause. It is possible
that clause learning generates a clause (α, x) implying x that is the same as one
of the previously ignored clauses causing a (non-conflicting) failed implication.

The problem arises because, from the point of view of CDCL, xf is not a
conflict. Instead of doing clause learning, a CDCL algorithm would have flipped
xf and continued with the search. Picking a correct ordering ψ would not help
either. The problem here is with objective functions used to guide local search.

The following example is for the objective function that minimizes the number
of satisfied clauses. Suppose we have the following clauses: (a, b), (c, d), (¬a, c),
(¬b, d), (¬c, a), (¬d, b). An assignment π = (¬a,¬b,¬c,¬d) is a local minimum:
it falsifies two clauses. No literal flip falsifies less, and no ordering of π produces
a conflicting implication. If we initially set ¬a, the two implications are b and
¬c. The first is a failed implication because it disagrees with π. The two possible
implications from ¬c are d and ¬a. The first is a failed implication, and the
second is already set. All the other variables are completely symmetrical.

To avoid this problem, the flips need to be guided using some notion of unit
propagation. Intuitively, a non-conflicting failed implication does not give enough
information to clause learning, and thus would not produce a useful conflict. So,
it should be resolved using a flip rather than clause learning, and should not
constitute a local minimum.

Algorithm 3 demonstrates a strategy to guide the local search outlined in
Algorithm 2. It selects a UP-compatible ordering ψ on I (of course, this could be
updated incrementally and not generated from scratch every time). It then picks
the first failed implication on ψ. If it is conflicting, clause learning is performed.
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Algorithm 3: pickVar(I)

Data: I - a complete assignment
Result: y - next variable to flip

1 ψ ← UP-compatible ordering on I
2 y ← first failed implication in ψ
3 if ¬y is conflicting then
4 c ← firstUIP (ψ)
5 if c = ∅ then EXIT(FALSE)
6 attachClause(c); y ← c.implicate

7 end
8 return y

Note that the resultant clause c is guaranteed to be false under I, and it would
produce a failed implication at an earlier level. If an empty clause is derived, the
formula is proven unsatisfiable. Otherwise, the new failed implication is now the
earliest, and is non-conflicting, so the new implicate needs to be flipped.

One detail that is left out of the above algorithm is how to pick the ordering
ψ. Note that if we are given some base ordering ψb, we can construct a UP-
compatible ordering ψ in which decision literals respect ψb. In this case ψb plays
the role of the variable selection heuristic. Of course, the heuristic must be chosen
carefully so as not to lead the algorithm in cycles. An easy sufficient condition
is when ψb is only updated after clause learning, as VSIDS is.

3.1 Connection to CDCL

In this section, we will focus on Algorithm 2 guided by the variable selection and
clause learning technique presented in Algorithm 3 and with no restarts. We will
refer to this as A2. We will refer to Algorithm 1 as A1.

Define a trace of an algorithm A to be a sequence of flips performed and
clauses learned by A. Note that this definition applies to both A2 and A1: recall
that for A1 a flip is an assignment where the variable’s new value is different
from its phase setting.

Theorem 1. For any heuristic h there is a heuristic h′ such that for any input
formula φ, A1 with h would produce the same trace as A2 with h′ (provided they
make the same decisions in the presence of ties).

Proof. We will say that a heuristic h is stable for (a version of) CDCL algorithm
A if during any execution of A with h we have h(v1) ≥ h(v2) for some decision
variable v2 only if h(v1) ≥ h(v2) also held just before v2 was last assigned.

Intuitively, a heuristic is stable if the ordering of decision variables is always
correct with respect to the heuristic, and is not simply historical. One way to
ensure that a heuristic is stable is to restart after every change to the heuristic.
For example, the VSIDS heuristic is stable for a version of A1 which restarts
after every conflict.
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We will first prove the claim for a heuristic h that is stable for A1. Then, we
will show that for any h, we can find an equivalent h′ that is stable for A1 and
such that A1 with h′ produces the same trace as with h.

Let the initial assignment of A1 be the same as the initial phase setting of
A2, and let both algorithms use the same heuristic h. It is easy to verify that if
a partial execution of A1 has the same trace as a partial execution of A2, that
means that the phase setting of any variable in A1 matches its value in A2.

To show that A1 and A2 would produce the same trace when run on the same
formula φ, we will consider partial executions. By induction on n, we can show
that if we stop each algorithm just after it has produced a trace of length n, the
traces will be identical.

If n = 0, the claim trivially holds. Also note that if one algorithm halts after
producing trace T , so will the other, and their returned values will match. Both
algorithms will return false iff T ends with an empty clause. If A2 has no failed
implications, then A1 will restore all variables to their phase values and obtain
a solution, and vice versa. Suppose the algorithms have produced a trace T .

Let S be the Next Flip or Learned Clause of A1. Let π be the trail of A1
just before it produced S.

Because h is stable for A1, then the heuristic values of the decision variables in
π are non-increasing. That is because if h(v1) > h(v2) for two decision variables,
then the same must have held when v2 was assigned. If v1 had been unassigned
at that point, it would have been chosen as the decision variable instead. So, v1
must have been assigned before v2.

So, π is a UP-compatible ordering respecting h over the partial assignment:
any implication is placed as early as possible in π, and non-implied (decision)
literals have non-increasing heuristic value. Because unit propagation was per-
formed to completion (except for possibly the last decision level), and because
the heuristic value of all unassigned literals is less than that of the last decision
literal, π can always be extended to a UP-compatible ordering ψ on I.

Let C = {α, v} be the clause that caused v to be flipped to true if S is a
flip; otherwise, let it be the conflicting clause that started clause learning, with
v being the trail-deepest of its literals. In both cases, C is false at P1, so v is a
failed implication in ψ. This is the first conflict encountered by A1, so there are
no false clauses that consist entirely of literals with earlier decision levels. So, v
is the first failed implication in ψ.

If S is a flip, then v is non-conflicting, and A2 would match the flip. Oth-
erwise, v is a conflicting failed implication, and will cause clause learning. For
the ψ which matches π, clause learning would produce a clause identical to that
produced by A1. So, the next entry in the trace of A2 will also be S.

Let S be the Next Flip or Learned Clause of A2. Let v be the first failed
implication just before S was performed, and let ψ be the corresponding UP-
compatible ordering. Let π be the trail of A1 just before it produces its next
flip or a learned clause. We will show that whenever π differs from ψ, A1 could
have broken ties differently to make them match. Let v1 ∈ π and v2 ∈ ψ be the
first pair of literals that are different between π and ψ. Suppose v1 is implied.
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Then, because ψ is UP-compatible, v2 must also be implied by preceding literals.
So, A1 could have propagated v2 before v1. If v1 is a decision literal, then so
is v2. Otherwise, v2 should have been unit propagated before v1 was assigned.
If h(v2) < h(v1), this would break the fact that ψ respects the heuristic. So,
h(v2) ≥ h(v1). Then the same must have been true at the time v1 was assigned.
So, v2 was at worst an equal candidate for the decision variable, and could have
been picked instead.

So, provided A1 breaks ties accordingly, it would have the trail π that is a
prefix of ψ. It can continue assigning variables until the trail includes all the
variables at the decision level at which v is f-implied. Because v is the first failed
implication in ψ, no conflicts or flip would be performed up to that point. At
this point, there will be some clause C = (α, v). If S is a flip, then v is not
conflicting, C will be unit, and a flip will be performed. If S is a learned clause,
then v is conflicting, which means that v was among the implied literals at this
level. So, clause learning will be performed. Either way, the next entry in the
trace of A1 will also be S.

So, we have shown that A2 and A1 would produce the same trace given the
same heuristic h′ which is stable for A1. Now we will sketch a proof that given
any variable heuristic h, we can construct a heuristic h′ which is stable for A1
and such that A1 with h would produce the same trace as with h′.

We will define h′(v) = h(v) whenever v is unassigned. Otherwise, we will set
h′(v) = M + V −D + 0.5d, where M is some value greater than the maximum
h(v) of all non-frozen variables, V is the number of variables in the problem,
and D is the decision level at which v was assigned when it became frozen, and
d is 1 if v is decision and 0 otherwise.

Because a heuristic is only considered for unassigned variables, then the be-
havior of the algorithm is unaffected, and it will produce the same traces. Also,
unassigned values always have a smaller heuristic value than those that are as-
signed; those assigned later always have a smaller heuristic value than earlier
decision literals. So, the heuristic is stable for A1.

As a corollary: because Algorithm 1 is complete, so is Algorithm 2.

3.2 Other Failed Implications

In Algorithm 3 we always choose the first failed implication. However, it is not
a necessary condition to generate empowering clauses.

Theorem 2. Suppose that ψ is UP-compatible ordering on I. Let c be a clause
generated by 1UIP on some failed implication x. Suppose c = (α, y) where y is
the new implicant. If no failed implication that is earlier than x can be derived
by unit propagation from α, then c is empowering.

Proof. Suppose that c is not empowering. Then y can be derived by unit prop-
agation from α. Because y was not implied by α at that level, then the unit
propagation chain contains at least one literal that contradicts the current as-
signment. Let p be such a literal which occurs first during unit propagation.
Then p is a failed implication that can be derived from α.
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Note that this is sufficient, but not a necessary condition. It is possible that
an earlier failed implication x can be derived from α, but α∩x still do not allow
the derivation of y.

3.3 Potential Extension to QBF Solving

The trail has always played a central role in the formalization of the SAT algo-
rithm. It added semantic meaning to the the chronological sequence of assign-
ments by linking it to the way clause learning is performed.

In SAT, this restriction has no major consequences, since the variables can
be assigned in any order. However, in an extension of SAT, Quantified Boolean
Formula (QBF) solving, this restriction becomes important.

In QBF variables are either existentially or universally quantified, and the
inner variables can depend on the preceding ones. Clause learning utilizes a
special universal reduction step, which allows a universal to be dropped from
a clause if there are no existential variables that depend on it. In order to work,
clause learning requires the implication graph to be of a particular form, with
deeper variables having larger decision levels. Because of the tight link between
the trail and clause learning, the same restriction is applied to the order in which
the algorithm was permitted to consider variables. Only outermost variables were
allowed to be picked as decision literals.

This restriction is a big impediment to performance in QBF. One illustration
of this fact is that there is still a big discrepancy between search-based and
expansion based solvers in QBF. The former are constrained to consider variables
according to the quantifier prefix, while the latter are constrained to consider the
variables in reverse of the quantifier prefix. The fact that the two approaches are
incomparable, and that there are sets of benchmarks challenging for one but not
the other, suggests that the ordering restriction plays a big role in QBF. Another
indication of this is the success of dependency schemes, which are attempts to
partially relax this restriction [11].

The reformulation presented here is a step towards relaxing this restriction.
We show that the chronological sequence of assignments does not have any se-
mantic meaning, and thus should not impose constraints on the solver. Extend-
ing the present approach to QBF should allow one to get an algorithm with the
freedom to choose the order in which the search is performed.

To extend to QBF, the definition of UP-compatible ordering would need to
be augmented to allow for universal reduction. One way to do this would be to
constrain the ordering by quantifier level, to ensure that universal reduction is
possible and any false clause would have an implicate. However, this ordering
is no longer linked to the chronological sequence of variables considered by the
solver, and will be well-defined after any variable flip. At each step, the solver
will be able to choose which of the failed implications to consider, according to
some heuristic not necessarily linked to its UP-compatible ordering.

So, decoupling the chronological variable assignments from clause learning
would allow one to construct a solver that would be free to consider variables in
any order, and would still have well-defined clause learning procedure when it
encounters a conflict.
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Table 1. Problems from SAT11 solved within a 1000s timeout by Minisat with phase
saving, and by the modified versions C n, where n is the number of full runs the solver
performs at each restart. C All is the version that performs exclusively full runs. The
number of problems solved is shown for All, True and False instances.

Family Minisat C 1 C 5 C 10 C 100 C 1000 C All
A T F A T F A T F A T F A T F A T F A T F

fuhs (34) 10 9 1 10 8 2 9 8 1 9 8 1 10 7 3 10 8 2 7 7 0

manthey (9) 3 3 0 2 2 0 2 2 0 3 3 0 3 3 0 1 1 0 0 0 0

jarvisalo (47) 24 8 16 24 8 16 24 9 15 24 10 14 25 9 16 17 6 11 15 6 9

leberre (17) 11 4 7 13 6 7 14 6 8 13 6 7 13 6 7 12 5 7 7 1 6

rintanen (30) 9 7 2 8 5 3 7 4 3 8 5 3 8 5 3 2 1 1 1 0 1

kullmann (13) 2 2 0 3 3 0 3 3 0 2 2 0 4 4 0 3 3 0 3 3 0

Total (150) 59 33 26 60 32 28 59 32 27 59 34 25 63 34 29 45 24 21 33 17 16

4 Experiments

We have investigated whether subsequent failed implications, mentioned in Sec-
tion 3.2, can be useful in practice. To evaluate this, we have equipped Minisat
with the ability to continue the search ignoring conflict clauses. Note: here we
use a version of Minisat with phase saving turned on.

This is equivalent to building a UP-compatible assignment with no non-
conflicting failed implications.

For each decision level, it would only store the first conflict clause encoun-
tered, because learning multiple clauses from the same decision level is likely to
produce redundant clauses. After all the variables are assigned, it would back-
track, performing clause learning on each stored conflict, and adding the new
clauses to the database. We will say that one iteration of this cycle is a full run.

Obviously, not yet having any method of guiding the selection, the algorithm
could end up producing many unhelpful clauses. To offset this problem, and to
evaluate whether the other clauses are sometimes helpful, we constructed an
algorithm that performs a full run only some of the time.

We have added a parameter n so that at every restart, the next n runs of the
solver would be full runs. We experimented with n ∈ {1, 5, 10, 100, 1000} and
with a version which only performs full runs.

We ran the modified version on the 150 benchmarks from SAT11 set of the
Sat Competition, with timeout of 1000 seconds. The tests were run on a 2.8GHz
machine with 12GB of RAM.

Table 1 summarizes the results. As expected with an untuned method, some
families show improvement, while for others the performance is reduced. How-
ever, we see that the addition of the new clauses can improve the results for
both satisfiable instances (as in benchmarks sets leberre and kullmann), and
unsatisfiable ones (as in fuhs and rintanen).

Figure 2 compares the number of conflicts learned while solving the problems
in Minisat and C 100. For instances which only one solver solved, the other
solver’s value is set to the number of conflicts it learned within the 1000s timeout.
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Fig. 2. The number of conflicts needed to solve the problem. Below the line are in-
stances on which C 100 encountered fewer conflicts than Minisat.

We note that in the conflict count for C 100 we include all the conflicts it
ever learned, so a single full run might add many conflicts at once. These are
unfiltered, so we expect that good heuristics and pruning methods can greatly
reduce this number. However, even with all the extra conflicts C 100 encounters,
there is a fair number of cases where it needs fewer conflicts to solve the problem
than Minisat.

5 Conclusion

We have presented a reformulation of the CDCL algorithm as local search. The
trail is shown to be simply an efficient way to control clause learning. By de-
coupling clause learning from the chronological sequence in which variables are
considered, we introduce new flexibility to be studied.

One potential application of this flexibility would be to produce QBF solvers
whose search space is not so heavily constrained by the variable ordering. An-
other is to find good heuristics to choose which conflict clauses are considered
during search.

Current CDCL solvers effectively maintain a UP-compatible ordering on the
trail by removing the order up to the place affected by a flip, and recomputing
it again. An interesting question worth investigating is whether it is possible to
develop algorithms to update the order more efficiently.
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Abstract. We prove that the graph tautology principles of Alekhnovich,
Johannsen, Pitassi and Urquhart have polynomial size pool resolution
refutations that use only input lemmas as learned clauses and without
degenerate resolution inferences. These graph tautology principles can
be refuted by polynomial size DPLL proofs with clause learning, even
when restricted to greedy, unit-propagating DPLL search.

1 Introduction

DPLL algorithms with clause learning have been highly successful at solving real-
world instances of satisfiability (SAT), especially when extended with techniques
such as clause learning, restarts, variable selection heuristics, etc. The basic
DPLL procedure without clause learning or restarts is equivalent to tree-like
resolution. The addition of clause learning makes DPLL considerably stronger.
In fact, clause learning together with unlimited restarts is capable of simulating
general resolution proofs [12]. However, the exact power of DPLL with clause
learning but without restarts is unknown. This question is interesting both for
theoretical reasons and for the potential for better understanding the practical
performance of DPLL with clause learning.

Beame, Kautz, and Sabharwal [3] gave the first theoretical analysis of DPLL
with clause learning. Among other things, they noted that clause learning with
restarts simulates full resolution. Their construction required the DPLL algo-
rithm to ignore some contradictions, but this was rectified by Pipatsrisawat and
Darwiche [12] who showed that SAT solvers which do not ignore contradictions
can also simulate resolution. (See [2] for the bounded width setting.)

[3] also studied DPLL clause learning without restarts. Using “proof trace
extensions”, they were able to show that DPLL with clause learning and no
restarts is strictly stronger than any “natural” proof system strictly weaker than
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resolution. Here, a natural proof system is one in which proofs do not increase
in length when variables are restricted to constants. However, the proof trace
method and the improved constructions of [9,7] have the drawback of introducing
extraneous variables and clauses, and using contrived resolution refutations.

There have been two approaches to formalizing DPLL with clause learning as
a static proof system rather than as a proof search algorithm. The first approach
was pool resolution with a degenerate resolution inference [16,9]. Pool resolution
requires proofs to have a depth-first regular traversal similarly to the search space
of a DPLL algorithm. Degenerate resolution allows resolution inferences in which
the hypotheses may lack occurrences of the resolution literal. Van Gelder [16]
argued that pool resolution with degenerate resolution inferences simulates a
wide range of DPLL algorithms with clause learning. He also gave a proof, based
on [1], that pool resolution with degenerate inferences is stronger than regular
resolution, using extraneous variables similar to proof trace extensions.

The second approach [7] is the proof system regWTRI that uses a “partially
degenerate” resolution rule called w-resolution, and clause learning of input lem-
mas. [7] showed that regWRTI exactly captures non-greedy DPLL with clause
learning. By “non-greedy” is meant that contradictions may need to be ignored.

It remains open whether any of DPLL with clause learning, pool resolution,
or the regWRTI proof system can polynomially simulate general resolution. One
approach to answering these questions is to try to separate pool resolution (say)
from general resolution. So far, however, separation results are known only for
the weaker system of regular resolution; namely, Alekhnovitch et al. [1], gave an
exponential separation between regular resolution and general resolution based
on two families of tautologies, variants of the graph tautologies GT′ and the
“Stone” pebbling tautologies. Urquhart [15] subsequently gave a related sepa-
ration.1 In the present paper, we call the tautologies GT′ the guarded graph
tautologies, and henceforth denote them GGT instead of GT′.

The obvious next question is whether pool resolution (say) has polynomial
size proofs of the GGT tautologies or the Stone tautologies. The main result of
the present paper resolves the first question by showing that pool resolution does
indeed have polynomial size proofs of the graph tautologies GGT. Our proofs
apply to the original GGT principles, without the use of extraneous variables in
the style of proof trace extensions; and our refutations use only the traditional
resolution rule, not degenerate resolution inferences or w-resolution inferences.
In addition, we use only learning of input clauses; thus, our refutations are also
regWRTI proofs (and in fact regRTI proofs) in the terminology of [7]. As a
corollary of the characterization of regWRTI by [7], the GGT principles have
polynomial size refutations that can found by a DPLL algorithm with clause
learning and without restarts (under the appropriate variable selection order).

It is still open if there are polynomial size pool resolution refutations for the
Stone principles. A much more ambitious project would be to show that pool

1 Huang and Yu [10] also gave a separation of regular resolution and general resolution,
but only for a single set of clauses. Goerdt [8] gave a quasipolynomial separation of
regular resolution and general resolution.
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resolution or regWRTI can simulate full resolution, or that DPLL with clause
learning and without restarts can simulate full resolution. It is far from clear
that this holds, but, if so, our methods may represent a step in that direction.

The first idea for constructing our pool resolution or regRTI proofs might be
to try to follow the regular refutations of the graph tautology clauses GTn as
given by [14,5,17]: however, these refutations cannot be used directly since the
transitivity clauses of GTn are “guarded” in the GGTn clauses and this yields
refutations which violate the regularity/pool property. So, the second idea is that
the proof search process branches as needed to learn transitivity clauses. This
generates additional clauses that must be proved: to handle these, we develop a
notion of “bipartite partial order” and show that the refutations of [14,5,17] can
still be used in the presence of a bipartite partial order. The tricky part is to be
sure that exactly the right set of clauses is derived by each subproof.

Our refutations of the GGTn tautologies can be modified so that they are
“greedy” and “unit-propagating”. This means that, at any point in the proof
search process, if it is possible to give an “input” refutation of the current clause,
then that refutation is used immediately. The greedy and unit-propagating con-
ditions correspond well to actual implemented DPLL proof search algorithms
which backtrack whenever a contradiction can be found by unit propagation (c.f.,
[9]). The paper concludes with a short description of a greedy, unit-propagating
DPLL clause learning algorithm for GGTn.

For space reasons, only the main constructions for our proofs are included
in this extended abstract. Complete proofs are in the full version of the paper
available at the authors’ web pages and at http://arxiv.org/abs/1202.2296.

2 Preliminaries and Main Results

Propositional variables range over the values True and False. The notation x
expresses the negation of x. A literal is either a variable x or a negated variable x.
A clause C is a set of literals, interpreted as the disjunction (∨) of its members.

Definition 1. The various forms of resolution take two premise clauses A and
B and a resolution literal x, and produce a new clause C called the resolvent.

A B
C

It is required that x /∈ A and x /∈ B. The different forms of resolution are:

Resolution rule. Here A := A′ ∨ x and B := B′ ∨ x, and C is A′ ∨B′.
Degenerate resolution rule. [9,16] If x ∈ A and x ∈ B, we apply the resolution

rule to obtain C. If A contains x, and B doesn’t contain x, then the resolvent
C is B. If A doesn’t contain x, and B contains x, then the resolvent C is A.
If neither A nor B contains the literal x or x, then C is the lesser of A or B
according to some tiebreaking ordering of clauses.

w-resolution rule. [7] Here C := (A\{x})∨ (B \{x}). If the literal x /∈ A (resp.,
x /∈ B), then it is called a phantom literal of A (resp., B).
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A resolution derivation of a clause C from a set F of clauses is a sequence of
clauses that derives C from the clauses of F using resolution. Degenerate and
w-resolution derivations are defined similarly. A refutation of F is a derivation
of the empty clause. A refutation is tree-like if its underlying graph is a tree.
A resolution derivation is regular provided that, along any path in the directed
acyclic graph, each variable is resolved at most once and provided that no vari-
able appearing in the final clause is used as a resolution variable.

Resolution is well-known to be sound and complete; in particular, C is a
consequence of F iff there is a derivation of some C′ ⊆ C from F .

We define pool resolution using the conventions of [7], who called this concept
“tree-like regular resolution with lemmas”. The idea is that any clause appearing
in the proof is a learned lemma and can be used freely from then on.

Definition 2. The postorder ordering <T of the nodes in a tree T is defined so
that if u is a node of T , v a node in the subtree rooted at the left child of u, and
w a node in the subtree rooted at the right child of u, then v <T w <T u.

Definition 3. A pool resolution proof from a set of initial clauses F is a res-
olution proof tree T that fulfills the following conditions: (a) each leaf is labeled
either with a clause of F or with a clause (called a “lemma”) that appears earlier
in the tree in the <T ordering; (b) each internal node is labeled with a clause
and a literal, and the clause is obtained by resolution from the clauses labeling
the node’s children, by resolving on the given literal; (c) the proof tree is regular;
(d) the root is labeled with the conclusion clause (the empty clause in the case of
a pool refutation).

The notions of degenerate pool resolution proof and pool w-resolution proof are
defined similarly. Note that [16,9] defined pool resolution to be the degenerate
pool resolution system, so our notion of pool resolution is more restrictive than
theirs. (Our definition is equivalent to the one in [6], however.)

A “lemma” in part (a) of Definition 3 is called an input lemma if it is derived
by input subderivation, namely by a subderivation in which each inference has
at least one hypothesis which is a member of F or is a lemma.

The various graph tautologies, sometimes also called “ordering principles”
use a size parameter n > 1, and variables xi,j with i, j ∈ [n] and i �= j, where
[n] = {0, 1, 2, . . . , n−1}. A variable xi,j will intuitively represent the condition
that i ≺ j with ≺ intended to be a total, linear order. We thus adopt the
convention that xi,j and xj,i are the identical literal. This identification makes
no essential difference to the complexity of proofs of the tautologies, but reduces
the number of literals and clauses, and simplifies definitions.

The following tautologies are based on Krishnamurthy [11]. These tautologies,
or similar ones, have also been studied by [14,5,1,4,13,17].

Definition 4. Let n > 1. Then GTn is the following set of clauses:

(α∅) The clauses
∨

j �=i xj,i, for each value i < n.
(γ∅) The transitivity clauses Ti,j,k := xi,j ∨ xj,k ∨ xk,i for all distinct i, j, k in

[n].
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Note that the clauses Ti,j,k, Tj,k,i and Tk,i,j are identical.
The next definition is from [1] who used the notation GT′

n. They used partic-
ular functions r and s for their lower bound proof, but since our upper bound
proof does not depend on the details of r and s we leave them unspecified. We
require that r(i, j, k) �= s(i, j, k) and that the set {r(i, j, k), s(i, j, k)} �⊂ {i, j, k}.
W.l.o.g., r(i, j, k) = r(j, k, i) = r(k, i, j), and similarly for s.

Definition 5. Let n ≥ 1, and let r(i, j, k) and s(i, j, k) be functions mapping
[n]3 → [n] as above. The guarded graph tautology GGTn consists of:

(α∅) The clauses
∨

j �=i xj,i, for each value i < n.
(γ′

∅) The guarded transitivity clauses Ti,j,k ∨ xr,s and Ti,j,k ∨ xr,s, for all distinct
i, j, k in [n], where r = r(i, j, k) and s = s(i, j, k).

Theorem 1. The guarded graph tautology principles GGTn have polynomial
size pool resolution refutations.

Theorem 2. The guarded graph tautology principles GGTn have polynomial
size, tree-like regular resolution refutations with input lemmas.

A consequence of Theorem 2 is that the GGTn clauses can be shown unsatisfi-
able by non-greedy polynomial size DPLL searches using clause learning. This
follows via Theorem 5.6 of [7]. Even better, we can improve the constructions
of Theorems 1 and 2 to show that the GGTn principles can be refuted also by
greedy, unit-propagating polynomial size DPLL searches with clause learning.

Definition 6. Let R be a tree-like regular resolution (or w-resolution) refutation
with input lemmas from the initial clauses Γ . Let C be a clause in R. Define
Γ (C) to be Γ plus every clause D <R C in R that is derived by an input subproof.
Define C+ to be the set of literals that occur as a literal (or as a literal or phantom
literal) in any clause on the path from C down to the root of R.

The refutation R is greedy and unit-propagating provided that, for each clause
C of R, if there is an input derivation from Γ (C) of some clause C′ ⊆ C+ which
does not resolve on any literal in C+, then C is derived in R by such a derivation.

Note that, as proved in [3], the condition that there is a input derivation from
Γ (C) of some C′ ⊆ C+ which does not resolve on literals in C+ is equivalent to
the condition that if all literals of C+ are set false then unit propagation yields a
contradiction from Γ (C). (In [3], these are called “trivial” proofs.) This justifies
the terminology “unit-propagating”.

Theorem 3. The guarded graph tautology principles GGTn have greedy, unit-
propagating, polynomial size, tree-like, regular w-resolution refutations with input
lemmas.

A similar theorem holds for greedy, unit-propagating pool resolution refutations
with degenerate resolution inferences.

Theorem 4. There are DPLL search procedures with clause learning which are
greedy, unit-propagating, but do not use restarts, that refute the GGTn clauses
in polynomial time.
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3 Proof of Main Theorems

The following theorem is an important ingredient of our upper bound proof.

Theorem 5. (St̊almarck [14], Bonet-Galesi [5], Van Gelder [17]) The sets GTn

have regular resolution refutations Pn of polynomial size O(n3).

The refutations Pn can be modified to give refutations of GGTn by first deriving
each transitive clause Ti,j,k from the two guarded transitivity clauses of (γ′

∅). This
however destroys the regularity property, and in fact no polynomial size regular
refutations exist for GGTn [1].

As usual, a partial order on [n] is an antisymmetric, transitive relation binary
relation on [n]. We shall be mostly interested in “partial specifications” of partial
orders: partial specifications are not required to be transitive.

Definition 7. A partial specification, τ , of a partial order is a set of ordered
pairs τ ⊆ [n]× [n] which are consistent with some (partial) order. The minimal
partial order containing τ is the transitive closure of τ . We write i ≺τ j to denote
〈i, j〉 ∈ τ , and write i ≺∗

τ j to denote that 〈i, j〉 is in the transitive closure of τ .
The τ -minimal elements are the i’s such that j ≺τ i does not hold for any j.

We are primarily interested in particular kinds of partial orders, called “bipar-
tite” partial orders, which do not have any chain of inequalities x ≺ y ≺ z.

Definition 8. A bipartite partial order is a binary relation π on [n] with disjoint
domain and range. The set of π-minimal elements is denoted Mπ.

Figure 1 shows an example. The bipartiteness of π arises from the fact that Mπ

and [n] \Mπ partition [n] into two sets. Note that if i ≺π j, then i ∈ Mπ and
j /∈Mπ. In addition, Mπ contains the isolated points of π.

Definition 9. Let τ be a specification of a partial order. The bipartite partial
order π that is associated with τ is defined by letting i ≺π j hold for precisely
those i and j such that i is τ-minimal and i ≺∗

τ j.

It is easy to check that π is a bipartite partial order. The intuition is that
π retains only the information about whether i ≺∗

τ j for minimal elements i, and
forgets the ordering that τ imposes on non-minimal elements. (See Fig. 1.)

Definition 10. Let π be a bipartite partial order on [n]. Then GTπ,n is the set
of clauses containing:

(α) The clauses
∨

j �=i xj,i, for each value i ∈Mπ.

(β) The transitivity clauses Ti,j,k := xi,j ∨xj,k ∨xk,i for all distinct i, j, k in Mπ.
(Vertices i, j, k′ in Fig. 2 show an example.)

(γ) The transitivity clauses Ti,j,k for all distinct i, j, k such that i, j ∈ Mπ and
i �≺π k and j ≺π k. (As shown in Fig. 2.)
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1 2 3 4 5

6 7 8 9

10 11

⇒

1 2 3 4 5

6 7 8 910 11
[n]−Mπ:

Mπ:

Fig. 1. Example of a partial specification of a partial order (left) and the associated
bipartite partial order (right)

Mπ :

[n] \Mπ:

i j

k

k′

�1 �2 �3

Fig. 2. A bipartite partial order π is pictured, with the ordered pairs of π shown as
directed edges. (For instance, j ≺π k holds.) The nodes i, j, k shown are an example of
nodes used for a transitivity axiom xi,j ∨ xj,k ∨ xk,i of type (γ). The nodes i, j, k′ are
an example of the nodes for a transitivity axiom of type (β).

GTπ,n is satisfiable if π is nonempty, for example by the assignment that sets
xj,i true for some fixed j /∈ Mπ and every i ∈ Mπ, and sets all other variables
false. However, there is no assignment which satisfies GTπ,n and is consistent
with π. This fact is proved by the regular derivation Pπ of Lemma 1.

Definition 11. For π a bipartite partial order, the clause (
∨
π) is defined by(∨

π
)

:= {xi,j : i ≺π j},

Lemma 1. Let π be a bipartite partial order on [n]. Then there is a regular
derivation Pπ of (

∨
π) from the set GTπ,n.

The only variables resolved on in Pπ are the following: the variables xi,j such
that i, j ∈Mπ, and the variables xi,k such that k /∈Mπ, i ∈Mπ, and i �≺π k.

Lemma 1 implies that if π is the bipartite partial order associated with a partial
specification τ of a partial order, then the derivation Pπ does not resolve on any
literal whose value is set by τ . This is proved by noting that if i ≺τ j, then
j /∈Mπ.

If π is empty, Mπ = [n] and there are no clauses of type (γ). In this case,
GTπ,n is identical to GTn, and Pπ is the refutation of GTn of Theorem 5.

Lemma 1 is proved similarly to Theorem 5, taking care to resolve on variables
in the correct order. The proof is left to the full version of the paper.

Proof (of Theorem 1). We will construct a series of “LR partial refutations”,
denoted R0, R1, R2, . . .; this process eventually terminates with a pool refutation
of GGTn. The terminology “LR partial” indicates that the refutation is being
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constructed in left-to-right order, with the left part of the refutation properly
formed, but with many of the remaining leaves being labeled with bipartite
partial orders instead of with valid learned clauses or initial clauses from GGTn.

An LR partial refutation R is a tree with nodes labeled with clauses that form
a correct pool resolution proof, except possibly at the leaves (the initial clauses).
Furthermore, it must satisfy the following conditions.

a. R is a tree. The root is labeled with the empty clause. Each non-leaf node
in R has a left child and right child; the clause labeling the node is derived
by resolution from the clauses on its two children.

b. For C a clause occurring in R, define τ(C) to be the set of ordered pairs
〈i, j〉 such that xi,j ∈ C+. Note that C ⊆ C+ by definition. In many cases,
τ(C) will be a partial specification of a partial order, but this is not always
true. For instance, if C is a transitivity axiom, τ(C) has a 3-cycle and is not
consistent as a specification of a partial order.

c. Leaves of R are flagged as “finished” or “unfinished”.
d. Each finished leaf L is labeled with either a clause from GGTn or a clause

that occurs to the left of L in the postorder traversal of R.
e. For an unfinished leaf labeled with clause C, the set τ(C) is a partial spec-

ification of a partial order. Furthermore, letting π be the bipartite partial
order associated with τ(C), the clause C is equal to (

∨
π).

Property e. is crucial for avoiding degenerate resolution inferences, and is a novel
part of our construction. As shown below, each unfinished leaf, labeled with a
clause C = (

∨
π), will be replaced by a derivation S. The derivation S often will

be based on Pπ, and thus might be expected to end with exactly the clause C;
however, some of the resolution inferences needed for Pπ might be disallowed
by the pool property. So S will instead be a derivation of a clause C′ such that
C ⊆ C′ ⊆ C+. The condition C′ ⊆ C+ is required because any literal x ∈ C′ \C
will be handled by modifying the refutation R by propagating x downward in R
until reaching a clause that already contains x. The condition C′ ⊆ C+ ensures
that such a clause exists. The fact that C′ ⊇ C means that enough literals are
present for the derivation to use only (non-degenerate) resolution inferences —
indeed our constructions will pick C so that it contains the literals that must be
present for use as resolution literals.

The construction begins by letting R0 be the “empty” refutation, containing
just the empty clause. Of course, this clause is an unfinished leaf, and τ(∅) = ∅.

Assume Ri has been already constructed, with C the leftmost unfinished
clause. Ri+1 will be formed by replacing C by a refutation S of some clause C′

such that C ⊆ C′ ⊆ C+.
We need to describe the (LR partial) refutation S. By e., C is (

∨
π). The

intuition is that we would like to let S be the derivation Pπ of C from Lemma 1.
The first difficulty with this is that Pπ is dag-like, and the LR-refutation is
intended to be tree-like. This difficulty, however, can be circumvented by just
expanding Pπ, which is regular, into a tree-like regular derivation with lemmas by
the simple expedient of using a depth-first traversal of Pπ. The second, and more
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serious, difficulty is that Pπ is a derivation from GTn, not GGTn; namely, Pπ

uses the transitivity clauses of GTn instead of the guarded transitivity clauses
of GGTn. These transitivity clauses Ti,j,k are handled one at a time treating
them, as needed, with four separate cases. Case (i) requires no change to Pπ ;
cases (ii) and (iii) require a small change; and case (iv) abandons the subproof Pπ

and instead “learns” the transitivity clause.
By the remark made after Lemma 1, no literal in C+ is used as a resolution

literal in Pπ.

(i) If an initial transitivity clause of Pπ already appears earlier in Ri (that is,
to the left of C), then it is already learned, and can be used freely in Pπ.

In the remaining cases (ii)-(iv), the transitivity clause Ti,j,k is not yet learned.
Let the guard variable for Ti,j,k be xr,s, so r = r(i, j, k) and s = s(i, j, k).

(ii) Suppose case (i) does not apply and that the guard variable xr,s or its
negation xr,s is a member of C+. The guard variable thus is used as a
resolution variable somewhere along the branch from the root to clause C.
Then, as just argued above, Lemma 1 implies that xr,s is not resolved on
in Pπ. Therefore, we can add the literal xr,s or xr,s (respectively) to the clause
Ti,j,k and to every clause on any path below Ti,j,k until reaching a clause
that already contains that literal. This replaces Ti,j,k with one of the initial
clauses Ti,j,k ∨xr,s or Ti,j,k ∨xr,s of GGTn. By construction, it preserves the
validity of the resolution inferences of Ri as well as the regularity property.
Note this adds the literal xr,s or xr,s to the final clause C′ of the modified Pπ .
This maintains the property that C ⊆ C′ ⊆ C+.

(iii) Suppose case (i) does not apply and that xr,s is not used as a resolution
variable anywhere below Ti,j,k in Pπ and is not a member of C+. In this
case, Pπ is modified so as to derive the clause Ti,j,k from the two GGTn

clauses Ti,j,k ∨ xr,s and Ti,j,k ∨ xr,s by resolving on xr,s. This maintains the
regularity of the derivation. And, henceforth Ti,j,k will be learned.

If all of the transitivity clauses in Pπ can be handled by cases (i)-(iii), then we
use Pπ to define Ri+1. Namely, let P ′

π be the derivation Pπ as modified by the
applications of cases (ii) and (iii). The derivation P ′

π is regular and dag-like, so
we can recast it as a tree-like derivation S with lemmas, by using a depth-first
traversal of P ′

π. The size of S is linear in the size of P ′
π, since the only new clauses

in S are clauses which are repeated as lemmas and, as an overestimate, there are
at most two lemmas per clause in P ′

π . The final line of S is the clause C′, namely
C plus the literals introduced by case (ii). The derivation Ri+1 is formed from Ri

by replacing the clause C with the derivation S of C′, and then propagating each
new literal x ∈ C′ \ C downward, adding x to clauses below S until reaching a
clause that already contains x. Since S contains no unfinished leaf, Ri+1 contains
one fewer unfinished leaves than Ri.

On the other hand, if even one transitivity axiom Ti,j,k in Pπ is not covered
by the above three cases, then case (iv) must be used instead. This introduces a
completely different construction to form S:
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(iv) Let Ti,j,k be any transitivity axiom in Pπ that is not covered by cases (i)-
(iii). The guard variable xr,s is used as a resolution variable in Pπ somewhere
below Ti,j,k; in general, this means we cannot use resolution on xr,s to derive
Ti,j,k while maintaining the pool property. Hence, Pπ is no longer used, and
we instead form S with a short left-branching path that “learns” Ti,j,k. This
will generate two or three new unfinished leaf nodes. Since unfinished leaf
nodes in a LR partial derivation must be labeled with clauses from bipartite
partial orders, it is also necessary to attach short derivations to these unfin-
ished leaf nodes to make the unfinished leaf clauses of S correspond correctly
to bipartite partial orders. These unfinished leaf nodes are then kept in Ri+1

to be handled at later stages. There are separate constructions depending
on whether Ti,j,k is a clause of type (β) or (γ); some of the details are given
below.

First suppose Ti,j,k is of type (γ), and thus xj,k appears in C. (Refer to Fig. 2.)
Let xr,s be the guard variable for the transitivity axiom Ti,j,k. The derivation S
will have the form

Ti,j,k, xr,s Ti,j,k, xr,s

Ti,j,k

S1 . . .
... . .

.

xi,j , xi,k, π-[jk;jR(i)]

xi,j , xj,k, π-[jk;jR(i)]

S2 . . .
... . .

.

xj,i, xj,k, π-[jk;iR(j)]

xj,k, π-[jk]

The notation π-[jk] denotes the disjunction of the negations of the literals in
π omitting the literal xj,k. We write “iR(j)” to indicate literals xi,� such that
j ≺π 
. (The “R(j)” means “range of j”.) Thus π-[jk;iR(j)] denotes the clause
containing the negations of the literals in π, omitting xj,k and any literals xi,�

such that j ≺π 
. The clause π-[jk;jR(i)] is defined similarly, and the notation
extends in the obvious way.

The upper leftmost inference of S is a resolution inference on the variable xr,s.
Since Ti,j,k is not covered by either case (i) or (ii), the variable xr,s does not
appear in or below clause C in Ri. Thus, this use of xr,s as a resolution variable
does not violate regularity. Furthermore, since Ti,j,k is of type (γ), we have
i �≺τ(C)j, j �≺τ(C)i, i �≺τ(C)k, and k �≺τ(C)i. Thus the literals xi,j and xi,k do not
appear in or below C, so they also can be resolved on without violating regularity.

Let C1 and C2 be the final clauses of S1 and S2, and let C−
1 be the clause

below C1 and above C. The set τ(C2) is obtained by adding 〈j, i〉 to τ(C), and
similarly τ(C−

1 ) is τ(C) plus 〈i, j〉. Since Ti,j,k is type (γ), we have i, j ∈ Mπ.
Therefore, since τ(C) is a partial specification of a partial order, τ(C2) and
τ(C−

1 ) are also both partial specifications of partial orders. Let π2 and π1 be the
bipartite orders associated with these two partial specifications (respectively).
We will form the subproof S1 so that it contains the clause (

∨
π1) as its only

unfinished clause. This will require adding inferences in S1 which add and remove
the appropriate literals. The first step of this type already occurs in going up
from C−

1 to C1 since this has removed xj,k and added xi,k, reflecting the fact
that j is not π1-minimal and thus xi,k ∈ π1 but xj,k /∈ π1. Similarly, we will
form S2 so that its only unfinished clause is (

∨
π2).
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i j

k�1 �2 �3

(a) xj,k, xi,�2 , xj,i, π
∗

i j

k�1 �2 �3

(b) xj,k, xi,�2 , xj,i, π
∗

Fig. 3. The partial orders for the fragment of S2 shown in (1)

The situation for the subproof S2 is shown in Fig. 3, which shows an extract
from Fig. 2: the edges shown in part (a) of the figure correspond to the literals
in the final line C2 of S2. Recall that literals xi,� such that j ≺π 
 are omitted
from the last line of S2. (Correspondingly, the edge from i to 
1 is omitted
from Fig. 3.) C2 may not correspond to a bipartite partial order as it may not
partition [n] into minimal and non-minimal elements; thus, C2 may not qualify
to be an unfinished node of Ri+1. (An example of this in Fig. 3(a) is that
j ≺τ(C2) i ≺τ(C2) 
2, corresponding to xj,i and xi,�2 being in C2.) The bipartite
partial order π2 associated with τ(C2) is equal to the bipartite partial order that
agrees with π except that each i ≺π 
 condition is replaced with the condition
j ≺π2 
. (This is represented in Fig. 3(b) by the fact that the edge from i to 
2
has been replaced by the edge from j to 
2. Note that the vertex i is no longer
a minimal element of π2; that is, i /∈Mπ2 .) We wish to form S2 to be a regular
derivation of the clause xj,i, π-[jk;iR(j)] from the clause (

∨
π2).

The subproof of S2 for replacing xi,�2 in π with xj,�2 in π2 is

S′
2 . . .

... . .
.

xj,i, xi,�2 , x�2,j

. . .
... . .

. rest of S2

xj,k, xj,�2 , xj,i, π
∗

xj,k, xi,�2 , xj,i, π
∗

(1)

where π∗ is π-[jk;iR(j);i�2 ]. The part labeled “rest of S2” will handle similarly the
other literals 
 such that i ≺π 
 and j �≺π 
. The final line of S′

2 is Tj,i,�2 . This is
a GTn axiom, not a GGTn axiom; however, it can be handled by the methods of
cases (i)-(iii). Namely, if Tj,i,�2 has already been learned by appearing somewhere
to the left in Ri, then S′

2 is just this single clause. Otherwise, let the guard
variable for Tj,i,�2 be xr′,s′ . If xr′,s′ is used as a resolution variable below Tj,i,�2 ,
then replace Tj,i,�2 with Tj,i,�2 ∨ xr′,s′ or Tj,i�2 ∨ xr′,s′ , and propagate the xr′,s′

or xr′,s′ to clauses down the branch leading to Tj,i,�2 until reaching a clause that
already contains that literal. Finally, if xr′,s′ has not been used as a resolution
variable in Ri below C, then let S′

2 consist of a resolution inference deriving (and
learning) Tj,i,�2 from the clauses Tj,i,�2 , xr′,s′ and Tj,i,�2 , xr′,s′ .

To complete the construction of S2, the inference (1) is repeated for each value
of 
 such that i ≺π 
 and j �≺π 
. The result is that S2 has one unfinished leaf
clause, and it is labelled with the clause (

∨
π2).

We next describe the subproof S1 of S. The situation is shown in Fig. 4. As in
the formation of S2, the final clause C1 in S1 may need to be modified in order
to correspond to the bipartite partial order π1 which is associated with τ(C1).
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i j

k�1 �2 �3

(a) xi,k, xj,�3 , xi,j , π
∗

i j

k�1 �2 �3

(b) xi,k, xi,�3 , xi,j , π
∗

Fig. 4. The partial orders for the fragment of S1 shown in (2)

First, note that the literal xj,k is already replaced by xi,k in the final clause
of S1. The other change that is needed is that, for every 
 such that j ≺π 

and i �≺π 
, we must replace xj,� with xi,� since we have j �≺π1 
 and i ≺π1 
.
Vertex 
3 in Fig. 4 is an example of a such a value 
. The ordering in the final
clause of S1 is shown in part (a), and the desired ordered pairs of π1 are shown
in part (b). Note that j is no longer a minimal element in π1.

The replacement of xj,�3 with xi,�3 is effected by the following inference, letting
π∗ now be π-[jk;jR(i);j�3 ].

S′
1 . . .

... . .
.

xi,j , xj,�3 , x�3,i

. . .
... . .

. rest of S1

xi,k, xi,�3 , xi,j , π
∗

xi,k, xj,�3 , xi,j , π
∗

(2)

The “rest of S1” will handle similarly the other literals 
 such that j ≺π 

and i �≺π 
. Note that the final clause of S′

1 is the transitivity axiom Ti,j,�3 .
The subproof S′

1 is formed in the same way that S′
2 was formed above. Namely,

depending on the status of the guard variable xr′,s′ for Ti,j,�3 , one of the following
is done: (i) the clause Ti,j,�3 is already learned and can be used as is, or (ii) one of
xr′,s′ or xr′,s′ is added to the clause and propagated down the proof, or (iii) the
clause Ti,j,�3 is inferred using resolution on xr′,s′ and becomes learned.

To complete the construction of S1, the inference (2) is repeated for each value
of 
 such that j ≺π 
 and i �≺π 
. The result is that S1 has one unfinished leaf
clause, and it corresponds to the bipartite partial order π1.

That completes the construction of the subproof S for the subcase of (iv)
where Ti,j,k is of type (γ). Now suppose Ti,j,k is of type (β). (For instance, the
values i, j, k′ of Fig. 2.) In this case the derivation S will have the form

Ti,j,k, xr,s Ti,j,k, xr,s

Ti,j,k

S3 . . .
... . .

.

xi,j , xi,k, π-[jR(i),kR(i∪j)]

xi,j , xj,k, π-[jR(i),kR(i∪j)]

S4 . . .
... . .

.

xi,j , xk,j , π-[jR(i∩k)]

xi,j , π-[jR(i∩k)]

S5 . . .
... . .

.

xj,i, π-[iR(j)]

π

where xr,s is the guard variable for Ti,j,k. We write [π-[jR(i∩k)]] to mean the
negations of literals in π omitting any literal xj,� such that i ≺π 
 and k ≺π 
.
Similarly, π-[jR(i),kR(i∪j)] indicates the negations of literals in π, omitting the
literals xj,� such that i ≺π 
 and the literals xk,� such that i ≺π 
 or j ≺π 
.
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Note that the resolution on xr,s used to derive Ti,j,k does not violate reg-
ularity, since otherwise Ti,j,k would have been covered by case (ii). Likewise,
the resolutions on xi,j , xi,k, and xj,k do not violate regularity since Ti,j,k is of
type (β).

The subproofs S3, S4, and S5 are handled similarly to the way the subproofs
S1 and S2 were handled above, albeit with some extra complications in the S4

case. The detailed constructions are in the full version of the paper.
Once some Ri has no unfinished clauses, we have the desired pool refutation.

We claim that the process stops after polynomially many stages.
To prove this, recall that Ri+1 is formed by handling the leftmost unfinished

clause using one of cases (i)-(iv). In the first three cases, the unfinished clause
is replaced by a derivation based on Pπ. Since Pπ has size O(n3), this means
that the number of clauses in Ri+1 is at most the number of clauses in Ri plus
O(n3). Also, by construction, Ri+1 has one fewer unfinished clauses than Ri. In
case (iv) however, Ri+1 is formed by adding up to O(n) many clauses to Ri plus
adding either two or three new unfinished leaf clauses. However, case (iv) always
causes at least one transitivity axiom Ti,j,k to be learned. Therefore, case (iv) can
occur at most 2

(
n
3

)
= O(n3) times. Consequently at most 3 ·2

(
n
3

)
= O(n3) many

unfinished clauses are added throughout the entire process. It follows that the
process stops with Ri having no unfinished clauses for some i ≤ 6

(
n
3

)
= O(n3).

Therefore there is a pool refutation of GGTn with O(n6) lines.
By inspection, each clause in the refutation contains O(n2) literals. This is

because the largest clauses are those corresponding to (small modifications of)
bipartite partial orders, and because bipartite partial orders can contain at most
O(n2) many ordered pairs. Furthermore, the refutations Pn for the graph tautol-
ogy GTn contain only clauses of size O(n2). Q.E.D. Theorem 1

The proofs of Theorems 2 and 3 are left to the full version of the paper, but
use similar methods. Theorem 4 follows from the algorithm implicit in the proof
of Theorem 3. The following gives a sketch of the algorithm for DPLL search
with clause learning which always succeeds in finding a refutation of the GGTn

clauses. At each point in the DPLL search procedure, there is a partial assign-
ment τ , and the search algorithm must do one of the following:

(1) If unit propagation yields a contradiction, then learn a clause Ti,j,k if possi-
ble, and backtrack.

(2) Otherwise, if there are any literals in the bipartite partial order π associated
with τ which are not assigned a value, branch on one of these literals to set
its value.

(3) Otherwise, determine whether there is a clause Ti,j,k which is used in the
proof Pπ whose guard literals are resolved on in Pπ . (See Lemma 1.) If not,
do a DPLL traversal of Pπ , eventually backtracking from the assignment τ .

(4) Otherwise, let Ti,j,k block Pπ from being traversed, and branch on its vari-
ables in the order given in the above proof. From this, learn the clause Ti,j,k.
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Abstract. The alternation of existential and universal quantifiers in a quantified
boolean formula (QBF) generates dependencies among variables that must be
respected when evaluating the formula. Dependency schemes provide a general
framework for representing such dependencies. Since it is generally intractable
to determine dependencies exactly, a set of potential dependencies is computed
instead, which may include false positives. Among the schemes proposed so
far, resolution path dependencies introduce the fewest spurious dependencies. In
this work, we describe an algorithm that detects resolution-path dependencies in
linear time, resolving a problem posed by Van Gelder (CP 2011).

1 Introduction

Deciding the satisfiability of quantified boolean formulas (QBF) is a canonical PSPACE-
complete problem [14]. Under standard complexity theoretic assumptions, that means
it is much harder than testing satisfiability of propositional formulas. The source of
this discrepancy can be found in variable dependencies introduced by the alternation of
universal and existential quantifiers in a QBF. The kind of dependencies we consider
can be illustrated with the following example:

F = ∀x∃y (x ∨ ¬y) ∧ (¬x ∨ y)

While F is satisfiable, there is no single satisfying assignment to y. Instead, the value
of y that satisfies F depends on the value of x.

For formulas in prenex normal form, it is safe to assume that a variable depends on
all variables to its left in the quantifier prefix, but this assumption may result in a large
number of spurious dependencies. More accurate representations of the dependency
structure in a formula can be exploited for various purposes, and variable dependencies
have been studied in a series of works, including [1–4, 9–12, 15].

Unfortunately, the problem of computing variable dependencies exactly is PSPACE-
complete [12]. In practice one therefore computes an over-approximation of dependen-
cies that may contain false positives. This leads to a trade-off between tractability and
generality.
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In a recent paper, Van Gelder [15] introduced resolution-path dependencies and ar-
gued that they generate fewer spurious dependencies than all previously considered
notions of variable dependency (see Figure 1).

Van Gelder stated as an open problem whether resolution-path dependencies can be
computed in polynomial time [15]. In this work, we solve this problem by describing a
linear-time algorithm that identifies resolution-path dependencies. We obtain this result
by a reduction to the problem of finding properly colored walks in edge-colored graphs,
which is in turn solved using a variant of breadth-first search. We thus show that the
most general dependency relation among those considered so far is tractable.

Dependency schemes are a generic framework for representing variable dependen-
cies [12] that are useful in various settings. In particular, they have recently been
built into state-of-the-art QBF solvers, with beneficial effects [9, 10]. We prove that
resolution-path dependencies give rise to a dependency scheme, thereby providing a
basis for their use across a variety of applications.

The proofs of statements marked with (�) have been omitted due to space con-
straints. They can be found in the full version of this paper, which is available on
arXiv:1202.3097.

2 Preliminaries

2.1 Quantified Boolean Formulas

In this section, we cover basic definitions and notation used throughout the paper. For
an in-depth treatment of theoretical and practical aspects of QBFs, we refer the reader
to [6] and [5], respectively.

We consider quantified boolean formulas in quantified conjunctive normal form
(QCNF). A QCNF formula consists of a (quantifier) prefix and a CNF formula, called
the matrix. A CNF formula is a finite conjunction of clauses, where each clause is a
finite disjunction of literals. We identify a CNF formula with the set of its clauses, and
a clause with the set of its literals. Literals are negated or unnegated propositional vari-
ables. If x is a variable, we put x = ¬x and ¬x = x, and let var (x) = var(¬x) = x.

Resolution Path Quadrangle Triangle

Strict Standard Standard Trivial

Fig. 1. Various notions of variable dependency ordered by generality [15]. An arrow from A to
B should be read as “A is strictly more general than B.” Trivial dependencies include all pairs
of variables not contained in the same quantifier block as dependent and serve as a baseline.
Standard dependencies [12] identify dependencies based on a notion of local connectivity of
clauses, extending ideas introduced in work on universal expansion [2, 3]. Triangle dependen-
cies generalize standard dependencies without increasing the worst-case asymptotic runtime [12].
Quadrangle dependencies in turn refine triangle dependencies, and strict standard dependencies
refine standard dependencies [15]. Resolution path dependencies are based on a sophisticated
notion of connectivity motivated by properties of Q-resolution [15].
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If X is a set of literals, we write X for the set { x : x ∈ X }. For a clause C,
we let var (C) be the set of variables occuring (negated or unnegated) in C. For a
QCNF formula F with matrix F , we put var (F) = var (F ) =

⋃
C∈F var (C), and

lit(F) = var(F) ∪ var (F). We call a clause tautological if it contains the same
variable negated as well as unnegated. Unless otherwise stated, we assume that the
matrix of a formula does not contain tautological clauses (tautological clauses can
be deleted without changing satisfiability of a formula). The prefix of a QCNF for-
mula F is a sequence Q1x1 . . .Qnxn of quantifications Qixi, where x1, . . . , xn are
pairwise distinct variables in var (F) and Qi ∈ {∀, ∃} for 1 ≤ i ≤ n. We define
the depth of variable xp as δF (xp) = p, and let qF (xp) = Qp. A QCNF formula
F ′ is obtained from F by quantifier reordering if there is a permutation i1, . . . , in
of 1, . . . , n such that F ′ = Qi1xi1 , . . . ,QinxinF , where F denotes the matrix of F .
The sets of existential and universal variables occurring in F are given by var∃(F) =
{ x ∈ var (F) : qF (x) = ∃ } and var∀(F) = { x ∈ var(F) : qF (x) = ∀ }, re-
spectively. We call a literal 
 existential (universal) if var (
) is existential (universal).
We assume that every variable in var(F) appears in the prefix of F , and – conversely
– that every variable quantified in the prefix appears in F . The size of a QCNF formula
F with matrix F is defined as |F| =

∑
C∈F |C|.

For a set X of variables, a truth assignment is a mapping τ : X → {0, 1}. We extend
τ to literals by setting τ(¬x) = 1 − τ(x), for x ∈ X . Let τ : X → {0, 1} be a truth
assignment and F a CNF formula. By F [τ ] we denote the formula obtained from F by
removing all clauses containing a literal 
 such that τ(
) = 1, and removing from every
clause all literals 
 for which τ(
) = 0; moreover, if F is a QCNF formula, we write
F [τ ] for the formula obtained from F by replacing its matrix F with F [τ ] and deleting
all superfluous quantifications in its prefix.

The evaluation function ν on QCNF formulas is recursively defined by ν(∃xF) =
max(ν(F [x �→ 0]), ν(F [x �→ 1])), ν(∀xF) = min(ν(F [x �→ 0]), ν(F [x �→ 1])),
ν(∅) = 1, and ν({∅}) = 0, where x �→ ε denotes the assignment τ : {x} → {0, 1}
such that τ(x) = ε. A QCNF formula F is satisfiable if ν(F) = 1 and unsatisfiable
if ν(F) = 0. Two formulas F and F ′ are equivalent if ν(F) = ν(F ′). We call a
clause ternary if it contains at most three literals. A QCNF formula is ternary if all of
the clauses in its matrix are ternary. We denote the class of ternary QCNF formulas by
Q3CNF.

2.2 Q-Resolution

Q-resolution [7] is an extension of propositional resolution. Let F be QCNF formula
with matrix F . A tree-like Q-resolution derivation of clause D from F is a pair π =
(T, λ) of a rooted binary tree T and a labeling λ satisfying the following properties.
The labeling λ assigns to each node a clause, and to each edge a variable. The leaves
of T are labeled with clauses of F , and the root of T is labeled with D. Whenever a
node t has two children t′ and t′′, then there is an existential literal 
 such that 
 ∈ λ(t′),

 ∈ λ(t′′), and λ(tt′) = λ(tt′′) = var(
). Moreover,λ(t) = (λ(t′)\{
})∪(λ(t′′)\{
})
and λ(t) is non-tautological. We call λ(t) the (Q-)resolvent of λ(t′) and λ(t′′), and say
that λ(t) is obtained by resolution of λ(t′) and λ(t′′) on variable var (
). If a node t has
a single child t′, then λ(t) = λ(t′) \ {
} and λ(tt′) = var(
) for some tailing universal
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literal 
 in λ(t′). A universal literal 
 is tailing in λ(t′) if for all existential variables
x ∈ var(λ(t′)), we have δF (x) < δF (var (
)). The clause λ(t) is the result of universal
reduction of λ(t′) on variable var (
). We call an instance of resolution or universal
reduction in π a derivation step in π. We say π is strict if for every path t1, . . . , tn
from the root of T to one of its leaves we have δF (λ(titi+1)) < δF(λ(ti+1ti+2)), for
all i ∈ {1, . . . , n − 2}. We call π regular if every existential variable appears at most
once as an edge-label on a path from the root of T to one of its leaves. For a tree-like
Q-resolution derivation π = (T, λ), we define the set of resolved variables of π as
resvar(π) = { y ∈ var∃(F) : there is an edge e ∈ T such that λ(e) = y }. We
define the height of a tree-like Q-resolution derivation π = (T, λ) as the height of T .
A tree-like Q-resolution derivation of the empty clause from F is called a Q-resolution
refutation of F .

Theorem 1. A QCNF formula F is unsatisfiable if and only if it has a strict, tree-like
Q-resolution refutation.

Proof. Completeness of “ordinary” Q-resolution is proved in [7]. It is straightforward
to turn the derivations used in this proof into strict, tree-like derivations. ��

3 Dependency Schemes

For a binary relation R over some set V we write R∗ to denote the reflexive and tran-
sitive closure of R, i.e., the smallest set R∗ such that R∗ = R ∪ {(x, x) : x ∈
V } ∪ {(x, y) : ∃z such that (x, z) ∈ R∗ and (z, y) ∈ R}. Moreover, we let
R(x) = {y : (x, y) ∈ R} for x ∈ V , and R(X) =

⋃
x∈X R(x) for X ⊆ V .

For a QCNF formula F , we define the binary relation RF over var(F) as RF =
{ (x, y) : x, y ∈ var (F), δF(x) < δF (y) }. That is to say, RF assigns to each vari-
able x the variables on the right of x in the prefix.

Definition 1 (Shifting). Let F be a QCNF formula and X ⊆ var (F). We say the
QCNF formulaF ′ is obtained fromF by down-shifting X , in symbolsF ′ = S↓(F , X),
if F ′ is obtained from F by quantifier reordering such that the following conditions
hold:

1. X = RF ′(x) for some x ∈ var(F) = var(F ′).
2. δF ′(x) < δF ′(y) if and only if δF (x) < δF(y) for all x, y ∈ X .
3. δF ′(x) < δF ′(y) if and only if δF (x) < δF(y) for all x, y ∈ var(F) \X .

For example, let F = ∃x∀y∃z∀u∀w F , and X = {x, z, u}. Then S↓(F , X) =
∀y∀w∃x∃z∀u F . Note that the result of shifting is unique. In general, shifting does
not yield an equivalent formula.

Definition 2 (Dependency scheme). A dependency scheme D assigns to each QCNF
formula F a binary relation DF ⊆ RF such that F and S↓(F , D∗

F (x)) are equivalent
for all x ∈ var (F). A dependency scheme D is tractable if DF can be computed in
time that is polynomial in |F|.
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Intuitively, for a QCNF formula F , variable x ∈ var(F), and dependency scheme D,
the set DF(x) consists of variables that may depend on x. More specifically, if we
want to simplify F by moving the variable x to the rightmost position in the prefix,
we can use a dependency scheme to identify a set X so that down-shifting of X ∪ {x}
preserves satisfiability. Typically, we are interested in dependency schemes that allow
us to identify sound shifts for entire sets of variables.

Definition 3 (Cumulative). A dependency scheme D is cumulative if for every QCNF
formula F and set X ⊆ var (F), F and S↓(F , D∗

F(X)) are equivalent.

Cumulative dependency schemes play a crucial role in the context of backdoor sets [12],
and have been integrated in search-based QBF solvers [10].

It is easy to verify that we can transpose adjacent quantifications QxxQyy in the
prefix of a QCNF F as long as y /∈ DF(x) for some dependency scheme D. In other
words, every dependency scheme satisfies the property defined below.

Definition 4 (Sound for Transpositions). Let D be a function that assigns to each
QCNF formula F a binary relation DF ⊆ RF . We say D is sound for transpositions
if any two QCNF formulas F = Q1x1 . . .QrxrQr+1xr+1. . .QnxnF and Q1x1 . . .
Qr+1xr+1Qrxr. . .QnxnF are equivalent given that (xr, xr+1) /∈ DF .

Further restrictions are required when going beyond individual transpositions: let F =
∀x∃y∃z F , where F is the CNF encoding of z ↔ (x∨ y), and let D be a mapping such
that D(F) = DF = ∅ and D(F ′) = RF ′ for F ′ �= F . F is satisfiable and remains
satisfiable after transposing y and x (or y and z) in the prefix. However, the formula
S↓(F , D∗

F(x)) = ∃y∃z∀x F is unsatisfiable. So D is sound for transpositions but not
a dependency scheme.

Definition 5 (Continuous). Let D be a function that maps each QCNF formula F to
a binary relation DF ⊆ RF . We say D is continuous if the following holds for every
pair F = Q1x1 . . .QrxrQr+1xr+1. . .QnxnF and F ′ = Q1x1 . . .Qr+1xr+1Qrxr

. . .QnxnF of QCNF formulas: DF(v) = DF ′(v) for v ∈ var(F) \ {xr, xr+1}, and
DF ′(xr) ⊆ DF(xr) as well as DF ′(xr+1) ⊇ DF(xr+1).

Lemma 1. (�) Let D be a function that maps each QCNF formula F to a binary rela-
tion DF ⊆ RF . If D is sound for transpositions and continuous, then D is a cumulative
dependency scheme.

Lemma 2. (�) Let D′ be a function that maps each QCNF formula F to a binary
relation D′

F ⊆ RF , and let D be a cumulative dependency scheme. If DF ⊆ D′
F for

all formulas F , then D′ is a cumulative dependency scheme as well.

4 Resolution-Path Dependencies

In this section, we will define the resolution path dependency scheme, which corre-
sponds to the resolution-path dependency relation proposed by Van Gelder [15]. We
justify this change of name by proving that the resolution path dependency scheme is
indeed a cumulative dependency scheme.
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Van Gelder [15] gives two definitions for resolution paths (Definitions 4.1 and 5.2),
the former being more restrictive than the latter. The former definition is problematic as
we will explain in Example 2 below. Hence we will base our considerations on the latter
definition, which defines resolution paths as certain walks in a graph associated with a
QBF formula. However, to avoid clashes with graph-theoretic terminology introduced
below, we simply define resolution paths as particular sequences of clauses and literals.

Definition 6 (Resolution Path). Let F be a QCNF formula with clause set F and
X ⊆ var∃(F). An X-resolution path in F is a sequence of clauses and literals

1, C1, 


′
1, 
2, C2, 


′
2, . . . ,
n, Cn, 


′
n, satisfying the following properties:

1. Ci ∈ F and 
i, 

′
i ∈ lit(F) for i ∈ {1, . . . , n}.

2. 
i, 

′
i ∈ Ci for i ∈ {1, . . . , n}.

3. 
i+1 = 
′i and 
′i, 
i+1 ∈ X ∪X , for i ∈ {1, . . . , n− 1}.
4. var (
i) �= var (
′i) for i ∈ {1, . . . , n}, and 
1 �= 
′n.

If 
1, . . . , 
′n is an X-resolution path in F , we say that 
1 and 
′n are resolution con-
nected in F with respect to X .

Example 1. Let F = ∃y1∃y2∀x1∃y3∀x2 C1 ∧ C2 ∧ C3 ∧C4, where C1 = (x1 ∨ x2 ∨
y2 ∨ y1), C2 = (¬x1 ∨ ¬y2 ∨ ¬y1), C3 = (¬y1 ∨ ¬y3), and C4 = (¬y1 ∨ y3).

The sequence x1, C1, y1,¬y1, C4, y3 is a {y1}-resolution path in F , and so the liter-
als x1 and ¬y3 are resolution connected with respect to {y1}. By contrast, the sequence
¬x1, C2,¬y1, C3,¬y3 is not a resolution path inF , because¬y1 is followed by a clause
instead of the complementary literal y1. ��

Resolution path dependencies are induced by a pair of resolution paths that connect the
same two variables in reverse polarities:

Definition 7 (Dependency Pair). Let F be a QCNF formula and x, y ∈ var (F). We
say (x, y) is a resolution-path dependency pair in F with respect to X ⊆ var∃(F) if at
least one of the following conditions holds:

– x and y, as well as ¬x and ¬y, are resolution connected in F with respect to X .
– x and ¬y, as well as ¬x and y, are resolution connected in F with respect to X .

Definition 8 (Resolution-Path Dependency Scheme). The resolution-path dependency
scheme is a mapping Dres that assigns to each QCNF formula F the relation Dres

F =
{ (x, y) ∈ RF : qF (x) �= qF (y) and (x, y) is a resolution-path dependency pair in F
with respect to RF (x) \ (var∀(F) ∪ {x, y}) }.

In the formula F of Example 1 above, (y1, x1) is resolution-path dependency pair with
respect to ∅, and (x1, y3) is a resolution-path dependency pair with respect to {y1, y2}.
But while (y1, x1) ∈ Dres

F , we have (x1, y3) /∈ Dres
F , because ¬x1 is not resolution

connected in F to either of y3 or ¬y3 with respect to RF(x1) \ {y3} = ∅.
The next lemma will be needed in the proof of Theorem 2 below.

Lemma 3 ([15]). (�) Let F be QCNF formula, 
, 
′ ∈ lit(F) where 
 �= 
′, and π =
(T, λ) a regular, tree-like Q-resolution derivation of a clause D such that 
, 
′ ∈ D.
Then 
 and 
′ are resolution connected in F with respect to resvar(π).

The following result corresponds to Theorem 4.7 in [15].
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Theorem 2 ([15]). (�) Let F be a QCNF formula where ∀u is followed by ∃e in the
quantifier prefix, so that δF (e) = δF (u) + 1. Suppose (u, e) /∈ Dres

F . Let F ′ be the
result of transposing ∃e and ∀u in the quantifier prefix. Then F ′ and F are equivalent.

With the next example, we illustrate the importance of allowing consecutive clauses
with a tautological Q-resolvent in the definition of resolution paths.

Example 2. Let G = ∀u∃e∃v∀x∃y∃z C′
1 ∧ C′

2 ∧ C′
3 ∧ C′

4 ∧ C′
5, where C′

1 = (u ∨ y),
C′

2 = (¬y∨¬x∨v), C′
3 = (¬v∨x∨z), C′

4 = (¬z∨e), and C′
5 = (¬u∨¬e). Figure 2

shows a Q-resolution derivation of the clause (u ∨ e) from G. By Lemma 3, there must
be a {v, y, z}-resolution path in G connecting u and e, and indeed it is straightforward
to check that u,C′

1, y,¬y, C′
2, v,¬v, C′

3, z,¬z, C′
4, e is a resolution path. The literals

¬u and ¬e are trivially resolution connected, so (u, e) is a resolution path dependency
pair with respect to {v, y, z}, and (u, e) ∈ Dres

F . This is a genuine dependency: it is
easily verified that switching ∀u and ∃e in the prefix of G results in a formula that is
unsatisfiable, while G itself is satisfiable.

Note that the clauses C′
2 and C′

3 do not have a non-tautological resolvent. All reso-
lution paths in G between u and e lead through C′

2 and C′
3. Consequently, if we would

restrict Definition 6 so as to require consecutive clauses in a resolution path to have a
non-tautological Q-resolvent (as in Definition 4.1 of [15]), u and e would no longer be
resolution connected in G, and e would not be identified as dependent on u. ��

Theorem 3. Dres is a cumulative dependency scheme.

Proof. We prove that Dres is (a) continuous and (b) sound for transpositions. The result
then follows by Lemma 1. (a) LetF andF ′ be QCNF formulas such thatF ′ is obtained
from F by quantifier reordering. Let x ∈ var(F) = var (F ′), and P = RF(x) \
(var∀(F) ∪ {x}), P ′ = RF ′(x) \ (var∀(F ′) ∪ {x}). The set of P -resolution paths
in F starting from x is identical to the set of P ′-resolution paths in F ′ starting from
x unless RF(x) �= RF ′(x). If RF(x) ⊆ RF ′(x), every P -resolution path in F is a
P ′-resolution path in F ′. It is an easy consequence that Dres is continuous.

(b) Let F be a QCNF formula and x, y ∈ var (F) so that δF(y) = δF(x) + 1 and
(x, y) /∈ Dres

F . If x ∈ var∀(F) and y ∈ var∃(F), the result follows from Theorem 2.

u ∨ e

¬v ∨ e

¬v ∨ x ∨ e

¬z ∨ e

z

¬v ∨ x ∨ z

z

x

v

u ∨ v

u ∨ ¬x ∨ v

¬y ∨ ¬x ∨ v

y

u ∨ y

y

x

v

Fig. 2. Q-resolution derivation of u ∨ e from G
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Suppose x ∈ var∃(F) and y ∈ var∀(F). Let F ′ be the result of transposing ∃x and ∀y
in the quantifier prefix of F . Because of (x, y) /∈ Dres

F , we must have (y, x) /∈ Dres
F ′ , so

we can again apply Theorem 2 and conclude that F and F ′ are equivalent. If qF (x) =
qF(y), equivalence is trivial. ��

Using Lemma 2, we can conclude that all dependency relations appearing in Figure 1
are cumulative dependency schemes.

5 Computing Resolution-Path Dependencies

This section will be devoted to proving that Dres is tractable. More specifically, we will
show that the set of literals that are resolution connected to a given literal in a QCNF
formula F with respect to a set X ⊆ var∃(F) can be computed in linear time. This
result in turn establishes linear time-tractability of deciding whether a pair of variables
is contained in Dres

F .
We will reduce the problem of finding resolution paths to the task of finding properly

edge-colored walks in certain edge-colored graphs. A graph G consists of a finite set
V (G) of vertices and a set E(G) of edges, where the edge between two vertices u
and v is denoted by uv or equivalently vu. All graphs we consider are undirected
and simple (i.e., without self-loops or multi-edges). If G is a graph and v ∈ V (G),
elements of the set NG(v) = {w ∈ V (G) : vw ∈ E(G) } are called neighbors
of v in G. In a c-edge-colored graph G, every edge e ∈ E(G) is assigned a color
χG(e) ∈ {1, . . . , k}. Given a (not necessarily edge-colored) graph G, a walk from s
to t in G is a sequence of vertices π = v1, v2, . . . , vn, where v1 = s, vn = t, and
vivi+1 ∈ E(G) for i = 1, . . . , n− 1. If further vi �= vi+2 for all i ∈ {1, . . . , n − 2},
π is said to be retracting-free. A walk π = v1, . . . , vn in a c-edge-colored graph G is
properly edge-colored (PEC) if χG(vivi+1) �= χG(vi+1vi+2) for all i ∈ {1, . . . , n−2}.
A walk v1, . . . , vn satisfying vi �= vj for distinct i, j ∈ {1, . . . , n} is a path. A PEC
walk which is a path is called a PEC path. The length of a walk v1, . . . , vn+1 is n. For
2-edge-colored graphs, we use the names red and blue to denote the colors 1 and 2,
respectively.

Note that there can be a PEC walk from a vertex s to a vertex t without there being
a PEC path from s to t. For instance, consider a 2-edge-colored graph with vertex set
{s, u, v, w, t} and edge set {su, ut, uv, uw, vw}, such that uv and uw are red and the
remaining edges are blue. The sequence s, u, v, w, u, t is a PEC walk from s to t, but
there is no PEC path from s to t.

Construction. Let F be a QCNF formula with matrix F , and let X ⊆ var∃(F). We
construct two graphs GF ,X and G′

F ,X :

– For the set of vertices of GF ,X , we choose F ∪ lit(F). Its edge set consists of all
edges ¬zz for z ∈ X , and all edges C
 where 
 ∈ C.

– We define G′
F ,X to be a 2-edge-colored graph with vertex set lit(F) and edge set

Er ∪Eb, where the set Er consists of all edges ¬zz for z ∈ X , and Eb consists of
all edges 

′ such that there is a clause C ∈ F with 
, 
′ ∈ C. The edges in Er are
red, while those in Eb are blue.
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For general QCNF formulas F , the size of G′
F ,X can be quadratic in the size of F ,

since every clause of size n gives rise to a clique with n vertices. This can be avoided
by using the following trick: we first convertF to a Q3CNF formula F ′ and then carry
out the construction. For any set X ′ ⊆ var(F ′), we can clearly compute G′

F ′,X′ in
timeO(|F ′|). Furthermore, it is well known that SAT can be reduced to 3SAT in linear
time [8]. We show that this reduction preserves resolution connectedness.

Lemma 4. (�) Let F be an arbitrary QCNF formula and X ⊆ var∃(F). In time
O(|F|), one can construct a Q3CNF formula F ′ and a set X ′ ⊆ var∃(F ′) satisfying
the following property: two literals 
, 
′ ∈ lit(F) are resolution connected in F with
respect to X if and only if 
 and 
′ are r-connected in F ′ with respect to X ′.

Proposition 1. Given a Q3CNF formula F and a set X ⊆ var∃(F), the graph G′
F ,X

can be constructed in time O(|F|).

C1

C2

C3 C4

y3¬y3

y2

¬y2

y1

¬y1

C5 y4

x1

¬x1

x2¬x2

y3¬y3

y2

¬y2

y1

¬y1
x1

¬x1

x2¬x2

Fig. 3. ThegraphsGF,X (left)andG′
F,X (right) for theformulaF ofExample1 andX = {y1, y3}.

Red edges of G′
F,X are represented by solid lines, and blue edges by dashed lines.

Lemma 5. Let F be a QCNF formula, X ⊆ var∃(F), and 
, 
′ ∈ lit(F) such that

 �= 
′. The following statements are equivalent:

1. 
 and 
′ are resolution connected in F with respect to X .
2. There is a retracting-free walk 
1, C1, 


′
1, 
2, C2, 


′
2, . . . , 
n, Cn, 


′
n in GF ,X from 


to 
′, where Ci ∈ F and 
i, 

′
i ∈ lit(F) for i ∈ {1, . . . , n}.

3. There is a PEC walk in G′
F ,X from 
 to 
′ whose first and last edges are blue.

Proof. (1⇒ 2) Suppose 
 and 
′ are resolution connected in F with respect to X . Then
there exists an X-resolution path π = 
1, C1, 


′
1, 
2, C2, . . . ,
n, Cn, 


′
n in F from 


to 
′. We claim that π is already a retracting-free walk in GF ,X of the desired form.
Because π is a resolution path, we have 
i+1 = 
′i and therefore 
′i
i+1 in E(GF ,X)
for all i ∈ {1, . . . , n− 1}. Moreover, because 
i, 


′
i ∈ Ci for i ∈ {1, . . . , n}, we have


iCi, 

′
iCi ∈ E(GF ,X) as well. So π is indeed a walk in GF ,X . Since var(
i) �=

var(
′i) for i ∈ {1, . . . , n}, π must be retracting-free.
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(2 ⇒ 3) Let π = 
1, C1, 

′
1, . . . , 
n, Cn, 


′
n be a retracting-free walk from 
 to 
′ in

GF ,X so that Ci ∈ F and 
i, 

′
i ∈ lit(F) for i ∈ {1, . . . , n}. We show that the sequence

π′ = 
1, 

′
1, . . . , 
n, 


′
n is a PEC walk from 
 to 
′ in G′

F ,X whose first and last edges
are blue. Let 
iCi, Ci


′
i be a pair of consecutive edges in π where i ∈ {1, . . . , n}. By

construction of GF ,X , we have 
i, 

′
i ∈ Ci. Because π is retracting-free, 
i �= 
′i, and

thus there is a blue edge 
i

′
i in G′

F ,X . For all i ∈ {1, . . . , n− 1}, the edge 
′i
i+1 of π
is a red edge in G′

F ,X . So π′ is a walk in G′
F ,X . Moreover, the first and last edges of π

are blue, and it is easily to verified that π′ is PEC.
(3 ⇒ 1) Now let π = 
1, 


′
1, 
2, 


′
2, . . . , 
n, 


′
n be a PEC walk from 
 to 
′ in G′

F ,X

whose first and last edges are blue. By construction of G′
F ,X , for every blue edge 
i


′
i

traversed by π, there is a clause Ci in F such that 
i, 
′i ∈ Ci, for i ∈ {1, . . . , n}. For
every red edge 
′i
i+1, where i ∈ {1, . . . , n − 1}, we have 
i+1 = 
′i and 
′i, 
i+1 ∈
X ∪X . Let π′ be the sequence 
1, C1, 


′
1, . . . ,
n, Cn, 


′
n. π′ is an X-resolution path in

F : we already know that π′ satisfies conditions 1-3 of Definition 6. To verify condition
4, we must show that var (
i) �= var (
′i) for all i ∈ {1, . . . , n}. Suppose to the contrary
that var (
i) = var(
′i) for some i ∈ {1, . . . , n}. Because G′

F ,X does not contain

self-loops, this implies 
′i = 
i. But then 
i, 
i ∈ Ci, contrary to the assumption
that F does not contain tautological clauses. This concludes the proof that π′ is an
X-resolution path in F . It follows that 
 and 
′ are resolution connected in F with
respect to X . ��

Algorithm PEC-Walk. We now describe the algorithm PEC-Walk that takes as input a
2-edge-colored graph G and a vertex s ∈ V (G), and computes the set of vertices t such
that there is a PEC walk from s to t whose first and last edges are blue. We maintain a
set Q containing (ordered) pairs of vertices (v, w) joined by edges that can be traversed
by a PEC walk starting from s. Initially, Q is empty. For each vertex v, we store a set
ψ(v) ⊆ {red , blue}, where c ∈ ψ(v) indicates that there is a PEC walk from s to v
ending in an edge with color c. In an initialization phase, we first set ψ(u) = ∅ for all
vertices u. We then add all pairs (s, v) to Q such that v is a neighbor of s and sv is a
blue edge, inserting blue into ψ(v) at the same time. In the main procedure, we repeat
the following steps until Q is empty: we remove a pair (v, w) from Q and add all pairs
(w, u) to Q such that u is a neighbor of w, wu is an edge with color c different from
the color of vw, and c is not already in ψ(w). For every pair (v, w) we put into Q, we
add its color to ψ(w).

Lemma 6. Let G be a 2-edge-colored graph and s ∈ V (G). On input (G, s), PEC-Walk
runs in time O(|E(G)| + |V (G)|).

Proof. Every ordered pair of vertices joined by an edge is examined at most twice and
added to Q at most once. The algorithm terminates when Q is empty, and an element is
removed from Q in each iteration. Initialization can take at mostO(|E(G)| + |V (G)|)
steps. So the time required by the entire algorithm is O(|E(G)| + |V (G)|). ��

Lemma 7. Let G be a 2-edge-colored graph, s, t ∈ V (G), s �= t, and let ψ be a vertex
labeling generated by running PEC-Walk on input (G, s). There is a PEC walk from s
to t whose first edge is blue and whose last edge has color c ∈ {red , blue} if and only
if c ∈ ψ(t).
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Proof. By the preceding lemma, the algorithm always terminates and produces a label-
ing ψ.

(⇐) Let t be a vertex of G different from s. We show that if c ∈ ψ(t), there is a
PEC walk from s to t whose first edge is blue and whose final edge has color c. We
proceed by induction on the number n of times the algorithm enters the main loop with
c /∈ ψ(t). If n = 0, color c is added to ψ(t) during the initialization phase, so there
must be a blue edge st. Assume the statement holds for all 0 ≤ k ≤ n, and c is added to
ψ(t) in iteration n+1. Then there must be a pair (v, t) with χG(vt) = c which is added
to Q in this iteration. That is the case only if a pair (u, v) is removed from Q during
the same iteration with χG(uv) = c′, where c′ �= c. The pair (u, v) must have been
inserted into Q before iteration n + 1, at which point c′ was added to ψ(v). Applying
the induction hypothesis, we can conclude there must be a PEC walk from s to v such
that its first edge is blue and its last edge has color c′. By appending vt to this walk, we
obtain a PEC walk from s to t with the desired properties.

(⇒) Suppose there is a PEC walk from s to t whose first edge is blue and whose last
edge has color c. Let n be the smallest integer that is the length of such a walk. We will
show by induction on n that c ∈ ψ(t). The case n = 1 is taken care of by the initializa-
tion phase of the algorithm. Suppose the statement holds for all n ∈ {1, . . . ,m}. Let
v0, . . . , vm+1 be a PEC walk from s to t with the property that its first edge is blue and its
last edge has color c, and assume there is no shorter PEC walk with this property. Then
v0, . . . , vm is a PEC walk from s to vm so that v0v1 is blue, and χG(vm−1vm) = c′

where c �= c′. There can be no k < m such that there is a PEC walk of length k from
s to vm whose first edge is blue and whose last edge has color c′: otherwise, one could
append vmvm+1 to this path to obtain a PEC walk from s to vm+1 whose initial edge is
blue and whose final edge has color c of length k+1 < m+1, a contradiction. We can
therefore apply the induction hypothesis and conclude that c′ ∈ ψ(vm). Let (w, vm)
be the pair that was removed from Q in the iteration of the main loop in which c′ was
added to ψ(vm). Because c′ �= c, in the same iteration the pair (vm, vm+1) must have
been added to Q and c put into to ψ(vm+1), unless already c ∈ ψ(vm+1). ��

The next result is immediate from Lemmas 6 and 7.

Proposition 2. Given a 2-edge-colored graph G, a vertex s ∈ V (G), and some c ∈
{red , blue}, the set of vertices reachable from s along some PEC walk in G whose first
edge is blue and whose last edge has color c can be computed in time O(|E(G)| +
|V (G)|).

With all the pieces in place, it is now straightforward to prove our main result.

Theorem 4. Given a QCNF formula F and a pair of variables x, y ∈ var (F), one can
decide whether (x, y) ∈ Dres

F in time O(|F|). Hence the resolution-path dependency
scheme is tractable.

Proof. We prove that there is a linear time decision algorithm. We first check whether
qF(x) �= qF (y) and (x, y) is in RF . Using Lemma 4, we can then in linear time
compute a QCNF formula F ′ and a set R′ from F and RF (x) \ (var∀(F)∪ {x, y}) so
that two literals are resolution connected in F ′ with respect to R′ if and only if they are
resolution connected in F with respect to RF(x) \ (var∀(F) ∪ {x, y}). We can then
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construct the graph G′
F ′,R′ and determine for all pairs 
x, 
y with 
x ∈ {x,¬x} and


y ∈ {y,¬y} whether there is a properly edge-colored walk from 
x to 
y whose first
and last edges are blue, which by Lemma 5 is equivalent to 
x and 
y being resolution
connected in F ′ with respect to R′ (according to Propositions 1 and 2, this can be done
in linear time). Using this information, it is straightforward to decide whether (x, y) is
a resolution-path dependency pair in F with respect to RF (x) \ (var∀(F) ∪ {x, y}).
Each of these steps requires linear time, so we needO(|F|) time in total. ��

Samer and Szeider [12] generalized the notion of a strong backdoor set from CNF for-
mulas to QCNF formulas, by adding the requirement that the backdoor set is closed
under a cumulative dependency scheme. They showed that evaluating QCNF formulas
is fixed-parameter tractable (fpt) when parameterized by the size of a smallest strong
backdoor set (with respect to the classes QHORN or Q2CNF) provided that the consid-
ered cumulative dependency scheme is tractable. By Theorems 3 and 4, one can use the
resolution path dependency scheme here and thus get an fpt result that is stronger than
the results achieved by using any of the other dependency schemes appearing in Fig. 1.

For an existentially quantified variable y in a QCNF F , the entire set Dres
F (y) can be

computed in linear time: we first determine the sets D = { 
 ∈ lit(F) : y is resolution
connected to 
 in F with respect to RF (y) \ var∀(F) } and D¬ = { 
 ∈ lit(F) : ¬y is
resolution connected to 
 in F with respect to RF(y) \ var∀(F) } and store them in a
data structure that allows us to decide membership of literals in constant time (say, an
array). To determine Dres

F (y), we simply check for each element x of RF ∩ var∀(F)
whether x ∈ D and ¬x ∈ D¬, or ¬x ∈ D and x ∈ D¬.

Unfortunately we cannot use the same approach to compute the set of dependent
variables Dres

F (x) for a universal variable x ∈ var∀(F). For every existential variable
y ∈ var∃(F), resolution paths that entail (x, y) ∈ Dres

F cannot contain y or ¬y. Hence
the relevant resolution paths are subject to different constraints for each y, and it is not
sufficient in general to construct G′

F ,X for a single set X .

6 Minimal Dependency Schemes

The fact that the resolution-path dependency scheme is the bottom element of the lattice
represented in Figure 1 gives reason to wonder whether it is the most general depen-
dency scheme. However, computing a minimal dependency scheme is complete for
PSPACE [12]. Since the resolution path dependency scheme is tractable, it follows that
it cannot be minimal. Can we instead prove that Dres is minimal relative to a class of
“natural” dependency schemes? At the very least, such a class should include all the
dependency schemes considered so far, which have the following feature in common:
whether a pair of variables is considered dependent is determined almost entirely in
terms of the matrix. We use this property to define a candidate class.

Definition 9. A dependency scheme D is called a matrix dependency scheme if it sat-
isfies the following property: Let F and F ′ be QCNF formulas such that F ′ is ob-
tained from F by quantifier reordering. Moreover, let x ∈ var(F) such that RF (x) =
RF ′(x). Then for any y ∈ var(F), we have (x, y) ∈ DF if and only if (x, y) ∈ DF ′ .

The next proposition can be easily verified by inspecting Definition 8.
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Proposition 3. The resolution-path dependency scheme Dres is a matrix dependency
scheme.

Unfortunately, Dres is not even the most general matrix dependency scheme. We now
show that there is a cumulative matrix dependency scheme which is strictly more gen-
eral than Dres. Let F be an arbitrary QCNF formula.

Definition 10. We let Dmat : F �→ Dmat
F , where Dmat

F = { (x, y) ∈ RF : there is a
formulaF ′ = Q1x1 . . .QxxQyy . . .QnxnF obtained from F by quantifier reordering,
such that RF (x) ⊇ RF ′(x) and ν(F ′) �= ν(F ′′), where F ′′ = Q1x1 . . .QyyQxx . . .
Qnxn F }.

Proposition 4. (�) Dmat is a cumulative matrix dependency scheme.

Proposition 5. (�) For every QCNF formula F , the relation Dmat
F is contained in Dres

F ,
and containment is strict in some cases.

The reduction applied in the proof of the following result essentially corresponds to the
one used by Samer and Szeider to establish PSPACE-hardness of computing minimal
dependency schemes [12].

Proposition 6. (�) Let F be a QCNF formula with matrix F and x, y ∈ var (F). The
problem of deciding whether there exists a matrix dependency scheme D such that
(x, y) /∈ DF is ΣP

2 -hard.

One may object that these considerations do not rule out the possibility that Dres is
the most general tractable matrix dependency scheme. That this is not the case can be
seen from the following simple argument. For any nonnegative integer k, we define
a mapping Dk such that for any QCNF formula F we have Dk

F = Dmat
F if |F| ≤ k,

and Dk
F = Dres

F otherwise. As both Dmat and Dres are cumulative matrix dependency
schemes and the relevant properties are defined pointwise, any such function Dk must
be a cumulative matrix dependency scheme as well. Moreover, each scheme Dk is
clearly tractable and from the proof of Proposition 5 we know that Dk is strictly more
general than Dres for k ≥ 5.

7 Conclusion

We have shown that resolution path dependencies give rise to a cumulative dependency
scheme that can be decided in linear time. While the latter result is optimal for the
decision problem, we see at least two obstacles for an efficient implementation. First,
computing the entire relation Dres

F using our current algorithm requires O(|F|3) time,
which is prohibitive for practical purposes. Second, it is unclear whether one can find
succinct representations of the relation Dres

F similar to those used for the standard de-
pendency scheme [9]. We leave this issues for future work.

To capture the kind of variable dependencies relevant for expansion-based QBF
solvers, Samer considered an alternative definition of dependency schemes based on
variable independence [11]. It might be interesting to study resolution path dependen-
cies in this context as well.
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Abstract. Knuth (1990) introduced the class of nested formulas and
showed that their satisfiability can be decided in polynomial time. We
show that, parameterized by the size of a smallest strong backdoor set
to the base class of nested formulas, computing the number of satisfying
assignments of any CNF formula is fixed-parameter tractable. Thus, for
any k > 0, the satisfiability problem can be solved in polynomial time
for any formula F for which there exists a set B of at most k variables
such that for every truth assignment τ to B, the reduced formula F [τ ]
is nested; moreover, the degree of the polynomial is independent of k.

Our algorithm uses the grid-minor theorem of Robertson and Seymour
(1986) to either find that the incidence graph of the formula has bounded
treewidth—a case that is solved by model checking for monadic second
order logic—or to find many vertex-disjoint obstructions in the incidence
graph. For the latter case, new combinatorial arguments are used to find
a small backdoor set. Combining both cases leads to an approximation
algorithm producing a strong backdoor set whose size is upper bounded
by a function of the optimum. Going through all assignments to this set
of variables and using Knuth’s algorithm, the satisfiability of the input
formula can be decided. With a similar approach, one can also count the
number of satisfying assignments of the given formula.

1 Introduction

In a 1990 paper [20] Knuth introduced the class of nested CNF formulas and
showed that their satisfiability can be decided in polynomial time. A CNF
formula is nested if its variables can be linearly ordered such that there is no
pair of clauses that straddle each other; a clause c straddles a clause c′ if there are
variables x, y ∈ var(c) and z ∈ var(c′) such that x < z < y in the linear ordering
under consideration. Nested denotes the class of nested CNF formulas. For an
example see Figure 1. Since nested formulas have incidence graphs of bounded
treewidth [2], one can use treewidth-based algorithms [10,34] to even compute
the number of satisfying truth assignments of nested formulas in polynomial
time (incidence graphs are defined in Section 2). Hence the problems SAT and
#SAT are polynomial for nested formulas.

� The full version of the paper is available on arXiv [16].

A. Cimatti and R. Sebastiani (Eds.): SAT 2012, LNCS 7317, pp. 72–85, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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t u v w x y z

c1 c2 c3 c4 c5

c6 c7

c8

Fig. 1. Incidence graph of the nested formula F =
∧8

i=1 ci with c1 = t ∨ ¬u, c2 =
u ∨ v ∨ w, c3 = w ∨ x, c4 = x ∨ ¬y, c5 = y ∨ ¬z, c6 = t ∨ u ∨ ¬w, c7 = ¬x ∨ z,
c8 = ¬t ∨ w ∨ x

The aim of this paper is to extend the nice computational properties of nested
formulas to formulas that are not nested but are of small distance from being
nested. We measure the distance of a CNF formula F from being nested as the
size of a smallest set B of variables, such that for all partial truth assignments τ
to B, the reduced formula F [τ ] is nested. Such a set B is called a strong backdoor
set with respect to the class of nested formulas [37], or strong Nested-backdoor
set, for short. Once we have found such a backdoor set of size k, we can decide
the satisfiability of F by checking the satisfiability of 2k nested formulas, or
for model counting, we can take the sum of the number of models of the 2k

nested formulas. Thus the problems SAT and #SAT can be solved in time
O(2k|F |c) where |F | denotes the length of F and k denotes the size of the given
strong Nested-backdoor set; c is a small constant. In other words, the problems
SAT and #SAT are fixed-parameter tractable for parameter k (for background
on fixed-parameter tractability see Section 2). However, in order to use the
backdoor set we must find it first. Is the detection of strong Nested-backdoor
sets fixed-parameter tractable as well?

Let sbN(F ) denote the size of a smallest strong Nested-backdoor set of a
CNF formula F . To find a strong backdoor set of size at most k = sbN(F ) one
can try all possible sets of variables of size at most k, and check for each set
whether it is a strong backdoor set. However, for a formula with n variables
we have to check

(
n
k

)
= Ω(nk) such sets. Thus, this brute-force approach scales

poorly in k and does not provide fixed-parameter tractability, as the order of
the polynomial increases with k.

In this paper we show that one can overcome this limitation with a more
sophisticated algorithm. We show that the problems SAT and #SAT are fixed-
parameter tractable when parameterized by sbN, the size of a smallest strong
Nested-backdoor set, even when the backdoor set is not provided as an input.

Our algorithm is constructive and uses the Grid Minor Theorem of Robert-
son and Seymour [32] to either find that the incidence graph of the formula has
bounded treewidth—a case that is solved using model checking for monadic sec-
ond order logic [1]—or to find many vertex-disjoint obstructions in the incidence
graph. For the latter case, new combinatorial arguments are used to find a small
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strong backdoor set. Combining both cases leads to an algorithm producing a
strong backdoor set of a given formula F of size at most 2k for k = sbN(F ).

Solving all the 22
k

resulting nested formulas provides a solution to F .
Our result provides a new parameter sbN that makes SAT and #SAT fixed-

parameter tractable. The parameter sbN is incomparable with other known pa-
rameters that make SAT and #SAT fixed-parameter tractable. Take for instance
the treewidth of the incidence graph of a CNF formula F , denoted tw∗(F ). As
mentioned above, SAT and #SAT are fixed-parameter tractable for parameter
tw∗ [10,34], and tw∗(F ) ≤ 3 holds if sbN(F ) = 0 (i.e., if F ∈ Nested) [2].
However, by allowing only sbN(F ) = 1 we already get formulas with arbitrarily
large tw∗(F ). This can be seen as follows. Consider an n×n grid whose vertices
represent variables of a CNF formula Fn and subdivide each edge of the grid
with a clause of Fn. It is well known that the n×n grid, n ≥ 2, has treewidth n
and that subdividing edges does not decrease the treewidth of a graph (folklore).
Now take a new variable x and add it positively to all horizontal clauses and
negatively to all vertical clauses, where a clause is horizontal (resp. vertical) if
it subdivides a horizontal (resp. vertical) edge of the n × n grid in a natural
layout. Let F x

n denote the new formula. Since the incidence graph of Fn is
a subgraph of the incidence graph of F x

n , we have tw∗(F x
n ) ≥ tw∗(Fn) ≥ n.

However, setting x to true removes all horizontal clauses and thus yields a for-
mula whose incidence graph is a disjoint union of paths, which is easily seen to
be nested. Similarly, setting x to false yields a nested formula as well. Hence
{x} forms a strong Nested-backdoor set, and so sbN(F ) = 1. One can also
construct formulas where sbN is large and tw∗ is small, for example by taking
the variable-disjoint union F of formulas Fi = (xi ∨ yi ∨ zi)∧ (¬xi ∨ yi ∨ zi) with
sbN(Fi) = 1 and tw∗(Fi) = 2, 1 ≤ i ≤ n. Then tw∗(F ) = tw∗(Fi) = 2, but
sbN(F ) =

∑n
i=1 sbN(Fi) = n.

One can also define deletion backdoor sets of a CNF formula F with respect
to a base class of formulas by requiring that deleting all literals x,¬x with x ∈ B
from F produces a formula that belongs to the base class [29]. For many base
classes it holds that every deletion backdoor set is a strong backdoor set, but in
most cases, including the base class Nested, the reverse is not true. In fact, it is
easy to see that if a CNF formula F has a Nested-deletion backdoor set of size k,
then tw∗(F ) ≤ k+3. In other words, the parameter “size of a smallest deletion
Nested-backdoor set” is dominated by the parameter incidence treewidth and
therefore of limited interest. We note in passing, that one can use the algorithm
from [24] to show that the detection of deletion Nested-backdoor sets is fixed-
parameter tractable.

Related Work. Williams et al. [37] introduced the notion of backdoor sets to
explain favorable running times and the heavy-tailed behavior of SAT and CSP
solvers on practical instances. The parameterized complexity of finding small
backdoor sets was initiated by Nishimura et al. [28] who showed that with respect
to the classes of Horn formulas and of 2CNF formulas, the detection of strong
backdoor sets is fixed-parameter tractable. Their algorithms exploit the fact that
for these two base classes strong and deletion backdoor sets coincide. For other
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base classes, deleting literals is a less powerful operation than applying partial
truth assignments. This is the case for the class Nested but also for the class
RHorn of renamable Horn formulas [7]. In fact, finding a deletion RHorn-
backdoor set is fixed-parameter tractable [30], but it is open whether this is the
case for the detection of strong RHorn-backdoor sets. For clustering formulas,
detection of deletion backdoor sets is fixed-parameter tractable, detection of
strong backdoor sets is most probably not [29]. Very recently, the authors of
the present paper showed that for the base class Forest, of formulas whose
incidence graph is acyclic, there is a fixed-parameter approximation algorithm
for strong backdoor sets. That is, the following problem is fixed-parameter
tractable: find a strong Forest-backdoor set of size at most k or decide that
there is no strong Forest-backdoor set of size at most 2k [13]. The present
paper extends the ideas from [13] to the significantly more involved case with
Nested as the base class, which is a strict superclass of Forest.

We conclude this section by referring to a recent survey on the parameterized
complexity of backdoor sets [14].

2 Preliminaries

Parameterized Complexity. Parameterized Complexity is a two-dimensional
framework to classify the complexity of problems based on their input size n and
some additional parameter k [8,11,27]. It distinguishes between running times of
the form f(k)ng(k) where the degree of the polynomial depends on k and running
times of the form f(k)nO(1) where the exponential part of the running time is
independent of n. A parameterized problem is fixed-parameter tractable (FPT)
if there exists an algorithm that solves an input of size n and parameter k in time
bounded by f(k)nO(1). In this case we say that the parameter dependence of the
algorithm is f and we call it an FPT algorithm. Parameterized Complexity has
a hardness theory, similar to the theory of NP-completeness to show that certain
problems have no FPT algorithm under complexity-theoretic assumptions.

Graphs. Let G = (V,E) be a simple, finite, undirected graph. Let S ⊆ V
and v ∈ V . We denote by G − S the graph obtained from G by removing all
vertices in S and all edges incident to vertices in S. We denote by G[S] the graph
G−(V \S). The (open) neighborhood of v isN(v) = {u ∈ V : uv ∈ E}, the (open)
neighborhood of S is N(S) =

⋃
u∈S N(u) \ S, and their closed neighborhoods are

N [v] = N(v)∪{v} and N [S] = N(S)∪S, respectively. A v1–vk path P of length
k in G is a sequence of k pairwise distinct vertices (v1, v2, · · · , vk) such that
vivi+1 ∈ E for each i ∈ {1, . . . , k − 1}. The vertices v1 and vk are the endpoints
of P and all other vertices from P are internal. An edge is internal to P if it is
incident to two internal vertices from P . Two or more paths are independent if
none of them contains an inner vertex of another.

A tree decomposition of G is a pair ({Xi : i ∈ I}, T ) where Xi ⊆ V , i ∈ I, and
T is a tree with elements of I as nodes such that (i) for each edge uv ∈ E, there
is an i ∈ I such that {u, v} ⊆ Xi, and (ii) for each v ∈ V , T [{i ∈ I : v ∈ Xi}]
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is connected and has at least one node. The width of a tree decomposition is
maxi∈I |Xi| − 1. The treewidth [31] of G is the minimum width taken over all
tree decompositions of G and it is denoted tw(G). A graph is planar if it can be
drawn in the plane with no crossing edges. For other standard graph-theoretic
notions not defined here, we refer to [6].

CNF Formulas and Satisfiability. We consider propositional formulas in con-
junctive normal form (CNF) where no clause contains a complementary pair
of literals. For a clause c, we write lit(c) and var(c) for the sets of literals
and variables occurring in c, respectively. For a CNF formula F we write
cla(F ) for its set of clauses, lit(F ) =

⋃
c∈cla(F ) lit(c) for its set of literals, and

var(F ) =
⋃

c∈cla(F ) var(c) for its set of variables.

For a set X ⊆ var(F ) we denote by 2X the set of all mappings τ : X → {0, 1},
the truth assignments on X . A truth assignment on X can be extended to the
literals over X by setting τ(¬x) = 1− τ(x) for all x ∈ X . Given a CNF formula
F and a truth assignment τ ∈ 2X we define F [τ ] to be the formula obtained
from F by removing all clauses c such that τ sets a literal of c to 1, and removing
the literals set to 0 from all remaining clauses.

A CNF formula F is satisfiable if there is some τ ∈ 2var(F ) with F [τ ] = ∅.
SAT is the NP-complete problem of deciding whether a given CNF formula is
satisfiable [4,22]. #SAT is the #P-complete problem of determining the number
of distinct τ ∈ 2var(F ) with F [τ ] = ∅ [35].

Nested Formulas. Consider a linear order < of the variables of a CNF formula F .
A clause c straddles a clause c′ if there are variables x, y ∈ var(c) and z ∈ var(c′)
such that x < z < y. Two clauses overlap if they straddle each other. A CNF
formula F is nested if there exists a linear ordering < of var(F ) in which no
two clauses of F overlap [20]. The satisfiability of a nested CNF formula can be
determined in polynomial time [20].

The incidence graph of F is the bipartite graph inc(F ) = (V,E) with V =
var(F ) ∪ cla(F ) and for a variable x ∈ var(F ) and a clause c ∈ cla(F ) we have
xc ∈ E if x ∈ var(c). The sign of the edge xc is positive if x ∈ lit(c) and negative
if ¬x ∈ lit(c). Recall that tw∗(F ) denotes the treewidth of inc(F ).

The graph inc+u(F ) is inc(univ(F )), where univ(F ) is obtained from F by
adding a universal clause c∗ containing all variables of F . By a result of
Kratochv́ıl and Křivánek [21], F is nested if and only if inc+u(F ) is planar.
Since tw∗(F ) ≤ 3 if F is nested [2], the number of satisfying assignments of F
can also be counted in polynomial time [10,34].

Backdoors. Backdoor sets are defined with respect to a fixed class C of CNF
formulas, the base class. Let F be a CNF formula and B ⊆ var(F ). B is a strong
C-backdoor set of F if F [τ ] ∈ C for each τ ∈ 2B. B is a deletion C-backdoor set
of F if F − B ∈ C, where cla(F −B) = {c \ {x,¬x : x ∈ B} : c ∈ cla(F )}.

If we are given a strong C-backdoor set of F of size k, we can reduce the
satisfiability of F to the satisfiability of 2k formulas in C. Thus SAT becomes
FPT in k if C is polynomial-time solvable. If C is clause-induced (i.e., F ∈ C
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implies F ′ ∈ C for every F ′ such that cla(F ′) ⊆ cla(F )), any deletion C-backdoor
set of F is a strong C-backdoor set of F . The interest in deletion backdoor sets is
motivated for base classes where they are easier to detect than strong backdoor
sets. The challenging problem is to find a strong or deletion C-backdoor set of
size at most k if it exists. We denote by sbN(F ) the size of a smallest strong
Nested-backdoor set.

Minors and Grids. The r-grid is the graph Lr = (V,E) with vertex set V =
{(i, j) : 1 ≤ i ≤ r, 1 ≤ j ≤ r} in which two vertices (i, j) and (i′, j′) are adjacent
if and only if |i− i′|+ |j− j′| = 1. We say that a vertex (i, j) ∈ V has horizontal
index i and vertical index j.

A graph H is a minor of a graph G if H can be obtained from a subgraph
of G by contracting edges. The contraction of an edge uv makes u adjacent to
all vertices in N(v) \ {u} and removes v. If H is a minor of G, then one can
find a model of H in G. A model of H in G is a set of vertex-disjoint connected
subgraphs of G, one subgraph Cu for each vertex u of H , such that if uv is an
edge of H , then there is an edge of G with one endpoint in Cu and the other
in Cv. We will use Robertson and Seymour’s grid-minor theorem.

Theorem 1 ([32]). For every positive integer r, there exists a constant f(r)
such that if a graph G has treewidth at least f(r), then G contains an r-grid as
a minor.

It is known that f(r) ≤ 202r
5

[33]. A linear-time FPT algorithm (parameterized
by k) by Bodlaender [3] finds a tree decomposition of width at most k of a
graph G if tw(G) ≤ k. A quadratic FPT algorithm (parameterized by r) by
Kawarabayashi et al. [17] finds an r-grid minor in a graph G if G contains an
r-grid as a minor.

By Wagner’s theorem [36], a graph is planar if and only if it has no K3,3

and no K5 as a minor. Here, K5 denotes the complete graph on 5 vertices and
K3,3 the complete bipartite graph with 3 vertices in both independent sets of
the bipartition.

3 Detection of Strong Nested-Backdoor Sets

Let F be a CNF formula and k be an integer. Our FPT algorithm will count the
number of satisfying truth assignements of F if F has a strong Nested-backdoor
set of size at most k.

The first step of the algorithm is to find a good approximation for a smallest
strong Nested-backdoor set. Specifically, it will either determine that F has
no strong Nested-backdoor set of size at most k, or it will compute a strong
Nested-backdoor set of size at most 2k. An algorithm of that kind is called an
FPT-approximation algorithm [23], as it is an FPT algorithm that computes a
solution that approximates the optimum with an error bounded by a function
of the parameter. In case F has no strong Nested-backdoor set of size at
most k, the algorithm stops, and if it finds a strong Nested-backdoor set B
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of size at most 2k, for every truth assignment τ to B, a tree decomposition of
inc(F [τ ]) of width ast most 3 can be computed in linear time [2,3], and treewidth-
based dynamic programming algorithms can be used to compute the number of
satisfying assignments of F [τ ] in polynomial time [10,34]. We will arrive at our
main theorem.

Theorem 2. The problems SAT and #SAT are fixed-parameter tractable pa-
rameterized by sbN(F ).

It only remains to design the FPT-approximation algorithm for strong Nested-
backdoor set detection. Consider the incidence graph G = (V,E) = inc(F ) of F .
By [33], it either has treewidth at most tw(k), or it has a grid(k)-grid as a minor.
We will treat both cases separately. Here,

tw(k) := 202grid(k)
5

,

grid(k) := 4 ·
√
obs(k) + 1,

obs(k) := 2k · same(k) + k, and

same(k) := 15 · 22k+2.

The functions obs(k) and same(k) will be used in the next subsection.

Lemma 1. There is an FPT algorithm that, given a CNF formula F , a positive
integer parameter k, and a grid(k)-grid as a minor in inc(F ), computes a set

S∗ ⊆ var(F ) of size 2O(k10) such that every strong Nested-backdoor set of size
at most k contains a variable from S∗.

Lemma 2. There is an FPT algorithm that takes as input a CNF formula F , a
positive integer parameter k, and a tree decomposition of G = inc(F ) of width at
most tw(k), and finds a strong Nested-backdoor set of F of size k if one exists.

The proof of Lemma 2 [16] relies on Arnborg et al.’s extension [1] of Courcelle’s
theorem [5]. Lemma 1 is proven in Subsection 3.1 and contains the main combi-
natorial arguments of this paper. These two lemmas can now be used to compute
a strong Nested-backdoor set of F .

Theorem 3. There is an FPT algorithm, which, for a CNF formula F and a
positive integer parameter k, either concludes that F has no strong Nested-
backdoor set of size at most k or finds a strong Nested-backdoor set of F of
size at most 2k.

Proof. If k ≤ 1, our algorithm solves the problem exactly in polynomial time.
Otherwise, it runs Bodlaender’s FPT algorithm [3] with input G and parameter
tw(k) to either find a tree decomposition of G of width at most tw(k) or to
determine that tw(G) > tw(k). In case a tree decomposition of width at most
tw(k) is found, the algorithm uses Lemma 2 to compute a strong Nested-back-
door set of F of size k if one exists, and it returns the answer.
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a b

c∗

Fig. 2. A Nested-obstruction leading to a K3,3-minor with the universal clause c∗

In case Bodlaender’s algorithm determines that tw(G) > tw(k), by [33] we
know that G has a grid(k)-grid as a minor. Such a grid(k)-grid is found by
running the FPT algorithm of Kawarabayashi et al. [17] with input G and
parameter grid(k). The algorithm now executes the procedure from Lemma 1 to

find a set S∗ of 2O(k10) variables from var(F ) such that every strong Nested-
backdoor set of size at most k contains a variable from S∗. The algorithm
considers all possibilities that the backdoor set contains some x ∈ S∗; there are
2O(k10) choices for x. For each such choice, recurse on F [x = 1] and F [x = 0]
with parameter k − 1. If, for some x ∈ S∗, both recursive calls return back-
door sets Bx and B¬x, then return Bx ∪ B¬x ∪ {x}, otherwise, return No. As
2k − 1 = 2 · (2k−1 − 1) + 1, the solution size is upper bounded by 2k − 1. On
the other hand, if at least one recursive call returns No for every x ∈ S∗, then
F has no strong Nested-backdoor set of size at most k. ��

In particular, this proves Theorem 2. For showing Theorem 2 one could also
avoid the use of Lemma 2 and directly apply the algorithms from [10,34] to
count the number of satisfying assignments in case tw∗(F ) ≤ tw(k).

3.1 Large Grid Minor

The goal of this subsection is to prove Lemma 1. Suppose G has a grid(k)-grid
as a minor.

Definition 1. An a–b Nested-obstruction is a subgraph of inc(F ) consisting
of

– five distinct vertices a, b, p1, p2, p3, such that p1, p2, p3 are variables,
– three independent a–b paths P1, P2, P3, and
– an edge between pi and an internal vertex from Pi for each i ∈ {1, 2, 3}.

In particular, if a path Pi has a variable v as an interior vertex, we can take
pi := v. See Figure 2.

Lemma 3. If F ′ is a CNF formula such that inc(F ′) contains a Nested-ob-
struction, then F ′ /∈ Nested.

Lemma 3 can easily be proven by exhibiting a K3,3-minor in inc+u(F ′). The
lemma implies that for each assignment to the variables of a strong Nested-
backdoor set, at least one variable from eachNested-obstruction vanishes in the
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a = (2, 1)

b = (2, 4)

Fig. 3. The 5-grid and a highlighted Nested-obstruction

reduced formula. Using the r-grid, we now find a set O of obs(k) vertex-disjoint
Nested-obstructions in G.

Lemma 4. Given a grid(k)-grid minor of G = inc(F ), a set of obs(k) vertex-
disjoint Nested-obstructions can be found in polynomial time.

The proof of Lemma 4 (see [16]) packs vertex-disjoint Nested-obstructions, like
the one highlighted in Figure 3, into the grid(k)-grid.

Denote by O a set of obs(k) vertex-disjoint Nested-obstructions obtained
via Lemma 4. A backdoor variable can destroy a Nested-obstruction either
because it participates in the Nested-obstruction, or because every setting of
the variable satisfies a clause that participates in the Nested-obstruction.

Definition 2. Let x be a variable and O a Nested-obstruction in G. We say
that x kills O if neither inc(F [x = 1]) nor inc(F [x = 0]) contains O as a subgraph.
We say that x kills O internally if x ∈ var(O), and that x kills O externally if x
kills O but does not kill it internally. In the latter case, O contains a clause c
containing x and a clause c′ containing ¬x and we say that x kills O (externally)
in c and c′.

By Lemma 3, for every strong Nested-backdoor set B of F and every Nested-
obstruction O, there is at least one x ∈ B that kills O.

We will describe an algorithm that first performs a constant number of non-
deterministic steps (guesses) to determine some properties about the strong
Nested-backdoor set. Each such guess is made out of a number of choices that
is upper bounded by a function of k. The algorithm will then only search for
strong Nested-backdoor sets that have the determined properties, and such
backdoor sets are called valid. Finally, the algorithm will be made deterministic
by executing each possible combination of nondeterministic steps.

For a fixed series of guesses, the algorithm will compute a set S ⊆ var(F )
such that every valid strong Nested-backdoor set of size at most k contains a
variable from S. The union of all such S, taken over all possible series of guesses,
forms a set S∗ and each strong Nested-backdoor set of size at most k contains
a variable from S∗. Bounding the size of each S by a function of k enables us
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to bound |S∗| by a function of k, and S∗ can then be used in a bounded search
tree algorithm (see Theorem 3).

For every strong Nested-backdoor set of size at most k, at most k Nested-
obstructions from O are killed internally since they are vertex-disjoint. The
algorithm guesses k Nested-obstructions from O that may be killed internally.
Let O′ denote the set of the remaining Nested-obstructions, which need to be
killed externally.

Suppose F has a strong Nested-backdoor set B of size k killing no Nested-
obstruction from O′ internally. Then, B defines a partition of O′ into 2k parts
where for each part, the Nested-obstructions contained in this part are killed
externally by the same set of variables from B. Since |O′| = obs(k) − k =
2k · same(k), at least one of these parts contains at least same(k) Nested-ob-
structions fromO′. The algorithm guesses a subsetOs ⊆ O′ of same(k) Nested-
obstructions from this part and it guesses how many variables from the strong
Nested-backdoor set kill the obstructions in this part externally.

Suppose each Nested-obstruction in Os is killed externally by the same set
of 
 backdoor variables, and no other backdoor variable kills any Nested-ob-
struction from Os. Clearly, 1 ≤ 
 ≤ k. Compute the set of external killers for
each Nested-obstruction in Os. Denote by Z the common external killers of
the Nested-obstructions in Os. The presumed backdoor set contains exactly 

variables from Z and no other variable from the backdoor set kills any Nested-
obstruction from Os.

We will define three rules for the construction of S, and the algorithm will
execute the first applicable rule.

Rule 1 (Few Common Killers). If |Z| < |Os|, then set S := Z.

The correctness of this rule follows since any valid strong Nested-backdoor set
contains 
 variables from Z and 
 ≥ 1.

For each O ∈ Os we define an auxiliary graph GO = (Z,EO) whose edge set
is initially empty. As long as GO has a vertex v with degree 0 such that v and
some other vertex in Z have a common neighbor from O in G, select a vertex u
of minimum degree in GO such that u and v have a common neighbor from O
in G and add the edge uv to EO. As long as GO has a vertex v with degree 0,
select a vertex u of minimum degree in GO such that v has a neighbor v′ ∈ V (O)
in G and u has a neighbor u′ ∈ V (O) in G and there is a v′–u′ path in O in
which no internal vertex is adjacent to a vertex from Z \ {v}; add the edge uv
to EO.

Fact 1. For each O ∈ Os, the graph GO has minimum degree at least 1.

Recall that no clause contains complimentary literals. Consider two variables
u, v ∈ Z that share an edge in GO. By the construction of GO, there is a u–v
path P in G whose internal edges are in O, such that for each variable z ∈ Z,
all edges incident to z and a clause from P have the same sign. Moreover, since
no variable from a valid strong Nested-backdoor set kills O externally, unless
it is in Z, for each potential backdoor variable x ∈ var(F ) \Z, all edges incident
to x and a clause from P have the same sign. Thus, we have the following fact.



82 S. Gaspers and S. Szeider

Fact 2. If u, v ∈ Z share an edge in GO, then for every valid strong Nested-
backdoor set that does not contain u and v, there is a truth assignment τ to B
such that inc(F [τ ]) contains a u–v path whose internal edges are in O.

Consider the multigraph Gm(Os) = (Z,
⊎

O∈Os
EO), i.e., the union of all GO

over all O ∈ Os, where the multiplicity of an edge is the number of distinct sets
EO where it appears, O ∈ Os.

Rule 2 (Multiple Edges). If there are two vertices u, v ∈ Z such that Gm(Os)
has a u–v edge with multiplicity at least 2 · 2k + 1, then set S := {u, v}.

Consider any valid strong Nested-backdoor set B of size k. Then, by Fact 2, for
each u–v edge there is some truth assignment τ to B such that inc(F [τ ]) contains
a u–v path in G. Moreover, since each u–v edge comes from a different O ∈ Os,
all these u–v paths are independent. Since there are 2k truth assignments to
B but at least 2 · 2k + 1 u–v edges, for at least one truth assignment τ to B,
there are 3 independent u–v paths P1, P2, P3 in inc(F [τ ]). We obtain a u–v
Nested-obstruction choosing as pi, 1 ≤ i ≤ 3, a variable from Pi or a variable
neighboring a clause from Pi and belonging to the same Nested-obstruction in
Os. Thus, any valid strong Nested-backdoor set contains u or v.

Now, consider the graph G(Os) obtained from the multigraph Gm(Os) by
merging multiple edges, i.e., we retain each edge only once.

Rule 3 (No Multiple Edges). Set S to be the 2k vertices of highest degree in
G(Os) (ties are broken arbitrarily).

For the sake of contradiction, suppose F has a valid strong Nested-backdoor set
B of size k with B∩S = ∅. First, we show a lower bound on the number of edges

in G(Os) − B. Since Gm(Os) has at least |Z|
2 same(k) edges and each edge has

multiplicity at most 2k+1, the graph G(Os) has at least
|Z|same(k)
2·2k+1 = 3 · 5 · 2k · |Z|

edges. Let d be the sum of the degrees in G(Os) of the vertices in B ∩ Z. Now,
the sum of degrees of vertices in S is at least 2d in G(Os), and at least d in
G(Os) − B. Therefore, G(Os) − B has at least d/2 edges. On the other hand,
the number of edges deleted to obtain G(Os) − B from G(Os) is at most d. It
follows that the number of edges in G(Os)−B is at least a third the number of
edges in G(Os), and thus at least 5 · 2k · |Z|.

Now, we iteratively build a truth assignment τ for B. Set H := G(Os)− B.
Order the variables of B as b1, . . . , bk. For increasing i, we set τ(bi) = 0 if in G,
the vertex v ∈ B is adjacent with a positive edge to more paths that correspond
to an edge in H than with a negative edge and set τ(bi) = 1 otherwise; if
τ(bi) = 0, then remove each edge from H that corresponds to a path in G that
is adjacent with a negative edge to bi, otherwise remove each edge from H that
corresponds to a path in G that is adjacent with a positive edge to bi.

Observe that for a variable v ∈ B and a path P in G that corresponds to
an edge in G(Os)−B, v is not adjacent with a positive and a negative edge to
P . If v ∈ Z this follows by the construction of GO, and if v /∈ Z, this follows
since v does not kill any Nested-obstruction from Os. Therefore, each of the k
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iterations building the truth assignment τ has removed at most half the edges
of H . In the end, H has at least 5|Z| edges.

Next, we use the following theorem of Kirousis et al. [19].

Theorem 4 ([19]). If a graph has n vertices and m > 0 edges, then it has an
induced subgraph that is �m+n

2n �-vertex-connected.

We conclude that H has an induced subgraph H ′ that is 3-vertex-connected.
Let x, y ∈ V (H ′). We use Menger’s theorem [25].

Theorem 5 ([25]). Let G = (V,E) be a graph and x, y ∈ V . Then the size of a
minimum x, y-vertex-cut in G is equal to the maximum number of independent
x–y paths in G.

Since the minimum size of an x, y-vertex cut is at least 3 in H ′, there are 3
independent x–y paths in H ′. Replacing each edge by its corresponding path in
G, gives rise to 3 walks from x to y in G. Shortcutting cycles, we obtain three
x–y paths P1, P2, P3 in G. By construction, each edge of these paths is incident
to a vertex from a Nested-obstruction in Os. We assume that P1, P2, P3 are
edge-disjoint. Indeed, by the construction of the GO, O ∈ Os, they can only
share the first and last edges. In case P1 shares the first edge with P2, replace
x by its neighbor on P1, remove the first edge from P1 and P2, and replace
P3 by its symmetric difference with this edge. Act symmetrically for the other
combinations of paths sharing the first or last edge.

Lemma 5 ([12]). Let G = (V,E) be a graph. If there are two vertices x, y ∈ V
with 3 edge-disjoint x–y paths in G, then there are two vertices x′, y′ ∈ V with
3 independent x′–y′ paths in G.

By Lemma 5 we obtain two vertices x′, y′ in G with 3 independent x′–y′ paths
P ′
1, P

′
2, P

′
3 in G. Since the lemma does not presuppose any other edges in G

besides those from the edge-disjoint x–y paths, P ′
1, P

′
2, P

′
3 use only edges from

the paths P1, P2, P3. Thus, each edge of P ′
1, P

′
2, P

′
3 is incident to a vertex from

a Nested-obstruction in Os. Thus, we obtain an x′–y′ Nested-obstruction
with the paths P ′

1, P
′
2, P

′
3, and for each path P ′

i , we choose a variable from this
path or a variable from Os neighboring a clause from this path. We arrive at a
contradiction for B being a valid strong Nested-backdoor set. This proves the
correctness of Rule 3.

The number of possible guesses the algorithm makes is upper bounded by(
obs(k)

k

)
·
(obs(k)−k

same(k)

)
· k = 2O(k8), and each series of guesses leads to a set S of at

most same(k) variables. Thus, the set S∗, the union of all such S, contains at

most 2O(k8) · same(k) = 2O(k10) variables. This completes the proof of Lemma 1.

4 Conclusion

We have classified the problems SAT and #SAT as fixed-parameter tractable
when parameterized by the size of a smallest strong backdoor set with respect to
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the base class of nested formulas. As argued in the introduction, this parameter
is incomparable with incidence treewidth.

The parameter dependence makes our algorithm impractical. However, the
class of fixed-parameter tractable problems has proven to be quite robust: Once
a problem is shown to belong to this class, one can start to develop faster and
more practical algorithms. For many cases in the past this has been success-
ful. For instance, the problem of recognizing graphs of genus k was originally
shown to be fixed-parameter tractable by means of non-constructive tools from
graph minor theory [9]. Later a linear-time algorithm with doubly exponential
parameter dependence was found [26], and more recently, an algorithm with a
single exponential parameter dependence [18]. It would be interesting to see
whether a similar improvement is possible for finding or FPT-approximating
strong backdoor sets with respect to nested formulas.

We would like to point out that the results of this paper have been recently
generalized to the base class of formulas with bounded incidence treewidth [15].

Acknowledgments. The authors acknowledge support from the European Re-
search Council (COMPLEX REASON, 239962). Serge Gaspers acknowledges
partial support from the Australian Research Council (DE120101761).
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Abstract. Building on recent work that adapts failed-literal analysis
(FL) to Quantified Boolean Formulas (QBF), this paper introduces ex-
tended failed-literal analysis (EFL). FL and EFL are both preprocess-
ing methods that apply a fast, but incomplete reasoning procedure to
abstractions of the underlying QBF. EFL extends FL by remembering
certain binary clauses that are implied by the same reasoning proce-
dure as FL when it assumes one literal and that implies a second literal.
This extension is almost free because the second literals are implied any-
way during FL, but compared to analogous techniques for propositional
satisfiability, its correctness involves some subtleties. For the first time,
application of the universal pure literal rule is considered without also
applying the existential pure literal rule. It is shown that using both pure
literal rules in EFL is unsound. A modified reasoning procedure for QBF,
called Unit-clause Propagation with Universal Pure literals (UPUP) is
described and correctness is proved for EFL based on UPUP. Empirical
results on the 568-benchmark suite of QBFEVAL-10 are presented.

Keywords: quantified boolean formulas, QBF, failed literals, extended
failed literals, 1-saturation, look-ahead, preprocessing.

1 Introduction

With the advent of capable solvers for Quantified Boolean Formulas (QBFs),
their use for encoding problems from industrial applications is increasing rapidly.
As with propositional satisfiability, preprocessors have been found to be an im-
portant part of the QBF solving toolkit. Preprocessors typically do a predictable
(polynomially bounded) amount of work to simplify the original formula, making
it more amenable to the complete solver. The newer complete QBF solvers are
typically based on search, a form of back-chaining, whereas preprocessors use
forward reasoning. The two approaches often complement each other nicely.

The essence of failed-literal analysis is to add an assumption that some literal
is true to a given formula and use incomplete (but usually fast) forward reasoning
to see if the formula can now be proven false; if so, then the negation of the
assumed literal can soundly be added to the formula. This idea was introduced
for propositional SAT solving by Jon Freeman [Fre93].
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This paper builds upon recent work of Lonsing and Biere [LB11] that adapts
failed-literal analysis to QBF solving. That work uses the QBF pure-literal rule
[GNT04] heavily in its incomplete forward reasoning, which they call QBCP. We
re-examine the QBF pure-literal rule, which applies to both existential and uni-
versal literals, and consider those parts separately. We observe that the two parts
operate quite differently and have different properties.We show that neither part is
a super-sound inference rule (in the sense that tree models are preserved, as speci-
fied in Section 2); they are only safe heuristics (in the sense that the truth value of a
closed QBF is not changed by their use). (This fact is well-known for propositional
formulas and the existential pure-literal rule, but seems not to have been consid-
ered for the universal pure-literal rule in QBF.) We show that using them both as
though they were super-sound logical inferences can lead to fallacious reasoning in
QBF. We believe this is the first time that application of the universal pure literal
rule has been considered without also applying the existential pure literal rule.

Then we develop an enhancement of failed literal analysis based on proposi-
tional techniques called 1-saturation, described by Groote and Warners [GW00]
and double unit-propagation look-ahead described by Le Berre [LB01]. We show
that using the universal pure-literal rule and not the existential pure-literal rule
is safe for 1-saturation in QBF.

The essence of 1-saturation in propositional logic is the observation that,
with a given formula, if assuming some literal q allows some other literal p to be
soundly derived, and if assuming q also allows p to be soundly derived, then p
can soundly be added to the formula as a unit clause. Unfortunately for QBF,
literals derived with QBCP are not necessarily super-soundly derived.

We introduce an incomplete forward reasoning procedure that employs unit-
clause propagation (including universal reduction) and the universal pure-literal
rule. We show that this procedure super-soundly derives literals. We call it UPUP
for Unit-clause Propagation with Universal Pure literals.

Although UPUP is weaker than QBCP in the sense that it assigns values to
fewer literals, we found experimentally that it is considerably faster, for simple
failed-literal analysis. In addition, it serves as the basis for adapting 1-saturation
to QBF, and it can log proof steps that are verifiable as Q-resolution steps
[KBKF95]. We call our adaptation of 1-saturation to QBF extended failed
literal analysis (EFL).

One reason for our interest in EFL is that it enables a significant fraction of
the popular QBFLIB benchmark suite to be solved with preprocessing alone. The
first QBF preprocessor to solve a significant number of benchmarks in this suite
was sQueezeBF, described by Giunchiglia et al. [GMN10]. With their publicly
available binary code, QuBE-7.2, we solved 40 of the 568 QBFLIB benchmarks.
Lonsing and Biere reported [LB11] that their QBF failed-literal tool, publicly
available as qxbf, processing the output of sQueezeBF 7.1 when it did not solve
the instance, solved an additional 25 benchmarks. We confirmed the same result
with sQueezeBF 7.2.

Another reason for our interest in EFL is that it can be used without any pure-
literal rule to simplify QBFs without changing the set of tree models. This can
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be important in applications where the tree models themselves are important.
Other popular preprocessors make changes that preserve the value (true or false)
but add and delete tree models as they operate on a true QBF.

The paper is organized as follows.1 Section 2 sets forth the notation and basic
definitions. Section 3 reviews QBF forms of pure-literal rules. Section 4 reviews
QBF abstraction and its combination with failed literal analysis. Extended failed
literal analysis (EFL) is introduced. Existential and universal pure-literal rules
are separated and soundness issues are examined. The main theoretical result
is that EFL with abstraction and the universal pure-literal rule is safe. Experi-
mental results are presented in Section 5. The paper concludes with Section 6.

2 Preliminaries

In general, quantified boolean formulas (QBFs) generalize propositional formulas
by adding operations consisting of universal and existential quantification of
boolean variables. See [KBL99] for a thorough introduction. This paper uses
standard notation as much as possible. One minor variation is that we consider
resolution and universal reduction separately, although some papers combine
them. Also, we use tree models, which are not found in all QBF papers, to
distinguish between super-sound and safe operations, and we define ordered
assignments.

A closed QBF evaluates to either invalid (false) or valid (true), as defined by
induction on its principal operator. We use 0 and 1 for truth values of literals
and use true and false for semantic values of formulas.

1. (∃xΦ(x)) is true if and only if (Φ(0) is true or Φ(1) is true).
2. (∀xΦ(x)) is false if and only if (Φ(0) is false or Φ(1) is false).
3. Other operators have the same semantics as in propositional logic.

This definition emphasizes the connection of QBF to two-person games, in which
player E (Existential) tries to set existential variables to make the QBF evaluate
to true, and player A (Universal) tries to set universal variables to make the
QBF evaluate to false. Players set their variable when it is outermost, or for
non-prenex, when it is the root of a subformula (see [KSGC10] for more details).
Only one player has a winning strategy.

We say that a QBF is in prenex conjunction normal form if all the quantifiers
are outermost operators (the prenex, or quantifier prefix), and the quantifier-free

portion (also called the matrix) is in CNF; i.e., Ψ =
−→
Q.F consists of prenex

−→
Q

and matrix F . Clauses in F are called input clauses. For this paper QBFs are
in prenex conjunction normal form.

For this paper a clause is a disjunctively connected set of literals. Literals are
variables or negated variables, with overbar denoting negation. Clauses may be
written as literals enclosed in square brackets (e.g., [p, q, r ]), and [] denotes the

1 See http://www.cse.ucsc.edu/∼avg/EFL/ for a longer version of this paper and
other supplementary materials.
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empty clause. Where the context permits, letters e and others near the beginning
of the alphabet denote existential literals, while letters u and others near the
end of the alphabet denote universal literals. Letters like p, q, r denote literals
of unspecified quantifier type. The variable underlying a literal p is denoted by
|p| where necessary.

The quantifier prefix is partitioned into maximal contiguous subsequences of
variables of the same quantifier type, called quantifier blocks. Each quantifier
block has a unique qdepth, with the outermost block having qdepth = 1. The
scope of a quantified variable is the qdepth of its quantifier block. We say scopes
are outer or inner to another scope to avoid any confusion about the direction,
since there are varying conventions in the literature for numbering scopes.

Definition 2.1 (Assignment). An assignment is a partial function from vari-
ables to truth values, usually represented as the set of literals mapped to 1. A
total assignment is an assignment to all variables. Assignments are denoted by ρ,
σ, τ . Application of an assignment σ to a logical expression is called a restric-
tion and is denoted by q�σ, C�σ, F�σ, etc. Quantifiers for assigned variables
are deleted in Ψ�σ.

An ordered assignment is a special term that denotes a total assignment
that is represented by a sequence of literals that are assigned 1 and are in the
same order as their variables appear in the quantifier prefix.

A winning strategy can be presented as an unordered directed tree. If it is a
winning strategy for the E player, it is also called a tree model , which we now
describe. We shorten unordered directed tree to tree throughout this paper. The
qualifier “unordered” means that the children of a node do not have a specified
order; they are a set. Recall that a branch in a tree is a path from the root node
to some leaf node. A tree can be represented as the set of its branches. We also
define a a branch prefix to be a path from the root node that might terminate
before reaching a leaf.

Definition 2.2 (Tree Model). Let a QBF Φ =
−→
Q · F be given. In this defini-

tion, σ denotes a (possibly empty) branch prefix of some ordered assignment for
Φ. A tree model M for Φ is a nonempty set of ordered assignments for Φ that
defines a tree, such that

1. Each ordered assignment makes F true, i.e., satisfies F in the usual propo-
sitional sense.

2. If e is an existential literal in Φ and some branch of M has the prefix (σ, e),
then no branch has the prefix (σ, e ); that is, treating σ as a tree node in M ,
it has only one child and the edge to that child is labeled e.

3. If u is an universal literal in Φ and some branch of M has the prefix (σ, u),
then some branch of M has the prefix (σ, u ); that is, treating σ as a tree
node in M , it has two children and the edges to those children are labeled u
and u .

Although the wording is different, if M is a tree model by this definition, it is
also a tree model by definitions found in other papers [SB07,LB11]. If τ is a
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partial assignment to all variables outer to existential variable e, then require-
ment 2 ensures that the “Skolem function” e(τ) is well defined as the unique
literal following τ in a branch of M . If the formula evaluates to false, the set of
tree models is empty.

Definition 2.3 (Safe, Super Sound). For this paper purposes, an operation
on a closed QBF is said to be safe if it does not change the truth value of the
formula. An operation on a closed QBF is said to be super sound if it preserves
(i.e., does not change) the set of tree models. Clearly, preserving the set of tree
models is a sufficient condition for safety.

The proof system known as Q-resolution consists of two operations, resolution
and universal reduction. Q-resolution is of central importance for QBFs because
it is a refutationally complete proof system [KBKF95]. Unlike resolution for
propositional logic, Q-resolution is not inferentially complete. That is, a (new)
clause C might be a super-sound addition to a closed QBF Φ (i.e., C evaluates
to true in every tree-model of Φ), yet no subset of C is derivable by Q-resolution
(see [LB11], example 6).

Definition 2.4 (Resolution, Universal Reduction). Resolution is defined
as usual. Let clauses C1 = [q, α] and C2 = [ q , β], where α and β are literal
sequences without conflicting literals among them and without q and q . (Either
or both of α and β may be empty.) Also, let the clashing literal q be an existential
literal. Then resq(C1, C2) = α ∪ β is the resolvent, which cannot be tautologous
in Q-resolution.

Universal reduction is special to QBF. Let clause C1 = [q, α], where α is a
literal sequence without conflicting literals and without q and q , the reduction
literal q is a universal literal, and q is tailing for α. A universal literal q is said
to be tailing for α if its quantifier depth is greater than that of any existential
literal in α. Then unrdq(C1) = α.

Lemma 2.5. Resolution and universal reduction are super-sound operations.
Proof: Straightforward application of the definitions.

3 Pure Literals in QBF

A literal is called pure ormonotone if it appears in (the matrix of) the formula and
its negation does not appear in the formula. In QBF the pure-literal rule consists
of setting any existential pure literal to 1 and setting any universal pure literal to
0. As far as we know, the two parts of this rule have not been considered sepa-
rately. It is well known that the existential pure-literal rule does not preserve tree
models, since it does not preserve models in the propositional case. That is, if e
is an existential pure literal, there may be tree models in which e is assigned 0 on
some branches. In such a case, e is not a necessary assignment. Similarly, if u is a
universal pure literal, deleting all occurrences of u in the matrix eliminates some
tree models, in general. Combining abstraction, defined next, with the pure-literal
rule can lead to fallacious conclusions if done carelessly.
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4 QBF Abstraction

The idea of formula abstraction was introduced by Lonsing and Biere [LB11].
The idea is to create a formula that is easier to reason about for preprocessing
purposes.

Definition 4.1. Let Φ be a closed QBF.

1. Let e be an existential variable in Φ. Then the abstraction of Φ with
respect to e, denoted abst(Φ, e), is the formula in which all universally
quantified variables with scopes outer to e are changed to existential variables.

2. Let u be a universal variable in Φ. Then the abstraction of Φ with re-
spect to u, denoted abst(Φ, u), is the formula obtained as follows. First,
transpose u to be outermost within its own quantifier block and change it to
an existential variable. Then, change all universally quantified variables with
scopes outer to u to existential variables. Any other variables with the same
original scope as u remain universal in abst(Φ, u).

Thus the outermost scope of abst(Φ, p) is existential and contains p, whether p
is existential or universal.2

Theorem 4.2 [LB11] Let Φ be a closed QBF. Let p be a variable in Φ. Then
the set of tree models of abst(Φ, p) is a superset of the set of tree models of Φ.

We define a necessary assignment to be an assignment to a variable that oc-
curs in every branch of every tree model. Adding a necessary assignment as a unit
clause in the matrix is clearly super sound. The main idea is to find necessary as-
signments for existential variables in the outermost scope of abstractions of Φ. By
Theorem 4.2, these are also necessary assignments for Φ when the variable is exis-
tential in Φ, as well. In the case that a necessary assignment is found for a universal
variable of Φ that became existential due to abstraction, Φ must be false because
every tree model has branches for both assignments to any universal variable.

Lonsing and Biere detect necessary assignments by using failed literal anal-
ysis: If the assumption that literal p = 1 in the outermost scope of abst(Φ, p)
derives the empty clause using incomplete forward reasoning, then p is a nec-
essary assignment for both abst(Φ, p) and Φ. For incomplete forward reasoning,
they use the QBCP procedure, which consists of unit-clause propagation (in-
cluding universal reduction), and pure literal propagation.

This paper shows how to extend this approach to include 1-saturation :
Separately, assume p and assume p in the outermost scope of abst(Φ, p). If
neither assumption derives the empty clause by incomplete forward reasoning,
intersect the sets of variables that were assigned during the two propagations

2 Our definition is worded slightly differently from [LB11], but is the same in practice.
If p is universal, by their definition p remains universal in abst(Φ, p), whereas in
our definition p becomes outer to other variables in its scope and switches to being
existential. But p is assigned a truth value immediately after forming abst(Φ, p), so
it does not matter whether p is considered existential or universal.
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Φ �d �v �b �c �e � f �m �w �g �h � j �k �n
C1 d b
C2 g h
C3 c k
C4 m n
C5 b j
C6 e j
C7 w h
C8 d c
C9 v b w h
C10 c f
C11 e f
C12 v e n
C13 m g k
C14 v m n

Fig. 1. QBF for Example 4.3

to find additional necessary assignments and equivalent literals. If a variable q
was assigned the same value after both assumptions, we want to add q as an
additional necessary assignment. If the assumption of p derives literal q and the
assumption of p derives q , we want to add the constraint p = q (as two binary
clauses, say). Our extension needs to be done in such a way that these additions
to Φ are at least safe and preferably super sound.

The following example shows that the combination of QBCP, abstraction, and
1-saturation is unsafe.

Example 4.3 Consider abst(Φ, b), where Φ is shown in Figure 1. Variables d
and v are temporarily existential. Only the crucial assignments are mentioned.

The assumption of b satisfies C9. Now w is universal pure, which implies h.
The assumption of b satisfies C5. Existential pure literal propagation assigns

true to j, e, v in that order, satisfying C9. Now w is again universal pure, which
implies h.

Consequently, EFL using both pure-literal rules would derive h = 1 as a
necessary assignment. However, adding [h] to Φ changes it from true to false. In
particular, if h = 1 the A player can choose d = 0, v = 0, and w = 0, after which
C1 and C9 form a contradiction.

The original Φ is true, as shown by the E player’s strategy: b = 1, c = 1,
e = 1, f = 0, m = 1, g = 1, j = 1, k = 1, n = 0, h = w. (The A player must
choose w before the E player chooses h.)

The main theoretical result of the paper is that the universal pure-literal rule can
be combined safely with abstraction and 1-saturation. This is nontrivial because
assigning a universal pure literal to 0 might not be a necessary assignment.

We now describe an incomplete forward reasoning procedure that employs
unit-clause propagation (including universal reduction) and the universal pure-
literal rule.
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Definition 4.4. The procedure UPUP (for Unit-clause Propagation with Uni-
versal Pure literals) consists of applying the following steps to a QBF until none
are applicable or an empty clause is derived.

1. (Unit Prop) If a clause C has exactly one unassigned existential literal e
and all other literals in C are 0 by previous assignment or universal reduc-
tion, then assign e = 1.

2. (Empty Clause) If all literals in clause C are 0 by previous assignment or
universal reduction, derive the empty clause.

3. (Univ Pure) If u is an unassigned pure universal literal based on previous
assignments, then u may be deleted from all clauses in which it occurs, as
if by universal reduction. (For bookkeeping, u = 0 might be assigned on this
computation path, but we avoid treating it as a derived literal).

Theorem 4.5 Let Φ =
−→
Q.F be a closed QBF, let e be an existential literal,

and let p be a literal in Φ other than e or e . Let Φ1 =
−→
Q. (F ∪ {[p, e ]}). If

assuming e in abst(Φ, |e|) derives p by UPUP, then Φ1 has the same truth value
as Φ. If the universal pure-literal rule is not used, then Φ1 has the same set of
tree models as Φ.
Proof: To show that Φ1 has the same truth value as Φ, it suffices to show that if
Φ1 is false, then Φ is false, because Φ1 has more constraints. To show that Φ1 has
the same set of tree models as Φ, it suffices to show that if M is a tree model of
Φ, then M is a tree model of Φ1. In this proof we identify the literal p with the
assignment p = 0 and identify p with p = 1.

W.l.o.g., let e be innermost in its own quantifier block. If Φ1 is false, then
every tree model of Φ (if there are any) contains some branch on which p = 0
and e = 1. Let M be any tree model of Φ, represented as its set of ordered
assignments, each ordered assignment being a branch in M (Definition 2.2). Let
Me be the subset of branches on which e = 1. By hypothesis, some branch of
Me has p = 0. Follow the steps by which p was derived in abst(Φ, |e|) after
assuming e. Let the sequence of partial assignments σi, for i ≥ 1, denote e = 1
followed by the derived assignments of UPUP, beginning with σ1 = {e}. Each
literal derived before any use of universal reduction or universal pure-literal rule
is 1 on every branch of Me. Universal reduction can only apply on literals with
quantifier scope inner to e, and cannot falsify a clause or M would not be a tree
model. If step i consists of universal reduction, σi = σi−1.

Consider the first application of the universal pure-literal rule, say at step
k + 1. Suppose it deletes all occurrences of u in F because all occurrences of u
are in satisfied clauses at this point. We treat this as an operation on F , not an
assignment, so σk+1 = σk.

Group the branches of Me by their literals outer to u. Let ρ be the (partial)
assignment for any such group. Note that ρ specifies a branch prefix in M to
a specific node whose children are u and u ; let us call this node Nρ. Then
(ρ, u = 0) and (ρ, u = 1) produce subtrees of Nρ, which we denote as Tρ,u=0

and Tρ,u=1, respectively. That is, the set of branches in Me consistent with ρ
is equal to ((ρ, Tρ,u=0) ∪ (ρ, Tρ,u=1)), where ρ, T denotes a tree in which every
branch has ρ as a prefix.
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For each group replace Tρ,u=1 by Tρ,u=0, except that u = 1 replaces u = 0
in their ordered assignments. The assignment in the replacement branch still
satisfies every clause of the matrix. Retain the branches in M e unchanged. This
gives another tree M ′. This is a tree model of Φ because the variables that
changed from universal to existential in abst(Φ, |e|) are all outer to e and u.

By the hypothesis that Φ1 is false, some branch of M ′
e has p = 0. Therefore,

the Tρ,u=0 corresponding to some ρ has p = 0 on some branch. Every branch of
M ′ is consistent with σk+1. Use M ′ in the role of M for further tracking of the
UPUP computation. If the universal pure-literal rule is not used, the original M
is a tree model of Φ1.

Continuing in this way, we see that after each stage i in the computation, there
is some tree model of Φ that is consistent with σi on every branch that contains
e = 1, and further, has p = 0 on some branch that has e = 1. Thus p = 1 cannot be
derived by UPUP after assuming e = 1 if Φ is true and Φ1 is false. (Recall that we
do not treat p as “derived” if p is processed as a pure universal literal.) Similarly,
if the universal pure-literal rule is not used, p = 1 cannot be derived by UPUP
after assuming e = 1 if M is a tree model of Φ and not of Φ1. This contradicts the
hypothesis of the theorem, completing the proof.

Several corollaries follow from Theorem 4.5 and Lemma 2.5.

Corollary 4.6. Let Φ =
−→
Q.F be a closed QBF, let v be a universal literal, and

let p be a literal in Φ other than v or v . Let Φ1 =
−→
Q. (F ∪{[p, v ]}). If assuming

v in abst(Φ, |v|) derives p by UPUP, then Φ1 has the same truth value as Φ.

Corollary 4.7. Let Φ =
−→
Q.F be a closed QBF, let q be a literal, and let p

be a literal in Φ other than q or q . Let Φ3 =
−→
Q. (F ∪ {[p]}). If the assumption

that q = 1 in abst(Φ, |q|) derives p by UPUP and the assumption that q = 0 in
abst(Φ, |q|) derives p by UPUP, then Φ3 has the same truth value as Φ.

Corollary 4.8. Let Φ =
−→
Q.F be a closed QBF, let q be a literal, and let p

be a literal in Φ other than q or q . Let Φ4 =
−→
Q. (F ∪ {[p, q ] , [ p , q]}). If the

assumption that q = 1 in abst(Φ, |q|) derives p by UPUP and the assumption
that q = 0 in abst(Φ, |q|) derives p by UPUP, then Φ4 has the same truth value
as Φ.

5 Experimental Results

This section describes our experimental procedures and shows the results. Several
procedural issues are discussed first.

As reported, qxbf monitors its own CPU time for certain operations and dis-
continues that kind of operation if its budget is used up. The budget can be
supplied by the user on the command line; otherwise a default (e.g., 40 seconds)
is used. This leads to unrepeatable behavior, even among runs on the same plat-
form, and obviously gives different outcomes across platforms. To make runs
repeatable and platform independent, we introduced functions to estimate CPU
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Table 1. Replication of selected qxbf data in SAT 2011, Table 1, using qxbfCntrs

QBFEVAL-10: 568 formulas

Preproc.: qxbfCntrs Solver Solved Time (Preproc.) SAT UNSAT

sQueezeBF+(ABST+SAT) depqbf 434 238.24 (42.00) 201 233
SAT depqbf 380 320.02 (8.34) 168 212
ABST+SAT depqbf 377 321.84 (7.24) 167 210
ABST depqbf 375 325.11 (2.84) 168 207

Preproc.: qxbf Solver Solved Time (Preproc.) SAT UNSAT

sQueezeBF+(ABST+SAT) depqbf 434 239.84 (42.79) 201 233
SAT depqbf 379 322.31 (7.17) 167 212
ABST+SAT depqbf 378 323.19 (7.21) 167 211
ABST depqbf 375 327.64 (3.33) 168 207

time based on various counters maintained in the program. The resulting pro-
gram is called qxbfCntrs.

The user interface is unchanged; qxbfCntrs simply compares its (repeatable,
platform independent) estimated CPU time to its budget. The estimation model
was arrived at using linear regression, and was designed to give the same re-
sults as the published paper [LB11], or very close. The estimation model is not
particularly accurate, but the budget amounts are only heuristics, so the overall
performance might be about the same.

To validate this conjecture, we attempted to replicate parts of the published
results for qxbf, using qxbfCntrs with all the same parameters. We chose those
results that were most relevant for the topics of this paper. The replication is
compared with the original in Table 1. For the replication to be meaningful, due
to externally imposed time limits, it was carried out on the same platform, in the
same environment, as the published table. Times shown in Table 1 are measured
by the system; they are not estimates.

In addition, all counts in Tables 2 and 3 of the SAT 2011 paper were con-
firmed during replication. These tables analyze the preprocessor only, giving
it 900 seconds, without internal budgets, so high correspondence is expected.
Here, qxbfCntrs times were about 4% faster and one additional instance was
completed in just under 900 seconds. This can be attributed to compiling with
a newer compiler. One factor helping the close correspondence is that the limits
imposed by the internal budget are often not reached.

In summary, we conclude that the functions for estimating time are adequate
for producing useful repeatable experiments. For all remaining experiments we
use qxbfCntrs for the baseline against which variations are compared, use the
same estimation functions for monitoring against internal budgets, and drop the
suffix Cntrs from here on.

The main goal of this research is to implement and evaluate 1-saturation
for QBF. There are many preprocessing techniques known in the literature,
so we are interested to know whether 1-saturation adds new capabilities, or
just finds mostly the same inferences and simplifications as other techniques.
Therefore, our general approach is to apply a strong existing preprocessor to
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Table 2. Effect of pure-literal policies on qxbf, 420 preprocessed but unsolved instances

qxbf follow-on depqbf

N Solved average N Solved average
Pure-lit policy true false seconds true false seconds

exist. and univ. 0 24 76.50 162 134 380
none 0 24 42.11 162 133 380

only univ. 0 24 53.53 162 134 380

the raw benchmarks, then apply failed literals or 1-saturation to the result. We
chose the recently reported bloqqer since it is open source [BSL11].

There are (at least) two distinct ways to apply preprocessing. The usual way is
to give limited budgets to the preprocessor(s) with the idea that a complete solver
will do the bulk of the work. Another choice is to give the preprocessor(s) all the
resources and see how many instances they can solve completely. Ideally, for the
latter approach, the preprocessor(s) would run to completion, not be stopped by
time limits. This ideal is not completely far-fetched because preprocessors are
expected to stop in polynomial time. Unfortunately, for some larger benchmarks,
the time to completion is impractically long.

Our computing resource for Tables 2, 3, and Figure 2 is a pair of 48-core AMD
Opteron 6174 computers running Linux with 180 GB of memory each and a 2.2
GHz clock, managed by SunGrid queueing software. Our tests show that this
platform is about two times slower than than the platform used in [LB11] and
for Table 1, which is a dedicated cluster running one job per two-core processor.

The principal benchmark suite for QBF currently is the 568 instances used for
QBFEVAL-10. We follow this tradition. The preprocessor bloqqer solved 148
instances (62 true, 86 false), leaving 420. This initial run averaged 8.89 seconds
per instance; all runs completed normally.

The main purpose of this study was to evaluate extended failed-literal analysis
(EFL). This necessitated changing how pure literals were handled. To be sure
any experimental differences are attributable to EFL, we checked the influence
of changes only in pure-literal processing.

The published program qxbf uses pure literals, although it has a command-
line switch to disable all pure literal processing. To incorporate 1-saturation, it
is only necessary to disable existential pure literal processing. To measure the
effect of each change in the procedure, we created qxbf noepure, which has the
same logic as qxbf except that existential pure literal processing is disabled.
Table 2 shows the effect of disabling all pure literal processing and the effect
of disabling existential pure literal processing. Indeed, the “only univ.” row in
Table 2 demonstrates UPUP results without 1-saturation.

The data suggests that the existential pure-literal rule did not help qxbf and
the universal pure-literal rule helped a little. These rules have not been examined
separately before. Empirical data shows that pure-literal rules are important
for QDPLL solvers, but possibly that most of the contribution comes from the
universal pure-literal rule (also a source of substantial overhead).
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Table 3. Additional completely solved instances among 420 instances that were pre-
processed but unsolved by bloqqer. qxbf uses FL and both pure-literal rules. eqxbf
uses EFL and the universal pure-literal rule.

bloqqer only qxbf, bloqqer eqxbf, bloqqer

N Solved avg. N Solved avg. N Solved avg.
Round true false both secs. true false both secs. true false both secs.

1 4 9 13 9 8 29 37 79 11 32 43 58
2 1 0 1 1 1 0 1 75 0 2 2 44
3 0 1 1 1 0 1 1 79 0 1 1 42

total 5 10 15 11 9 30 39 233 11 35 46 144

5.1 Complete Solutions with 1-Saturation

Table 3 compares the solving abilities of bloqqer alone, qxbf followed by
bloqqer, and eqxbf followed by bloqqer. There are no time-outs in this table.
The reason for following qxbf and eqxbf by bloqqer is that qxbf and eqxbf

apply a single procedure and have no general simplification capabilities. In fact
they can never detect that a formula is true. Our goal was to evaluate their
solving capabilities in conjunction with other typical preprocessing techniques.
They were run for several rounds in an attempt to reach a fixpoint. However,
we discovered that bloqqer itself does not quickly reach a fixpoint, and stopped
after three rounds.

By the criterion of complete solutions, we observe that extended failed literal
analysis (EFL, eqxbf) produces moderate gains over failed literal analysis (FL,
qxbf). We also confirm that FL produces about the same gains beyond the
initial preprocessor as the 25 reported by Lonsing and Biere [LB11, Sec. 7]. We
observed 24 additional solutions by qxbf alone. Overall, the data shows that 194
out of 568 QBFEVAL-10 benchmarks can be solved by preprocessing.

For completeness we ran eqxbf with all pure-literal processing disabled. The
program slowed down slightly, but solved the same instances as eqxbf in round
1 of Table 3. This shows that super-sound preprocessing may be feasible, for
applications in which preserving all tree models is important.

5.2 Timed Runs with 1-Saturation and a Complete Solver

This section evaluates whether extended failed literal analysis (EFL) makes
the overall solving task faster. We established a total time limit of 1800 sec-
onds, which is equivalent to about 900 seconds on the newest platforms. We
ran bloqqer with adaptive command-line parameters so that it would not take
too much of the 1800 seconds on very large benchmarks. The command-line pa-
rameters were set heuristically depending on the numbers of variables, clauses
and literals in the instance. No bloqqer run on an original QBFEVAL-10 in-
stance took more than 140 seconds for the experiments in this section. After this
common start on the 568 QBFEVAL-10 benchmarks, the solving attempts used
three strategies. All three strategies used depqbf as the complete solver.
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Fig. 2. Timed solving runs. (Larger figure at http://www.cse.ucsc.edu/∼avg/EFL.)

To be considered successful, the sum of all preprocessing times and the solving
time had to be under 1800 seconds. The outcomes are summarized in Figure 2.

The first strategy simply runs depqbf on the preprocessed instances with a
time limit of 1800 seconds. Results should be comparable to runs reported in
[BSL11] with 900 seconds time limits.

The second strategy uses one or two rounds of qxbf, bloqqer, as described
in Section 5.1, then runs depqbf. Recall that qxbf uses FL and both pure-literal
rules. For this table qxbf is given a budget of 80 “estimated seconds” and is
run with an external time limit of 1800 seconds. Time-outs by qxbf occurred
in three instances during round 2. The time limit for bloqqer was 300 seconds,
but it never came close to timing out.

The third strategy uses one or two rounds of eqxbf, bloqqer, as described
in Section 5.1, then runs depqbf. Recall that eqxbf uses EFL and the universal
pure-literal rule. The details are the same as for the second strategy, except that
eqxbf timed out on only one instance during round 2.

In Figure 2 we observe that eqxbf (EFL), combined with bloqqer for one or
two rounds, helps depqbf slightly more than bloqqer alone. This observation is
confirmed using the Careful Ranking procedures reported in SAT-11 and used
unofficially in that competition [VG11].

6 Conclusion

This paper presents theoretical analysis of the universal pure-literal rule in com-
bination with formula abstraction and extended failed literal analysis. It shows
that binary clauses can be safely derived. It further shows that the use of the
existential pure-literal rule in combination with formula abstraction is generally
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unsafe. An incomplete forward reasoning procedure called UPUP was imple-
mented and tested. Another result is that binary clauses can be super soundly
derived if no pure-literal rules are used.

Experimental results suggest that EFL provides some improvement in overall
solving performance on the QBFEVAL-10 benchmarks. The previous mark of
148 solved by preprocessing alone now stands at 191, although EFL does not get
all the credit. Preliminary data indicates that EFL does almost as well without
any pure-literal rules, which is important if preserving model trees is important
on true QBFs. Future work should integrate EFL with a general preprocessor,
such as bloqqer.

Acknowledgment. We thank Craigslist Inc. for equipment donations that fa-
cilitated this research.
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Abstract. Quantified Boolean formulas generalize propositional formu-
las by admitting quantifications over propositional variables. We compare
proof systems with different quantifier handling paradigms for quantified
Boolean formulas (QBFs) with respect to their ability to allow succinct
proofs. We analyze cut-free sequent systems extended by different quan-
tifier rules and show that some rules are better than some others.

Q-resolution is an elegant extension of propositional resolution to
QBFs and is applicable to formulas in prenex conjunctive normal form.
In Q-resolution, there is no explicit handling of quantifiers by specific
rules. Instead the forall reduction rule which operates on single clauses
inspects the global quantifier prefix. We show that there are classes of
formulas for which there are short cut-free tree proofs in a sequent sys-
tem, but any Q-resolution refutation of the negation of the formula is
exponential.

1 Introduction

Quantified resolution (or Q-resolution) [10] is a relatively inconspicuous calculus.
It was introduced as an elegant extension of resolution to process quantified
Boolean formulas (QBFs) in prenex conjunctive normal form. Although there
are only a few QBF solvers directly based on Q-resolution, it has gained an
enormous practical importance as a subcalculus in modern DPLL solvers with
clause learning. Moreover, an early proposal for a uniform proof format [9] is
based on resolution. Nowadays many QBF solvers produce Q-resolution proofs
and certificate generation [1] can be based on them.

Sequent calculi [7] are well explored proof systems, which are not restricted to
specific normal forms. Variants of these calculi like tableau systems are widely
used in (first-order) theorem proving for classical and non-classical logics, where
often no clausal normal form is available. Variants of sequent calculi are available
for QBFs and used for a variety of purposes [4,11]. Even some solvers not based
on prenex conjunctive normal form like qpro [6] implement proof search in a
restricted variant of a sequent calculus, and a look at a high-level description of
its main procedure indicates that it is not too far away from DPLL.
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Initially driven by the P =?NP question [5], propositional proof systems are
well studied and compared with respect to their relative efficency, i.e., their
ability to allow for succinct proofs. In this paper, we compare Q-resolution and
sequent systems for QBFs. The crucial difference between systems for SAT and
systems for quantified SAT (QSAT) is Boolean quantification in the latter, which
allows for more succinct problem representations. As we will see later, there are
different methods to handle quantifiers like the rules implementing semantics
directly, rules inspired by first-order logic, or a completely different technique to
handle quantifiers in Q-resolution. It turns out that the way how quantifiers are
handled strongly influence proof complexity.

Contributions. First we consider cut-free propositional sequent systems extended
by different quantifier rules. We show that these rules have increasing strength
by providing formula classes which can be used for exponential separations.
Second we partially solve the problem stated in [4] whether in sequent systems
with restricted cuts, the quantifier rule introducing propositional formulas can
be polynomially simulated by the one introducing variables. We show this for all
tree-like systems except the one with only propositional cuts. Third we show an
exponential separation between cut-free tree-like sequent systems and arbitrary
Q-resolution. This result is surprising because the first system is extremely weak,
whereas the second one does not have to obey the tree restriction and has an
atomic cut (the resolution rule) in addition. It turns out that the relative strength
comes from the more powerful quantifier rules of the sequent system.
Structure. In Sect. 2, we introduce necessary concepts. Section 3 presents sequent
systems and Q-resolution. Different quantifier rules are compared in Sect. 4. In
Sect. 5, we present an exponential separation between cut-free tree-like sequent
systems and arbitrary Q-resolution. We show that the latter cannot polynomially
simulate the former. Concluding remarks are presented in Sect. 6.

2 Preliminaries

We assume basic familiarity with the syntax and semantics of propositional logic.
We consider a propositional language based on a set PV of Boolean variables and
truth constants � (true) and ⊥ (false), both of which are not in PV. A variable
or a truth constant is called atomic. We use connectives from {¬,∧,∨,→} and
A ↔ B is a shorthand for (A → B) ∧ (B → A). A clause is a disjunction of
literals. Tautological clauses contain a variable and its negation and the empty
clause is denoted by �. Propositional formulas are denoted by capital Latin
letters like A,B,C possibly annotated with subscripts, superscripts or primes.

We extend the propositional language by Boolean quantifiers. Universal (∀)
and existential (∃) quantification is allowed within a QBF. QBFs are denoted by
Greek letters. Observe that we allow non-prenex formulas, i.e., quantifiers may
occur deeply in a QBF and not only in an initial quantifier prefix. An example for
a non-prenex formula is ∀p (p→ ∀q∃r (q∧r∧s)), where p, q, r and s are variables.
Moreover, free variables (like s) are allowed, i.e., there might be occurrences of
variables in the formula for which we have no quantification. Formulas without
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free variables are called closed ; otherwise they are called open. The universal
(existential) closure of ϕ is ∀x1 . . .∀xnϕ (∃x1 . . . ∃xnϕ), for which we often write
∀Xϕ (∃Xϕ) if X = {x1, . . . , xn} is the set of all free variables in ϕ. A formula in
prenex conjunctive normal form (PCNF) has the form Q1p1 . . . Qnpn A, where
Q1p1 . . .Qnpn is the quantifier prefix, Qi ∈ {∀, ∃} and A is the (propositional)
matrix which is in CNF. The size of a formula ϕ, size(ϕ), is the number of
occurrences of connectives or quantifiers.

Let Σq
0 and Πq

0 both denote the set of propositional formulas. For i > 0,
Σq

i is the set of all QBFs whose prenex forms starts with ∃ and which have
i − 1 quantifier alternations. Πq

i is the dual of Σq
i and Σq

i−1 ⊆ Πq
i as well as

Πq
i−1 ⊆ Σq

i holds. We refer to [11] for more details.
The semantics of propositional logic is based on an evaluation function in-

dexed by a variable assignment I for free variables. The semantics is extended
to quantifiers by νI(Qpϕ) = νI(ϕ{p/�} ◦ ϕ{p/⊥}), where ◦ = ∨ if Q = ∃, and
◦ = ∧ if Q = ∀. We denote by ϕ{p/ψ} the replacement of all (free) occurrences
of p by ψ in ϕ.

A quantified propositional proof system is a surjective PTIME-computable
function F from the set of strings over some finite alphabet to the set of valid
QBFs. Every string α is then a proof of F (α). Let P1 and P2 be two proof
systems. Then P1 polynomially simulates (p-simulates) P2 if there is a polynomial
p such that for every natural number n and every formula ϕ, the following holds.
If there is a proof of ϕ in P2 of size n, then there is a proof of ϕ (or a suitable
translation of it) in P1 whose size is less than p(n).

3 Calculi for Quantified Boolean Formulas

We first discuss sequent calculi [7] with different alternative quantifier rules.
Later Q-resolution [10] is introduced which is applicable to QBFs in PCNF.

3.1 Sequent Calculi for Quantified Boolean Formulas

Sequent calculi do not work directly on formulas but on sequents. A sequent
S is an ordered pair of the form Γ " Δ, where Γ and Δ are finite sequences
of formulas. Γ is the antecedent of S, and Δ is the succedent of S. A formula
occurring in one of Γ or Δ is called a sequent formula (of S). We write “" Δ”
or “Γ "” whenever Γ or Δ is empty, respectively. The meaning of a sequent
Φ1, . . . , Φn " Ψ1, . . . , Ψm is the same as the meaning of (

∧n
i=1 Φi) → (

∨m
i=1 Ψi).

The size of S, size(S), is the sum over the size of all sequent formulas in S.
We introduce the axioms and the rules in Fig. 1. In the strong quantifier rules

∃le and ∀re , q has to satisfy the eigenvariable (EV) condition, i.e., q does not
occur as a free variable in the conclusion of these rules. In the weak quantifier
rules ∀l and ∃r , no free variable of Ψ is allowed to become bound in Φ{p/Ψ}. For
instance, this restriction forbids the introduction of x for y in the (false) QBF
∃y∀x (x↔ y). Without this restriction, the true QBF ∀x (x↔ x) would result.

In the following, we instantiate the quantifier rules as follows. If the formula
Ψ in ∀l and ∃r is restricted to a propositional formula, we call the quantifier
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Φ 
 Φ Ax ⊥ 
 ⊥l 
 � �r

Γ 
 Δ
Φ∗, Γ 
 Δ

wl
Γ 
 Δ

Γ 
 Δ, Φ∗ wr

Γ1, Φ
+, Ψ+, Γ2 
 Δ

Γ1, Ψ
∗, Φ∗, Γ2 
 Δ

el
Γ 
 Δ1, Φ

+, Ψ+, Δ2

Γ 
 Δ1, Ψ
∗, Φ∗, Δ2

er

Γ1, Φ
+, Φ+, Γ2 
 Δ

Γ1, Φ
∗, Γ2 
 Δ

cl
Γ 
 Δ1, Φ

+, Φ+, Δ2

Γ 
 Δ1, Φ
∗, Δ2

cr

Γ 
 Δ, Φ+

(¬Φ)∗, Γ 
 Δ
¬l

Φ+, Γ 
 Δ

Γ 
 Δ, (¬Φ)∗
¬r

Φ+, Ψ+, Γ 
 Δ

(Φ ∧ Ψ)∗, Γ 
 Δ
∧l

Γ 
 Δ, Φ+ Γ 
 Δ, Ψ+

Γ 
 Δ, (Φ ∧ Ψ)∗
∧r

Φ+, Γ 
 Δ Ψ+, Γ 
 Δ

(Φ ∨ Ψ)∗, Γ 
 Δ
∨l

Γ 
 Δ, Φ+, Ψ+

Γ 
 Δ, (Φ ∨ Ψ)∗
∨r

Γ 
 Δ, Φ+ Ψ+, Γ 
 Δ

(Φ → Ψ)∗, Γ 
 Δ
→l

Φ+, Γ 
 Δ, Ψ+

Γ 
 Δ, (Φ → Ψ)∗
→r

Γ 
 Δ, Φ{p/q}+

Γ 
 Δ, (∀pΦ)∗ ∀re
Φ{p/q}+, Γ 
 Δ

(∃pΦ)∗, Γ 
 Δ
∃le

Φ{p/Ψ}+, Γ 
 Δ

(∀pΦ)∗, Γ 
 Δ
∀l

Γ 
 Δ, Φ{p/Ψ}+

Γ 
 Δ, (∃pΦ)∗ ∃r

Fig. 1. Axioms and inference rules for sequent calculi. Principal formulas are marked
by ∗, auxiliary formulas by +, the other (unmarked) formulas are side formulas.

rules ∀lf and ∃rf . If only variables or truth constants are allowed, then the index
f is replaced by v. Finally, if Ψ is further restricted to truth constants, then the
index is s. We define three different sequent calculi Gqxe (x ∈ {s, v, f}) for QBFs
possessing the quantifier rules with index x and ∀re and ∃le . A fourth calculus,
Gqss, is defined by adopting ∀ls and ∃rs together with the following two rules.

Γ 
 Δ, (Φ{p/�} ∧ Φ{p/⊥})+

Γ 
 Δ, (∀pΦ)∗ ∀rs
(Φ{p/�} ∨ Φ{p/⊥})+, Γ 
 Δ

(∃pΦ)∗, Γ 
 Δ
∃ls

All the calculi introduced above are cut-free, i.e., the cut rule

Γ1 
 Δ1, Φ
+ Φ+, Γ2 
 Δ2

Γ1, Γ2 
 Δ1, Δ2
cut

is not part of the calculus. For i ≥ 0 and G ∈ {Gqss,Gqse,Gqve,Gqfe}, Gi is G
extended by cut, where the cut formula Φ is restricted to be a Πq

i ∪Σq
i formula.

A sequence proof α of a sequent S (the end sequent) in G is a sequence
S1, . . . , Sm of sequents such that Sm = S and, for every Si (1 ≤ i ≤ m), Si is
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either an axiom of G, the conclusion of an application of a unary inference from
G with premise Sj , or the conclusion of an application of a binary inference from
G with premises Sj, Sk (j, k < i). Proofs in G are called G proofs. If α is a proof
of " Φ, then α is a proof of the formula Φ. A proof α is called tree-like or a tree
proof, if every sequent in α is used at most once as a premise. The length, l(α),
of α is the number m of sequents occurring in α and its size is

∑m
i=1 size(Si).

We denote by G∗ the version of G which permits only tree proofs. They are
assumed to be in free variable normal form (FVNF) [2,4], to which they can be
translated efficiently. A tree proof α is in FVNF, if (i) no free variable from the
end sequent is used as an EV, and (ii) every other free variable z occurring in
α is used exactly once as an EV and appears in α only in sequents above the
application of ∃le or ∀re which introduced z.

Later, we have to trace formula occurrences through a tree proof. The means
to do this is an ancestor relation between formula occurrences in a tree proof [2].
We first define immediate descendants (IDs). If Φ is an auxiliary formula of any
rule R except exchange or cut, then Φ’s ID is the principal formula of R. For the
exchange rules el and er , the ID of Φ or Ψ in the premise is Φ or Ψ , respectively,
in the conclusion. An occurrence of the cut formula does not have any ID. If Φ is
a side formula at position i in Γ, Γ1, Γ2, Δ,Δ1, Δ2 of the premise(s), then Φ’s ID
is the same formula at the same position of the same sequence in the conclusion.
Now, Φ is an immediate ancestor of Ψ iff Ψ is an ID of Φ. The ancestor relation
is the reflexive and transitive closure of the immediate ancestor relation.

G is sound and complete, i.e., a sequent S is valid iff it has a G proof. We will
consider variants of our tree calculi without exchange rules and where sequents
consists of multisets instead of sequences. Since the multiset and the sequence
version are p-equivalent, it is sufficient to consider the multiset version.

The calculus in Fig. 1 is a cut-free variant of calculi proposed by Kraj́ıček and
Pudlák (KP) (cf, e.g., [11]). In the calculi KPi, only Σq

i ∪Πq
i formulas can occur

in a proof. Cook and Morioka [4] modified the KP calculi by allowing arbitrary
QBFs as sequent formulas, but restricting cut formulas to Σq

i ∪ Πq
i formulas.

Moreover, ∀l and ∃r are replaced by ∀lf and ∃rf .1 They show in [4] that any
of their system Gi (i > 0) is p-equivalent to the corresponding system KPi for
proving formulas from Σq

i ∪Πq
i . Gi is complete for QBFs (in contrast to KPi).

3.2 The Q-resolution Calculus

The quantified resolution calculus, Q-res, is an extension of propositional resolu-
tion to QBFs [10]. There is no explicit handling of quantifiers by specific rules.
Instead the ∀ reduction rule which operates on single clauses inspects the global
quantifier prefix. As we will see, this processing of quantifiers results in a rela-
tively weak calculus with respect to the ability to produce succinct refutations.

The input for Q-res is a (closed) QBF in PCNF. Quantifier blocks are num-
bered from left to right in increasing order and bound variables from quantifier

1 The restriction to propositional formulas is necessary. For unrestricted QBFs, the
hierarchy of calculi would “collapse” to G1.
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C1 ∨ x ∨ C2 C3 ∨ ¬x ∨ C4

C1 ∨ C2 ∨ C3 ∨ C4
∃PR

C1 ∨ � ∨ C2 ∨ � ∨ C3

C1 ∨ � ∨ C2 ∨ C3
PF

C5 ∨ k ∨ C6

C5 ∨ C6
∀R

C1 to C6 are clauses, x is an ∃ variable and � a literal. C5∨k∨C6 is non-tautological
and k is a ∀ literal with level i. Any ∃ literal in C5 ∨C6 has a level smaller than i.

Fig. 2. The rules of the Q-resolution calculus

block i have level i. Literal occurrences in the CNF inherit the level from their
variable in the quantifier prefix. Q-res consists of the propositional resolution rule
∃PR over existential literals, the factoring rule PF and the ∀ reduction rule ∀R,
all of which are shown in Fig. 2. The following is Theorem 2.1 in [10].

Theorem 1. A QBF ϕ in PCNF is false iff � can be derived from ϕ by Q-res.

A Q-res refutation can be in tree form as well as in sequence form. The length of
a Q-res refutation is the number of clauses in it. The size of a Q-res refutation
is the sum of the sizes of its clauses.

4 Comparing Different Quantifier Rules

We compare Gqss, Gqse, Gqve and Gqfe with respect to p-simulation. Let G ∈
{Gqse,Gqve,Gqfe}. We reproduce Definition 6 and Lemma 3 from [4] below.

Definition 1. Let ϕ be a quantified QBF in prenex form and let S be the sequent
" ϕ. Let α(S) be a G0 proof of S. Then any quantifier-free formula A in α(S) that
occurs as the auxiliary formula of a quantifier inference is called an α-prototype
of ϕ. Define the Herbrand α-disjunction to be the sequent " A1, . . . , Am, where
A1, . . . , Am, are all the α-prototypes of ϕ.

Lemma 1. Let ϕ be a quantified QBF in prenex form and let S be the sequent
" ϕ. Let α(S) be a G0 proof of S. Then the Herbrand α-disjunction is valid and
it has a purely propositional sequent proof of size polynomial in the size of α(S).

In the construction of the proof of the Herbrand α-disjunction in Lemma 1, no
(new) cut is introduced and the form of the proof is retained. Consequently, if
α(S) is cut-free and tree-like, then so is the resulting propositional proof.

Proposition 1. (1) Gqss0 cannot p-simulate Gqse∗, (2) Gqse0 cannot p-simulate
Gqve∗ and (3) Gqve0 cannot p-simulate Gqfe∗.

We show (3) in detail. Let (Fn)n>0 be a sequence of propositional formulas of
the form

∧n
i=1((¬xi)↔ yi) and let ϕn be ∀Xn∃Y nFn with Xn = {x1, . . . , xn}

and Y n = {y1, . . . , yn}. The size of ϕn is linear in n and it has a short proof in
Gqfe∗ of length linear in n. It can be obtained by (i) introducing eigenvariable ci
for xi for all i (1 ≤ i ≤ n), (ii) introducing formula ¬ci for yi for all i (1 ≤ i ≤ n)
and (iii) proving

∧n
i=1

(
(¬ci)↔ (¬ci)

)
with O(n) sequents.
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Next we show that any proof of ϕn in Gqve0 is exponential in n. The key
observation is that only the introduction of truth constants for yi makes sense.
Otherwise we obtain conjunctive subformulas of the form (¬ci)↔ vi which are
unprovable. Consequently, all ∃r inferences introduce truth constants.

Let αn be an arbitrary Gqve0 proof of " ϕn. By Lemma 1 we get a purely
propositional Gqve0 proof βn of the valid Herbrand αn-disjunction

" Fn,1, . . . , Fn,m .

Moreover, the size of βn is polynomially related to the size of αn. We argue
in the following that this disjunction consists of m = 2n formulas. Let Sn be
the following set {Fn{x1/c1, . . . , xn/cn, y1/t1, . . . , yn/tn} | ti ∈ {⊥,�}} of all
possible substitution instances of Fn with 2n elements. We show in the following
that

∨
d∈D d is not valid if D ⊂ Sn holds. Then all elements of Sn have to occur

in the Herbrand αn-disjunction and the exponential lower bound follows.
Let C be an arbitrary instance

∧n
i=1

(
(¬ci) ↔ ti

)
of Fn which is in Sn but

not in D. Let I be any assignment that makes C true, i.e., each ci is assigned to
the dual of ti by I. Now take an arbitrary d ∈ D of the form

∧n
i=1

(
(¬ci)↔ si

)
.

There must be an index k, 1 ≤ k ≤ n, such that sk �= tk. Then (¬ck) ↔ sk
is false under I and so is d. Since d has been chosen arbitrarily, all elements of
D are false under I and so is

∨
d∈D d. Consequently, all elements of Sn have to

occur in the Herbrand αn-disjunction and the exponential lower bound follows.
For (2), we can use a similar argumentation with (Gn)n>0 instead of Fn, where

Gn is of the form
∧n

i=1(xi ↔ yi). For (1), the family of formula is (ψn)n>1, where
ψn is of the form ∃xn∀yn . . .∃x1∀y1 (xn ∨ yn ∨ · · · ∨ x1 ∨ y1).

Looking at the structure of ϕn, one immediately realizes that the quantifiers
can be pushed into the formula (“antiprenexed”) in an equivalence-preserving
way. This antiprenexed formula F ′

n :
∧n

i=1(∀xi∃yi((¬xi)↔ yi)) has short proofs
in Gqve∗, Gqse∗and even in Gqss∗, mainly because ∀xi∃yi((¬xi) ↔ yi) has a
proof of constant length. A similar statement holds for the other two cases.

4.1 Using Eliminable Extensions to Simulate ∃rf /∀lf by ∃rv/∀lv
We show in the following that the weak quantifier rules ∃rf and ∀lf in Gqfe∗i can
be simulated efficiently by ∃rv and ∀lv in Gqve∗i for i ≥ 1. The key idea is to use
a quantified extension ε(B) of the form ∃x (x↔ B) with B being a propositional
formula. ε(B) has a proof α(ε(B)) in Gqve∗ and Gqse∗ of constant length.

Given a tree proof βe of an end sequent Se. For any occurrence of an inference
∀lf and ∃rf introducing non-atomic propositional formula B, we perform the fol-
lowing. Take an occurrence I of an inference ∃rf (the case of ∀lf is similar) and
a globally new variable q, not occurring in βe and not introduced as a new vari-
able before. Employ the ancestor relation for I’s auxiliary formula Φ{p/B} and
get all highest sequents with occurrences of the sequent formula B originating
from I. Start from the next lower sequent of these highest positions downwards
until the conclusion of I and put F (B) = q ↔ B into the antecedent of each
sequent. If there is already a copy there, then do nothing. If there are strong
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quantifier rules, then there is no violation of the EV condition because we add
only a globally new variable; all the variables from B have been already present
in the sequent before.

Employing the ancestor relation again and starting from Φ{p/B}, we replace
any formula Ψ{p/B} by Ψ{p/q} in sequents containing F (B). This includes a
replacement ofB by q. Perform the above procedure for each of the w occurrences
of ∀lf and ∃rf . We have not increased the number of sequents yet, but there are
O(w) additional formulas in any sequent.

We are going to correct the inference tree. We check all sequents with sequent
formulas of the form F (B) whether binary rules are violated, like, e.g., in the
left inference figure below for the case of ∧r . It is replaced by the correct right
figure. (F (B1) and F (B2) are replaced by F1, F2 for space reasons).

F1, F2, Γ 
 Δ,Φ1{p/q} Γ 
 Δ,Φ2

F1, F2, Γ 
 Δ,Φ1{p/q} ∧ Φ2

F1, F2, Γ 
 Δ,Φ1{p/q}
Γ 
 Δ,Φ2

F1, F2, Γ 
 Δ,Φ2
wl∗

F1, F2, Γ 
 Δ,Φ1{p/q} ∧ Φ2

We have to perform two additional corrections, namely (i) to get rid of F (B)
immediately below the conclusion of I and (ii) to correct the situation when B
originating from I occurs as a principal formula in a propositional inference or
as a formula in an axiom of the original proof βe. For the former, we use

α(ε(B))

 ∃x (x ↔ B)

q ↔ B, Γ 
 Δ, Φ{p/q}
q ↔ B, Γ 
 Δ, ∃pΦ ∃rv

∃x (x ↔ B), Γ 
 Δ, ∃pΦ ∃le

Γ 
 Δ, ∃pΦ cut

with a cut on a Σq
1-formula. Let us consider (ii) where B is the principal formula

of a propositional inference. Below is one possible case for B = B1 ∨B2.

F (B), Γ 
 Δ, B1, B2

F (B), Γ 
 Δ, q
∨r

F (B), Γ 
 Δ, B1, B2

F (B), Γ 
 Δ, B
∨r α

B, q ↔ B 
 q

F (B), F (B), Γ 
 Δ, q
cut

F (B), Γ 
 Δ, q
cl

cl is needed if F (B) is required in the left branch. The case for the axiom is
simpler. Finally, wl inferences are introduced to remove q ↔ B.

During the proof manipulations, we have added to each sequent O(w) formu-
las. Moreover, by correcting the binary inferences, we added O(w) sequents for
any sequent in the original proof. For each occurrence of B and each of the w
occurrences of the quantifier rules, we added a deduction of length O(1) In total,
we obtain a polynomial increase in length and size.

5 Exponential Separation of Q-res and Gqve∗

We stepwisely construct a family (ϕn)n>1 of closed QBFs ϕn for which (1) there
exists short proofs in Gqve∗, but (2) any Q-resolution refutation of ¬ϕn has
length exponential in n. We use the traditional approaches, namely a refutational
approach with resolution and an affirmative approach with sequent systems.
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5.1 The Construction of ϕn

We start with a version of the well-known pigeon hole formula in disjunctive
normal form. The formula for n holes and n+ 1 pigeons is given by( n+1∨

i=1

n∧
j=1

¬xi,j

)
∨
( n∨

j=1

∨
1≤i1<i2≤n+1

(xi1,j ∧ xi2,j)

)
.

Let DPHPXn
n denote this formula over the variables in Xn = {x1,1, . . . , xn+1,n}.

Variable xi,j is intended to denote that pigeon i is sitting in hole j. The usual

(unsatisfiable) version of the pigeon hole formula in CNF, CPHPXn
n , is given by( n+1∧

i=1

( n∨
j=1

xi,j

))
∧
( n∧

j=1

∧
1≤i1<i2≤n+1

(¬xi1,j ∨ ¬xi2,j)

)
.

The number of clauses in CPHPXn
n is ln = (n+1)+n2(n+1)/2, size(CPHPXn

n ) is
O(n3), and CPHPXn

n is obtained from ¬DPHPXn
n by shifting negations inwards

using de Morgan’s laws and eliminating double negations. Intuitively, we want to
show that the refutation problem corresponding to the negation of the formula

∀Xn∃Yn

(
DPHPYn

n → DPHPXn
n

)
(1)

results only in Q-res refutations of length exponential in n. A short Gqve∗ proof
of (1) exists which mainly relies on a unification property, namely that (i) ∀re
introduces eigenvariables Cn for Xn and (ii) ∃rv introduces exactly the same
variables Cn for Yn, therefore unifying the two versions of DPHPn. As we will
see later, this instantiation property of ∃rv is important to get a short proof.

A problem occurs if we want to translate the provability problem of (1) into
a refutation problem of its negation. Clausifying the disjunctive normal form
DPHPYn

n using distributivity laws results in an exponential number of (tauto-
logical) clauses. We slightly modify the formula to be considered by introducing
new variables of the form zi1,i2,j for disjuncts in DPHPYn

n . This procedure is in
the spirit of the well-known Tseitin translation [13]. We use the “one polarity
optimization” of [12]. For the first n + 1 disjuncts of the form

∧n
j=1 ¬yi,j with

1 ≤ i ≤ n + 1, we use variables z1,0,0, . . . , zn+1,0,0. For the second part, for any
1 ≤ j ≤ n and the n(n+ 1)/2 disjuncts, we use

z1,2,j , . . . , z1,n+1,j, z2,3,j, . . . , z2,n+1,j, . . . , zn,n+1,j . (2)

The set of these variables for DPHPn is denoted by Zn. Due to this construction,
we can speak about the conjunction corresponding to the variable zi1,i2,j .

We construct the conjunctive normal form TPHPYn,Zn
n of DPHPYn,Zn

n as fol-
lows. First, we take the clause DZn

n =
∨

z∈Zn
¬z over all variables in Zn. The

formula PYn,Zn
n for the first (n+ 1) disjuncts of DPHPYn

n is of the form

n+1∧
i=1

n∧
j=1

(zi,0,0 ∨ ¬yi,j) .
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For the remaining n2(n+1)/2 disjuncts of DPHPYn
n , we have the formula QYn,Zn

n

n∧
j=1

∧
1≤i1<i2≤n+1

(
(zi1,i2,j ∨ yi1,j) ∧ (zi1,i2,j ∨ yi2,j)

)
.

Then TPHPYn,Zn
n is DZn

n ∧PYn,Zn
n ∧QYn,Zn

n and size(TPHPYn,Zn
n ) is O(n3) . The

family of formulas we consider in the following is (ϕn)n>1, where ϕn is

∀Xn∃Yn∀Zn

(
TPHPYn,Zn

n → DPHPXn
n

)
. (3)

Formula (1) is equivalent to formula (3) because DPHPXn
n is valid. We show that

DPHPYn
n ≡ ∃Zn TPHP

Yn,Zn
n (4)

holds.
=⇒: Let I be a model of DPHPYn

n , i.e., I |= DPHPYn
n holds.

Case 1: There exists an index i such that I |=
∧n

j=1 ¬yi,j holds. Therefore,

I |= ¬yi,1, . . . , I |= ¬yi,n as well as I |=
∧n

j=1 zi,0,0 ∨ ¬yi,j hold. Let us extend

I to an interpretation J such that TPHPYn,Zn
n is true under J . We set all zk,l,m

from Zn to true under J except zi,0,0 which is set to false. Then J |= DZn
n ,

J |= PYn,Zn
n and J |= QYn,Zn

n hold.

Case 2: There exist indices i1, i2 and j such that I |= yi1,j ∧ yi2,j holds. Then
I |= (zi1,i2,j ∨ yi1,j) ∧ (zi1,i2,j ∨ yi2,j) holds. Again, we extend I to J such that

J |= TPHPYn,Zn
n holds. We set all zk,l,m from Zn to true under J except zi1,i2,j

which is set to false. Then J |= DZn
n , J |= PYn,Zn

n and J |= QYn,Zn
n hold.

In both cases, there exists an extension J of I (which interprets all variables
in Zn), such that J |= TPHPYn,Zn

n . Hence, ∃ZnTPHP
Yn,Zn
n is true under I.

⇐=: Let I be an interpretation such that I |= ∃ZnTPHP
Yn,Zn
n holds. Then

there exists an extension J of I (which interprets all variables in Zn), such that
J |= TPHPYn,Zn

n . Consequently J |= DZn
n holds and at least one z variable has

to be false under J .

Case 1: There exists an index i such that J |= ¬zi,0,0 holds. Since J satisfies∧n
j=1(zi,0,0∨¬yi,j), J and also I make

∧n
j=1 ¬yi,j true. Then I |= DPHPYn

n holds.

Case 2: There exist indices i1, i2 and j such that J |= ¬zi1,i2,j holds. Since
J |= (zi1,i2,j ∨ yi1,j)∧ (zi1,i2,j ∨ yi2,j) also holds, yi1,j ∧ yi2,j has to be true under

J and I. Then I |= DPHPYn
n holds.

We continue in the next subsection with the construction of a short proof of ϕn

in Gqve∗. Afterwards, we show in Section 5.3 that any sequence Q-res refutation
of ¬ϕn possesses a number of clauses which is exponential in n.

5.2 Short Proofs of ϕn in Gqve∗

We provide a short proof of ϕn in Gqve∗. Observe that any proof of ∀Xn DPHP
Xn
n

is exponential (see Theorem 5.3.5 in [3]).
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Proposition 2. Let (ϕn)n>1 be a family of formulas where ϕn is given in (3).
Then there exists a proof of " ϕn in Gqve∗ of size polynomial in n.

We first show that sequents Si1,i2,j of the form

¬zi1,i2,j , PCn,Zn
n , QCn,Zn

n "
n+1∨
i=1

n∧
j=1

¬ci,j ,
n∨

j=1

∨
1≤i1<i2≤n+1

(ci1,j ∧ ci2,j)

are derivable using O(n3) sequents.

Case 1: zi1,i2,j is of the form zi,0,0 for 1 ≤ i ≤ n+ 1. Take axioms and derive

¬ci,1, . . . ,¬ci,n "
n∧

j=1

¬ci,j

by applications of ∧r and wl using O(n2) sequents. Continue with the derived
sequent by using axioms and applications of ¬l , weakening and ∨l to generate

¬zi,0,0, zi,0,0 ∨ ¬ci,1, . . . , zi,0,0 ∨ ¬ci,n "
n∧

j=1

¬ci,j

using O(n2) sequents. By applications of ∧l to the last sequent, we obtain

¬zi,0,0,
n∧

j=1

(zi,0,0 ∨ ¬ci,j) "
n∧

j=1

¬ci,j

requiring further O(n) sequents. Continue with weakening, ∧l and ∨r to generate

¬zi,0,0, PCn,Zn
n , QCn,Zn

n "
n+1∨
i=1

n∧
j=1

¬ci,j ,
n∨

j=1

∨
1≤i1<i2≤n+1

(ci1,j ∧ ci2,j)

from the sequent above using O(n) sequents. In total, the derivation of each of
the (n + 1) sequents S1,0,0, . . . , Sn+1,0,0 requires O(n2) sequents, each of which
consists of O(n) sequent formulas.

Case 2: zi1,i2,j occurs as an element in (2). Start from axioms and derive

ci1,j, ci2,j " ci1,j ∧ ci2,j

by weakenings and ∧r using O(1) sequents. Take axioms and apply ¬l , weaken-
ing, ∨l and ∧l to get from the sequent above

¬zi1,i2,j , (zi1,i2,j ∨ ci1,j) ∧ (zi1,i2,j ∨ ci2,j) " ci1,j ∧ ci2,j

with O(1) further sequents. Using O(n3) weakenings, ∧l and ∨r , we obtain

¬zi1,i2,j , PCn,Zn
n , QCn,Zn

n "
n+1∨
i=1

n∧
j=1

¬ci,j ,
n∨

j=1

∨
1≤i1<i2≤n+1

(ci1,j ∧ ci2,j).
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In total, we have to derive n2(n + 1)/2 sequents using at most a cubic number
of sequents in each derivation. Each sequent has O(n3) sequent formulas.

This completes the case analysis. The sequent

DZn
n , PCn,Zn

n , QCn,Zn
n "

n+1∨
i=1

n∧
j=1

¬ci,j ,
n∨

j=1

∨
1≤i1<i2≤n+1

(ci1,j ∧ ci2,j)

can be derived from the O(n3) different sequents Si1,i2,j by repeated applications
of ∨l using O(n3) sequents. Then we can continue as follows.

DZn
n , PCn,Zn

n , QCn,Zn
n "

∨n+1
i=1

∧n
j=1 ¬ci,j ,

∨n
j=1

∨
1≤i1<i2≤n+1(ci1,j ∨ ci2,j)

DZn
n , PCn,Zn

n , QCn,Zn
n " DPHPCn

n

∨r

TPHPCn,Zn
n " DPHPCn

n

∧l ,∧l

" TPHPCn,Zn
n → DPHPCn

n

→r

∀re , ∃rv , ∀re
" ∀Xn∃Yn∀Zn

(
TPHPYn,Zn

n → DPHPXn
n

)
Hence the overall number of sequents used to derive the indicated end sequent is
O(n6). There are O(n3) sequent formulas in each sequent and each such formula
is a subformula of ϕn. Therefore, we have a polynomial size proof of ϕn in Gqve∗.

5.3 Q-resolution Refutations of ¬ϕn

We reconsider ϕn from above. Since ϕn is valid iff ¬ϕn is unsatisfiable, we use the
latter and show it by Q-resolution. As we will see, any Q-resolution refutation
of ¬ϕn is exponential in n. Take ¬ϕn and push negation inwards. Then we get

¬ϕn is unsat iff ∃Xn∀Yn∃Zn

(
TPHPYn,Zn

n ∧ CPHPXn
n

)
is unsat.

Proposition 3. Any Q-res refutation of ∃Xn∀Yn∃Zn

(
TPHPYn,Zn

n ∧ CPHPXn
n

)
has exponential size.

Since the two indicated CNFs TPHPYn,Zn
n and CPHPXn

n belong to completely
different languages, no resolution is possible where one parent clause is from the
one part and the other parent clause is from the other part. Therefore

∀Yn∃Zn

(
TPHPYn,Zn

n

)
is unsat or ∃Xn

(
CPHPXn

n

)
is unsat.

We first consider ∃Xn

(
CPHPXn

n

)
which is the existential closure of the purely

propositional pigeon hole formula CPHPXn
n in conjunctive normal form. Only

the propositional resolution rule is applicable because no ∀ variable occurs. By
Haken’s famous result [8], any resolution refutation of CPHPXn

n is exponential
in n. Consequently, the same holds for any Q-res refutation of the same formula.
Hence, ∃Xn

(
CPHPXn

n

)
is false and therefore unsatisfiable.

We next consider ∀Yn∃ZnTPHP
Yn,Zn
n . Above we proved the following equiv-

alence DPHPYn
n ≡ ∃ZnTPHP

Yn,Zn
n . Since DPHPYn

n is valid, so is ∃ZnTPHP
Yn,Zn
n
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and therefore ∀Yn∃Zn

(
TPHPYn,Zn

n

)
is true. By the soundness and completeness

of Q-resolution, no (non-tautological) clause with only universal literals can be
derived. Hence, ∀Yn∃ZnTPHP

Yn,Zn
n cannot provide any refutation.

In conclusion, any Q-res refutation of ¬ϕ is exponential in n. Consider(
TPHPXn,Zn

n ∧ CPHPXn
n

)
(5)

which can be obtained by instantiating the quantifiers for Yn properly. Inter-
estingly, there exists a tree (Q-)resolution refutation of (the existential closure
of) formula (5) of size polynomial in n, which identifies the simple way of han-
dling quantifiers by ∀R to be the weak point in Q-res. Obviously, quantifier rules
resulting an instantiation of the matrix formula can yield more succinct proofs.

From the above complexity analysis of Q-resolution refutations of ¬ϕ, a simple
corollary can be drawn. Let us reconsider ∃Xn∀Yn∃Zn

(
TPHPYn,Zn

n ∧ CPHPXn
n

)
to which we apply the QDPLL algorithm with clause learning. The only variables
which are processed are from Xn because CPHPXn

n is unsatisfiable. Finding the
conflicts results in learned clauses, which can be used to construct a Q-res refuta-
tion of the input formula as a witness for unsatisfiability. Since any Q-resolution
refutation is exponential in n, so is the QDPLL refutation.2

6 Conclusion

We studied different techniques to handle quantification in QBFs. Integrated into
a sequent calculus for propositional logic, all discussed combinations of quanti-
fier rules yield sound and complete calculi, differing in their non-deterministic
strength, i.e., their ability to represent proofs succinctly. We have seen that Q-res
is a weaker calculus than sequent systems with reasonable quantifier rules. Al-
though this result seems to be of limited relevance for practical applications, one
should keep in mind that certificates (or solutions) are extracted from Q-res refu-
tations produced by QBF solvers [1]. Since the size of the certificate corresponds
to the size of the Q-res refutation, a more succinct proof could be beneficial.

We have identified instantiation as the feature for obtaining short proofs for
our formulas. Neither the quantifier handling in Q-res nor semantically motivated
quantifier rules possess this feature. Strong quantifier rules based on semantics
are essentially binary inferences and in general not powerful enough in a cut-free
sequent system. These rules require additional techniques like propagation of
values, formula simplification, dependency directed backtracking, etc. to com-
pensate their weakness. Such techniques can be integrated in sequent systems
via restricted versions of cut or as additional inferences, cf. [6] for examples.

Although ∀lf and ∃rf are the rules with most non-deterministic power, they
are not necessarily required for our problem formulas. They were actually proved
with weaker rules ∀lv and ∃rv allowing only the introduction of variables (and
truth constants). We provided some indication that, at least in some variants of
sequent calculi like Gqve∗i (i ≥ 1), the weaker rules are sufficient. But a closer

2 We learned this argument from F. Lonsing (private communication).



On Sequent Systems and Resolution for QBFs 113

look reveals the practical problem of the ∀lf and ∃rf inferences, the simulation
by extension and the simulation by cut (not discussed here): How does a good
formula for the quantifier, the extension step or the cut rule look like?
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Mikoláš Janota1, William Klieber3, Joao Marques-Silva1,2,
and Edmund Clarke3

1 IST/INESC-ID, Lisbon, Portugal
2 University College Dublin, Ireland

3 Carnegie Mellon University, Pittsburgh, PA, USA

Abstract. We propose two novel approaches for using Counterexample-
Guided Abstraction Refinement (CEGAR) in Quantified Boolean For-
mula (QBF) solvers. The first approach develops a recursive algorithm
whose search is driven by CEGAR (rather than by DPLL). The sec-
ond approach employs CEGAR as an additional learning technique in
an existing DPLL-based QBF solver. Experimental evaluation of the im-
plemented prototypes shows that the CEGAR-driven solver outperforms
existing solvers on a number of families in the QBF-LIB and that the
DPLL solver benefits from the additional type of learning. Thus this ar-
ticle opens two promising avenues in QBF: CEGAR-driven solvers as an
alternative to existing approaches and a novel type of learning in DPLL.

1 Introduction

Quantified Boolean formulas (QBFs) [8] naturally extend the SAT problem by
enabling expressing PSPACE-complete problems, which can be found in a num-
ber of areas [13]. While nonrandom SAT solving has been dominated by the
DPLL procedure, it has proven to be far from a silver bullet for QBF solving. In-
deed, a number of solving techniques have been proposed for QBF [12,3,4,19,15],
complemented by a variety of preprocessing techniques [7,14,21,5].

This paper extends the family of QBF solving techniques by employing the
counterexample guided abstraction refinement (CEGAR) paradigm [10]. This is
done in two different ways. The first approach develops a novel algorithm, named
RAReQS, that gradually expands the given formula into a propositional one. In
contrast to the existing expansion-based solvers [1,4,19], the use of CEGAR in
RAReQS enables terminating before the formula is fully expanded and thus sub-
stantially mitigates the problems with memory blowup inherent to expansion-
based solvers. The second approach employs CEGAR as an additional learning
technique in an existing DPLL-based QBF solver. At the price of higher mem-
ory consumption, this learning technique enables more aggressive pruning of
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the search space than the existing techniques [28]. The experimental evaluation
carried out demonstrates that CEGAR-based techniques are useful for a large
number of families in the QBF-LIB [25].

2 Preliminaries

Quantified Boolean formulas (QBF) are assumed, unless noted otherwise, to be
in prenex form Q1z1. . .Qnzn.φ where Qi ∈ {∀, ∃}, zi are distinct variables, and
φ is a propositional formula using only the variables zi and the constants 0
(false), 1 (true). The sequence of quantifiers in a QBF is called the prefix and
the propositional formula the matrix. The prefix is divided into quantifier blocks,
each of which is a subsequence ∀x1 . . . ∀xn or resp. ∃x1 . . . ∃xn, which we denote
by ∀X or resp. ∃X , where X = {x1, ..., xn}.
Notation. We write Q̄ for “∀” (if Q is “∃”) or “∃” (if Q is “∀”).

Whenever convenient, parts of a prefix are denoted as P with possible sub-
scripts, e.g. P1∀XP2. φ denotes a QBF with the matrix φ and a prefix that
contains ∀X . If the quantifier of a block Y occurs within the scope of the quan-
tifier of another block X , we say that variables in X are upstream of variables
in Y and that variables in Y are downstream of variables in X .

Variable assignments are represented as sets of literals. In particular, an as-
signment τ to the set of variables X contains exactly one of x, ¬x for each x ∈ X ,
with the meaning that if x ∈ τ , the variable x has the value 1 in τ and if ¬x ∈ τ ,
it has the value 0.

Notation. We write BY for the set of assignments to the variables Y .

For a Boolean formula φ and an assignment τ we write φ[τ ] for the substitution
of τ in φ. In practice a substitution also performs basic simplifications, e.g.
(¬x ∨ y)[{¬x}] = (¬0 ∨ y) = 1. We extend the notion of substitution to QBF so
that it first removes the quantifiers of substituted variables and then substitutes
all occurrences with their assigned values. E.g., if τ is an assignment to a block
X , then (P1QXP2. φ) [τ ] results in P1P2. φ[τ ].

A Boolean formula in conjunctive normal form (CNF) is a conjunction of
clauses, where a clause is a disjunction of literals, and a literal is either a variable
or its complement. Whenever convenient, a CNF formula is treated as a set of
clauses. For a literal l, var(l) denotes the variable in l, i.e. var(¬x) = var(x) = x.

The pseudocode throughout the paper uses the function SAT(φ) to represent
a call to a SAT solver on a propositional formula φ. The function returns a
satisfying assignment for φ, if such exists, and returns NULL otherwise.

2.1 Game-Centric View

A QBF can be seen as a a game between the universal player and the existential
player. During the game, the existential player assigns values to the existentially
quantified variables and the universal player assigns values to the universally
quantified ones. A player can assign a value to a variable only if all variables
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upstream of it already have a value. The existential player wins if the formula
evaluates to 1 and the universal player wins if it evaluates to 0.

We note that the order in which values are given to variables in the same
block is unimportant. Hence, by a move we mean an assignment to variables in
a certain block. A concept useful throughout the paper are the winning moves.

Definition 1 (winning move). Consider a (nonprenex) closed QBF QX.Φ
and an assignment τ to X. Then τ is called a winning move for QX.Φ if Q=∃
and Φ[τ ] is true or Q=∀ and Φ[τ ] is false.
Notation. We write M(QX.Φ) to denote the set of winning moves for QX.Φ.

Observation 1. Let Φ be a QBF.
A closed QBF ∃X.Φ is true iff there exists a winning move for ∃X.Φ.
A closed QBF ∀Y. Φ is true iff there does not exist a winning move for ∀Y. Φ.

3 Recursive CEGAR-Based Algorithm

Previous work on QBF shows how CEGAR can be used to solve formulas with
2 levels of quantifiers [17]. Here we generalize this approach to an arbitrary
number of quantifiers by recursion. The recursion follows the prefix of the given
formula starting with the most upstream variables progressing towards more
downstream variables. It tries to find a winning move (Definition 1) for variables
in a certain block by making recursive calls to obtain winning moves for the
downstream variables. The base case of the recursion, i.e., a QBF with one
quantifier, is handled by a SAT solver.

The algorithm is presented as a recursive function returning a winning move
for the given formula, if such move exists. Following the CEGAR paradigm, the
function builds an abstraction which provides candidates for the winning move.
This abstraction is gradually refined as the algorithm progresses. Refinement is
realized by strengthening the abstraction, which means reducing the set of win-
ning moves; strengthening is achieved by applying conjunction and disjunction.

Observation 2. Let Φ1, . . . , Φn be QBFs with free variables in X.
M (∀X. (Φ1 ∨ · · · ∨ Φn)) ⊆M (∀X. Φi), i ∈ 1..n.
M (∃X. (Φ1 ∧ · · · ∧ Φn)) ⊆M (∃X. Φi), i ∈ 1..n.
M(∀X∃Y. Φ) =M(∀X.

∨
μ∈BY Φ[μ])

M(∃X∀QY. Φ) =M(∃X.
∧

μ∈BY Φ[μ])

The second half of the above observation gives us a recipe how to eliminate
quantifiers by expanding them into the corresponding propositional operator.
One could thus eliminate quantifiers one by one and eventually call a SAT solver
if only one quantifier is left. The clear disadvantage of this approach is that the
formula grows rapidly and therefore performing the expansion is often unfeasible.
This is where CEGAR comes in; the algorithm expands quantifiers carefully,
based on counterexamples that show that the current expansion is too weak. In
this spirit, we define abstraction as a partial expansion of the given formula.
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Algorithm 1. Basic recursive CEGAR algorithm for QBF

1 Function Solve (QX.Φ)
input : QX. Φ is a closed QBF in prenex form with no adjacent

blocks with the same quantifier
output : a winning move for QX.Φ if there is one, NULL otherwise

2 begin
3 if Φ has no quantifiers then
4 return (Q = ∃) ? SAT(φ) : SAT(¬φ)
5 end
6 ω ← ∅
7 while true do
8 α← (Q = ∃) ?

∧
μ∈ω Φ[μ] :

∨
μ∈ω Φ[μ] // build abstraction

9 τ ′ ← Solve(Prenex(QX. α)) // find a candidate solution

10 if τ ′ = NULL then return NULL // no winning move

11 τ ← {l | l ∈ τ ′ ∧ var(l) ∈ X} // filter a move for X
12 μ← Solve(Φ[τ ]) // find a counterexample

13 if μ = NULL then return τ
14 ω ← ω ∪ {μ} // refine

15 end

16 end

Definition 2 (ω-abstraction). Let ω be a subset of BY .
The ω-abstraction of a closed QBF ∀X∃Y. Φ is the formula ∀X.

∨
μ∈ω Φ[μ].

The ω-abstraction of a closed QBF ∃X∀Y. Φ is the formula ∃X.
∧

μ∈ω Φ[μ].

Observe that any winning move for QXQ̄Y. Φ is also a winning move for its
ω-abstraction (for arbitrary ω). The reverse, however, does not hold. Hence,
following the CEGAR paradigm, we first find a winning move for the abstraction
and then verify that it is also a winning move for the given formula. Verifying
that a given assignment is a winning move entails solving another QBF.

Observation 3. An assignment τ is a winning move for a closed QXQ̄Y. Φ iff
Q̄Y. Φ[τ ] has no winning move.

If a winning move for the abstraction is verified to be a winning move for the
given formula, the move is returned. However, if this is not the case, the ab-
straction is strengthened. Observation 3 tells us that if an assignment τ is not
a winning move for QXQ̄Y. Φ, then there is a winning move μ for the opposing
quantifier Q̄ for the QBF Q̄Y. Φ[τ ]. We say that this move μ is a counterexam-
ple to τ because it serves as a witness demonstrating that τ is not a winning
move for QXQ̄Y. Φ. In accordance with the concept of counterexample guided
abstraction refinement, if a counterexample μ is found, the current ω-abstraction
is strengthened by adding μ to ω.

When we put these things together, we obtain Algorithm 1. The algorithm is
given a closed QBF QX.Φ. and returns a winning move for QX.Φ, if such exists,
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and returns NULL otherwise. It is required that QX.Φ is in prenex form where
no two adjacent blocks have the same quantifiers (the blocks are maximal).
The algorithm starts with ω = ∅; this represents an abstraction that can be
won by any candidate. In each iteration of the CEGAR loop it first solves the
abstraction (line 9) and then verifies whether the move winning the abstraction
is also a winning move for the given problem (line 12). These operations are
realized as recursive calls. If there is no winning move for the abstraction, then
there is no winning move for the given problem and the function terminates. If
there is no counterexample to the move winning the abstraction, then this move
is also a winning move for the given problem and the function terminates. If
there is a counterexample to the move winning the abstraction, the abstraction
must be refined (line 14).

The precondition of the function that the input formula must be in prenex
form with no adjacent blocks with the same quantifier poses some technical
difficulty. When constructed directly according to its definition (Definition 2),
the abstraction does not necessarily satisfy this condition.

Consider the case for Q = ∃ (Q = ∀ is analogous). The abstraction is of the
form ∃X.

∧
μ∈ω Φ[μ]. Prenexing the abstraction generates fresh variables for each

of the conjuncts Φ[μ], interleaves them into a single prefix, and merges adjacent
blocks that start with the same quantifier. Since each Φ[μ] starts with the exis-
tential quantifier (the substitution of μ eliminated the universal variables at the
top), after prenexing, the abstraction’s prefix starts with ∃XX1 . . . Xk where Xi

are the fresh variables for the conjuncts Φ[μ]. For this reason if a winning move
for the abstraction is computed, only the assignments to the variables X are
considered (line 11).

Example 1. Consider the QBF ∃vw.Φ, where Φ = ∀u∃xy. (v ∨w ∨ x)∧ (v̄ ∨ y)∧
(w̄ ∨ y) ∧ (u ∨ x̄) ∧ (ū ∨ ȳ), and the candidates {v, w} and {v̄, w̄}, and cor-
responding counterexamples {u} and {ū}. Refinement yields the abstraction
∃vw. Φ[{u}] ∧ Φ[{ū}], with the prenex form ∃vwxyx′y′. (v ∨ w ∨ x) ∧ (v̄ ∨ y) ∧
(w̄ ∨ y)∧ (ȳ)∧ (v ∨w ∨ x′)∧ (v̄ ∨ y′)∧ (w̄ ∨ y′)∧ (x̄′) with no winning move and
the algorithm terminates with the return value NULL.

3.1 Improving Recursive CEGAR-Based Algorithm

Algorithm 1 clearly suffers from high memory consumption since in each itera-
tion of the loop the abstraction is increased by the size of the input formula and
the number of its variables is doubled (in the worst case). Recursive calls fur-
ther amplify this unfavorable behavior. For the input formula ∃X. Φ, perform-
ing n1 iterations with the counterexamples μ1

1, . . . , μ
1
n1

yields the abstraction
Ω = ∃X. φ[μ1

1] ∧ · · · ∧ φ[μ1
n1
]. The algorithm subsequently invokes the recursive

call Solve(Ω) on line 9. If within this recursive call the loop iterates n2 times, its
abstraction is of the form ∃X. Ω[μ2

1]∨· · ·∨Ω[μ2
n2
] with the size O(n1×n2×|φ|).

In general, if the algorithm iterates ni times at a recursion level i, the abstraction
at level k is of the size O(n1 × . . .× nk × |φ|).

To cope with this inefficiency, we exploit the form of the formulas that the
algorithm handles. In the case of the existential quantifier, the abstraction is a
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conjunct, and it is a disjunct in the case of the universal quantifier. For the sake of
uniformity, we bridge these two forms by introducing the notion of a multi-game
where a player tries to find a move that wins multiple formulas simultaneously.

Definition 3 (multi-game). A multi-game is denoted by QX.{Φ1, . . . , Φn}
where each Φi is a prenex QBF starting with Q̄ or has no quantifiers. The free
variables of each Φi must be in X and all Φi have the same number of quantifier
blocks. We refer to the formulas Φi as subgames and QX as the top-level prefix.

A winning move for a multi-game is an assignment to the variables X such
that it is a winning move for each of the formulas QX. Φi.

Observe that the set of winning moves of a multi-game QX.{Φ1, . . . , Φn} is the
same as the set of winning moves of the QBF ∀X.(Φ1 ∨ · · · ∨ Φn) for Q = ∀ and it
is the same as ∃X.(Φ1 ∧ · · · ∧ Φn) for Q = ∃. And, any QBF QX. Φ corresponds
to a multi-game with a single subgame QX.{Φ}

To solve multi-games we use Algorithm 2. The algorithm is given a multi-
game to solve and the abstraction is again a multi-game. To determine whether
the candidate τ is a winning move, it tests whether it is a winning move for the
subgames in turn. If it finds a subgame Φi s.t. Φi[τ ] is won by the opponent Q̄
by a move μ, then Φi[μ] is used to strengthen the abstraction.

Since an abstraction is a multi-game, it seems natural to add Φi[μ] to the set
of its subgames. This, however, cannot be done right away because the formula
is not in the right form. In particular, all the subgames must start with the
opposite quantifier as the top-level prefix. Hence, if Φi is of the form Q̄Y QX1. Ψi

and μ ∈ BY , then Φi[μ] = QX1. Ψi[μ]. To bring the formula into the right form,
we introduce fresh variables for the variables X1 and move them into the top-
level prefix. More precisely, the function Refine(α, Φl, μl) is defined as follows
(observe that the subgames remain in prenex form).
Refine

(
QX.{Ψ1, . . . , Ψn}, Q̄Y QX1. Ψ, μ

)
:= QXX ′

1.{Ψ1, . . . , Ψn, Ψ
′[μ]}

where X ′
1 are fresh duplicates of the variables X1 and Ψ ′ is Ψ with X1 replaced

by X ′
1

Refine
(
QX.{Ψ1, . . . , Ψn}, Q̄Y. ψ, μ

)
:= QX.{Ψ1, . . . , Ψn, ψ[μ]}

where ψ is a propositional formula (where no duplicates are needed)
Similarly to Algorithm 1, after the refinement, the abstraction’s top-level pre-

fix contains additional variables besides the variables X . Hence, values for these
variables are filtered out if a winning move for the abstraction is found.

3.2 Properties of the Algorithms

In CEGAR loop of Algorithm 1 no candidate or counterexample repeats. In-
tuitively, this is because once a counterexample μ is found, the abstraction
is strengthened so that in the future winning moves for the abstraction can-
not be beaten by the move μ. Consequently, the loop is terminating and for
a formula QXQ̄Y.Φ the number of its iterations is bounded by the number
of possible assignments to the variables X and Y , i.e. min(2|X|, 2|Y |). In the
worst case, in each iteration the abstraction grows by the size of Φ. For a multi-
gameQX. {Φ1, . . . , Φn} in the CEGAR loop of Algorithm 2 no candidates repeat
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Algorithm 2. Recursive CEGAR algorithm for multi-games

1 Function RAReQS (QX. {Φ1, . . . , Φn})
2 output: a winning move for QX. {Φ1, . . . , Φn} if there is one; NULL
otherwise

3 begin
4 if Φi have no quantifiers then
5 return Q = ∃ ? SAT(

∧
i Φi) : SAT(¬(

∨
i Φ))

6 α← QX. {}
7 while true do
8 τ ′ ← RAReQS(α) // find a candidate solution

9 if τ ′ = NULL then return NULL
10 τ ← {l | l ∈ τ ′ ∧ var(l) ∈ X} // filter a move for X
11 for i← 1 to n do μi ← RAReQS(Φi[τ ]) // find a

counterexample

12 if μi = NULL for all i ∈ {1..n} then return τ
13 let l ∈ {1..n} be s.t. μl �= NULL
14 α← Refine(α, Φl, μl) // refine

15 end

16 end

but counterexamples may. However, for a given i ∈ 1..n, a counterexample μi

does not repeat. More precisely there are no two distinct iterations of the loop
with the corresponding candidates and counterexamples τ1, μ1, τ2, μ2, such that
μ1 = μ2 and μ1 is a winning move for both Φi[τ1] and Φi[τ2] for some i. This
demonstrates termination with the upper bound for the number of iterations
as min(2|X|, n× 2|Y |). In the worst case, in each iteration the abstraction grows
by the maximum of the sizes of the subgames Φ1, . . . , Φn. Soundness and com-
pleteness of the algorithms 1 and 2 are direct consequences of Observation 2.

3.3 Implementation Details

We have implemented a prototype of RAReQS in C++, supporting the QDIMACS
format, with the underlying SAT solver minisat 2.2 [11].

The implementation has several distinctive features. In Algorithm 2, an ab-
straction computed within a sub-call is forgotten once the call returns. This may
lead to repetition of work and hence the solver supports maintaining these ab-
stractions and strengthening them gradually, similarly to the way SAT solvers
provide incremental interface. This incremental approach, however, tends to lead
to unwieldy memory consumption and therefore, it is used only when the given
multigame’s subgames have 2 or fewer quantification blocks.

If an assignment τ is a candidate for a winning move that turns out not to
be a winning move, the refinement guarantees that τ is not a solution to the
abstraction in the future iterations of the CEGAR loop. This knowledge enables
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Algorithm 3. DPLL Algorithm with CEGAR Learning

1. global πcur = ∅;

2. function dpll_solve(Φin) {

3. while (true) {

4. while (we don’t know who has a winning strategy under πcur) {

5. decide lit(); propagate();

7. }

8. Φin := dpll_learn(Φin);

9. if (we learned who has a winning strategy under ∅) return;

10. if (last decision literal is owned by winner) {

11. Φin := cegar learn(Φin);

12. }

13. backtrack();

14. propagate(); // Learned information will force a literal.
15. }

16. }

us to make the subcall for solving the abstraction more efficient by explicitly
disabling τ as a winning move for the abstraction. We refer to this technique as
blocking and it is similar to the refinement used in certain SMT solvers [24,2].

Throughout its course, the algorithm may produce a large number of new
formulas, either by substitution or refinement. Since these formulas tend to be
simpler than the given one, they can be further simplified by standard QBF
preprocessing techniques. The implementation uses unit propagation and mono-
tone (pure) literal rule [9]. These simplifications introduce the complication that
in a multi-game QX.{Φ1, . . . , Φn} the individual subgames might not necessar-
ily have the same number of quantifier levels. In such case, all games with no
quantifiers are immediately put into the abstraction before the loop starts.

4 CEGAR as a Learning Technique in DPLL

The previous section shows that CEGAR can give rise to a complete and sound
algorithm for QBF. In this section we show that CEGAR enables us to extend
existing DPLL solvers with an additional learning technique. To illustrate the
basic idea consider the QBF ∀X. (∃Y. φ) and a situation when the solver as-
signed values to variables in X and Y such that φ is satisfied, i.e., the existential
player won. This assignment has two disjoint parts, πcand and πcex, which are
assignments to X and Y , respectively. Conceptually, πcand corresponds the can-
didate assignment in RAReQS and πcex to its counterexample. In this case, the
CEGAR-based learning will correspond to disjoining the formula φ[πcex] onto φ,
resulting in ∀X. (∃Y. φ) ∨ φ[πcex], so that πcand is avoided in the future.

The CEGAR learning in DPLL is most naturally described in the context
of a non-prenex, non-clausal solver such as GhostQ [18]. Given an assignment
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1. Let Xc be the quantifier block of the last decision literal.
Let Qc and Φc be such that (QcXc.Φc) is a subformula of Φin.

2. Let πc be a complete assignment for Xc created by extending the solver’s
current assignment with arbitrary values for the unassigned variables in
Xc and removing variables in blocks other than Xc. This assignment πc

corresponds to the counterexample in the recursive CEGAR approach.
3. We modify Φin by:

• substituting (∃Xc.Φc) with (∃Xc.Φc) ∨ Φc[πc], if Qc = “∃”, or
• substituting (∀Xc.Φc) with (∀Xc.Φc) ∧ Φc[πc], if Qc = “∀”.

4. All variables that are bound by a quantifier inside Φc[πc] are renamed to
preserve uniqueness of variable names.

Fig. 1. CEGAR Learning in DPLL

π, such a solver will tell us that either (1) the existential player has a winning
stategy under π (i.e., Φin[π] is true), (2) the universal player has a winning
stategy under π (i.e., Φin[π] is false), or (3) it is not yet known which player has
a winning strategy under π.

We modify such a solver by inserting a call to a new CEGAR-learning pro-
cedure after performing standard DPLL learning, as shown in Algorithm 3. We
write “Φin” to denote the current input formula, i.e., the input formula enhanced
with what the solver has learned up to now. Both standard DPLL learning and
CEGAR learning are performed by modifying Φin. As shown in Algorithm 3,
CEGAR learning is performed only if the last decision literal is owned by the
winner. (The case where the last decision literal is owned by the losing player
corresponds to the conflicts that take place within the underlying SAT solver
in RAReQS.) The CEGAR-learning procedure is shown in Figure 1. Step 3 is
justified by Observation 5 below, which in turn is justified by Observation 4.

Observation 4. Consider an arbitrary QBF (QcXc. Φc), possibly containing
free variables, but where each bound variable is bound by at most one quanti-
fier. Then it follows immediately from definition of quantification that:

∃Xc.Φc =
∨

π∈BXc

Φc[π] and ∀Xc.Φc =
∧

π∈BXc

Φc[π]

(Recall that “BXc ” denotes the set of all assignments to Xc.)

Observation 5. Since conjunction and disjunction are idempotent,

∃Xc.Φc = (∃Xc.Φc) ∨ Φc[πc], where πc ∈ BXc

∀Xc.Φc = (∀Xc.Φc) ∧ Φc[πc], where πc ∈ BXc
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4.1 Implementation Details

We have implemented a limited version of CEGAR learning in the solver GhostQ
[18]. Our implementation uses a modified version of step 3 of Figure 1. We
substitute πc into the original version of the input formula Φin, not the current
version of Φin. Although substituting into the original formula instead of the
current formula potentially reduces the effectiveness of CEGAR learning (since
we can’t learn a refinement of a refinement), it reduces the memory consumed per
refinement. Unit propagation and the Pure Literal Rule are applied to simplify
the result of the substitution, among other optimizations.

Step 2 of Figure 1 extends the counterexample πc to a complete assignment to
the quantifier block Xc. This allows completely eliminating a quantifier block,
which may cause two quantifier blocks of the same quantification type to be-
come adjacent to each other. If so, the two adjacent blocks are merged together,
providing greater freedom in selecting variable order.

5 Experimental Results

Our objective was to analyze the effect of CEGAR on the different families of
available benchmarks. Due to do the large number of families in QBF-LIB [25],
we have targeted families from formal verification and planning as two prominent
applications of QBF. Several large and hard families were sampled with 150 files
(terminator, tipfixpoint, Strategic Companies); the area of planning con-
tains four classes for robot planning, each counting 1000 instances with similar
characteristics and thus only one of these classes was selected (Robots2D). The
solvers QuBE7.2, Quantor, and Nenofex were chosen for comparison. QuBE7.2 is
a state-of-the-art DPLL-based solver; Quantor and Nenofex are expansion-based
solvers (c.f. Section 6). The experimental results were obtained on an Intel Xeon
5160 3GHz, with 4GB of memory. The time limit was set to 800 seconds and the
memory limit to 2GB.

All the instances were preprocessed by the preprocessor bloqqer [5] and in-
stances solved by the preprocessor alone were excluded from further analysis.
An exception was made for the family Debug where preprocessing turned out to
be infeasible and the family was considered in its unpreprocessed form.

Unlike the other solvers, GhostQ’s input format is not clause-based (QDI-
MACS) but it is circuit-based. To enable running GhostQ on the targeted in-
stances, the solver was prepended with a reverse-engineering front-end. Since
this front-end cannot handle bloqqer’s output, GhostQ was run directly on the
instances without preprocessing. The other solvers were run on the preprocessed
instances (further preprocessing was disabled for QuBE7.2).

The relation between solving times and instances is presented by a cactus
plot in Figure 2; number of solved instances per family are shown in Table 2; a
comparison of RAReQS with other solvers is presented in Table 1. More detailed
information can be found at http://sat.inesc-id.pt/~mikolas/sat12.

On the considered benchmarks, RAReQS solved the most instances, approx-
imately 33% more than the second solver QuBE7.2. RAReQS also turned out

http://sat.inesc-id.pt/~mikolas/sat12
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Fig. 2. Cactus plot of the overall results

Table 1. Number of instances solved by RAReQS but not by a competing solver, and
vice versa

GhostQ GhostQ-CEGAR QuBE7.2 Quantor Nenofex

Only RAReQS 1661 1336 998 2436 2564

Only competitor 242 269 46 30 13

to be the best solver for most of the types of the considered instances. Table 1
further shows that for each of the other solvers, there is only a small portion of
instances that the other solver can solve and RAReQS cannot. Out of the 801
instances when the solver was aborted, only 50 ran out of of memory.

In several families the addition of CEGAR learning to GhostQ worsened its
performance. With the exception of Robots2D, however, the performance was
worse only slightly. Overall, GhostQ benefited from the additional CEGAR learn-
ing and in particular for certain families. A family worth noting is irqlkeapclte,
where no instances were solved by any of the solvers except for GhostQ-CEGAR.

The usefulness of CEGAR was in particular demonstrated by the families
incrementer-encoder, conformant-planning, trafficlight-controller,
Sorting-networks, and BMC where RAReQS solved significantly more instances
than the existing solvers, and GhostQ-CEGAR improved significantly over GhostQ.
Most notably, for incrementer-encoder (484) and RobotsD2 (700) only one
instance was not solved by RAReQS, and for blackbox-01X-QBF (320) and
trafficlight-controller (1459) RAReQS solved all instances.

6 Related Work

CEGAR has proven useful in number of areas, most notably in model check-
ing [10] and SMT solving [24,2]; more recently it has been applied to handle
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Table 2. Number of instances solved within 800 seconds by each solver. “Lev” indicates
the number of quantifier blocks (min–max) in the family of instances, post-bloqqer.

Family Lev. RAReQS GhostQ GhostQ-Cegar QuBE7.2 Quantor Nenofex

trafficlight-ctlr (1459) 1–287 1459 806 1001 1092 955 863

RobotsD2 (700) 2–2 699 350 271 630 0 30

incrementer-encoder (484) 3–119 483 285 477 284 51 27

blackbox-01X-QBF (320) 2–21 320 138 126 224 3 4

Strat. Comp. (samp.) (150) 1–2 107 12 12 107 18 12

BMC (85) 1–3 73 26 48 37 65 64

Sorting-networks (84) 1–3 72 24 32 45 38 38

blackbox-design (27) 5–9 27 27 27 18 0 0

conformant-planning (23) 1–3 17 7 16 5 13 12

Adder (28) 3–7 11 2 2 4 5 9

Lin. Bitvec. Rank. Fun. (60) 3–3 9 0 0 0 0 0

Ling (8) 1–3 8 6 8 8 8 8

Blocks (7) 3–3 7 6 7 5 7 7

fpu (6) 1–3 6 0 0 6 6 6

RankingFunctions (4) 2–2 3 0 0 3 0 0

Logn (2) 3–3 2 2 2 2 2 2

Mneimneh-Sakallah (163) 1–3 110 148 141 89 3 22

tipfixpoint-sample (150) 1–3 26 128 127 22 5 6

terminator-sample (150) 2–2 98 109 103 9 25 0

tipdiam (121) 1–3 55 99 93 54 21 14

Scholl-Becker (55) 1–29 37 43 40 29 32 27

evader-pursuer (15) 5–19 10 11 8 11 2 2

uclid (3) 4–6 0 2 2 0 0 0

toilet-all (136) 1–1 134 133 131 131 135 133

Counter (58) 1–125 30 14 11 20 33 15

Debug (38) 3–5 3 0 0 0 24 6

circuits (63) 1–3 8 4 5 5 9 8

Gent-Rowley (205) 7–81 52 67 67 70 2 0

jmc-quant (+squaring) (20) 3–9 2 0 0 6 0 2

irqlkeapclte (45) 2–2 0 0 44 0 0 0

total (4669) 3868 2449 2801 2916 1462 1317

quantification in SMT [27,23]. Special cases of QBF, with limited number of
quantifiers, have been targeted by CEGAR: computing vertex eccentricity [22],
nonmonotonic reasoning [6,16], two-level quantification [17].

A SAT solver was used in [26] to guide DPLL search of a QBF solver and to
cut out unsatisfiable branches. A notion of abstraction was also used in QBF
preprocessing [21]. This notion, however, differs from the one used in RAReQS
as it means treating universally quantified variables as existentially quantified.

An important feature of RAReQS is the expansion of the given QBF into
a propositional formula, which is then solved by a SAT solver. This technique
is used for preprocessing [7] but also several existing solvers tackle QBF solv-
ing in this way, most notably QUBOS [1], Quantor [4], and Nenofex [19]. Just
as RAReQS uses multi-games, these solvers employ some various techniques
to mitigate the blowup of the expansion (besides preprocessing). QUBOS uses
miniscoping, Quantor tree-like prefixes, and Nenofex uses negation normal form.
In these aspects, the solvers share similarities with RAReQS.

The way the expansion is carried out is significantly different. While the other
solvers start the expansion from the innermost variables, RAReQS starts from
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the outermost variables. The main difference, however, lies in the careful expan-
sion in RAReQS. In the aforementioned solvers, once a variable is scheduled to
be expanded, both of its values are considered in the expansion. In contrast,
in RAReQS only a particular assignment to a block of variables chosen in the
expansion and the expansion is checked whether it is sufficient or not. This is
an important factor for both time and space complexity. For large formulas, the
traditional expansion-based solvers are bound to generate unwieldy formulas but
the use of abstraction in RAReQS enables the solver to stop before this expan-
sion is reached. This leads to generating easier formulas for the underlying SAT
solver and dramatically mitigates the problems with memory blowup.

7 Conclusions and Future Work

Applying the CEGAR paradigm, this paper develops two novel techniques for
QBF solving. The first technique is a CEGAR-driven solver RAReQS and the
second an additional learning technique for DPLL solvers.

In its workings, RAReQS is close to expansion-based solvers (e.g. Quantor,
Nenofex) but with the important difference that the expansion is done step-by-
step, driven by counterexamples. Thus, the solver builds an abstraction of the
given formula by constructing a partial expansion. The downside of this approach
may be that if in the end a full expansion is needed, then RAReQS performs the
same expansion as a traditional expansion-based solver but with the overhead
of intermediate tests for whether or not the expansion is already sufficient.

However, the approach has important advantages. Whenever there is no win-
ning move for the partial expansion, then there is no winning move for the given
formula. This enables RAReQS to quickly stop for formulas with no winning
moves. For formulas for which there is a winning move, RAReQS only needs to
build a strong-enough partial expansion whose winning moves are also likely to be
winning moves for the given formula. The experimental results demonstrate the
ability of RAReQS to avoid the inherent memory blowup of expansion solvers,
and, that careful expansion outperforms a traditional DPLL-based approach on
a large number of practical instances.

We have shown that abstraction-refinement as used in RAReQS is also appli-
cable within DPLL solvers as an additional learning mechanism. This provides a
more powerful learning technique than standard clause/cube learning, although
it requires more memory. Experimental evaluation indicates that this type of
learning is indeed useful for DPLL-based solvers.

In the future we plan to further develop our DPLL solver so that it supports
the full range of CEGAR learning exploited by RAReQS and to investigate
how to fine-tune this learning in order to mitigate the speed penalty for the
cases where the learning provides little information over the traditional learning.
This can not only be done by better engineering of the solver but also devising
schemata that disable the learning once deemed too costly. In RAReQS we plan
to investigate how to integrate techniques used in other solvers. In particular,
more aggressive preprocessing as used in Quantor and techniques for finding
commonalities in formulas used in Nenofex and dependency detection [20].
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8. Büning, H.K., Bubeck, U.: Theory of quantified boolean formulas. In: Handbook
of Satisfiability. IOS Press (2009)

9. Cadoli, M., Giovanardi, A., Schaerf, M.: An algorithm to evaluate Quantified
Boolean Formulae. In: National Conference on Artificial Intelligence (1998)

10. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5) (2003)
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Abstract. Henkin quantifiers, when applied on Boolean formulae, yield-
ing the so-called dependency quantified Boolean formulae (DQBF), offer
succinct descriptive power specifying variable dependencies. Despite their
natural applications to games with incomplete information, logic synthe-
sis with constrained input dependencies, etc., DQBF remain a relatively
unexplored subject however. This paper investigates their basic prop-
erties, including formula negation and complement, formula expansion,
and prenex and non-prenex form conversions. In particular, the proposed
DQBF formulation is established from a synthesis perspective concerned
with Skolem-function models and Herbrand-function countermodels.

1 Introduction

Henkin quantifiers [9], also known as branching quantifiers among other names,
generalize the standard quantification by admitting explicit specification, for
an existentially quantified variable, about its dependence on universally quanti-
fied variables. In addition to mathematical logic, Henkin quantifiers appear not
uncommonly in various contexts, such as natural languages [12], computation
[2], game theory [11], and even system design. They permit the expression of
(in)dependence in language, logic and computation, the modelling of incomplete
information in noncooperative games, and the specification of partial dependen-
cies among components in system design, which is the main motivation of this
work.

When Henkin quantifiers are imposed on first-order logic (FOL) formulae, it
results in the formulation of independence-friendly (IF) logic [10], which was
shown to be more expressive than first-order logic and exhibit expressive power
same as existential second-order logic. However one notable limitation among
others of IF logic under the game-theoretical semantics is the violation of the
law of the excluded middle, which states either a proposition or its negation is
true. Therefore negating a formula can be problematic in terms of truth and fal-
sity. From a game-theoretical viewpoint, it corresponds to undetermined games,
where there are cases under which no player has a winning strategy. More-
over, the winning strategies of the semantic games do not exactly correspond
to Skolem and Herbrand functions in synthesis applications although syntactic
rules for negating IF logic formulae were suggested in [7,6].
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When Henkin quantifiers are imposed on Boolean formulae, it results in the
so-called dependency quantified Boolean formulae (DQBF), whose satisfiability
lies in the complexity class of NEXPTIME-complete [11]. In contrast to QBF,
which is PSPACE-complete, DQBF offers more succinct descriptive power than
QBF provided that NEXPTIME is not in PSPACE. By expansion on univer-
sally quantified variables, a DQBF can be converted to a QBF with the cost of
exponential blow up in formula size [4,5].

This paper studies DQBF from a synthesis perspective. By distinguishing for-
mula negation and complement, the connections between Skolem and Herbrand
functions are established. While the law of the excluded middle holds for nega-
tion, it does not hold for complement. The special subset of the DQBF whose
truth and falsity coincide with the existence of Skolem and Herbrand functions,
respectively, is characterized. Our formulation provides a unified view on DQBF
models and countermodels, which encompasses QBF as a special case. Some
fundamental properties of DQBF are studied in Section 3, and the potential
application of DQBF on Boolean relation determinization for input constrained
function extraction is presented in Section 4. Discussions and conclusions are
then given in Section 5 and Section 6, respectively.

2 Preliminaries

As conventional notation, a set is denoted with an upper-case letter, e.g., V ; its
elements are in lower-case letters, e.g., vi ∈ V . The ordered version (i.e., vector)
of V = {v1, . . . , vn} is denoted as v = (v1, . . . , vn). Substituting a term t (re-
spectively a vector of terms t = (t1, . . . , tn)) for some variable v (respectively a
vector of variables v = (v1, . . . , vn)) in a formula φ is denoted as φ[v/t] (respec-
tively φ[v/t] or φ[v1/t1, . . . , vn/tn]). A formula φ under some truth assignment
α to its variables is denoted as φ|α.

2.1 Quantified Boolean Formulae

A quantified Boolean formula (QBF) Φ over variables V = {v1, . . . , vk} in the
prenex form is expressed as

Q1v1 · · ·Qkvk.φ,

where Q1v1 · · ·Qkvk, with Qi ∈ {∃, ∀}, is called the prefix, denoted Φpfx ,and φ,
a quantifier-free formula over variables V , is called the matrix, denoted Φmtx.
We call variable vi in a QBF an existential variable if Qi = ∃, or a universal
variable if Qi = ∀. A QBF is of non-prenex form if its quantifiers are scattered
around the formula without a clean separation between the prefix and the matrix.
Unless otherwise said, we shall assume that a QBF is in the prenex form and is
totally quantified, i.e., with no free variables. As a notational convention, unless
otherwise specified we shall let X = {x1, . . . , xn} be the set of universal variables
and Y = {y1, . . . , ym} existential variables.
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Given a QBF Φ over variables V , the quantification level � : V → N of variable
vi ∈ V is defined to be the number of quantifier alternations between ∃ and ∀
from the outermost variable to variable vi in Φpfx, e.g., �(v1) = �(v2) = 0,
�(v3) = 1, and �(v4) = 2 for QBF ∃v1∃v2∀v3∃v4.φ.

Any QBF Φ over variables X∪Y can be converted into the well-known Skolem
normal form [13]. In the conversion, every appearance of yi ∈ Y in Φmtx is
replaced by its respective newly introduced function symbol Fyi corresponding
to the Skolem function of yi, which refers only to the universal variables xj ∈ X
with �(xj) < �(yi). These function symbols are then existentially quantified
before (on the left of) other universal quantifiers in Φpfx. This conversion, called
Skolemization, is satisfiability preserving. Essentially a QBF Φ is true if and only
if its Skolem functions exist such that substituting Fyi for every appearance of
yi in Φmtx makes the new formula true (i.e., a tautology).

Example 1. Skolemizing the QBF

∀x1∃y1∀x2∃y2.(x1 ∨ y1 ∨ ¬y2)(¬x1 ∨ ¬x2 ∨ y2)

yields
∃Fy1∃Fy2∀x1∀x2.(x1 ∨ Fy1 ∨ ¬Fy2)(¬x1 ∨ ¬x2 ∨ Fy2)

where Fy1 is a 1-ary function symbol referring to x1, and Fy2 is a 2-ary function
symbol referring to x1 and x2. Since the QBF is true, Skolem functions exist,
for instance, Fy1 = ¬x1 and Fy2 = x1 ∧ x2.

The notion of Skolem function has its dual form, known as the Herbrand function.
For a QBF Φ, the Herbrand function Fxi of variable xi ∈ X refers only to the
existential variables yj ∈ Y with �(yj) < �(xi). Essentially a QBF Φ is false if and
only if Herbrand functions exist such that substituting Fxi for every appearance
of xi in Φmtx makes the new formula false (i.e., unsatisfiable) [3].

2.2 Dependency Quantified Boolean Formulae

A dependency quantified Boolean formula (DQBF) generalizes a QBF in its al-
lowance for explicit specification of variable dependencies. Syntactically, a DQBF
Φ is the same as a QBF except that in Φpfx an existential variable yi is annotated
with the set Si ⊆ X of universal variables referred to by its Skolem function,
denoted as ∃yi(Si), or a universal variable xj is annotated with the set Hj ⊆ Y
of existential variables referred to by its Herbrand function, denoted as ∀xj(Hj),
where Si and Hj are called the support sets of yi and xj , respectively. However,
either the dependencies for the existential variables or the dependencies for the
universal variables (but not both) shall be specified. That is, a prenex DQBF is
in either of the two forms:

S-form: ∀x1 · · · ∀xn∃y1(S1) · · · ∃ym(Sm).φ, and (1)
H-form: ∀x1(H1) · · · ∀xn(Hn)∃y1 · · · ∃ym.φ, (2)

where φ is some quantifier-free formula. Note that the syntactic quantification
order in the prefix of a DQBF is immaterial and can be arbitrary because the
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variable dependencies are explicitly specified by the support sets. Such quan-
tification with dependency specification corresponds to the Henkin quantifier
[9].1

By the above syntactic extension of DQBF, the inputs of the Skolem (respec-
tively Herbrand) function of an existential (respectively universal) variable can
be explicitly specified, rather than inferred from the syntactic quantification or-
der. That is, an existential variable yi (respectively universal variable xj) can be
specified to be semantically independent of a universal variable (respectively an
existential variable) whose syntactic scope covers yi (respectively xj). Unlike the
totally ordered set formed by those of a QBF, the support sets of the existential
or universal variables of a DQBF form a partially ordered set in general. This
extension makes DQBF more succinct in expressive power than QBF [11].

For the semantics, the truth and falsity of a DQBF can be interpreted by the
existence of Skolem and Herbrand functions. Precisely an S-form (respectively
H-form) DQBF is true (respectively false) if and only if its Skolem (respectively
Herbrand) functions exist for the existential (respectively universal) variables
while the specified variable dependencies are satisfied. Consequently, Skolem
functions serve as the model to a true S-form DQBF whereas Herbrand functions
serve as the countermodel to a false H-form DQBF.

Alternatively, the truth and falsity of a DQBF can be understood from a game-
theoretic viewpoint. Essentially an S-form DQBF can be interpreted as a game
played by one ∀-player and m noncooperative ∃-players [11]. An S-form DQBF
is true if and only if the ∃-players have winning strategies, which correspond to
the Skolem functions. Similarly an H-form DQBF can be interpreted as a game
played by one ∃-player and n noncooperative ∀-players. An H-form DQBF is
false if and only if the ∀-players have winning strategies, which correspond to
the Herbrand functions.

As was shown in [4,5], an S-form DQBF Φ can be converted to a logically
equivalent2 QBF Φ′ by formula expansion on the universal variables. Assume that
universal variable x1 is to be expanded in Formula (1) and x1 
∈ S1 ∪ · · · ∪ Sk−1

and x1 ∈ Sk ∩ · · · ∩ Sm. Then Formula (1) can be expanded to

∀x2 · · · ∀xn∃y1(S1) · · · ∃yk−1(Sk−1)

∃yk(Sk[x1/0])∃yk(Sk[x1/1]) · · · ∃ym(Sm[x1/0])∃ym(Sm[x1/1]).φ|x1=0 ∧ φ|x1=1,

where Si[x1/v] denotes x1 in Si is substituted with logic value v ∈ {0, 1}, and
φ|x1=v denotes all appearances of x1 in φ are substituted with v including those
in the support sets of variables yi(Si) for i = k, . . . , m. (The subscript of the
support set of an existential variable are helpful for tracing expansion paths.
Different expansion paths of an existential variable result in distinct existential
variables.) Such expansion can be repeatedly applied for every universal vari-
ables. The resultant formula after expanding all universal variables is a QBF,
1 Henkin quantifiers in their original proposal [9] specify dependencies for existential

variables only. The dependencies are extended in this paper to universal variables.
2 That is, Φ and Φ′ characterize the same set of Skolem-function models (by properly

relating the existential variables of Φ′ to those of Φ).
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whose variables are all existentially quantified. As to be shown in Section 3.2,
expansion can be applied also to H-form DQBF.

3 Properties of DQBF

3.1 Negation vs. Complement

In the light of QBF certification, where there always exists either a Skolem-
function model or a Herbrand-function countermodel to a QBF, one intriguing
question is whether or not the same property carries to DQBF as well. To answer
this question, we distinguish two operators, negation (symbolized by “¬”) and
complement (by “∼”), for DQBF. Let ΦS and ΦH be Formulae (1) and (2),
respectively. By negation, we define

¬ΦS = ∃x1 · · · ∃xn∀y1(S1) · · · ∀ym(Sm).¬φ and (3)
¬ΦH = ∃x1(H1) · · · ∃xn(Hn)∀y1 · · · ∀ym.¬φ. (4)

By complement, we define

∼ΦS = ∃x1(H′
1) · · · ∃xn(H′

n)∀y1 · · · ∀ym.¬φ and (5)
∼ΦH = ∃x1 · · · ∃xn∀y1(S′

1)
· · · ∀ym(S′

m).¬φ, (6)

where H ′
i = {yj ∈ Y | xi 
∈ Sj} and S′

k = {xl ∈ X | yk 
∈ Hl}, which follow what
we call the complementary principle of the Skolem and Herbrand support sets.

By the above definitions, one verifies that ¬¬Φ = Φ, ∼∼Φ = Φ, and ¬∼Φ =
∼¬Φ. Moreover, because the Skolem functions of ΦS , if they exist, are exactly
the Herbrand functions of ¬ΦS , and the Herbrand functions of ΦH , if they exist,
are exactly the Skolem functions of ¬ΦH , the following proposition holds.

Proposition 1. DQBF under the negation operation obey the law of the ex-
cluded middle. That is, a DQBF is true if and only if its negation is false.

Since any DQBF can be converted to a logically equivalent QBF by formula
expansion, it also explains that the law of the excluded middle should hold
under negation for DQBF as it holds for QBF.

A remaining question is whether or not the complement of DQBF obeys the
law of the excluded middle. The answer to this question is in general negative as
we show below. Based on the existence of Skolem and Herbrand functions, we
classify DQBF into four categories:

CS = {Φ | Φ is true and ∼Φ is false},
CH = {Φ | Φ is false and ∼Φ is true},

CSH = {Φ | Φ and ∼Φ are true for S-form Φ, or false for H-form Φ}, and
C∅ = {Φ | Φ and ∼Φ are false for S-form Φ, or true for H-form Φ}.

Note that if Φ ∈ CS , then ∼Φ ∈ CH ; if Φ ∈ CH , then ∼Φ ∈ CS ; if Φ ∈ CSH , then
∼Φ ∈ CSH ; if Φ ∈ C∅, then ∼Φ ∈ C∅.
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Under the above DQBF partition, observe that the complement of DQBF
obeys the law of the excluded middle if and only if CSH and C∅ are empty. In fact,
as to be shown, for any QBF Φ, Φ 
∈ CSH ∪C∅. As a consequence, the complement
and negation operations for any QBF Φ coincide, and thus ¬∼Φ = Φ. However,
for general DQBF, CSH and C∅ are not empty as the following two examples
show.

Example 2. Consider the DQBF

Φ = ∀x1∀x2∃y1(x1)∃y2(x2).((y1 ⊕ x1) ∧ (y2⊕x2)) ∨ ((y2 ⊕ x2) ∧ (y1⊕x1)),

where symbols “⊕” and ⊕ stand for Boolean xor and xnor operators, respec-
tively. Φ has Skolem functions, e.g., x1 and ¬x2 for existential variables y1 and
y2, respectively, and ¬∼Φ has Herbrand functions, e.g., y2 and y1 for universal
variables x1 for x2, respectively. That is, Φ ∈ CSH .

Example 3. Consider the DQBF

Φ = ∀x1∀x2∃y1(x1)∃y2(x2).(y1∨¬x1∨x2)∧(y2∨x1∨¬x2)∧(¬y1∨¬y2∨¬x1∨¬x2).

It can be verified that Φ has no Skolem functions, and ¬∼Φ has no Herbrand
functions. That is, Φ ∈ C∅.

By these two examples, the following proposition can be concluded.

Proposition 2. DQBF under the complement operation do not obey the law of
the excluded middle. That is, the truth (falsity) of a DQBF cannot be decided
from the falsity (truth) of its complement.

Nevertheless, if a DQBF Φ 
∈ CSH ∪ C∅, then its truth and falsity can surely
be certified by a Skolem-function model and a Herbrand-function countermodel,
respectively.3 That is, excluding Φ ∈ CSH ∪ C∅, DQBF under the complement
operation obeys the law of the excluded middle.

A sufficient condition for a DQBF not in CSH (equivalently, a necessary con-
dition for a DQBF in CSH) is presented in Theorem 1.

Theorem 1. Let φ be a quantifier-free formula over variables X ∪ Y , let Φ1 =
∀x1 · · · ∀xn∃y1(S1) · · · ∃ym(Sm).φ and Φ2 = ∀x1(H1) · · · ∀xn(Hn)∃y1 · · · ∃ym.φ with
Hi = {yj ∈ Y | xi 
∈ Syj}. Then there exist Skolem functions f = (f1, . . . , fm)
for Φ1 and Herbrand functions g = (g1, . . . , gn) for Φ2 only if the composite func-
tion vector g ◦ f admits no fixed-point, that is, there exists no truth assignment
α to variables x = (x1, . . . , xn) such that α = g(f(α)).

Proof. Since Φ1 is true and has Skolem functions f , formula φ[y/f ] must be a
tautology. On the other hand, since Φ2 is false and has Herbrand functions g,
formula φ[x/g] must be unsatisfiable. Suppose that the fixed-point condition α =
g(f (α)) holds under some truth assignment α to x. Then φ[y/f ]|α = φ[x/g]|β
for β = f(α) being the truth assignment to y. It contradicts with the fact that
φ[y/f ] must be a tautology and φ[x/g] must be unsatisfiable.
3 In general a false S-form DQBF has no Herbrand-function countermodel, and a true

H-form DQBF has no Skolem-function model.
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The following corollary shows that Φ 
∈ CSH for any QBF Φ.

Corollary 1. For any QBF Φ, the Skolem-function model and Herbrand-function
countermodel cannot co-exist.

Proof. If a QBF is false, its Skolem-function model does not exist and the corol-
lary trivially holds. Without loss of generality, assume a true QBF is of the
form Φ = ∃y1∀x1 · · · ∃yn∀xn.φ. Let {y1 = f1(), . . . , yn = fn(x1, . . . , xn−1)}
be a model for Φ. Further by contradiction assume there exist a countermodel
{x1 = g1(y1), . . . , xn = gn(y1, . . . , yn)}. So the fixed-point condition is {x1 =
g1(f1()), . . . , xn = gn(f1(), . . . , fn(x1, . . . , xn−1))}. Since no cyclic dependency
presents in the fixed-point equations, the set of equations always has a solution.
In other words, due to the complete ordering of the prefix of a QBF, a fixed-
point exists. By Theorem 1, the Skolem-function model and Herbrand-function
countermodel cannot co-exist.

A sufficient condition for a DQBF not in C∅ can be characterized by procedure
HerbrandConstruct as shown in Figure 1. Note that although the algorithm
computes Herbrand functions of ¬∼ΦS for a false S-form DQBF ΦS , it can be
used to compute Skolem functions of ¬∼ΦH for a true H-form DQBF ΦH by
taking as input the negation of the formula.

Given a false S-form DQBF Φ with n ≥ 1 universal variables, procedure Her-
brandConstruct in line 1 collects the support set Hn for universal variable xn.
Let Hn = {ya1 , . . . , yak

} and the rest be {yak+1 , . . . , yam}. It then recursively
constructs the Herbrand functions of the formula expanded on xn until n = 1.
By formula expansion on xn in line 3, variables {yak+1 , . . . , yam}, which depend
on xn, are instantiated in Φexp into two copies, say, {y′

ak+1
, y′′

ak+1
, . . . , y′

am
, y′′

am
}.

Then the VariableMerge step in line 6 lets gi = g†i [y
′
ak+1

/yak+1 , y
′′
ak+1

/yak+1, . . . ,

y′
am

/yam , y′′
am

/yam ].4 In constructing the Herbrand function gn of xn, each as-
signment α to Hn is examined. Since Herbrand function aims to falsity φ, the
value of gn(α) is set to the xn value that makes φ[x1/g1, . . . , xn−1/gn−1]|α un-
satisfiable.

Theorem 2. Given a false S-form DQBF Φ, algorithm HerbrandConstruct re-
turns either nothing or correct Herbrand functions, which falsify ¬∼Φ.

Proof. Observe first that the functions returned by the algorithm satisfy the
support-set dependencies for the universal variables. It remains to show that
φ[x1/g1, . . . , xn/gn] is unsatisfiable. By contradiction, suppose there exists an
assignment β to the existential variables Y such that φ[x1/g1, . . . , xn/gn]|β = 1.
Let v ∈ {0, 1} be the value of gn|α for α being the projection of β on Hn ⊆ Y .
Then φ[x1/g1, . . . , xn−1/gn−1, xn/v]|β = 1. However it contradicts with the way
4 The method to perform VariableMerge in line 6 is not unique. In theory, as long as

no violation of variable dependencies is incurred, any substitution can be applied. In
practice, however the choice of substitution may affect the strength of the algorithm
HerbrandConstruct in terms of the likelihood of returning (non-empty) Herbrand
functions.
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HerbrandConstruct
input: a false S-form DQBF Φ = ∀x1 · · · ∀xn∃y1(S1) · · · ∃ym(Sm).φ, and

the number n of universal variables
output: Herbrand-functions (g1, · · · , gn) of ¬∼Φ
01 Hn := {yi ∈ Y | xn �∈ Si}
02 if (n > 1)
03 Φexp := FormulaExpand(Φ, xn);
04 g† := HerbrandConstruct(Φexp , n − 1);
05 if (g† = ∅) return ∅;
06 g := VariableMerge(g†);
07 for each assignment α to Hn

08 if (φ[x1/g1, . . . , xn−1/gn−1]|α,xn=0 is unsatisfiable)
09 gn(α) = 0;
10 if (φ[x1/g1, . . . , xn−1/gn−1]|α,xn=1 is unsatisfiable)
11 gn(α) = 1;
12 else return ∅;
13 else
14 for each assignment α to Hn

15 if (φ|α,xn=0 is unsatisfiable)
16 gn(α) = 0;
17 if (φ|α,xn=1 is unsatisfiable)
18 gn(α) = 1;
19 else return ∅;
20 return (g1, . . . , gn);
end

Fig. 1. Algorithm: Herbrand-function Construction

how gn|α is constructed. Hence the returned Herbrand functions (g1, . . . , gn), if
they are not empty, are indeed correct Herbrand functions.

The following corollary shows that Φ 
∈ C∅ for any QBF Φ.

Corollary 2. If Φ is a false QBF and its universal variables x1, . . . , xn follow
the QBF’s prefix order, algorithm HerbrandConstruct always returns non-empty
Herbrand functions.

Proof. We prove the statement by induction on the number of universal vari-
ables. For the base case, without loss of generality consider QBF Φ = ∃y1 · · · ∃yk

∀x∃yk+1 · · · ∃ym.φ. After line 1, HerbrandConstruct enters line 14. Since the QBF
is false and has only one universal variable x, expanding on x yields a purely
existentially quantified unsatisfiable formula: ∃y1 · · · ∃yk(∃y′

k+1 · · · ∃y′
m.φ|x=0 ∧

∃y′′
k+1 · · · ∃y′′

m.φ|x=1). By its unsatisfiability, for every assignment α to y1, · · · , yk,
formula ∃y′

k+1 · · · ∃y′
m.φ|α,x=0∧∃y′′

k+1 · · · ∃y′′
m.φ|α,x=1 must be unsatisfiable. Since

∃y′
k+1 · · · ∃y′

m.φ|α,x=0 and ∃y′′
k+1 · · · ∃y′′

m.φ|α,x=1 share no common variables, at
least one of them must be unsatisfiable. Hence the procedure returns a non-
empty Herbrand function.
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For the inductive step, assume the previous recursive calls for k = 1, . . . , n−1
of HerbrandConstruct do not return ∅. We show that the current call for k = n
cannot return ∅. Expanding Φ on xn yields Φexp = ∀x1 · · · ∀xn−1∃y1(S1) · · · ∃yk(Sk)

(∃y′
k+1(Sk+1)

· · · ∃y′
m(Sm).φ|xn=0∧∃y′′

k+1(Sk+1)
· · · ∃y′′

m(Sm).φ|xn=1). By the induc-

tive hypothesis, functions g†1, · · · , g†n−1 are returned. Moreover, g†i for any i =
1, . . . , n − 1 is independent of y′

j and y′′
j for j = k + 1, . . . , m. So we con-

struct gi = g†i . Since g1, . . . , gn−1 have been constructed in a way such that
∃y1 · · · ∃yk(∃y′

k+1 · · · ∃y′
m.φ[x1/g1, · · · , xn−1/gn−1]|xn=0 ∧∃y′′

k+1 · · · ∃y′′
m.φ[x1/g1,

· · · , xn−1/gn−1]|xn=1) is unsatisfiable, under every assignment α to y1, · · · , yk for-
mula (∃y′

k+1 · · · ∃y′
m.φ[x1/g1, · · · , xn−1/gn−1]|xn=0 ∧ ∃y′′

k+1 · · · ∃y′′
m.φ[x1/g1, · · · ,

xn−1/gn−1]|xn=1) is unsatisfiable. Moreover, since ∃y′
k+1 · · · ∃y′

m. φ[x1/g1, · · ·,
xn−1/gn−1]|xn=0 and ∃ y′′

k+1 · · · ∃y′′
m. φ[x1/g1, · · · , xn−1/gn−1]|xn=1 do not share

any variables, at least one of them must be unsatisfiable. So gn is returned.

Note that the above proof does not explicitly perform the substitution gi =
g†i [y

′
ak+1

/yak+1 , y
′′
ak+1

/yak+1, . . . , y
′
am

/yam , y′′
am

/yam ] in VariableMerge because all
gi in fact do not depend on primed or double-primed variables in the QBF case.

Procedure HerbrandConstruct is useful in deriving Herbrand functions not
only for QBF but also for general DQBF as the following example suggests.

Example 4. Consider the DQBF Φ = ∀x1∀x2∃y1(x1)∃y2(x2).φ with φ = (y1∨x2)∧
(y2∨x1)∧(¬y1∨¬y2∨¬x1∨¬x2). HerbrandConstruct(Φ, 2) computes Herbrand
functions for ¬∼Φ with the following steps. Expanding Φ on x2 yields Φexp =
∀x1∃y1(x1)∃y′

2∃y′′
2 .φ|x2=0 ∧ φ|x2=1 with φ|x2=0 = (y1) ∧ (y′

2 ∨ x1) and φ|x2=1 =
(y′′

2 ∨ x1) ∧ (¬y1 ∨¬y′′
2 ∨ ¬x1). The recursive call to HerbrandConstruct(Φexp, 1)

determines the value of function g†1(y
′
2, y

′′
2 ) under every assignment α to (y′

2, y
′′
2 ).

In particular, g†1(0, 0) = 0 due to φexp = (y1) ∧ (x1) ∧ (x1); g†1(0, 1) = 0 (or 1)
due to φexp = (y1) ∧ (x1) ∧ (¬y1 ∨ ¬x1); g†1(1, 0) = 0 due to φexp = (y1) ∧ (x1);
g†1(1, 1) = 1 due to φexp = (y1) ∧ (¬y1 ∨ ¬x1). So g†1(y

′
2, y

′′
2 ) = y′

2y
′′
2 (or y′′

2 ), and
g1(y2) = g†1[y

′
2/y2, y

′′
2/y2] = y2.

Returning to HerbrandConstruct(Φ, 2), we have φ[x1/g1] = (y1 ∨ x2) ∧ (y2) ∧
(¬y1 ∨ ¬y2 ∨ ¬x2). The value of function g2 for each assignment α to y1 can be
determined with g2(0) = 0 due to φ[x1/g1]|y1=0 = (x2)∧ (y2) and g2(1) = 1 due
to φ[x1/g1]|y1=1 = (y2) ∧ (¬y2 ∨ ¬x2). That is, g2(y1) = y1. The computed g1

and g2 indeed make φ[x1/g1, x2/g2] = (y1) ∧ (y2) ∧ (¬y1 ∨ ¬y2) unsatisfiable.

Since the DQBF subset CS ∪ CH obeys the law of the excluded middle under
the complement operation, Theorems 1 and 2 provide a tool to test whether a
DQBF Φ can be equivalently expressed as ¬∼Φ, that is, whether a DQBF has
either a Skolem-function model or a Herbrand-function countermodel. Figure 2
shows the four DQBF categories and the regions characterized by Theorems 1
and 2.
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Fixed-point condition Construction algorithm

CS
C∅CSH

CH

Fig. 2. Four DQBF categories and regions characterized by Theorems 1 and 2

3.2 Formula Expansion on Existential Variables

Formula expansion on existential variables for DQBF can be achieved by nega-
tion using De Morgan’s law and expansion on universal variables. It leads to the
following expansion rule, which is dual to expanding universal variables.

Proposition 3. Given a DQBF ∀x1(H1) · · · ∀xn(Hn)∃y1 · · · ∃ym.φ, assume with-
out loss of generality that y1 is to be expanded with y1 
∈ H1 ∪ · · · ∪ Hk−1 and
y1 ∈ Hk ∩ · · · ∩ Hn. The formula can be expanded to

∀x1(H1) · · · ∀xk−1(Hk−1)∀xk(Hk[y1/0])∀xk(Hk[y1/1]) · · · ∀xn(Hn[y1/0])∀xn(Hn[y1/1])

∃y2 · · · ∃ym.φ|y1=0 ∨ φ|y1=1,

where Hi[y1/v] denotes y1 in Hi is substituted with logic value v ∈ {0, 1}, and
φ|y1=v denotes all appearances of y1 in φ are substituted with v including those
in the support sets of variables xi(Hi) for i = k, . . . , n.

Such expansion can be repeatedly applied for every existential variables. The
resultant formula after expanding all existential variables is a QBF. Note that,
when Skolem functions are concerned rather than Herbrand functions, the sup-
port sets of the existential variables should be listed and can be obtained from
Hi by the aforementioned complementary principle.

Example 5. Consider expanding variable y1 of DQBF

Φ = ∀x1(y1)∀x2(y2)∀x3(y3)∃y1∃y2∃y3.φ.

By De Morgan’s law and expansion on a universal variable, we obtain

¬¬Φ = ¬∃x1(y1)∃x2(y2)∃x3(y3)∀y1∀y2∀y3.¬φ

= ¬∃x1(0)∃x1(1)∃x2(y2)∃x3(y3)∀y2∀y3.¬φ|y1=0 ∧ ¬φ|y1=1

= ∀x1(0)∀x1(1)∀x2(y2)∀x3(y3)∃y2∃y3.φ|y1=0 ∨ φ|y1=1.
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3.3 Prenex and Non-prenex Conversion

This section studies some syntactic rules that allow localization of quantifiers
to sub-formulae. We focus on the truth (namely the Skolem-function model),
while similar results can be concluded by duality for the falsity (namely the
Herbrand-function countermodel), of a formula.

The following proposition shows the localization of existential quantifiers to
the sub-formulas of a disjunction.

Proposition 4. The DQBF

∀x∃y1(S1) · · · ∃ym(Sm).φA ∨ φB ,

where ∀x denotes ∀x1 · · · ∀xn, sub-formula φA (respectively φB) refers to vari-
ables XA ⊆ X and YA ⊆ Y (respectively XB ⊆ X and YB ⊆ Y ), is logically
equivalent to

∀xc

(
∀xa∃ya1 (Sa1∩XA) · · · ∃yap (Sap∩XA)

φA ∨ ∀xb∃yb1 (Sb1∩XB) · · · ∃ybq (Sbq∩XB)
φB

)
,

where variables xc are in XA ∩ XB, variables xa are in XA\XB, variables xb

are in XB\XA, yai ∈ YA, and ybj ∈ YB.

Proof. A model to the former expression consists of every truth assignment to
X and the induced Skolem function valuation to Y . Since every such combined
assignment to X ∪ Y either satisfies φA or φB , by collecting those satisfying φA

(respectively φB) and projecting to variables XA ∪ YA (respectively XB ∪ YB)
the model (i.e., the Skolem functions for ya and yb) to the latter expression can
be constructed. (Note that, for a quantifier ∃yi splitting into two, one for φA

and the other for φB, in the latter expression, they are considered distinct and
have their own Skolem functions.)

In addition, the Skolem functions for ∀xa∃ya1(Sa1∩XA) · · · ∃yap (Sap∩XA)
φA|α

and those for ∀xb∃yb1 (Sb1∩XB) · · · ∃ybq (Sbq∩XB)
φB|α under every assignment α

to xc can be collected and combined to form a model for the former expression.
In particular the respective Skolem functions faj |α and fbk

|α under α for yaj and
ybk

originating from the same quantifier yi in the former expression are merged
into one Skolem function fi =

∨
α

(
χα(faj |α ∨ fbk

|α)
)
, where χα denotes the

characteristic function of α, e.g., χα = x1x2¬x3 for α = (x1 = 1, x2 = 1, x3 = 0).

Example 6. Consider the QBF

Φ = ∀x1∃y1∀x2∃y2∀x3∃y3.φA ∨ φB

with φA refers to variables x1, x2, y1, y2 and φB refers to x2, x3, y2, y3. It has the
following equivalent DQBF expressions.

Φ = ∀x1∀x2∀x3∃y1(x1)∃y2(x1,x2)∃y3(x1,x2,x3).φA ∨ φB

= ∀x1∀x2∀x3

(
∃y1(x1)∃y2(x1,x2)φA ∨ ∃y2(x2)∃y3(x2,x3)φB

)
= ∀x2

(
∀x1∃y1(x1)∃y2(x1,x2)φA ∨ ∀x3∃y2(x2)∃y3(x2,x3)φB

)
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In contrast, conventionally the quantifiers of the QBF can only be localized to

∀x1∃y1∀x2∃y2 (φA ∨ ∀x3∃y3φB) .

The following proposition shows the localization of universal quantifiers to a
sub-formula of a conjunction.

Proposition 5. The DQBF

∀x∃y1(S1) · · · ∃yk(Sk).φA ∧ φB,

where ∀x denotes ∀x1 · · · ∀xn, sub-formula φA (respectively φB) refers to vari-
ables XA ⊆ X and YA ⊆ Y (respectively XB ⊆ X and YB ⊆ Y ), is logically
equivalent to

∀x∃y2(S2) · · · ∃yk(Sk).
(
∃y1(S1∩XA)φA

)
∧ φB ,

for y1 
∈ YB.

Proof. The proposition follows from the fact that the Skolem function of y1 is
purely constrained by φA only, and is the same for both expressions. Note that
the former formula is equivalent to ∀x∃y1(S1∩XA) · · · ∃yk(Sk).φA ∧ φB.

Essentially DQBF allow tighter localization of quantifier scopes than QBF. On
the other hand, converting a non-prenex QBF to the prenex form may incur
the size increase of support sets of existential variables due to the linear (or
complete order) structure of the prefix. With DQBF, such spurious increase can
be eliminated.

4 Applications

Although to date there is no DQBF solver, we note that the framework pro-
vided by QBF solver sKizzo [1], which is based on Skolemization, can be easily
extended to DQBF solving. A natural application of DQBF is Boolean rela-
tion determinization [8,3] in logic circuit synthesis. Consider a Boolean relation
R(x, y) as a characteristic function (quantifier-free Boolean formula) specifying
the input and output behavior of some (possibly non-deterministic) combina-
tional system with inputs X and outputs Y . To realize the outputs of the system,
the Skolem functions of the QBF

∀x∃y.R(x, y)

is to be solved. Often the inputs of some output yi need to be restricted to depend
only on a subset of X . This restriction can be naturally described by DQBF.
Therefore DQBF can be exploited for topologically constrained logic synthesis
[14].
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5 Discussions

IF logic [10] with the game-theoretical semantics is known to violate the law of
the excluded middle. A simple example is the IF logic formula ∀x∃y/x.(x = y)
for x, y ∈ {0, 1}, where y/x indicates the independence of y on x [7]. It assumes
that not only y is independent of x, but also is x independent of y. That is, it is
equivalent to ∀x()∃y().(x = y) in our dependency notation. In a game-theoretic
viewpoint, neither the ∃-player nor the ∀-player has a winning strategy. Therefore
this formula is neither true nor false, and has no equivalent DQBF since any
DQBF can always be expanded into a QBF, whose truth and falsity can be fully
determined.

On the other hand, the game-theoretical semantics of IF logic, when extended
to DQBF, does not provide a fully meaningful approach to synthesizing Skolem
and Herbrand functions. Unlike the unimportance of the syntactic quantification
order in our formulation, the semantic game of IF logic should be played with
respect to the prefix order. Since different orders correspond to different games,
the semantics is not directly useful in our considered synthesis application.

Henkin quantifiers in their original form [9] specified only the dependencies
of existential variables on universal variables. Such restricted dependencies were
assumed in early IF logic [10] research. As was argued in [7], the dependency of
universal variables on existential variables are necessary to accomplish a sym-
metric treatment on the falsity, in addition to truth, of an IF logic formula. With
such extension, IF logic formulae can be closed under negation. However, how
the dependencies of existential variables and universal variables relate to each
other was not studied. The essential notion of Herbrand functions was missing.
In contrast, our formulation on DQBF treats Skolem and Herbrand functions on
an equal footing. Unlike [7], we restrict a formula to be of either S-form or H-
form, rather than simultaneous specification of dependencies for existential and
universal variables. This restriction makes the synthesis of Skolem and Herbrand
functions for DQBF more natural.

Prior work [11,5] assumed DQBF are of S-form only. In [11], a DQBF was for-
mulated as a game played by a ∀-player and multiple noncooperative ∃-players.
This game formulation is fundamentally different from that of IF-logic. The win-
ning strategies, if they exist, of the ∃-players correspond to the Skolem functions
of the DQBF. This game interpretation can be naturally extended to H-form
DQBF.

6 Conclusions

The syntax and semantics of DQBF presented in this paper made DQBF a
natural extension of QBF from a certification viewpoint. Basic DQBF properties,
including formula negation, complement, expansion, and prenex and non-prenex
form conversion, were shown. Our formulation is adequate for applications where
Skolem/Herbrand functions are of concern.
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Abstract. This paper introduces Lynx, an incremental programmatic SAT solver
that allows non-expert users to introduce domain-specific code into modern
conflict-driven clause-learning (CDCL) SAT solvers, thus enabling users to guide
the behavior of the solver.

The key idea of Lynx is a callback interface that enables non-expert users to
specialize the SAT solver to a class of Boolean instances. The user writes special-
ized code for a class of Boolean formulas, which is periodically called by Lynx’s
search routine in its inner loop through the callback interface. The user-provided
code is allowed to examine partial solutions generated by the solver during its
search, and to respond by adding CNF clauses back to the solver dynamically
and incrementally. Thus, the user-provided code can specialize and influence the
solver’s search in a highly targeted fashion. While the power of incremental SAT
solvers has been amply demonstrated in the SAT literature and in the context of
DPLL(T), it has not been previously made available as a programmatic API that
is easy to use for non-expert users. Lynx’s callback interface is a simple yet very
effective strategy that addresses this need.

We demonstrate the benefits of Lynx through a case-study from computa-
tional biology, namely, the RNA secondary structure prediction problem. The
constraints that make up this problem fall into two categories: structural con-
straints, which describe properties of the biological structure of the solution,
and energetic constraints, which encode quantitative requirements that the solu-
tion must satisfy. We show that by introducing structural constraints on-demand
through user provided code we can achieve, in comparison with standard SAT ap-
proaches, upto 30x reduction in memory usage and upto 100x reduction in time.

1 Introduction

Conflict-driven clause-learning (CDCL) Boolean SAT solvers have had a huge impact
on a variety of domains ranging from program analysis to AI [3]. This success can
partly be attributed to their simple interface and powerful heuristics. In many cases, a
straightforward translation from a program analysis or AI problem into Boolean for-
mulas in CNF (conjunctive normal form) format is sufficient to leverage the power of
the solver. Unfortunately, there are many other important domains (e.g., biology) where
straightforward translation of problems to CNF clauses leads to formulas that are too
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large or complex for solvers to handle. For many of these domains, however, small
domain-specific modifications to the solver can make SAT-based solution feasible. The
challenge addressed by this paper is to enable users to make these small adaptations
with minimal effort and without breaking subtle invariants in the solver implementa-
tion. The solution we provide allows for the resultant specialized solver to be adaptive,
efficient for the problem-at-hand, and easy to build and maintain. Equally important,
users are not burdened with knowing too much about the internals of SAT solvers and
related technologies.

1.1 Our Contributions

– To address the problem described above, we created the solver Lynx that extends
CryptoMiniSat [23] with an API allowing user-provided code to examine partial
solutions generated by the SAT solver and add CNF clauses back to the solver in
response. The added code is called inside the inner loop of the SAT solver, allowing
the user to tightly integrate problem-specific clause-generation heuristics into the
solver.

We call solvers extended in this way programmatic, i.e., the user can program-
matically influence solver behavior and adapt it to their specific problem domain
in ways that are difficult to achieve otherwise. Programmatic solvers address the
“solvers are unpredictable black boxes” problem by giving users more control over
their search heuristics.

– Using Lynx we developed the first SAT based tool for solving the RNA-folding pre-
diction problem. We present a detailed experimental evaluation of our technique in
comparison with standard approaches. We use the above-mentioned callback inter-
face in efficiently translating the RNA prediction problem into Boolean formulas.
The interface allows Lynx to incrementally translate the RNA-folding structure in-
side the inner loop of the SAT solver, allowing a tighter, highly targeted and more
efficient integration of the SAT solver and the translator.

1.2 Existing Approaches to Incremental and Adaptive Solving

Incremental solvers, that use some form of abstraction-refinement [3], have been pro-
posed as a solution to the above-mentioned issue of simple but inefficient translations
from problems to Boolean formulas. Instead of translating the entire input problem-
instance into a potentially very large Boolean formula in one step, abstraction-refinement
approaches translate the input instance into Boolean formulas incrementally and call
the solver on these incrementally generated formulas. Such formulas are abstractions of
the input instance and are often easier to solve than the entire input instance. The solver
terminates if it gets the correct result to the input instance by solving an abstraction. Oth-
erwise the solver iteratively refines the abstractions as necessary until it gets the correct
result. Typically these abstractions and their refinements are performed by a layer outside
the inner loop of the SAT solver. For an excellent reference on abstraction-refinement
strategies refer to the Handbook of Satisfiability [3].

Such incremental SAT solvers with an outside abstraction-refinement loop are rela-
tively easy to build. However, the problem with such an approach is that it may not be
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the most efficient for the problem-at-hand. Indeed, Ohrimenko et al. [18] have proposed
incremental translation of problems to SAT where the integration of the solver and the
incremental translation is much tighter and more efficient than an outer layer translator.
However, their implementation is non-adaptive, and is specific to a class of difference
logic formulas — they do not provide an API for users to easily adapt or extend the
solver for a previously unknown class of Boolean formulas.

An example of an API that allows users to adapt or extend solvers is the powerful
idea of DPLL(T) [11] aimed at solving Boolean combination of formulas in rich theo-
ries such as integer linear arithmetic, uninterpreted functions and datatypes (aka SMT
solvers [3]). In this approach, there is a tight integration of a CDCL SAT solver with a
theory solver (aka a T-solver) that can handle conjunction of constraints represented in
a rich logic. The CDCL SAT solver does the search on the Boolean structure of the for-
mula without knowing the semantics of the literals, while the T-solver reasons about the
literals themselves adding any new derived literals back to the Boolean CDCL solver
appropriately. The tight integration enables the T-solver to influence the CDCL solver’s
behavior in ways not possible otherwise, and the resultant combination is typically a
solver than can handle arbitrary Boolean combination of theory formulas efficiently.

A lay non-expert user could implement a “T-solver” using the DPLL(T) framework
that reasons about a specific domain (say, theory of RNA folding) and adds constraints
incrementally to the SAT solver. The resultant combination can be a powerful incre-
mental domain-specific solver. However, the DPLL(T) API imposes strict requirements
on the user-specified code (T-solver) to ensure that the resultant combination is sound
and complete. Such requirements make perfect sense for constructing powerful SMT
solvers with complex T-solvers, the problem for which the DPLL(T) approach was
originally proposed. However, for the lay non-expert users such requirements may be
onerous, and may not be essential. Lynx, by contrast provides a simple interface which
is relatively easy to prove correct and is tailored for problem-specific extensions.

1.3 RNA-Folding with Lynx

To explore the benefits of using the Lynx’s callback interface, we applied the technique
to the problem of RNA folding. This is an application of significant practical relevance:
understanding RNA folding is crucial to understanding a number of biological pro-
cesses, including the replication of single-strand RNA viruses such as the poliovirus
which causes polio in humans. Moreover, RNA prediction actually shares important
similarities with other structure prediction problems of biological interest. This prob-
lem is particularly suitable to benchmark our approach. First, a SAT based solution to
this problem is desirable because it gives researchers the ability to easily experiment
with different formulations for the basic problem. Moreover, previous work in the liter-
ature has succeeded in formalizing the problem in a form that lends itself very naturally
to solution with a Boolean SAT solver. SAT based solutions, however, have been elu-
sive because the standard encoding leads to Boolean SAT instances that are too big for
solvers to handle. Using Lynx’s callback interface allowed us to encode instances of
the RNA folding problem in a memory efficient manner, producing the first successful
SAT based solution to this problem. The resultant incremental (or online abstraction-
refinement) solver led to a 30-fold reduction in the amount of memory required to solve
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some of these problems compared to standard SAT approach, and demonstrated dra-
matic time improvements over standard abstraction refinement techniques.

Paper Layout. In Section 2 we provide a detailed overview of our incremental
approach. In Section 3 we provide a self-contained description of the RNA-folding
structure prediction problem. In Section 4 we provide detailed description of our ex-
perimental setup and results. We review the related work in Section 5, and conclude in
Section 6.

2 Incrementality in Lynx

This section details how the callback interface in Lynx makes the solver incremental,
what we sometimes also refer to as online abstraction-refinement or OAR. In order to
facilitate the description, let us introduce a simple running example which shares some
features with the more complex biology application.

The running example is a formula of the form P (x) ∧ C(x) over a vector x =
〈x0, x1, . . . , xN 〉 of Boolean variables, where P (x) consists of some arbitrary set of
constraints and C(x) is a cardinality constraint that says that no more than 2 bits in x
can be set to 1.

C(x) ≡ ∀i�=j �=k(¬xi ∨ ¬xj ∨ ¬xk)

The above definition of C(x) can be trivially encoded as a set of N3 CNF clauses
— too many for large values of N . For this specific case, more efficient encodings exist
using only O(N) clauses, but they are more complicated and require the introduction
of additional SAT variables. By contrast, online abstraction refinement allows us to use
the simple encoding without having to pay the price of introducing N3 clauses.

The first step in using OAR is to divide the problem into a core set of clauses added to
the solver from the very beginning, and a different set of dynamic clauses added to the
solver incrementally by a callback function. The callback function is a user-provided
functionM producing a set of clauses given a partial assignment to the variables of the
solver’s input instance. A partial assignment sets each variable in the problem to either
1, 0, or ⊥ (undefined), and is represented as a vector t ∈ {0, 1,⊥}N .

In the case of the example, we define P (x) to be the core clauses, and C(x) to be
the clauses added dynamically by a callback function defined as:

M(t) ≡ {(¬xi ∨ ¬xj ∨ ¬xk) | i �= j �= k ∧ ti = tj = tk = 1}

This callback function receives a partial assignment t, and returns a set of clauses of
the form (¬xi ∨ ¬xj ∨ ¬xk) where xi, xj and xk are variables set to 1 in the partial
assignment (i.e., ti = tj = tk = 1). The clauses produced by the callback function
eliminate those incorrect solutions that would have been eliminated by C(x), so running
the solver with constraints P (x) and callback functionM is the same as solving P (x)∧
C(x).

Lynx incorporates the callback function into the solution process by invoking it peri-
odically with the current partial assignment. If the callback function returns any clause,
these are incorporated into the problem. This process continues until an assignment q
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is found such that: a) q satisfies all the core constraints, b) q satisfies all the constraints
ever produced by the callback function, and c) the callback function produces an empty
set of clauses when applied to q indicating that the process can be terminated. If the
input problem is unsatisfiable, the solver with the callback function is guaranteed to
report unsatisfiable and terminate. It is possible for the user-code, without any restric-
tions, to render the combination of base solver plus user-code incomplete. However,
we can impose some minimal conditions on the user-code such that the combination is
guarateed to be a complete decision procedure. In particular, one such condition is as
follows: assume the desired input instance to be solved is P (x) ∧ C(x), and P (x) is
input to the base solver. Then, the user-code must ”encode” C(x) exactly. Imposing this
particular condition on the user-code is guaranteed to render the combination complete.

3 Biological Problem Overview

RNA is a versatile polymer essential to all of life. A chain of covalently bound nu-
cleotides, RNA classically acts as a cellular messenger which duplicates DNA sequence
information in the nucleus/nucleoid and transports that code to ribosomes for the con-
struction of proteins. However, this chain can also fold in on itself into a 3-dimensional
globular molecule which catalyzes biological reactions by itself. In fact, modern stud-
ies have suggested that such non-coding RNA (ncRNA) may play even a bigger cellular
role than messenger RNA, with significant effects on metabolism, signal transduction,
gene regulation, and chromosome inactivation. Such RNA function is determined by its
nucleotide composition and 3-dimensional structure, however, relatively little ncRNA
structural data is known [25], severely limiting our understanding of these mechanisms.
Therefore, algorithmic prediction of RNA structure from its nucleotide sequence has
been a longstanding computational goal.

3.1 Structure Prediction via SAT

The computational problem we address is “how to correctly attribute a unique struc-
tural state to each nucleic acid (or groups of nucleic acids) within an RNA polymer
sequence”. This problem has a long history of solutions based on many different al-
gorithmic models — the most successful of which using a recursive, grammatical ap-
proach introduced by Zuker [26]. In this biophysical model, each nucleotide is allowed
to form a pairwise bond with another, and each pair is assigned an energetic cost based
on spatially adjacent nucleotide types [16]. The most likely structure is predicted by
optimizing pairing configuration according to a fixed thermodynamic scoring system
(energy minimization). Efficient computation is made possible through the imposition
of specific, often biologically-inspired model restrictions — for example, limiting base-
pairs to be sequentially nested (i.e. no “pseudoknots”) and scoring only a subset of all
potential energetic interactions (i.e. only Watson-Crick or wobble base-pairs). Unfortu-
nately, this entangles the optimization techniques used with a particular set of biolog-
ical assumptions. While these methods have shown good predictive accuracy, changes
to the algorithm can be difficult to implement as new scientific data comes to light. For
example, it has been shown that a more complex description of the RNA interaction
energetics can lead to greatly improved results [19].
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We propose a declarative approach for the structure prediction problem, providing
a decoupled platform for reasoning about biological concepts in clear, succinct rules,
backed by the powerful generic optimization of CDCL SAT solvers. This allows bi-
ological models to be tested and flexibly refined using a constraint-based philosophy,
independent of performance improvements to the underlying solver.

To study this approach, we have implemented an RNA structure prediction algorithm
using Lynx. Rather than comparing the benefits and disadvantages of different biolog-
ical models, we base our implementation on an RNA scoring model recently proposed
by Kato, et al. for integer programming optimization [20]. Although other models out-
perform this scoring system’s accuracy, we believe our results are easily generalizable
to greater classes of RNA structures [4] and more complex (non-RNA) structure pre-
diction problems in general.

To implement energy minimization as a SAT-based decision procedure, we pose the
question of whether an assignment exists that is lower than a certain energy threshold
and perform iterative binary search. Despite this search routine, this approach can often
be more efficient than the dynamic programming methods used by grammatical models
as the problem can be finely partitioned into smaller jobs that are run in parallel. Further,
when a sub-optimal solution is sufficient, this method quickly short-circuits, along with
a guarantee of how near the solution is to optimality.

3.2 RNA Secondary Structure Prediction with Pseudoknots

The RNA prediction algorithm described here differentiates itself from classical pre-
diction methods in its goal of predicting pseudoknots. Earlier grammar-based predic-
tors allowed only base-pairs to occur in a recursively nested fashion (i.e. for every
base-pair i-j there exists no base-pair k-l such that i < k < j < l) to enable highly effi-
cient energy minimization via dynamic programming. However, pseudo-knotted struc-
tures which break this restriction are known to be essential to a number of functions,
such as the Diels-Alder ribozyme and mouse mammary tumor virus [24]. However,
predicting pseudoknotted structures is computationally much harder with fewer solu-
tions [17,20,21]. In fact, the prediction of truly arbitrary pseudoknots has been shown
NP-complete [14], and classes of pseudoknotted structures are often more easily defined
by the algorithms which recognize them rather than their biological significance [7].
This motivates the use of a declarative approach, allowing easy exploration of different
trade-offs between representation and optimization, especially if the underlying scoring
system is changed from the standard Watson-Crick/wobble base-pair models to more
complex interactions [19]. However, in the remainder of this work we restrict ourselves
to the model proposed by Kato, et al. [20].

3.3 Encoding RNA Structure Prediction in SAT

Our SAT encoding is formulated by two sets of constraints, structural and energetic, that
control the assignment of a vector of free variables which represent the final structural
solution. The assignment of each free variable indicates whether two nucleotides are
base-paired in the final RNA structure, fixed by structural constraints and an associated
energetic score. Figure 1 depicts this formulation.
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Solution Variables. The set of all properly-nested base-pairs within the final output
RNA structure is represented by the variables Xi,j : where i and j indicate the sequence
position of two nucleotides, a value Xi,j = T indicates a hydrogen bond base-pair
exists between nucleotides at i and j, and Xi,j = F indicates that no base-pairing
occurs between positions i and j. The set of pseudoknotted base pairs that cannot be
properly nested are similarly represented by the independent variables Yi,j . In this way
pseudoknots are represented solely by the alignment of properly-nested Xi,j pairs and
properly-nestedYi,j pairs. Since RNA structure permits any nucleotide position i to pair
with any other position j, a valid biological structure requires a complete assignment of
all Xi,js and Yi,js for every i, j (0 ≤ i, j < length(sequence)). Therefore, the number
of solution variables, the number of resultant constraints, and thus the difficulty of the
SAT problem depends directly on the sequence length of the input RNA.

Structural Constraints. The structural representation places requirements on the as-
signment of the solution bits Xi,j and Yi,j to ensure a biologically consistent structure.
Therefore, we declare the following constraints, which must be satisfied in any valid
solution:

– Every position i can at most pair with one other position j, independent of whether
that pairing is properly-nested or a pseudoknot (Figure 1(a-d)). Four straightfor-
ward constraints ensure this:

∀i, j, k, i < j < k

(Xi,j ∧Xj,k) = F ∧ (Yi,j ∧ Yj,k) = F ∧
(Xi,j ∧ Yj,k) = F ∧ (Yi,j ∧Xj,k) = F

– All base-pairs i, j are properly nested or a pseudoknot, but not both (Figure 1(e)):

∀i, j (Xi,j ∧ Yi,j) = F

– We define all Xi,j and Yi,j base-pairs to be independently knot-free (Figure 1(f-g)):

∀i, j, k, l, i < k < j < l

(Xi,j ∧Xk,l) = F ∧ (Yi,j ∧ Yk,l) = F

– We only permit bifurcations within the “normal” base-pairs in Xi,j since pseudo-
knots are rare and deserve distinct energetic treatment. Therefore (Figure 1(h):

∀i, j, k, l, i < k < j < l (Yi,j ∧ Yk,l) = F

– Finally, the class of structures with “double-crossing” pseudoknots are rare and
present unusual energetics which are not handled by the energy model we use, thus
we constrain pseudoknots to only cross at most once (Figure 1(i-j)):

∀i, j, k, l,m, n, i < m < j < k < n < l

(Xi,j ∧ Ym,n) =⇒ (Xk,l = F) ∧
(Xk,l ∧ Ym,n) =⇒ (Xi,j = F)
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Energetic Constraints. The total energy of an RNA structure is defined as the sum of
experimentally-derived energy parameters [26,20] for every constituent base-pair stack,
where a stack indicates two adjacent base pairs, e.g. Xi,j and Xi+1,j−1. Energy param-
eters are given in terms of base-pair stacks because nucleotide π-orbital overlap serves
as a dominant stabilizing factor in RNA structure. Thus, an energy value is assigned to
every base-pair stack Xi,jXi+1,j−1 according to the four nucleotide types at sequence
positions i, j, i+1, and j−1 (Parameters found in [20]). By including a logical adder of
all possible energetic assignments, we can then define a valid solution as an assignment
of Xi,j and Yi,j (subject to structural constraints), where the output of the adder over-
comes some minimum threshold energy Ethreshold (the energy bound). As a logical
declaration, we write:

∀i, j, i < j (Xi,j ∧Xi+1,j−1) = T⇒ (EXi,j = EnergyConstant(i,j,i+1,j−1)) ∧
(Yi,j ∧ Yi+1,j−1) = T⇒ (EYi,j = EnergyConstant(i,j,i+1,j−1)) ∧
(Xi,j ∧Xi+1,j−1) = F⇒ (EXi,j = 0) ∧
(Yi,j ∧ Yi+1,j−1) = F⇒ (EYi,j = 0),

where EnergyConstant(i, j, i+ 1, j − 1) indicates the energy score of the four nu-
cleotides found at positions i, j, i+ 1, and j + 1 base-pairing and stacking, and

∑
∀i,j

(EXi,j + EYi,j ) ≥ Ethreshold.

Finally, to enforce that all assigned base-pairs are accounted within the adder by stack-
ing energy parameters, we require:

∀i, j s.t. i < j

(Xi−1,j+1 ∧ Xi,j ∧Xi+1,j−1) = F ∧
(Yi−1,j+1 ∧ Yi,j ∧ Yi+1,j−1) = F
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4 Experimental Results

In this section we describe the results of our experimental evaluation of Lynx and com-
peting approaches over input tests obtained from a set of RNA sequences. As described
in detail in 3, we solve the two dimensional RNA optimum structure prediction problem
(where the structures may have pseudoknots). We ran all experiments on a 3GHz Intel
Xeon X5460 with 64GB of RAM and a 6MB L2 cache with 1 hour timeout per SAT
instance.

4.1 Description of Input Tests

We acquired a set of benchmark RNA sequences and structures from the PseudoBase
website [1]. These RNA sequences are widely used by computational biologists for a
variety of structure prediction tasks. The biological accuracy of our lowest-energy struc-
ture predictions were verified to agree with Kato, et al. [20], whose scoring model we
duplicate. Recall that the optimization problem is treated as a series of decision prob-
lems performing a binary search of the energy space. For each RNA sequence, a cor-
responding SAT instance is therefore constructed containing the energy and structural
constraints along with an energetic bound that captures the minimum and maximum al-
lowed energy for that step in the binary search. Given the precision of our energy model
a search depth of 10 sufficed to identify the minimum energy structure of any structure
tested.

4.2 Experimental Methodology

We solve the structure prediction problem using the following three methods:

– Baseline Approach Using CryptoMiniSat (BA): A standard encoding of our prob-
lem in SAT. We generate the complete SAT encoding (with XOR clauses as appro-
priate) of the RNA secondary structure prediction problem, then use CryptoMiniSat
to solve this problem. We also used MiniSat2 [9], and found that for this problem
its performance is similar to CryptoMiniSat [23].

– Offline Abstraction Refinement (OFFA): An encoding of our problem using es-
tablished refinement techniques. Starting with only the energy constraints from the
SAT encoding of the RNA structure prediction problem to form the abstracted con-
straint, we use offline abstraction refinement to obtain a solution to the complete
structure prediction problem. Each refinement step uses CryptoMiniSat to solve the
current SAT problem, computes the set of constraints from the complete structure
prediction problem that are inconsistent with this solution, and generates a new
problem by incrementally adding these constraints to the current problem in SAT.
The refinement process continues until it produces a solution to the complete input
problem.

– Online Abstraction Refinement (ONA): The methodology enabled by our tool
Lynx. Starting with only the energy constraints from the SAT encoding of the RNA
structure prediction problem to form the abstracted constraint, we use online ab-
straction refinement to obtain a solution to the complete structure prediction prob-
lem. After each CryptoMiniSat propagation step, the constraint manager examines
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the current partial solution to find the set of constraints from the full structure pre-
diction problem that conflict with the current solution. It then incrementally adds
these constraints to the current problem before CryptoMiniSat takes the next par-
tial solution step. The difference between the Offline (OFFA) and Online (ONA)
approaches is the granularity of the refinement steps. Each refinement step in the
OFFA version takes place only after CryptoMiniSat produces a complete solution
to the current problem. Each refinement step in the ONA version, in contrast, takes
place at the much finer granularity, every time CryptoMiniSat extends the current
partial solution.

Table 1. Comparison of running times between Baseline (BA), Offline (OFFA), and Online
(ONA) methods. Total cumulative time (across all solver instances during search) is reported,
broken down by the amount of time spent in the SAT solver versus the amount of time spent in
refinement. The number of refinement steps involved is also given. T.O. indicates that a timeout
occured after 1hr of an individual SAT solver instance.

RNA sequence Baseline Offline Online
length (sec) Tot(sec)=SAT+Ref (# steps) Tot(sec)=SAT+Ref (# steps)

PKB115 24 1.4 1.7 = 1.3+0.4 (205) 0.8 = 0.6+0.2 (2,538)
PKB102 24 1.3 1.0 = 0.7+0.3 (129) 0.6 = 0.5+0.1 (1,766)
PKB119 24 2.1 3.6 = 3.0+0.6 (266) 1.6 = 1.3+0.3 (4,108)
PKB103 25 3.1 6.6 = 5.4+1.2 (417) 3.5 = 3.1+0.4 (6,191)
PKB123 26 5.6 24.7 = 22.7+2.0 (597) 7.4 = 6.8+0.6 (8,980)
PKB154 26 2.5 3.8 = 3.2+0.6 (236) 1.9 = 1.7+0.2 (4,070)
PKB152 26 3.2 6.2 = 5.2+1.0 (255) 2.3 = 2.0+0.3 (5,528)
PKB126 27 4.0 6.6 = 5.5+1.1 (384) 2.8 = 2.5+0.3 (5,874)
PKB124 29 4.7 5.1 = 4.4+0.7 (262) 2.3 = 2.1+0.2 (4,635)
PKB100 31 11.0 52.3 = 49.4+2.9 (315) 6.8 = 6.0+0.8 (11,890)
PKB105 32 17.0 58.3 = 54.0+4.3 (1004) 18.1 = 17.0+1.1 (16,817)
PKB118 33 13.7 32.8 = 29.6+3.2 (591) 8.2 = 7.4+0.8 (12,878)
PKB120 36 36.1 571.1 = 560.6+10.5 (652) 24.1 = 21.9+2.2 (26,370)
PKB065 46 185.1 11,341.9 = 11,298.7+43.2 (1,344) 112.7 = 108.1+4.6 (50,508)
PKB205 48 388.6 T.O. 391.6 = 381.9+9.7 (72,922)
PKB147 51 1,917.3 T.O. 1,087.9 = 1,067.2+20.7 (131,321)
PKB248 66 T.O. T.O. T.O.
PKB072 67 5,352.6 T.O. 2,414.1 = 2,367.6+46.5 (286,881)

4.3 Results

Table 1 presents the total execution times required for the different methods to solve
the RNA structure prediction problems. We ran each method with a timeout of 3600
seconds for each SAT solution problem (i.e., each binary search step). Each row in the
table corresponds to a single RNA. The first column is the number of base pairs in the
RNA sequence. The next column presents the time (in seconds) required for the BA
method to solve the problem. Recall that each problem requires the solution of 10 SAT
instances; the reported total time is the sum of the 10 individual SAT solution times.
The next column presents data from the OFFA method and is of the form t = s+ c(r).
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Table 2. Comparison of memory usage between Baseline (BA), Offline (OFFA), and Online
(ONA) methods. Given is the maximum memory (in MB) required throughout all SAT solver
instances, along with the sum of the total number of clauses (in thousands) both input and gen-
erated during refinement. T.O. indicates that a timeout occured after 1hr of an individual SAT
solver instance.

RNA sequence Baseline Offline Online
length Mem(MB) / Clauses Mem(MB) / Clauses Mem(MB) / Clauses

PKB115 24 5.0 / 3,223k 5.0 / 94k 72.1 / 82k
PKB102 24 5.0 / 3,219k 5.0 / 86k 5.0 / 75k
PKB119 24 5.0 / 3,240k 5.0 / 130k 5.0 / 104k
PKB103 25 5.0 / 4,142k 16.5 /174k 5.0 / 136k
PKB123 26 43.4 / 5,244k 19.7 / 226k 74.7 / 168k
PKB154 26 5.0 / 5,204k 5.0 / 128k 5.0 / 106k
PKB152 26 5.0 / 5,220k 16.6 / 174k 5.0 / 128k
PKB126 27 72.1 / 6,544k 74.5 / 171k 5.0 / 129k
PKB124 29 5.0 / 10,076k 5.0 / 142k 5.0 / 108k
PKB100 31 90.5 / 16,937k 23.9 / 376k 90.0 / 231k
PKB105 32 157.4 / 20,584k 75.9 / 448k 95.7 / 260k
PKB118 33 131.9 / 24,870k 23.2 / 355k 22.8 / 227k
PKB120 36 276.0 / 42,698k 76.7 / 729k 75.3 / 369k
PKB065 46 1,011.8 / 196,236k 150.6 / 341k 122.9 / 595k
PKB205 48 1,221.3 / 255,861k T.O. 145.0 / 808k
PKB147 51 1,988.9 / 373,294k T.O. 188.7 / 1,322k
PKB248 66 T.O. T.O. T.O.
PKB072 67 9,046.5 / 2,031,362k T.O. 313.1 / 2,652k

Here t is the total time required to solve the structure prediction problem (the sum of
the solution times for the 10 SAT problems), s is the amount of time spent in the SAT
solver, c is the amount of time spent in the constraint manager, and r is the total number
of refinement steps (summed over all 10 SAT problems). The last column presents data
from the ONA method and is also of the form t = s+ c(r).

Up to problem PKB124, the solution times for all of the methods are roughly
comparable: each is less than ten seconds and within a factor of two for the same
RNA sequence. For larger problems the OFFA approach starts to exhibit substantially
larger solution times than either BA or ONA approaches; for the largest problems in
our benchmark set OFFA times out. For two of the largest three problem sizes BA is
roughly a factor of two slower than ONA; BA times out for PKB248.

We note that there is a substantial difference between the number of refinement steps
that the ONA and OFFA methods perform — OFFA typically performs hundreds of
(relatively coarse grain) refinement steps, while ONA performs thousands of (fine grain)
refinement steps. These data indicate that, as expected, the SAT solver can respond
much more quickly to fine grain than to coarse grain refinement steps, but that the ONA
method requires more fine grain steps to reach a solution.

Table 2 presents the maximum amount of memory required to solve the structure
prediction problem (this is the maximum over all runs of the SAT solver of the amount
of memory that the SAT solver consumes) and the total number of clauses for each
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RNA. For the OFFA and ONA methods, the total number of clauses is the sum over
all binary search steps of the number of clauses in the problem at the final refinement
step. Each entry of the table is in the form m/c, where m is the maximum memory
and c is the number of clauses. Both the OFFA and ONA methods generate problems
with substantially smaller numbers of clauses than the BA method (BA typically gen-
erates hundred to thousand times as many clauses OFFA and ONA typically generate).
For larger RNA sequences, these larger clause sizes translate into substantially larger
memory requirements for the BA method — OFFA and ONA never go above several
hundred Mbytes, while BA starts requiring more than 1Gbyte of memory for the larger
sequences.

4.4 Discussion

These data highlight how the ONA method is able to combine the benefit of small
memory requirements, which it shares with OFFA, and feasible execution times, which
it shares with BA (further note that ONA often exhibits roughly a factor of two perfor-
mance advantage over BA). We attribute these characteristics to, first, the ability of the
ONA method to effectively find relatively small problems whose solution also happens
to be a solution of the complete structure prediction problem, and second, the ability of
the ONA method to efficiently guide the SAT solver to the solution through fine-grain
corrections to partial solution missteps. A comparison with the OFFA method illus-
trates how quickly correcting any missteps on the part of the SAT solver (by operating
the refinement steps after every intermediate SAT solver decision rather than after every
complete solution) can deliver very efficient solution times even in situations where the
more coarse OFFA approach fails to solve the problem in an acceptable amount of time.

5 Related Work

There has been a lot of recent work on incremental SAT solvers [18], DPLL(T) [11],
abstraction-refinement based techniques in the context of model-checking and decision
procedures for SMT theories [2]. We summarize the related work, and contrast Lynx
with other tools.

Incrementality, Extensibility and SAT Solvers. The work that is closest to ours is by
Stuckey et al. [18] and the related idea of DPLL(T) [11]. Our work is different from
Stuckey et al. in the mechanism employed to implement incrementality, namely, a call-
back interface. Our approach is more flexible in the sense that it can be used to expose
other internals of SAT solvers (e.g., branching heuristics or restart triggers) to lay non-
expert users. While DPLL(T) is a very powerful idea, it places more requirements on
user-code (to ensure completeness and soundness) and is probably best used by experts.

Abstraction-Refinement in Decision Procedures. The idea of counter-example guided
abstraction refinement was originally developed in the context of model-checking [6].
Since then the basic idea has been adapted in different ways to solve the satisfiability
problems of SMT theories [2]. Kroening, Ouaknine, Seshia, and Strichman [13] were



Lynx: A Programmatic SAT Solver for the RNA-Folding Problem 155

the first to adapt CEGAR to deciding quantifier-free Presburger arithmetic. More re-
cently, Brummayer and Biere give a new technique that allows early termination of
an under-approximation refinement loop even when the original formula is unsatisfi-
able [5]. Ganesh and Dill proposed the use of abstraction-refinement for deciding the
theory of arrays [10].

RNA Secondary Structure Prediction. Zuker introduced the first optimal algorithms
for RNA secondary structure prediction based on a dynamic programming solution
to energy minimization [26], although many improved predictors have followed [15].
Non-thermodynamic approaches have also met success through the use of phylogenetic
relationships [12], or via machine learning [8]. The first efficient thermodynamic-based
algorithm for predicting RNA pseudoknotted secondary structure was introduced by
Rivas and Eddy (PKNOTS [22]). Subsequent algorithms have recognized alternate
classes of pseudknots or improved upon the efficiency of solutions [17,4], including
the IP formulation focused on in this paper [20], and heuristics such as HotKnots [21].

6 Conclusions

We present Lynx, a programmatic incremental SAT solver that allows non-expert users
to easily introduce domain-specific or instance-specific code into modern CDCL SAT
solvers, thus enabling users to control the behavior of the solver in ways not possible
otherwise. While there has been work on incremental SAT [18] before and related ideas
such as DPLL(T), Lynx’s interface is simple to use and the requirements placed on
user code are minimal. The approach is a template on how to expose other internals of
the SAT solver to non-expert users in a easy-to-use and intuitive way. We demonstrate
the benefits of Lynx through a first-of-its-kind solver case-study from computational
biology, namely, RNA secondary structure prediction.
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Abstract. The IC3 algorithm was recently introduced for proving
properties of finite state reactive systems. It has been applied very suc-
cessfully to hardware model checking. We provide a specification of the
algorithm using an abstract transition system and highlight its dual op-
eration: model search and conflict resolution. We then generalize it along
two dimensions. Along one dimension we address nonlinear fixed-point
operators (push-down systems) and evaluate the algorithm on Boolean
programs. In the second dimension we leverage proofs and models and
generalize the method to Boolean constraints involving theories.

1 Introduction

Efficient SAT and SMT solvers are at the heart of many program analysis,
verification and test tools. Such tools reduce program representations and logics
to first-order or propositional queries. An ongoing quest is how one can raise
the level of abstraction and power of the logic engines. We pursue satisfiability
modulo least fixed-points. The propositional fragment corresponds to Boolean
Programs with procedure calls, equivalently monotone Datalog, and first-order
existential fixed-points provide a precise match for Hoare Logic [3].

The IC3 algorithm [4] was recently used successfully for hardware model
checking [4,6]. We use the current popular, and descriptive, terminology Property
Directed Reachability (PDR) to refer to IC3 and its derivatives. PDR has several
intriguing characteristics. It simultaneously strengthens an abstraction of reach-
able states and prunes a search for counter examples, but in contrast to predicate
abstraction methods [2] and methods based on interpolants [12,8,1], it maintains
precise transition relations and only refines state abstractions. Importantly, it
leverages induction proofs to strengthen invariant candidates.

We are motivated by software analysis, where handling procedure calls and
theories is relevant. In the pursuit of this goal, we contribute the following:

– provide an abstract account of the PDR algorithm;
– generalize PDR to nonlinear fixed-point operators;
– further generalize PDR to theories, specifically Linear Real Arithmetic.

The paper is organized as follows: Section 2 motivates satisfiability modulo least
fixed-points. Sections 3 (4) present the abstract account of (nonlinear) PDR. Sec-
tion 5 generalizes PDR to theories and Section 6 describes our implementation
and experiments.
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2 From Safety Verification to Least Fixed-points

To motivate the use of fixed-point operators and solving satisfiability modulo
least fixed-points consider Lamport’s two process Bakery algorithm. It ensures
mutual exclusion between processes P1 and P2. They cannot simultaneously
execute critical.

initially y1 := y2 := 0;

P1 ::

⎡⎢⎢⎢⎢⎣
loop forever do⎡⎢⎢⎣

0 : y1 := y2 + 1;

1 : await y2 = 0 ∨ y1≤ y2;

2 : critical;

3 : y1 := 0;

⎤⎥⎥⎦
⎤⎥⎥⎥⎥⎦ || P2 ::

⎡⎢⎢⎢⎢⎣
loop forever do⎡⎢⎢⎣

0 : y2 := y1 + 1;

1 : await y1=0 ∨ y2 ≤ y1;

2 : critical;

3 : y2 := 0;

⎤⎥⎥⎦
⎤⎥⎥⎥⎥⎦

Θ(x) → R(x)
R(x) ∧ ρ(x,x′) → R(x′)
R(x) → S(x)

G-INVS |= �S(x)

Mutual exclusion and other safety proper-
ties are proved by induction over the set of
reachable states. The induction proof re-
quires finding an inductive invariant that
is true in the initial state, is maintained
by each step of the system, and implies the safety property. The induction G-
INV rule can be formalized following [11]. Programs denote transition systems
S = 〈x, Θ, ρ(x,x′)〉, where x is a set of state variables, Θ a formula describing
a set of initial configurations over x and ρ(x,x′) is a transition relation. For the
Bakery algorithm, Θ := y1 = y2 = L = M = 0 where L is program counter
for P1 and M is a program counter for P2. The safety property for Bakery is
S := ¬(L = 2 ∧M = 2). The predicate R serves as the inductive invariant in
G-INV. Notice that the premises of G-INV are Horn clauses. We reformulate

R(0, 0, 0, 0)
R(L,M, Y1, Y2) ∧ T (L,L′, Y1, Y2, Y

′
1) → R(L′,M, Y ′

1 , Y2)
R(L,M, Y1, Y2) ∧ T (M,M ′, Y2, Y1, Y

′
2) → R(L,M ′, Y1, Y

′
2)

T (0, 1, Y1, Y2, Y2 + 1)
Y1 ≤ Y2 ∨ Y2 = 0 → T (1, 2, Y1, Y2, Y1)

T (2, 3, Y1, Y2, Y1)
T (3, 0, Y1, Y2, 0)

R(2, 2, Y1, Y2) → false

the Bakery verification
problem on the left us-
ing Prolog convention
of capitalization for
universally quantified
variables. The non-
recursive predicate T
is a shorthand for ρ. It
exploits the symmetry of P1 and P2. The real challenge is to find a solution to
the recursive predicate R. A solution exists iff there is a solution to the least
fixed-point of the strongest post-condition predicate transformer that defines R.
For transition systems, the predicate transformer follows the template:

F(R)(x) := ∃x0 . Θ(x) ∨ R(x0) ∧ ρ(x0,x)︸ ︷︷ ︸
T [R(x0)]

, (1)

where the quantifier-free body T of F is the transition relation, which now
includes also the initial condition Θ. The predicate transformer (1) is linear ; the
argument R occurs in at most one (positive) position. Using the terminology of
predicate transformers, finding an inductive invariant amounts to finding a post
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fixed-point R, such that F(R)→ R and R→ S. Recall that the least fixed-point
μR.F(R) (the infinite disjunction

∨
i≥0 F i(false)) is contained in any R that

satisfies F(R)→ R.

3 Abstract Property Directed Reachability

S Ri+1

↖ ↗ ↖
Ri F(Ri)

(2)

Fig. 1. Invariant (2). Each arrow is
an implication: Ri → S, Ri → Ri+1,
F(Ri) → Ri+1.

This section recalls the Property Directed
Reachability algorithm using terminology of
predicate transformers and we specify the
algorithm as an abstract transition system.
We build upon [6] as we arrive to a specifi-
cation. The original IC3 algorithm verifies
invariants of linear fixed-point operators.
PDR maintains formulas Θ = R0, . . . , RN ,
such that for 0 ≤ i < N invariant (2) holds.
Initially we set R0 = F(false) and N = 0, so the invariant holds trivially. N is
incremented if RN → S is established.

For Bakery, we have R0 := Θ := (L = M = Y1 = Y2 = 0) and S := ¬(L =
M = 2) so R0 → S, and we can increment N := 1, R1 := true. The next action
is to check if R1 ∧ ¬S is satisfiable. It is, and one partial model is denoted by
M := L = 2 ∧M = 2 (it does not include assignments to Y1, Y2). The model
M violates the safety property, but isM reachable from the current unfolding?
They would be if F(R0)∧M was satisfiable. It is not satisfiable. One of several
possible unsatisfiable cores is L �= 0 ∧ M �= 0. We then update R1 with the
negation: R1 := R1 ∧ (L = 0 ∨M = 0) and now we can unfold again N := 2.

These steps give a taste of how PDR uses spurious counter examples, as partial
models, to build up Ri. PDR also contains a clever mechanism for strengthen-
ing clauses in Ri by using induction, presented in the following. The Ri are
sets of clauses. We shall however often (ab)use notation and use conjunction
instead of set union and freely switch between viewing a set of formulas as a
conjunction. The Ri denote sets of states (the set of models that satisfy Ri)
and over-approximate the states reachable by unfolding the transition relation i
times. All stages except the last imply the safety property. We can visualize the
implications between the approximations using the picture below (for N = 3).

S R3 F(R3)
↖ ↗ ↖ ↗

S R2 F(R2)
↖ ↗ ↖ ↗

S R1 F(R1)
↖ ↗ ↖ ↗

R0 := F(false) F(R0)

PDR relies on refining counter examples that are models. A model is a con-
junction of equalities between variables and values. For example the model
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a = true ∧ b = false ∧ x = 3 (more compactly written a ∧ ¬b ∧ x = 3), as-
signs a to true, b to false and x to 3. We use M as shorthand for models of the
form x = c. A model M of a formula ϕ is allowed to be partial (omit assigning
values to some variables) as long as ϕ is true underM. When ϕ is a clause, then
¬ϕ is treated as a conjunction of literals. So ¬ϕ ⊆M means that all literals in
ϕ are false in M.

The following updates to Ri are made by the algorithm:

Valid. For i < N , if Ri ⊆ Ri+1, then Ri is an inductive invariant. Return Valid.
Unfold. If RN → S, then set N ← N + 1, RN ← true.
Induction. For 0 ≤ i < N , a clause (ϕ∨ψ) ∈ Ri, ϕ �∈ Ri+1, if F(Ri ∧ϕ)→ ϕ,

then conjoin ϕ to Rj , for each j ≤ i+ 1. While induction is a separate rule,
it is useful to apply it immediately following Unfold and Conflict. The rule is
sound because F is monotone and Invariant (2) ensures Rj → Ri for j < i.
Therefore F(false)→ ϕ and F(Rj ∧ ϕ)→ ϕ for each j < i.

PDR includes a dual mode where it searches for a candidate counter-model to
S. The candidate model is used to guide the strengthening of Ri.

Candidate. If M |= RN (x) ∧ ¬S(x), then produce candidate 〈M, N〉.
Decide. If 〈x = c, i + 1〉 for 0 ≤ i < N is a candidate model and there is a

subset x̃0 of x0 and constants c0, such that x = c, x̃0 = c0 |= T [Ri(x0)],
then add the candidate model 〈x̃ = c0, i〉 (renaming x̃0 to x̃).

Model. If 〈M, 0〉 is a candidate model, then report that S is violated.
Conflict. For 0 ≤ i < N : given a candidate model 〈M, i+1〉 and clause ϕ, such

that ¬ϕ ⊆M, if F(Ri)→ ϕ, then conjoin ϕ to Rj , for j ≤ i+ 1.

3.1 PDR as an Abstract Transition System

Figure 2 summarizes the PDR algorithm as an abstract transition system. It
maintains states of the form M ||A, where M is a candidate counter example
trace that is a stack of models labeled by a level i, andA is the current abstraction
comprising of the maximal level N and sets of clauses R0, . . . , RN .

Example 1. Suppose we are given the safety property S(x, y, z) ≡ ¬y and the
predicate transformer F = λRλxyz . ∃x0y0z0 . (x, y, z) = (1, 0, 0) ∨ ((x, y, z) =
(y0, z0, x0)∧R(x0, y0, z0))) that corresponds to the rules: R(1, 0, 0). R(x, y, z) →
R(y, z, x) . We use 0 for false and 1 for true. We can check that ¬S is reachable.

Initialize =⇒ ε || [N ← 0, R0 ← x ∧ ¬y ∧ ¬z]
Unfold =⇒ ε || [N ← 1, R0, R1 ← true]
Candidate =⇒ 〈y ∧ ¬z, 1〉 || [N,R0, R1]
Conflict =⇒ ε || [N,R0, R1 ← ¬y] since y ∧ ¬z |= y, F(R0)(x, y, z)→ ¬y
Unfold =⇒ ε || [N ← 2, R0, R1, R2 ← true]
Candidate =⇒ 〈y, 2〉 || [N,R0, R1, R2]
Decide =⇒ 〈z, 1〉〈y, 2〉 || [N,R0, R1, R2]
Decide =⇒ 〈x, 0〉〈z, 1〉〈y, 2〉 || [N,R0, R1, R2]
Model =⇒ 〈x, 0〉〈z, 1〉〈y, 2〉 �
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Initialize =⇒ ε || [N ← 0, R0 ← F(false)]

Valid M ||A =⇒ Valid if |= Ri−1 ⊆ Ri, i < N .

Unfold M ||A =⇒ ε ||A[RN+1 ← true , N ← N + 1] if |= RN → S,

Induction M ||A =⇒ M ||A[Rj ← Rj ∧ ϕ]i+1
j=1 if (ϕ ∨ ψ) ∈ Ri, ϕ �∈ Ri+1,

|= F(Ri ∧ ϕ) → ϕ

Candidate ε ||A =⇒ 〈M, N〉 ||A if M |= RN ∧ ¬S

Decide 〈M, i+1〉M ||A =⇒ 〈x̃ = c0, i〉〈M, i+1〉M ||A if M, x̃0 = c0 |= T [Ri(x0)]

Model 〈M, 0〉M ||A =⇒ Model 〈M, 0〉M

Conflict 〈M, i+1〉M ||A =⇒ M ||A[Rj ← Rj ∧ ϕ]i+1
j=1 if ¬ϕ ⊆ M, |= F(Ri) → ϕ.

Fig. 2. Abstract transition system specification of PDR

The example exercises several features of PDR. It starts with a Candidate counter
example model to the last state and Decide pushes models down to the initial
state. There is some freedom in choosing models to push down. Such models
can be partial; they just need to force the transition relations. If models can be
pushed all the way down, there is a counter example trace, otherwise a Conflict
gets detected along the way. The induction rule is specified as a separate rule,
but it can be applied immediately after Conflict to minimize the new clause.
A good analogy is how subsumption is used when processing conflict clauses
in modern SAT solvers. Induction also serves the purpose of pushing up clauses
from (ϕ∨ψ) ∈ Ri to Ri+1 by taking ψ = false . Such propagation can be applied
immediately after Conflict and before Unfold.

Correctness of the algorithm follows from four observations:

Lemma 1 (Invariant (2)). The rules from Figure 2 maintain Invariant (2).

Lemma 2 (Validity). When |= Ri ⊆ Ri+1, then S is invariant.

Proof. Let us add this condition to the implications from invariant (2) and we get
that Ri is a post-fixed point that is contained in S: F(Ri) → Ri+1 → Ri → S.
Thus, Ri satisfies the premises of G-INV and therefore S is invariant.

Lemma 3 (Satisfiability). When 〈M, 0〉 is reached, then S is violated with a
path of length N .

Corollary 1 (Correctness of PDR). If PDR terminates with Valid, then S
is invariant. If PDR terminates with Model M , then M is a trace leading to a
violation of S.

It is also the case that each step makes progress by either extending models or
strengthening states. The set of possible different states Ri is bounded by the
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set of possible models (assuming that clauses are normalized) so the algorithm
terminates for finite domains. Therefore,

Theorem 1 (Termination on Finite Domains). Any derivation sequence
terminates with a verdict Valid or Model when F is finite domain.

Note that PDR represents traces explicitly, so while reachability of Boolean
systems is PSPACE, PDR may nevertheless consume exponential space.

4 Nonlinear PDR

Nonlinear transformers are important in the context of checking software with
procedures. The Static Driver Verifier [2] implements a model checker for pro-
grams with procedure calls.

mc(x) = if x > 100 then x− 10 else mc(mc(x+ 11))
assert ∀x.mc(x) ≥ 91

X > 100 → mc(X,X − 10)
X ≤ 100 ∧mc(X + 11, Y ) ∧mc(Y,R) → mc(X,R)
mc(X,R) → R ≥ 91

Nonlinear predicate transform-
ers correspond to general Horn
clauses. An example program
with procedure calls and re-
sulting non-linear Horn clauses
comes from McCarthy’s 91

function and the accompanying assertion.
We therefore consider nonlinear predicate transformers of the form

F(R)(x) = ∃x0,x1 . Θ(x) ∨ [R(x0) ∧ R(x1) ∧ ρ(x0,x1,x)]︸ ︷︷ ︸
T [R(x0),R(x1)]

(3)

We use the template (3) when presenting algorithms for nonlinear PDR. The
terminology of predicate transformers was useful for formulating the main in-
variant (2), and we find it particularly instrumental for generalizing PDR to
general Horn clauses. The extension to nonlinear predicate transformers with
more than two occurrences of R, and systems of nonlinear predicate transform-
ers is relatively straight-forward.

4.1 State

In contrast to linear predicate transformers, counter examples for nonlinear
transformers unfold into trees. A compressed view of counter examples is as
DAGs, and the potential savings of using DAGs can be exponential. A chal-
lenge is to create and maintain such counter examples. We propose an approach
where states that are known to be reachable are put in a cache, and PDR inserts
nodes into a DAG. So it inspects the current DAG to see if a new (potentially)
reachable state is already being expanded before creating a new node. States are
compared syntactically. A more powerful alternative is to represent the cache as
a formula and check cache containment semantically, but we found no practical
use for such added power: counter examples for recursive predicates from pro-
grams can be expected to have a small tree unfolding. We present this approach
in the following.
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The state of the algorithm is maintained as a triple D ||A ||C, where:

D, the model search DAG represents a partial unfolding of a counter example.
It is initially the empty DAG ε. Nodes are labeled with queries 〈M, i〉, where
i is a level and M is a partial model. We use L as a shorthand for 〈M, i〉; use
D[L • {D′ D′′}] to refer to an internal node L with two children; and model(D)
to access the model at the root of a DAG.

A, the property state of the form [N,R0, . . . , RN ].

C, the cache of reachable states. It contains a set of partial interpretations M
that imply Fn(false) for some n ≥ 0. Consequently, every completion of M is
contained in the least fixed-point and is therefore reachable.

4.2 Algorithm Specification

Figure 3 contains the new rules we need for the nonlinear variant of PDR. Rules
Initialize, Valid, Induction, Unfold, Candidate are unchanged from Figure 2, with
the exception that we add a column for the cache C and we replace the stack of
models M by a DAG D.

Decide D[〈M, i+ 1〉] ||A ||C =⇒ D[〈M, i+ 1〉 • {〈x̃ = c0, i〉 〈˜̃x = c1, i〉}] ||A ||C
if M, x̃0 = c0, ˜̃x1 = c1 |= T [Ri(x0), Ri(x1)]

Model D ||A ||C =⇒ Model D if 〈M, N〉 ∈ D,M ∈ C

Conflict D[L • {D′ D′′}] ||A ||C =⇒ D[L] ||A[Rj ← Rj ∧ ϕ]i+1
j=1 ||C

if ¬ϕ ⊆ model(D′), |= F(Ri) → ϕ.

Base D[〈M, i〉] ||A ||C =⇒ D ||A ||C ∪ {M} if M |= R0.

Close D[〈M, i+ 1〉 • {D′ D′′}] ||A ||C =⇒ D ||A ||C ∪ {M}
if model(D′),model(D′′) ∈ C .

Fig. 3. Abstract nonlinear transitions

Decide extends a leaf L in D with two children. The nodes correspond to
partial models for the variables that are arguments to the recursive predicates
in F . To differentiate two possibly different subsets of x we use x̃ and ˜̃x. The
children are possibly pointers to nodes that already exist in D (so that we don’t
expand the same model twice). Model declares a counter example when all the
leaves and internal nodes have been validated. This amounts to that the root of
D is in the cache C. Conflicts are similar, Conflict backtracks from a leaf when
the (partial) model annotating the leaf contradicts the constraints at its level.
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There are two new rules. The rules are Base and Close. Their role is to prop-
agate cache hits upwards in the model DAG. At the base level, a model M is
added to the cache C if it implies R0. The Close rule removes children from an
internal node if each child is reachable. The model annotating the internal node
is then also reachable, so added to C.

Correctness follows analogously to the basic PDR algorithm, as we maintain the
following properties for a state D ||A ||C:

1. R0 ≡ F(false).
2. Invariant (2) holds.
3. Every member M ∈ C is contained in FN (false).
4. Every internal node 〈M, i+1〉 with children 〈x̃ = c0, i〉, 〈˜̃x = c1, i〉, it is the

case that M, x̃0 = c0, ˜̃x1 = c1 |= T [Ri(x0), Ri(x1)].

Example 2. Consider a nonlinear system R(true, true). R(x0, y0)∧R(x1, y1) →
R(x0 ⊕ x1, y0 ⊕ y1). R(true, false) → false. A sample run of the algorithm
proceeds as follows:

Initialize =⇒ ε ||A0 || {} for A0 = [N ← 0, R0 ← x ∧ y]
Unfold =⇒ ε ||A1 || {} for A1 = A0[N ← 1, R1 ← true]
Candidate =⇒ 〈x∧¬y, 1〉 ||A1 || {}
Conflict =⇒ ε ||A2 || {} for A2 = A1[R1 ← R1 ∧ (¬x ∨ y)]
Unfold =⇒ ε ||A3 || {} for A3 = A2[N ← 2, R2 ← true]
Candidate =⇒ 〈x∧¬y, 2〉 ||A3 || {}
Decide =⇒ 〈x∧¬y, 2〉 • {〈x∧y, 1〉 〈¬x∧y, 1〉} ||A3 || {}
Base =⇒ 〈x∧¬y, 2〉 • {〈x∧y, 1〉 〈¬x∧y, 1〉} ||A3 || {x∧y}
Conflict =⇒ 〈x∧¬y, 2〉 ||A4 || {x∧y} for A4 = A3[Rj ← Rj∧(x∨¬y)]2j=1

Induction =⇒ . . . ||A4[Rj ← Rj ∧ (¬x ∨ y)]2j=1 || {x∧y}
Valid =⇒ Valid

Note how Decide develops two branches. When one child is in conflict then both
children are collapsed. Note also how Induction is used to push (¬x ∨ y) up to
level 2. The property is inductive when combined with the property (x∨¬y). At
this point R2 → R1 (e.g., R1 ⊆ R2) so the procedure terminates with Valid. �

5 Theories - The Case of Linear Real Arithmetic

We generalize PDR to handle non-Boolean constraints. The problem goes from
PSPACE to highly intractable. Nevertheless, we identify a subclass, timed push-
down systems, that are handled by our generalization. Our approach is to lift
the Conflict and Decide rules and instantiate the generalization to the theory of
linear real arithmetic. Central to our approach is the use of models for guiding
the creation of conflict clauses as interpolants. The interpolants are a minimal
set of constraints implied by the existing abstraction that suffice to exclude a
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spurious counter example. When iterated over all spurious counter examples, our
procedure does in fact produce interpolants for systems of non-recursive Horn
clauses [8]. Our incremental approach is appealing compared to an approach
that computes interpolants in from an eager unfolding: intermediary results from
spurious counter examples act as conflict clauses for future traversals. We use
the calculus from Section 3 to keep definitions simpler.

5.1 Conflicts

Recall Conflict applies when there is a ϕ ⊆ ¬M such that F(Ri) → ϕ. The
Conflict rule therefore applies when F(Ri) → ¬M. The propositional version
lets us add any subset of ¬M that is implied by F(Ri). The clause ϕ is also an
interpolant by construction. A problem with using a subset of ¬M for infinite
domains is that the number of potential counter-models is unbounded, so block-
ing one of an unbounded set of models does not help to ensure convergence. In
principle one can take any clause Post such that

F(Ri) → Post , Post → ¬M . (4)

This suggests a G-Conflict rule (formulated for linear fixed-points) as:

G-Conflict 〈M, i+ 1〉M ||A =⇒ M ||A[Rj ← Rj ∧ Post ]i+1
j=1

if |= F(Ri)→ Post , Post → ¬M.

Where Post is any clause that uses the variables x and implies ¬M. Notice that
we require Post to be a single clause. At the other extreme, one could think of
taking Post := F(Ri), the strongest post-condition that is independent of M.
The resulting algorithm would have to rely on quantifier elimination to convert
the result into a set of clauses and for making effective use of Induction. The rule
G-Conflict without further conditions is not informative.

Arithmetical Conflicts. We instantiate G-Conflict for the theory of Linear Real
Arithmetic (LRA) and show that we obtain a decision procedure for safety prop-
erties of timed push-down systems. The main idea is to compute the strongest
conflict clause modulo linear real arithmetic from unsatisfiability ofM∧F(Ri).

L = 2 ∧M = 2 |= F(R3) ∧ ¬S
↑

L = 1 ∧M = 2 ∧ Y2 = 0 |= F(R2)
↑

L = 1 ∧M = 1 ∧ Y1 = 1 ∧ Y2 = 0 |= F(R1)
...

L = 0 ∧M = 1 ∧ Y2 = 0 |= ¬F(R0)

The conflict clause is by con-
struction an interpolant and
the way it is extracted can
be described as a specialized
interpolation procedure. On
the right is the stage N = 4
where PDR pushes a counter
example down for Bakery.
It reaches a conflict because
L = 0 ∧ M = 1 ∧ Y2 = 0 ∧ T [R0(x0)] is unsatisfiable. The justification in-
cludes the clause ¬(Y2 ≤ 0 ∧ Y1 ≥ 0 ∧ Y2 ≥ Y1 + 1). The last two literals are



166 K. Hoder and N. Bjørner

from T [R0(x0)]. They resolve to Y2 > 0, justifying the stronger conflict clause
¬(L = 0 ∧M = 1 ∧ Y2 ≤ 0).

In general, assumeM is of the form
∧

i ki ≤ xi ≤ ki where xi are variables and
ki are numerals of type Real. The G-Conflict rule applies whenM∧T [Ri(x0)] is
unsatisfiable and there is a resolution proof Π that derives the empty clause. In
the following we make two important assumptions for our construction, first we
assume that all literals in Π are already in M∧ T [Ri(x0)]. This is the case for
proofs produced by the DPLL(T) framework [13]. Second, we assume that all
literals inM are used in unit-resolution with input clauses. This can be enforced
by permutingM up in proofs. The leaves of Π comprise of the inequalities (unit-
literals) from M, clauses from T [Ri(x0)] and T-axioms. In the theory of LRA,
the T-axioms are of the form

∨
i ¬(Aix− bi ≤ 0), where Ai are row vectors and

bi are constants. Recall that we can represent strict inequalities t > s using non-
strict inequalities by using an infinitesimal ε constant for t ≥ s+ ε. Let us write
Ax ≤ b for the conjunction

∧
i Aix ≤ bi. Farkas’ lemma implies that there is a

corresponding set of non-negative coefficients λ, such that λ ·A ·x is a numeric
constant and λ · A · x > λb. These coefficients are produced as a side-effect of
the Simplex procedure. Proof-objects exposed by Z3 [9] include the coefficients.

The method for creating Post is now as follows: conjoin every literal from
M that resolves against a clause from T [Ri(x0)] in Π . Furthermore, for every
T-axiom we partition the literals into two groups, the first group contains the
literals that resolve against a literal fromM, the second comprises of literals that

resolve against clauses from T [Ri(x0)]. Rewrite the inequality as

[
C
D

]
x ≤

[
c
d

]
,

where the inequalities with coefficients C, c resolve againstM and the remaining
inequalities resolve against T [Ri(x0)]. The coefficients from Farkas’ lemma are
λC and λD respectively, such that:

λCCx+ λDDx > λCc+ λDd, (5)

and therefore:

Dx ≤ d → λDDx ≤ λDd, λDDx ≤ λDd → λCCx > λCc . (6)

Then replace the theory axiom in Π by

¬(Dx ≤ d) ∨ λDDx ≤ λDd (7)

and conjoin λDDx > λDd to Post . This literal is implied by the original literals
Cx > c from M. Denote by Farkas-Conflict the rule that extracts formula Post
corresponding to a weakening of M determined by Π ′.

5.2 Timed Push-Down Systems

Basic timed transition systems are of the form S = 〈x, C, Θ, ρ ∨ ρtick 〉, where
c ⊆ x is a designated set of clock variables, and d := x \ c are finite domain
data-variables. There is a transition ρtick : ∃δ.c′ = c+ δ ∧ d′ = d that advances
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time on the clock variables. Other transitions are allowed to reset clocks to 0
and modify the data-variables. We consider a slight extension of timed transition
systems with push-down capabilities. Reachable states can be described as:

R(c,d) ∧ c′ = c+ δ ∧ ϕ(c′,d)→ R(c′,d) (8)

R(c,d) ∧ ∧ic
′
i = reset?(ci)→ R(c′,d) (9)

R(c,y) ∧R(c, z) ∧ ϕ(c,d,y, z)→ R(c,d) (10)

where reset?(c) is either c or 0 and the occurrences of clocks in ϕ is restricted
to difference arithmetic formulas of the form ci − cj ≤ k for k a constant.

Theorem 2 (Timed Push-down System Reachability). Generalized PDR
with Farkas-Conflict decides timed push-down system reachability.

Proof (Idea). Use the observation that Farkas-Conflict produces only literals in
the transitive closure of the difference constraints from the timed push-down
system. Assume F is a description of a timed push-down system that uses the
difference constraints Δ = {yi1 − yj1 ≤ k1, yi2 ≤ k2, . . .} where each yi is from
x0. Add to Δ also the inequalities yi ≥ 0, yi ≤ 0 for each yi from x0. As usual in
difference arithmetic we can treatΔ as a directed graph whose edges are weighted
by the difference constraints. Let Δ∗ be the transitive closure that contains
inequalities for every loop-free path in Δ. Suppose that x = c ∧ T [Ri(x0)] is
unsatisfiable (the premise of G-Conflict) with proof Π and let C :

∨
i ¬(Aix −

bi ≤ 0) be a clause in Π that is justified by Farkas lemma. Consider the most
interesting case where C contains at most two literals xi ≥ ki, xj ≤ kj fromM[x]
and C contains the atoms xi = yi + δ, xj = yj + δ (or xi = yi, xj = yj) together
with literals from Δ∗. Since difference logic tautologies correspond to paths in a
weighted graph, the literal λDDx > λDd obtained from Farkas’ lemma cancel
out the coefficient δ and use a weight that corresponds to a directed path in Δ∗.
In each case, every spurious counter example was blocked by a combination of
literals in Δ∗. Since Δ∗ is finite this process terminates.

The Farkas-Conflict rule also suffices for some non-timed transition systems. It
can prove the mutual exclusion property of our initial Bakery algorithm example.

5.3 Decisions

Farkas-Conflict is useful for many scenarios, but it is easy to come up with Horn
clauses where it is insufficient. For example, the inductive invariant 2x = y that
is required to establish the satisfiability of the Horn clauses cannot be found
using Farkas-Conflict.

R(x, y) → R(x+ 1, y + 2). R(0, 0). R(x, y) ∧ 2x �= y → false. (11)

A remedy to this limitation is to generalize the Decide rule. The approach is mo-
tivated as a way of producing relevant predicates, similar to what predicate ab-
straction achieves. We cannot help to note some dualities between the Decide and
the Conflict rules: Conflict strengthens invariants and uses over-approximations
of strongest post-conditions; Decide weakens counter examples and uses under-
approximations of pre-conditions. Recall the basic Decide rule:
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Decide 〈M, i+1〉M ||A =⇒ 〈x̃ = c0, i〉〈M, i+1〉M ||A if M, x̃0 = c0 |= T [Ri(x0)]

In order to retain predicates that are relevant to the counter example trace, we
can use any pre-condition Pre such that

x̃0 = c0 → Pre[x̃0], Pre[x̃0] → ∃x . M[x] ∧ T [Ri(x0)] . (12)

Thus, the generalized Decide rule is:

G-Decide 〈M, i+ 1〉M ||A =⇒ 〈x̃ = c0 ∧ Pre[x̃], i〉〈M, i+ 1〉M ||A
if x̃0 = c0 → Pre[x̃0], Pre[x̃0] → ∃x . M[x] ∧ T [Ri(x0)]

A crucial insight in [6] is to use ternary simulation for computing the relevant
subset x̃0 of x. This reduces the set of literals in x̃0 = c0. We are not aware of
a canonical approach to lifting model generalization to the first-order case. The
following is a heuristic. For the first-order case we also leverage ternary simula-
tion to minimize x̃0 = c0, and select the literals in T [Ri(x0)] that contribute
to making the formula true under x̃0 = c0,M[x]. The goal is to produce a
conjunction x̃0 = c0 ∧Pre[x̃0] comprising of an assignment to x̃0 and auxiliary
literals over x̃0 such that x̃0 = c0 |= Pre[x̃0]. So by induction assume M[x]
is also of this form: M1 ∧ Pre1. When F is derived from guarded assignments,
the variables x are typically given as a function of previous state variables, and
the selected literals from T [Ri(x0)] contains equalities of the form x = t[x0].
We collect these equalities as a substitution θ. The condition for Pre[x̃0] is then
reduced to:

x̃0 = c0 → Pre[x̃0], Pre[x̃0] → ∃x . M1 ∧ (Pre1 ∧ T [Ri(x0)])θ (13)

Our current approach creates Pre[x̃0] as the conjunction of x̃0 = c0 and the
selected literals from (Pre1 ∧ T [Ri(x0)])θ that do not contain variables from x
and that do not mix variables from different predecessor states.

Example 3. Assume a candidate counter example to (11) sets x′ = 3, y′ = 1.
Then, ∃x′, y′ .x′ = 3∧ y′ = 4∧ [(y′ = y+2∧x′ = x+1∧ 2x′ �= y′)∨ y′ = x′ = 0]
yields the pre-condition x = 2 ∧ y = 2 ∧ 2x �= y. �

It is now also necessary to generalize Conflict so that it can produce the necessary
conflict clauses from eitherM or the predicates from the weakest pre-condition.

Multi-core Conflicts. Each unsatisfiable core for F(Ri) ∧M gives rise to a
different conflict that can enable a different proof. A proper generalization of
G-Conflict is therefore to allow multiple conflicts

MC-Conflict 〈M, i+ 1〉M ||A =⇒ M ||A[Ri+1 ← Ri+1 ∧ Post1 ∧ . . . ∧ Postk]
if |= F(Ri)→ Postj , Postj → ¬M, for j = 1..k.

Algorithms for unsatisfiable cores [10] and efficient integration of cores in PDR
is beyond the scope of this paper.
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6 Implementation and Experiments

We have implemented Generalized PDR in μZ [9] and we have performed a
number of experiments to validate the generalizations to nonlinear PDR and
linear real arithmetic. Additional material is online http://rise4fun.com/muZ.
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We tested our implementation on a set of
2906 Boolean programs that come with the
Windows Driver Research Platform.1 Most
programs are checked for safety violations
within a second by both the Bebop tool and
μZ. We wrote a basic converter from Boolean
programs into Horn clauses. It associates a
recursive predicate with each program state-
ment and therefore sometimes requires much
more space than the Boolean program. We
are therefore not surprised that our proto-
type is generally 3 times slower than Bebop.
Nevertheless it prevails where it matters: it was able to solve 32 programs that
Bebop could not solve within a 5 minute timeout. μZ times out on just one
program where Bebop also times out.

In other experiments we use μZ successfully on instantiations of timed tran-
sition systems, the examples in this paper, and a set of device drivers provided
by Ken McMillan. They use arithmetic for reasoning about pointer offsets so
Farkas-Conflict also suffices for verifying safety properties of these programs.

7 Conclusions, Related and Future Work

We generalized PDR in two directions. To solve general Horn clauses we first
developed an abstract account of PDR and leveraged it for nonlinear predicate
transformers.We also provided a solution to lifting PDR to linear real arithmetic.
The solution uses a generalization of unsatisfiable cores for theories. The idea
is to compute an interpolant based on the unit literals from a spurious counter
example. We applied it to timed automata (with push-down capabilities). This
is a new algorithm for timed automata, but not a new decidability result. Other
extensions such as vector addition systems can be formulated in Datalog [14].
These extensions are not addressed here.

PDR can be seen as an instance of a Counter Example Guided Abstrac-
tion Refinement [5]. It refines state abstractions while avoiding approximating
or unfolding the transition relation. Related approaches [2,12,8,7,1] also refine
transition relations. In several cases (and in contrast to PDR), the abstraction
refinement loop relies on unfolding the transition relation up to a certain depth.
Of particular interest is [7], which explicates the connection between proof rules
and solving Horn clauses.

1 http://research.microsoft.com/slam

http://rise4fun.com/muZ
http://research.microsoft.com/slam
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Generalizing PDR to theories is an open-ended enterprise. The experiments
so far indicate that Generalized PDR is attractive as a tool for satisfiability
modulo fixed-points. Nevertheless, several extensions and optimizations should
be pursued and there are several avenues for future work. A study of weakest T-
unsat cores deserves attention from both an algorithmic point of view and from
a point of view of commonly used theories. Our implementation in μZ works
with algebraic data-types, but not yet with general uninterpreted functions. We
believe uninterpreted functions can be handled by extending models to carry
also a congruence class of terms. The corresponding version of Farkas-Conflict
is then super-position on T-conflicts from congruence closure. We would also
like to generalize other parts of PDR, in particular the crucial Induction rule.
The implementations of PDR we are aware of use cheap strategies, they pick
random literals in clauses and try to drop them one-by-one until a limit (of 4)
failed strengthening attempts is reached. It is tempting to speculate of other
generalizations for strengthening clauses. For example, (ϕ ∨ ¬(x ≤ y + 1) ∨
¬(z + 2 ≤ x)) ∈ Ri could be strengthened to (ϕ ∨ ¬(x + 1 ≤ y)), and (x �'
y ∨ ϕ[x]) ∈ Ri could be strengthened to ϕ[y].

Acknowledgments. Thanks to Natarajan Shankar, Josh Berdine, Bruno
Dutertre, Sam Owre and the reviewers for significant constructive feedback. Also
thanks to Andrey Rybalchenko and Ken McMillan for numerous discussions.
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Abstract. In combinatorial materials discovery, one searches for new
materials with desirable properties by obtaining measurements on hun-
dreds of samples in a single high-throughput batch experiment. As man-
ual data analysis is becoming more and more impractical, there is a
growing need to develop new techniques to automatically analyze and
interpret such data. We describe a novel approach to the phase map
identification problem where we integrate domain-specific scientific back-
ground knowledge about the physical and chemical properties of the ma-
terials into an SMT reasoning framework. We evaluate the performance
of our method on realistic synthetic measurements, and we show that it
provides accurate and physically meaningful interpretations of the data,
even in the presence of artificially added noise.

Keywords: SMT, Combinatorial Materials Discovery, Automated Rea-
soning.

1 Introduction

In recent years, we have witnessed an unprecedented growth in data generation
rates in many fields of science [10]. For instance, in combinatorial materials
discovery, one searches for materials with new desirable properties by obtaining
measurements on hundreds of samples in a single batch experiment [7,14]. These
are referred to as ‘high-throughput’ experiments, and are common to many other
fields such as molecular biology or astronomy, where there is a need to optimize
the data throughput of high-cost equipment [2]. As manual data analysis is
becoming more and more impractical, there is a growing need to develop new
techniques to automatically analyze and interpret such vast amount of data for
important trends and results. Modern statistical machine learning and data-
mining approaches have been quite effective in extracting relevant information
from the ever increasing streams of raw digital data. However, in scientific data
analysis, there is a large amount of rather complex domain-specific background
knowledge that needs to be taken into account, such as the physical and chemical
properties of the materials in the combinatorial materials discovery domain.
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In this paper, we describe a novel approach to the phase map identification
problem, a key step towards understanding the properties of new materials cre-
ated and examined using the combinatorial materials discovery method. The
process of identifying a phase map has been traditionally carried out manu-
ally by domain-experts, but a completely automatic solution for the phase map
identification problem would open the way for even more automation in the com-
binatorial approach pipeline. Further, a scalable and reliable automatic data in-
terpretation procedure would allow us to analyze larger datasets that go beyond
the capabilities of human experts.

In our approach, we integrate domain-specific scientific background knowl-
edge about the physical and chemical properties of the materials into an SMT
reasoning framework based on linear arithmetic. The problem has a hybrid na-
ture, with continuous measurement data, discrete decision variables and combi-
natorial constraints at the same time. We show that using our novel encoding,
state-of-the-art SMT solvers can automatically analyze large synthetic datasets,
and generate interpretations that are physically meaningful and very accurate,
even in the presence of artificially added noise. Moreover, our approach scales
to realistic-sized problem instances, outperforming a previous approach based
on Constraint Programming and a set-variables encoding [11]. Further, we show
that SMT solving outperforms both Constraint Programming and Mixed Inte-
ger Programming translations of our SMT formulation. This suggests that the
improvements come from the SMT solving procedure rather than from the new
arithmetic-based encoding, opening a novel application area for SMT solving
technology beyond the traditional verification domains [4,5].

We see this work as a first step towards using automated reasoning technology
to aid the scientific discovery process. While several aspects of our method are
specific to the materials discovery application, the approach we take to scientific
data analysis is general. Given the flexibility and reasoning power of modern
day SMT solvers, we expect to see more applications of this technology to other
fields of science.

2 Combinatorial Materials Discovery

The combinatorial method is a general experimentation setting where many si-
multaneous experiments are performed and analyzed in batch at each step. This
experimental methodology is intended to speed up the scientific discovery pro-
cess, and is becoming common in a number of areas, including catalyst discovery,
drug discovery, polymer optimization, and chemical synthesis. For example, new
catalysts have been discovered 10 to 30 times faster using the combinatorial
approach rather than conventional methodology [7,14]. This is an important
research direction in the field of Computational Sustainability, for instance be-
cause new materials with improved catalytic activity can be used for fuel cell
applications [8].

In this paper, we consider a combinatorial materials discovery approach called
composition-spread, that has been recently applied with success to speed up the
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discovery of new catalysts [15]. In the composition spread approach, three metals
(or oxides) are sputtered onto a silicon wafer using guns pointed at three distinct
locations, resulting in a so-called thin film. Different locations on the silicon wafer
correspond to different concentrations of the sputtered materials, depending on
their distance from the gunpoints. During experimentation, a number of locations
(samples) on the thin film are examined using an x-ray diffraction technique,
obtaining a diffraction pattern for each sampled point that gives the intensity of
the electromagnetic waves as a function of the scattering angle of radiation. The
observed diffraction pattern is closely related to the underlying crystal structure,
which provides important insights into chemical and physical properties of the
corresponding composite material.

A key step towards understanding the chemical and physical properties of
the composite materials on a thin film is to obtain a so-called phase map, that
is used to identify regions of the silicon wafer that share the same underlying
crystal structure (see Figure 2 for an example). Intuitively, the idea is that the
different diffraction patterns observed across the thin film can all be explained
as combinations of a small number (typically, less than 6) of diffraction patterns
called basis patterns or phases. Finding the phase map corresponds to identifying
these basis patterns and their location on the silicon wafer. This is a challeng-
ing task because we only observe combinations of the basis patterns, and the
measurements are affected by noise. Furthermore, due to a fairly complicated
physical process dealing with the expansion of crystals on the lattice, basis pat-
terns can appear scaled (contracted to a smaller or larger frequency range), and
they must satisfy a number of physical constraints (for instance, basis patterns
must appear in contiguous locations on the thin film and there is a maximum
number of basis patterns that can appear in each sample diffraction pattern).

2.1 Phase Map Identification

Formally, we are given P diffraction patterns D0, · · · ,DP−1, one for each of the
P points sampled on the thin film, where each vector Di = (d0,i, · · · , dB−1,i) ∈
(R≥0)

B
represents the intensity of the electromagnetic waves for a fixed set of

B scattering angles of radiation. The sample points are embedded into a graph
G, such that there is a vertex for every point and edges connect points that are
close on the thin film (for instance, based on Delaunay triangulation). Given
a norm || · || (for instance, an L∞ norm), we want to find K basis patterns

B0, · · · ,BK−1 where Bi ∈ (R≥0)
B
, coefficients ai,j ∈ R and scaling factors

si,j ∈ R for i = 0, · · · , P − 1, j = 0, · · · ,K − 1 that minimize

P−1∑
i=0

||Di −
∑

ai,jS (Bj , si,j) || (1)

where S(·) is an operator modeling the scaling phenomena (see below), and the
coefficients ai,j must satisfy

ai,j ≥ 0 i = 0, · · · , P − 1, j = 0, · · · ,K − 1

|{j|ai,j > 0}| ≤M i = 0, · · · , P − 1
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that is, they are non-negative and no more than M basis patterns can be used
to explain a point i. Furthermore, the subgraph induced by {i|ai,j > 0} must be
connected for j = 0, · · · ,K − 1 (so that the basis patterns appear in contiguous
locations on the thin film). The scaling operator S(·) models the potential ex-
pansion of the crystals on the lattice. Specifically, a peak appearing at scattering
angle a in the k-th basis pattern might appear respectively at scattering angles
sp,k · a and sp′,k · a at points p, p′ of the silicon wafer because of the scaling
effect. For each basis pattern k, the corresponding scaling coefficients si,k must
be continuous and monotonic as a function of the corresponding location i on
the thin film. Further, the presence of 3 or more basis patterns in the same point
prevents any significant expansion of the crystals, and therefore scalings do not
occur.

Notice that this formulation is closely related to a principal component analy-
sis (PCA) of the data, but includes additional constraints needed to ensure that
the solution is physically meaningful, such as the non-negativity of eigenvectors,
connectivity, and phase usage limitations.

Fig. 1. Left: Pictorial depiction of the problem, showing a set of sampled points on a
thin film. Each sample corresponds to a different composition, and has an associated
measured x-ray diffraction pattern. Colors correspond to different combinations of the
basis patterns α, β, γ, δ. On the right: Scaling (shifting) of the diffraction patterns as
one moves from one point to a neighboring one.

3 Prior Work

There have been several attempts to automate the phase map identification
process. Most of the solutions in the literature are based on unsupervised ma-
chine learning techniques, such as clustering and non-negative matrix factoriza-
tion [13,12]. While these approaches are quite effective at extracting information
from large amounts of noisy data, their major limitation is that it is hard to en-
force the physical constraints of the problem at the same time. As a result, the
interpretations obtained with these techniques are often not physically meaning-
ful, for instance because regions corresponding to some basis patterns are not
connected [11].
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To address these limitations, in [11] they used a Constraint Programming
approach to enforce the constraints on the phase maps, defining a new problem
called Pattern Decomposition with Scaling. They propose an encoding based on
set variables, but the main limitation of their work is that current state-of-the-art
CP solvers cannot scale to realistic size instances (e.g., with at least 40 sample
points). To overcome this limitation, the authors used a heuristic preprocessing
step based on clustering to fix the value of certain variables before attempting to
solve the problem. While the solutions they found are empirically shown to be
accurate, their strategy cannot provide any guarantee because it only explores
part of the search space.

Our approach is similar to the one proposed in [11], but in this work we in-
troduce a novel SMT encoding based on arithmetic to formulate the phase map
identification problem. The SMT formalism nicely captures the hybrid nature of
the problem, which involves discrete decision variables and continuous measure-
ment data at the same time. Furthermore, we show that the ability to reason at
the level of arithmetic operations of SMT solvers allows our approach to scale to
instances of realistic size without need for Machine Learning-based heuristics.

4 SMT-Aided Phase Map Identification

In our first attempt to model the phase map identification problem, we con-
structed an SMT-based model where we described the entire spectrum of all
the unknown basis patterns B0, · · · ,BK−1. However, this approach requires too
many variables to obtain a sufficiently fine-grained description of the diffraction
patterns, and ultimately leads to instances that cannot be solved using current
state-of-the art solvers. We therefore use the same approach presented in [11],
and we preprocess the diffraction patterns D0, · · · ,DP−1 using a peak detection
algorithm, extracting the locations of the peaks Q(p) in the x-ray diffraction
pattern of each point p (see Figure 1). This is justified by the nature of the
diffraction patterns, as constructive interference of the scattered x-rays occurs
at specific angles (thus creating peaks of intensities) that characterize the under-
lying crystal. Furthermore, matching the locations of the peaks is what human
experts do when they try to manually solve these problems.

Given the sets of observed peaks {Q(p)}P−1
p=0 extracted from the measured

diffraction patterns D0, · · · ,DP−1, our goal is to find a set of peaks {Ek}K−1
k=0 for

the K basis patterns that can explain the observed sets of peaks {Q(p)}P−1
p=0 . The

new variables {Ek}K−1
k=0 therefore replace the original variables B0, · · · ,BK−1 in

the problem described earlier in Section 2. For each peak c ∈ Q(p) we want to
have at least one peak e ∈ Ek that can explain it, i.e.

∀c ∈ Q(p)∃e ∈ Ek s.t. (ap,k > 0 ∧ |c− sp,k · e| ≤ ε)

where ε is a parameter that depends on how accurate the peak-detection algo-
rithm is. Notice that we match the location of the peak, which can be measured
accurately, but not its intensity, which can be very noisy. At the same time, we
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want to limit the number of missing peaks, i.e. peaks that should appear be-
cause they belong to some basis pattern but have not actually been measured.
Therefore, instead of optimizing the objective in equation (1), we consider an
approximation given by

P−1∑
p=0

K−1∑
k=0

�[ap,k>0]

∑
e∈Ek

�[∀c∈Q(p),|c−sp,k·e|>ε]

that gives the total number of missing peaks. All the other constraints of the
problem previously introduced are not affected and still need to be satisfied.
Note that we can avoid the use of expensive non-linear arithmetic by using
a logarithmic scale for the x-ray data, so that multiplicative scalings become
linear operations. We refer to these effects (corresponding to the scalings in the
original problem formulation) as shifts. For each point, we therefore define a set
A(p) = {log q, q ∈ Q(p)} of peak positions in log-scale and similarly we represent
the positions of the peaks of the basis patterns using the same logarithmic scale.

After a preliminary investigation where we evaluated the performance of real-
valued arithmetic, we decided to discretize the problem and use Integer variables
to represent peak locations (with a user-defined discretization step). Since the
diffraction data is measured using digital sensors, there is no actual loss of infor-
mation if we use a small enough discretization step, and it significantly improves
the efficiency of the solvers. In the resulting SMT model we therefore use a
quantifier-free linear integer arithmetic theory.

4.1 Model Parameters

Let P be the number of sampled points on the thin film. We define L as the
maximum number of peaks per point, i.e. L = maxp |Ap|. Based on the observed
patterns, we precompute an upper and lower bound emax and emin for the po-
sitions of the peaks: emax = maxp maxa∈A(p) a, emin = minp mina∈A(p) a. There
are also a number of user-defined parameters. K is the total maximum number
of basis patterns used to explain the observed diffraction patterns, while M is
the maximum number of basis patterns that can appear in any point p. ε is a
tolerance level such that two peaks within an interval of size 2ε are considered
to be overlapping. εS is a bound on the maximum allowed difference in the shifts
of neighboring locations on the thin film, while Smax is a bound on the maxi-
mum possible shift. Furthermore, the user specifies a parameter T which gives a
bound on the total number of peaks that should appear because they belong to
some basis pattern but have not actually been measured (we will refer to them
as missing peaks).

4.2 Variables

We use a set of Boolean variables

rp,k, p = 0, · · · , P − 1, k = 0, · · · ,K − 1
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where rp,k = TRUE means that phase (basis pattern) k appears in point p (i.e.,
ap,k > 0). We also have the following Integer variables:

ek,�, k = 0, · · · ,K − 1, 
 = 0, · · · , L− 1

Sp,k, p = 0, · · · , P − 1, k = 0, · · · ,K − 1

Ip,k, p = 0, · · · , P − 1, k = 0, · · · ,K − 1

tp, p = 0, · · · , P − 1

where ek,� represents the position of the 
-th peak of the k-th basis pattern. Sp,k

represents the shift of the k-th basis pattern at point p. The variables Ip,k are
redundant and used to count the number of phases used at point p. The variables
tp represent the number of unexplained peaks at point p, i.e. the number of
missing peaks at point p. These are peaks that should appear according to the
values of {rp,k}K−1

k=0 , {ek,�}L−1
�=0 , and {Sp,k}K−1

k=0 , but are not present, i.e. they do
not belong to Q(p).

4.3 Constraints

The variables Ip,k are Integer indicators for the Boolean variables rp,k that must
satisfy

0 ≤ Ip,k ≤ 1 k = 0, · · · ,K − 1, p = 0, · · · , P − 1

rp,k ⇔ (Ip,k = 1) k = 0, · · · ,K − 1, p = 0, · · · , P − 1

Peak locations ek,� in the basis patterns are bounded by what we observe in the
x-ray diffraction pattern:

emin ≤ ek,� ≤ emax, k = 0, · · · ,K − 1, 
 = 0, · · · , L− 1

Shifts are bounded by the maximum allowed shift, and can be assumed to be
non-negative without loss of generality:

0 ≤ Sp,k ≤ Smax, k = 0, · · · ,K − 1, p = 0, · · · , P − 1

Every peak a ∈ A(p) appearing at point p must be explained by at least one
peak belonging to one phase k, which can appear shifted by Sp,k:

K−1∨
k=0

L−1∨
�=0

(
rp,k ∧ (|ek,� + Sp,k − a| ≤ ε)

)
∀p, ∀a ∈ A(p)

Inequalities involving the absolute value of an expression of the form |e| < c
where c is a positive constant are encoded as (e < c) ∧ (e > −c).

If a phase k is chosen for point p (i.e., rp,k = TRUE), then most of the peaks
ek,0, · · · , ek,L−1 should belong to Q(p). We count the number of missing peaks
as follows:

tp =
K−1∑
k=0

L−1∑
�=0

ITE(rp,k ∧ ¬

⎛⎝ ∨
a∈A(p)

(|ek,� + Sp,k − a| ≤ ε)

⎞⎠ , 1, 0), ∀p
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where ITE is an if-then-else expression. Here we assume that each phase contains
at least one peak, but since peaks can be overlapping (e.g., ek,� = ek,�+1) a basis
pattern is allowed to contain less than L distinct peaks.

Missing Peaks Bound. We limit the number of total missing peaks (across
all points p) with the user-defined parameter T

P−1∑
p=0

tp ≤ T

Intuitively, the smaller T is, the better an interpretation of the data.

Phase Usage. There is a bound M on the total number of phases that can be
used to explain the peaks observed at any location p:

K−1∑
k=0

Ip,k ≤M,p = 0, · · · , P − 1

For instance, when three metals or oxides are used to obtain the thin film, we
have a ternary system, where no more than three phases can appear in each
point p, that is M = 3.

Shift Continuity. Phase shifting is a continuous process over the thin film. We
therefore have the following constraint:

|Sp,k − Sp′,k| < εS , ∀p, ∀p′ ∈ N (p)

where N (p) is the set of neighbors of p according to the connectivity graph G
(i.e., points that lie close to p on the thin film).

Shift Monotonicity. Let D = (d0, · · · , dt) where di ∈ {0, · · · , P − 1} be a se-
quence of points that lie in a straight line on the thin film. Shifting is a monotonic
process, i.e. it must satisfy the following constraint(

t−1∧
i=0

(
Sdi,k ≥ Sdi+1,k

))
∨
(

t−1∧
i=0

(
Sdi,k ≤ Sdi+1,k

))
, k = 0, · · · ,K − 1

Since points are usually collected on a grid lattice on the silicon wafer, we enforce
shift monotonicity on the lines forming the grid.

Ternary Phases Shift. Ternary phases (where 3 basis patterns are used) are
not affected by shifting:((

K−1∑
k=0

Ip,k = 3

)
∧

K−1∧
k=0

(rp,k ⇔ rp′,k)

)
⇒ (Sp,k = Sp′,k) , ∀p, ∀p′ ∈ N (p)

where N (p) is the set of neighbors of p.
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Connectivity Constraint. Each of the basis patterns must be connected.
Formally, for every pair of points p, p′ such that rp,k ∧ rp′,k, there must exist a
path P from p to p′ such that rj,k = TRUE for all j ∈ P. Since it would require
too many constraints, we use a lazy approach to enforce connectivity. If we find a
solution where a basis pattern k is not connected, i.e. there exists p, p′ such that
rp,k ∧ rp′,k but there is no path P with p, p′ as endpoints such that rj,k = TRUE
for all j ∈ P, then we consider the smallest cut C between p and p′ such that
rj,k = FALSE for all j ∈ C and we add a new constraint

(rp,k ∧ rp′,k)⇒
∨
c∈C

rc,k

Symmetry Breaking. Without loss of generality, we can impose an ordering
on the peak locations within every phase k:

ek,� ≤ ek,�+1, 
 = 0, · · · , L− 2, k = 0, · · · ,K − 1

Furthermore, notice that the problem is symmetric with respect to permutations
of the phase indexes k = 0, · · · ,K − 1. We therefore enforce an ordering on the
way phases are assigned to points∧K−1

k=1 (r0,k ⇒ r0,k−1)

· · ·∧K−1
j=1

((∧Y
i=0 ¬ri,j

)
⇒
∧K−1

k=j (rY +1,k ⇒ rY +1,k−1)
)

where we set Y = 4.

5 Experimental Results

We evaluate the performance of our approach on a benchmark set of synthetic
instances for which the ground truth is known (namely, what the true basis pat-
terns are and how they are combined to form the observed diffraction patterns).
All the systems we consider are ternary, where three metals are combined, so
that M is set to 3 in the entire experimental section. For all experiments, two
peaks are considered to be overlapping if they are within 1% of each other, and
the maximum allowed shift is 15%.

We compare our SMT-based approach with the Constraint Programming
based solution presented in [11]. Since their CP-based formulation does not scale
to realistic-sized instances, they integrate a Machine Learning based component
to simplify the problem that the CP solver needs to solve to improve scalabil-
ity. Note that by doing this they lose the completeness of the search, because
they only explore a subtree (suggested by the ML part) of the original search
space. In contrast, our approach scales to instances of realistic size (with over 40
points) without need for the ML component. Note however that if desired, the
ML heuristic component could be easily integrated with our method.
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Synthetic Data. We consider the known Al-Li-Fe system [1] previously used
in [11], represented with a ternary diagram in Figure 2. A ternary diagram is a
simplex where each point corresponds to a different concentration of the three
constituent elements, in this case Al, Li, and Fe. The composition of a point
depends on its distance from the corners. For a fixed value of the parameter P ,
synthetic instances are generated by sampling P points in the ternary diagram,
each corresponding to different concentrations of the three constituent elements.
For each point, synthetic x-ray diffraction patters are generated starting from
known diffraction patterns of the constituent phases (taken from the JCPDS
database [1]), that are combined according to the concentrations of the elements
in that point. A peak detection algorithm is then used to generate a discrete set
of peaks.

We first consider a set of instances without any noise, for which we have the
exact location of all the peaks for every sample (the maximum number of peaks
per sample is L = 12), without any outlier or missing peak. Starting from the
diffraction patterns and the corresponding peaks, we generate the corresponding
instance using the formulation described in the previous section, encoded in
the SMTLibV2 language [3]. In this case, we set K = 6, the true number of
underlying unknown basis patterns, and we try to recover a solution with T = 0
missing peaks. We also consider a set of simplified instances, where we fix some
of the six unknown basis patterns to their true values. We solved these instances
on a 3 Ghz Intel Core2Duo machine running Windows, using the SMT solvers
Z3 [6] andMathSAT5 [9]. However, MathSAT is significantly slower (for instance,
it takes over 50 minutes to solve a small instance with P = 10 points that Z3
solves in about 15 seconds) and it does not scale to larger problems. We therefore
report only times obtained with Z3.

Running Time. We compare our method with previous CP-based approach
presented in [11] on the same set of benchmark instances. The runtime for the
CP solver are taken from [11], and were obtained on a comparable 3.8 GHz
Intel Xeon machine. In Table 1a we show runtime as a function of the instance
size P and the number of basis patterns left unknown K ′ (e.g., K ′ = 3 when
the instance has been simplified by fixing three out of the six unknown basis
patterns).

As we can see from the runtimes reported in Table 1a, our approach based on
SMT and Z3 is always considerably faster, except for the smallest simplified prob-
lems where the difference is in the order of a few seconds. More importantly, our
SMT-based approach shows a significantly improved scaling behavior, and can
solve problems of realistic size with 6 unknown phases and over 40 points within
an hour. In contrast, the previous CP-based approach can only solve simplified
problems and cannot solve any problem with 6 unknown basis patterns [11].

Solving Strategy. In order to understand whether the improvement comes
from the new problem encoding (based on integer arithmetic and not on set
variables as the one in [11]) or from the SMT solving strategy, we translated
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Table 1. P is the number of sampled points. K′ is the number of basis patterns left
unknown. e is the number of peaks removed (simulating measurement errors).

(a) Running time.

Dataset Z3 (s) ILOG Solver (s)

P=10 K’=3 8 0.5
K’=6 12 timeout at 1200

P=15 K’=3 13 0.5
K’=6 20 timeout at 1200

P=18 K’=3 29 384.8
K’=6 125 timeout at 1200

P=29 K’=3 78 276
K’=6 186 timeout at 1200

P=45 K’=6 518 timeout at 1200

(b) Accuracy.

Dataset Precision (%) Recall (%)

P=10, e=0 95.8 100
P=15, e=0 96.6 100
P=18, e=0 97.2 96.6
P=28, e=0 96.1 92.8
P=45, e=0 95.8 91.6

P=15, e=1 96.1 99.6
P=15, e=2 96.3 99.3
P=15, e=3 96.7 99.5
P=15, e=4 95.3 98.9
P=15, e=4 94.8 99.7

our arithmetic-based encoding as a Constraint Satisfaction Problem and as a
Mixed Integer Program. As our SMT model combines logical constraints and
linear inequalities exclusively, a Mixed Integer Programming (MIP) approach
is particularly appealing. Indeed, one can fairly naturally translate the logical
constraints of our model, namely ‘Or’, ‘And’, ‘Not’, ‘IfThenElse’, into a sys-
tem of linear inequalities by using additional binary variables, and be left with
a MIP formulation. The ability of the MIP to handle continuous variables for
both the peak locations and the shifts, as well as to reason in terms of an ob-
jective function (e.g., the total number of missing peaks) makes it an attractive
option. Nevertheless, the translation of the logical constraints yields a high num-
ber of binary variables (e.g., over 23K binary variables for a synthetic instance
with P = 10), which contrasts with a low total number of continuous variables
(about 120 for the same instance) and thus, weakens the potential of the MIP
formulation. Empirically, none of the instances could be solved by the MIP for-
mulation within the time limit of one hour. Similarly, we were not able to solve
any of the instances (not even when simplified) obtained from translating our
SMT formulation (symmetry breaking constraints included) to a CSP using the
state-of-the-art IBM ILOG Cplex Solver within one hour. This suggests that
the improvement over CP based solutions is not achieved thanks to the differ-
ent problem encoding, but is due to the SMT solving procedure itself, which is
stronger in the reasoning part and can handle well the intricate combinatorial
constraints of the problem.

Accuracy. We evaluate the accuracy of our method by comparing the solutions
we find (i.e., the phase map given by the values of rp,k for p = 0, · · · , P − 1, k =
0, · · · ,K − 1) with the ground truth in terms of precision/recall scores, reported
in Table 1b. Precision is defined as the fraction of the number of points correctly
identified as belonging to phase k (true positives), over the total number of
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points identified as belonging to phase k (true positives + false positives). Recall
is defined as the fraction of points correctly identified as belonging to phase
k (true positives) over the true number of points belonging to phase k (true
positives + false negatives). These values are obtained by comparing with ground
truth all K! permutations of the phases we obtain, and taking the one with the
smallest number of errors (recall that the problem is symmetric with respect
to permutations of the phase indexes k). Further, the values in Table 1b are
the precision/recall scores obtained for each single phase k averaged over the
K = 6 phases. The results show that the phase maps we identify are always very
accurate, with precision and recall values always larger than 90%.

Fig. 2. Phase map for the synthetic Al-Li-Fe system with 45 sampled points, no errors.
Each of the six colored areas represents one of the basis patterns (α, β, ..., ζ) of the
ground truth, while the colored dots correspond to the solution of our SMT model.
The SMT results closely delimit each phase of the ground truth, which is quantitatively
validated by the high precision/recall score of our approach.

Robustness. To evaluate the robustness of our method to experimental noise,
we also consider another dataset from [11] where peaks are removed from the ob-
served diffraction patterns with probability proportional to the square of the in-
verse peak height, in order to simulate the fact that low-intensity peaks might not
be detected or they can be discarded by the peak detection algorithm. This situa-
tion is common for real-world instances, wheremeasurements are affected by noise.
We consider instances generated by removing exactly e peaks from the observed
diffraction patterns, and we solve them by setting the upper bound T on the num-
ber of missing peaks equal to e. In figure 3 we see the median running time as a
function of the number of missing peaks T . This is averaged over 10 instances with
P = 15 points, and 20 runs per instance, with a timeout set at 1 hour. As shown in
figure 3, the problem becomes significantly harder as we introduce missing peaks,
because the constraint on the total number of missing peaks allowed T becomes
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less and less effective at pruning the search space as T grows. However, the median
running time appears to increase linearly, and we are still able to recover a phase
map efficiently even for instances affected by noise.

In table 1b we show precision recall values for these instances affected by
noise. We see that the phase maps we identify are still very accurate even in
presence of noise, with precision/recall scores over 95%.
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Fig. 3. Median running time as a function of the bound on the total number of missing
peaks allowed T

6 Conclusions

We described a novel approach to the phase map identification problem, a key
step towards automatically understanding the properties of new materials cre-
ated and examined using the composition spread method. In our approach, we
integrate domain-specific scientific background knowledge about the physical and
chemical properties of the materials into an SMT reasoning framework based on
linear arithmetic. Using state-of-the-art SMT solvers, we are able to automati-
cally analyze large synthetic datasets, generating interpretations that are phys-
ically meaningful and very accurate, even in the presence of artificially added
noise. Moreover, we showed that our solution outperforms in terms of scalabil-
ity both Constraint Programming and Mixed Integer Programming approaches,
allowing us to solve instances of realistic size. Our experiments show a novel
application area for SMT technology, where we can exploit its reasoning power
in a hybrid setting with continuous measurement data and rather intricate com-
binatorial constraints.

As there is an ever-growing amount of data in many fields of science, the
grand challenge for computing and information science is how to provide efficient
methods for interpreting such data, a process that generally requires integration
with domain-specific scientific background knowledge. As a first step towards this
goal, in this work we demonstrated the use of automated reasoning technology to
support the scientific data analysis process in materials discovery. While several
aspects of our method are specific to the phase map identification problem,
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the approach we take for the data analysis problem is quite general. Given the
flexibility and ever-growing reasoning power of modern day SMT solvers, we
expect to see more applications of this technology to other areas of scientific
exploration that require sophisticated reasoning to interpret experimental data.
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Abstract. Combinatorial testing (CT) is an important black-box test-
ing method. In CT, the behavior of the system under test (SUT) is
affected by several parameters/components. Then CT generates a com-
binatorial test suite. After the user executes a test suite and starts debug-
ging, some test cases fail and some pass. From the perspective of a black
box, the failures are caused by interaction of several parameters. It will
be helpful if we can identify a small set of interacting parameters that
caused the failures. This paper proposes a new automatic approach to
identifying faulty interactions. It uses (pseudo-Boolean) constraint solv-
ing and optimization techniques to analyze the execution results of the
combinatorial test suite. Experimental results show that the method is
quite efficient and it can find faulty combinatorial interactions quickly.
They also shed some light on the relation between the size of test suite
and the ability of fault localization.

1 Introduction

For many complex software systems, there are usually different components (or
options or parameters) which interact with each other. Combinatorial testing
(CT) [1,7,9] is an important black-box testing technique for such systems. It is
a generic technique and can be applied to different testing levels such as unit
testing, integration testing and system testing.

Using some automatic tools, we can generate a reasonable test suite (e.g., a
covering array) which achieves a certain kind of coverage. For instance, pair-wise
testing covers all different pairs of values for any two parameters.

After the system is tested, we get the execution results. Typically some
test cases pass, while a few others fail. We would like to identify the cause
of the failure. In CT, we adopt a parametric model of the system under test
(SUT). We assume that the system fails due to the interaction of some param-
eters/components. Such failure-causing parameter interactions are called faulty
combinatorial interactions (FCIs).

There are already some works on identifying FCIs, e.g., [10,12,2,8,11,14,5].
This paper proposes a new approach which is based on constraint solving and
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optimization techniques. Our approach is a test result analysis technique. The
test results of the combinatorial test suite are used as input, and no additional
test cases are generated. One benefit of our approach is that it can identify
all possible solutions for the combinatorial test suite. Here, a solution is a set of
suspicious FCIs, such that once the SUT has exactly these FCIs, the execution of
the combinatorial test suite will be the same as the real execution result. Also, as
we can find all possible solutions, the number of possible solutions can be used as
a criterion to measure the precision of the solutions. Specifically, if the number
of possible solutions is large, then each possible solution has a low precision.
Our approach also provides evidence of the tradeoff between reducing the size of
the test suite and enhancing its fault localization ability. (Most traditional CT
techniques aim at generating small test suites to reduce the cost of testing. They
provide good fault detection, but do not support fault localization very well.)

The remainder of this paper is organized as follows: Section 2 gives some def-
initions. Section 3 introduces our approach, in which we formulate the problem
as a constraint satisfaction problem (CSP). Section 4 discusses translating the
problem into a pseudo-Boolean optimization problem. Section 5 presents some
experimental results. Section 6 compares our approach with some related work.
Section 7 gives the conclusions and some implication of our results for CT.

2 Definitions

Now we give some formal definitions related to CT.

Definition 1. (SUT model) A model SUT (k, s) has k parameters p1, p2, . . . , pk.
The vector s is of length k, i.e. 〈s1, s2, . . . , sk〉, where si indicates the number of
possible values of the parameter pi. The domain of pi is Di = {1, 2, . . . , si}. And
si is called the level of pi.

Definition 2. (Test case) A test case t is a vector of length k, representing
an assignment to each parameter with a specific value within its domain. The
execution result of a test case is either pass or fail.

Definition 3. (Test suite) A test suite T is a set of test cases {t1, t2, . . . , tm}.
Definition 4. (CI) A combinatorial interaction (CI) is a vector of length k,
which assigns t parameters to specific values, leaving the rest k − t parameter
values undetermined (undetermined values are denoted by ‘-’). Here t is the size
of the CI.

A CI represents the interaction of the t parameters with assigned values. The
undetermined parameters (‘-’) are just placeholders, and do not participate in
the interaction.

Definition 5. (CI containment) A CI P1 is contained by another CI P2 if and
only if all determined parameters of P1 are determined parameters of P2, and
these parameters are assigned the same values in P1 and P2. A CI P is contained
by a test case t if and only if all determined parameters in P have the same values
as those in t.
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Definition 6. (FCI) A faulty combinatorial interaction (FCI) is a CI such that
all possible test cases containing it will fail.

Note that if a CI is an FCI, then all CIs containing it are FCIs. Suppose we have
an FCI P1, and P2 contains P1. Then all test cases containing P2 will contain
P1, and all of these test cases will fail. Thus P2 is an FCI. For example, suppose
(1,-,2,-) is an FCI, then (1,1,2,-) and (1,-,2,3) are also FCIs. In this
paper, we only identify the minimal FCIs, i.e. FCIs containing no other FCIs.

Example 1. Table 1 shows a covering array for pair-wise testing of an online
payment system. There are 9 test cases, and for two of them the SUT fails. The
braces (“{}”) indicate the value combinations causing the failure of the SUT,
which we do not know in advance. The test results are shown in the last column.
We can see that this covering array can detect all FCIs of size 2, but we cannot
tell what they are just from the test results. (e.g. the failure of the 3rd test case
may also be caused by the interaction of Firefox and Apache.)

Table 1. A Sample Covering Array

Client Web Server Payment Database Exec

Firefox WebSphere MasterCard DB/2 pass

Firefox .NET UnionPay Oracle pass

Firefox {Apache} {Visa} Access fail

IE WebSphere UnionPay Access pass

{IE} Apache MasterCard {Oracle} fail

IE .NET Visa DB/2 pass

Opera WebSphere Visa Oracle pass

Opera .NET MasterCard Access pass

Opera Apache UnionPay DB/2 pass

3 Formulation as a Constraint Satisfaction Problem

Suppose the system under test (SUT) has k attributes or parameters or com-
ponents. The ith attribute may take one value from the following set: Di =
{1, 2, . . .}

Assume that there are already m test cases. Some of them failed, while the
others passed. The CT fault model assumes that failures are caused by value
combinations (i.e. several parameters are assigned to specific values). We would
like to know which combinations in the failing test cases caused the failure (e.g.,
made the SUT crash).

For simplicity, we first assume that there is only one failing test case in the
test suite. We would like to identify the value combination (i.e., FCI) in this test
case. It can be represented by a vector like this: 〈x1, x2, . . . , xk〉, where each xi

can be 0 or a value in the set Di. When xj = 0, it means that the j’th attribute
does not appear in the FCI.
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Our way to solve the FCI identification problem is to formulate it as a con-
straint satisfaction problem (CSP) or satisfiability (SAT) problem. In a CSP,
there are some variables, each of which can take values from a certain domain;
and there are also some constraints. Solving a CSP means finding a suitable
value (in the domain) for each variable, such that all the constraints hold.

We have already given the “variables” in the CSP. Now we describe the
“constraints”. Roughly, a failing test case should match the FCI vector; and
a passing test case should not match it. More formally, for a passing test case
(v1, v2, . . . , vk), we need a constraint like this:

( NOT(x1=0) AND NOT(x1=v1) )

OR ( NOT(x2=0) AND NOT(x2=v2) )

OR ......

OR ( NOT(xk=0) AND NOT(xk=vk) )

For a failing test case (w1, w2, . . . , wk), we need the following constraint:

( (x1=0) OR (x1=w1) )

AND ( (x2=0) OR (x2=w2) )

AND ......

AND ( (xk=0) OR (xk=wk) )

In this way, we obtain the “constraints” in the CSP. After solving the CSP, we
get the values of the variables xi (1 ≤ i ≤ k). Then, deleting the 0’s, we get the
FCI.

Example 1. (Continued) Assume that the values in the table can be repre-
sented by integers as follows:

– Client can be: 1. Firefox; 2. IE; 3. Opera.
– WebServer can be: 1. WebSphere; 2. .NET; 3. Apache.
– Payment can be: 1. MasterCard; 2. UnionPay; 3. VISA.
– Database can be: 1. DB/2; 2. Oracle; 3. Access.

Suppose that the FCI is denoted by the vector 〈x1, x2, x3, x4〉. The domain of
each variable xi is [0..3]. We can derive the following constraints from the first
3 test cases:

( NOT(x1=0) AND NOT(x1=1) )

OR ( NOT(x2=0) AND NOT(x2=1) )

OR ( NOT(x3=0) AND NOT(x3=1) )

OR ( NOT(x4=0) AND NOT(x4=1) ) ;

( NOT(x1=0) AND NOT(x1=1) )

OR ( NOT(x2=0) AND NOT(x2=2) )

OR ( NOT(x3=0) AND NOT(x3=2) )

OR ( NOT(x4=0) AND NOT(x4=2) ) ;
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( (x1=0) OR (x1=1) )

AND ( (x2=0) OR (x2=3) )

AND ( (x3=0) OR (x3=3) )

AND ( (x4=0) OR (x4=3) ) .

More constraints can be derived from the other test cases, which are omitted
here.

More than One FCIs

Example 1. (Continued) Now suppose that there are two different FCIs, denoted
by 〈x1, x2, x3, x4〉 and 〈y1, y2, y3, y4〉, respectively. From the first test case (which
passed), we obtain the following constraint:

( ( NOT(x1=0) AND NOT(x1=1) )

OR ( NOT(x2=0) AND NOT(x2=1) )

OR ( NOT(x3=0) AND NOT(x3=1) )

OR ( NOT(x4=0) AND NOT(x4=1) ))

AND

( ( NOT(y1=0) AND NOT(y1=1) )

OR ( NOT(y2=0) AND NOT(y2=1) )

OR ( NOT(y3=0) AND NOT(y3=1) )

OR ( NOT(y4=0) AND NOT(y4=1) )).

From the third test case (which failed), we obtain the following constraint:

( ( (x1=0) OR (x1=1) )

AND ( (x2=0) OR (x2=3) )

AND ( (x3=0) OR (x3=3) )

AND ( (x4=0) OR (x4=3) ))

OR

( ( (y1=0) OR (y1=1) )

AND ( (y2=0) OR (y2=3) )

AND ( (y3=0) OR (y3=3) )

AND ( (y4=0) OR (y4=3) )).

Symmetry Breaking

For the above example with two FCIs, suppose by solving the constraints we get
〈x1 = v1, x2 = v2, x3 = v3, x4 = v4〉 and 〈y1 = v′1, y2 = v′2, y3 = v′3, y4 = v′4〉.
If we exchange the respective values of the two vectors, we get 〈x1 = v′1, x2 =
v′2, x3 = v′3, x4 = v′4〉 and 〈y1 = v1, y2 = v2, y3 = v3, y4 = v4〉. Obviously it
is another solution to the constraints. However, the two solutions represent the
same set of FCIs. They are symmetric solutions.

A symmetry is a one to one mapping (bijection) on decision variables that
preserves solutions and non-solutions. Symmetries can generate redundant search
space, so it is very important to eliminate symmetries while solving the problem.
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For a system with n FCIs, there are n! permutations of the variable vectors of
FCIs in the aforementioned constraints, hence results in as many symmetries. To
break such symmetries, we introduce lexicographic order on the variable vectors.
In the above example, we add the following constraints which ensure that one
vector is lexicographically smaller than the other.

( (x1<=y1) )

AND ( (x1<y1) OR (x2<=y2) )

AND ( (x1<y1) OR (x2<y2) OR (x3<=y3) )

AND ( (x1<y1) OR (x2<y2) OR (x3<y3) OR (x4<y4) )

Apparently all symmetries caused by permutations of FCIs can be eliminated
with the above constraints.

Determining the Number of FCIs

To use our method, one should specify the number of FCIs in advance. But we
do not know the actual number. So we gradually increase the number. We start
from n = 1; if the problem is unsatisfiable, then n is increased by 1; . . .We repeat
this procedure until the problem becomes satisfiable.

4 Translation to Pseudo-Boolean Optimization Problem

By checking the satisfiability of the aforementioned constraints, one or a set of
FCIs can be discovered. However, there might be many solutions to the constraint
satisfaction problem, and it is desirable to find the optimal one according to some
criterion. A reasonable objective is to minimize the size of FCI, i.e., to maximize
the number of ‘0’s, so that the FCI is the most general one. As a result, in this
paper we are investigating FCI identification as an optimization problem instead
of a decision problem.

This problem can be naturally formulated as a Pseudo-Boolean Optimization
(PBO) problem. In its broadest sense, a pseudo-Boolean function is a function
that maps Boolean values to a real number.

A linear pseudo-Boolean constraint has the following form

Σiaixi ≥ b

where xi ∈ {0, 1} is a Boolean variable and ai, b are integers.
A pseudo-Boolean constraint is nonlinear if it contains the product of Boolean

variables. Such a constraint has the following form

Σiai(Πkxi,k) ≥ b

A pseudo-Boolean optimization problem is to maximize (minimize) a pseudo-
Boolean expression subject to a set of pseudo-Boolean constraints.
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4.1 Encoding

Suppose there are w failing cases for the SUT, and we are looking for n (n ≤ w)
FCIs. We use Boolean variable Pi,j,v to indicate that the jth (1 ≤ j ≤ k)
parameter of the ith (1 ≤ i ≤ n) FCI xi,j takes value v, or formally, Pi,j,v ≡
(xi,j = v). When there are more than one FCIs, we also introduce auxiliary
Boolean variable Et,i to indicate that the tth (1 ≤ t ≤ w) failing case is caused
by the ith FCI. The P -variables are called primary variables, and the E-variables
are called auxiliary variables.

Assume that our goal is to maximize the total number of zero values of all
FCIs, we have the following objective function:

Minimize −ΣiΣjPi,j,0

There are four types of pseudo-Boolean constraints:

1. Basic constraints: Constraints that guarantee the validity of the encoding.
We have to make sure that each parameter of each FCI can take only one
value. So we add constraints ΣvPi,j,v = 1 for all 1 ≤ i ≤ n, 1 ≤ j ≤ k. Here
the variable v ranges over Di ∪ {0}.

2. Constraints for passing cases: To facilitate encoding, we make slight changes
to the original constraints by removing the innermost AND operator. For
instance, in Example 1 we replace (NOT(x1=0) AND NOT(x1=1)) with (x1=2

OR x1=3), and (NOT(x2=0) AND NOT(x2=1)) with (x2=2 OR x2=3), and so
on. Generally, for each passing case V = {v1, v2, . . . , vk}, we add:∧

1≤i≤n

Σk
j=1Σv,v �=0,v �=vjPi,j,v ≥ 1

3. Constraints for failing cases: If there is only one FCI, we simply translate
the original constraints into pseudo-Boolean constraints. For each failing case
V = {v1, v2, . . . , vk}, we add:∧

1≤j≤k

P1,j,0 + P1,j,vj = 1

If the number of target FCIs n is more than 1, each failing case must match
at least one FCI, which results in the constraints

Σn
i=1Et,i ≥ 1

for all 1 ≤ t ≤ w.
In addition, for the tth failing case V = {v1, v2, . . . , vk}, we have∧

1≤i≤n

∧
1≤j≤k

−Et,i + Pi,j,0 + Pi,j,vj ≥ 0

And ∧
1≤i≤n

Et,i +Σ1≤j≤kΣv,v �=0,v �=vjPi,j,v ≥ 1
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which means if the tth failing case matches the ith FCI, then the jth param-
eter of the ith FCI either takes value 0 or takes value vj , and vice versa.

Besides, we must make sure that there is no useless FCI. Each FCI must
match at least one failing case. So for all 1 ≤ i ≤ n, we add:

Σw
t=1Et,i ≥ 1

4. Symmetry breaking constraints: A direct way to encode the inequality (e.g.
x1<y1) is to enumerate all assignments allowed by the inequality and assert
that at least one assignment is true. Therefore, the constraints that state
the ith FCI is lexicographically smaller than the (i + 1)th FCI are encoded
as follows:

(
∧

1≤j≤k−1 Σj
l=1Σv1<v2Pi,l,v1Pi+1,l,v2 +ΣvPi,j,vPi+1,j,v ≥ 1)∧

Σk
l=1Σv1<v2Pi,l,v1Pi+1,l,v2 ≥ 1

Unlike the other three classes of PB constraints, these PB constraints are
nonlinear.

4.2 Tool Support

There are quite some tools for solving pseudo-Boolean constraints. In our work,
we use the tool clasp [4], a conflict-driven nogood learning answer set solver,
to solve the optimization problem. clasp can be applied as an ASP solver, as
a SAT solver, or as a PB solver. We have developed a prototype tool which
translates the original problem into the input of clasp.

5 Experiments

All the experiments in this paper are performed on a laptop with Intel CPU:
Core i5 M540, 2.53GHz, running Ubuntu 11.10.

5.1 Simulation Results

In this part, we present some experimental simulation results. The results are
shown in Table 2. For each row, an experiment is performed as follows:

1. We give an SUT model, as well as a set of FCIs in the SUT. Suppose the set
of FCIs is unknown before our tool is used.

2. A combinatorial test suite is generated according to the SUT model and a
given coverage strength t.

3. Label the test suite results with the set of FCIs. Any test case containing
one or more FCIs will be labeled as fail; while other test cases are labeled
as pass. This step simulates the testing procedure for real systems.

4. We apply our tool to the test results to generate possible solutions. Then we
analyze the results.
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Table 2. Results for Locating FCIs on Test Suites

Exp # Test Suite nTC nFCI sFCI nFT nSol/nSol NSB tSB (s) tNSB (s)

1

CAM(34, 2) 9
1

1(1/1) 3 1/1 0.001 =
2 2(1/2) 1 6/6 0.001 =
3

2
1(2/1) 5 1/6 0.001 0.001

4 2(2/2) 2 36/72 0.002 0.003

5

CA(34, 2) 13
1

1(1/1) 5 1/1 0.001 =
6 2(1/2) 2 1/1 0.001 =
7

2
1(2/1) 7 2/36 0.001 0.002

8 2(1/2) 2 1/1 0.001 =

9

CA(28, 2) 7

1
1(1/1) 4 1/1 0.001 =

10 2(1/2) 1 13/13 0.001 =
11 3(1/2) 1 6/6 0.001 =
12

2
1(2/1) 6 4/24 0.002 0.002

13 2(2/1.5) 3 12/48 0.003 0.004
14 1&2(2/1) 5 3/90 0.002 0.005

15

CA(220, 2) 10
1

1(1/1) 6 1/1 0.001 =
16 2(1/2) 3 4/4 0.001 =
17 3(1/2) 2 9/9 0.001 =
18

2
1(2/1) 7 4/216 0.006 0.022

19 2(1/2) 4 1/1 0.001 =

20

CA(320, 2) 24

1
1(1/1) 9 1/1 0.001 =

21 2(1/2) 3 1/1 0.001 =
22 3(1/2) 1 3/3 0.003 =
23

2
1(2/1) 16 1/18 0.017 0.007

24 2(2/2) 5 5/10 0.015 0.008
25 3(1/2) 2 3/3 0.001 =

26 TS1(28) 10 1 3(1/3) 6 1/1 0.001 =

27 TS2(28) 18 2 1&2(2/1.5) 14 1/54 0.002 0.004

28
CA(610, 3) 526

4 1-4(3/2) 97 1/162 0.177 0.157
29 8 1-4(5/1.8) 180 6/- 7.177 NA

30
CA(350, 3) 133

2 2&3(2/2.5) 20 1/6 0.137 0.052
31 4 1-4(3/2) 56 30/- 1.854 NA

32
CA(350, 4) 579

2 2&3(2/2.5) 83 1/192 0.302 0.279
33 4 1-4(4/2.5) 256 1/- 53.185 NA

34
CA(3100, 4) 169

2 2&3(2/2.5) 22 1/6 0.920 0.201
35 4 1-4(3/2) 74 1/39366 11.975 51.781

In Table 2, column “nTC” shows the number of test cases, “nFCI” shows the
number of FCIs we give in advance, column “sFCI” shows the size of FCIs we
give in advance (the “a/b” in the parenthesis shows the number and average
size of identified FCIs), column “nFT” shows the number of failing test cases,
column “nSol / nSol NSB” shows the number of solutions found when symmetry
breaking is used or not used, columns “tSB” and “tNSB” show the running times
when symmetry breaking is used and not used, respectively. An “=” in the tNSB
column means that when the number of FCIs is 1, there is actually no symmetry
breaking constraint, so there is no significant difference between tSB and tNSB.



Faulty Interaction Identification via Constraint Solving and Optimization 195

“NA” stands for “not available”, which means that the solver did not find an
optimal solution within 300 seconds.

CA(sk, t) represents a covering array of strength t, having k parameters of
level s (i.e. each parameter has s possible values). A covering array of strength
t covers all possible value combinations among t parameters. A CAM(sk, t) is a
covering array having the minimum number of test cases among all CA(sk, t)’s.
In Table 2, the CAs are generated by PICT of Microsoft [3]; and CAM(34,2) is the
covering array in Example 1. TS1(28) and TS2(28) are two test suites generated
using the algorithms in [14]. Each of the two test suites tries to localize FCIs in
one failing test case.

Our technique only analyzes the execution results of the test suite. Details
about running the SUT are not considered in our evaluation. From Table 2, we
can see the average time for finding each possible solution is less than 0.010s for
most of the small cases (exp # 1-27). And our method scales up to some large
cases (exp # 28-35).

Applying symmetry breaking sometimes works worse than not adopting sym-
metry breaking, since the additional nonlinear constraints slows the constraint
solving. But for some large cases, symmetry breaking can greatly reduce the
solving time.

We also have the following observations:

– The number of solutions may be greater than 1. The reason is that the test
suite may not be sufficient to localize the faults. The number of possible
solutions can be used to measure the fault localization ability of the test
suite. The more solutions we get, the less accurate the FCI localization is.

– From the results of CAM(34, 2) and CA(34, 2), we can see the number of
solutions decreases with increase of the number of test cases. This is because
a larger number of test cases will provide more information about the faults.

– From the results of TS1 and TS2, we can see that the test cases used by
the methods in [14] are sufficient to localize the fault, and the number of
solutions is 1 for each experiment.

– The results show that when the number and size of the FCIs of the SUT
(which we declared in advance) grows, the number of solutions grows, or the
number and size of identified FCIs are more likely to be inconsistent with
that of the FCIs of the SUT. Both provide evidence that the increasing of
the number and size of FCIs of the SUT will make fault localization more
difficult. Also, when the number and size of FCIs is 1, the number of solution
for CA(sk, 2) is always 1. These conclusions conform to that of [8].

5.2 Experiment on a Real System

We also applied our technique to a real system. The experiment subject is a
module of the Traffic Collision Avoidance System (TCAS) benchmark.

First, we build a parameterized model for TCAS. Here we used the same SUT
model as used in [6]. The model has some input parameters: 6 of the parameters
are of level 2, 3 parameters are of level 3, 1 parameter is of level 4, and 2
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parameters are of level 10. So there are 3× 25 × 4 × 102 × 3 × 2 × 3 = 691200
possible test cases in total.

The TCAS benchmark has 41 faulty versions and 1 correct version. We per-
form our experiment in the following steps:

1. Select a faulty version among the 41 versions.
2. Set a coverage strength t, and generate a covering array of strength t.
3. Execute the covering array on the selected faulty version. The execution

result of a test case is determined by comparing the output of the faulty
version with that of the correct version.

4. Apply our technique to the execution results of the covering array, in order
to identify the FCIs.

In our evaluation, we conducted experiments on the first 15 versions of TCAS.
The results are shown in Table 3. In the table, row “nTC” shows the number
of test cases in the covering array. Row “nFTC” shows the number of failing
test cases. Rows “nSol” and “nSol NSB” show the number of solutions when
symmetry breaking is used and not used, respectively. In these rows, “AP” means
that all test cases passed and our technique is not applied. “NA” stands for “not
available”, i.e., the solver cannot reach an optimal solution within 300 seconds.
Row “nFCI” shows the number of FCIs. Row “asFCI” shows the average size of
identified FCIs.

In our experiments, the covering arrays of strength 5 and 6 are very large
(4294 and 11333 test cases respectively). These large test suites are likely to
trigger more FCIs, which makes it less possible to find a solution if we assume
a small number of FCIs in advance. So we assume that the number of FCIs
is large too. This will result in a large number of (pseudo-Boolean) variables
and constraints, and make it difficult for the solver to find a solution. Indeed,
most experiments for strength 5 and 6 got an “NA”, so we do not show them in
Table 3.

From the results, we can see that the performance of our technique is not so
good for the TCAS example. The reason is that the size of FCIs is relatively large.
The consequence is two-fold. On one hand, covering arrays of lower strengths are
not likely to trigger SUT failures, and most experiments with lower strengths
got an “AP”. On the other hand, covering arrays of higher strengths will need
more test cases, and more likely there are quite some FCIs. Both will make the
number of constraints large, resulting an “NA”.

6 Related Works

There are different kinds of FCI identification methods. Some adaptive ap-
proaches like [13,10,14] take one failing test case as input, then generate and
execute additional test cases to identify the FCIs in the failing test case. Other
adaptive approaches like [11,5] process the whole test suite. These methods pro-
ceed in an iterative way. In each iteration, they analyze the test suite to identify
suspicious FCIs. Then they generate and execute some additional test cases to
refine the suspicious FCIs.
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Table 3. Experimental Results for TCAS

Version v1 v2 v3
t 2 3 4 2 3 4 2 3 4

nTC 100 402 1410 100 402 1410 100 402 1410
nFTC 0 0 0 0 0 0 0 3 1
nSol AP AP AP AP AP AP AP 2 7

nSol NSB AP AP AP AP AP AP AP 4 7
nFCI - - - - - - - 2 1
asFCI - - - - - - - 4 4
tSB (s) - - - - - - - 0.024 0.038
tNSB (s) - - - - - - - 0.022 =

Version v4 v5 v6
t 2 3 4 2 3 4 2 3 4

nTC 100 402 1410 100 402 1410 100 402 1410
nFTC 0 0 2 0 6 21 0 6 9
nSol AP AP 1 AP 18 ≥10 AP 15 182

nSol NSB AP AP 1 AP 432 ≥10 AP 90 7056
nFCI - - 1 - 4 - - 3 4
asFCI - - 5 - 4 - - 4 5
tSB (s) - - 0.030 - 1.014 - - 0.072 1.256
tNSB (s) - - = - 5.213 - - 0.113 6.836

Version v7 v8 v9
t 2 3 4 2 3 4 2 3 4

nTC 100 402 1410 100 402 1410 100 402 1410
nFTC 0 0 1 0 0 1 0 0 1
nSol AP AP 4 AP AP 3 AP AP 4

nSol NSB AP AP 4 AP AP 3 AP AP 4
nFCI - - 1 - - 1 - - 1
asFCI - - 4 - - 4 - - 4
tSB (s) - - 0.032 - - 0.032 - - 0.032
tNSB (s) - - = - - = - - =

Version v10 v11 v12
t 2 3 4 2 3 4 2 3 4

nTC 100 402 1410 100 402 1410 100 402 1410
nFTC 1 7 16 1 9 23 3 14 57
nSol 1 12 700 1 60 NA 1 NA NA

nSol NSB 1 72 NA 1 1440 NA 6 NA NA
nFCI 1 3 7 1 4 ≥ 10 3 ≥ 8 ≥ 10
asFCI 2 5 5.57 2 4.75 - 2 - -
tSB (s) 0.002 0.045 14.035 0.002 0.227 - 0.244 - -
tNSB (s) = 0.049 NA = 0.865 - 0.257 - -

Version v13 v14 v15
t 2 3 4 2 3 4 2 3 4

nTC 100 402 1410 100 402 1410 100 402 1410
nFTC 0 2 11 1 3 4 0 6 21
nSol AP 5 34 1 12 30 AP 18 NA

nSol NSB AP 5 360 1 24 180 AP 432 NA
nFCI - 1 3 1 2 3 - 4 ≥ 10
asFCI - 5 5.67 2 3.5 4.67 - 4 -
tSB (s) - 0.006 0.168 0.002 0.025 0.375 - 0.996 -
tNSB (s) - = 0.259 = 0.021 0.823 - 5.313 -

There are also some works aiming at generating covering arrays having fault
localization abilities, such as LDA [2] and ELA [8]. One problem with these
approaches is that the test suite is large and will cost a lot of resources during
testing period. Besides, the generation of these covering arrays is still a problem.

Another kind of approaches aim at analyzing all the test execution results
to identify the FCIs. Our technique belongs to this kind. The benefits of these
methods are that only the test results are used as input, and no additional test
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cases are generated. However, these methods suffer from insufficient test results,
which provide insufficient information about FCIs and will lower the precision
of FCI identification. Previous works of this kind include [12]. It uses classifica-
tion tree analysis (CTA) on the test results. The FCIs are represented as a tree
structure, and a path from the root to each failing leaf node corresponds to an
FCI. (An example of classification trees is shown in Fig. 1. The pi’s represent the
parameters, and the numbers on the branches are their values.) This approach
is fast and insensitive to occasional failures. However, in some situations, only a
very small set of test cases fail, which means the input data for CTA is highly
unbalanced. Then CTA will have very bad performance when processing this
kind of data. Another point is that all the FCIs should contain the same param-
eter on the root (it can be observed from Fig. 1), but this is not always the case.
Compared with the CTA approach, our technique will not face the difficulties of
CTA, and we can find all possible solutions of FCIs. Each of these solutions will
lead to exactly the same test result as the input test results.

Fig. 1. An Example Classification Tree

7 Concluding Remarks

This paper proposes a new automated approach for identifying FCIs. It is based
on pseudo-Boolean constraint solving and optimization techniques, and it is quite
effective. The method has been implemented as a prototype tool. Preliminary
results are encouraging. In most cases, it can provide a few FCIs which are
helpful to the user when debugging. Of course, there are still some works to be
done. For example, there can be different encodings of the problem, which are
worth investigating.

Sometimes there may be a number of possible solutions for the generated
constraints, which means that the localized FCIs may not be unique. This is
because the test suite is insufficient to provide enough information about the
failure. The more solutions we get, the less accurate the FCI localization is. One
direction of our future works is to make a balance between reducing the size of
the test suite and increasing the ability of fault localization.



Faulty Interaction Identification via Constraint Solving and Optimization 199

Our work in this paper is another application of SAT/constraint solving
(and optimization) techniques in software engineering. On the other hand, some
benchmarks can be generated from such applications. They might be interesting
and challenging to the SAT community.
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Abstract. Managing learnt clause database is known to be a tricky task in SAT
solvers. In the portfolio framework, the collaboration between threads through
learnt clause exchange makes this problem even more difficult to tackle. Several
techniques have been proposed in the last few years, but practical results are still
in favor of very limited collaboration, or even no collaboration at all. This is
mainly due to the difficulty that each thread has to manage a large amount of
learnt clauses generated by the other workers. In this paper, we propose new
efficient techniques for clause exchanges within a parallel SAT solver. In contrast
to most of the current clause exchange methods, our approach relies on both
export and import policies, and makes use of recent techniques that proves very
effective in the sequential case. Extensive experimentations show the practical
interest of the proposed ideas.

1 Introduction

The practical resolution of the SAT problem has received major attention these two last
decades. Particularly, due to the wide availability of cheap multicore architectures, the
focus is now on the development of efficient parallel engines, able to solve large real-
world problems. Several of them have been recently proposed, e.g. ManySat [10],
SArTagnan [12], Plingeling [4], ppfolio [16], part-tree-learn [11].

Portfolio schema is a possible approach to tackle parallelism. One idea of portfolio
algorithms is the collaboration between the different workers. In the SAT case, their
joint effort is mainly achieved through the exchange of learnt clauses. Unfortunately, it
is very hard to predict whether a clause generated by a working thread will be useful
for the others, or not. To deal with this problem, ManySAT proposes a dynamic clause
sharing policy which uses pairwise size limits to control the exchange between threads
[9]. However, most of implementations (Plingeling [4], SArTagnan [12], etc.)
only share unit clauses with the other threads. Moreover, in the last SAT competition,
a new portfolio called ppfolio obtained very good results; ppfolio is actually a
simple script that runs different state-of-art sequential solvers in an independent way.
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Accordingly, no collaboration is achieved within this solver, and yet it proves very ef-
ficient during this competition. This shows that the current clause exchange techniques
are not mature and may be improved.

The problem of predicting the usefulness of a given learnt clause is also known in
the sequential case; recently, a new measure called psm [1] has been proposed to dy-
namically manage learnt clauses. Roughly, it consists in comparing the current (partial)
interpretation to the set of literals of each learnt clause. The main idea is the following:
if the set-theoretical intersection of the current interpretation and the clause is large,
then the clause is unlikely useful in the current part of the search space. On the con-
trary, if this intersection is small, then the clause has a lot of chance to be useful for
unit-propagation, reducing the search space. This measure has been used in a new strat-
egy to manage the learnt clauses database which enables to freeze a clause, namely
to remove it from the set of learnt clauses on a temporary basis, when it is considered
”useless”. Periodically all clauses are reevaluated in other to be frozen or activated. This
technique proves very efficient in an empirical point of view, and succeeds to select rel-
evant learnt clauses.

In this paper, we extend the results of [1] to the portfolio framework, proposing
different efficient heuristical policies for exporting, importing and selecting relevant
clauses for the different threads of a portfolio. This paper is structured as follows: in
the next Section, we present the background knowledge about parallel SAT solving and
learnt clause management. In the Section 3, we present some preliminaries about the be-
havior of a portfolio solver. Next, in Section 4, our case study solver called PeneLoPe
is presented and it is compared to the best parallel SAT solvers in Section 5. Finally, we
conclude with some perspectives.

2 Technical Background

First of all, we assume that the reader is familiar with Satisfiability notions (variables,
literal, clause, unit clause, interpretations, CNF formula). Note that clauses and inter-
pretations will be equally interpreted as set of literals. We just want to recall the global
schema of CDCL (Conflict-Driven, Clause Learning) solvers: a typical branch of a
CDCL solver can be seen as a sequence of decisions followed by propagations, re-
peated until a conflict is reached. Each decision literal, chosen by some heuristic, usu-
ally activity-based ones, is assigned at its own level, shared with all propagated literals
assigned at the same level. Each time a conflict is reached, a nogood is extracted us-
ing a particular method, usually the First UIP (Unique Implication Point) one [14,19].
The learnt clause is then added to the learnt clause database and a backjumping level is
computed from it. The interested reader can refer to [7] for more details. In the rest of
the section, we give background about important notions for the paper understanding.

Control of the Learnt Clauses Database

The size of the learnt clauses database is clearly crucial to the solver performance. In-
deed, keeping too many learnt clauses slows down the unit propagation process, while
deleting too many of them breaks the overall learning benefit. To avoid such drawbacks,
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solvers periodically remove some clauses considered to be useless. Consequently, iden-
tifying good learnt clauses - relevant to the proof derivation - is clearly an important
challenge. The first proposed quality measure follows the success of the activity-based
VSIDS heuristic. More precisely, a learnt clause is considered relevant to the proof, if
it is often involved in recent conflicts i.e. frequently used to derive asserting clauses.
Clearly, this deletion strategy supposes that a useful clause in the past could be useful
in the future. In [2], another measure called lbd is used to estimate the quality of a learnt
clause (we denote lbd(c) the lbd value of a clause c). This new measure is based on the
number of different decision levels appearing in a learnt clause and is computed when
the clause is generated. Extensive experiments demonstrates that clauses with small
lbd values are used more often than those with higher lbd ones. Note also that lbd of
clauses can be recomputed when they are used for unit propagations, and updated if the
it becomes smaller. This update process is important to get many good clauses. How-
ever, these both measures are obviously heuristical ones and solvers are not safe from
regularly eliminating relevant learnt clauses.

Parallel SAT Solving

Two approaches are commonly explored to parallelize SAT solvers. The first one is
mainly a divide-and-conquer idea, which divides the search space into subspaces, suc-
cessively allocated to SAT workers. Each time a worker finish its job (whereas the other
ones are still doing their task), a load balancing strategy is invoked, and dynamically
transfers subspaces to this idle worker [5,6]. A closely related approach is the itera-
tive partitioning one [11]. Note that some of these approaches are able to share clauses
[17,11] between workers. On the other hand, the parallel portfolio strategy exploits the
complementarity between different sequential CDCL strategies to let them compete and
cooperate on the same formula [10,4,12]. Since each worker deals with the whole for-
mula, there is no need to introduce load balancing overheads, and cooperation is only
achieved through the exchange of learnt clauses. With this approach, the crafting of
the strategies is important, especially with a small number of workers. In general, the
objective is to cover the space of good search strategies in the best possible way. Such
strategies are efficient on multicore architectures.

As we said above, the size of the learnt clause database is crucial for sequential
solvers. Then, for a parallel portfolio SAT solver, it is not desirable to share all learnt
clauses between all threads. To deal with this problem, one has to select carefully the
clauses that a thread wants to share with the others. A natural solution is to take into
account the size of learnt clauses and share only the smallest ones (size less than 8 for
example [10]). Based on the observation that small clauses appears less and less during
the search, authors of ManySAT propose a dynamic clause sharing policy which uses
pairwise size limits to control the exchange between threads [9].

However, it is surprising that Plingeling, one of the winner of the SAT’11 com-
petition shares between threads only unit clauses. Furthermore, ppfolio which have
obtained good results in that competition runs different state-of-art sequential solvers
in an independent way without any sharing. This last observations show that current
clause exchange techniques are not mature and may be improved. This is one of the
goal of this paper.
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3 Parallelism, Collaboration and Clause Exchange: A Premilinary
Experimentation

To illustrate the current behavior of portfolio solvers with respect to clause exchanges,
we first have conducted preliminaries experiments on a state-of-the-art solver. For a
sequential solver, a ”good” learnt clause is a clause that is used during the unit propa-
gation process and the conflict analysis. For portfolio solvers, one can quite safely state
the same idea: a ”good” shared clause is a clause that helps at least one other thread
reducing its search space, namely propagating.

Accordingly, we wanted to know how useful are the clauses shared in a portfolio-
based solver. To this end, we ran some experiments1 using a state-of-the-art portfolio-
based SAT solver. We choose the solver ManySAT 2.0 (based on Minisat 2.2),
because in this solver, the only difference between the working threads are caused by
the first decision variables which are selected randomly. Except this initial interpreta-
tion, each CDCL worker exhibits the exact same behavior (in terms of restart strategy,
branching variable heuristics, etc.), which allows us to make a fair comparison about
clause exchange without any side effect. Hence, it represents a good framework to deal
with parallel SAT solvers and clauses sharing. By default all clauses of size less than 8
are shared. Moreover, ManySAT provides a deterministic mode [8]. Let us emphasize
that we have activated this option to make the obtained results fully reproducible and
we report the detailled results online2.

Let SC be the set of shared clauses, namely the set-theoretical union of each clause
exported by a given thread to all the other ones. In this experiment, for each thread, we
have considered two particular kinds of shared clauses. First, the shared clauses that
are actually used (at least once) by a working thread to propagate. We denote this set
used(SC). Second, we have also focused on the set of shared clauses that are deleted
without having been from any help during the search. This set is denoted unused(SC).
Clearly, SC\(used(SC) ∪ unused(SC)) represents the set of clauses that have neither
been used nor been deleted, yet.

Figure 1 synthetizes the results obtained during this first experiment. The results are
reported in the following way: each point of Figure 1 is associated with an instance,
and the x-axys corresponds to the rate #used(SC)/#SC, whereas the y-axys corre-
sponds to the rate #unused(SC)/#SC, and we report the average rate over the dif-
ferent threads. Figure 1(a) gives the results for ManySAT. First of all, we can remark
that the rate of useful shared clauses differs greatly over different instances. We can
also note, that in a lot of cases, ManySAT keeps shared clauses during the entire search
(dots near the x-axys). This is due to the non-aggressive cleaning strategy of Minisat
where in many instances no cleaning are performed. Threads can keep useless clauses
a long time and have to support an over cost without any benefit.

1 All experimentations of this paper have been conducted on a dual socket Intel XEON
X5550 quad-core 2.66 GHz with 8 MB of cache and a RAM limit of 32GB, under Linux
CentOS 6 (kernel 2.6.32). All solvers use 8 threads. The timeout was set to 1200 seconds WC
for each instance. If no answer was delivered within this amount of time, the instance was
considered unsolved. We used the application instances (300) of the SAT competition 2011.

2 http://www.cril.fr/˜hoessen/penelope.html

http://www.cril.fr/~hoessen/penelope.html
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(b) aggressive ManySAT

Fig. 1. Comparison between useful share clauses and unused deleted clauses. Each dot corre-
sponds to an instances. x-axis gives the rate of useful shared clauses #used(SC)/#SC, whereas
the y-axis gives the rate of unused deleted shared clauses #unused(SC)/#SC.

We have conducted the same experiment with a much more agressive cleaning strat-
egy. We have choosed the one presented in [1] (see Section 4) and we report the result
in Figure 1(b). Here, in many cases, shared clauses are deleted without any usage and
the percentage of shared clauses that are used at least one time decreases with respect
to the basic version of ManySAT. These results can be explained quite easily. If only
few cleanings are done, the threads have to manage a lot of useful and useless shared
clauses. In one hand, it owns a lot of information about the problem to solve, and prop-
agates many units clauses. On the other hand, such a solver has to maintain a large
number of clauses uselessly, which greatly slows down its exploration.

Conversely, when many cleanings are achieved, another problem occurs. Indeed, if
a given clause is not used in conflict analysis and/or unit propagation very often, it
has then a lot of chances to be quickly removed. Therefore, threads using an agressive
strategy spend a lot of time importing clauses that are never used. We can also notice
that only using the lbd measure for clause usefulness seems not efficient. Indeed, shared
clauses are here small clauses, so they have small lbd values. Even if we can try to tune
the cleaning strategy to obtain a stronger solver, we think that the classical strategy used
to manage learnt clauses is not appropriate in the case of clauses sharing and multicore
architectures. We propose a new scheme in the next section.

4 Selecting, Sharing and Activating Good Clauses

Managing learnt clauses is known to be difficult in the sequential case. Furthermore,
dealing with imported clauses from other threads leads to additional problems:
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– Imported clauses can be subsumed by clauses already present in the database. Since
subsumption computation is time consuming, it is necessary to give the possibility
to remove periodically learnt clauses.

– Imported clauses may be useless during a long time, and suddenly become useful.
– Each thread has to manage many more clauses.
– Characterizing good imported clauses is a real challenge.

For all of these reasons, we propose to use the dynamic management policy of learnt
clauses proposed in [1] inside each thread. This recent technique enables to activate
or freeze some learnt clauses, imported or locally generated. The advantage is twofold.
The overhead caused by imported clauses is greatly reduced since clauses can be frozen.
Nevertheless, clauses estimated useful in the next future of the search are activated. Let
us present more precisely this method in the next Section.

Freezing Clauses

The strategy proposed in [1] differs from the other ones proposed in the past (see Section
2). Indeed, it is based on a dynamic freezing and activation principle of learnt clauses.
At a given search state, it activates the most promising learnt clauses while freezing
irrelevant ones. In this way, learned clauses can be discarded from the current step, but
may be activated again in future steps of the search process. This strategy cannot be
used with the other known measures such as activity or lbd-based ones. Indeed, the
activity (VSIDS-based) measure is dynamic but can only be used to update the activity
of learnt clauses currently in the database, while the lbd value of a given learnt clause is
either static (and does not change during search) or dynamic but, in this case, the same
problem as VSIDS-based one occurs. Then, this strategy is associated with another
measure, defined in the following, for identifying good learnt clauses [1].

Let Σ be a CNF formula, c be a clause learnt by the solver, and ω the current inter-
pretation saved from the polarity choice of decision variables [15]. The psm value of
the clause c w.r.t. ω, denoted psmω(c), is equal to:

psmω(c) = |ω ∩ c|

psm is a highly dynamic measure, since it is mainly based on the current interpretation.
It aims at selecting relevant context (i.e. learnt clauses) with respect to the search in
progress. To this end, the clauses that exhibit a low psm are considered relevant. Indeed,
the lower is a psm value, the more likely the related clause is about to unit-propagate
some literal, or to be falsified. On the opposite, a clause with a large psm value has a lot
of chance to be satisfied by many literals, making it irrelevant for the search in progress.

Thus, only clauses that exhibit a low psm are selected and currently used by the
solver, the other clauses being frozen. When a clause is frozen, it is removed from the
list of the watched literals of the solver, in order to avoid the computational overhead
of maintaining the data structure of the solver for this useless clause. Nevertheless, a
frozen clause is not erased but it is kept in memory, since this clause may be useful in the
next future of the search. As the current interpretation evolves, the set of learnt clauses
actually used by the solver evolves, too. In this respect, the psm value is computed
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periodically, and sets of clauses are frozen or unfrozen with respect to their freshly
computed new value.

Let Pk be a sequence where P0 = 500 and Pi+1 = Pi + 500 + 100× i. A function
”updateDB ” is called each time the number of conflict reaches Pi conflicts (where
i ∈ [0..∞]). This function computes new psm values for every learnt clauses (frozen or
activated). A clause that has a psm value less than a given limit l is activated in the next
part of the search. If its psm does not hold this condition, then it is frozen. Moreover, a
clause that is not activated after k (equal to 7 by default) time steps is deleted. Similarly,
a clause remaining active more than k steps without participating to the search is also
permanently deleted.

Given the psm and lbd measures, we now define different policies for clause ex-
change. In a typical CDCL procedure, a nogood clause is learnt after each conflict.
It appears that all clauses cannot be shared, especially because some of them are not
useful in a long term. So, when collaboration is achieved, this is limited through some
criterion. To the best of our knowledge, in all current portfolio solvers, this criterion
is only based on the information from the sender of the clause, the receiver having to
accept any clause judged locally relevant by another worker.

We present in the next Section a technique where both the sender and the receiver of
a clause havea strategy. Obviously, any sender (export strategy) tries to find in its own
learnt clause database the most relevant information to help the other workers. However,
the receiver (import strategy) here does not accept the shared clauses in a blind way. We
have called our case study solver PeneLoPe3 (Parallel Lbd Psm solver.).

Importing Clause Policy. When a clause is imported, we can consider different cases,
depending on the moment the clause is attached for participating to the search.

– no-freeze: each imported clause is actually stored with the current learnt database
of the thread, and will be evaluated (and possibly frozen) during the next call to
updateDB .

– freeze-all: each imported clause is frozen by default, and is only used later by the
solver if it is evaluated relevant w.r.t. unfreezing conditions.

– freeze: each imported clause is evaluated as it would have been if locally generated.
If the clause is considered relevant, it is added to the learnt clauses, otherwise it is
frozen.

Exporting Clause Policy. Since PeneLoPe can freeze clauses, each thread can import
more clauses than it would with a classical management of clauses, where all of them
are attached. Then, we propose different strategies, more or less restrictive, to select
which clauses have to be shared:

– unlimited: any generated clause is exported towards the different threads.
– size limit: only clauses whose size is less than a given value (8 in our experiments)

are exported [9].

3 In reference to Odysseus’s faithful wife who wove a burial shroud, linking many threads to-
gether.
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Table 1. Comparison between import, export & restart strategies using deterministic mode

psm used export strategy restart strategy import strategy #SAT #UNSAT #SAT + #UNSAT

✓ lbd limit lbd no freeze 94 111 205
✓ lbd limit lbd freeze 89 113 202
✓ size limit lbd freeze 93 107 200
✓ size limit lbd no freeze 89 107 196
✓ size limit luby no freeze 97 98 195
✓ lbd limit lbd freeze all 89 102 191
✓ size limit luby freeze all 96 92 188
✓ unlimited lbd freeze 86 102 188
✓ size limit luby freeze 92 96 188
✓ lbd limit luby freeze 91 97 188

ManySAT - - - 95 93 188
✓ lbd limit luby no freeze 90 94 184
✓ unlimited luby freeze 91 92 183

size limit luby no freeze 92 90 182
✓ unlimited luby no freeze 89 88 177
✓ size = 1 lbd freeze 89 88 177

– lbd limit: a given clause c is exported to other threads if its lbd value lbd(c) is less
than a given limit value d (8 by default). Let us also note that the lbd value can vary
over time, since it is computed with respect to the current interpretation. Therefore,
as soon as lbd(c) is less than d, the clause is exported.

Restarts Policy. Beside exchange policies, we define two restart strategies.

– Luby: Let li be the ith term of the Luby serie[13]. The ith restart is achieved after
li × α conflicts (α is set to 100 by default).

– LBD [2]: Let LBDg be the average value of the LBD of each learnt clause since the
beginning. Let LBD100 be the same value computed only for the last 100 generated
learnt clause. With this policy, a restart is achieved as soon as LBD100 × α >
LBDg (α is set to 0.7 by default). In addition, the VSIDS score of variables that
are unit-propagated thank for a learnt clause whose lbd is equal to 2 are increased,
as detailled in [2].

We have conducted experiments to compare these different import/export/restart strate-
gies. We ran these different versions and Table 1 presents a sample of the obtained
results This table report for each strategy the number of SAT instances solved (#SAT),
together with the number of UNSAT instances solved (#UNSAT) and total (#SAT +
#UNSAT).

Let us take a first look at the export strategy. Unsurprisingly, the ”unlimited” policy
obtained the worst results. Indeed, none of these versions have been able to solve more
than 190 instances, regardless all other policies (export, restart). Here, every generated
clause is exported, and we reach the maximum level of communication. As expected,
with the multiplicity of the workers, the solvers are soon overwhelmed by clauses and
their performances drop.
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(a) size limit + luby + no freeze (SLN)
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(b) lbd limit + lbd + freeze (LLF)

Fig. 2. Comparison between usefull share clauses and useless deleted clauses. Each dot corre-
sponds to an instances. x-axis gives the rate of useful shared clauses #used(SC)

#SC , whereas the

y-axis gives the rate of unused deleted shared clauses #unused(SC)
#SC .

This was the reason why a size-based limit was introduced with the idea that the
smallest clauses produce the best syntactic filtering, and therefore are preferable. In-
deed, in Table 1, it appears clearly that ”size limit” (clauses containing less than 8
literals) policy outperforms the ”unlimited” one. This simple limit shows its usefulness,
but a main drawback is that it has been shown [3] that longer clauses may greatly reduce
the size of the proof.

Using the lbd value lbd(c) of a clause c can improve the situation as lbd(c) ≤ size(c).
Hence, if the same value v is used for both the size and the lbd limits, more clauses are
exported with the lbd policy. So, specifying a limit on the lbd allows us to import larger
clauses if those ones are heuristically considered as promising. This could represent a
problem for a parallel solver without the ability to freeze some clauses. Nevertheless, as
PeneLoPe contains such mechanism, the impact is greatly reduced. From an empirical
point of view, Table 1 shows that the ”lbd limit” obtains the best results among all
exporting strategies. We have also tried to limit the export to unary clauses (line size=1)
like most current portfolio solvers do, but this does not lead to good performance, since
only 177 instances are solved.

Let us now focus on the restart strategy. Quite obviously, the ”luby” technique ob-
tains overall worst results than the ”lbd ” one. This clearly shows the particular interest
of this lbd concept introduced in [2]. About import strategy, no clear winner appears
when looking at the results in Table 1. Indeed, the best results in term of number of
solved SAT instances is obtained with no freeze (97) when associated with the ”luby”
restart and the ”size limit” export strategy, whereas the best number of solved UNSAT
instances is obtained with the ”freeze” strategy (113). Furthermore, no freeze enables
to obtain the best overall result solving 205 instances out of the 300 used ones. Hence,
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it would be audacious to plead for one of the 3 proposed techniques. However, a large
number of our proposed policies performs in practice better than ”classical” clause ex-
change techniques, represented in Table 1 by ManySat.

In a second experiment, we wanted to assess the behavior of the solver when us-
ing some of our proposed policies. To this end, we have conducted the exact same
experiments than the one presented in Section 3; the obtained results are reported in
the Figure 2. First, we have tried with size limit, luby, and no freeze policies (denoted
SLN, see Figure 2(a)). Clearly, this version behaves very well, since most of the dots
are located under the diagonal. Moreover, for most instances, #usedSC+#unused(SC)

#SC is
close to 1 (dots near the second diagonal), which indicates that the solver does not carry
useless clauses without deleting them. Most of them proves useful, and the other ones
are deleted.

Then, the experimentation was conducted with the lbd limit, lbd and freeze combo
(denoted LLF, see Figure 2(b)). At first sight, the behavior is here less satisfying than
the SLN version, since for most instances at least half of imported clauses are deleted
without being from any help. Actually, in this version, a much larger number of clauses
are exported due to the ”lbd limit” export policy, which leads to a lower rate of useful
clauses. Fine-tuning parameters (lbd limit values, number of time a clause has to be
frozen before being permanently deleted, etc.) might improve this behavior.

Looking at some detailled statistics provided in Table 2, it indeed appears that the
LLF version shares a lot more clauses than the SLN one (column nbu). Note that this
Table contains some other very interesting information. For instance, it enables to see
that for some benchmarks (e.g. AProVE07-21), about 90% of imported clauses are
actually frozen and do not immediately participate to the search, whereas for other
instances, we face the opposite situation (hwmcc10...) with only 10% of clauses that
are frozen when imported. This reveals the high adaptability of the psm measure. Let
us focus now on the number of imported clauses, compared to the number of conflicts
needed to solve the instance. The SLN version produces very often more conflict clauses
than it imports from other working threads (nbc/nbi < 1), even though this is not true
with some benchmarks (e.g. AProVE07-21, hwmcc10...). Note that the nbc/nbi
rate of the LLF version exhibits a very high variability, from 0.58 for the smallest value
in Table 2 (velev-pipe-o-uns...) to more than 4, meaning that in such cases,
each time the solver produces a conflict (and consequently a clause), it imports more
than 4 clauses on average. Let us also emphasize that the computationnal cost of the psm
measure is not major (see ”psm time” column). During all our experiments, PeneLoPe
have spent at most 5% of the solving time to compute psm.

On a more general view, even if the no-freeze policy seems to be the best in terms of
efficiency in communication between threads of the solver, it has the disadvantage of
adding every imported clause in the set of active clauses. This leads to a lower number
of propagation per second until the next re-examination of the whole clause database.
This might be a problem if we want to increase the number of threads of the solver. On
the other hand, the freeze-all policy does not slow down the solver. Yet, such solver is
not able to use the imported clauses as soon as they are available, and therefore explores
subspaces that would have been pruned with the no-freeze policy.
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Table 2. Statistics about some unsatisfiable instance solving. For each instance and each version,
we report the WC time needed to solve it, the number of conficts (nbc, in thousands), the number
of imported clauses (nbi, in thousands) with between brackets the rate between nbi and nbc, the
percentage of clauses frozen at the import (nbf ), the percentage of useful imported clauses (nbu)
and the percentage of unused deleted clauses (nbd). Finally, we provide the rate of time (w.r.t. the
overall solving time) spent on computing the psm value. Except for time, we compute the average
between the 8 threads for these statistics.

instance version time nbc nbi(nbc/nbi) nbf nbu nbd psm time
dated-10-17-u SLN TO 1771 278 (0.15) 0% 45% 49% 2%

LLF 949 1047 1251 (0.83) 64% 20% 60% 4%
hwmcc10-. . . SLN TO 5955 7989 (1.34) 0% 35% 60% 3%
k50-eijkbs6669-tseitin LLF 766 3360 15299 (4.55) 10% 11% 80% 5%
velev-pipe-o-uns-1.1-6 SLN 150 981 69 (0.07) 0% 60% 24% 2%

LLF 48 296 173 (0.58) 41% 31% 33% 3%
sokoban-sequential-p145- SLN TO 182 86 (0.47) 0% 92% 4% 0.1%
microban-sequential.040 LLF 530 74 155 (2.09) 5% 58% 17% 0.4%
AProVE07-21 SLN 10 78 83 (1.06) 0% 35% 16% 3%

LLF 31 143 506 (3.53) 89% 9% 57% 5%
slp-synthesis-aes-bottom13 SLN 445 1628 194 (0.11) 0% 58% 30% 3%

LLF 91 309 298 (0.96) 71% 24% 49% 4%
velev-vliw-uns-4.0-9-i1 SLN TO 1664 262 (0.15) 0% 55% 40% 2%

LLF 906 1165 824 (0.70) 35% 37% 48% 5%
x1mul.miter. . . -359 SLN 819 2073 421 (0.20) 0% 51% 37% 5%

LLF 280 680 1134 (1.66) 76% 16% 59% 5%

5 Comparison with State of the Art Solvers

In this Section, we propose a comparison of two of our proposed prototypes against
state-of-the-art parallel SAT solvers. We have selected solvers that prove the most ef-
fective during the last competitive events: ppfolio [16], cryptominisat [18],
plingeling [4] and ManySat [10].

For PeneLoPe, we choose for both versions the lbd restart strategy and the lbd
limit for the export policy. These two versions only differ from their import policies:
freeze and no freeze. Let us precise that contrary to previous experiments, we do not
use the deterministic mode in these experiments, in order to obtain the best possible
performance.

Figure 3 shows the obtained results through different representations; Table 3(a) pro-
vides the number of solved instances for the different solvers, Figure 3(b) details the
comparison of PeneLoPe and Plingeling through a scatter plot, and a cactus plot
in Figure 3(c) gives the number of solved instances w.r.t. the time (in seconds) needed
to solve them. PeneLoPe outperforms all other parallel solvers; indeed, it succeeds
to solve 216 instances while no other solver is able to exceed 200 (Table 3(a)). Note
that only considering SAT instances, the best results come from plingeling which
solves 99 instances. This is particularly noticeable in Figure 3(b) where PeneLoPe and
plingeling are more precisely compared; indeed, most of ”SAT dots” are located
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Solver #SAT #UNSAT #SAT+#UNSAT

PeneLoPe freeze 97 119 216
PeneLoPe no freeze 96 119 215
plingeling [4] 99 97 196
ppfolio [16] 91 103 194
cryptominisat [18] 89 104 193
ManySat [10] 95 92 187

(a) PeneLoPe VS state-of-the-art parallel solvers
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Fig. 3. Comparison on 8 cores

above the diagonal, illustrating the strength of plingeling on these instances. How-
ever, results for SAT instances are closer from each other (97 for PeneLoPe freeze, 95
for ManySat, etc.), the gap being more important for UNSAT problems.

In addition, we have compared the same solvers on a 32 cores architecture. More
precisely, the considered hardware configuration is now Intel Xeon CPU X7550
(4 processors, 32 cores) 2.00GHz with 18 MB of cache and a RAM limit of 256GB.
The software framework is the same as with previous experiments. Each solver is run
using 32 threads, and the obtained results are displayed in Figure 4 in a similar way
than previously. First, let us remark that except for plingeling, all solvers improve
their results when they are run with a larger number of threads. The benefit is lim-
ited for certain solvers, however. For example, cryptominisat solves 193 instances
with 8 threads, and 201 instances with 32 threads. The improvement is stronger with
PeneLoPe whose both versions solve 15 extra instances when 32 threads are used,
and especially for ManySAT with a gain of 29 instances. The gap can be more re-
markable looking at the cactus plot in Figure 4(c), since our 3 competitors solve about
the same number of instances within the same time (curves very close to each other),
whereas the curves of PeneLoPe and ManySAT clearly show their ability to solve
a larger number of instances within a more restricted time. Besides, it is worth not-
ing that PeneLoPe solves the same number of instances as Plingeling, ppfolio
and cryptominisat with a (virtual) time limit of only 400 seconds. Finally, we can
also notice than PeneLoPe can be improved on SAT instances. Indeed, it appears that
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Solver #SAT #UNSAT #SAT+#UNSAT

PeneLoPe freeze 104 127 231
PeneLoPe no freeze 99 131 230
ManySAT [10] 105 111 216
ppfolio [16] 107 97 204
cryptominisat [18] 96 105 201
Plingeling [4] 100 95 195

(a) PeneLoPe VS state-of-the-art parallel solvers
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Fig. 4. Comparison on 32 cores

Luby restarts are more efficient for SAT than for UNSAT, whereas the exact opposite
phenomenon happens for UNSAT instances with the lbd restart strategy.

Adding computing units has different impacts. For instance, for ppfolio and
plingeling the gain is not major, since augmenting the number of working threads
”just” improves the number of CDCL sequential solvers that explore the search space;
each worker does not benefit from the exploration of the other ones, since with these
solvers, little (if any) collaboration is done. PeneLoPe benefits more from more com-
puting units because the number of exchanged clauses coming from different search
subspaces is greater. This leads to a wider knowledge for each thread without being
slowed down too much, thanks to the freezing mechanism.

Finally, let us emphasize that during all our experiments with PeneLoPe, all work-
ing threads share the exact same parameters and strategies, just like in our prelimi-
nary experimentation in Section 3. Improving diversification in the different sequential
CDCL searches should probably boost even more our case study solver.

6 Conclusion

In this paper, we have proposed new strategies to manage clause exchange within
parallel SAT solvers. Based on the recent psm and lbd concepts, the idea is to adopt dif-
ferent strategies for import and export of clauses. We have carrefully studied
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different empirical aspects of our proposed ideas and compared our solver to best known
parallel SAT engines, showing that it appears to be a highly competitive prototype.

Clearly, diversifying the different working threads should improve the performance
of our case study solver PeneLoPe, since this technique is known to be the cornerstone
of the efficiency of some portfolio solvers, like ppfolio. We plan to study this point
in the next future.
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11. Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: Grid-Based SAT Solving with Iterative Partition-

ing and Clause Learning. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 385–399. Springer,
Heidelberg (2011)

12. Kottler, S., Kaufmann, M.: SArTagnan - a parallel portfolio SAT solver with lockless physical
clause sharing. In: Pragmatics of SAT (2011)

13. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms. In: Pro-
ceedings of ISTCS, pp. 128–133 (1993)

14. Marques-Silva, J., Sakallah, K.: GRASP - A New Search Algorithm for Satisfiability. In:
Proceedings of ICCAD, pp. 220–227 (1996)

15. Pipatsrisawat, K., Darwiche, A.: A Lightweight Component Caching Scheme for Satisfia-
bility Solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp.
294–299. Springer, Heidelberg (2007)

16. Roussel, O.: ppfolio, http://www.cril.univ-artois.fr/˜roussel/ppfolio
17. Schubert, T., Lewis, M., Becker, B.: Pamiraxt: Parallel SAT solving with threads and message

passing. Journal on Satisfiability, Boolean Modeling and Computation 6(4), 203–222 (2009)
18. Soos, M.: Cryptominisat, http://www.msoos.org/cryptominisat2/
19. Zhang, L., Madigan, C., Moskewicz, M., Malik, S.: Efficient conflict driven learning in

boolean satisfiability solver. In: Proceedings of ICCAD, pp. 279–285 (2001)

http://fmv.jku.at/lingeling
http://www.cril.univ-artois.fr/~roussel/ppfolio
http://www.msoos.org/cryptominisat2/


Designing Scalable Parallel SAT Solvers

Antti E.J. Hyvärinen1,� and Norbert Manthey2

1 Aalto University
Department of Information and Computer Science

P.O. Box 15400, FI-00076 AALTO, Finland
antti.hyvarinen@aalto.fi

2 Knowledge Representation and Reasoning Group
Technische Universität Dresden, 01062 Dresden, Germany

norbert@janeway.inf.tu-dresden.de

Abstract. Solving instances of the propositional satisfiability problem
(SAT) in parallel has received a significant amount of attention as the
number of cores in a typical workstation is steadily increasing. With
the increase of the number of cores, in particular the scalability of such
approaches becomes essential for fully harnessing the potential of modern
architectures. The best parallel SAT solvers have, until recently, been
based on algorithm portfolios, while search-space partitioning approaches
have been less successful. We prove, under certain natural assumptions
on the partitioning function, that search-space partitioning can always
result in an increased expected run time, justifying the success of the
portfolio approaches. Furthermore, we give first controlled experiments
showing that an approach combining elements from partitioning and
portfolios scales better than either of the two approaches and succeeds
in solving instances not solved in a recent solver competition.

1 Introduction

The satisfiability problem (SAT) of determining whether a given propositional
formula has a satisfying truth assignment has been a target of intense research ef-
forts due to its theoretical significance [1] and the numerous applications, such as
scheduling [2], termination analysis [3], configuration [4], and bioinformatics [5],
where SAT solvers have proven successful. Parallelism seems now to dominate
the performance of future computer systems, as already current computers pro-
vide more than ten CPU cores. As a result, the research on how to parallelize
SAT solvers for an increasing number of cores is of high practical relevance.

This paper uses rigorous analysis and experiments to find a novel explanation
to the effects certain well-known parallelization techniques have on the expected
run time of solving SAT instances. The time a SAT solver S requires to solve
a given formula φ is known to be highly erratic and might vary significantly as
the formula or the solver is modified even slightly. Hence, given a solver S and
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a formula φ, the run time is a random variable. The variance in run times has
two important implications in parallel solving of formulas. Firstly, assume that
the run time of S on φ is one second with probability 0.8 and ten seconds with
probability 0.2. The expected run time of the solver S is then 1·0.8+10·0.2 = 2.8
seconds. Running ten (randomized) solvers in parallel gives the solution in the
expected time (1 − 0.210) · 1 + 0.210 · 10 ≈ 1.000001 seconds. Hence the use
of this approach results in speed-up of 2.8. Secondly, assume there is a way
of partitioning φ’s search space into ten separately in parallel solvable, equally
difficult parts. It is reasonable to assume that such a partitioning is not perfect so
that the run time of each partition is, say, half of the original formula instead of
tenth. Proving unsatisfiability of the formula would in this case require ensuring
that there are no solutions in any of the partitions, and the expected run time
with the partitioning approach is thus 0.810 · 1 · 1/2 + (1 − 0.810) · 10 · 1/2 ≈
4.5 seconds, resulting in speedup of 0.6. This artificial example provides some
insight to why the portfolio solvers, corresponding to the first case, perform often
better than the search space partitioning solvers which correspond to the second
case. The portfolio approach provides a substantially better speed-up, while the
partitioning approach results in fact in a higher expected run time than solving
with the underlying solver S.

In this paper we prove, under reasonable assumptions, that there is always
a distribution which results in a similar increased expected run time as in the
example above, unless the process of constructing partitions is ideal in the sense
described later. Earlier it has been shown that by organizing the partitioning as
a partition tree it can be guaranteed that not only the expected run time does
not increase above that of S, but that increasing the number of parallel resources
never increases the expected run time [6]. We experimentally confirm this us-
ing realistic and comparable implementations by showing that the partition tree
based iterative partitioning approach scales better than either the portfolio ap-
proach or the partitioning approach. The implementation is able to solve four
instances that were not solved in the SAT Competition 2011.

The run times of randomized tree-based searches have been studied analyti-
cally both for sequential solving [7] and in parallel cases [8,9,10,11]. Our analytic
discussion differs from these by studying unsatisfiability proofs with a model
of partitioning function that is an extension of [11]. Much work has been in-
vested in studying search space partitioning solvers [12,13,14,15] and algorithm
portfolios [16,17]. In this work our aim is to build understanding between the
two approaches by implementing similar systems in as comparable manner as
possible, omitting for instance the most sophisticated clause sharing mecha-
nisms [18,19,20]. The iterative partitioning approach discussed in this work is
introduced in [21] and further developed in [6] and [22]. We extend these studies
by implementing the approach for multi-core architectures instead of computa-
tional grids, which enables us to provide a much more reliable comparison of the
iterative partitioning approach to the portfolio and partitioning approaches.
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The work is organized as follows: Section 2 defines our notation. Section 3
presents the proof for increasing run times, and formalizes the three parallelization
approaches. Section 4 provides the multi-core implementations of the approaches
and discusses how clause sharing is implemented in them. The implementations
are experimentally evaluated in Sect. 5, and conclusions are given in Sect. 6.

2 Preliminaries

Let V be a finite set of Boolean variables. The set of literals {x,¬x | x ∈ V } con-
sists of negative and positive Boolean variables, a clause is a disjunction of literals
and a formula (in conjunctive normal form) is a conjunction of clauses. Whenever
convenient, we denote clauses by sets of literals and formulas by sets of clauses.
Clauses of size one are called unit clauses. An assignment σ is a set of literals, is
consistent if for no variable x both x ∈ σ and ¬x ∈ σ, and is inconsistent other-
wise. If an assignment σ does not contain a literal l for each variable v ∈ V , it is
called partial. A consistent assignment σ satisfies a clause C if C contains a literal
in σ, and satisfies a formula if it satisfies all its clauses. A formula is satisfiable
if there is a consistent truth assignment satisfying it, and unsatisfiable otherwise.
A formula ψ is a logical consequence of φ, denoted φ |= ψ, if ψ is satisfied by all
satisfying assignments of φ. The formulas are logically equivalent, denoted φ ≡ ψ,
if they are logical consequences of each other.

3 Parallel Solving Approaches

This work studies the parallel SAT solver designs that have recently proved suc-
cessful. In particular, we will discuss

– the Simple Parallel SAT Solving (SPSAT) approach, which is a simplified vari-
ant of the portfolio approach;

– the plain partitioning approach,which again is a simplified version of the search
space partitioning approaches such as those based on guiding paths [23]; and

– the iterative partitioning approach, again a simple approach where partition-
ing is recursive and the solving is attempted on the search spaces related to
all recursive levels until satisfiability is proved.

In the following, we describe the approaches and the concepts related to them in
more detail.

The SPSAT Approach is based on solving a given formula φ with several SAT
solvers in parallel. As all solvers are working on the same instance, the solution
is obtained from the solver finishing first. The underlying solvers are slightly ran-
domized so that they correspond to a straightforward portfolio of seemingly infi-
nite different algorithms. The approach is known to be efficient for a wide range
of application originated formulas, in particular if they are satisfiable and have
several solutions [11].
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The Plain Partitioning Approach first divides the search space of the formula,
and then solves the resulting partitions separately in parallel. The search space is
divided using a partitioning function P (φ, n), which maps a formula φ to n parti-
tioning constraints κ1 . . . , κn such that (i) φ ≡ (φ ∧ κ1) ∨ . . . ∨ (φ ∧ κn), and (ii)
κi ∧ κj ∧ φ is unsatisfiable when i �= j. The formulas φi = φ ∧ κi, 1 ≤ i ≤ n,
are called the derived formulas of φ. The satisfiability of φ can be determined by
either showing all derived formulas unsatisfiable or showing φi satisfiable for some
1 ≤ i ≤ n. By (i), in the former case also φ is unsatisfiable, and in the latter case
the assignment satisfying φi satisfies also φ.

The Iterative Partitioning Approach is based on solving a hierarchical partition
tree in a breadth-first order. Given a formula φ, iteratively constructed derived
formulas can be presented by a partition tree Tφ. Each node νi is labeled with a
set of clauses Co(νi) so that the root ν0 is labeled with Co(ν0) = φ, and given a
node νk and a rooted path ν0, . . . , νk−1 to its parent, the label of νk isCo(νk) = κi,

where κi is one of the constraints given by P (
∧k−1

j=0 Co(νj), n). Each node νk with

a rooted path ν0, . . . , νk represents the formula φνk =
∧k

i=0 Co(νi). Solving is at-
tempted for each φνk in the tree in a breadth-first order. The approach terminates
if a satisfying assignment is found, or all rooted paths to the leaves contain a node
νj such that φνj is shown unsatisfiable. In practice, we also limit the run time of
each solving attempt to ensure that a reasonably large portion of the search tree
will be covered.

The Partitioning Function Model. A partitioning function P (φ, n) should pro-
duce derived formulas φi which are increasingly faster to solve as the number of
derived formulas n increases. We will use an efficiency function to formalize how
well P accomplishes this. Assume that the solver S performs with the same proba-
bility a given search that takes time tφ in the formula φ but, due to the partitioning
constraints, a shorter time tφi in the derived formulas φi. The efficiency function
ε(n) depends on the number n of derived formulas and gives the ratio of the two
times, that is, ε(n) = tφ/tφi .

We use a cumulative run time distribution qS,φ(t) to describe the probability
that a solver S determines the satisfiability of a formula φ in time t. This rea-
soning results in a model where, given a formula φ with the run time distribu-
tion qS,φ(t) on a solver S, the n derived formulas φi all have the distributions
qS,φi(t) = qS,φ(ε(n)t).

We will only consider efficiency functions of the form ε(n) = nα where 0 ≤ α ≤
1 is a constant depending on the partitioning function. The function satisfies the
following natural properties:

(1) 1 ≤ ε(n) ≤ n,
(2) ε(n) ≤ ε(n+ 1), and
(3) ε(n)p = ε(np) for all p ∈ N

The first condition states that the partitioning function should not make a par-
ticular search of S super-linearly faster or slow the search down. The second con-
dition requires that the efficiency does not decrease as more derived formulas are
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created. The last condition states that if a partitioning function P (φ, n) is used
to produce np derived formulas recursively, the resulting efficiency must equal the
efficiency of P (φ, np) where the derived formulas are all generated at once. Hence,
given a partitioning function P with efficiency ε(n) = nα, the cumulative run time
distributions for the derived formulas φi of φ are

qS,φi(t) = qS,φ(n
αt) for some α in the range 0 ≤ α ≤ 1, (1)

where the partitioning function is called ideal if α = 1, that is, ε(n) = n.

3.1 Plain Partitioning Can Increase Expected Run Time

A run time distribution qS,φ(t) for an unsatisfiable φ completely determines the
run time distribution qnPlain-Part(α),φ(t) for the plain partitioning approach with a

partitioning function P with efficiency ε(n) = nα. In particular, since the formula
φ is shown unsatisfiable once all derived formulas have been shown unsatisfiable,
by (1) we have

qnPlain-Part(α),φ(t) = qnS,φi
(t) = qnS,φ(n

αt). (2)

In this section we are interested in studying the expected value of the random
variables TS,φ and T n

Plain-Part(α),φ describing the times required to solve φ with
the solver S and the plain partitioning approach using n derived formulas, respec-
tively. In particular, we wish to prove the somewhat surprising claim that for non-
ideal partitioning functions there are distributions for unsatisfiable formulas such
that the expected run time of the solver S is less than the expected run time of
the plain partitioning approach, stated more formally as follows:

Proposition 1. Let φ be unsatisfiable, P (φ, n) a partitioning function with effi-
ciency ε(n) = nα, and S a SAT solver. Then for sufficiently large n and every
0 ≤ α < 1 there exists a distribution qnS,φ(t) such that the expected run time ETS,φ

of S is lower than the expected run time ET n
Plain-Part(α),φ of the plain partitioning

approach.

Proof. The family of distributions qnS,φ(t) we will use in the proof is

qnS,φ(t) =

⎧⎨⎩
0 if t < t1,
1− 1

n if t1 ≤ t < t2, and
1 if t ≥ t2,

(3)

where t1 < t2. Thus the probabilities that the formula is solved by S exactly in
time t1 is 1−1/n and exactly in time t2 is 1/n. The expected run time for a formula
following the distribution is

ETS,φ = (1 − 1

n
)t1 +

1

n
t2. (4)

The expected run time of the plain partitioning approach using the partition func-
tion ε(n) = nα can be derived by noting that all derived formulas need to be solved
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before the result can be determined. This means that either all solvers are “lucky”,
and determine the unsatisfiability in time t1/n

α, or at least one of the solvers runs
for time t2/n

α, whichwill then become the run time of the approach. This results in

ET n
Plain-Part(α),φ =

(
1− 1

n

)n
t1
nα

+

(
1− (1− 1

n
)n
)

t2
nα

. (5)

We claim that for every α, there are values for n, t1 and t2 such that ETS,φ <
ET n

Plain-Part(α),φ. Dividing both sides of the resulting inequality by t2 and setting

k = t1/t2 results in

(1− 1

n
)k +

1

n
<

(1− 1
n )

n

nα
k +

1− (1− 1
n )

n

nα
,

which can be reordered to

k

(
(1− 1

n
)−

(1 − 1
n )

n

nα

)
<

1− (1− 1
n )

n

nα
− 1

n
.

We note that (1 − 1
n ) > (1 − 1

n )
n/nα when n ≥ 2, and therefore the left side

of the inequality is positive and can be made arbitrarily small by setting k small.
It remains to show that the right side of the inequality is positive for sufficiently
large n, i.e.,

n− (1− 1
n )

nn− nα

nα+1
> 0.

Since nα+1 is always positive, we may simplify this and factor n from the nomi-
nator, resulting in

1− (1− 1

n
)n − nα−1 > 0. (6)

Noting that limn→∞(1− 1
n )

n = 1
e ≈ 0.3, and that limn→∞ 1−nα−1 = 1 if α < 1,

we get the desired result, that is, for sufficiently large n, there are values t1 and t2
such that t1 < t2 and ETS,φ < ET n

Plain-Part(α),φ.

Note that the proof does not hold if the partitioning function is ideal, since
the left hand side of the inequality (6) is negative if α = 1. In fact, we have the
following proposition proved in [11]:

Proposition 2. Let n ≥ 1, ε(n) = n1 = n be the efficiency of an ideal partitioning
function, and qT (t) be the run time distribution of an unsatisfiable formula φ with
a randomized solver. Then ET n

Plain-Part(1),φ ≥ ET n+1
Plain-Part(1),φ.

The distribution qnS,φ(t) used in proof of Prop. 1 is clearly not a common distri-
bution for any solver and unsatisfiable formula. Furthermore, many search space
partitioning solvers are based on guiding paths, an approach designed to increase
dynamically the number of derived formulas as the instance is being solved. Nev-
ertheless we believe that the observation helps to understand the performance of
parallel SAT solvers and thereby gives guidelines how to design better
parallel solvers. To further evaluate the effect in practice, we compare the plain
partitioning approach against the SPSAT approach and the iterative partitioning
approach, both of which provably do not suffer from the increasing expected run
times (see [11] and [24], respectively, for proofs).
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4 Multi-core Implementations

The partitioning approaches discussed in Sect. 3 can be implemented in a rela-
tively straightforward manner using the efficient off-the-shelf SAT solvers that
are readily available. Our implementations use the POSIX threads library to en-
able multi-threaded computing. The SPSAT implementation is straightforward,
and the plain partitioning approach can be seen as a special case of the iterative
partitioning, where only the original formula is partitioned, and only the derived
formulas are solved. Hence this section concentrates on describing the iterative
partitioning approach. In interpreting the experimental results it is useful to keep
in mind that the low-level SAT solving, corresponding to the underlying solver S
in the analytical model, is performed by the same code in all three approach. This
allows us to compare the results more reliably.

4.1 The Iterative Partitioning Approach

The iterative partitioning approach is implemented as a master-worker architec-
ture, where the master maintains a tree of derived formulas and the workers both
compute the partitioning function and run the underlying solvers. Communica-
tion is handled via shared memory and the locking primitives available from the
library. The master thread takes care of the following tasks:

1. Maintaining the partition tree
2. Maintaining the queue of nodes to partition
3. Submitting partitioning tasks
4. Submitting solving tasks
5. Determining whether the search can be terminated

There are two kinds of workers: the partitioner and the solver. The maximum run
times of both workers are limited. The partitioner takes as input a node νi in the
partition tree and a number n, and produces the derived formulas computed by the
partitioning function P (φνi , n) upon reaching the time limit. The solver receives a
node νi from the partition tree and tries to solve the corresponding formula φνi . At
success, the solver returns either a satisfying truth assignment or concludes that
φνi is unsatisfiable. Otherwise, if the run time limit is reached, no solution is re-
turned and the corresponding node is marked unknown. Such nodes are subject to
at most one partitioning and their satisfiability will be determined by attempting
to solve recursively the formulas corresponding to child nodes.

A node νi is solved by first constructing the corresponding formula φνi . After
successful solving of φνi , the master either updates the state of νi to unsatisfiable
or receives the satisfying truth assignment depending on the outcome of the solver.
Otherwise, if the solving of φνi failed due to a timeout, the state of νi remains
unknown.

In case of receiving an unsatisfiable result on a node νi, the master checks the
states of the sibling nodes. In case they all are already in the state unsatisfiable,
also the parent of νi, if one exists, is marked unsatisfiable. This process is repeated
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recursively upwards. This way a node in the tree is marked unsatisfiable if and
only if all paths from the node to the leaves pass through a node corresponding to
a formula that is shown unsatisfiable with the solver.

The partitioner implements the vsids scattering function [21], where the parti-
tioning constraints are in general clauses consisting of literals with a high vsids [25]
score.

4.2 Clause Learning

To keep the discussion and the results generalizable, the underlying solvers of the
approaches are only allowed a limited form of learned clause sharing. In particular,
the sharing of only unit clauses is allowed, since sharing longer clauses might have
negative impact on the overall performance [20,22].

The SPSAT implementation synchronizes its units with a centralized database
at every restart and when learning a new unit clause. This operation can be
performed with no locks with a Compare-and-Swap instruction, and has no no-
ticeable negative performance effect. Clause sharing is less straightforward in the
partitioning approaches. A clause learned in one derived formula is not, in general,
a logical consequence of another derived formula, and hence the learned clauses
are not transferred between derived formulas. The iterative partitioning approach
shares the unit clauses only “downwards”, that is, clauses learned in a node are
shared with the formulas in the subtree rooted at that node, by storing the units
learnedwhile solving a formula φνi to the constraintsCo(νi). In plain partitioning,
the unit clauses are similarly saved to the constraints of the derived formula from
which they are learned, and are hence shared between two consecutive solvers if
the first solver fails.

It is possible to maintain more complicated data structures which allow track-
ing to some extent from which constraints a given clause depends. This usually
involves an overhead some times high enough to completely ruin the speed-up ob-
tained from the parallelization [22]. For simplicity and to help in interpreting the
comparison, such data structures are not implemented in our experiments.

5 Results

This section analyzes the performance of the SPSAT, the plain partitioning and
the iterative partitioning approaches using the application category instances from
the 2009 and 2011 SAT competitions1. We first compare the wall clock run time
of each solving approach to that of the underlying solver, and then study the scal-
ability of the approaches with four and 12 cores. We continue by comparing the
plain and iterative partitioning approaches, by showing how the iterative parti-
tioning approach scales when moving to a grid-based system, and finally report
on solving the instances that were not solved in SAT competition 2011. The reli-
ability of the results is addressed shortly by solving repeatedly certain randomly
chosen instances.

1 See http://www.satcompetition.org/

http://www.satcompetition.org/
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5.1 Experimental Setup

All three approaches use MiniSAT 2.2.0 [26] as the underlying solver2. We use
preprocessing only in the last experiment. The experiments are run on a cluster
consisting of nodes with two six-core AMD Opteron 2435 processors. Each in-
stance was solved on an exclusively reserved computing node. The memory usage
for each instance was limited to 30 GB and the duration to four hours of wall clock
time. Each thread was allocated an equal amount of memory, that depended on
the number of threads used. For instance, when running 12 threads, each thread
had approximately 2.5 GB of memory. If the thread ran out of memory, the unit
clauses learned by the thread were collected and, in case of the SPSAT and plain
partitioning approaches, the thread was restarted with the same formula.

The measurement of memory usage is always an estimate, and therefore the
system may nevertheless run out of memory resulting in an early termination of
the search. The run time of each solver thread in the SPSAT and the plain parti-
tioning approaches was limited to four hours, while run times of the solver threads
in the iterative partitioning approach was limited to 2400 seconds wall clock time
(however, the master thread still had the time limit of four hours).

The partitioning function used in the iterative partitioning approach
constructed eight derived instances, that is, it was the function P (·, 8). The plain
partitioning used the function P (·, 1000) to obtain roughly the same amount of
formulas in total for both approaches. Increasing the number of derived formulas
increases the probability that some of them are trivially unsatisfiable. In 50% of
the 2009 benchmark formulas the number of non-trivial derived formulas was over
200, and in 25% of the formulas the number was over 600. In total 70 seconds were
allocated for computing the partitioning function in both cases.

In most of the experiments, we illustrate the results with scatter plots with two
solving approaches on the axis. Satisfiable instances are denoted by × and unsat-
isfiable instances by �. The instances that timed out are plotted on the lines on
the top and the right of the graphs, whereas the instances that ran out of memory
despite the restart-forcing limitations are drawn at the edges of the graph. The
dashed line in the figures correspond to the linear speedup.

5.2 Scalability of the Multi-core Implementation

Figure 1 shows scatter plots of the SPSAT approach, the iterative partitioning
(Iter-Part) approach and the plain partitioning (Plain-Part) approach against the
underlying solver. All three approaches are able to solve more formulas and are
usually faster thanMiniSAT 2.2.0. The SPSAT approach does not reach a linear
speedup for unsatisfiable formulas, but works well for many of the satisfiable in-
stances. The plain partitioning approach shows a noticeable slowdown for many
of the instances where the run time is between hundred and thousand seconds.
This could result from two factors; firstly, in multi-core computing the threads
interfere between each other causing a slowdown. Secondly, as shown in Prop. 1,
it is possible that the slowdown results from the shape of the distributions of the

2 Solvers and data are available at http://tools.computational-logic.org/

http://tools.computational-logic.org/
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original and the derived instances. Interestingly, the wall clock run time of plain
partitioning for unsatisfiable instances is in 41 cases higher than that of the under-
lying solver, and lower in 69 cases (excluding instances not solved by both plain
partitioning and the underlying solver). The corresponding numbers for iterative
partitioning are substantially more convincing, 18 and 94.

As discussed in Sect. 3, the run time of a solver given a formula is essentially
a random variable, and therefore a single run time pair on a single instance is in-
herently unreliable in comparing the performance of two algorithms. To estimate
the quality of the results, we randomly selected ten unsatisfiable and ten satisfi-
able instances and repeated their solving with the iterative partitioning approach
ten times. The average variation coefficient cv, that is, the ratio of the standard
deviation to the mean, itself averaged over the ten instances, is cv = 0.10 for the
unsatisfiable instances and cv = 0.31 for the satisfiable instances.

5.3 Selecting a Scalable Algorithm

The use of more cores increases the memory access times and causes memory outs
in the solvers as the data structures are replicated for each thread. A parallel solv-
ing approach should provide speed-up despite these adverse effects. Table 1 sum-
marizes scalability using the instances that the approach solved both with four and
12 cores. In Fig. 2 we concentrate more on studying the run times of the unsatisfi-
able instances. The table distinguishes the results for satisfiable and unsatisfiable
instances; the columns slower and faster denote the number of instances solved
slower and faster, respectively, with 12 cores than with four cores. Hence if the
number under slower is lower than the number under faster, this indicator shows
that the approach scales. We also report the sum of the wall-clock run times for
the approaches on the last four columns.

Based on the results we can make several interesting observations. Firstly, the
wall-clock solving time for most instances in nearly all cases increases when the
number of cores increases. The only exception is the iterative partitioning when
solving satisfiable instances. Secondly, the total wall clock run time required to
solve the instances decreases for almost all the approaches, here the exception
being the SPSAT approach in unsatisfiable instances. The SPSAT approach scales
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Fig. 1. The SPSAT, iterative and plain partitioning approaches with unit sharing
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Fig. 2. The scalability of the parallel approaches

badly in unsatisfiable instances, while the plain and iterative partitioning
approaches show better scalability, the iterative partitioning being clearly the best
as it reduces the run time by 15% and almost never slows down the solving of an
instance. As shown in Fig. 2, increasing the number of cores results in solving more
instances in iterative partitioning, whereas in the other two approaches the num-
ber of solved instances either decreases or stays the same.

The scalability above suggest that the partitioning approaches scale better than
SPSAT. Our three approaches are deliberately as simple as possible while still
being interesting from the practical point of view, and hence none of the parallel
solvers competing in the recent SAT competitions correspond exactly to any of
the approaches. Nevertheless it is interesting to try to relate the observations here
to the recent competitions. Of the four solvers competing in the 32 core track in
2011, three were variants of the SPSAT approach, one being implemented with
the guiding path approach [23] related to the plain partitioning.

As can be seen in the comparisons in Figs. 1 and 2, the partitioning approaches
are especially advantageous for the harder instances. We will next give some more
insight into this. First, we show in left of Fig. 3 that the iterative partitioning
approach compares favorably to the plain partitioning on unsatisfiable instances
except for a handful of instances. The iterative partitioning approach also solves
a significantly larger number of formulas than the plain partitioning approach.
Again, there are two reasons for this. Firstly, in the light of the propositions 1 and 2
and results in [11], it is unlikely that the plain partitioning approach would obtain
even close to linear speed-up. The iterative partitioning behaves analyticallymuch

Table 1. Comparison on instances that the respective approaches could solve both with
four and 12 cores. Column slower (resp. faster) denotes the number of instances solved
slower (resp. faster) with 12 cores than with four cores.

SAT UNSAT SAT runtime UNSAT runtime
Approach slower faster slower faster 4-core 12-core 4-core 12-core

SPSAT 47 36 93 23 61784 57380 111152 127462
Plain-Part 45 34 77 39 61681 60934 121432 119925
Iter-Part 33 45 61 58 53918 50642 153726 131521
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Table 2. Instances not solved in SAT 2011 competition

Name Solution w/ preproc w/o preproc

aes 32 4 keyfind 1 SAT — 6299
gus-md5-12 UNSAT 4367 6022
rbcl xits 09 UNKNOWN UNSAT — 9635
smtlib-qfbv-aigs-VS3-benchmark-S2-tseitin UNSAT 4732 8163
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Fig. 3. Iterative partitioning in grid using at most 64 cores [22], and in multi-core ap-
proach using 12 cores

nicer [24]. Secondly, the iterative partitioning approach is able to adjust to the
problem difficulty due to the dynamic construction of the partition tree.

We also give some insight into how the iterative partitioning approach scales
beyond 12 cores in right of Fig. 3 by using a computing grid based implementa-
tion running on at most 64 cores. In this system the communication latencies are
several orders of magnitude higher and the hardware is older than in the multi-
core environment, rendering the results not directly comparable.We still note that
increasing the number of cores helps in many hard unsatisfiable instances and re-
sults in solving roughly ten more instances.

Finally, we ran the iterative partitioning approach on the 2011 competition in-
stances on 12 cores with and without the SatElite preprocessing techniques. The
wall-clock run times are reported in Table 2. We only report the four instances
that we could solve but were not solved by any solver in the competition.

6 Conclusions and FutureWork

This work addresses some of the central questions in designing scalable paral-
lel SAT solvers using a novel analysis based on a realistic model of search-space
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partitioning and an efficient uniform implementation based on widely used tech-
niques. The analysis shows that partitioning inherently involves a risk that the
expected run time increases compared to sequential solving. An earlier result [24],
showing that organizing the search spaces as a tree instead of a set avoids this prob-
lem, motivates the experimental comparison of these approaches as well as the
widely used portfolio approach. Our results confirm that the partition tree based
iterative partitioning approach performs well compared to the set-based plain par-
titioning, both of which perform better in the unsatisfiable formulas than the port-
folio approach. Surprisingly, the iterative partitioning approach over-performs
portfolio also in satisfiable formulas. Finally we demonstrate the performance of
the iterative partitioning approach by solving four instances that could not be
solved in the SAT competition 2011.
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18. Hamadi, Y., Jabbour, S., Säıs, L.: Control-based clause sharing in parallel SAT solv-
ing. In: Proc. IJCAI 2009, pp. 499–504. IJCAI/AAAI (2009)

19. Guo, L., Hamadi, Y., Jabbour, S., Sais, L.: Diversification and Intensification in
Parallel SAT Solving. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 252–265.
Springer, Heidelberg (2010)

20. Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: Incorporating clause learning in grid-
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Abstract. Portfolio-based methods exploit the complementary
strengths of a set of algorithms and—as evidenced in recent
competitions—represent the state of the art for solving many NP-hard
problems, including SAT. In this work, we argue that a state-of-the-art
method for constructing portfolio-based algorithm selectors, SATzilla,
also gives rise to an automated method for quantifying the importance
of each of a set of available solvers. We entered a substantially improved
version of SATzilla to the inaugural “analysis track” of the 2011 SAT
competition, and draw two main conclusions from the results that
we obtained. First, automatically-constructed portfolios of sequential,
non-portfolio competition entries perform substantially better than the
winners of all three sequential categories. Second, and more importantly,
a detailed analysis of these portfolios yields valuable insights into
the nature of successful solver designs in the different categories. For
example, we show that the solvers contributing most to SATzilla were
often not the overall best-performing solvers, but instead solvers that
exploit novel solution strategies to solve instances that would remain
unsolved without them.

1 Introduction

The propositional satisfiability problem (SAT) is among the most widely stud-
ied NP-complete problems, with applications to problems as diverse as schedul-
ing [4], planning [15], graph colouring [30], bounded model checking [1], and
formal verification [25]. The resulting diversity of SAT instances fueled the de-
velopment of a multitude of solvers with complementary strengths.

Recent results, reported in the literature as well as in solver competitions, have
demonstrated that this complementarity can be exploited by so-called “algo-
rithm portfolios” that combine different SAT algorithms (or, indeed, algorithms
for solving other hard combinatorial problems). Such algorithm portfolios include
methods that select a single algorithm on a per-instance basis [21,7,10,31,24,26],
methods that make online decisions between algorithms [16,3,23], and methods
that run multiple algorithms independently on one instance, either in parallel or
sequentially [13,9,20,6,27,14,22,11].

To show that such methods work in practice as well as in theory—that de-
spite their overhead and potential to make mistakes, portfolios can outperform
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their constituent solvers—we submitted our SATzilla portfolio-based algorithm
selectors to the international SAT competition (www.satcompetition.org), start-
ing in 2003 and 2004 [18,19]. After substantial improvements [31], SATzilla won
three gold and two other medals (out of nine categories overall) in each of the
2007 and 2009 SAT competitions. Having established SATzilla’s effectiveness, we
decided not to compete in the main track of the 2011 competition, to avoid dis-
couraging new work on (non-portfolio) solvers. Instead, we entered SATzilla in a
new “analysis track”. However, other portfolio-based methods did feature promi-
nently among the winners of the main track: the algorithm selection and schedul-
ing system 3S [14] and the simple, yet efficient parallel portfolio ppfolio [22] won
a total of seven gold and 16 other medals (out of 18 categories overall).

One of the main reasons for holding a SAT competition is to answer the
question, What is the current state of the art (SOTA) in SAT solving?. The tra-
ditional answer to this question has been the winner of the respective category of
the SAT competition; we call such a winner a single best solver (SBS). However,
as clearly demonstrated by the efficacy of algorithm portfolios, different solver
strategies are (at least sometimes) complementary. This fact suggests a second
answer to the SOTA question: the virtual best solver (VBS), defined as the best
SAT competition entry on a per-instance basis. The VBS typically achieves much
better performance than the SBS, and does provide a useful theoretical upper
bound on the performance currently achievable. However, this bound is typi-
cally not tight: the VBS is not an actual solver, because it only tells us which
underlying solver to run after the performance of each solver on a given instance
has been measured, and thus the VBS cannot be run on new instances. Here, we
propose a third answer to the SOTA question: a state-of-the-art portfolio that
can be constructed in a fully automatically fashion from available solvers (using
an existing piece of code); we call such a portfolio a SOTA portfolio. Unlike the
VBS, a SOTA portfolio is an actual solver that can be run on novel instances.
We show how to build a SOTA portfolio based on an improved version of our
SATzilla procedure, and then demonstrate techniques for analyzing the extent
to which its performance depends on each of its component solvers. While (to
the best of our knowledge) SATzilla is the only fully automated and publicly
available portfolio construction method, our measures of solver contributions
may also be applied to other portfolio approaches, including parallel portfolios.

In this paper, we first verify that our automatically constructed SATzilla 2011

portfolios yielded cutting-edge performance (they closed 27.7% to 90.1% of the
gap between the winners of each sequential category and the VBS). Next, we per-
form a detailed, quantitative analysis of the performance of SATzilla 2011’s com-
ponent solvers and their pairwise correlations, their frequency of selection and
success within SATzilla 2011, and their overall benefit to the portfolio. Overall,
our analysis reveals that the solvers contributing most to SATzilla 2011 were
often not the overall best-performing solvers (SBSs), but instead solvers that
exploit novel solution strategies to solve instances that would remain unsolved
without them. We also provide a quantitative basis for the folk knowledge that—
due to the dominance of MiniSAT-like architectures—the performance of most

www.satcompetition.org
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solvers for Application instances is tightly correlated. Our results suggest a shift
away from rewarding solvers that perform well on average and towards reward-
ing creative approaches that can solve instance types not solved well by other
solvers (even if they perform poorly on many other types of instances).

2 Improved Automated Construction of Portfolio-Based
Algorithm Selectors: SATzilla 2011

In this work, we use an improved version of the construction method underly-
ing the portfolio-based algorithm selection system SATzilla. We first describe
SATzilla’s automated construction procedure (which, at a high level, is un-
changed since 2008; see [31] for details) and then discuss the improvements to
its algorithm selection core we made in 2011.

How SATzilla Works. We first describe the automated SATzilla construction
procedure and then describe the pipeline that the resulting portfolio executes
on a new instance. First, SATzilla’s construction procedure uses a set of very
cheap features (e.g., number of variables and clauses) to learn a classifierM that
predicts whether the computation of a more comprehensive set of features will
succeed within a time threshold tf ; SATzilla also selects a backup solver B that
has the best performance on instances with large feature cost (> tf or failed).
Second, it chooses a set of candidate presolvers and candidate presolving time
cutoffs based on solver performance on the training set. Then, for all possible
combinations of up to two presolvers and given presolving time cutoffs, it learns
an algorithm selector based on all training instances with feature cost ≤ tf that
cannot be solved by presolvers. The final portfolio-based selector is chosen as the
combination of presolvers, presolving cutoffs, and the corresponding algorithm
selector with the best training performance.

When asked to solve a given instance π, SATzilla first inspects π to gather
very cheap features and uses them withM to predict feature computation time.
If this prediction exceeds tf , it runs solver B for the remaining time. Otherwise,
it sequentially runs its presolvers up to their presolving cutoffs. If a presolver
succeeds, SATzilla terminates. Otherwise, it computes features (falling back on
B if feature computation fails or exceeds tf ), uses them in its algorithm selector
to pick the most promising algorithm and runs that for the remaining time.

Improvements to SATzilla’s Algorithm Selection Core. For our entry to
the 2011 SAT competition analysis track, we improved SATzilla’s models by bas-
ing them on cost-sensitive decision forests, rather than linear or quadratic ridge
regression. (This improvement is described in [32].) Our new selection procedure
uses an explicit cost-sensitive loss function—punishing misclassifications in di-
rect proportion to their impact on portfolio performance—without predicting
runtime. Such an approach has never before been applied to algorithm selec-
tion: all existing classification approaches use a simple 0–1 loss function that
penalizes all misclassifications equally (e.g., [23,10,12]), whereas previous ver-
sions of SATzilla used regression-based runtime predictions. Our cost-sensitive
classification approach based on decision forests (DFs) has the advantage that it
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effectively partitions the feature space into qualitatively different parts; further-
more, in contrast to clustering methods, DFs take the response variable (here
“algorithm A performs better/worse than algorithm B”) into account when de-
termining that partitioning.

We construct cost-sensitive DFs as collections of 99 cost-sensitive decision
trees [29], following standard random forest methodology [2]. Given n training
data points with k features each, for each tree we construct a bootstrap sample
of n training data points sampled uniformly at random with replacement. During
tree construction, we sample a random subset of � log2(k) + 1� features at each
internal node to be considered for splitting the data at that node. Predictions are
based on majority votes across all trees. Given a set of m algorithms {A1, . . . ,
Am}, an n × k matrix holding the values of k features for each of n training
instances, and an n×m matrix P holding the performance of the m algorithms
on the n instances, we construct our selector based on m(m−1)/2 pairwise cost-
sensitive decision forests, determining the labels and costs as follows. For any
pair of algorithms (Ai, Aj), we train a cost-sensitive decision forest DF (i, j) on
the following weighted training data: we label an instance q as i if P (q, i) is better
than P (q, j), and as j otherwise; the weight for that instance is |P (q, i)−P (q, j)|.
For each test instance, we apply each DF (i, j) to vote for either Ai or Aj and
select the algorithm with the most votes as the best algorithm for that instance.
Ties are broken by only counting the votes from those decision forests that in-
volve algorithms which received equal votes; further ties are broken randomly.
Our implementation of SATzilla 2011, integrating cost-sensitive decision forests
based on Matlab R2010a’s implementation of cost-sensitive decision trees, is
available online at http://www.cs.ubc.ca/labs/beta/Projects/SATzilla. Our ex-
perimental results show that SATzilla 2011 always outperformed SATzilla 2009;
this gap was particularly substantial in the Application category (see Table 1).

3 Measuring the Value of a Solver

We believe that the SAT community could benefit from rethinking how the
value of individual solvers is measured. The most natural way of assessing the
performance of a solver is by means of some statistic of its performance over a
set (or distribution) of instances, such as the number of instances solved within
a given time budget, or its average runtime on an instance set. While we see
value in these performance measures, we believe that they are not sufficient
for capturing the value a solver brings to the community. Take, for example,
two solvers MiniSAT′++ and NewSAT, where MiniSAT′++ is based on MiniSAT [5]
and improves some of its components, while NewSAT is a (hypothetical) radi-
cally different solver that performs extremely well on a limited class of instances
and poorly elsewhere.1 While MiniSAT′++ has a good chance of winning medals

1 In the 2007 SAT competition, the solver closest to NewSAT was TTS: it solved 12
instances unsolved by all others and thus received a silver medal under the purse
scoring scheme [8] (discussed below), even though it solved many fewer instances than
the bronze medalist Minisat (39 instances vs 72). Purse scoring was abandoned for
the 2009 competition.

http://www.cs.ubc.ca/labs/beta/Projects/SATzilla
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in the SAT competition’s Application track, NewSAT might not even be sub-
mitted, since (due to its poor average performance) it would be unlikely even
to qualify for the final phase of the competition. However, MiniSAT′++ might
only very slightly improve on the previous (MiniSAT-based) incumbent’s per-
formance, while NewSAT might represent deep new insights into the solution of
instances that are intractable for all other known techniques.

One way of evaluating the value a solver brings to the community is through
the notion of state-of-the-art (SOTA) contributors [28]. It ranks the contribution
of a constituent solver A by the performance decrease of VBS when omitting A
and reflects the added value due to A much more effectively than A’s average
performance. A related method for scoring algorithms is the “purse score” [8],
which rewards solving instances that cannot be solved by other solvers; it was
used in the 2005 and 2007 SAT competitions. However, both of these methods
describe idealized solver contributions rather than contributions to an actual
executable method. Instead, we propose to measure the SOTA contribution of
a solver as its contribution to a SOTA portfolio that can be automatically con-
structed from available solvers. This notion resembles the prior notion of SOTA
contributors, but directly quantifies their contributions to an executable portfolio
solver, rather than to an abstract virtual best solver (VBS). Thus, we argue that
an additional scoring rule should be employed in SAT competitions to recognize
solvers (potentially with weak overall performance) for the contributions they
make to a SOTA portfolio.

We must still describe exactly how we should assess a solver A’s contribution
to a portfolio. We might measure the frequency with which the portfolio selects
A, or the number of instances the portfolio solves using A. However, neither of
these measures accounts for the fact that if A were not available other solvers
would be chosen instead, and might perform nearly as well. (Consider again
MiniSAT′++, and assume that it is chosen frequently by a portfolio-based selector.
However, if it had not been created, the set of instances solved might be the
same, and the portfolio’s performance might be only slightly less.) We argue
that a solver A should be judged by its marginal contribution to the SOTA:
the difference between the SOTA portfolio’s performance including A and the
portfolio’s performance excluding A. (Here, we measure portfolio performance
as the percentage of instances solved, since this is the main performance metric
in the SAT competition.)

4 Experimental Setup

Solvers. In order to evaluate the SOTA portfolio contributions of the SAT
competition solvers, we constructed SATzilla portfolios using all sequential,
non-portfolio solvers from Phase 2 of the 2011 SAT Competition as component
solvers: 9, 15, and 18 candidate solvers for the Random, Crafted, and Application

categories, respectively. (These solvers and their individual performance are
shown in Figures 1(a), 2(a), and 3(a); see [17] for detailed information.) We hope
that in the future, construction procedures will also be made publicly available
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for other portfolio builders, such as 3S [14]; if so, our analysis could be easily
and automatically repeated for them. For each category, we also computed the
performance of an oracle over sequential non-portfolio solvers (an idealized al-
gorithm selector that picks the best solver for each instance) and the virtual best
solver (VBS, an oracle over all 17, 25 and 31 entrants for the Random, Crafted and
Application categories, respectively). These oracles do not represent the current
state of the art in SAT solving, since they cannot be run on new instances; how-
ever, they serve as upper bounds on the performance that any portfolio-based
selector over these solvers could achieve. We also compared to the performance
of the winners of all three categories (including other portfolio-based solvers).

Features. We used 115 features similar to those used by SATzilla in the 2009
SAT Competition. They fall into 9 categories: problem size, variable graph,
clause graph, variable-clause graph, balance, proximity to Horn formula, local
search probing, clause learning, and survey propagation. Feature computation
averaged 31.4, 51.8 and 158.5 CPU seconds on Random, Crafted, and Application

instances, respectively; this time counted as part of SATzilla’s runtime budget.

Methods. We constructed SATzilla 2011 portfolios using the improved proce-
dure described in Section 2. We set the feature computation cutoff tf to 500 CPU
seconds (a tenth of the time allocated for solving an instance). To demonstrate
the effectiveness of our improvement, we also constructed a version of SATzilla
2009 (which uses ridge regression models), using the same training data.

We used 10-fold cross-validation to obtain an unbiased estimate of SATzilla’s
performance. First, we eliminated all instances that could not be solved by any
candidate solver (we denote this instance set as U). Then, we randomly parti-
tioned the remaining instances (denoted S) into 10 disjoint sets. Treating each of
these sets in turn as the test set, we constructed SATzilla using the union of the
other 9 sets as training data and measured SATzilla’s runtime on the test set.
Finally, we computed SATzilla’s average performance across the 10 test sets.

To evaluate how important each solver was for SATzilla, for each category
we quantified the marginal contribution of each candidate solver, as well as the
percentage of instances solved by each solver during SATzilla’s presolving (Pre1
or Pre2), backup, and main stages. Note that our use of cross-validation means
that we constructed 10 different SATzilla portfolios using 10 different subsets
(“folds”) of instances. These 10 portfolios can be qualitatively different (e.g.,
selecting different presolvers); we report aggregates over the 10 folds.

Data. Runtime data was provided by the organizers of the 2011 SAT competi-
tion. All feature computations were performed by Daniel Le Berre on a quad-core
computer with 4GB of RAM and running Linux, using our code. Four out of 1200
instances (from the Crafted category) had no feature values, due to a database
problem caused by duplicated file name. We treated these instances as timeouts
for SATzilla, thus obtaining a lower bound on SATzilla’s true performance.
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Table 1. Comparison of SATzilla 2011 to the VBS, an Oracle over its component
solvers, SATzilla 2009, the 2011 SAT competition winners, and the best single
SATzilla 2011 component solver for each category. We counted timed-out runs as
5000 CPU seconds (the cutoff). Because the construction procedure for 3S portfolios is
not publicly available, we used the original 2011 SAT-competition-winning version of
3S, which was trained on pre-competition data; it is likely that 3S would have achieved
better performance if we had been able to retrain it on the same data we used to train
SATzilla.

Solver Application Crafted Random

Runtime (Solved) Runtime (Solved) Runtime (Solved)

VBS 1104 (84.7%) 1542 (76.3%) 1074 (82.2%)
Oracle 1138 (84.3% ) 1667 (73.7%) 1087 (82.0%)
SATzilla 2011 1685 (75.3%) 2096 (66.0%) 1172 (80.8%)
SATzilla 2009 1905 (70.3%) 2219(63.0%) 1205 (80.3%)
Gold medalist Glucose2: 1856 (71.7%) 3S: 2602 (54.3%) 3S: 1836 (68.0%)
Best comp. Glucose2: 1856 (71.7%) Clasp2: 2996 (49.7%) Sparrow: 2066 (60.3%)

5 Experimental Results

We begin by assessing the performance of our SATzilla portfolios, to confirm that
they did indeed yield SOTA performance. Table 1 compares SATzilla 2011 to the
other solvers mentioned above. SATzilla 2011 outperformed all of its component
solvers in all categories . It also always outperformed SATzilla 2009, which in
turn was slightly worse than the best component solver on Application.

SATzilla 2011 also outperformed each category’s gold medalist (including
portfolio solvers, such as 3S and ppfolio). Note that this does not constitute a
fair comparison of the underlying portfolio construction procedures, as SATzilla
had access to data and solvers unavailable to portfolios that competed in the
competition. This finding does, however, give us reason to believe that SATzilla
portfolios either represent or at least closely approximate the best performance
reachable by current methods. Indeed, in terms of instances solved, SATzilla
2011 reduced the gap between the gold medalists and the (upper performance
bound defined by the) VBS by 27.7% on Application, by 53.2% on Crafted, and
by 90.1% on Random. The remainder of our analysis concerns the contributions
of each component solver to these portfolios. To substantiate our previous claim
that marginal contribution is the most informative measure, here we contrast it
with various other measures.

Random. Figure 1 presents a comprehensive visualization of our findings for
the Random category. (Table 2 in supplemental material at http://www.cs.ubc.ca/
labs/beta/Projects/SATzilla/SAT12-EvaluatingSolverContributions.pdf shows
the data underlying all figures.) First, Figure 1(a) considers the set of instances
that could be solved by at least one solver, and shows the percentage that each
component solver is able to solve. By this measure, the two best solvers were
Sparrow and MPhaseSAT M. The former is a local search algorithm; it solved 362
+ 0 satisfiable and unsatisfiable instances, respectively. The latter is a complete
search algorithm; it solved 255 + 104 = 359 instances. Neither of these solvers

http://www.cs.ubc.ca/
labs/beta/Projects/SATzilla/SAT12-EvaluatingSolverContributions.pdf
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Fig. 1. Visualization of results for category Random. In Figure 1(e), we used the original
2011SAT-competition-winningversion of 3S, whichwas trained onpre-competition data;
thus, this figure is not a fair comparison of the SATzilla and 3S portfolio-building strate-
gies. The data underlying this figure can be found in Table 2 of the supplemental material
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won medals in the combined SAT + UNSAT Random category, since all medals
went to portfolio solvers that combined local search and complete solvers.

Figure 1(b) shows a correlation matrix of component solver performance: the
entry for solver pair (A,B) is computed as the Spearman rank correlation coef-
ficient between A’s and B’s runtime, with black and white representing perfect
correlation and perfect independence respectively. Two clusters are apparent:
six local search solvers (EagleUP, Sparrow, Gnovelty+2, Sattime11, Adaptg2wsat11,
and TNM), and two versions of the complete solver March, which achieved almost
identical performance. MPhaseSAT M performed well on both satisfiable and un-
satisfiable solvers; it was strongly correlated with local search solvers on the
satisfiable instance subset and very strongly correlated with the March variants
on the unsatisfiable subset.

Figure 1(c) shows the frequency with which different solvers were selected in
SATzilla 2011. The main solvers selected in SATzilla 2011’s main phase were
the best-performing local search solver Sparrow and the best-performing com-
plete solver March. As shown in Figure 1(d), the local search solver EagleUP was
consistently chosen as a presolver and was responsible for more than half (51.3%)
of the instances solved by SATzilla 2011 overall. We observe that MPhaseSAT M

did not play a large role in SATzilla 2011: it was only run for 2 out of 492 in-
stances (0.4%). Although MPhaseSAT M achieved very strong overall performance,
its versatility appears to have come at the price of not excelling on either satisfi-
able or unsatisfiable instances, being largely dominated by local search solvers on
the former and by March variants on the latter. Figure 1(e) shows that SATzilla
2011 closely approximated both the Oracle over its component solvers and the
VBS, and stochastically dominated the category’s gold medalist 3S.

Finally, Figure 1(f) shows the metric that we previously argued is the most
important: each solver’s marginal contribution to SATzilla 2011’s performance.
The most important portfolio contributor was Sparrow, with a marginal contribu-
tion of 4.9%, followed by EagleUP with a marginal contribution of 2.2%. EagleUP’s
low marginal contribution may be surprising at first glance (recall that it solved
51.3% of the instances SATzilla 2011 solved overall); however, most of these
instances (49.1% out of 51.3%) were also solvable by other local search solvers.
Similarly, both March variants had very low marginal contribution (0% and 0.2%,
respectively) since they were essentially interchangeable (correlation coefficient
0.9974). Further insight can be gained by examining the marginal contribution
of sets of highly correlated solvers. The marginal contribution of the set of both
March variants was 4.0% (MPhaseSAT M could still solve the most instances), while
the marginal contribution of the set of six local search solvers was 22.5% (nearly
one-third of the satisfiable instances were not solvable by any complete solver).

Crafted. Overall, sufficiently many solvers were relatively uncorrelated in the
Crafted category (Figure 2) to yield a portfolio with many important contribu-
tors. The most important of these was Sol, which solved all of the 13.7% of the
instances for which SATzilla 2011 selected it; without it, SATzilla 2011 would
have solved 8.1% fewer instances! We observe that Sol was not identified as an
important solver in the SAT competition results, ranking 11th of 24 solvers in
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Fig. 2. Visualization of results for category Crafted. In Figure 2(e), we
used the original 2011 SAT-competition-winning version of 3S, which was
trained on pre-competition data; thus, this figure is not a fair compari-
son of the SATzilla and 3S portfolio-building strategies. The data underly-
ing this figure can be found in Table 2 of the supplemental material at
http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/SAT12-EvaluatingSolverContributions.pdf.

http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/SAT12-EvaluatingSolverContributions.pdf
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http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/SAT12-EvaluatingSolverContributions.pdf
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the SAT+UNSAT category. Similarly, MPhaseSAT M, Glucose2, and Sattime each
solved a 3.6% fraction of instances that would have gone unsolved without them.
(This is particularly noteworthy for MPhaseSAT M, which was only selected for 5%
of the instances in the first place.) Considering the marginal contributions of
sets of highly correlated solvers, we observed that {Clasp1, Clasp2} was the
most important at 6.3%, followed by {Sattime, Sattime11} at 5.4%. {QuteRSat,
CryptoMiniSat} and {PicoSAT, JMiniSat, Minisat07, RestartSAT, SApperloT} were
relatively unimportant even as sets, with marginal contributions of 0.5% and
1.8% respectively.

Application. All solvers in the Application category (Figure 3) exhibited rather
highly correlated performance. It is thus not surprising that in 2011, no medals
went to portfolio solvers in the sequential Application track, and that in 2007
and 2009, SATzilla versions performed worst in this track, only winning a sin-
gle gold medal in the 2009 satisfiable category. As mentioned earlier, SATzilla
2011 did outperform all competition solvers, but here the margin was only 3.6%
(as compared to 12.8% and 11.7% for Random and Crafted, respectively). All
solvers were rather strongly correlated, and each solver could be replaced in
SATzilla 2011 without a large decrease in performance; for example, dropping
the competition winner only decreased SATzilla 2011’s percentage of solved in-
stances by 0.4%. The highest marginal contribution across all 18 solvers was
four times larger: 1.6% for MPhaseSAT64. Like MPhaseSAT in the Crafted cate-
gory, it was selected infrequently (only for 3.6% of the instances) but was the
only solver able to solve about half of these instances. We conjecture that this
was due to its unique phase selection mechanism. Both MPhaseSAT64 and Sol (in
the Crafted category) thus come close to the hypothetical solver NewSAT men-
tioned earlier: they showed outstanding performance on certain instances and
thus contributed substantially to a portfolio, but achieved unremarkable rank-
ings in the competition (9th of 26 for MPhaseSAT64, 11th of 24 for Sol). We did
observe one set of solvers that achieved a larger marginal contribution than that
of MPhaseSAT64: 2.3% for {Glueminisat, LR GL SHR}. The other three highly cor-
related clusters also gave rise to relatively high marginal contributions: 1.5% for
{CryptoMiniSat, QuteRSat}, 1.5% for {Glucose1,Glucose2,EBGlucose}, and 1.2%
for {Minisat,EBMiniSAT, MiniSATagile}.

6 Conclusions

In this work, we investigated the question of assessing the contributions of indi-
vidual SAT solvers by examining their value to SATzilla, a portfolio-based algo-
rithm selector. SATzilla 2011 is an improved version of this procedure based on
cost-based decision forests, which we entered into the new analysis track of the
2011 SAT competition. Its automatically generated portfolios achieved state of
the art performance across all competition categories, and consistently outper-
formed its constituent solvers, other competition entrants, and our previous ver-
sion of SATzilla. We observed that the frequency with which a component solver
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was selected is a poor measure of that solver’s contribution to SATzilla 2011’s
performance. Instead, we advocate assessing solvers in terms of their marginal
contributions to the state of the art in SAT solving.

We found that the solvers with the largest marginal contributions to SATzilla

were often not competition winners (e.g., MPhaseSAT64 in Application SAT+

UNSAT; Sol in Crafted SAT+UNSAT). To encourage improvements to the state
of the art in SAT solving and taking into account the practical effectiveness of
portfolio-based approaches, we suggest rethinking the way future SAT competi-
tions are conducted. In particular, we suggest that all solvers that are able to solve
instances not solved by any other entrant pass Phase 1 of the competition, and
that solvers contributing most to the best-performing portfolio-based approaches
be given formal recognition, for example by means of “portfolio contributor” or
“uniqueness” medals. We also recommend that portfolio-based solvers be evalu-
ated separately—and with access to all submitted solvers as components—rather
than competing with traditional solvers. We hope that our analysis serves as an
encouragement to the community to focus on creative approaches to SAT solving
that complement the strengths of existing solvers, even though they may (at least
initially) be effective only on certain classes of instances.
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Abstract. In incremental SAT solving, assumptions are propositions
that hold solely for one specific invocation of the solver. Effective prop-
agation of assumptions is vital for ensuring SAT solving efficiency in a
variety of applications. We propose algorithms to handle assumptions.
In our approach, assumptions are modeled as unit clauses, in contrast
to the current state-of-the-art approach that models assumptions as first
decision variables. We show that a notable advantage of our approach is
that it can make preprocessing algorithms much more effective. However,
our initial scheme renders assumption-dependent (or temporary) conflict
clauses unusable in subsequent invocations. To resolve the resulting prob-
lem of reduced learning power, we introduce an algorithm that transforms
such temporary clauses into assumption-independent pervasive clauses.
In addition, we show that our approach can be enhanced further when
a limited form of look-ahead information is available. We demonstrate
that our approach results in a considerable performance boost of the
SAT solver on instances generated by a prominent industrial application
in hardware validation.

1 Introduction

A variety of SAT applications require the ability to solve incrementally generated
SAT instances online [1–7]. In such settings the solver is expected to be invoked
multiple times. Each time it is asked to check the satisfiability status of all the
available clauses under assumptions that hold solely for one specific invocation.
The näıve algorithm which solves the instances independently is inefficient, since
all learning is lost [1–4].

The current state-of-the-art approach to this problem was proposed in [4] and
implemented in the MiniSat SAT solver [8]. MiniSat reuses a single SAT solver
instance for all the invocations. Each time after solving is completed, the user
can add new clauses to the solver and reinvoke it. The user is also allowed to
provide the solver a set of assumption literals, that is, literals that are always
picked as the first decision literals by the solver. In this scheme, all the conflict
clauses generated are pervasive, that is, assumption-independent. We call this
approach to the problem of incremental SAT solving under assumptions the
Literal-based Single instance (LS) approach, since it reuses a single SAT solver
instance and models assumptions as decision literals. The approach of [1] to our
problem would use a separate SAT solver instance for each invocation, where
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each assumption would be encoded as a unit clause. To increase the efficiency of
learning, it would store and reuse the set of assumption-independent pervasive
conflict clauses throughout all the SAT invocations. We call this approach the
Clause-based Multiple instances (CM) approach, since it uses multiple SAT solver
instances and models assumptions as unit clauses.

It was shown in [4] that LS outperforms CM in the context of model checking.
As a result, LS is currently widely applied in practice (e.g. [5–7]). The goal of this
paper is to demonstrate its limitations and to propose an efficient alternative.

This study springs from the authors’ experiences, described herein, in tuning
Intel’s formal verification flow. Verification engineers reported to us that a criti-
cal property could not be solved by the SAT solver within two days. Our default
flow used the LS approach, where to check a property the property’s negation is
provided as an assumption. The property holds iff the instance is unsatisfiable.
Surprisingly, we discovered that providing the negation of the property as a unit
clause, rather than as an assumption, rendered the property solvable within 30
minutes. The reason for this was that the unit clause triggered a huge simplifi-
cation chain for our SatELite [9]-like preprocessor that drastically reduced the
number of clauses in the formula.

Our experience highlights a drawback of LS: preprocessing techniques can-
not propagate assumptions in LS, since they are modeled as decision variables,
while assumptions can be propagated in CM, where they are modeled as unit
clauses. Section 3 of this work demonstrates how to incorporate the SatELite
algorithm within CM and shows why the applicability of SatELite for LS is an
open problem.

LS has important advantages over CM related to the efficiency of learning.
First, in LS all the conflict clauses are pervasive and can be reused, while CM
cannot reuse temporary conflict clauses, that is, clauses that depend on assump-
tions. Second, LS reuses all the information relevant to guiding the SAT solver’s
heuristics, while CM has to gather relevant information from scratch for each
new incremental invocation of the solver. Section 4 of this paper proposes an
algorithm that overcomes the first of the above-mentioned drawbacks of CM:
our algorithm transforms temporary clauses into pervasive clauses as a post-
processing step. Section 5 introduces an algorithm that mitigates the second of
the above-mentioned advantages of plain LS over CM, given that limited look-
ahead information is available to the solver. In fact, we propose an algorithm
that combines LS and CM to achieve the most efficient results.

We study the performance of algorithms for incremental SAT solving under
assumptions on instances generated by a prominent industrial application in
hardware validation, detailed in Section 2. Section 2 also provides some defintions
and background information. Experimental results demonstrating the efficiency
of our algorithms are provided in Section 6. We would like to emphasize that
all the SAT instances used in this paper are publicly available from the authors.
Section 7 concludes our work.
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2 Background

An incremental SAT solver is provided with the input {Fi, Ai} at each invocation
i , where for each i , Fi is a formula in Conjunctive Normal Form (CNF) and
Ai = {l1, l2, . . . , ln} is a set (conjunction) of assumptions, where each assumption
lj is a unit clause (it is also a literal). Invocation i of the solver decides the

satisfiability of (
∧i

j=1 Fj) ∧ Ai. Intuitively, before each invocation the solver
is provided with a new block of clauses and a set of assumptions. It is asked
to solve a problem comprising all the clauses it has been provided with up to
that moment under the set of assumptions relevant only to a single invocation
of the solver. Modern SAT solvers generate conflict clauses by resolution over
input clauses and previously generated conflict clauses. A clause α is pervasive
if (
∧i

j=1 Fj)→ α, otherwise it is temporary.
The Clause-based Multiple instances (CM) approach [1] to incremental SAT

solving under assumptions operates as follows. CM creates a new instance of
a SAT solver for each invocation. Each invocation decides the satisfiability of
(
∧i

j=1 Fj) ∧ (
∧i−1

l=1 Pl) ∧Ai, where Pl is the set of pervasive conflict clauses gen-
erated at invocation l of the solver. To keep track of temporary and pervasive
conflict clauses, the algorithm marks all the assumptions as temporary clauses
and marks a newly generated conflict clause as temporary iff one or more tem-
porary clauses participated in its resolution derivation.

The Literal-based Single instance (LS) approach [4] to incremental SAT solv-
ing under assumptions reuses the same SAT instance for all the invocations.
The instance is always updated with a new block of clauses. The key idea is in
providing the assumptions as assumption literals, that is, literals that are always
picked as the first decision literals by the solver. Conflict-clause learning algo-
rithms ensure that any conflict clause that depends on a set of assumptions will
contain the negation of these assumptions. Hence, in LS all the conflict clauses
are pervasive.

While all the algorithms for incremental SAT solving under assumptions dis-
cussed in this paper are application-independent, the experimental results sec-
tion studies the performance of various algorithms on instances generated by the
following prominent industrial application in hardware validation.

Assume that a verification engineer needs to formally verify a set of properties
in some circuit up to a certain bound. Formal verification techniques cannot
scale to large modern circuits, hence the engineer needs to select a sub-circuit
and mimic the environment of the larger circuit by imposing assumptions (also
called constraints) [10]. The engineer then invokes SAT-based Bounded Model
Checking (BMC) [11] to verify a property under the assumptions. If the result is
satisfiable, then either the environment is not set correctly, that is, assumptions
are incorrect or missing, or there is a real bug. In practice the first reason is
much more common than the second. To discover which of the possibilities is
the correct one, the engineer needs to analyze the counter-example. If the reason
for satisfiability lies in incorrect modeling of the environment, the assumptions
must be modified and BMC invoked again. When one property has been verified,
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the engineer can move on to another. Practice shows that most of the validation
time is spent in this process, which is known as the debug loop.

In the standard industrial BMC-based formal validation flow the model checker
instance is built from scratch for each iteration of the debug loop. The key idea
behind our solution is to take advantage of incremental SAT solving under as-
sumptions across multiple invocations of the model checker. We keep only one
instance of the model checker. For each invocation of BMC, given a transition
system Ψ , a safety property Δ, and a set of assumptions Λ, we check whether Ψ
satisfies Δ given Λ at each bound up to a given bound k using incremental SAT
solving under assumptions, as follows. At each bound i , the transition system
Ψ unrolled to i is translated to CNF and comprises the formula, while the set
comprising the negation of Δ unrolled to i and the assumptions Λ unrolled to i
is the set of assumptions provided to the SAT solver. We call our model checking
algorithm incremental Bounded Model Checking (BMC) under assumptions.

Some recent works dedicated to BMC propose taking advantage of look-ahead
information that is available, since the instance can be unrolled beyond the cur-
rent bound [12, 13]. In particular, it is proposed in [13] to apply preprocessing,
including SatELite [9], for LS-based BMC, where complete look-ahead informa-
tion is required to ensure soundness, as variables that are expected to appear in
the future must not be eliminated. The technique of [13] cannot be applied in our
application, since it is unknown a priori how the user would update the formula
before subsequent invocations of the incremental model checker. The in-depth
BMC algorithm of [12], which uses a limited form of look-ahead to boost BMC,
served as an inspiration for our algorithm for incremental SAT solving under
assumptions with step look-ahead, presented in Section 5.

3 Preprocessing under Assumptions

Preprocessing refers to a family of algorithms whose goal is to simplify the input
CNF formula prior to the CDCL-based search in SAT. Preprocessing has com-
monly been applied in modern SAT solvers since the introduction of the SatELite
preprocessor [9]. This section first explains why even a rather straightforward
form of preprocessing, known as database simplification, is expected to be much
more effective when used with CM as compared to LS. We then show that, un-
modified, SatELite cannot be used with either CM or LS, and demonstrate how
it can be modified so as to be safely used with CM.

Consider the following algorithm, which we call database simplification follow-
ing MiniSat [8] notation: First, propagate unit clauses with Boolean Constraint
Propagation (BCP). Second, eliminate satisfied clauses and falsified literals.

Database simplification is applied as an inprocessing step (that is, as an on-
the-fly simplification procedure, applied at the global decision level) in modern
SAT solvers [8, 14, 15]. It can be applied during preprocessing and inprocessing
with either LS or CM without further modification. A key observation is that the
efficiency of the first application of database simplification after a new portion
of the incremental problem becomes available can be dramatically higher when
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assumptions are modeled as unit clauses (as in CM) rather than as assumption
literals (as in LS). Indeed, database simplification takes full advantage of unit
clauses by propagating them and eliminating resulting redundancies, while it
does not take any advantage of assumption literals. In addition, variables rep-
resenting assumptions are eliminated by database simplification with CM, but
not with LS. Our experimental data, presented in Section 6, demonstrates that
database simplification eliminates significantly more clauses for CM than for LS,
and that the average conflict clause length for LS is much greater than it is for
CM. These two factors favor CM as compared to LS as they have a significant
impact on the efficiency of BCP and the overall efficiency of SAT solving.

Consider now the preprocessing algorithm of SatELite [9]. SatELite is a highly
efficient algorithm used in leading SAT solvers [8, 14, 15]. SatELite is composed
of the following three techniques:

1. Variable elimination: for each variable v , the algorithm performs resolution
between clauses containing v (denoted by V +) and ¬v (denoted by V −). Let
U be the set of resulting clauses. If the number of clauses in U is less than
or equal to the number of clauses in V +∪V −, then the algorithm eliminates
v by replacing V + ∪ V − by U .

2. Subsumption: if a clause α is subsumed by the clause β, that is, β ⊆ α, α is
removed.

3. Self-subsuming resolution: if α = α1∨l and β = β1∨¬l, where α1 is subsumed
by β1, then α is replaced by α1.

It is unclear how to apply SatELite with LS, let alone make its performance
efficient. It is currently unknown how to apply SatELite for incremental SAT
solving, since eliminated variables may be reintroduced (unless full look-ahead
information is available [13], which is not always the case). However, even if the
problem of incremental SatELite is solved, it is still unclear how to efficiently
propagate assumptions when SatELite is applied with LS. One cannot apply
SatELite as is, since eliminating assumption literals would render the algorithm
unsound. A simple solution for ensuring soundness would be freezing the as-
sumption literals [4, 13], that is, not carrying out variable elimination for them.
However, this solution has the same potential severe performance drawback as
database simplification applied with LS as compared to CM: freezing assump-
tions is expected to have a significant negative impact on the preprocessor’s
ability to simplify the instance.

It is also unknown how SatELite can be applied with CM. The problem is
that one has to keep track of pervasive and temporary clauses. Fortunately, we
can propose a simple solution for this problem, based on the observation that
SatELite uses nothing but resolution. SatELite can be updated as follows to
keep track of pervasive and temporary clauses. If a variable is eliminated, each
new clause α = β1 ⊗ β2 is marked as temporary iff one of the clauses β1 or
β2 is temporary (where ⊗ corresponds to an application of the resolution rule).
Whenever self-subsuming resolution is applied, the new clause α1 is temporary
iff either α or β is temporary (this operation is sound since α1 is a resolvent of
α and β). No changes are required for subsumption.
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4 Transforming Temporary Clauses to Pervasive Clauses

We saw in Section 3 that CM has an important advantage over LS: prepro-
cessing is expected to be much more efficient for CM. However, LS has its own
advantages. An important advantage is efficiency of learning: all the conflict
clauses learned by LS are pervasive, hence they can always be reused. In CM, all
the temporary conflict clauses are lost. In this section we propose an algorithm
that converts temporary clauses to pervasive clauses as a post-processing step
after the SAT solver is invoked. Our algorithm overcomes the above-mentioned
disadvantage of CM as compared to LS.

We start by providing some resolution-related definitions. The resolution rule
states that given clauses α1 = β1 ∨ v and α2 = β2 ∨ ¬v, where β1 and β2

are also clauses, one can derive the clause α3 = β1 ∨ β2. The resolution rule
application is denoted by α3 = α1 ⊗v α2. A resolution derivation of a tar-
get clause α from a CNF formula G = {α1, α2, . . . , αq} is a sequence π =
(α1, α2, . . . , αq, αq+1, αq+2, . . . , αp ≡ α), where each clause αi for i ≤ q is ini-
tial and αi for i > q is derived by applying the resolution rule to αj and αk,
where j, k < i.1 A resolution refutation is a resolution derivation of the empty
clause �. Modern SAT solvers are able to generate resolution refutations given
an unsatisfiable formula.

A resolution derivation π can naturally be considered as a directed acyclic
graph (dag) whose vertices correspond to all the clauses of π and in which there
is an edge from a clause αj to a clause αi iff αi = αj ⊗αk (an example of such a
dag appears in Fig. 1). A clause β ∈ π is backward reachable from γ ∈ π if there
is a path (of 0 or more edges) from β to γ.

Assume now that the SAT solver is invoked over the CNF formula A =
{α1 = l1, . . . , αn = ln} ∧F = {αn+1, . . . , αr} (where the first n clauses are tem-
porary unit clauses corresponding to assumptions and the rest of the clauses are
pervasive). Assume that the solver generated a resolution refutation π of A∧F .
Let β ∈ π be a clause. We denote by Γ (π, β) the conjunction (set) of all the
backward reachable assumptions from β, that is, the conjunction (set) of all the
assumptions whose associated unit clauses are backward reachable from β ∈ π.
Let Γ (β) be short for Γ (π, β). To transform any clause β ∈ π \A to a pervasive
clause we propose applying the following operation:

T2P(β) = β ∨ ¬Γ (β)

That is to say, we propose to update each temporary derived clause with the
negations of the assumptions that were required for its derivation, while perva-
sive clauses are left untouched. Consider the example in Fig. 1. The proposed
operation would transform α7 to c∨d∨¬a; α8 to ¬d∨¬b; α10 to c∨¬a∨¬b; and
α11 to ¬a∨¬b. The pervasive clauses α3, α4, α5, α6, and α9 are left untouched.

Alg. 1 shows how to transform a resolution refutation π of A∧F to a resolution
derivation T2P(π) from F , such that every clause β ∈ π\A is mapped to a clause
T2P (β) = β ∨ ¬Γ (β) ∈ T2P (π). The pre- and post-conditions that must hold

1 We force the resolution derivation to start with all the initial clauses, since such a
convention is more convenient for the subsequent discussion.
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for Alg. 1 appear at the beginning of its text. The second pre-condition is not
necessary, but it makes the algorithm’s formulation and correctness proof easier.
The algorithm’s correctness is proved below.

Algorithm 1. Transform π to T2P (π)

Require: π = (A = {α1 = l1, . . . , αn = ln} , F = {αn+1, . . . , αr} , αr+1, . . . , αp) is a
resolution refutation of A ∧ F

Require: All the assumptions in A are distinct and non-contradictory
Ensure: T2P(π) = (T2P(αn+1),T2P(αn+2), . . . ,T2P(αr),T2P(αr+1), . . . ,T2P(αp))

is a resolution derivation from F
Ensure: For each i ∈ {n+ 1, n+ 2, . . . , r, . . . , p}: T2P(αi) = αi ∨ ¬Γ (αi)
1: for i ∈ {n+ 1, n+ 2, . . . , p} do
2: if αi ∈ F then
3: T2P(αi) := αi

4: else
5: Assume αi = αj ⊗v αk

6: if αj or αk is an assumption then
7: Assume without limiting the generality that αj is the assumption
8: T2P(αi) := T2P(αk)
9: else
10: T2P(αi) := T2P(αj)⊗v T2P(αk)
11: Append T2P(αi) to T2P(π)

Proposition 1. Algorithm 1 is sound, that is, its pre-conditions imply its post-
conditions.

Proof. The proof is by induction on i , starting with i = r + 1. Both post-
conditions hold when the ”for” loop condition is reached when i = r + 1, since
T2P (π) comprises precisely the clauses of F at that stage. Indeed, every clause αi

visited until that point is initial and is mapped to T2P (αi) = αi by construction.
It is left to prove that both post-conditions hold each time after a derived clause
αi ∈ π is translated to T2P (αi) and T2P (αi) is appended to T2P (π). We divide
the proof into three cases depending on the status of αi.

When αi is a pervasive derived clause, its sources αj and αk must also be
pervasive by definition. By induction, we haveT2P (αj) = αj and T2P (αk) = αk,
since Γ (αj) and Γ (αk) are empty. Hence, T2P(αi) = T2P (αj) ⊗v T2P(αk) =
αj ⊗v αk. Thus, it holds that T2P (αi) is derived from F by resolution, so the
first post-condition holds. We also have the second post-condition, since we have
seen that T2P (αi) = αj ⊗v αk = αi, while Γ (αi) is empty.

Consider the case where αi is temporary and αj is an assumption. The second
pre-condition of the algorithm ensures that αk will not be an assumption. The
algorithm’s flow ensures that T2P(αi) = T2P (αk). By induction, T2P(αk) is
derived from F by resolution, hence T2P (αi) is also derived from F by reso-
lution and the first post-condition holds. The induction hypothesis yields that
T2P (αi) = T2P (αk) = αk ∨ ¬Γ (αk). It must hold that αk = αi ∨ ¬lj , oth-
erwise the resolution rule application αi = (αj = lj) ⊗v αk would not be cor-
rect. Substituting the equation αk = αi ∨ ¬lj into T2P (αi) = αk ∨ ¬Γ (αk)
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α11 = �

α10 = c

α7 = c ∨ d α8 = ¬d α9 = ¬c

α1 = a α2 = b α3 = ¬a ∨ c ∨ d α4 = ¬b ∨ ¬d α5 = ¬c ∨ e α6 = ¬c ∨ ¬e

Fig. 1. An example of a resolution refutation for illustrating the T2P transformation.
The pervasive input clauses are F = α3 ∧ α4 ∧ α5 ∧ α6; the assumptions are α1 = a
and α2 = b. The only pervasive derived clause is α9; the rest of the derived clauses are
temporary.

gives us T2P (αi) = αi ∨ ¬lj ∨ ¬Γ (αk) = αi ∨ ¬(lj ∧ Γ (αk)). It must hold that
Γ (αi) = lj ∧ Γ (αk) by resolution derivation construction. Substituting the lat-
ter equation into T2P (αi) = αi ∨ ¬(lj ∧ Γ (αk)) gives us precisely the second
post-condition.

Finally consider the case where αi is temporary and neither αj nor αk is an
assumption. The first post-condition still holds after T2P(π) is updated with
T2P (αi), since T2P(αi) = T2P (αj) ⊗v T2P (αk) by construction and both
T2P (αj) and T2P (αk) are derived from F by resolution by the induction hypoth-
esis. The induction hypothesis yields that T2P (αi) = T2P (αj) ⊗v T2P (αk) =
(αj ∨ ¬Γ (αj)) ⊗v (αk ∨ ¬Γ (αk)). We have αi = αj ⊗v αk. Hence, it holds that
T2P (αi) = (αj ⊗v αk) ∨ ¬Γ (αj) ∨ ¬Γ (αk) = αi ∨ ¬Γ (αj) ∨ ¬Γ (αk). By res-
olution derivation construction, it holds that Γ (αi) = Γ (αj) ∧ Γ (αk). Hence,
T2P (αi) = αi ∨ ¬Γ (αi) and we have proved the second post-condition. ��

We implemented our method as follows. After SAT solving is completed, we go
over the derived clauses in the generated resolution refutation π and associate
each derived clause α with the set Γ (α). This operation can be applied indepen-
dently of the SAT solving result, even if the problem is satisfiable. After that,
we update each remaining temporary conflict clause α with ¬Γ (α) and mark
the resulting clause as pervasive. In practice, there is no need to create a new
resolution derivation T2P (π).

Note that one needs to store and maintain the resolution derivation in order to
apply our transformation. This may have a negative impact on performance. To
mitigate this problem, we store only a subset of the resolution derivation, where
each clause’s associated set of backward reachable assumptions is non-empty.
The idea of holding and maintaining only the relevant parts of the resolution
derivation was proposed and proved useful in [16].

Finally, when the number of assumptions is large, our transformation might
create pervasive clauses which are too large. To cope with this problem we use
a user-given threshold n. Whenever the number of backward reachable assump-
tions for a clause is higher than n, that clause is not transformed into a pervasive
clause, and thus is not reused in subsequent SAT invocations.
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5 Incremental SAT Solving under Assumptions with Step
Look-Ahead

In some applications of incremental SAT solving under assumptions, look-ahead
information is available. Specifically, before invocation number i , the solver may
already know the clauses Fj and assumptions Aj for some or all future invoca-
tions j > i. In this section, we propose an algorithm for incremental SAT solving
under assumptions given a limited form of look-ahead, which we call step look-
ahead. The reason for choosing this form of look-ahead is inspired by step-based
approaches to BMC [12].

Given an integer step s > 1, an invocation i is step-relevant iff i modulo s = 0
(invocations are numbered starting with 0). Given an invocation q, its step inter-
val is a set of successive invocations SI (q) = [n ∗ s, . . . , q, . . . , ((n+ 1) ∗ s)− 1],
where n ∗ s is the largest step-relevant invocation smaller than or equal to
q. For example, for s = 3, invocations 0, 3, 6, 9, 12, . . . are step-relevant; and
SI (3) = SI (4) = SI (5) = [3, 4, 5]. In step look-ahead, at each step-relevant invo-
cation i , the solver can access all the clauses and assumptions associated with
invocations within SI (i). In addition, in step look-ahead, given a step-relevant
invocation i , it holds that Fj ∧Aj is satisfiable iff Fj ∧Aj ∧ Fk is satisfiable for
every j, k ∈ SI (i). That is to say, we assume that all the clauses available within
the step interval hold for every invocation within that step interval.

One can adjust LS to take advantage of the fact that the solver has a wider
view of the problem as follows. At a step-relevant invocation i , LS can be pro-
vided the problem

∧i+s−1
j=i Fj and solve it s times, each time under a new set of

assumptions Aj for each j ∈ SI (i) (in this scheme non-step-relevant invocations
are ignored). We call this approach the Single instance Literal-based with Step
look-ahead (LSS) approach. LSS was proved to have advantages over the plain
LS algorithm (which has a narrower view of the problem) in the context of stan-
dard BMC [12]. However, it suffers from the same major drawback as plain LS:
preprocessing does not take advantage of assumptions.

We need to refine the semantics of the problem before proposing our solution.
Given a step-relevant invocation i , an assumption l ∈ Ai is invocation-generic
iff l ∈ Aj for every j ∈ SI (i). Any assumption that is not invocation-generic
is invocation-specific. That is, an assumption is invocation-generic iff it can be
assumed for every invocation within the given step interval. In our application
of incremental BMC under assumptions, described in Section 2, the negation of
the property for each bound is invocation-specific, while the unrolled temporal
assumptions are invocation-generic.

We propose an algorithm, called Multiple instances Clause/Literal-based with
Step look-ahead (CLMS) (shown in Alg. 2), that combines LS and CM. The
algorithm is applied at each step-relevant invocation. It creates the instance∧i+s−1

j=i Fj once as in LS. The key idea is that invocation-generic assumptions
can be provided as unit clauses, since assuming them does not change the satisfi-
ability status of the problem for any invocation within the current step interval.
To ensure the soundness of solving subsequent step intervals, the unit clauses
corresponding to invocation-generic assumptions must be temporary as in CM.
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After creating the instance the solver is invoked s times for each invocation in
the step interval, each time under the corresponding invocation-specific assump-
tions. To combine SatELite with Alg. 2 in a sound manner, all the invocation-
specific assumptions must be frozen. Finally, note that our T2P transformation
is applicable for CLMS.

Algorithm 2. CLMS Algorithm

1: if i is step-relevant then
2: Let G =

⋂i+s−1
j=i Aj be the set of all invocation-generic assumptions

3: Create a SAT solver instance with pervasive clauses
∧i+s−1

j=i Fj and temporary
clauses G

4: Optionally, apply SatELite, where all the invocation-specific assumptions in⋃i+s−1
j=i Aj must be frozen

5: for j ∈ {i, i+ 1, . . . , i+ s− 1} do
6: Invoke the SAT solver under the assumptions Aj \G
7: Optionally, transform temporary clauses to pervasive clauses using T2P
8: Store the pervasive clauses and delete the SAT instance

6 Experimental Results

This section analyzes the performance of various algorithms for incremental SAT
solving under assumptions on instances generated by incremental BMC under
assumptions. In our analysis, we consider an instance satisfiable iff a certain
invocation over that instance by one of the algorithms under consideration was
satisfiable within a time-out of one hour. We picked instances from three sat-
isfiable families comprising satitisfiable instances only (128 instances) and four
unsatisfiable families comprising unsatisfiable instances only (81 instances). We
measured the number of completed incremental invocations for unsatisfiable fam-
ilies and the solving time until the first time an invocation was proved to be sat-
isfiable for satisfiable families (the time-out was used as the solving time when
an algorithm could not prove the satisfiability of a satisfiable instance). Each
pair of invocations corresponds to a BMC bound (a clock transition and a real
bound), where the complexity of SAT invocations in BMC grows exponentially
with the bound. We implemented the algorithms in Intel’s internal state-of-the-
art Eureka SAT solver and used machines with Intel� Xeon� processors with
3Ghz CPU frequency and 32Gb of memory for the experiments.

We checked the performance of LS and CM as well as of LSS and CLMS
with steps 10 and 50. We tested CM and CLMS with and without SatELite and
with different thresholds for applying T2P transformation (0, 100, 100000). Our
solver uses database minimization during inprocessing by default.

The graph on the left-hand side of Fig. 2 provides information about the num-
ber of variables and assumptions (satisfiable and unsatisfiable instances appear
separately). For each instance we measured these numbers at the last invocation
completed by both CM and LS (the basic algorithms). Note that the distribu-
tion of variables and assumptions for the satisfiable instances is more diverse.
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This is explained by the fact that for satisfiable instances, the last invocation is
sometimes very low or very high, while for unsatisfiable instances it is moderate.
Overall, our satisfiable instances are easier to solve.
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Fig. 2. Left-hand side: variables to assumptions ratio; Right-hand side: a comparison
between plain LS and CLMS 10+T2P 100+SatELite with respect to the number of
satisfiable instances solved within a given time.

Table 1. The number of invocations completed within an hour for the unsatisfiable
instances from four families. The algorithms are sorted by the sum of completed invo-
cations in decreasing order.

Algorithms Completed Invocations
LS? SatELite? Step T2P Thr. Overall Fam. 1 Fam. 2 Fam. 3 Fam. 4
- + 50 0 2967 1443 470 562 492
- + 10 100 2934 1413 472 563 486
- + 10 0 2932 1408 474 568 482
- + 50 100 2927 1427 462 552 486
- + 50 100000 2927 1427 462 552 486
- + 1 0 2828 1365 468 539 456
- + 1 100 2813 1363 462 535 453
- - 10 100000 2806 1378 442 528 458
- - 50 0 2801 1375 444 526 456
- - 50 100 2795 1373 442 522 458
- - 50 100000 2795 1373 442 522 458
- - 10 100 2779 1357 440 528 454
- - 10 0 2775 1353 438 530 454
- - 1 100000 2736 1335 432 537 432
- - 1 100 2734 1339 436 526 433
- - 1 0 2732 1339 436 524 433
+ - 10 N/A 2579 1295 380 494 410
+ - 1 N/A 2575 1295 378 494 408
+ - 50 N/A 2563 1291 376 488 408
- + 10 100000 2525 1245 390 507 383
- + 1 100000 2250 1133 296 493 328

Consider Table 1, which compares the number of completed invocations for
unsatisfiable instances. Compare basic CM and LS (configurations [-,-,1,0] and
[+,-,1], respectively). CM significantly outperforms LS. As we discussed in Sec-
tion 3, the reasons for this are related to the relative efficiency of database
simplification and the average clause length for both algorithms. Fig. 3 demon-
strates the huge difference between the two algorithms in these parameters in
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favor of CM. Note that when SatELite is not applied, the best performance
is achieved by CLMS 10 (CLMS with step 10) with T2P 100000 (T2P with
threshold 100000). Hence, without SatELite, both CLMS and T2P are helpful.
SatELite increases the number of completed invocations considerably, while the
absolutely best result is achieved by combining SatELite with CLMS 50 when
T2P is turned off. Fig. 4 demonstrates that the reason for the inefficiency of the
combination of T2P and SatELite is related to the fact that the time spent in
preprocessing increases drastically when T2P is applied with threshold 100000.
The degradation still exists, but is not that critical when the threshold is 100.
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Fig. 3. Comparison of CM and LS with respect to average conflict cause length (left-
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side). Note the difference in the scales of the axes.
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Fig. 4. Comparison between CM and CM+T2P 100000 (left-hand side) and between
CM and CM+T2P 100 (right-hand side) in terms of time in seconds spent in SatELite

Consider now Table 2, which compares the run-time for satisfiable instances.
Note that, unlike in the case of unsatisfiable instances, the default LS is one of
the best algorithms. The advantage of LS over CM-based algorithms is that it
maintains all the information relevant to the decision heuristic. This advantage
proves to be very important in the context of relatively easy falsifiable instances.
Still, the absolutely best configuration is the combination of CLMS 10 with
SatELite and T2P 100, which uses all the algorithms proposed in this paper.
The graph on the right-hand side of Fig. 2 shows that the advantage of our
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approach over LS becomes apparent as the run-time increases, while LS is still
preferable for easier instances.

One can also see that the combination of CLMS 10 with SatELite and T2P 100
([-,+,10,100]) is the most robust approach overall: it is the second best for un-
satisfiable instances and the absolute best for satisfiable instances.

Table 2. Solving time in seconds for instances from three falsifiable families. The
algorithms are sorted by overall solving time in increasing order.

Algorithms Time
LS? SatELite? Step T2P Thr. Overall Fam. 1 Fam. 2 Fam. 3
- + 10 100 104845 10843 35083 58919
+ - 1 N/A 118954 18005 41624 59325
- + 10 0 134917 16886 40965 77067
+ - 10 N/A 139787 21726 53304 64757
- + 10 100000 154437 22280 53436 78721
- + 50 0 172104 10496 56087 105521
- + 50 100 189965 11649 69373 108943
- + 50 100000 192790 15220 68475 109096
- - 10 100000 196784 12521 126153 58110
+ - 50 N/A 200261 22832 93635 83794
- - 10 100 205124 16133 125529 63462
- - 10 0 206390 14991 125400 65999
- + 1 100 213278 31628 83009 98641
- - 1 100 216714 20889 118703 77122
- - 1 100000 220054 20639 128871 70545
- + 1 0 219346 34447 89040 95859
- - 1 0 228404 23642 121608 83154
- - 50 0 244202 18996 138971 86235
- + 1 100000 244826 34735 111862 98229
- - 50 100000 247347 18514 138552 90281
- - 50 100 250937 18897 141524 90516

7 Conclusion

This paper introduced efficient algorithms for incremental SAT solving under
assumptions. While the currently widely-used approach (which we called LS)
models assumptions as first decision variables, we proposed modeling assump-
tions as unit clauses. The advantage of our approach is that we allow the pre-
processor to use assumptions while simplifying the formula. In particular, we
demonstrated that the efficient SatELite preprocessor can easily be modified for
use in our scheme, while it cannot be used with LS. Furthermore, we proposed an
enhancement to our algorithm that transforms temporary clauses into pervasive
clauses as a post-processing step, thus improving learning efficiency. In addition,
we developed an algorithm which improves the performance further by taking
advantage of a limited form of look-ahead information, which we called step
look-ahead, when available. We showed that the combination of our algorithms
outperforms LS on instances generated by a prominent industrial application.
The empirical gap is especially significant for difficult unsatisfiable instances.
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Abstract. Preprocessing of CNF formulas is an invaluable technique
when attempting to solve large formulas, such as those that model in-
dustrial verification problems. Unfortunately, the best combination of
preprocessing techniques, which involve variable elimination combined
with subsumption, is incompatible with incremental satisfiability. The
reason is that soundness is lost if a variable is eliminated and later rein-
troduced. Look-ahead is a known technique to solve this problem, which
simply blocks elimination of variables that are expected to be part of
future instances. The problem with this technique is that it relies on
knowing the future instances, which is impossible in several prominent
domains. We show a technique for this realm, which is empirically far
better than the known alternatives: running without preprocessing at all
or applying preprocessing separately at each step.

1 Introduction

Whereas CNF preprocessing techniques have been known for a long time
(e.g., [1,2]), most are not cost-effective when it comes to formulas with mil-
lions of clauses – a typical size for industrial verification problems that are being
routinely solved these days in the EDA industry. In that respect one of the ma-
jor breakthroughs in practical SAT solving in the last few years has been the
combined preprocessing techniques that were suggested by Een and Biere [3]:
non-increasing variable elimination through resolution, coupled with subsump-
tion and self-subsumption. These three techniques remove variables, clauses and
literals, respectively. They are implemented in MiniSat [4] and the stand-alone
preprocessor SatELite, and are in common use by many SAT solvers. Our experi-
ence with industrial verification instances shows that these techniques frequently
remove more than half of the formula, and enable the solving of large instances
that otherwise cannot be solved within a reasonable time limit. We will describe
these techniques in more detail in Sect. 2.

A known problem with variable elimination is the fact that it is incompatible,
at least in its basic form as published, with incremental SAT solving [4,9,10]. The
reason, as was pointed out already in [3], is that variables that are eliminated
may reappear in future instances. Soundness is not maintained in this scenario.
For example, suppose that a formula contains the two clauses (a ∨ v), (b ∨ v̄).

A. Cimatti and R. Sebastiani (Eds.): SAT 2012, LNCS 7317, pp. 256–269, 2012.
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Eliminating v results in removing these two clauses and adding the resolvent
(a ∨ b). Suppose, now, that in the next instance the clauses (ā), (v̄) are added,
which clearly contradict (a ∨ v). Yet since we erased that clause and since there
is no contradiction between the resolvent and the new clauses, the new formula
is possibly satisfiable — soundness is lost.

A possible remedy to this problem which was already suggested in [3] and
experimented with in [7], is look-ahead. This means that variables that are known
to be added in future instances are not eliminated. The problem with look-ahead
is that it is not always possible, because information about future instances is
not always available. Examples of such problem domains are:

– Some applications require interactive communication with the user for deter-
mining the next portion of the problem. For example, a recent article from
IBM [3] describes a process in which the verification engineer may re-invoke
the same instance of the SAT-based model checker for verifying a new prop-
erty, which is not known a-priory (it depends on the result of the previous
property). In such a case only a small part of the formula is changed, and
hence incremental satisfiability may be crucial for performance.

– In some applications the calculation of the next portion of the problem de-
pends on the results of the previous invocation of the SAT solver. For exam-
ple, various tasks in MicroCode validation [6] are solved by using a symbolic
execution engine to explore the paths of the program. The generated proof
obligations are solved by an incremental SAT-based SMT solver. In this ap-
plication, the next explored path of the program is determined based on the
result of the previous computation.

– In Intel, the conversion of BMC problems to CNF is done after applying a
‘saturation’ optimization at the circuit level. Saturation divides all the vari-
ables into equivalence classes and tries to unite them by propagating short
clauses that were learned in a previous instance — hence the dependency
that prevents precalculating the instances. The SAT solver is provided only
with the representatives of the equivalence classes. As a result, simple un-
rolling cannot predict those variables that will be present or absent in future
instances.

Another possible remedy is called full preprocessing. It was briefly mentioned
in [7] as an option that is expected not to scale, although in our experiments
it is occasionally competitive. The idea is to perform full preprocessing before
each instance. This means that all variables that were previously eliminated
are returned to the formula and resolvents are removed, other than those that
subsumed other clauses and hence cannot be removed. Therefor preprocessing
is performed independently of past or future instances, other than the fact that
it marks subsuming resolvents. The disadvantage of this approach comparing
to incremental preprocessing — the main contribution of this article — is that
it repeats a lot of work that has already been done in previous instances. Our
experiments with large instances show that this extra overhead can add more
than an hour to the preprocessing time.
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In this article we suggest a method for combining the method of [3] with
assumptions-based incremental SAT [4]. Our experiments show that it is much
better than either running without preprocessing at all or full preprocessing.
Look-ahead is still better overall, however, when possible. The solution we sug-
gest is simple and rather easy to implement. Basically we eliminate variables
regardless of future instances, and every time a variable is reintroduced into
the formula we choose whether to reeliminate, or reintroduce it. An exception
is made for the assumptions variables, which must be reintroduced. For both
routes we need to save the clauses that were erased in the process of elimination:
these need to be resolved with the new clauses for the former, and returned to
the formula for the latter. As we show, the order in which variables are ree-
liminated or reintroduced matters for correctness. Specifically, the order must
be consistent between instances. The order also changes the resulting reduced
formula and hence the solving time. Our experiments show that in most cases
the consistent order reduces the solving time.

We continue in the next section by describing the technical details of variable
elimination, subsumption and self-subsumption. In Sect. 3 we present incremen-
tal preprocessing, which is an adaptation of these algorithms to the setting of
incremental SAT. In Sect. 4 we summarize the results of our extensive experi-
ments with industrial verification benchmarks from Intel.

2 Preliminaries

Let ϕ be a CNF formula. We denote by vars(ϕ) the variables used in ϕ. For
a clause c we write c ∈ ϕ to denote that c is a clause in ϕ. For v ∈ vars(ϕ)
we define ϕv = {c | c ∈ ϕ ∧ v ∈ c} and ϕv̄ = {c | c ∈ ϕ ∧ v̄ ∈ c} (somewhat
abusing notation, as we refer here to v as both a variable and a literal). Our
setting includes the use of assumptions [5].

Variable Elimination
Input: formula ϕ and a variable v ∈ vars(ϕ).
Output: formula ϕ′ such that v �∈ vars(ϕ′) and ϕ′ and ϕ are equisatisfiable.

Typically this preprocessing is applied only if the number of clauses in ϕ′

is not larger than in ϕ. More generally one may define a positive limit on the
growth in the number of clauses, but for simplicity we will assume here that this
limit is 0. Alg. 1 presents a variable elimination algorithm, where the eliminated
variable v is the parameter. The variable v must be unassigned.

The function Resolve computes the set of non-tautological resolvents of two
sets of clauses given to it as input (the check in line 5 excludes tautological
resolvents). Function EliminateVar uses Resolve to compute the set Res of
such resolvents of ϕv and ϕv̄. If this set is larger than |ϕv|+|ϕv̄| it simply returns,
and hence v is not eliminated. Otherwise in line 4 it adds the resolvents Res and
discards the resolved clauses. All the variables in the resolvents are added to a
list TouchedV ars in line 6. This list will be used later, in Alg. 2, for driving
further subsumption and self-subsumption.



Preprocessing in Incremental SAT 259

Algorithm 1. A variable elimination algorithm similar to the one implemented
in MiniSat and in [3]

1: function Resolve(clauseset pos, clauseset neg)
2: clauseset res = ∅;
3: for each clause p ∈ pos do
4: for each clause n ∈ neg do
5: if p and n have a single possible pivot then
6: res = res ∪ resolution(p, n);

7: return res;

1: function EliminateVar(var v)
2: clauseset Res = Resolve (ϕv, ϕv̄);
3: if |Res| > |ϕv |+ |ϕv̄ | then return ∅; � no variable elimination

4: ϕ = (ϕ ∪Res) \ (ϕv ∪ ϕv̄);
5: ClearDataStructures(v); � clearing occurrence list, watch-list, scores-list
6: TouchedV ars = TouchedV ars ∪ vars(Res); � used in Alg. 2
7: return Res;

Subsumption
Input : ϕ ∧ (l1 ∨ · · · ∨ li) ∧ (l1 ∨ · · · ∨ li ∨ li+1 ∨ · · · ∨ lj).
Output : ϕ ∧ (l1 ∨ · · · ∨ li).

Self-subsumption
Input : ϕ ∧ (l1 ∨ · · · ∨ li ∨ l) ∧ (l1 ∨ · · · ∨ li ∨ li+1 ∨ · · · ∨ lj ∨ l̄).
Output : ϕ ∧ (l1 ∨ · · · ∨ li ∨ l) ∧ (l1 ∨ · · · ∨ li ∨ li+1 ∨ · · · ∨ lj).

Preprocessing. The preprocessing algorithm described in Alg. 2 is similar
to that implemented in MiniSat 2.2 [4] (based on the stand-alone preproces-
sor SatELite [3]). SubsumptionQ is a global queue of clauses. For each c ∈
SubsumptionQ, and each c′ ∈ ϕ, RemoveSubsumptions (1) checks if c ⊂ c′

and if yes performs subsumption, and otherwise (2) if c self-subsumes c′ then it
performs self-subsumption. Essentially it is similar to the implementation sug-
gested in [3]. Self-subsumption is followed by adding the reduced clause back to
the queue. The function runs until the queue is empty. Note that assumptions are
not eliminated. Eliminating assumptions would render the algorithm unsound.

In line 5 the variables are scanned in an increasing order of occurrences count.
Note that in line 7 RemoveSubsumptions is applied only to the set of newly
generated resolvents.

3 Incremental Preprocessing

We now describe an incremental version of the preprocessing algorithm. In con-
trast to the full-preprocessing algorithm that was briefly described in the in-
troduction (performing preprocessing of the new formula, together with learned
clauses from previous instances), our suggested algorithm does not repeat pre-
processing work that was done in previous instances.



260 A. Nadel, V. Ryvchin, and O. Strichman

Algorithm 2. Preprocessing, similar to the algorithm implemented in MiniSat
2.2
1: function Preprocess

2: SubsumptionQ = ϕ;
3: while SubsumptionQ �= ∅ do
4: RemoveSubsumptions ();
5: for each unassigned non-assumption variable v do � order heuristically
6: SubsumptionQ = EliminateVar (v);
7: if SubsumptionQ �= ∅ then RemoveSubsumptions ();

8: SubsumptionQ = {c | vars(c) ∩ TouchedV ars �= ∅};
9: TouchedV ars = ∅;

In our setting of incremental SAT, each instance is given as a set of clauses
that should be added to the formula accumulated thus far. Removal of clauses
is done indirectly, by using assumptions that are clause selectors. For example,
if v is an assumption variable, then we can add v̄ to a set of clauses. Assigning
this variable false is equivalent to removing this set.

Let ϕ0 denote the initial formula, and Δi denote the set of clauses added
at step i. Step i for i > 0 begins with a formula denoted ϕi, initially assigned
the conjunction of ϕi−1 at the end of the solving process (i.e., after being pre-
processed and with additional learned clauses), and Δi. This formula changes
during the solving process.

Preprocessing in an incremental SAT setting requires various changes. In step
i, the easy case is when we wish to eliminate a variable v that is not eliminated
in step i− 1. EliminateVar-inc, shown in Alg. 3 is a slight variation of Elim-
inateVar that we saw in Alg. 1. The only difference is that if v is eliminated,
then it saves additional data that will be used later on, as we will soon see.
Specifically, it saves ϕi

v and ϕi
v̄ in clause-sets denoted respectively by Sv and Sv̄,

and in the next line also the number of resolvents in a queue called ElimV arQ.
This queue holds tuples of the form 〈variable v, int resolvents〉.

Algorithm 3. Variable elimination for ϕi, where the eliminated variable v was
not eliminated in ϕi−1

1: function EliminateVar-inc(var v, int i)
2: clauseset Res = Resolve (ϕi

v, ϕ
i
v̄);

3: if |Res| > |ϕi
v |+ |ϕi

v̄ | then return ∅; � no variable elimination

4: Sv = ϕi
v; Sv̄ = ϕi

v̄; � Save for possible reintroduction
5: ElimV arQ.push(〈v, |Res|〉); � Save #resolvents in queue
6: ϕi = (ϕi ∪Res) \ (ϕi

v ∪ ϕi
v̄);

7: ClearDataStructures (v);
8: TouchedV ars = TouchedV ars ∪ vars(Res); � used in Alg. 5
9: return Res;

The more difficult case is when v is already eliminated at step i−1. In that case
we invoke ReEliminate-Or-ReIntroduce, as shown in Alg. 4. This function
decides between reintroduction and reelimination.
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– Reelimination. In Line 6 the algorithm computes the set of resolvents Res
that need to be added in case v is reeliminated. Note that ϕi may contain
v because of two separate reasons. First, vars(Δi) may contain v; Second,
variables that were reintroduced in step i prior to v may have led to reintro-
duction of clauses that contain v. The total number of resolvents resulting
from eliminating v is |Res| + the number of resolvents incurred by eliminat-
ing v up to step i, which, recall, is saved in ElimV arQ.

– Reintroduction. In case we decide to cancel elimination, the previously re-
moved clauses Sv and Sv̄ have to be reintroduced. The total number of
clauses resulting from reintroducing v is thus |Sv ∪ Sv̄ ∪ ϕi

v ∪ ϕi
v̄|. Note that

the algorithm reintroduces variables that appear in the assumption list.

The decision between the two options is made in line 7. If reintroduction results
in a smaller number of clauses, we simply return the saved clauses Sv and Sv̄

by calling ReIntroduceVar, which also removes its entry from ElimV arQ
because v is no longer eliminated. The rest of the code is self-explanatory.

Algorithm 4. Variable elimination for ϕi, where the eliminated variable (lo-
cated in ElimV arQ[loc].v) was already eliminated in ϕi−1

1: function ReIntroduceVar(var v, int loc, int i)
2: ϕi += Sv ∪ Sv̄;
3: erase ElimV arQ[loc]; � v is not eliminated, hence 0 resolvents

1: function ReEliminateVar(clauseset Res, var v, int loc, int i)
2: Sv = Sv ∪ ϕi

v ;Sv̄ = Sv̄ ∪ ϕi
v̄ ;

3: ElimV arQ[loc].resolvents += |Res|;
4: ϕi = (ϕi ∪Res) \ (ϕi

v ∪ ϕi
v̄);

5: ClearDataStructures (v);
6: TouchedV ars = TouchedV ars ∪ vars(Res);

1: function ReEliminate-Or-ReIntroduce(int loc, int i)
2: var v = ElimV arQ[loc].v; � The variable to eliminate
3: if v is an assumption then
4: ReIntroduceVar(v, loc, i);
5: return ∅;

6:
clausesetRes = Resolve(ϕi

v , ϕ
i
v̄) ∪

Resolve(ϕi
v , Sv̄) ∪ Resolve(Sv, ϕ

i
v̄);

7: if (|Res|+ ElimV arQ[loc].resolvents) > |Sv ∪ Sv̄ ∪ ϕi
v ∪ ϕi

v̄| then
8: ReIntroduceVar(v, loc, i);
9: return ∅;
10: ReEliminateVar (Res, v, loc, i);
11: return Res

Given EliminateVar-Inc and ReEliminate-Or-ReIntroduce we can
now focus on Preprocess-inc in Alg. 5, which is parameterized by the in-
stance number i. The difference from Alg. 2 is twofold: First, variables that are
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already eliminated in the end of step i− 1 are processed by ReEliminate-Or-

ReIntroduce; Second, other variables are processed in EliminateVar-inc.
The crucial point here is the order in which variables are eliminated. Note that
1) elimination is consistent between instances, and 2) variables that are not
currently eliminated are checked for elimination only at the end. These two con-
ditions are necessary for correctness, because, recall, ReIntroduceVar may
return clauses that were previously erased. These clauses may contain any vari-
able that was not eliminated at the time they were erased.

Example 1. Suppose that in step i − 1, v1 was eliminated, and as a result a
clause c = (v1 ∨ v2) was removed. Then v2 was eliminated as well. Suppose
now that in step i we first reeliminate v2, and then decide to reintroduce v1.
The clause c above is added back to the formula. But c contains v2 which was
already eliminated. ��

Algorithm 5. Preprocessing in an incremental SAT setting

1: function Preprocess-inc(int i) � preprocessing of ϕi

2: SubsumptionQ = {c | ∃v. v ∈ c ∧ v ∈ vars(Δi)};
3: RemoveSubsumptions ();
4: for (j = 0 . . . |ElimV arQ| − 1) do � scanning eliminated vars in order
5: v = ElimV arQ[j].v;
6: if |ϕi

v | = |ϕi
v̄| = 0 then continue;

7: ReEliminate-Or-ReIntroduce (j, i);

8: while SubsumptionQ �= ∅ do
9: for each non-assumption variable v �∈ ElimV arQ do � scanning the rest
10: SubsumptionQ = EliminateVar-inc (v, i);
11: RemoveSubsumptions ();

12: SubsumptionQ = {c | vars(c) ∩ TouchedV ars �= ∅};
13: TouchedV ars = ∅;

Let ψn = ϕ0 ∧
∧n

i=1 Δ
i, i.e., ψn is the n-th formula without preprocessing at

all. We claim that:

Proposition 1. Algorithm Preprocess-inc is correct, i.e., for all n

ψn is equisatisfiable with ϕn .

Proof. The full proof is given in a technical report [8]. Here we only sketch
its main steps. The proof is by induction on n. The base case corresponds to
standard (i.e., non-incremental) preprocessing. Proving the step of the induction
relies on another induction, which proves that the following two implications hold
right after line 7 at the j-th iteration of the first loop in Preprocess-inc, for
j ∈ [0 . . . |ElimV arQ| − 1]:

ψn =⇒
(
ϕn ∧

|ElimV arQ|−1∧
k=j+1

∧
c∈Svk

∪Sv̄k

c
)

=⇒ ∃v1 . . . vj . ψn ,
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The implication on the right requires some attention: existential quantification
is necessary because of variable elimination via resolution (in the same way that
Res(x ∨A)(x̄ ∨B) = (A ∨B) and (A ∨B) =⇒ ∃x. (x ∨A)(x̄ ∨B)). The crucial
point in the proof of this implication is to show that if a variable is eliminated
at step j, it cannot reaapear in the formula in later iterations. This is indeed
guaranteed by the order in which the first loop processes the variables.

Note that at the last iteration j = |ElimV arQ| − 1 and the big conjunctions
disappear. This leaves us with

ψn =⇒ ϕn =⇒ ∃v1 . . . vj . ψn ,

which implies that ψn is equisatisfiable with the formula after the last iter-
ation. The second loop of Preprocess-inc is non-incremental preprocessing,
and hence clearly maintains satisfiability. ��

Removal of Resolvents. Recall that ReIntroduceVar returns the clause
sets Sv and Sv̄ to the formula. So far we ignored the question of what to do with
the resolvents: should we remove them given that we canceled the elimination of
v? These clauses are implied by the original formula, so keeping them does not
hinder correctness. Removing them, however, is not so simple, because they may
have participated in subsumption / self-subsumption of other clauses. Removing
them hinders soundness, as demonstrated by the following example.

Example 2. Consider the following four clauses:

c1 = (l1 ∨ l2 ∨ l3) c2 = (l4 ∨ l5 ∨ l̄3)
c3 = (l1 ∨ l2 ∨ l̄4) c4 = (l1 ∨ l2 ∨ l̄5) ,

and the following sequence:

– elimination of var(l3):
• c5 = res(c1, c2) = (l1 ∨ l2 ∨ l4 ∨ l5) is added;
• c1 and c2 are removed and saved.

– self-subsumption between c3 and c5: c5 = (l1 ∨ l2 ∨ l5).
– self-subsumption between c4 and c5: c5 = (l1 ∨ l2).
– subsumption of c3 and c4 by c5.
– removal of the resolvent c5 and returning of c1 and c2.

We are left with only a subset of the original clauses (c1 and c2), which do not
imply the rest. In this case the original formula is satisfiable, but it is not hard
to see that the subsumed clauses (c3, c4) could have been part of an unsatisfiable
set of clauses, and hence that their removal could have changed the result from
unsat to sat. Soundness is therefore not secured if resolvents that participated
in subsumption are removed. ��

In our implementation we solve this problem as follows. When eliminating v, we
associate all the resolvent clauses with v. In addition, we mark all clauses that
subsumed other clauses. We then change ReIntroduceVar as can be seen in
Alg. 6. Note that in line 3 we guarantee that unit resolvents remain: it does not
affect correctness and is likely to improve performance.
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Algorithm 6. ReIntroduceVar with removal of resolvents that did not par-
ticipate in subsumption

1: function ReIntroduceVar(var v, int loc, int i)
2: ϕi += Sv ∪ Sv̄;
3: for each non-unit clause c associated with v do
4: if c is not marked then Remove c from ϕi;

5: erase ElimV arQ[loc];

4 Experimental Results

We implemented incremental preprocessing on top of Fiver1, and experimented
with hundreds of large processor Bounded Model-checking instances from In-
tel, categorized to four different families. In each case the problem is defined
as performing BMC up to a given bound2 in increments of size 1, or finding a

Table 1. The number of time-outs and the average total run time (incl. preprocessing)
achieved by the four compared methods

Method Time-outs Avg. total run-time

full-preprocessing 68 2465.5
no-preprocessing 42 1784.7
incremental-preprocessing 2 1221.3
look-ahead 0 1064.9

Fig. 1. Overall run-time of the four compared methods

1
Fiver is a new SAT solver that was developed in Intel. It is a CDCL solver, com-
bining techniques from Eureka, Minisat, and other modern solvers.

2 Internal customers in Intel are typically interested in checking properties up to a
given bound.
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Fig. 2. Incremental preprocessing vs. full preprocessing: (top) preprocessing time,
(middle) SAT time, and (bottom) total time
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Fig. 3. Incremental preprocessing vs. no-preprocessing

satisfying assignment on the way to that bound. The time out was set to 4000
sec. After removing those benchmarks that cannot be solved by any of the tested
methods within the time limit we were left with 206 BMC problems.3 We turned
off the ‘saturation’ optimization at the circuit level that was described in the
introduction, in order to be able to compare our results to look-ahead. Overall in
about half of the cases there is no satisfying assignment up to the given bound.

The first graph, in Fig. 1, summarizes the overall results of the four com-
pared methods: full-preprocessing, no-preprocessing, incremental-preprocessing,
and look-ahead. The number of time-outs and the average total run-time with
these four methods is summarized in Table 1.

Look-ahead wins overall, but recall that in this article we focus on scenarios
in which lookahead is impossible. Also note that it only has an advantage in a
setting in which there is a short time-out. Incremental-preprocessing is able to
close the gap and become almost equivalent once the time-out is set to a high
value. It seems that the reason for the advantage of incremental preprocessing
over look-ahead in hard instances is that unlike the latter, it does not force each
variable to stay in the formula until it is known that it will not be added from
thereon.

We now examine the results in more detail. Fig. 2 shows the consistent benefit
of incremental preprocessing over full preprocessing. The generated formula is
not necessarily the same because of the order in which the variables are examined.
Recall that it is consistent between instances in Preprocess-Inc and gives
priority to those variables that are currently eliminated. In full preprocessing, on
the other hand, it checks each time the variable that is contained in the minimal
number of clauses. The impact of the preprocessing order on the search time is
inconsistent, but there is a slight advantage to that of Preprocess-Inc, as can

3 The benchmarks are available upon request from the authors.
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Fig. 4. Incremental preprocessing vs. look-ahead: (top) preprocessing time, (middle)
SAT time, and (bottom) total time
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be seen in the middle figure. The overall run time favors Preprocess-Inc, as
can be seen at the bottom figure.

Fig. 3 compares incremental preprocessing and no preprocessing at all. Again,
the advantage of the former is very clear.

Finally, Fig. 4 compares incremental preprocessing and look-ahead, which
shows the benefit of knowing the future. The fact that the preprocessing time of
the latter is smaller is very much expected, because it does not have the overhead
incurred by the checks in Alg. 3 and the multiple times that each variable can be
reeliminated and reintroduced. The last graph shows that a few more instances
were solved overall faster with look-ahead, but recall that according to Fig. 1
with a long-enough timeout the two methods have very similar results in terms
of the number of solved instances.

5 Conclusion

In various domains there is a need for incremental SAT, but the sequence of
instances cannot be computed apriori, because of dependance on the result of
previous instances. In such scenarios applying preprocessing with look-ahead,
namely preventing elimination of variables that are expected to be reintroduced,
is impossible. Incremental preprocessing, the method we suggest here, is an ef-
fective algorithm for solving this problem. Our experiments with hundreds of
industrial benchmarks show that it is much faster than the two known alterna-
tives, namely full-preprocessing and no-preprocessing. Specifically, with a time-
out of 4000 sec. it is able to reduce the number of time-outs by a factor of four
and three, respectively.
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Abstract. DP-reduction F � DPv(F ), applied to a clause-set F and a
variable v, replaces all clauses containing v by their resolvents (on v). A
basic case, where the number of clauses is decreased (i.e., c(DPv(F )) <
c(F )), is singular DP-reduction (sDP-reduction), where v must occur
in one polarity only once. For minimally unsatisfiable F ∈ MU, sDP-
reduction produces another F ′ := DPv(F ) ∈ MU with the same defi-
ciency, that is, δ(F ′) = δ(F ); recall δ(F ) = c(F )− n(F ), using n(F ) for
the number of variables. Let sDP(F ) for F ∈ MU be the set of results of
complete sDP-reduction for F ; so F ′ ∈ sDP(F ) fulfil F ′ ∈ MU , are non-
singular (every literal occurs at least twice), and we have δ(F ′) = δ(F ).
We show that for F ∈ MU all complete reductions by sDP must have
the same length, establishing the singularity index of F . In other words,
for F ′, F ′′ ∈ sDP(F ) we have n(F ′) = n(F ′′). In general the elements
of sDP(F ) are not even (pairwise) isomorphic. Using the fundamental
characterisation by Kleine Büning, we obtain as application of the singu-
larity index, that we have confluence modulo isomorphism (all elements
of sDP(F ) are pairwise isomorphic) in case δ(F ) = 2. In general we
prove that we have confluence (i.e., |sDP(F )| = 1) for saturated F (i.e.,
F ∈ SMU). More generally, we show confluence modulo isomorphism for
eventually saturated F , that is, where we have sDP(F ) ⊆ SMU, yielding
another proof for confluence modulo isomorphism in case of δ(F ) = 2.

1 Introduction

Minimally unsatisfiable clause-sets (“MU’s”) are a fundamental form of irre-
dundant unsatisfiable clause-sets. Regarding the subset relation, they are the
hardest examples for proof systems. A substantial amount of insight has been
gained into their structure, as witnessed by the handbook article [6]. A related
area of MU, which gained importance in recent industrial applications, is the
study of “MUS’s”, that is minimally unsatisfiable sub-clause-sets F ′ ∈ MU
with F ′ ⊆ F as the “cores” of unsatisfiable clause-sets F ; see [16] for a recent
overview. Now the investigations of this paper relate two areas: The structure
of MU (see below), and the study of DP-reduction as started with [7,12,13]:

– A fundamental result shown there is that DP-reduction is commutative mod-
ulo subsumption (see Subsection 5.1 for the precise formulation).
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c© Springer-Verlag Berlin Heidelberg 2012
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– Singular DP-reduction is a special case of length-reducing DP-reduction
(while in general one step of DP-reduction can yield a quadratic blow-up).

– Confluence modulo isomorphism was shown in [7] (Theorem 13, Page 52)
for a combination of subsumption elimination with special cases of length-
reducing DP-reductions, namely DP-reduction in case no (non-tautological)
resolvent is possible, and singular DP-reduction in case there is only one side
clause, or the main clause is of length at most 2 (see Definition 2).

The basic questions for this paper are:

– When does singular DP-reduction, applied to MU, yield unique (non-singular)
results (i.e., we have confluence)?

– And when are the results at least determined up to isomorphism (i.e., we
have confluence modulo isomorphism)?

Investigating the structure ofMU(k) We give now an overview on characterising
the levels MUδ=k := {F ∈ MU : δ(F ) = k}; see [6] for further information.

The field of the combinatorial study of minimally unsatisfiable clause-sets was
opened by [1], showing the fundamental insight δ(F ) ≥ 1 for F ∈ MU (see [9,6]
for generalisations of the underlying method, based on autarky theory). Also
SMUδ=1 was characterised there, where SMU ⊂MU is the set of “saturated”
minimally unsatisfiable clause-sets, which are minimal not only w.r.t. having no
superfluous clauses, but also w.r.t. that no clause can be further weakened. The
fundamental “saturation method” F ∈ MU � F ′ ∈ SMU was introduced in
[4] (see Definition 1). Basic for all studies of MU is detailed knowledge on mini-
mal number of occurrences of a (suitable) variable (yielding a suitable splitting
variable): see [14] for the current state-of-art. The levels MUδ=k are decidable
in polynomial time by [3,8]; see [17,10] for further extensions.

“Singular” variables v in F ∈ MU , that is, variables occurring in at least
one polarity only once, play a fundamental role — they are degenerations which
(usually) need to be eliminated by singular DP-reduction. Let MU ′ ⊂ MU be
the set of non-singular minimally unsatisfiable clause-sets (not having singular
variables), that is, the results of applying singular DP-reduction to the elements
of MU as long as possible. The fundamental problem is the characterisation of
MU ′

δ=k for arbitrary k ∈ N. Up to now only k ≤ 2 has been solved:MU ′
δ=1 has

been determined in [2], while MU ′
δ=2 = SMU ′

δ=2 has been determined in [5].
Regarding higher deficiencies, until now only (very) partial results in [18] exist.
Regarding singular minimally unsatisfiable clause-sets, also MUδ=1 is very well
known (with further extensions and generalisations in [8], and generalised to
non-boolean clause-sets in [11]), while for MUδ=2 not much is known.

For characterising MU ′
δ=k, we need (very) detailed insights into (arbitrary)

MUδ<k, since the basic method to investigate F ∈ MU ′
δ=k is to split F into

smaller parts from MUδ<k (usually containing singular variables). Assuming
that we know MU ′

δ<k, such insights can be based on some classification of
F ∈MUδ<k obtained from the set sDP(F ) ⊆MU ′

δ<k of singular-DP-reduction
results. The easiest case is when |sDP(F )| = 1 holds (confluence), the second-
easiest case is where all elements of sDP(F ) are pairwise isomorphic. This is the
basic motivation for the questions raised and partially solved in this article. For
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general k we have no conjecture yet how the classification ofMU ′
δ=k could look

like (besides the basic conjecture that enumeration of the isomorphism types can
be done efficiently). However for unsatisfiable hitting clause-sets (two different
clauses clash in at least one variable) we have the conjecture stated in [14], that
for every fixed deficiency k ∈ N there are only finitely many isomorphism types.

Overview on results Section 3 introduces the basic notions regarding singularity,
and the basic characterisations of singular DP-reduction on minimally unsatisfi-
able clause-sets are given. In Section 4 we consider the question of confluence of
singular DP-reduction, with the first main result Theorem 12, showing conflu-
ence for saturated clause-sets. Section 5 mainly considers the question of chang-
ing the order of DP-reductions without changing the result. The second main
result of this article is Theorem 35, establishing the singularity index. Section 6 is
devoted to show confluence modulo isomorphism on eventually saturated clause-
sets (Theorem 40), the third main result. As an application we determine the
“types” of (possibly singular) minimally unsatisfiable clause-sets of deficiency 2
via Theorem 44. We conclude with a collection of open problems in Section 7.
The underlying report [15] contains some additional material.

2 Preliminaries

We follow the general notations and definitions as outlined in [6]. Complemen-
tation of literals x is denoted by x, while for a set L of literals we define
L := {x : x ∈ L}. A clause C is a finite and clash-free set of literals (i.e.,
C ∩C = ∅), while a clause-set F ∈ CLS is a finite set of clauses. We denote by
var(F ) the set of (occurring) variables, by n(F ) := |var(F )| the number of vari-
ables, by c(F ) := |F | the number of clauses, and finally by δ(F ) := c(F )− n(F )
the deficiency. For clause-sets F,G we denote by F ∼= G that both clause-sets are
isomorphic, that is, the variables of F can be renamed and potentially flipped
so that F is turned into G; more precisely, an isomorphism α from F to G is
a bijection α on literal-sets which preserves complementation and which maps
the clauses of F precisely to the clauses of G. The literal-degree ldF (x) ∈ N0 of
a literal x for a clause-set F is the number of clauses the literal appears in, i.e.,
ldF (x) := |{C ∈ F : x ∈ C}|. The variable-degree vdF (v) ∈ N0 for a variable v
is the number of clauses the variable appears in, i.e., vdF (v) := ldF (v)+ ldF (v).

For a clause-set F and a variable v by DPv(F ) we denote the result of ap-
plying DP-reduction on v, that is, removing all clauses containing v and adding
all resolvents on v. More formally DPv(F ) := {C ∈ F : v /∈ var(C)} ∪ {C +D :
C,D ∈ F, C ∩ D = {v}}, where clauses C,D are resolvable iff they clash in
exactly one literal, i.e., iff |C ∩ D| = 1, while for resolvable clauses C,D the
resolvent C �D := (C ∪ D) \ {x, x} for C ∩ D = {x} is defined as the union
minus the resolution literals. DPv(F ) is logically equivalent to the existential
quantification of F by v, and thus F and DPv(F ) are satisfiability-equivalent.

The set of minimally unsatisfiable clause-sets (which are unsatisfiable, while
removal of any clause makes them satisfiable) is MU ⊂ CLS. Note that for
v ∈ var(F ) with F ∈ MU we have vdF (v) ≥ 2. Furthermore the set of saturated
minimally unsatisfiable clause-sets is SMU ⊂MU , which is the set of minimally
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unsatisfiable clause-sets such that addition of any literal to any clause renders
them satisfiable. We recall the fact ([4], Lemma 5.1 in [11], and [15]) that every
minimally unsatisfiable clause-set F ∈ MU can be saturated, i.e., by adding
literal occurrences to F we obtain F ′ ∈ SMU with var(F ′) = var(F ) such that
there is a bijection α : F → F ′ with C ⊆ α(C) for all C ∈ F .

Definition 1. The operation S(F,C, x) := (F \{C})∪(C∪{x}) ∈ CLS (adding
literal x to clause C in F ) is defined if F ∈ CLS, C ∈ F , and x is a literal with
var(x) ∈ var(F )\var(C). A saturation F ′ ∈ SMU of F ∈ MU is obtained by a
sequence F = F0, . . . , Fm = F ′, m ∈ N0, such that for 0 ≤ i < m there are Ci, xi

with Fi+1 = S(Fi, Ci, xi), such that for all 1 ≤ i ≤ m we have Fi /∈ SAT , and
such that the sequence cannot be extended. Note that n(F ′) = n(F ) and c(F ′) =
c(F ) holds (and thus δ(F ′) = δ(F )). More generally, a partial saturation of
a clause-set F ∈MU is a clause-set F ′ ∈ MU such that var(F ′) = var(F ) and
there is a bijection α : F → F ′ such that for all C ∈ F we have C ⊆ α(C).

3 Singularity

In this section we present basic results on singular variables in minimally un-
satisfiable clause-sets. Lemmas 5, 7 yield basic characterisations of singular DP-
reduction for minimally resp. saturated minimally unsatisfiable clause-sets.

Definition 2. We call a variable v singular for a clause-set F ∈ CLS if we
have min(ldF (v), ldF (v)) = 1; the set of singular variables of F is denoted by
vars(F ) ⊆ var(F ). F is called nonsingular if F does not contain singular
variables. We use MU ′ := {F ∈MU : vars(F ) = ∅} for the set of nonsingular
MU’s, and SMU ′ := SMU ∩MU ′ for the set of nonsingular saturated MU’s.
More precisely, we call v m-singular for F for some m ∈ N, if v is singular
for F with m = vdF (v) − 1. The set of 1-singular variables of F is denoted by
var1s(F ) ⊆ vars(F ). That a variable is m-singular for some m ≥ 2 is simply
called non-1-singular (so “non-1-singular” variables are singular); the set of
non-1-singular variables of F is denoted by var¬1s(F ) := vars(F ) \ var1s(F ).
A singular literal for a singular variable v is a literal x with var(x) = v and
ldF (x) = 1; if the underlying variable is 1-singular, then some choice is applied,
so that we can speak of “the” singular literal of a singular variable. For a singular
literal x we call the clause C ∈ F with x ∈ C the main clause, while the side
clauses are the clauses D1, . . . , Dm ∈ F with x ∈ Di (here v is m-singular).

Example 3. In clause-set {{a}, {a, b}, {a, b}}, variable a is 2-singular, while vari-
able b is 1-singular, and thus vars(F ) = {a, b}, var1s(F ) = {b} and var¬1s(F ) =
{a}. The main clause of a is {a}, its side clauses are {a, b}, {a, b}, while for
the main clause of b there is the choice between {a, b} and {a, b}. In general, if
F ∈MU contains a unit-clause {x} ∈ F , then var(x) is singular for F . Thus the
clause-sets {⊥} and {{a, b}, {a, b}, {a, b}, {a, b}} are the two smallest elements
of MU ′ and SMU ′ regarding the number of clauses.

Singular DP-reduction The following special application of DP-reduction is fun-
damental for investigations of minimally unsatisfiable clause-sets (see [5], or Ap-
pendix B in [8] and subsequent [17,10]):
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Definition 4. A singular DP-reduction is a reduction F � DPv(F ), where

v is singular for F ∈ MU. For F, F ′ ∈MU by F
sDP−−→ F ′ we denote that F ′ is

obtained from F by one step of singular DP-reduction; i.e., there is a singular
variable v for F with F ′ = DPv(F ), where v is called the reduction variable.

We write F
sDP−−−→∗ F ′ if F ′ is obtained from F by an arbitrary number of steps of

singular DP-reductions. The set of all nonsingular clause-sets obtainable from F

by singular DP-reduction is denoted by sDP(F ) := {F ′ ∈MU ′ : F
sDP−−−→∗ F ′}.

The following lemma is kind of “folklore”, but apparently the only place where
its assertions are (partially) stated in the literature (in a more general form) is
[10], Lemma 6.1. We add here various details; for the proof see [15]:

Lemma 5. Consider a clause-set F and a singular variable v for F . Then the
following assertions are equivalent:

1. F is minimally unsatisfiable.
2. δ(DPv(F )) = δ(F ) and DPv(F ) is minimally unsatisfiable.
3. DPv(F ) is minimally unsatisfiable, and for the main clause C and the side

clauses D1, . . . , Dm for v (in F ) we have:
(a) Every Di clashes with C in exactly one variable (namely in v).
(b) For 1 ≤ i �= j ≤ m we have C +Di �= C +Dj.
(c) For E ∈ F with v /∈ var(E) and for all 1 ≤ i ≤ m we have C +Di �= E.

Corollary 6. Consider F ∈ MU and a singular variable v with singular literal
x, with main clause C and side clauses D1, . . . , Dm. Then adding C \ {x} to Di

for all i ∈ {1, . . . ,m} is a partial saturation of F (recall Definition 1).

Lemma 5 can be strengthened for saturated F by requiring special conditions
for the occurrences of the singular variable; for the proof see [15]:

Lemma 7. Consider a clause-set F and a singular variable v for F . For a singu-
lar literal x for v consider the main clause C and the side clauses D1, . . .Dm ∈ F .
Let C′ := C \ {x} and D′

i := Di \ {x}. The following assertions are equivalent:

1. F is saturated minimally unsatisfiable.
2. DPv(F ) is saturated minimally unsatisfiable, C′ =

⋂m
i=1 D

′
i, and for every

E ∈ F with v /∈ var(E) we have C′ �⊆ E.

Corollary 8. The class SMU is stable under singular DP-reduction.

4 Confluence of Singular DP-Reduction

In this section we introduce the question of confluence of singular DP-reduction,
and we obtain our first major result, namely confluence for SMU (Theorem 12).

Definition 9. Let CFMU := {F ∈ MU | |sDP(F )| = 1} be the set of F ∈
MU where singular DP-reduction is confluent, and let CFIMU := {F ∈
MU | ∀F ′, F ′′ ∈ sDP(F ) : F ′ ∼= F ′′} be the set of F ∈ MU where singular
DP-reduction is confluent modulo isomorphism.
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In [2] it is shown that every F ∈ MUδ=1 contains a 1-singular variable (see
[8,14] for further generalisations). So singular DP-reduction on MUδ=1 must
end in {{⊥}}, and we haveMU ′

δ=1 = {{⊥}}. It followsMUδ=1 ⊆ CFMU . For
examples showingMUδ=2 �⊆ CFMU and MUδ=3 �⊆ CFIMU see [15].

Definition 10. For clause-sets F,G we write F ⊆�→ G if for all C ∈ F there
is D ∈ G with C ⊆ D.

“Nonsingular saturated patterns” are not destroyed by singular DP-reduction:

Lemma 11. Consider F0, F, F ′ ∈MU with F
sDP−−−→∗ F ′.

1. If F0 is nonsingular, then F0 ⊆ �→ F ⇒ F0 ⊆ �→ F ′.
2. If F0, F, F ′ ∈ SMU , then F0 ⊆ �→ F ′ ⇒ F0 ⊆ �→ F .

Proof. W.l.o.g. we can assume for both parts that F ′ = DPv(F ) for a singular
variable v of F . Part 1 follows from the facts that v /∈ var(F0) due to the
nonsingularity of F0, and that due to the minimal unsatisfiability of F no clause
gets lost by an application of singular DP-reduction. For Part 2 assume ldF (v) =
1. Due to the saturatedness of F we have for the clause C ∈ F with v ∈ C and for
every clause D ∈ F with v ∈ D that C \{v} ⊆ D \{v}; the assertion follows. ��

Theorem 12. SMU ⊂ CFMU .

Proof. Consider F ∈ SMU and two nonsingular F ′, F ′′ ∈ SMU with F
sDP−−→∗

F ′ and F
sDP−−→∗ F ′′. From F ′ ⊆ �→ F ′ and F

sDP−−→∗ F ′ by Lemma 11, Part 2 we
get F ′ ⊆ �→ F , and then by Part 1 we get F ′ ⊆ �→ F ′′; in the same way we obtain
F ′′ ⊆ �→ F ′ and thus F ′ = F ′′. ��

5 Permutations of Sequences of DP-Reductions

This section contains central technical results on (iterated) singular DP-reduction.
After some preliminaries follows an interlude on iterated general DP-reduction
in Subsection 5.1, stating “commutativity modulo subsumption” and deriving
the basic fact in Corollary 18, that in case a sequence of DP-reductions as well as
some permutation both yield minimally unsatisfiable clause-sets, then actually
these MU’s are the same. In Subsection 5.2 then conclusions for singular DP-
reductions are drawn, obtaining various conditions under which sDP-reductions
can be permuted without changing the final result. A good overview on all pos-
sible sDP-reductions is obtained in Subsection 5.3 in case no 1-singular variables
are present. In Subsection 5.4 we introduce the “singularity index”, the min-
imal length of a maximal sDP-reduction sequence. Our second major result is
Theorem 35, showing that in fact all maximal sDP-reduction-sequences have the
same length. First we analyse the changes for literal-degrees after one step of
sDP-reduction (for the simple proof and further details see [15]):

Lemma 13. Consider F ∈ MU and an m-singular variable v (m ∈ N). Let C
be the main clause, let D1, . . . , Dm be the side clauses, and let F ′ := DPv(F ).
Consider a literal x with var(x) �= v. The task is to compare ldF (x) and ldF ′(x).
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1. If ldF ′(x) < ldF (x), then ldF ′(x) ≥ m.
2. If m = 1, then ldF ′(x) ≤ ldF (x).
3. For x ∈ C let p := |{i ∈ {1, . . . ,m} : x /∈ Di}|; then ldF ′(x) = ldF (x)−1+p.
4. We have ldF ′(x) > ldF (x) iff x ∈ C and p ≥ 2.

By Lemma 13, Parts 1 and 2 we get that singular variables can only be created
for 1-singular DP-reduction, while singular variables can only be destroyed for
non-1-singular DP-reductions; the details are as follows:

Corollary 14. Consider F ∈MU and an m-singular variable v for F (m ∈ N),
and let F ′ := DPv(F ).

1. (a) If m ≥ 2, then vars(F
′) ⊆ vars(F ) with var1s(F

′) ⊆ var1s(F ).
(b) If m = 1 then vars(F

′) \ vars(F ) ⊆ var¬1s(F
′).

2. (a) If m = 1, then vars(F ) \ {v} ⊆ vars(F
′) with var1s(F ) \ {v} ⊆ var1s(F

′).
(b) If m ≥ 2 then vars(F ) \ vars(F ′) ⊆ var¬1s(F ).

5.1 Iterated DP-Reduction

Definition 15. Consider F ∈ CLS and a sequence v1, . . . , vn of variables for
n ∈ N0. Then DPv1,...,vn(F ) := DPvn(DPv1,...,vn−1(F )).

Thus in “DPv1,...,vn” DP-reduction is performed in order v1, . . . , vn. We have
var(DPv1,...,vn(F )) ⊆ var(F ) \ {v1, . . . , vn}. In [12] (Lemma 7.4, page 33) as well
as in [13] (Lemma 7.6, page 27) the following fundamental result on iterated
DP-reduction is shown (for more details see [15]):

Lemma 16. If performing subsumption-elimination at the end, then iterated
DP-reduction does not depend on the order of the variables; and performing
subsumption-elimination inbetween does not influence then the result.

Definition 17. Consider F ∈ CLS and variables v1, . . . , vn (n ∈ N0). Then a
permutation π ∈ Sn is called equality-preserving for F and v1, . . . , vn (for
short: “eq-preserving”), if we have DPv1,...,vn(F ) = DPπ(v1),...,π(vn)(F ). The set
of all eq-preserving π ∈ Sn is denoted by eqp(F, (v1, . . . , vn)) ⊆ Sn.

Note that if var(F ) ⊆ {v1, . . . , vn}, then eqp(F, (v1, . . . , vn)) = Sn. Since mini-
mally unsatisfiable clause-sets do not contain subsumptions, we obtain:

Corollary 18. Consider F ∈ CLS and variables v1, . . . , vn (n ∈ N0) such that
DPv1,...,vn(F ) ∈ MU . Then we have for π ∈ Sn that π ∈ eqp(F, (v1, . . . , vn))
holds iff DPvπ(1),...,vπ(n)

(F ) ∈ MU.

5.2 Iterated sDP-Reduction via Singular Tuples

Generalising Definition 2 we consider “singular tuples”:

Definition 19. Consider F ∈ MU . A tuple (v1, . . . , vn) of variables (n ∈ N0)
is called singular for F if for all i ∈ {1, . . . , n} we have that vi is singular for
DPv1,...,vi−1(F ). Note that for a singular (v1, . . . , vn) all variables must be differ-
ent. We call variable vi (i ∈ {1, . . . , n}) m-singular (m ∈ N) for (v1, . . . , vn)
and F , if vi is m-singular for DPv1,...,vi−1(F ).
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Example 20. Consider F := {{a}, {a, b}, {a, b}} (recall Example 3). There are
5 singular tuples for F , namely (), (a), (b), (a, b), (b, a). Considering v := (a, b),
variable a is 2-singular for v and F , and b is 1-singular for v and F , while
considering v′ := (b, a), both a and b are 1-singular for v′ and F .

For the understanding of sDP-reduction of F ∈ MU , understanding the set of
singular tuples for F is an important task.

Definition 21. Consider F ∈ MU and a singular tuple (v1, . . . , vn) for F . A
permutation π ∈ Sn is called singularity-preserving for F and (v1, . . . , vn)
(for short: “s-preserving”), if also (vπ(1), . . . , vπ(n)) is singular for F . The set of
all s-preserving π ∈ Sn is denoted by sp(F, (v1, . . . , vn)) ⊆ Sn.

By Corollary 18 we obtain the fundamental lemma, showing that singularity-
preservation implies equality-preservation:

Lemma 22. For F ∈ MU and a singular tuple v we have sp(F,v) ⊆ eqp(F,v).

The corollary, that singular tuples with the same variables yield the same final
reduction-result, is used throughout in the following:

Corollary 23. Consider two singular tuples (v1, . . . , vn), (v
′
1, . . . , v

′
n) for F ∈

MU. If {v1, . . . , vn} = {v′1, . . . , v′n}, then DPv1,...,vn(F ) = DPv′
1,...,v

′
n
(F ).

In preparation for our results on singularity-preserving permutation, we consider
first “homogeneous” singular pairs in the following two lemmas. By Lemma 13,
Parts 3 and 1 we get:

Lemma 24. Consider F ∈MU and two different non-1-singular variables v, w
for F . Let C be the main clause for v, and let D be the main clause for w. There
are precisely two cases now:

1. If C = D, then w /∈ vars(DPv(F )) and v /∈ vars(DPw(F )).
2. If C �= D, then w ∈ var¬1s(DPv(F )) and v ∈ var¬1s(DPw(F )).

Lemma 25. Consider F ∈MU and a singular sequence (v, w) for F such that
v and w are 1-singular for it. Let C,D ∈ F be the two occurrences of v.

1. Assume w is not 1-singular in F . Then w is 2-singular in F . Let E0 ∈ F be
the main-clause of w, and let E1, E2 ∈ F be the two side-clauses. We have
{E1, E2} = {C,D}. So v is 1-singular in DPw(F ).

2. Otherwise w is 1-singular in F . Then v is 1-singular in DPw(F ). Let E1, E2

be the two occurrences of w in F . We have |{C,D} ∩ {E1, E2}| ≤ 1.

We are now able to characterise singularity-preserving neighbour-exchanges as
follows (note that every permutation is the composition of neighbour-exchanges;
for the simple proof see [15]):

Lemma 26. Consider F ∈ MU and a singular tuple v = (v1, . . . , vn) with
n ≥ 2. Consider i ∈ {1, . . . , n − 1}, and let π ∈ Sn be the neighbour-exchange
i ↔ i + 1 (i.e., π(j) = j for j ∈ {1, . . . , n} \ {i, i + 1}, while π(i) = i + 1 and
π(i+1) = i). The task is to characterise when π ∈ sp(F,v) holds; we need also to
be able to apply such s-preserving neighbour-exchanges consecutively. For this let
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vi be mi-singular w.r.t. F,v, and in case of π ∈ sp(F,v) let vπ(i) be m′
i-singular

w.r.t. F,v′, where v′ := (vπ(1), . . . , vπ(n)).

1. If π ∈ sp(F,v), then for j ∈ {1, . . . , n} \ {i, i+ 1} we have m′
j = mj.

2. Assume mi ≥ 2. Then π ∈ sp(F,v). And if mi+1 ≥ 2, then m′
i,m

′
i+1 ≥ 2.

While if mi+1 = 1, then m′
i = 1 and m′

i+1 ≥ mi − 1.
3. Assume mi = 1.

(a) Assume mi+1 = 1. Then π ∈ sp(F,v) and m′
i+1 = 1 and m′

i ∈ {1, 2}.
(b) Assume mi+1 ≥ 2. Then π ∈ sp(F,v) if and only if vi+1 is singular in

DPv1,...,vi−1(F ). And if π ∈ sp(F,v), then m′
i ≥ 2.

The gist of Lemma 26 is that in most cases neighbours in a singular tuple can
be exchanged safely (s-preserving), except when a 1-singular DP-reduction is
followed by a non-1-singular DP-reduction (Case 3b). By Case 2:

Corollary 27. Consider F ∈ MU and a singular tuple v such that each vi is
non-1-singular for v. Then sp(F,v) = Sn (all permutations are singular), and
in each permutation of v each vi is non-1-singular.

We get some normal form of a singular tuple v for F ∈ MU by moving the
singular variables from F to the front, followed by 1-singular DP-reductions:

Corollary 28. Consider F ∈ MU and a singular tuple v = (v1, . . . , vn). Let
V := {v1, . . . , vn} ∩ var1s(F ) and p := |V |. Consider any π0 : {1, . . . , p} →
{1, . . . , n} such that {vπ0(i) : i ∈ {1, . . . , p}} = V . Then there exists q ∈
{p, . . . , n} and an s-preserving permutation π for v such that π extends π0 and
vπ(i) is 1-singular for (vπ(1), . . . , vπ(n)) and i ∈ {1, . . . , n} if and only if i ≤ q.

Comparing two different singular tuples, they don’t need to overlap, however
they need to have a “commutable beginning” via appropriate permutations,
given they contain at least two variables:

Lemma 29. Consider F ∈ MU and singular tuples (v1, . . . , vp), (w1, . . . , wq)
for F with p, q ≥ 2. Then there is an s-preserving permutation π for (v1, . . . , vp)
and an s-preserving permutation π′ for (w1, . . . , wq) such that both (vπ(1), wπ′(1))
and (wπ′(1), vπ(1)) are singular for F .

Proof. If one of the two tuples contains a 1-singular variable vi resp. wi, then
the assertion follows by Corollary 28 and Part 2 of Corollary 14. And otherwise
the assertion follows by Corollary 27 and Lemma 24. ��

5.3 Without 1-Singular Variables

If F ∈ MU has no 1-singular variables, then we know its maximal singular
tuples, namely they are given by choosing exactly one singular literal from each
clause which contains singular literals. A general concept is helpful here:

Definition 30. For F ∈ MU we define the singularity hypergraph S(F ) as
follows (recall that a hypergraph G has vertex-set V (G) and hyperedge-set E(G)):

– The vertex set is var(F ) (the variables of F ).
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– For every v ∈ vars(F ) let xv be the singular literal (which depends on the
given choice in case v is 1-singular), and let L := {xv : v ∈ vars(F )}.

– Now the hyperedges are given by var(C ∩ L) for C ∈ F with C ∩ L �= ∅.

Note that the hyperedges of S(F ) are non-empty and pairwise disjoint.

Lemma 31. Consider F ∈ MU with var1s(F ) = ∅. The variable-sets of maxi-
mal singular tuples for F are precisely the minimal transversals of S(F ) (minimal
sets of vertices intersecting every hyperedge). And the maximal singular tuples
of F are precisely obtained as (arbitrary) linear orderings of these variable-sets.

Proof. By Corollary 14, Part 1a, for each singular tuple (v1, . . . , vn) of F we
have {v1, . . . , vn} ⊆ var¬1s(F ) = vars(F ), and every vi is non-1-singular for
(v1, . . . , vn). So by Corollary 27 all permutations are singular. Finally, for v ∈
vars(F ) let Fv := DPv(F ), let Cv ∈ F be the main clause of v, and let Hv :=
var(Cv)∩ vars(F ). Then we have S(Fv) = (V (S(F )) \ {v}, E(S(F )) \ {Hv}). The
assertion of the lemma follows now easily by induction. ��

Example 32. Consider

F :=
{
{a, b}, {a, x, v}, {a, y, v′}, {b, x, v}, {b, y, v′}, {x, v}, {y, v′}, {v, v′}

}
.

By definition we have var(F ) = var¬1s(F ), and by sDP-reduction we see that F ∈
MUδ=2 \SMUδ=2. We have S(F ) = ({a, b, x, y, v, v′}, {{a, b}, {x}, {y}, {v, v′}}).
There are 2 · 1 · 1 · 2 = 4 minimal transversals {a, x, y, v}, {b, x, y, v}, {a, x, y, v′},
{b, x, y, v′}. There are thus 4 elements in sDP(F ); Theorem 44 will show that
they are necessarily all isomorphic.

5.4 The Singularity Index

Definition 33. Consider F ∈ MU. A singular tuple (v1, . . . , vn) for F is called
maximal, if there is no singular tuple extending it (i.e., DPv1,...,vn(F ) is non-
singular). The singularity index of F , denoted by si(F ) ∈ N0, is the minimal
n ∈ N0 such that a maximal singular sequence of length n exists for F .

So si(F ) = 0 ⇔ F ∈ MU ′. See Corollary 41, Part 1, for a characterisation
of F ∈ MU with si(F ) = 1. The meaning of si(F ) in general is that of the
minimum number of sDP-reductions needed to reach non-singularity. The aim is
to show that si(F ) actually does not depend on the choice of a maximal singular
sequence. First, by Lemma 31 we can solve a special case:

Lemma 34. Consider F ∈MU not having 1-singular variables (i.e., var1s(F ) =
∅). Then every maximal singular tuple has length si(F ), which is the number of
different clauses of F containing at least one singular literal.

We are now ready to show that, more general than Lemma 34 but with less
details, for all minimally unsatisfiable clause-sets all maximal singular tuples
(i.e., maximal sDP-reduction sequences) have the same length. The basic idea
is to utilise the good commutativity properties of 1-singular variables, so that
induction on the singularity index can be used.
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Theorem 35. For F ∈ MU and every maximal singular tuple (v1, . . . , vm) for
F we have m = si(F ).

Proof. We prove the assertion by induction on si(F ). For si(F ) = 0 the assertion
is trivial, so assume si(F ) > 0. If F has no 1-singular variables, then the assertion
follows by Lemma 34, and so we assume that F has a 1-singular variable v. First
we show that we can choose v such that si(DPv(F )) = n− 1.

Consider a maximal singular tuple (v1, . . . , vn) of length n = si(F ). Note
that si(DPv1(F )) = n − 1. If v1 is 1-singular, then we can use v := v1 and we
are done, and so assume v1 is not 1-singular. The induction hypothesis, applied
to DPv1(F ), yields si(DPv1,v(F )) = n − 2. Now by Corollary 14, Part 2, both
tuples (v1, v) and (v, v1) are singular for F , whence DPv1,v(F ) = DPv,v1(F ) holds
(Corollary 23), and so si(DPv,v1(F )) = n − 2. We obtain si(DPv(F )) ≤ n − 1,
and thus si(DPv(F )) = n− 1 as claimed.

Now consider an arbitrary maximal singular tuple (w1, . . . , wm). It suffices to
show that si(DPw1(F )) ≤ n−1, from which by induction hypothesis the assertion
follows. The argument is now similar to above. The claim holds for w1 = v, and
so assume w1 �= v. By induction hypothesis we have si(DPv,w1(F )) = n− 2. By
Corollary 14, Part 2, both tuples (v, w1) and (w1, v) are singular for F . Thus
si(DPw1,v(F )) = n− 2. We obtain si(DPw1(F )) ≤ n− 1 as claimed. ��

Corollary 36. For F ∈MU and F ′, F ′′ ∈ sDP(F ) we have n(F ′) = n(F ′′).

6 Confluence Mod Isomorphism on Eventually SMU
Finally we are able to show our third major result, confluence modulo isomor-
phism of singular DP-reduction in case all maximal sDP-reductions yield satu-
rated clause-sets.

Definition 37. A minimally unsatisfiable clause-set F is called eventually

saturated, if all nonsingular F ′ with F
sDP−−−→∗ F ′ are saturated; the set of all

eventually saturated clause-sets is ESMU := {F ∈MU : sDP(F ) ⊆ SMU}.

By Corollary 8 we have SMU ⊆ ESMU . If C ⊆ MU is stable under sDP-
reduction, then we have C ⊆ ESMU iff C ∩ MU ′ ⊆ SMU . In order to show
ESMU ⊆ CFIMU we show first that “divergence in one step” is enough:

Lemma 38. Consider F ∈ MU \ CFIMU (recall Definition 9). So si(F ) ≥
1. Then there is a singular tuple (v1, . . . , vsi(F )−1) for F , such that for F ′ :=
DPv1,...,vsi(F )−1

(F ) we still have sDP(F ′) ∈ MU \ CFIMU (note si(F ′) = 1).

Proof. We prove the assertion by induction on si(F ) ≥ 1. The assertion is trivial
for si(F ) = 1, and so consider n := si(F ) ≥ 2. If there is a singular variable
v ∈ vars(F ) with DPv(F ) ∈ MU \ CFIMU , then the assertion follows by in-
duction hypothesis. So assume for the sake of contradiction, that for all singular
variables v we have DPv(F ) ∈ CFIMU . Consider (maximal) singular tuples
(v1, . . . , vn), (w1, . . . , wn) for F such that DPv(F ) and DPw(F ) are not isomor-
phic. By Lemma 29 w.l.o.g. we can assume that (v1, w1) and (w1, v1) are both
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singular for F , whence DPv1,w1(F ) = DPw1,v1(F ) by Corollary 23. We have
DPv1(F ),DPw1(F ) ∈ CFIMU by assumption, and we obtain the contradiction
that DPv(F ) and DPw(F ) are isomorphic, since DPv(F ) is isomorphic to the
result obtained by reducing F via a (maximal) singular tuple v′ = (v1, w1, . . . )
of length n, where permuting the first two elements in v′ yields the singular tuple
w′ = (w1, v1, . . . ) with the same result, which is isomorphic to DPw(F ). ��

Corollary 39. Consider a class C ⊆ MU which is stable under application of
singular DP-reduction. Then we have C ⊆ CFIMU if and only if {F ∈ C :
si(F ) = 1} ⊆ CFIMU .

Now we analyse the main case where all sDP-reductions give saturated results:

Lemma 40. Consider F ∈ MU and a clause C ∈ F . Let C′ := {x ∈ C :
ldF (x) = 1} be the set of singular literals in C, establishing C as the main
clause for the underlying singular variables var(x) (for x ∈ C′), and let Fx :=
{D ∈ F : x ∈ D} be the set of side clauses of var(x) for x ∈ C′. Due to
F ∈ MU the sets Fx are non-empty and pairwise disjoint (note that var(x) is
|Fx|-singular in F for x ∈ C′). Now assume |C′| ≥ 2, and that for all x ∈ C′ we
have DPvar(x)(F ) ∈ SMU . Then:

1. |C′| = 2.
2. ∀x ∈ C′ ∀D ∈ Fx : (C \ C′) ⊆ D.
3. For x, y ∈ C′ we have that DPvar(x)(F ) and DPvar(y)(F ) are isomorphic.

Proof. Consider (any) literals x, y ∈ C′ with x �= y. Then for D ∈ Fx we have
(C \ {x, y}) ⊆ D by Corollary 6, since otherwise the corollary can be applied
to var(x), replacing D by D ∪ (C \ {x, y}), which yields the partial saturation
F ′ ∈ MU of F with singular variable var(y), and where then DPvar(y)(F

′) would
yield a proper partial saturation G of DPvar(y)(F ), contradicting that the latter
is saturated. It follows that actually C′ = {x, y} must be the case, since if there
would be z ∈ C′ \ {x, y}, then ldF (z) ≥ 2 contradicting the definition of C′. It
follows Part 2. Finally for Part 3 we note that now F � DPx(F ) just replaces
x in the clauses of Fx by y, while F � DPy(F ) just replaces y in the clauses of
Fy by x, and thus renaming y in DPx(F ) to x yields DPy(F ). ��

Corollary 41. For F ∈MU with si(F ) = 1 we have:

1. If |vars(F )| ≥ 2:
(a) vars(F ) = var¬1s(F ), that is, all singular variables are non-1-singular.
(b) The main clauses of the singular variables coincide (that is, there is

C ∈ F such that for all singular literals x for F we have x ∈ C).
(c) If F ∈ ESMU then |vars(F )| = 2.

2. If F ∈ ESMU then F ∈ CFIMU .

Proof. Part 1a follows by Part 2a of Corollary 14, and Part 1b follows by Lemma
24. Now Parts 1c, 2 follow from Lemma 40. ��

By Corollary 39 we obtain from Part 2 of Corollary 41:
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Theorem 42. ESMU ⊂ CFIMU.

Applications toMUδ=2 Consider k ∈ N and F ∈ MUδ=k. Assume that we know
the isomorphism types of MU ′

δ=k. If F ∈ CFIMU , then we can speak of the
type of F as the (unique) isomorphism type of the elements of sDP(F ). We now
show that for F ∈ MUδ=2 these assumptions are fulfilled. First we recall the
fundamental classification:

Theorem 43. [5] For n ≥ 2 let addition of indices be modulo n, and define
Fn := {{v1, . . . , vn}, {v1, . . . , vn}}∪{{vi, vi+1} : i ∈ {1, . . . , n}} ∈ MU ′

δ=2. Now
for F ∈ MU ′

δ=2 we have F ∼= Fn(F ).

Theorem 44. MUδ=2 ⊆ CFIMU .

Proof. The first proof is obtained by applying Corollary 36 and the observation
that non-isomorphic elements ofMU ′

δ=2 have different numbers of variables. The
second proof is obtained by applying Theorem 42 and the fact that MU ′

δ=2 ⊆
SMU , whence MUδ=2 ⊆ ESMU . ��

7 Conclusion and Open Problems

We have discussed questions regarding confluence of singular DP-reduction on
minimally unsatisfiable clause-sets. Besides various detailed characterisations,
we obtained the invariance of the length of maximal sDP-reduction-sequences,
confluence for saturated and confluence modulo isomorphism for eventually sat-
urated clause-sets. The main open questions regarding these aspects are:

– Are there other interesting classes for which we can show confluence resp.
confluence mod isomorphism of singular DP-reduction?

– Can we characterise CFMU and/or CFIMU? Especially, what is the deci-
sion complexity of these classes?

As a first application of our results, around Theorem 44 we considered the types
of (arbitrary) elements of MUδ=2. This detailed knowledge is a stepping stone
for the determination of the isomorphism types of the elements of MU ′

δ=3,
which we have obtained meanwhile (to be published; based on a mixture of
general insights into the structure ofMU and (very) detailed investigations into
MUδ≤2). A typical application of Theorem 44 considers a class of F ∈ MUδ=2

given by some extremal condition, and then characterisation of these F becomes
possible once one knows they must reduce to some unique Fn, and so by in-
verse sDP-reduction one can reconstruct F from Fn. The major open problem
of the field is the classification (of isomorphism types) of MU ′

δ=k for arbitrary
k. Finally, regarding the potential applications as discussed in the introduction,
applying singular DP-reductions in algorithms searching for MUS’s is a natural
next step.
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5. Büning, H.K.: On subclasses of minimal unsatisfiable formulas. Discrete Applied
Mathematics 107, 83–98 (2000)

6. Büning, H.K., Kullmann, O.: Minimal unsatisfiability and autarkies. In: Biere,
A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability.
Frontiers in Artificial Intelligence and Applications, vol. 185, ch. 11, pp. 339–401.
IOS Press (February 2009)

7. Kullmann, O.: Obere und untere Schranken für die Komplexität von aussagenlo-
gischen Resolutionsbeweisen und Klassen von SAT-Algorithmen. Master’s thesis,
Johann Wolfgang Goethe-Universität Frankfurt am Main (Upper and lower bounds
for the complexity of propositional resolution proofs and classes of SAT algorithm;
Diplomarbeit am Fachbereich Mathematik) (April 1992) (in German)

8. Kullmann, O.: An application of matroid theory to the SAT problem. In: Fifteenth
Annual IEEE Conference on Computational Complexity, pp. 116–124. IEEE Com-
puter Society (July 2000)

9. Kullmann, O.: Lean clause-sets: Generalizations of minimally unsatisfiable clause-
sets. Discrete Applied Mathematics 130, 209–249 (2003)

10. Kullmann, O.: Constraint satisfaction problems in clausal form I: Autarkies and
deficiency. Fundamenta Informaticae 109(1), 27–81 (2011)

11. Kullmann, O.: Constraint satisfaction problems in clausal form II: Minimal unsat-
isfiability and conflict structure. Fundamenta Informaticae 109(1), 83–119 (2011)

12. Kullmann, O., Luckhardt, H.: Deciding propositional tautologies: Algorithms and
their complexity. Preprint, 82 pages; the ps-file can be obtained (January 1997),
http://cs.swan.ac.uk/~csoliver/Artikel/tg.ps

13. Kullmann, O., Luckhardt, H.: Algorithms for SAT/TAUT decision based on var-
ious measures. Preprint, 71 pages; the ps-file can be obtained (February 1999),
http://cs.swan.ac.uk/~csoliver/Artikel/TAUT.ps

14. Kullmann, O., Zhao, X.: On Variables with Few Occurrences in Conjunctive Nor-
mal Forms. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp.
33–46. Springer, Heidelberg (2011)

15. Kullmann, O., Zhao, X.: On Davis-Putnam reductions for minimally unsatisfiable
clause-sets. Technical Report arXiv:1202.2600v3 [cs.DM], arXiv (May 2012)

16. Marques-Silva, J.: Computing minimally unsatisfiable subformulas: State of the art
and future directions. Journal of Multiple-Valued Logic and Soft Computing (to
appear, 2012)

17. Szeider, S.: Minimal unsatisfiable formulas with bounded clause-variable difference
are fixed-parameter tractable. Journal of Computer and System Sciences 69(4),
656–674 (2004)

18. Zhao, X., Decheng, D.: Two tractable subclasses of minimal unsatisfiable formulas.
Science in China (Series A) 42(7), 720–731 (1999)

http://cs.swan.ac.uk/~csoliver/Artikel/tg.ps
http://cs.swan.ac.uk/~csoliver/Artikel/TAUT.ps


Improvements to Core-Guided
Binary Search for MaxSAT

Antonio Morgado1, Federico Heras1, and Joao Marques-Silva1,2
�

1 CASL, University College Dublin, Ireland
2 IST/INESC-ID, Lisbon, Portugal

Abstract. Maximum Satisfiability (MaxSAT) and its weighted variants are well-
known optimization formulations of Boolean Satisfiability (SAT). Motivated by
practical applications, recent years have seen the development of core-guided
algorithms for MaxSAT. Among these, core-guided binary search with disjoint
cores (BCD) represents a recent robust solution. This paper identifies a number
of inefficiencies in the original BCD algorithm, related with the computation of
lower and upper bounds during the execution of the algorithm, and develops so-
lutions for them. In addition, the paper proposes two additional novel techniques,
which can be implemented on top of core-guided MaxSAT algorithms that main-
tain both lower and upper bounds. Experimental results, obtained on representa-
tive problem instances, indicate that the proposed optimizations yield significant
performance gains, and allow solving more problem instances.

1 Introduction

Maximum Satisfiability (MaxSAT) and its variants, namely (Weighted) (Partial)
MaxSAT, find a growing number of practical applications. Concrete recent examples
include hardware design debugging [19] and fault localization in C code [9]. In addi-
tion, reference applications that use Pseudo-Boolean Optimization (PBO) can be cast as
MaxSAT [7,4]. Another major application of MaxSAT is in algorithms for Minimal Un-
satisfiable Subset (MUS) enumeration [13]. Indeed, the most efficient MUS enumera-
tion algorithms build on MaxSAT algorithms for computing all Maximal
Satisfiable Subsets (MSSes) and, from these, MUSes can be enumerated using a stan-
dard hitting set approach [13,18]. The variety of relevant applications of MUS enu-
meration (e.g. [13,1]), further highlights the practical significance of efficient MaxSAT
algorithms.

Motivated by the practical applications of MaxSAT, recent years have witnessed a
large number of MaxSAT algorithms being proposed. MaxSAT approaches for solv-
ing practical problem instances differ significantly from early work on MaxSAT [12,7].
These approaches are characterized by guiding the search with unsatisfiable subformu-
las [20] and are referred to as core-guided MaxSAT algorithms [6,16,14,2,3]. Recent
work has proposed two core-guided versions of binary search for MaxSAT [8]. These
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include a basic version (BC) and a version that maintains a set of disjoint unsatisfiable
cores (BCD). The BCD algorithm was shown to be one of the most efficient on a compre-
hensive set of problem instances from recent MaxSAT evaluations. Nevertheless, recent
detailed analysis of BCD revealed a number of possible inefficiencies, that result from
relaxed and conservative maintenance of lower and upper bounds.

This paper addresses the inefficiencies in the original BCD algorithm, and develops
a number of key optimizations. These optimizations can be categorized as: (i) modi-
fications to how the upper bound of each disjoint core is initialized, updated, and an
associated maintenance of a global upper bound; (ii) modifications on how the lower
bounds are updated when disjoint cores are merged; and (iii) techniques for refining the
lower bound so that it reflects a feasible sum of weights. The previous optimizations
are implemented in a new algorithm, BCD2, that often requires fewer SAT solver calls
than BCD. The paper also proves the correctness of BCD2 and shows that BCD2 is sig-
nificantly more efficient than BCD on a comprehensive set of benchmarks from recent
MaxSAT Evaluations.

In addition, the paper proposes two novel techniques, that can be implemented on top
of any core-guided MaxSAT algorithm that maintains both lower and upper bounds,
namely the hardening rule and biased search. The hardening rule, which has been
extensively used in branch and bound algorithms [5,12,11,7], is adapted for core-guided
binary search algorithms. As a result, many soft clauses can be declared hard. Binary
search algorithms always compute the middle value between a lower bound and an
upper bound. The biased search technique allows biasing the search with the outcomes
of the previous iterations and compute a value between the lower and upper bounds,
though not necessarily the middle one.

The remainder of the paper is organized as follows. Section 2 introduces the MaxSAT
problem and core-guided binary search MaxSAT algorithms. Section 3 details the in-
efficiencies of BCD, and develops a new improved algorithm for core-guided binary
search with disjoint cores (BCD2). Section 4 presents the hardening rule and biased
search techniques for core-guided MaxSAT. Section 5 evaluates the performance of the
algorithms with the proposed techniques. Section 6 presents some concluding remarks.

2 Preliminaries

Let X = {x1, x2, . . . , xn} be a set of Boolean variables. A literal l is either a vari-
able xi or its negation x̄i. A clause c is a disjunction of literals. A clause may also be
regarded as a set of literals. An assignment A is a mapping A : X → {0, 1} which
satisfies (unsatisfies) a Boolean variable x if A(x) = 1 (A(x) = 0). Assignments can
be extended in a natural way for literals (l) and clauses (c):

A(l) =
{
A(x), if l = x
1−A(x), if l = ¬x A(c) = max{A(l) | l ∈ c}

Assignments can also be regarded as set of literals, in which case the assignment A
satisfies (unsatisfies) a variable x if x ∈ A (x̄ ∈ A). A complete assignment contains
a literal for each variable, otherwise is a partial assignment. A CNF formula ϕ is a set
of clauses. A model is a complete assignment that satisfies all the clauses in a CNF
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formula ϕ. The Propositional Satisfiability Problem (SAT) is the problem of deciding
whether there exists a model for a given formula. Given an unsatisfiable formula ϕ, a
subset of clauses ϕC (i.e. ϕC ⊆ ϕ) whose conjunction is still unsatisfiable is called
an unsatisfiable core of the original formula. Modern SAT solvers can be instructed
to generate an unsatisfiable core for unsatisfiable formulas [20]. A weighted clause is
a pair (c, w), where c is a clause and w is the cost of its falsification, also called its
weight. Many real problems contain clauses that must be satisfied. Such clauses are
called mandatory (or hard) and are associated with a special weight�. Non-mandatory
clauses are also called soft clauses. A weighted formula in conjunctive normal form
(WCNF) ϕ is a set of weighted clauses. For MaxSAT, a model is a complete assignment
A that satisfies all mandatory clauses. The cost of a model is the sum of weights of the
soft clauses that it falsifies. Given a WCNF formula, Weighted Partial MaxSAT is the
problem of finding a model of minimum cost.

Core-Guided Binary Search Algorithms for MaxSAT. Several MaxSAT solvers in
the literature are based on iteratively calling a SAT solver and refining a lower bound,
an upper bound or both [6,2,3,16,14,8,10]. Core-guided MaxSAT algorithms are those
that additionally take advantage of unsatisfiable cores computed at each unsatisfiable
iteration to guide the search [6,2,3,16,14,8], (some of which use binary search [8]).

Auxiliary notation is introduced to describe core-guided binary search MaxSAT al-
gorithms. The remainder of the paper assumes a WCNF formula ϕ with m soft clauses.
Core-guided algorithms use relaxation variables, which are fresh Boolean variables.
The algorithms described add at most one relaxation variable to each soft clause. The
process of adding a relaxation variable to a clause, is referred to as relaxing the clause.
Relaxation variables are maintained in a set R, and it is assumed that relaxation vari-
able ri is associated to the soft clause ci with weight wi, 1 ≤ i ≤ m. In order to
add relaxation variables to soft clauses, the algorithms use the function Relax(R,ϕ, ψ)
which receives a set of existing relaxation variables R, a WCNF formula ϕ and a set
of soft clauses ψ and returns the pair (Ro, ϕo). ϕo corresponds to ϕ whose soft clauses
included in ψ have been augmented with fresh relaxation variables. Ro corresponds
to R augmented with the relaxation variables added in ϕo. Given the set of relax-
ation variables in R, the algorithms add cardinality / pseudo-Boolean constraints [4]
and translate them to hard clauses. Such constraints usually state that the sum of the
weights of the relaxed clauses is less than or equal to a specific value K (AtMostK
with

∑m
i=1 wiri ≤ K). The algorithms use the following functions:

– Soft(ϕ) returns the set of all soft clauses in ϕ.
– SATSolver(ϕ)makes a call to the SAT solver and returns a triple (st, ϕC ,A), where

st is the status of the formula ϕ, that is whether ϕ is satisfiable (SAT or UNSAT).
If st =UNSAT, then ϕC contains an unsatisfiable core of ϕ, and if st =SAT, then
A corresponds to a complete satisfying assignment of ϕ. Throughout the paper, by
abuse of notation, st is referred to as the outcome of the SAT solver.

– CNF(c) returns a set of clauses that encode the constraint c into CNF.

Core-guided binary search (BC) and its extension with disjoint cores (BCD) [8] com-
pute both a lower bound and an upper bound and have been shown to be very robust
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Algorithm 1. BCD
Input: ϕ

1 (ϕW , ϕS, C, lastA) ← (ϕ, Soft(ϕ), ∅, ∅) // C - set of disj. core’s information
2 repeat
3 ∀Ci∈C , νi ← (λi + 1 = μi) ? μi : �μi+λi

2 �
4 (st, ϕC ,A) ← SATSolver(ϕW ∪

⋃
Ci∈CCNF(

∑
rj∈Ri

wj · rj ≤ νi))

5 if st = SAT then
6 lastA ← A
7 ∀Ci∈C , μi ←

∑
rj∈Ri

wj · A(rj)

8 else
9 subC ← Intersect(ϕC, C) // subC - set of disj. cores that intersect ϕC

10 if ϕC ∩ ϕS = ∅ and |subC| = |{< Rs, λs, νs, μs >}| = 1 then
11 λs ← νs
12 else
13 (Rs, ϕW ) ← Relax(∅, ϕW , ϕC ∩ ϕS)
14 (λs, μs) ← (0,

∑
rj∈Rs

wj + 1)

15 ∀Ci∈subC , (Rs, λs, μs) ← (Rs ∪ Ri, λs + λi, μs + μi)

16 C ← C \ subC ∪ {< Rs, λs, 0, μs >}
17 end
18 end
19 until ∀Ci∈C λi + 1 ≥ μi

20 return lastA

approaches for MaxSAT solving (in terms of number of solved instances). In what fol-
lows, the most sophisticated version (BCD) is briefly overviewed.

The pseudo-code of BCD is shown in Algorithm 1. BCD maintains information about
disjoint cores in a set C (initially empty). Whenever a new core is found, a new entry Cs

in C is created, that contains the set of relaxation variables Rs in the core (after relaxing
required soft clauses), a lower bound λs, an upper bound μs, and the current middle
value νs, i.e. Cs =< Rs, λs, νs, μs >. The algorithm iterates while there exists a Ci

for which λi + 1 < μi (line 19). Before calling the SAT solver, for each Ci ∈ C, the
middle value νi is computed with the current bounds and an AtMostK constraint is
added to the working formula (lines 3-4). If the SAT solver returns SAT, the algorithm
iterates over each core Ci ∈ C and its upper bound μi is updated according to the
satisfying assignment A (lines 6-7). If the SAT solver returns UNSAT, then the set
subC is computed which contains every Ci in C that intersects the current core (i.e.
subC ⊆ C, line 9). If no soft clause needs to be relaxed and |subC| = 1, then subC =
{< Rs, λs, νs, μs >} and λs is updated to νs (line 11). Otherwise, all the required soft
clauses are relaxed, an entry for the new core Cs is added to C, which aggregates the
information of the previous cores in subC, and each Ci ∈ subC is removed from C
(lines 13-16).

A concept similar to disjoint cores (namely covers) is used by the core-guided (non
binary search) algorithm WPM2 [3] coupled with the constraints to add in each iteration.

3 Improving BCD

Detailed analysis of BCD has revealed two key inefficiencies, both related with how the
lower and upper bounds are computed and updated. The first observation is that BCD
does not maintain a global upper bound. When the SAT solver outcome is satisfiable
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Algorithm 2. BCD2
Input: ϕ

1 (ϕW , ϕS) ← (ϕ,Soft(ϕ))
2 ∀cj∈ϕS

, σj ← wj

3 (C,Aμ, μ) ← (∅, ∅, 1 +
∑

cj∈ϕS
σj)

4 repeat
5 ∀Ci∈C , νi ← �λi+εi

2 �
6 (st, ϕC ,A) ← SATSolver(ϕW ∪

⋃
Ci∈CCNF(

∑
rj∈Ri

wj · rj ≤ νi))

7 if st = SAT then
8 ∀cj∈ϕS

, σj ← 0

9 ∀Ci∈C∀rj∈Ri
, σj ← wj · (1 − A(cj \ {rj})) // cj ∈ ϕW and rj ∈ cj

10 ∀Ci∈C , εi ←
∑

rj∈Ri
σj

11 (μ,Aμ) ← (
∑

Ci∈C
∑

rj∈Ri
σj ,A)

12 else
13 subC ← Intersect(ϕC, C)
14 if ϕC ∩ ϕS = ∅ and |subC| = |{< Rs, λs, νs, εs >}| = 1 then
15 λs ← Refine({wj}rj∈RS

, νs)

16 else
17 (Rs, ϕW ) ← Relax(

⋃
Ci∈subC Ri, ϕW , ϕC ∩ ϕS)

18 Δ ← min
{
1 + min{νi − λi | Ci ∈ subC},min{wj | rj is a new relax. var.}

}

19 λs ←Refine({wj}rj∈Rs ,
∑

Ci∈subC λi + Δ − 1)

20 εs ← ((Aμ = ∅) ? 1 : 0) +
∑

rj∈Rs
σj

21 C ← C \ subC ∪ {< Rs, λs, 0, εs >}
22 end
23 end
24 until

∑
Ci∈C λi =

∑
Ci∈C εi = μ

25 return Aμ

(SAT), each μi value is updated for each disjoint core Ci ∈ C, with an overall sum
given by K1 =

∑
Ci∈C μi. However, after merging disjoint cores, if the SAT solver

outcome is again SAT, it can happen that K2 =
∑

Ci∈C μi > K1. Although this issue
does not affect the correctness of the algorithm, it can result in a number of iterations
higher than needed to compute the optimum. The second observation is that the lower
bound updates for each disjoint core are conservative. A more careful analysis of how
the algorithm works allows devising significantly more aggressive lower bound updates.
Again, the main consequence of using conservative lower bounds is that this can result
in a number of iterations higher than needed to compute the optimum.

This section presents the new algorithm BCD2. Although similar to BCD, BCD2 pro-
poses key optimizations that address the inefficiencies described above. As the experi-
mental results demonstrate, these optimizations lead to significant performance gains,
that can be explained by a reduced number of iterations.

The pseudo-code of BCD2 is shown in Algorithm 2. The organization of BCD2 is
similar to the organization of BCD but with important differences. The first difference
between BCD and BCD2 is the way the algorithms use the information of the upper
bounds. As stated before, BCD does not maintain a global upper bound, and as such,
whenever an upper bound is needed, then the worst case scenario is used. Concretely in
line 14 of BCD, the upper bound is updated with the weights of the new relaxed clauses.

On the other hand, BCD2 keeps a global upper bound μ and its corresponding as-
signmentAμ. More importantly it maintains the cost of each soft clause for the current
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global upper bound. In order to achieve this, BCD2 associates with each soft clause j
a variable σj that represents the contribution of the clause to the overall cost of the
global upper bound. σj can take as value either 0 or wj (the weight of the soft clause
j) depending on whether Aμ unsatisfies the clause or not. In contrast to BCD, the con-
tribution of soft clauses is with respect to the original variables. As such in line 9 of
BCD2, the update of σj considers the satisfiability of the clause cj without the relax-
ation variable (wj · (1 − A(cj \ {rj}))), rather than the satisfiability of the relaxation
variable (wj · A(rj)) as in BCD (line 7). Considering the satisfiability of the original
soft clause instead of the associated relaxation variable, has the benefit of tightening the
upper bound on assignments that satisfy the clause without the relaxation variable but
still satisfy the relaxation variable.

Unlike BCD, BCD2 does not maintain upper bounds in the disjoint cores. Instead,
each disjoint core Ci maintains an estimate εi that represents the contribution of the
disjoint core to the cost of the global upper bound. Each εi takes the role of the upper
bounds μi in BCD, with updates that respect the last satisfying assignment. The differ-
ence is that in BCD2, the updates of the estimates, done in lines 10 and 20, include the
contribution of the soft clauses to the global upper bound (stored in the σj variables).

The use of σj variables in the computation of estimates εi, allow BCD2 to use the in-
formation of the current upper bound assignment for a tighter bound, specifically, when
merging cores with soft clauses not previously relaxed. The contribution of the newly
relaxed clauses in the update of εi in line 20, is dependent on a previous discovery of a
satisfying assignment. Before the first satisfying assignment is found, the contribution
is the same as in BCD, that is the weight of the soft clause (σj = wj , initialization of σj

in line 2 of BCD2), whereas after the first satisfying assignment, newly relaxed clauses
are satisfied by Aμ (thus σj = 0 from line 8) and its contribution to εi is 0.

The reason why the εi variables are called estimates is that, unlike the upper bound μi

of BCD, the εi variables are allowed to have a value lower than the cost of the optimum
model restricted to the clauses associated to the disjoint core. In such situations εi is
said to be optimistic and represents a local optimum of a MaxSAT model. BCD2 can
shift εi away from the local optimum by merging with different cores as needed.

Example 1. Consider an execution of the algorithm with the current working formula
ϕW = ϕS ∪ϕH , where ϕS = {(x1 ∨ r1, 5), (x2 ∨ r2, 10), (x3 ∨ r3, 30), (x4 ∨ r4, 10)} and
ϕH = {(¬x1 ∨ ¬x2), (¬x2 ∨ ¬x3), (¬x3 ∨ ¬x4)}. Consider the upper bound assignment
Aμ = {x1 = x3 = r2 = r4 = 0, x2 = x4 = r1 = r3 = 1} with a cost of 35, and two dis-
joint cores C1 =< R1 = {r1, r2}, λ1 = 5, ν1 = 5, ε1 = 5 >, C2 =< {r3, r4}, 10, 20, 30 >.

The optimum cost of ϕ is 20. Considering the optimum model, the contribution of
the clauses associated to C1 is 10 which is lower than ε1, thus ε1 is optimistic. The next
core returned by the SAT solver merges C1 and C2 into a new disjoint core C3 with
ε3 = 35.

Another improvement in BCD2 is the way the lower bound is computed when merging
cores. In this case, BCD2 proposes a stronger update in lines 18 and 19, which corre-
sponds to the expression in Equation 1.

∑

Ci∈subC
λi + min

{
1 + min{νi − λi|Ci ∈ subC}, min{wj |rj new relax. var.}

}
(1)
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The update of the lower bound of the merged disjoint cores in Equation 1, is obtained
by summing all the previous lower bounds, as is done by BCD in line 15, but also by
adding an increment Δ (line 18 in BCD2). The rationale for the increment Δ comes as
a justification for obtaining the current core. At this point of the algorithm, there are
three possible reasons why the current core was obtained: (i) one or more of the newly
relaxed soft clauses has a non-zero contribution to the cost of the final optimum model;
(ii) one or more of the disjoint cores is unable to satisfy the corresponding constraint∑

rj∈Ri
wj · rj ≤ νi; (iii) a combination of the previous two.

Suppose that the reason for obtaining the current core is as stated in (i). Since the
number of newly relaxed soft clauses with a non-zero contribution is unknown, then Δ
corresponds to the weight of the relaxation variable with the lowest weight, that is, in
this case Δ = min{wj |rj new relax. var.}.

Consider now that the reason for obtaining the current core is as stated in (ii). Then
at least one of the disjoint cores merged, requires its lower bound to be increased from
λi to νi + 1 (an increment of 1 + νi − λi). Since it is unknown which disjoint cores
require to be increased, then in Δ is only considered the disjoint core with the lowest
increment, that is Δ = 1 +min{νi − λi|Ci ∈ subC}.

Finally, in the case of reason (iii), the increment Δ can be obtained by summing the
increments corresponding to the previous reasons. Nevertheless, it is unknown exactly
which of the three reasons explains the current core, then BCD2 uses as increment the
minimum of the previous increments, thus obtaining the expression in Equation 1.

An additional difference between the algorithms is the use of the Refine() function to
further improve the update of the lower bound in lines 15 and 19 of BCD2. The result of
Refine({wj}, λ) is the smallest integer greater than λ that can be obtained by summing
a subset of the input weights {wj}. In BCD2, Refine({wj}, λ) starts by searching if
all weights are equal, in which case the minimum sum of weights greater than λ is
returned, otherwise, subsetsum({wj}, λ) is computed as used by WPM2 [3].

Finally, the last difference between BCD and BCD2 is the stopping criteria. Given the
new bounds, BCD2 stops when the sum the lower bounds of each disjoint core is the
same as the global upper bound.

3.1 Proof of Correctness

This subsection proves the correctness of the BCD2 algorithm. First, the correctness
of the updates of the lower bound are proven, followed by a proof of the invariant of
BCD2. The section ends with a proof of the correctness of BCD2.

Proposition 1. Consider a disjoint core Cs in the conditions of the update of λs in
line 15. There is no MaxSAT model for which the clauses associated to Cs contribute to
the cost with a value smaller than Refine({wj}rj∈Rs , νs).

Proof. Consider an iteration where the SAT solver returned a core which only contains
clauses previously relaxed, and that these clauses belong to the same disjoint core Cs.

For the purpose of contradiction, assume there is a model for which the clauses of
Cs contribute with a cost lower than νs + 1. Then the assignment of the model can
be augmented with assignments to the relaxation variables, such that, each relaxation
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variable ri ∈ Rs is assigned true iff the assignment of the model does not satisfy the
corresponding clause ci. The augmented assignment is able to satisfy the constraint∑

ri∈Rs
wi · ri ≤ νs, all the hard clauses (because it is a MaxSAT model), and all the

soft clauses (due to the assignments to the relaxation variables). Then the core returned
by the SAT solver is not an unsatisfiable subformula, which is a contradiction, thus the
update λs ← νs + 1 is correct.

Since there is no model with λs ≤ νs, then the next value to consider for
∑

ri∈Rs
wi ·

ri is the minimum sum of subsets of {wj}rj∈Rs that is greater than νs. This corresponds
to the value returned by Refine({wj}rj∈Rs , νs). Thus the update on line 15 is correct.

Proposition 2. Consider the subset of disjoint cores subC = {C1, . . . , Cm} and a new
set of relaxation variables and Δ as in the conditions of line 19, then there is no MaxSAT
model for which the clauses associated to the resulting disjoint core Cs contribute to
the cost with a value smaller than Refine({wj}rj∈Rs ,

∑
Ci∈subC λi +Δ− 1).

Proof. There is no model with cost lower than
∑

Ci∈subC λi because at this point of
the algorithm, each disjoint core Ci ∈ subC has been proved to have a lower bound of
at least λi. Then the union of disjoint sets of the clauses of each Ci together with the
clauses that just got relaxed have a cost of at least

∑
Ci

λi in any MaxSAT model.
Consider by contradiction, that there is a model, for which the clauses associated to

the resulting disjoint core Cs, have a cost costSol ∈ [
∑

Ci∈subC λi,
∑

Ci∈subC λi +Δ[.
Two cases are considered.

1) In the first case, suppose that the model assigns to true at least one of the new
relaxation variables (of the soft clauses that just got relaxed), and that the cost associated
to that relaxation variable is wnewRV . Then,

wnewRV ≥ min{wj |rj is a new relax. var.} ≥ Δ

Consider the contribution of all the clauses without the newly relaxed clause:

costSol − wnewRV ≤ costSol −Δ

but by contradiction costSol <
∑

Ci∈subC λi +Δ and then

costSol − wnewRV ≤ costSol −Δ <
∑

Ci∈subC
λi

which means that the contribution of the remaining clauses is lower than
∑

Ci∈subC λi;
but this is a contradiction (previously the cost of the union of clauses of Ci ∈ subC was
proven to be at least

∑
Ci∈subC λi ).

2) In the second case suppose that the model assigns all newly relaxed clauses to
false, then the contribution of the newly relaxed clauses is 0. Since by contradiction

costSol <
∑

Ci∈subC
λi +Δ ≤

∑

Ci∈subC
λi + 1 +min{νi − λi|Ci ∈ subC}

then
costSol −

∑

Ci∈subC\{C1}
λi ≤ λ1 +min{νi − λi|Ci ∈ subC} ≤ ν1
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Let costSol〈Ci〉 be the contribution of the clauses of Ci to the cost of the model.
Previously, was proven that costSol〈Ci〉 ≥ λi, then

costSol〈C1〉 = costSol −
∑

Ci∈subC\{C1}
costSol〈Ci〉 ≤ costSol −

∑

Ci∈subC\{C1}
λi ≤ ν1

By analogy, for each of the disjoint cores merged Ci ∈ subC, costSol〈Ci〉 ≤ νi Then
the model is able to satisfy all the new soft clauses and the constraints

∑
rj∈Ri

wj ·rj ≤
νi. Since the model is a MaxSAT model, then it is also able satisfy all the hard clauses,
meaning that the model is able to satisfy all the clauses in the core; but this is again a
contradiction.

Since there is no model with λs <
∑

Ci∈subC λi+Δ, then the next value to consider
for
∑

ri∈Rs
wi · ri is the minimum sum of subsets of {wj}rj∈Rs that is greater than∑

Ci∈subC λi +Δ− 1. This corresponds to the value returned by
Refine({wj}rj∈Rs ,

∑
Ci∈subC λi +Δ− 1). Thus the update on line 19 is correct.

Proposition 3 (Invariant of BCD2). Let opt be cost of the optimum model of a MaxSAT
instance. During the execution of BCD2, the invariant

∑
Ci∈C λi ≤ opt ≤ μ holds.

Proof. Initially C is empty, and
∑

Ci∈C λi is 0. On the other hand, μ is initialized to∑
(cj,wj)∈Soft(ϕ) wj + 1. Since 0 ≤ opt ≤

∑
(cj,wj)∈Soft(ϕ) wj , then initially the

invariant holds.
Each λi is only updated on unsatisfiable iterations in lines 15 and 19 and each update

was proved to be correct in Propositions 1 and 2, respectively. Then after the updates
we are guaranteed that

∑
Ci∈C λi ≤ opt.

Consider now a satisfiable iteration. Assume for the sake of contradiction that μ is
updated such that μ < opt. Then the assignment returned by the SAT solver can be
extended with assignments to new relaxation variables (one for each clause not yet
relaxed). In particular, these variables can be assigned value false. Then, the sum of
the weights of the relaxation variables assigned value true is lower than opt which is
a contradiction since, by definition, the sum of weights of relaxed clauses is an upper
bound on the optimum MaxSAT model.

Proposition 4. For any disjoint core Cs, the invariant λs ≤ εs holds.

Proof. The values of variables εi are only updated in lines 10 and 20 (see Algorithm 2).
The updates are due to assignments that are models to the MaxSAT formula, and repre-
sent the cost of the model with respect to the clauses associated to the disjoint core Ci.
Line 20 also considers the case where no model has been found yet, and updates εi to
one plus the sum of all the weights of the soft clauses considered.

On the other hand, the values of variables λi are only updated in lines 15 and 19. In
Propositions 1 and 2, was proven that there is no MaxSAT model with a cost smaller
than the update of the lower bound in lines 15 and 19 (with respect to the clauses
associated with the resulting core Cs). Hence, λs ≤ εs for each disjoint core Cs.

Proposition 5. BCD2 is correct and returns the optimum model for any WCNF for-
mula.
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Proof. The algorithm performs binary search on the range of values {
∑

Ci∈C λi, . . . , μ}.
In each iteration the algorithm asks for a model with a cost at most

∑
Ci∈C νi. Due to

the assignment of each νi in line 5 and Proposition 4, then
∑

Ci∈C λi ≤
∑

Ci∈C νi ≤ μ.
If the SAT solver returns with a satisfiable answer, then μ is updated to a lower value
than the current upper bound (due to the added constraints). If the SAT solver returns
with an unsatisfiable answer, then either

∑
Ci∈C λi increases or more than one of the

disjoint cores are merged. Since the number of clauses to be relaxed is bounded by
the number of soft clauses, then the maximum number of merges of disjoint cores is
also bounded (disjoint cores only contain clauses that are relaxed). Thus the number of
iterations where the algorithm does not increase the sum

∑
Ci∈C λi, is bounded.

Finally, Proposition 3 proves that during the execution of the algorithm, there is
always an optimum MaxSAT model between the bounds. Since the bounds are integer
numbers, then the algorithm is guaranteed to stop with the optimum MaxSAT model.

4 Additional Techniques

This section introduces two additional techniques to improve the performance of core-
guided binary search algorithms, namely, the hardening rule and biased search.

4.1 Hardening Rule

The hardening rule is widely used in branch and bound (BB) algorithms for MaxSAT
[12,11,7] which are based on a systematic enumeration of all possible assignments,
where large subsets of useless assignments are discarded by computing upper and lower
bounds on the cost of the optimum model. Whenever the weight of a soft clause plus
the lower bound reaches the upper bound, the clause can be made hard. Indeed, the
hardening rule was introduced in the most primitive BB algorithm for MaxSAT in the
literature [5], but nowadays is still not used in core-guided MaxSAT algorithms. In what
follows, a first integration of the hardening rule is proposed for core-guided MaxSAT
algorithms that maintain both a lower bound and upper bound. To explain the idea, each
soft clause (c, w) is extended with two weights (c, w, w′) where w is the original weight
and w′ represents the weight of the clause after its contributions to the lower bound have
been deducted. w′ will be referred as the deducted weight. Let ϕd be a set of soft clauses
involved in an increment d of the global lower bound. Then, the deducted weight of all
the soft clauses in ϕd needs to be decreased by d. As a result, the hardening rule is
applied taking into account the deducted weight rather than the original one. Hence, the
hardening rule is shown in Equation 2

if w′ + λ ≥ μ then (c, w,w′) can be replaced by (c,�,�) (2)

Let (c, w, w′) be a soft clause that is made hard due to the hardening rule. There are
two situations. If the soft clause has no relaxation variable, the weight of the clause is
just replaced by �. If the soft clause has a relaxation variable, the weight is updated to
� and additionally, the relaxation variable is removed.

Example 2. Consider the formula {(x, 3, 3), (x̄, 4, 4), (y, 3, 3), . . .}. An initial upper
bound μ = 5 is obtained using any heuristic [8]. An initial lower bound λ = 3 can
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be obtained due to an unsatisfiable core between the two first clauses. The minimum
weight for the conflicting clauses (x, 3, 3) and (x̄, 4, 4) is 3. The resulting formula is
{(x, 3, 0), (x̄, 4, 1), (y, 3, 3), . . .} with λ = 3. Then, the hardening rule can be applied
to the clause (y, 3, 3) given that 3 + 3 ≥ 5 . Hence, (y, 3, 3) is replaced by (y,�,�).
The current formula is {(x, 3, 0), (x̄, 4, 1), (y,�,�), . . .} with λ = 3 and μ = 5.

The integration of the hardening rule in BCD2 is as follows. Assume BCD2 maintains
internally the deducted weight of each soft clause, then any of the initial lower bounds
introduced in [8] can be used. Such lower bounds iteratively compute unsatisfiable cores
until a satisfiable instance is reached. For each unsatisfiable core, the minimum weight
is subtracted to the deducted weight of each soft clause in the core.

Assume any arbitrary iteration of the main loop of BCD2. Let λ =
∑

Ci∈C λi be the
global lower bound and let μ =

∑
Ci∈C εi be the global upper bound, before the call

to the SAT solver (line 6). After the call to the SAT solver, there are two possibilities:

– The SAT solver returns satisfiable (SAT). The global upper bound μ is updated and
the hardening rule is checked with the new global upper bound.

– The SAT solver returns unsatisfiable (UNSAT) and the global lower bound is in-
creased. Let λ′ =

∑
Ci∈C λi be the new global lower bound in line 23. Let d

be the difference between the previous and the current global lower bounds, i.e.,
d = λ′ − λ. Such increment d is due to the disjoint core Cs in line 15 or in line
21. Hence, the deducted weight of each soft clause in the proper disjoint core Cs is
decreased by d. Afterwards, the hardening rule is checked.

4.2 Biased Search

At each iteration, binary search algorithms compute a middle value ν between an upper
bound μ and a lower bound λ (i.e. ν ← -μ+λ

2 .). However, when the cost of the optimum
model is close to one of the bounds, binary search can make several iterations before
realizing that. In fact, QMAXSAT (0.4 version) solver [10] alternates iterations which
compute the middle value between the bounds, and iterations which use the value of the
upper bound. As such, QMAXSAT favors the discovery of models with a cost closer
to the upper bound. Note that QMAXSAT was the best performing solver on recent
MaxSAT Evaluations in the partial MaxSAT industrial category.

This paper proposes to compute a value between the lower bound and upper bound
(i.e. ν ∈ [λ, μ]) based on the previous iterations. Two counters are maintained. A
counter of the iterations that returned satisfiable (SAT) nsat, and a counter of the iter-
ations that returned unsatisfiable (UNSAT) nunsat. Both counters are initialized to 1.
At each iteration of the binary search algorithm the following percentage is computed:

p = nunsat/(nunsat+ nsat)

The expression compares the number of unsatisfiable iterations against the total number
of iterations, and gives a value closer to the bound with fewer outcomes in terms of a
percentage. The value ν to be considered at each iteration is ν = λ+ p× (μ− λ).

Note that the QMAXSAT approach is similar to always alternating the percentage
p between 50% (middle value) and 100% (upper bound). The integration in BCD2 is
straightforward. For each disjoint core Ci with estimate of the upper bound εi and lower
bound λi, BCD2 computes the value νi as νi = λi + p× (εi − λi).
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Fig. 1. (a) Scatter plot of BCD vs BCD2, (b) Cactus plot of BC, BCD, BCD2 and BCD2 with
additional techniques

5 Experimental Evaluation

Experiments were conducted on a HPC cluster with 50 nodes, each node is a CPU
Xeon E5450 3GHz, 32GB RAM and Linux. For each run, the time limit was set to
1800 seconds and the memory limit to 4GB. BCD2 and the additional techniques were
implemented in the MSUNCORE [17] system, and compared against BC and BCD1.

Figure 1 presents results on the performance of BCD2 (from Section 3) and the
new techniques (from Section 4) in all of the non-random instances from 2009-2011
MaxSAT Evaluations (for a total of 2615 instances). The scatter plot (Figure 1.a) shows
a comparison of the original BCD [8] with BCD2 (as described in Section 3). Note that
BCD2 (1813) solves 12 more instances than BCD (1801). The scatter plot indicates that
in general BCD requires larger run times than BCD2. A more detailed analysis indicates
that, out of 1305 instances where the performance difference between BCD and BCD2
exceeds 20%, BCD2 outperforms BCD in 918, whereas BCD outperforms BCD2 in 387.
Moreover, over the 1793 instances solved by both BCD and BCD2, the total number of
SAT solver calls for BCD is 124907 and for BCD2 is 68690. This represents an average
of 31.5 fewer SAT solver calls per instance for BCD2 (from 69.7 to 38.3), i.e. close to
50% fewer calls in BCD2 than in BCD on average. The difference is quite significant;
it demonstrates the effectiveness of the new algorithm, but also indirectly suggests that
some of the SAT solver calls, being closer to the optimum, may be harder for BCD2
than for BCD. Nevertheless, BCD2 consistently outperforms BCD overall.

The cactus plot (Figure 1.b) shows the run times for BCD, BCD2, BCD2 with hard-
ening rule (BCD2-H), BCD2 with biased search (BCD2-B) and BCD2 with both tech-
niques (BCD2-B-H). The original core-guided binary search algorithm [8] (BC) is also
included. The performance difference between BCD and BCD2 is conclusive, and con-
firmed by the area below each plot. For the vast majority of instances, BCD2 outper-
forms BCD. The hardening rule (BCD2-H) allows solving 3 additional instances than
BCD2, whereas biased search (BCD2-B) allows solving one more instance. However,

1 Observe that in [8], BCD was shown to solve more instances than a representative sample of
MaxSAT solvers.
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Set #I. BC BCD BCD2 BCD2-B BCD-H BCD-B-H
Upgrade 100 65 100 100 100 100 100
TimeT 32 11 12 12 13 13 13
Pedi-A 45 37 38 39 39 41 44
Pedi-B 45 45 44 44 44 45 45
Pedi-C 90 68 73 77 76 84 83
Pedi-D 50 44 44 43 43 45 45
Pedi-E 90 42 50 57 59 66 67
Pedi-F 90 49 59 63 62 73 74
Pedi-G 90 20 30 39 40 47 50
Total 632 381 450 474 476 514 521
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Fig. 2. (a) Table number of solved instances per algorithm (b) Cactus plot with the different
algorithms

the integration of both techniques (BCD2-B-H) allows solving 1832 instances, i.e. 19
more instances than BCD2 and 31 more than the original BCD. As expected, BC is the
worst performing algorithm (solves 1730 instances), and indirectly demonstrates that
maintaining disjoint cores is essential to obtain a more robust algorithm.

The effect of the more accurate bounds maintained by BCD2 and the additional tech-
niques is even more significant on weighted partial MaxSAT industrial instances. A
second experiment, see Figure 2, shows the results for 100 upgradeability instances, 32
timetabling instances [3] and 500 haplotyping with pedigrees instances [15]. Observe
that the haplotyping with pedigrees instances are divided in 7 sets (A, B, C, D, E, F, G).
The results are summarized in the table of Figure 2.a. The first column shows the name
of benchmark set. The second column shows the total number of instances in the set.
The remaining columns show the total number of solved instances within the time and
memory limits by BC, BCD and the different versions of BCD2. The same results are
presented with a cactus plot in Figure 2.b to highlight the runtimes.
BC is again the worst performing algorithm, and is the only approach unable to solve

the 100 upgradeability problems. BCD outperforms BC and solves 69 more instances.
BCD2 is clearly better than BCD, being able to solve 26 more instances. Biased search
(BCD2-B) has small effect and solves 2 more instances than BCD2. The hardening rule
(BCD2-H) is quite helpful on these instances and solves 40 more instances than BCD2.
Finally, the integration of the two new techniques (BCD2-B-H) allows solving 521 in-
stances, i.e. 47 more instances than BCD2 and 71 more than the original BCD.

6 Conclusions

This paper proposes a number of improvements to a recently proposed MaxSAT algo-
rithm [8] that implements core-guided binary search. The first improvement addresses
the organization of the original algorithm, and modifies the algorithm to (i) maintain
a global upper bound, that results in tighter local upper bounds for each disjoint core;
and (ii) use of more aggressive lower bounding techniques. The improvements to the
upper and lower bound result in significant reduction in the number of SAT solver calls
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made by the algorithm. The second improvement consists of two techniques that can
be implemented on top of any core-guided algorithm that uses lower and upper bounds.
One of the techniques is referred to as the hardening rule and has been extensively
used in branch-and-bound algorithms [5,12,11,7], but not in core-guided algorithms.
The second technique is referred to as biased search, and is shown to work effectively
with the hardening rule. Experimental results, obtained on a comprehensive set of in-
stances from past MaxSAT Evaluations, demonstrates that the new algorithm BCD2
significantly outperforms (an already quite robust) BCD.
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Abstract. In this paper we address the following problem: given an unsatisfi-
able CNF formula F , find a minimal subset of variables of F that constitutes
the set of variables in some unsatisfiable core of F . This problem, known as vari-
able MUS (VMUS) computation problem, captures the need to reduce the number
of variables that appear in unsatisfiable cores. Previous work on computation of
VMUSes proposed a number of algorithms for solving the problem. However, the
proposed algorithms lack all of the important optimization techniques that have
been recently developed in the context of (clausal) MUS computation. We show
that these optimization techniques can be adopted for VMUS computation prob-
lem and result in multiple orders magnitude speed-ups on industrial application
benchmarks. In addition, we demonstrate that in practice VMUSes can often be
computed faster than MUSes, even when state-of-the-art optimizations are used
in both contexts.

1 Introduction

Concise descriptions of the sources of inconsistency in unsatisfiable CNF formulas have
traditionally been associated with Minimally Unsatisfiable Subformulas (MUSes). An
MUS of a CNF formula is an unsatisfiable subset of its clauses that is minimal in the
sense that any of its proper subsets is satisfiable. Development of efficient algorithms
for computation of MUSes is an active area of research motivated by many applica-
tions originating from industry [10,6,11,17,12]. The most recent generation of MUS
extraction algorithms is capable of handling large industrial formulas efficiently.

Additional ways of capturing sources of inconsistency in CNF formulas have been
proposed. For example, in [9,12] the inconsistency is analysed in terms of sets of clauses
(the so called groups of clauses); efficient algorithms for the computation of group-
MUSes have been developed in [12,16]. Sources of inconsistency can also be described
in terms of the sets of the variables of the formula. One such description, the variable-
MUS (VMUS), has been proposed in [4] — a variable-MUS of an unsatisfiable CNF
formula F is a subset V of its variables that constitutes the set of variables of some
unsatisfiable subformula of F and is minimal in the sense that no proper subset of V
has this property. While [4] does not develop any VMUS extraction algorithms, in [6]
several such algorithms have been proposed, and their applications have been pointed
out. However, the proposed algorithms lack all the optimization techniques parallel to
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those that have been recently developed in the context of (clausal) MUS computation
(e.g. [10,2]) and are known to be essential for handling large industrial instances. This
observation motivates the development of novel optimization techniques for VMUS
computation algorithms.

Beside a pure scientific interest in the development of efficient algorithms for VMUS
computation, this line of research is motivated by a number of possible industrially-
relevant applications of VMUSes (e.g. [5]) and other related variable-based descriptions
of inconsistency in CNF formulas. To this end, in this paper we make the following
contributions. We formalize the VMUS computation problem and its extensions, and
establish basic theoretical properties. We describe a number of optimization techniques
to the basic VMUS computation algorithm presented in [6] and demonstrate empirically
the multiple-order of magnitude improvements in the performance of the algorithm on
the set of industrially-relevant benchmarks used for the evaluation of MUS extractors in
SAT Competition 2011. We develop a relaxation-variable based constructive algorithm
for VMUS extraction, based on the ideas proposed in [10]. We also describe a num-
ber of indirect approaches whereby the VMUS computation problem is translated to
group-MUS computation problem, and evaluate these approaches empirically. Finally,
we describe a number of potential industrial applications of VMUSes and its extensions.

2 Preliminaries

We focus on formulas in CNF (formulas, from hence on), which we treat as (finite)
(multi-)sets of clauses. We assume that clauses do not contain duplicate variables.

Given a formula F we denote the set of variables that occur in F by V ar(F), and
the set of variables that occur in a clause C ∈ F by V ar(C). An assignment τ for F is
a map τ : V ar(F) → {0, 1}. By τ |¬x we denote the assignment (τ \ {〈x, τ(x)〉}) ∪
{〈x, 1 − τ(x)〉}. Assignments are extended to clauses and formulas according to the
semantics of classical propositional logic. By Unsat(F , τ) we denote the set of clauses
of F falsified by τ . If τ(F) = 1, then τ is a model of F . If a formula F has (resp. does
not have) a model, then F is satisfiable (resp. unsatisfiable). By SAT (resp. UNSAT)
we denote the set of all satisfiable (resp. unsatisfiable) CNF formulas.

A CNF formula F is minimally unsatisfiable if (i) F ∈ UNSAT, and (ii) for any
clause C ∈ F , F \ {C} ∈ SAT. We denote the set of minimally unsatisfiable CNF
formulas by MU. A CNF formula F ′ is a minimally unsatisfiable subformula (MUS)
of a formula F if F ′ ⊆ F and F ′ ∈ MU. The set of MUSes of a CNF formula F is
denoted by MUS(F). (In general, a given unsatisfiable formula F may have more than
one MUS.)

A clause C ∈ F is necessary for F (cf. [8]) if F ∈ UNSAT and F \ {C} ∈ SAT.
Necessary clauses are often referred to as transition clauses. The set of all necessary
clauses of F is precisely

⋂
MUS(F). Thus F ∈ MU if and only if every clause of

F is necessary. The problem of deciding whether a given CNF formula is in MU is
DP-complete [13].

Motivated by several applications, minimal unsatisfiability and related concepts have
been extended to CNF formulas where clauses are partitioned into disjoint sets called
groups [9,12].
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Definition 1 (Group-Oriented MUS). Given an explicitly partitioned unsatisfiable
CNF formula F = G0 ∪ · · · ∪ Gn, a group oriented MUS (or, group-MUS) of F is
a subset F ′ = G0 ∪ Gi1 ∪ · · · ∪ Gik of F such that F ′ is unsatisfiable and, for every
1 ≤ j ≤ k, F ′ \ Gij is satisfiable.

3 Variable-MUS Computation Problem, and Generalizations

In this section we review the formal definition of VMUS computation problem and
some of its basic properties, and generalize it in two ways (motivated by applications):
the interesting variables MUS computation problem (IVMUS) and the group-VMUS
computation problem (GVMUS), the later being related to (clausal) group-MUS.

3.1 VMUS

Variable-MUSes of CNF formula F are defined in terms of subformulas induced by
subsets of V ar(F)1.

Definition 2 (Induced subformula [4,6]). Let F be a CNF formula, and let V be a
subset of V ar(F). The subformula of F induced by V is the formula F|V = {C | C ∈
F and V ar(C) ⊆ V }.

Thus,F|V is the set of all clauses ofF that are defined only on variables from V . Alter-
natively, if we consider the variables in V ar(F) \ V as removed, then F|V is obtained
from F by removing all clauses that contain at least one of the removed variables.
Note that in general V ar(F|V ) may be a strict subset of V — consider for example
F|{p,q} = {(p)} for F = {(p ∨ q ∨ r), (p)}.

Clearly V1 ⊂ V2 ⊆ V ar(F) implies F|V1 ⊆ F|V2 , and so variable minimal unsatis-
fiability can be well defined as follows.

Definition 3 (Variable minimally unsatisfiable formula, VMU [4]). A CNF formula
F is called variable minimally unsatisfiable if F ∈ UNSAT and for any V ⊂ V ar(F),
F|V ∈ SAT. The set of all such CNF formulas F is denoted by VMU.

It is not difficult to see that MU ⊂ VMU: clearly, every minimally unsatisfiable for-
mula is variable minimally unsatisfiable, while, for example, the formula {(p), (¬p ∨
q), (¬q), (p ∨ ¬q)} is in VMU, but not in MU. Nevertheless, as shown in [4], just like
MU, the language VMU is DP-complete. The complexity of decision problems associ-
ated with various subclasses of VMU is also given in [4].

A variable-MUS, or VMUS, of an unsatisfiable CNF formula F , is defined by anal-
ogy with (clausal) MUS as follows.

Definition 4 (Variable-MUS, VMUS [6]). Let F be unsatisfiable CNF formula. Then,
a set V ⊆ V ar(F) is a variable-MUS (VMUS) of F if F|V ∈ VMU, or, explicitly,
F|V ∈ UNSAT, and for any V ′ ⊂ V , F|V ′ ∈ SAT2. The set of all VMUSes of F is
denoted by VMUS(F).

1 This is the terminology used in [6]; in [4] these subformulas are called projections of F .
2 Note that, in general, for F ′ = F|V and V ′ ⊂ V , we have F ′|V ′ = F|V ′ .
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Thus, a VMUS V of an unsatisfiable formula F is a subset of V ar(F) that has
exactly the property we are interested in: it is the set of variables of some unsatisfiable
core F ′ of F , and for no other unsatisfiable core F ′′ of F , V ar(F ′′) is a strict subset
of V .

Example 1. Let F = {C1, . . . , C5}, where C1 = (p), C2 = (q), C3 = (¬p ∨ ¬q),
C4 = (¬p ∨ r), and C5 = (¬q ∨ ¬r). F is unsatisfiable, however is not variable
minimally unsatisfiable, because for V = {p, q}, F|V = {C1, C2, C3} ∈ UNSAT. On
the other hand, V is a VMUS ofF . Note thatF ′ = {C1, C2, C4, C5} is a (clausal) MUS
of F , however V ar(F ′) = {p, q, r} is not a VMUS of F . (This example contradicts
the claim from [6] that variables of any clausal MUS constitute a VMUS.)

We conclude this subsection with a definition of a necessary variable, analogous to that
of a necessary clause.

Definition 5 (Necessary variable). Let F be a CNF formula. A variable v ∈ V ar(F)
is necessary for F if F ∈ UNSAT, and F|V ar(F)\{v} ∈ SAT.

Thus, F ∈ VMU if and only if every variable in V ar(F) is necessary for F , and so
V is a VMUS of F , if every variable in V is necessary for F|V . Furthermore, the set
of all necessary variables of F is precisely

⋂
VMUS(F). The following proposition

establishes the property of necessary variables required for ensuring the correctness of
VMUS computation algorithms presented in this paper.

Proposition 1 (Monotonicity). LetF be an unsatisfiable CNF formula. If v ∈ V ar(F)
is necessary for F , then it is also necessary for any unsatisfiable subset F ′ of F .

Finally, from the perspective of clausal MUSes of an unsatisfiable CNF formula F we
have that v ∈ V ar(F) is necessary for F if and only if every MUS of F includes some
clause containing v.

3.2 Generalizations

The generalizations of VMUS computation problem developed in this section are moti-
vated by some of the applications, which we describe in Section 5. In the first general-
ization, the set V ar(F) is partitioned into the set of interesting variables I and the set
of uninteresting variables U , that is V ar(F) = I / U , and the VMUSes are computed
in terms of interesting variables only.

Definition 6 (Interesting-VMUS, IVMUS). Let F be an unsatisfiable CNF formula,
and let I and U be a partition of V ar(F) into the sets of interesting and uninteresting
variables, respectively. Then, the interesting-VMUS (IVMUS) of F is a set of variables
V ⊆ I such that F|V ∪U ∈ UNSAT, and for any V ′ ⊂ V , F|V ′∪U ∈ SAT .

Thus, the uninteresting variables play the role analogous to that of the clauses in group
G0 in group-MUS computation problem, which represent the clauses outside of the
interesting constraints [12].

Clearly, for a formula F , VMUS computation problem is a special case of IVMUS
computation problem when all variables are interesting, i.e. I = V ar(F). Note that, as
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opposed to VMUSes, IVMUSes can be empty even if I �= ∅. Consider, for example,
the formula F = {(p), (¬p), (p ∨ q), (¬p ∨ q), (¬q)}. If I = {q} and U = {p}, then
IVMUS of F is empty set because we can remove all clauses with q while preserving
unsatisfiability. If, on the other hand, I = {p} and U = {q}, then IVMUS of F is {p}.
This is also the case when I = {p, q} and U = ∅.

Further generalization of IVMUS (and of VMUS) computation problem can be ob-
tained by partitioning the set of interesting variables into disjoint groups of variables,
and then analyzing the minimal unsatisfiability of the formula in terms of these groups.
This is the parallel of group-MUS computation problem in the clausal context.

Definition 7 (Group-VMUS, GVMUS). Let F be an unsatisfiable CNF formula, and
let U, I1, . . . , In be a partition of V ar(F) into the set of uninteresting variables U and
the sets Ii of interesting variables called groups. Then, the group-VMUS (GVMUS) of
F is a set of groups G ⊆ {I1, . . . , In}, such that for V = U ∪

⋃
I∈G I , F|V ∈ UNSAT,

and for any G′ ⊂ G and V ′ = U ∪
⋃

I∈G′ , the formula F|V ′ is in SAT.

Thus, IVMUS computation problem is a special case of GVMUS computation problem
where each group contains exactly one interesting variable.

4 Algorithms for VMUS Computation

The algorithms described in this section are based on iterative invocations of a SAT
solver. Specifically, the function call SAT(F) accepts a CNF formula F and returns a
tuple 〈st, τ,U〉 with the following semantics: if F ∈ SAT, then st is set to true and τ is
a model of F ; otherwise st = false and U ⊆ F is an unsatisfiable core of F3.

We introduce an additional notation. Given a CNF formula F and a variable v ∈
V ar(F), by Fv = {C | C ∈ F and v ∈ V ar(C)} we denote the set of clauses of F
that contain v. Note that F|V ar(F)\{v} = F \ Fv .

4.1 Hybrid VMUS Computation

Without the optimizations on lines RR, REF and VMR, Algorithm 1 (VHYB) repre-
sents a basic destructive algorithm for VMUS computation, similarly to the algorithm
Removal proposed in [6]. Note that it also closely mimics the organization of a hybrid
algorithm for MUS computation (cf. [11]).

The algorithm accepts an unsatisfiable CNF formulaF as input, and maintains three
datastructures: the set of necessary variables V (initially empty), the working set of
variables Vw (initialized to V ar(F)), and the working formula Fw (initialized to F ).

On each iteration of the while-loop (line 4) the algorithm removes a variable v from
Vw and tests whether v is necessary for Fw (see Definition 5). This test is performed by
invoking a SAT solver on the formula Fw \ Fv

w (line 7). If the formula is unsatisfiable,
v is not necessary, and the clauses of Fv

w are removed from Fw (line 9). Otherwise, v is
necessary, and it is added to V .

3 Some of the modern SAT solvers have the capability of producing unsatisfiable cores (although
not necessarily minimal); for SAT solvers without this capability we can set U = F .
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Algorithm 1. VHYB(F) — Hybrid VMUS Computation
Input : Unsatisfiable CNF Formula F
Output: VMUS V of F
begin

1 V ← ∅ // VMUS under-approximation
2 Vw ← V ar(F) // Working set of variables
3 Fw ← F // Working formula
4 while Vw �= ∅ do // Inv: Fw = F|V ∪Vw and ∀v ∈ V is nec. for Fw

5 v ← PickVariable(Vw)
6 Vw ← Vw \ {v}
7 (st, τ,U) = SAT(Fw \ Fv

w)
RR R ← CNF(¬Fv

w) // Redundancy removal
RR (st, τ,U) = SAT((Fw \ Fv

w) ∪R)
8 if st = false then // v is not necessary for Fw

REF if U ∩R = ∅ then Vw ← Vw ∩ V ar(U); // Refinement
9 Fw ← Fw|V ∪Vw

10 else // v is necessary for Fw

11 V ← V ∪ {v}
VMR VModelRotation(Fw, V, τ ) // v ∈ V after this call
VMR Vw ← Vw \ V

12 return V // V ∈ VMUS(F) and Fw = F|V ∈ VMU

end

The correctness of the algorithm follows from the the loop invariant presented on
line 4. This invariant is trivially satisfied prior to any iteration of the loop, and its in-
ductiveness can be easily established from the pseudocode. Since on every iteration one
variable is removed from Vw, the loop eventually terminates, and on termination it holds
that Fw = F|V , and that every variable in V is necessary for Fw. Hence, F|V ∈ VMU
and V ∈ VMUS(F).

It comes as no surprise that the basic algorithm described above is not efficient for
large CNF formulas — on every iteration exactly one variable is removed from Vw, and
so the algorithm makes exactly V ar(F) SAT solver calls. This lack of scalability is
demonstrated clearly in our experimental evaluation, presented in Section 6. In the con-
text of MUS extraction a number of crucial optimization techniques have been proposed
— these include clause-set refinement [10] to remove multiple unnecessary clauses in a
single SAT solver call, recursive model rotation [1] to detect multiple necessary clauses
in a single SAT solver call, and redundancy removal [17,10] to make SAT instances
easier to solve. We now describe the way these techniques can be adopted in the setting
of VMUS computation.

Redundancy Removal. The idea behind the redundancy removal technique is to add
certain constraints to the formula Fw \ Fv

w prior to the invocation of a SAT solver
on line 7. These additional constraints are taken to be the clauses of the Plaisted-
Greenbaum CNF transformation [14] of the propositional formula ¬Fv

w, denoted by
CNF (¬Fv

w). These clauses are constructed as follows: for each C ∈ Fv
w, create an
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auxiliary variable aC , and the binary clauses (¬aC ∨ ¬l), for each literal l ∈ C; then
add a clause (

∨
C∈Fv

w
aC). The correctness of the redundancy removal technique is

guaranteed by the following proposition.

Proposition 2. Let F be an unsatisfiable CNF formula. Then for any v ∈ V ar(F),
F \ Fv ∈ SAT if and only if (F \ Fv) ∪ CNF (¬Fv) ∈ SAT.

Proof. Let τ be any model of F \ Fv. Since F ∈ UNSAT, for any τ ′ ⊃ τ that extends
τ to V ar(Fv) \ V ar(F), we have τ ′(Fv) = 0. Thus, for some extension τ ′′ of τ ′,
τ ′′(CNF (¬Fv)) = 1 4. Therefore τ ′′ is a model of (F \ Fv) ∪ CNF (¬Fv). The
opposite direction holds trivially. ��

The technique is integrated into VHYB by replacing line 7 with the two lines labeled
RR. Even though the additional constraints imposed by CNF (¬Fv) are redundant,
they can help the SAT solver to prune the search space more efficiently, and in fact our
experiments show that in practice this method leads to an improved performance.

Variable-Set Refinement. Variable-set refinement is a technique for detection of un-
necessary variables that takes advantage of the capability of modern SAT solvers to
produce unsatisfiable cores. The technique is based on the following observation.

Proposition 3 (Variable-Set Refinement). Let U be an unsatisfiable core of F ∈
UNSAT. Then, there exists V ⊆ V ar(U) such that V ∈ VMUS(F).

Proof. Take V to be any VMUS of the formula F|V ar(U). ��

When the outcome of SAT solver call is UNSAT (line 8), the unsatisfiable core U of the
formula (Fw\Fv

w)∪R, whereR = CNF (¬Fv
w), can be used in the following way: if U

does not include any of the clauses ofR, then any variable of the working set Vw outside
of the set V ar(U) is not necessary forFw, and thus can be removed from Vw (line REF).
This is because the condition U ∩ R = ∅ guarantees that U is an unsatisfiable core of
the formula (Fw \Fv

w), and so Proposition 3 applies. Note that since the set V contains
variables that are necessary for Fw, it must be that V ⊆ V ar(U). If the unsatisfiable
coreU does include some of the clauses ofR, the formulaU\R could be satisfiable, and
so some of the variables necessary for Fw might be outside V ar(U). As an example,
considerF = {(p∨q), (p∨¬q), (¬p∨r), (¬p∨¬r), (¬p∨s), (¬p∨¬s)}. Suppose we
try to remove the variable r first.Fr = {(¬p∨r), (¬p∨¬r)}, and soF\Fr ∈ UNSAT.
As the clauses ofR = CNF (¬Fr) imply the unit clause (p), the returned unsatisfiable
core might consist only of the clauses {(¬p ∨ s), (¬p ∨ ¬s)} together with the clauses
ofR. Note that the variable q is necessary for F but not included in this core.

It should be noted that, just as in the case of MUS extraction, variable-set refinement
is a crucial optimization technique that leads to dramatic (multiple orders of magnitude)
speed-ups in VMUS computation — see Section 6 for the empirical data.

4 τ ′′ extends τ ′ by assigning values to the auxiliary variables introduced by Plaisted-Greenbaum
transform.
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Algorithm 2. VModelRotation(F , V, τ) — Variable-based Model Rotation
Input : F — an unsatisfiable CNF formula

: V — a set of necessary variables F
: τ — a model of F \ Fv for some v ∈ V ar(F)

Effect: V contains v and possibly additional necessary variables of F
1 begin
2 V ′ ←

⋂
C∈Unsat(F,τ) V ar(C) // all common variables; v ∈ V ′

3 foreach v ∈ V ′ do
4 if v /∈ V then
5 V ← V ∪ {v} // v is a new necessary variable
6 τ ′ ← τ |¬v

7 VModelRotation(F , V, τ ′)

8 end

Variable-Based Model Rotation (VMR). Variable-based model rotation (VMR) is a
technique for detection of multiple necessary variables in a single SAT call. The tech-
nique makes use of the satisfying assignment τ returned by the SAT solver on line RR
of Algorithm 1 (or line 7 if redundancy removal is not used). The technique uses the
following property.

Proposition 4. Let F be an unsatisfiable CNF formula, let τ be an assignment to
V ar(F), and let V =

⋂
C∈Unsat(F ,τ) V ar(C). Then any variable in V is necessary

for F .

Proof. Take any v ∈ V . Clearly Unsat(F , τ) ⊆ Fv, and soF|V ar(F)\{v} = F\Fv ⊆
F \ Unsat(F , τ). Since F \ Unsat(F , τ) ∈ SAT, we have F|V ar(F)\{v} ∈ SAT ��

An assignment τ is called a witness for necessity of a variable v in F if satisfies the
condition v ∈

⋂
C∈Unsat(F ,τ) V ar(C). Note that in the context of Algorithm 1 the as-

signment τ returned by the SAT solver in the case the formula (Fw \Fv
w)∪R is satisfi-

able is exactly a witness of necessity of v in Fw — it must be that Unsat(Fw, τ) ⊆ Fv
w

and so v appears in all clauses of Unsat(Fw, τ) (and, in fact, in the same polarity).
Furthermore, it is possible that there are other variables shared among the clauses of
Unsat(Fw, τ). These variables can be immediately declared as necessary forFw, with-
out additional SAT calls. A special case of particular practical importance is when
Unsat(Fw, τ) consists of a single clause — in this case all of the other variables of
this clause are necessary as well.

Next, suppose that τ is a witness for (the necessity of) v. Note that the assignment
τ ′ = τ |¬v , obtained by flipping the value of v in τ , is also a witness for v — indeed
all the clauses in Unsat(Fw, τ) are satisfied by τ ′, and all the clauses falsified by τ ′

must share the variable v (in the opposite polarity). Thus τ ′ can be analyzed in the same
manner as τ — if there are any variables beside v that are shared among the clauses
of Unsat(Fw, τ ′), then these variables are necessary for Fw and τ ′ is the witness for
each of these variables. This leads to the recursive process of detection of necessary
variables and construction of witnesses, which we refer to as variable-based model
rotation (VMR).
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The algorithm for VMR is presented in Algorithm 2. VMR is integrated into Al-
gorithm 1 by replacing line 11 with the lines labelled VMR. Note that the necessary
variable v detected by the SAT call in Algorithm 1 is always added to the set V as a
result of VMR. The purpose of the if-statement on line 4 of Algorithm 2 is to prevent
the algorithm from re-detecting variables that are already known to be necessary. In
turn, this bounds the number of recursive calls to VMR during the execution of VMUS
computation algorithm – this bound is twice the number of variables in the computed
VMUS. Thus VMR is a light-weight technique for detection of necessary variables. In
practice, however, the technique is extremely effective — as demonstrated in Section 6,
VMR results in very significant performance improvements (up to the factor of 20).

The basic VMR algorithm described above allows for many various modifications.
For example, one can allow the algorithm to re-visit variables already known to be nec-
essary — it is very likely that a different initial model will lead to discovering a different
set of new necessary variables. However, it is important to bound the total running time
of the algorithm (and in particular to avoid loops). One specific modification of this
type, which we refer to as extended VMR (EVMR), takes advantage of the diversity
of the initial models passed to Algorithm 2 over the life-time of VMUS computation.
In this variant the set V in Algorithm 2 should be thought of as the set of variables
found necessary in the current invocation of VMR from Algorithm 1 (in other words,
Algorithm 1 always calls Algorithm 2 with V = ∅, and at the end updates its own set
V of all necessary variables to include the newly discovered variables). Although in
the worst case the number of recursive calls to VMR can grow quadratically, in our
experiments such growth was not observed. On the other hand, the number of neces-
sary variables detected by EVMR was on average 5% higher than that of VMR alone
(recall that every additional variable saves a potentially expensive SAT call). Overall,
the EVMR modification has a positive impact on the performance of Algorithm 1.

Extensions. Algorithm 1 can be extended to handle the generalizations to IVMUS or
to GVMUS introduced in section 3. These extensions, with the exception of VMR in
GVMUS setting, are rather straightforward, and we do not describe them explicitly.

4.2 Relaxation-Variables Approach

A constructive MUS extraction algorithm based on relaxing clauses and AtMost1 con-
straint has been proposed in [10]. The idea is to augment each clause Ci of the un-
satisfiable input formula F with a fresh relaxation variable ai, thus replacing Ci with
(ai ∨ Ci) in F . Furthermore, the CNF representation of the constraint

∑
ai ≤ 1 is

added to the modified formula. The resulting formulaF ′ is then checked for satisfiabil-
ity. If F ′ is satisfiable, then since the original formulaF is unsatisfiable, exactly one of
the variables ai must be set to true — the associated clause Ci is then necessary for F .
The algorithm is quite special in that it essentially offloads the task of searching for a
necessary clause to the SAT solver.

This algorithm can be extended to VMUS in the following way. The first step con-
sists of relaxing variables instead of clauses. Let v be a variable of F . The positive
literals of v are replaced with a new variable vp, and the negative literals of v are re-
placed with a new variable vn. If both vn and vp are assigned value 1, then variable v
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is said to be relaxed. To control the relaxation of v, another variable vr is used, and the
constraint (¬vp ∨ ¬vn ∨ vr) is added to the formula. Note that when vr is set to 1, vp
and vn can be assigned by the SAT solver to 1 freely, effectively removing the clauses
of Fv . Otherwise, the constraint represents the relationship between vp and vn. The
new variables are represented by sets VP , VN and VR, where V denotes the initial set of
variables. Now, a variable is necessary for F if by relaxing (or removing) it the formula
becomes satisfiable — similar to the clausal version of the algorithm, this condition
achieved with the constraint

∑
vr∈VR

vr = 1.

4.3 Reduction to Group-MUS Computation

An alternative approach to handle the VMUS computation problem is to provide a re-
duction to a MUS (or to a group-MUS) computation — especially in the light of the
extensive amount of tools capable solving the latter problem efficiently. We sketch here
two possible reductions, one suited for dense formulas (with #vars1 #clauses), and the
other for sparse formulas (with #vars≈ #clauses).

Reduction from VMUS to Group-MUS (for Dense Formulas). Let F be a CNF
formula. We translate it to F ′ as follows. For each variable vi ∈ V ars(F) introduce
two new variables pi and ni in F ′, and translate all clauses C ∈ F to clauses C′ ∈
F ′ over variables {pi, ni} by replacing every positive occurrence of vi with pi, and
every negative occurrence vi with ni. As an example, the clause (v1 ∨ ¬v3 ∨ v4) gets
translated to the clause (p1 ∨ n3 ∨ p4). Additionally, add |V ars(F)| pairs of clauses
{(pi, ni), (¬pi,¬ni)} to F ′ (forcing the positive and negative representatives to have
opposite values).

Define G0 = {C′} to be the group consisting of all of the translated clauses, and for
each i define the group Gi = {(pi, ni), (¬pi,¬ni)}.
Proposition 5. Any group-MUS S of F ′ (w.r.t. groups Gi) corresponds to some VMUS
V of the original formula F , where vi ∈ V iff Gi ∈ S.

(Proof follows by construction.) It is also straightforward to extend this reduction to be
applicable for IVMUS and GVMUS problems.

Reduction from VMUS to Group-MUS (for Sparse Formulas). Let F be a CNF
formula. We translate it to F ′ as follows. For each variable vi ∈ V ars(F) introduce
an activation variable ai, and translate all clauses C ∈ F to clauses C′ ∈ F ′ that
contain the same set of literals plus their corresponding activation literals (namely C′ is
double in size). As an example, the clause (v1 ∨ ¬v3 ∨ v4) gets translated to the clause
(v1 ∨ a1 ∨ ¬v3∨ a3 ∨ v4 ∨ a4). Additionally, add |V ars(F)| unit clauses (¬ai) to F ′.

Define G0 = {C′} to be the group consisting of all of the translated clauses, and for
each i define the group Gi = {(¬ai)}.
Proposition 6. Any group-MUS S of F ′ (w.r.t. groups Gi) corresponds to some VMUS
V of the original formula F , where vi ∈ V iff Gi ∈ S.

Here too, proof follows by construction, and the reduction is easily extended to IVMUS
and GVMUS problems.
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5 Applications of VMUSes

A number of applications of VMUSes have been proposed in the previous work. In [6]
the authors use VMUSes to search for vertex critical subgraphs in the context of graph
coloring problem. There the variables of the CNF representation of a graph correspond
to its vertices, and thus a removal of a variable represents the operation of the removal
of a vertex from the graph. The authors of [5] propose to use VMUSes for computing
abstractions in the context of the abstraction-refinement approach to model checking.
We describe a possible application of GVMUSes in the similar context below. We also
describe a possible application of IVMUSes to minimization of satisfying assignments.

Minimizing Satisfying Assignments. Many formal verification techniques require the
ability to efficiently generalize bad or interesting assignments to inputs of a circuit
— the assignments which by propagation induce a value of 1 on one of the circuit’s
outputs. Similarly to [15], the problem is formalized as follows. Let F be a CNF with
variables V ar(F ) = J / W / {o} separated into a set of input variables J , a set
of auxiliary variables W , and the property output o. We require that F satisfies the
following property: for any satisfying assignment A to F ∧ o, the formula AJ ∧F ∧¬o
is unsatisfiable, where AJ denotes the restriction of A to J . In this setting the set of
”important” variables I is a subset of J and the set of of ”unimportant” variables U =
(J \ I) ∪ W ∪ {o} consists of the remaining variables. Given such a formula F and
an assignment A to F ∧ o, the goal is to find a minimal subset V of I which is still
sufficient to force the value of 1 on the output, i.e. that the formula AV ∧AJ\I ∧F ∧¬o
remains unsatisfiable. This is precisely the IVMUS problem defined in Section 3.

Proof-Based Abstraction. A popular technique to reduce the size of models in model
checking is to create a quality over-approximation of the design under verification. In
the abstraction refinement approach one usually unrolls the design for a certain num-
ber k of time-frames and runs a SAT solver with the property that there is no erro-
neous execution within this bound. If the SAT solver returns UNSAT, the unsatisfiable
core of the problem is analyzed. In the latch-based abstraction (cf [7]) any latch that
does not appear in the core is abstracted away, and it is usually beneficial to remove
as many latches as computationally feasible. Though MUS algorithms have been de-
veloped for this problem (e.g. [12]), a translation to GVMUS problem is also possible:
for every latch L in the design, create a group GL of CNF variables corresponding to L
in every time-frame of the unrolled design; all the remaining CNF variables are “non-
interesting” and put into G0. The minimization of the set of “interesting” variable groups
while preserving the unsatisfiability is precisely the GVMUS problem (cf. Section 3).

Remark 1. An extra care should be taken when reducing problems to VMUS (or gener-
alizations) in applications where CNF formulas arise from encoding of circuits. Certain
variables should be split into two copies — a variable x is split into xi and xo if it sat-
isfies the following conditions: (i) x represents an output of a gate/latch in the circuit,
and (ii) the fan-out of the corresponding gate/latch is greater than 1. For every such x,
the clauses that encode xi = xo are added to the formula encoding the circuit, and the
representative variable for the gate/latch is taken to be xi.
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Fig. 1. Cactus plot: BASE with various optimizations; translations to GMUS

6 Experimental Study

We implemented the VMUS extraction algorithm VHYB (Algorithm 1) and all of the op-
timization techniques described in Section 4 on top of the MUS extraction framework of
our state-of-the-art (group-)MUS extractor MUSer25. In addition, we implemented the
translations to GMUS described in Section 4.3. We did not implement the relaxation-
variable based algorithm from Section 4.2, since, in the context of (clausal) MUS ex-
traction, this approach is notably less effective than the hybrid approach (cf. [10]).

To evaluate the effectiveness of the proposed techniques we performed a compre-
hensive experimental study on 295 benchmarks used in the MUS track of SAT Compe-
tition 2011 6. These benchmark instances originate from various industrial applications
of SAT, including hardware bounded model checking, FPGA routing, hardware and
software verification, equivalence checking, abstraction refinement, design debugging,
functional decomposition and bioinformatics. The experiments were performed on an
HPC cluster, where each node is dual quad-core Intel Xeon E5450 3 GHz with 32 GB
of memory. The timeout was set to 1800 seconds, and memory was limited to 4 GB.
In our experiments, MUSer2, and its VMUS-oriented version, was configured to use
picosat-935 [3] in incremental mode as a SAT solver.

The cactus plot in Fig. 1 provides an overview of the results of our experimental
study7. The legend in this, and subsequent, plots is as follows: BASE represents the im-
plementation of VHYB without any of the optimizations (i.e. this is the equivalent of the
Removal algorithm from [6]); +REF represents the addition of variable-set refinement;
+VMR (resp. +EVMR) represents the addition of VMR (resp. EVMR); +RR represents
the addition of redundancy removal; GMUS-SF (resp. GMUS-DF) represents the results

5 http://logos.ucd.ie/wiki/doku.php?id=muser
6 http://www.satcompetition.org/. Note that the website lists 300 benchmarks in

MUS category — this discrepancy is due to duplicate instances.
7 Data is available at http://logos.ucd.ie/paper-results/sat12-vmus

http://logos.ucd.ie/wiki/doku.php?id=muser
http://www.satcompetition.org/
http://logos.ucd.ie/paper-results/sat12-vmus
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Fig. 2. Selected scatter plots (timeout 1800 sec.)

of the group-MUS version of MUSer2 on the GMUS translation for sparse (resp. dense)
formulas. A number of observations can be made. We note that the addition of variable-
set refinement has a dramatic effect on the performance of VHYB allowing to solve 80
more instances than BASE within the timeout. The addition of VMR to the variable-
set refinement results in another huge leap in the performance of VHYB, demonstrating
the positive impact of the extended version of VMR (EVMR). We also conclude that
the proposed translations of VMUS computation problem to GMUS computation does
not allow to extract VMUSes efficiently, despite the fact that the group-MUS extractor
MUSer2 used in these experiments implements the group-MUS analog of the all crucial
optimizations described in this paper — the exceptions are the extended model rotation
and redundancy removal.

The scatter plots in Fig. 2 present additional views on the results of our experimental
evaluation. The plot on the left-hand side demonstrates the combined effect of all the
optimization techniques described in this paper to the VMUS extraction algorithm of [6].
Note the positive impact on the effectiveness of the algorithm, resulting in up to 3 orders of
magnitude improvement in runtime of VMUS computation.The plot in the center of Fig. 2
allows to take a closer look at the effects of redundancy removal. While the results are
mixed, a careful examination of the plot reveals an overall positive impact (close to 15%)
of the technique on the runtime ofHYB. The plot on the right-hand side of Fig. 2 deserves
special attention. The plot compares the runtimes of VMUS extraction with the runtime
of MUS extraction on the same set of instances. MUS extraction was performed with
MUSer2, and we employed all the relevant optimizations, including the extended version
of recursive model rotation [1]. We observe that in many cases it is cheaper to compute
a VMUS of an instance, rather than the (clausal) MUS. Note that in the presence of the
current MUS optimization techniques, such as clause set refinement and recursive model
rotation, this observation is not trivial, and suggests that some of the current applications
of MUS extraction algorithms could be reconsidered with VMUSes in mind.

7 Conclusion

In this paper we re-visit the VMUS computation problem and propose a number of its
extensions. We develop a state-of-the-art VMUS extraction algorithm VHYB by intro-
ducing a number of optimization techniques to the basic VMUS extraction algorithm
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proposed in [6]. In addition, we present a relaxation-variable based constructive al-
gorithm for VMUS extraction, and a number of translations of VMUS computation
problem to group-MUS computation problem. We demonstrate empirically that the op-
timization techniques employed in VHYB lead to significant improvements in the run-
time of VMUS computation on a set of industrially-relevant benchmarks. We also show
that the indirect approach via group-MUS computation can be significantly less effi-
cient than VHYB. Finally, we demonstrate that in many cases computation of VMUSes
is cheaper than the computation of MUSes. This observation motivates re-evaluation of
the current applications of MUSes, further investigation of the applications of VMUSes
and its extensions, and the development of relevant algorithms.

Acknowledgements. We thank the anonymous referees for insightful comments.
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Craig’s interpolation theorem has numerous applications in model checking, au-
tomated reasoning, and synthesis. There is a variety of interpolation systems
which derive interpolants from refutation proofs; these systems are ad-hoc and
rigid in the sense that they provide exactly one interpolant for a given proof. In
previous work, we introduced a parametrised interpolation system which sub-
sumes existing interpolation methods for propositional resolution proofs and
enables the systematic variation of the logical strength and the elimination of
non-essential variables in interpolants. In this paper, we generalise this system to
propositional hyper-resolution proofs and discuss its application to proofs gener-
ated by contemporary SAT solvers. Finally, we show that, when applied to local
(or split) proofs, our extension generalises two existing interpolation systems for
first-order logic and relates them in logical strength.

1 Introduction

Craig interpolation [5] has proven to be an effective heuristic in applications such
as model checking, where it is used as an approximate method for computing
invariants of transition systems [18], and synthesis, where interpolants represent
deterministic implementations of specifications given as relations [14]. The in-
trinsic properties of interpolants enable concise abstractions in verification and
smaller circuits in synthesis. Intuitively, stronger interpolants provide more pre-
cision, and interpolants with fewer variables lead to smaller designs. However,
interpolation is mostly treated as a black box, leaving no room for a systematic
exploration of the solution space. In addition, the use of different interpola-
tion systems complicates a comparison of their interpolants. We present a novel
framework which generalises a number of existing interpolation techniques and
supports a systematic variation and comparison of the generated interpolants.

Contributions. We present a novel parametrised interpolation system which ex-
tends our previous work on propositional interpolation [7].
– The extended system supports hyper-resolution (see § 3) and allows for sys-

tematic variation of the logical strength (with an additional degree of free-
dom over [7]) and the elimination of non-essential literals [6] in interpolants.

– We discuss (in § 4) the application of our interpolation system to hyper-
resolution steps (introduced by pre-processing [10], for instance) and refuta-
tions generated by contemporary SAT solvers such as MiniSAT [8].

– When applied to local (or split) proofs [13], the extended interpolation sys-
tem generalises the existing interpolation systems for first-order logic pre-
sented in [15] and [25] and relates them in logical strength (§ 5).

A. Cimatti and R. Sebastiani (Eds.): SAT 2012, LNCS 7317, pp. 312–326, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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2 Background

This section introduces our notation (§ 2.1) and restates the main results of our
previous paper on labelled interpolation systems [7] in § 2.2.

2.1 Formulae and Proofs

In our setting, the term formula refers to either a propositional logic formula or
a formula in standard first-order logic.

Propositional Formulae. We work in the standard setting of propositional logic
over a set X of propositional variables, the logical constants T and F (denoting
true and false, respectively), and the standard logical connectives ∧, ∨, ⇒, and
¬ (denoting conjunction, disjunction, implication, and negation, respectively).

Moreover, let LitX = {x, x |x ∈ X} be the set of literals over X , where x is
short for ¬x. We write var(t) for the variable occurring in the literal t ∈ LitX . A
clause C is a set of literals. The empty clause � contains no literals and is used
interchangeably with F. The disjunction of two clauses C and D is their union,
denoted C ∨D, which is further simplified to C ∨ t if D is the singleton {t}. A
propositional formula in Conjunctive Normal Form (CNF) is a conjunction of
clauses, also represented as a set of clauses.

First-Order Logic. The logical connectives from propositional logic carry over
into first-order logic. We fix an enumerable set of variables, function and predi-
cate symbols over which formulae are built in the usual manner. The vocabulary
of a formula A is the set of its function and predicate symbols. L(A) refers to
the set of well-formed formulae which can be built over the vocabulary of A.

Variables may be universally (∀) or existentially (∃) quantified. A formula is
closed if all its variables are quantified and ground if it contains no variables. As
previously, conjunctions of formulae are also represented as sets.

Given a formula A in either first-order or propositional logic, we use Var(A)
to denote the set of free (unquantified) variables in A.

Inference Rules and Proofs. We write A1, · · · , An |= A to denote that the for-
mula A holds in all models of A1, . . . , An (where n ≥ 0). An inference rule

A1 · · · An

A
(1)

associates zero or more premises (or antecedents) A1, . . . , An with a conclusion
A. The inference rule (1) is sound if A1, . . . , An |= A holds. A (sound) inference
system I is a set of (sound) inference rules.

Propositional resolution, for example, is a sound inference rule stating that
an assignment satisfying the clauses C ∨ x and D ∨ x also satisfies C ∨D:

C ∨ x D ∨ x

C ∨D
[Res]
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The clauses C ∨ x and D ∨ x are the antecedents, x is the pivot, and C ∨ D is
the resolvent. Res(C,D, x) denotes the resolvent of C and D with the pivot x.

Definition 1 (Proof). A proof (or derivation) P in an inference system IP is
a directed acyclic graph (VP , EP , 
P , sP ), where VP is a set of vertices, EP is a
set of edges, 
P is a function mapping vertices to formulae, and sP ∈ VP is the
sink vertex. An initial vertex has in-degree 0. All other vertices are internal and
have in-degree ≥ 1. The sink has out-degree 0. Each internal vertex v with edges
(v1, v), . . . , (vm, v) ∈ EP is associated with an inference rule Inf ∈ IP , i.e.,


P (v1) · · · 
P (vm)


P (v)
[Inf] .

The subscripts above are dropped if clear. A vertex vi in P is a parent of vj if
(vi, vj) ∈ EP . A proof P is a refutation if 
P (sP ) = F. Let A and B conjunctive
formulae. A refutation P is an (A,B)-refutation of an unsatisfiable formula A∧B
if 
P (v) is a conjunct of A or a conjunct of B for each initial vertex v ∈ VP . A
proof is closed (ground, respectively) if 
P (v) is closed (ground) for all v ∈ VP .

In the following, we use the propositional resolution calculus to instantiate
Definition 1.

Definition 2 (Resolution Proof). A resolution proof R is a proof in the
inference system comprising only the resolution rule Res. Consequently, 
R maps
each vertex v ∈ VR to a clause, and all internal vertices have in-degree 2. Let
pivR be the function mapping internal vertices to pivot variables. For an internal
vertex v and (v1, v), (v2, v) ∈ ER, 
R(v) = Res(
R(v1), 
R(v2), pivR(v)).

Note that the value of 
R at internal vertices is determined by that of 
R at
initial vertices and the pivot function pivR. We write v+ for the parent of v with
piv (v) in 
(v+) and v− for the parent with ¬piv (v) in 
(v−). A resolution proof
R is a resolution refutation if 
R(sR) = �.

2.2 Interpolation Systems and Labelling Functions

There are numerous variants and definitions of Craig’s interpolation theorem [5].
We use the definition of a Craig-Robinson interpolant given by Harrison [11]:

Definition 3 (Interpolant). A Craig-Robinson interpolant for a pair of for-
mulae (A,B), where A ∧B is unsatisfiable, is a formula I whose free variables,
function and predicate symbols occur in both A and B, such that A ⇒ I, and
B ⇒ ¬I holds.

Craig’s interpolation theorem guarantees the existence of such an interpolant for
unsatisfiable pairs of formulae (A,B) in first order logic. Consequently, it also
holds in the propositional setting, where the conditions of Definition 3 reduce to
A⇒ I, B ⇒ ¬I, and Var(I) ⊆ Var(A) ∩ Var(B).

Numerous techniques to construct interpolants have been proposed (c.f. § 6).
In particular, there is a class of algorithms that derive interpolants from proofs;
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the first such algorithm for the sequent calculus is present in Maehara’s con-
structive proof [17] of Craig’s theorem. In this paper, we focus on interpolation
systems that construct an interpolant from an (A,B)-refutation by mapping the
vertices of a resolution proof to a formula called the partial interpolant.

Formally, an interpolation system Itp is a function that given an (A,B)-
refutation R yields a function, denoted Itp(R,A,B), from vertices in R to for-
mulae over Var(A) ∩ Var(B). An interpolation system is correct if for every
(A,B)-refutation R with sink s, it holds that Itp(R,A,B)(s) is an interpolant
for (A,B). We write Itp(R) for Itp(R,A,B)(s) when A and B are clear. Let
v be a vertex in an (A,B)-refutation R. The pair (
(v), Itp(R,A,B)(v)) is an
annotated clause and is written 
(v) [Itp(R,A,B)(v)] in accordance with [19].

In the following, we review the labelled interpolation systems we introduced
in [7]. This approach generalises several existing propositional interpolation sys-
tems presented by Huang [12], Kraj́ıček [16] and Pudlák [21], and McMillan [18].
A distinguishing feature of a labelled interpolation system is that it assigns an
individual label c ∈ {⊥, a, b, ab} to each literal in the resolution refutation.

Definition 4 (Labelling Function). Let (S,2,�,�) be the lattice below, where
S = {⊥, a, b, ab} is a set of symbols and 2, � and � are defined by the Hasse
diagram to the right. A labelling function LR : VR× Lit→ S for a refutation R
over a set of literals Lit satisfies that for all v ∈ VR and t ∈ Lit:

1. LR(v, t) = ⊥ iff t /∈ 
R(v)
2. LR(v, t) = LR(v1, t) � · · · � LR(vm, t) for an internal

vertex v, its parents {v1, · · · , vm}, and literal t ∈ 
R(v). ⊥
a b

ab

Due to condition (2) above, the labels of literals at initial vertices completely
determine the labelling function for literals at internal vertices. The following
condition ensures that a labelling function respects the locality of a literal t
with respect to (A,B). A literal t is A-local and therefore labelled a if var(t) ∈
Var(A) \ Var(B). Conversely, t is B-local and therefore labelled b if var(t) ∈
Var(B) \ Var(A). Literals t for which var(t) ∈ Var(A) ∩ Var(B) are shared and
can be labelled a, b, or ab (which generalises existing interpolation systems).

Definition 5 (Locality). A labelling function for an (A,B)-refutation R pre-
serves locality if for any initial vertex v and literal t in R
1. a 2 L(v, t) implies that var(t) ∈ Var(A), and
2. b 2 L(v, t) implies that var(t) ∈ Var(B) .

For a given labelling function L, we define the downward projection of a clause

at a vertex v with respect to c ∈ S as 
(v)�c,L def
= {t ∈ 
(v) |L(v, t) 2 c}. and the

upward projection 
(v)�c,L as 
(v)�c,L def
= {t ∈ 
(v) | c 2 L(v, t)}. The subscript

L is omitted if clear from the context.

Definition 6 (Labelled Interpolation System for Resolution). Let L be
a locality preserving labelling function for an (A,B)-refutation R. The labelled
interpolation system Itp(L) maps vertices in R to partial interpolants as follows:
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For an initial vertex v with 
(v) = C

(A-clause)
C [C�b] if C ∈ A (B-clause)

C [¬(C�a)] if C ∈ B

For an internal vertex v with piv(v) = x, 
(v+) = C1 ∨ x and 
(v−) = C2 ∨ x

C1 ∨ x [I1] C2 ∨ x [I2]

C1 ∨ C2 [I3]

(A-Res) if L(v+, x) � L(v−, x) = a, I3
def
= I1 ∨ I2

(AB-Res) if L(v+, x) � L(v−, x) = ab, I3
def
= (x ∨ I1) ∧ (x ∨ I2)

(B-Res) if L(v+, x) � L(v−, x) = b, I3
def
= I1 ∧ I2

Labelling functions provide control over the interpolants constructed from a
resolution proof. Firstly, labelled interpolation systems support the elimination
of non-essential (peripheral [24], respectively) variables from interpolants [6].
Secondly, labelled interpolation systems – and their respective interpolants – are
ordered by logical strength. A labelled interpolation system Itp(L) is stronger
than Itp(L′) if for all refutations R, Itp(L,R)⇒ Itp(L′, R). The partial order 3
on labelling functions (first introduced in [7]) guarantees an ordering in strength:

Definition 7 (Strength Order). We define the total order 3 on the lattice
S = {⊥, a, b, ab} as b 3 ab 3 a 3 ⊥ (c.f. the Hasse diagram to the right).
Let L and L′ be labelling functions for an (A,B)-refutation R. The function
L is stronger than L′, denoted L 3 L′, if for all v ∈ VR and t ∈ 
(v),
L(v, t) 3 L′(v, t).

b

ab

a

⊥

Theorem 2 in [7] shows that if L is a stronger labelling function than L′, the
interpolant obtained from Itp(L) logically implies the one obtained from Itp(L′).

3 Interpolation for Hyper-resolution

In this section, we extend labelled interpolation systems to a richer inference
system, in particular, the inference system comprising (propositional) hyper-
resolution [22]. Hyper-resolution is a condensation of a derivation consisting of
several resolutions and avoids the construction of intermediate clauses. Hyper-
resolution has several applications in propositional satisfiability checking, such
as pre-processing [10] of formulae or as an integral part of the solver (e.g., [2]).

Positive hyper-resolution combines a single clause (called the nucleus) con-
taining n negative literals x1, . . . , xn and n satellite clauses each of which con-
tains one of the corresponding non-negated literals xi (where 1 ≤ i ≤ n):

satellites︷ ︸︸ ︷
(C1 ∨ x1) · · · (Cn ∨ xn)

nucleus︷ ︸︸ ︷
(x1 ∨ · · · ∨ xn ∨D)∨n

i=1 Ci ∨D
[HyRes]
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In negative hyper-resolution the rôles of xi and xi are exchanged.

Definition 8 (Hyper-resolution Proof). A hyper-resolution proof R is a
proof using only the inference rule HyRes. Accordingly, 
R maps each vertex
v ∈ VR to a clause, and all internal vertices have in-degree ≥ 2. Each internal
vertex v has n ≥ 1 parents v+1 , . . . , v+n such that 
R(v

+
i ) = Ci∨xi and one parent

v− with 
R(v
−) = x1 ∨ · · · ∨ xn ∨D, and consequently, 
R(v) =

∨n
i=1 Ci ∨D.

The definition of labelling functions (Definition 4) readily applies to hyper-
resolution proofs. Note that3 is not a total order on labelling functions. Lemma 1
(a generalisation of Lemma 3 in [7] to hyper-resolution proofs) enables a com-
parison of labelling functions based solely on the values at the initial vertices.

Lemma 1. Let L and L′ be labelling functions for an (A,B)-refutation R. If
L(v, t) 3 L′(v, t) for all initial vertices v and literals t ∈ 
(v), then L 3 L′.

The following definition provides a labelled interpolation system for hyper-
resolution proofs.

Definition 9 (Labelled Interpolation System for Hyper-resolution). Let
L be a locality preserving labelling function for an (A,B)-refutation R, where R
is a hyper-resolution proof. The labelled interpolation system Itp(L) maps vertices
in R to partial interpolants as defined below.1

For an initial vertex v with 
(v) = C

(A-clause)
C [C�b] if C ∈ A (B-clause)

C [¬(C�a)] if C ∈ B

For an internal vertex v with predecessors {v+1 , . . . , v+n , v−} (where n ≥ 1)
with 
(v+i ) = (Ci ∨ xi), for 1 ≤ i ≤ n, and 
(v−) = (D ∨ x1 ∨ · · · ∨ xn)

C1 ∨ x1 [I1] · · · Cn ∨ xn [In] x1 ∨ · · · ∨ xn ∨D [In+1]∨n
i=1 Ci ∨D [I]

(A-HyRes) if ∀i ∈ {1..n} . L(v+i , xi) � L(v−, xi) = a, I
def
=
∨n+1

i=1 Ii

(AB-HyRes) if ∀i ∈ {1..n} . L(v+i , xi) � L(v−, xi) = ab,

1.) I
def
=
∧n

i=1(xi ∨ Ii) ∧ (In+1 ∨
∨n

i=1 xi), or

2.) I
def
=
∨n

i=1(xi ∧ Ii) ∨ (In+1 ∧
∧n

i=1 xi)

(B-HyRes) if ∀i ∈ {1..n} . L(v+i , xi) � L(v−, xi) = b, I
def
=
∧n+1

i=1 Ii

The system can be easily extended to negative hyper-resolution. In fact, Itp
can be generalised by replacing the variables x1, . . . , xn in the definition with

1 Note that unlike the interpolation system for ordinary resolution proofs presented
in Definition 6, Itp is not total for hyper-resolution proofs (see discussion in § 4).
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literals t1, . . . , tn, since the proofs of our theorems below are not phase-sensitive.
We avoid this generalisation to simplify the presentation.

Note that the interpolation system leaves us a choice for internal nodes
AB−HyRes. We will use Itp1 (Itp2, respectively) to refer to the interpolation
system that always chooses case 1 (case 2, respectively). Note furthermore that
Definition 6 and Definition 9 are equivalent in the special case where n = 1.

Before we turn to the correctness of our novel interpolation system, we point
out the limitation stated in Footnote 1. There are labelling functions L and proofs
R for which the function Itp(L,R) is not total. This restriction is imposed by the
case split in Definition 9 which requires the pivots of the hyper-resolution step
to be uniformly labelled. We address this issue in § 4 and present a provisional
conditional correctness result.

Theorem 1 (Correctness). For any (A,B)-refutation R (where R is a hyper-
resolution proof) and locality preserving labelling function L, Itp(L,R) (if de-
fined) is an interpolant for (A,B).

The proof2 of Theorem 1 establishes that for each vertex v ∈ VR with 
R(v) =
C and I = Itp(L,R)(v), the following conditions hold:

– A ∧ ¬(C�a,L)⇒ I,
– B ∧ ¬(C�b,L)⇒ ¬I, and
– Var(I) ⊆ Var(A) ∩ Var(B).

For 
R(s) = �, this establishes the correctness of the system.
We emphasise that Theorem 1 does not constrain the choice for the case

AB−HyRes. Since both Itp1(L,R) and Itp2(R,L) satisfy the conditions above,
this choice does not affect the correctness of the interpolation system. In fact,
it is valid to mix both systems by defining a choice function χ : VR → {1, 2}
which determines which interpolation system is chosen at each internal node. We
use Itpχ(L,R) to denote the resulting interpolation system. This modification,
however, may have an impact on the logical strength of the resulting interpolant.

Theorem 2. Let the hyper-resolution proof R be an (A,B)-refutation and L be a
locality preserving labelling function. Moreover, let Itpχ(L,R) and Itpχ′(L,R) be
labelled interpolation systems (defined for L,R) with the choice functions χ and
χ′, respectively. Then Itpχ(L,R) ⇒ Itpχ′(L,R) if χ(v) ≤ χ′(v) for all internal
vertices v ∈ VR.

Proof sketch: This follows (by structural induction over R) from

(
∧n

i=1(xi ∨ Ii) ∧ (In+1 ∨
∨n

i=1 xi))⇒ (
∨n

i=1(xi ∧ Ii) ∨ (In+1 ∧
∧n

i=1 xi)) . �
Note that the converse implication does not hold; a simple counterexample for
an internal vertex with n = 2 is the assignment x1 = x2 = F, I1 = T, and
I2 = I3 = F.

The final theorem in this section extends the result of Theorem 2 in [7] to
hyper-resolution proofs:

2 All proofs can be found in an extended version of the paper available from the
author’s website (http://www.georg.weissenbacher.name).

http://www.georg.weissenbacher.name
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Theorem 3. If L and L′ are labelling functions for an (A,B)-refutation R
(R being a hyper-resolution proof) and L 3 L′ such that Itpi(L,R) as well as
Itpi(L

′, R) are defined, then Itpi(L,R)⇒ Itpi(L
′, R) (for a fixed i ∈ {1, 2}).

The proof of Theorem 3, is led by structural induction over R. For any vertex v
in R, let Iv and I ′v be the partial interpolants due to Itpi(L,R) and Itpi(L

′, R),
respectively. We show that Iv ⇒ I ′v ∨ {t ∈ 
R(v) |L(v, t) � L′(v, t) = ab} for all
vertices v, establishing Iv ⇒ I ′v for the sink to show that Itpi(L,R)⇒ Itpi(L

′, R).
Theorems 2 and 3 enable us to fine-tune the strength of interpolants, since the

sets of all labelling and choice functions ordered by 3 and ≤, respectively, form
complete lattices (c.f. [7, Theorem 3]). Finally, we remark that the Theorems
2 and 3 are orthogonal. The former fixes the labelling function L, whereas the
latter fixes the choice function χ.

4 Hyper-resolution and Resolution Chains

Contemporary proof-logging SAT solvers typically generate compacted proofs.
MiniSAT [8], for example, discards all intermediate resolvents generated during
the construction of a conflict clause and retains only resolution chains.

Definition 10 (Chain). A (resolution) chain of length n is a tuple consisting of
an input clause D0 and an ordered sequence of clause-pivot pairs 〈Ci, xi〉 (where
1 ≤ i ≤ n). The final resolvent Dn of a resolution chain is defined inductively
as Di = Res(Di−1, Ci, xi).

If D0 is a nucleus and C1, . . . , Cn are suitable satellites, the chain can be replaced
by a hyper-resolution step if its conclusionDn satisfies the HyRes rule. In general,
this may not be the case: in the presence of merge literals [1], the final resolvent
of a chain may depend on the order of the ordinary resolution steps. For example,
the chain ({x1, x2}, [〈{x2}, x2〉, 〈{x1, x2}, x1〉]) yields the resolvent {x2}, whereas
swapping the clause-pivot pairs leads to the resolvent �. This is because the
literal x2 is re-introduced after being eliminated in the original chain, while it is
merged and eliminated once and for all in the modified chain.

In the absence of merge literals, this issue does not arise. The following defi-
nition is a generalisation of merge-free edges (c.f. [7, § 5.1]) to chains.

Definition 11 (Strongly Merge-Free). A chain

(D0, [〈t1 ∨ C1, var(t1)〉, . . . , 〈tn ∨ Cn, var(tn)〉])

is strongly merge-free if {t1, · · · , tn} ∩ Ci = ∅ for all 1 ≤ i ≤ n.

Strongly merge-free chains are insensitive to changes in the order of the resolu-
tion steps in the sense that any permutation of the clause-pivot sequence still
represents a valid resolution proof (an immediate consequence of [7, Lemma 4])
with the final resolvent (D0 \ {t1, . . . , tn}) ∨

∨n
i=1 Ci. This property is stronger
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than just requiring that the sequence of resolution steps defined by a chain con-
tains no merge literals; it demands that {t0, . . . , tn} ⊆ D0.

3

Corollary 1. Any strongly merge-free chain

(x1 ∨ · · · ∨ xn ∨D0, [〈x1 ∨ C1, x1〉, . . . , 〈xn ∨ Cn, xn〉])

corresponds to a hyper-resolution step

(C1 ∨ x1) · · · (Cn ∨ xn) (x1 ∨ · · · ∨ xn ∨D)∨n
i=1 Ci ∨D

.

Consequently, Definition 11 provides a sufficient (but not necessary) condition for
replacing chains with hyper-resolution steps. We emphasise that Corollary 1 can
be generalised by replacing the variables x1, . . . , xn in the respective definitions
with literals t1, . . . , tn (c.f. § 3).

By definition, a single chain can be split into two consecutive chains, with
the final resolvent of the first acting as the input clause of the second, without
affecting the final result. Therefore, chains that are not merge-free can be split
repeatedly until the resulting sub-sequences become strongly merge-free.

A further incentive for splitting is to enable interpolation. By splitting hyper-
resolution steps whose literals are not uniformly labelled (recall the remark in § 3)
we can always generate a labelled refutation for which Itp is a total function.
The following example illustrates this transformation for a single resolution step:

(
a
x1 ∨C1) (

ab
x2 ∨C2) (

a
x3 ∨C3) (

a
x4 ∨C4) (

a

x1 ∨
a

x2 ∨
a

x3 ∨
b

x4 ∨D)

C1 ∨ C2 ∨ C3 ∨ C4 ∨D�

(
a
x1 ∨C1) (

a
x3 ∨C3) (

a

x1 ∨
a

x2 ∨
a

x3 ∨
b

x4 ∨D)

(
a

x2 ∨
b

x4 ∨C1 ∨ C3 ∨D)
[A-HyRes]

(
ab
x2 ∨C2) (

a
x4 ∨C4)

C1 ∨ C2 ∨ C3 ∨ C4 ∨D
[AB-HyRes]

Each hyper-resolution step may need to be rewritten into at most three uniformly
labelled steps (a, b, ab), thus changing the proof structure. Note that the results
on the relative strength of interpolants in § 3 naturally only apply if both proofs
have the same structure. The effect of the order of resolution steps on interpolants
is discussed in [7, § 5.2] and exceeds the scope of this paper.

5 Local Refutations and Hyper-resolution

Jhala and McMillan demonstrate in [13, Theorem 3] that the applicability of
propositional interpolation systems is not restricted to propositional logic. If a

3 This condition, however, can be met by extending the chain with an additional
resolution step Res(D0, t∨ t∨T, var(t)) for any t ∈ D0, which introduces the missing
literals T ⊆ {t0, . . . , tn}. This transformation is valid since t ∨ t ∨ T is a tautology.
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first-order refutation R has a certain structure, namely if for each inference step
in R the antecedents as well as the conclusion are either entirely in L(A) or in
L(B), then one can use a propositional interpolation system (such as the ones in
§ 2.2 and § 3) to construct an interpolant that is a Boolean combination of the
formulae in R. Kovács and Voronkov subsequently arrived at a similar result [15].

We recapitulate the results from [13,15] before we proceed to show that our
interpolation system from Definition 9 generalises the system of [15] as well as
a variation of [15] presented in [25].

Definition 12 (Local Refutation). An (A,B)-refutation R in a given in-
ference system for first-order logic is local if there exists a total partitioning
function πR : VR → {A,B} such that for all edges (v1, v2) ∈ ER we have

R(v1), 
R(v2) ∈ L(πR(v2)).

While proofs in general do not have this property, there is a variety of decision
procedures that yield local (ground) refutations. The construction of local proofs
is addressed in [13,20,9,15], to name only a few.

The following operation, which resembles the constructions in [15, Lemma
8], [13, Theorem 3], and [9, Section 5.5]), extracts a premise in L(A) (L(B),
respectively) for a vertex v ∈ VR with π(v) = A (π(v) = B, respectively) from a
local refutation R.

Definition 13 (A-Premise, B-Premise). Let R be a local (A,B)-refutation
with partitioning function π, and let v ∈ VR such that π(v) = A. Then

A-premise (v)
def
=

{u | (u, v) ∈ ER and π(u) = B or u is initial } ∪⋃
{A-premise (u) | (u, v) ∈ ER and π(u) = A } .

B-premise(v) is defined analogously.

Intuitively, A-premise(v) comprises the leaves of the largest sub-derivation S
rooted at v such that π(u) = A for all internal vertices u ∈ VS .

4 If the under-
lying inference system is sound, we have {
(u) |u ∈ A-premise(v)} |= 
(v). If,
moreover, 
(v) as well as all formulae of A-premise(v) are closed, we make the
following observation (c.f. related results in [15, Lemma 1] and [9, Lemma 3]):

Corollary 2. Let R be a local closed refutation in a sound inference system,
and let v ∈ VR an internal vertex such that πR(v) = A. Then, the following
Horn clause is a tautology: ∨

u∈A-premise(v)

¬
R(u) ∨ 
R(v) (2)

A similar claim holds for the case in which π(v) = B.

4 In particular, it is possible to choose πR in such a manner that S is the largest sub-
derivation rooted at v in R such that �R(u) ∈ L(A) for all u ∈ VS. This corresponds
to the setting in [15, Lemma 8].
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Corollary 2 is a pivotal element in our proof of the following theorem:

Theorem 4. (c.f. [13, Theorem 3]) Let R be a closed local (A,B)-refutation in
a sound inference system. Then one can extract a Craig-Robinson interpolant
from R using a propositional interpolation system.

Proof: Let v ∈ VR be such that π(v) = A. If v is initial, then either A or
B contains the unit clause Cv = 
(v). Otherwise, according to Corollary 2, the
clause Cv = ({¬
(u) |u ∈ A-premise(v)} ∨ 
(v)) is tautological (and therefore
implied by A). Moreover, it follows from Definition 12 that if u ∈ A-premise(v)
is not an initial vertex of R then 
R(u) ∈ L(A) ∩ L(B) holds. Accordingly,
Cv ∈ L(A), and we add Cv to A. A similar argument holds for v ∈ VR with
π(v) = B.

By construction, the resulting set of clauses Cv, v ∈ VR, is propositionally
unsatisfiable [13,15]; also, each clause is implied by either A or B. Moreover, all
literals with t ∈ L(A) \ L(B) (t ∈ L(B) \ L(A), respectively) are local to A (B,
respectively). Accordingly, it is possible to construct an interpolant for (A,B)
using the interpolation systems presented in § 2.2 and § 3.
Kovács and Voronkov avoid the explicit construction of a resolution proof by
defining their interpolation system directly on the local proof [15, Theorem 11]:

Definition 14. Let R be a local and closed (A,B)-refutation. The interpolation
system ItpKV maps vertices v ∈ VR for which 
R(v) ∈ L(A) ∩ L(B) holds to
partial interpolants as defined below.

For an initial vertex v

(A-clause)

(v) [
(v)]

if 
(v) ∈ A (B-clause)

(v) [¬
(v)] if 
(v) ∈ B

For an internal vertex v with {v1, . . . , vn} = π(v)-premise(v) such that


(vi) ∈ L(A) ∩ L(B) for 1 ≤ i ≤ m ≤ n and


(vj) �∈ L(A) ∩ L(B) for m < j ≤ n .


(v1) [I1] · · · 
(vm) [Im] 
(vm+1) · · · 
(vn)


(v) [I]

(A-justified) if π(v) = A, I
def
=
∧m

i=1(
(vi) ∨ Ii) ∧
∨m

i=1 ¬
(vi)

(B-justified) if π(v) = B, I
def
=
∧m

i=1(
(vi) ∨ Ii)

Remark. In addition to the condition in Definition 12, Kovács and Voronkov
require that for each v ∈ VR with predecessors v1, . . . , vn, 
(v) ∈ L(A) ∩ L(B)
if 
(vi) ∈ L(A) ∩ L(B) for all i ∈ {1..n}. A local derivation satisfying this
condition is symbol-eliminating, i.e., it does not introduce “irrelevant” symbols.
This technical detail allows the leaves of R to be merely implied by A (or B)
instead of being actual elements of A (B, respectively), while preserving the



Interpolant Strength Revisited 323

correctness of the interpolation system. This effectively enables interpolation for
non-closed formulae (A,B).

We proceed to show one of the main results of this paper, namely that our
interpolation system Itp from Definition 9 is able to simulate the interpolation
system ItpKV .

Theorem 5. Let R be a local and closed (A,B)-refutation. Then we can con-
struct a hyper-resolution refutation H of (A,B) and a locality preserving labelling
function L such that for each v ∈ VR with 
R(v) ∈ L(A) ∩ L(B) there exists a
corresponding vertex u ∈ VH such that ItpKV (R)(v)⇔ Itp1(L,H)(u).

Proof sketch: We demonstrate that it is possible to construct a hyper-resolution
refutation H of (A,B) in which each internal step of ItpKV is simulated using
two hyper-resolution steps. The induction hypothesis is that for each internal
vertex v ∈ VR with {v1, . . . , vn} = π(v)-premise(v) and m as in Definition 14,
we have vertices {u1, . . . , un} ⊆ VH such that

1. 
H(ui) = 
R(vi) for 1 ≤ i ≤ n, and
2. Itp1(L,H)(ui)⇔ ItpKV (R)(vi) for 1 ≤ i ≤ m, and

3. Itp1(L,H)(uj) =

{
F if 
(vj) ∈ A
T if 
(vj) ∈ B

for m < j ≤ n.

We add an auxiliary vertex labelled with the clause ¬
H(u1) ∨ · · · ∨ ¬
H(un) ∨

R(v), which, by Corollary 2 and by Definition 12, can be regarded as element of
formula π(v) (see proof of Theorem 4). The first hyper-resolution step eliminates
the literals local to π(v); the interpolants and labels are indicated for π(v) = A:

a

�H(um+1) [F] · · ·
a

�H(un) [F] (
a

¬�H(um+1) ∨ · · · ∨
a

¬�H(un) ∨ · · · ∨
a

�R(v)) [F]

(
ab

¬�H(u1) ∨ · · · ∨
ab

¬�H(um) ∨
a

�R(v)) [F]

The second hyper-resolution step eliminates the shared literals 
H(ui) (for 1 ≤
i ≤ m). Again, the labels and interpolants are for the case that π(v) = A:


H(u1) [I1] · · · 
H(um) [Im] (
ab

¬
H(u1) ∨ · · · ∨
ab

¬
H(um) ∨
a


R(v)) [F]
a


R(v) [
∧m

i=1(
H(ui) ∨ Ii]) ∧ (F ∨
∨m

i=1 ¬
H(ui))]

The sink of this resolution step is the vertex u ∈ VH such that 
H(u) = 
R(v)
and Itp1(L,H)(u) = ItpKV (v). �
We proceed to show that our system for hyper-resolution also generalises another
existing interpolation system for local refutations. In [25], we introduced the
following variation of the interpolation system in Definition 14:

Definition 15. Let ItpW be the interpolation system as described in Defini-
tion 14, except for the following modification:

(A-justified) if π(v) = A, I
def
=
∨m

i=1(¬
(vi) ∧ Ii)

(B-justified) if π(v) = B, I
def
=
∨m

i=1(¬
(vi) ∧ Ii) ∨
∧m

i=1 
(vi)
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The following theorem states that the interpolation system in Definition 9 is
powerful enough to simulate ItpW .

Theorem 6. Let R be a local and closed (A,B)-refutation. Then we can con-
struct a hyper-resolution refutation H of (A,B) and a locality preserving labelling
function L such that for each v ∈ VR with 
R(v) ∈ L(A) ∩ L(B) there exists a
corresponding vertex u ∈ VH such that ItpW (R)(v)⇔ Itp2(L,H)(u).

The proof is essentially equivalent to the proof of Theorem 5. Moreover, as a
consequence of Theorem 2, ItpKV is stronger than ItpW .

Corollary 3. Let R be a closed local (A,B)-refutation in a sound inference
system. Then ItpKV (R)⇒ ItpW (R).

6 Related Work

There is a vastly growing number of different interpolation techniques; a recent
survey of interpolation in decision procedures is provided by [3]. An exposition of
interpolation techniques for SMT solvers can be found in [4]. The work of Yorsh
and Musuvathi [26] enables the combination of theory-specific and propositional
interpolation techniques [12,16,21,18,7].

The novel interpolation system presented in Section 3 extends our prior work
on propositional interpolation systems [7]. The idea of using labelling functions
(initially introduced in [24] in the context of LTL vacuity detection to determine
the peripherality of variables in resolution proofs) is common to both approaches.

A number of interpolation techniques provide local proofs (e.g., [13,20,9,15]).
Not all interpolation techniques are based on local proofs, though: McMillan’s
interpolating inference system for equality logic with uninterpreted functions and
linear arithmetic [19], for instance, performs an implicit conversion of the proof,
and the approach presented in [23] avoids the construction of proofs altogether.

7 Consequences and Conclusion

We present a novel interpolation system for hyper-resolution proofs which gener-
alises our previous work [7]. By applying our technique to local proofs, we com-
bine a number of first-order [15,25] and propositional interpolation techniques
[12,16,21,18] into one uniform interpolation approach. As in [13], our approach
avoids an explicit theory combination step [26]. Therefore, it enables the varia-
tion of interpolant strength and the elimination of non-essential literals across the
theory boundary. Finally, by defining a rule that addresses hyper-resolution steps
(introduced by pre-processing or extracted from resolution chains), we avoid the
construction of intermediate partial interpolants. An experimental evaluation of
the benefit on overhead and interpolant size is future work.
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Abstract. We consider the performance of a number of DPLL algorithms on
random 3-CNF formulas with n variables and m = rn clauses. A long series of
papers analyzing so-called “myopic” DPLL algorithms has provided a sequence
of lower bounds for their satisfiability threshold. Indeed, for each myopic al-
gorithm A it is known that there exists an algorithm-specific clause-density, rA,
such that if r < rA, the algorithm finds a satisfying assignment in linear time. For
example, rA equals 8/3 = 2.66.. for ORDERRED-DLL and 3.003... for GENER-
ALIZED UNIT CLAUSE. We prove that for densities well within the provably sat-
isfiable regime, every backtracking extension of either of these algorithms takes
exponential time. Specifically, all extensions of ORDERRED-DLL take exponen-
tial time for r > 2.78 and the same is true for GENERALIZED UNIT CLAUSE for
all r > 3.1. Our results imply exponential lower bounds for many other myopic
algorithms for densities similarly close to the corresponding rA.

1 Introduction

The problem of determining the satisfiability of Boolean formulas is central to computa-
tional complexity. Moreover, it is of tremendous practical interest as it arises naturally in
numerous settings. Random CNF formulas have emerged as a mathematically tractable
vehicle for studying the performance of satisfiability algorithms and proof systems. For
a given set of n Boolean variables, let Bk denote the set of all possible disjunctions of
k non-complementary literals on the variables (k-clauses). A random k-SAT formula
Fk(n,m) is formed by selecting uniformly and independently m clauses from Bk and
taking their conjunction.

We will be interested in random formulas from an asymptotic point of view, i.e., as
the number of variables grows. In particular, we will say that a sequence of random
events En occurs with high probability (w.h.p.) if limn→∞ Pr[En] = 1. In this context,
the ratio of constraints-to-variables, r = m/n, known as density, plays a fundamen-
tal role as most interesting monotone properties are believed to exhibit 0-1 laws with
respect to density. Perhaps the best known example is the satisfiability property.

Conjecture 1. For each k ≥ 3, there exists a constant rk such that for any ε > 0,

lim
n→∞

Pr[Fk(n, (rk − ε)n)] = 1, and lim
n→∞

Pr[Fk(n, (rk + ε)n)] = 0 .

A. Cimatti and R. Sebastiani (Eds.): SAT 2012, LNCS 7317, pp. 327–340, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The satisfiability threshold conjecture above has attracted a lot of attention in computer
science, mathematics and statistical physics. At this point, neither the value, nor even
the existence of rk has been established. In a breakthrough result, Friedgut [15] gave a
very general condition for a monotone property to have a non-uniform sharp threshold.
In particular, his result yields the statement of the conjecture if one replaces rk with a
function rk(n). For k = 3, the best known bounds are 3.52 < r3 < 4.49, due to results
in [13] and [19], respectively.

A key feature of random k-CNF formulas is that their underlying hypergraph is lo-
cally tree-like for every finite density, i.e., for both satisfiable and unsatisfiable formulas.
One implication of this fact is that the formula induced by any finite-depth neighbor-
hood of any variable is highly under-constrained. As a result, unsatisfiability comes
about due to long-range interactions between variables something that appears hard
to capture by efficient algorithms. In particular, random formulas have been shown to
be hard both for proof systems, e.g., in the seminal work of Chvátal and Szemerédi
on resolution [10], and, more recently, for some of the most sophisticated satisfiabil-
ity algorithms known [11]. More generally, for the connections of random formulas to
proof-complexity and computational-hardness see the surveys by Beame and Pitassi [7]
and Cook and Mitchell [12], respectively.

The last decade has seen a great deal of rigorous results on random CNF formu-
las, including a proliferation of upper and lower bounds for the satisfiability threshold.
Equally importantly, random CNF formulas have been the domain of an extensive ex-
change of ideas between computer science and statistical physics, including the discov-
ery of the clustering phenomenon [21,20], establishing it rigorously [3], and relating it
to algorithmic performance [11]. In this work we take another step in this direction by
taking a technique from mathematical physics, the interpolation method [18,14,24,6],
and using it to derive rigorous upper bounds for the satisfiability threshold of random
CNF formulas that are mixtures or 2- and 3-clauses. As we discuss below, such formu-
las arise naturally as residual formulas in the analysis of satisfiability algorithms and
their unsatisfiability implies exponential lower bounds for the running time of a large
class of algorithms. Our main result is the following.

Theorem 1. Let F be a random CNF formula on n variables with (1 − ε)n random
2-clauses, and (1 + ε)n random 3-clauses. W.h.p. F is unsatisfiable for ε = 10−4.

Our method for proving Theorem 1 involves estimating an infinite sum with no close
form, any truncation of which yields a rigorous bound. The choice of 10−4 is rather ar-
bitrary as our methods can deliver arbitrarily small ε > 0, given enough computational
resources. We have chosen ε = 10−4 as it can be checked readily with very modest
computation.

2 Background and Motivation

Many algorithms for finding satisfying assignments for CNF formulas operate by build-
ing a partial assignment step by step. These algorithms commit to the assignments made
at each step and operate on a residual formula, in which clauses already satisfied have
been removed, while the remaining clauses have been shortened by the removal of their
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falsified literals. We call such algorithms forward search algorithms. During the exe-
cution of any such algorithm a partial assignment may produce clauses of size 1 (unit
clauses) in the residual formula which in turn create additional forced choices in the
partial assignment, since the variables appearing in unit clauses have only one possi-
ble assignment if the formula is to be satisfied. The choices made by a forward search
algorithm when no unit clauses are present are called free.

A large class of natural DPLL algorithms are “myopic” in that their free-step choices
are based on local considerations in terms of the underlying hypergraph. Perhaps the
simplest such algorithm is ORDERRED-DLL which performs unit-clause propagation
but, otherwise, sets variables in some a priori fixed random order/sign. Another example
is GENERALIZED UNIT CLAUSE (GUC) [22,16], where in each step a random literal in
a random shortest clause is assigned true. The key property of myopic algorithms that
makes their analysis mathematically tractable is the following (indeed, this can be seen
as a definition of myopic algorithms): as long as the algorithm has never backtracked,
the residual formula is uniformly random conditional on its number of 2- and 3-clauses
(unit-clauses are satisfied as soon as they occur).

To analyze the performance of myopic algorithms on random formulas one employs
the standard technique of approximating the mean path of Markov chains by differential
equations in order to keep track of the 2- and 3-clause density of the residual formula.
As is well understood, in the large n limit, both of these densities behave as determin-
istic functions, for every myopic algorithm. In the absence of backtracking, i.e., if the
algorithm continues blithely on after a 0-clause is generated, this means that for any
given initial 3-clause density r, we can model the algorithm’s behavior as a continuous
2-dimensional curve (dr2(x), d

r
3(x)) of the 2- and 3-clause density, where x ∈ [0, 1] de-

notes the fraction of assigned variables. Since the 2-SAT satisfiability threshold [10,17]
is r2 = 1, it follows that for any initial 3-clause density r > 0 and every γ > 0 such
that dr2(x) < 1 for all x ∈ [0, γ), the probability that no 0-clause is ever generated
is bounded away from 0. Indeed, to determine the threshold rA for each myopic algo-
rithm it suffices to determine the largest r such that dr2(x) < 1 for all x ∈ [0, 1). This
is because as long as dr2(x) < 1, w.h.p. 0-clauses are generated for trivial local reasons.
In particular, as was shown by Frieze and Suen [16], there exists a very simple form
of backtracking which never flips the value of any variable more than once, such that
endowing any myopic algorithm with this backtracking boosts its probability of finding
a satisfying assignment to 1− o(1) for all r < rA.

To understand what happens for r > rA, let us consider what happens if one gives
as input to a myopic algorithmA a random 3-CNF formula of density r > rA, but only
runs the algorithm for x0 · n steps where x0 is such that dr2(x) < 1 for all x ∈ [0, x0).
Up to that point, the algorithm will have either not backtracked at all, or backtracked
for trivial local reasons, so that the residual formula will be a mixture of random 2-
and 3-clauses in which the 2-clauses alone are satisfiable. Naturally, if the residual
formula is satisfiable the algorithm still has a chance of finding a satisfying assignment
in polynomial time. But what happens if this mixture, as a whole, is unsatisfiable?
How fast will it discover this and backtrack? In [2] it was shown that the resolution
complexity of unsatisfiable random mixtures of 2- and 3-clauses in which the 2-clause
are satisfiable is exponential. Since every DPLL algorithm produces a resolution proof
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of unsatisfiability, it follows that if the residual mixture is unsatisfiable, the algorithm
will take exponential time to establish its unsatisfiability.

To delineate satisfiable from unsatisfiable mixtures, define Δc to be the largest Δ
such that for every ε > 0, a mixture of (1 − ε)n 2-clauses and Δn 3-clauses is w.h.p.
satisfiable. In [4] it was proven that 2/3 ≤ Δc < 2.28... The upper bound, combined
with the differential equations analysis mentioned above was used in [2] to prove that if
ORDERED-DLL is started with 3.81n random 3-clauses it will reach a stage where the
residual formula has exponential resolution complexity (and, therefore, take exponential
time on such formulas). Similarly, for GUC started with 3.98n random 3-clauses.

By establishing Δc < 1.001, the exact same analysis as in [2] allows us to prove
that each of these algorithms fails for much lower densities, well within the proven
satisfiable regime. Specifically, while ORDERED-DLL succeeds in finding a satisfying
assignment in linear time up to 8/3 = 2.66... we prove that it already requires expo-
nential time at r > 2.71. Similarly, while GUC succeeds in linear time for r < 3.003,
we prove that it requires exponential time at r > 3.1. We state both of this results more
precisely in the next section, after discussing the different types of backtracking that
one can consider.

We note that these two explicit results for ORDERED-DLL and GUC are simply indica-
tive and Theorem 1 can be applied to prove similar bounds for all myopic algorithms.
This includes all algorithms in [1] and many others. In fact, our Theorem 1 can be gen-
eralized to random mixtures of 2- and 3-clauses with a given degree sequence, thus also
covering algorithms such as the one in [19].

2.1 Backtracking

When a path in the search tree leads to a contradiction, the algorithm must begin back-
tracking by undoing all the (forced) choices up to the last free choice and flipping the
assignment to that variable. From there, perhaps the simplest option would be for the al-
gorithm to act as if it had reached this point without backtracking and apply the original
heuristic to decide which variable(s) to set next.

As long as the 2-clause density stays below 1 it is not hard to show that any such
backtracking w.h.p. is due to trivial “local” reasons and can be fixed by changing the
value of O(log n) variables (typically O(1) variables suffice). From a technical point of
view, though, such backtracking (minimally) disturbs the uniform randomness property
of the residual formula, enough to make the statement of crisp mathematical statements
cumbersome.

An alternative heuristic, due to Frieze and Suen [16], which we call FS-backtracking
is the following: when a contradiction is reached, record the portion of the assignment
between the last free choice and the contradiction; these literals become hot. After flip-
ping the value of the last free choice, instead of making the choice that the original
heuristic would suggest, give priority to the complements of the hot literals in the or-
der that they appeared; once the hot literals are exhausted continue as with the original
heuristic. FS-backtracking is quite natural in that this last part of the partial assignment
got us into trouble in the first place.

A key property of FS-backtracking that is useful in analysis is that as long as the
value of each variable in a partial assignment has been flipped at most once, the
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residual formula is perfectly uniformly random conditional on the number of clauses
of each size. We emphasize that while the original motivation for introducing FS-
backtracking is technical, such backtracking is, in fact, a genuinely good algorithmic
idea. Specifically, on random 3-CNF formulas with densities between 3.8 and 4.0, large
experiments show that the histogram of run-times of FS-backtracking is significantly
better than simple backtracking. We will denote a forward search algorithmA extended
with FS-backtracking by A-FS.

Let us say that a DPLL algorithm is at a t-stage if precisely t variables have been set.

Definition 1. Let ε = 10−4. A t-stage of a DPLL algorithm is bad if the residual for-
mula at that stage is the union of a random 2-CNF formula with (1−ε)(n−t) 2-clauses
and a random 3-CNF formula with (1 + ε)(n− t) clauses, where t ≤ n/2.

Definition 1 is identical to that of bad stages in [2], except that they have 2.28+ε instead
of our 1 + ε, since Δc ≤ 2.28 was the best known bound prior to our work. Proceed-
ing exactly as in [2], i.e., by using the differential equations method to determine the
smallest initial 3-clause density such that the algorithm eventually reaches a bad stage,
we get the following.

Lemma 1. Let ΔORDERED-DLL = 2.71 and let ΔGUC = 3.1.

1. For each A ∈ {ORDERED-DLL,GUC}, an execution of any backtracking extension
of A on a random 3-CNF formula with ΔA · n clauses reaches a bad t-stage with
constant probability.

2. For each A ∈ {ORDERED-DLL,GUC}, an execution of algorithm A-FS on a ran-
dom 3-CNF formula with ΔA · n clauses reaches a bad t-stage w.h.p.

Theorem 2. Let ΔUC = ΔORDERED-DLL = 2.71 and let ΔGUC = 3.1.

1. For each A ∈ {ORDERED-DLL,GUC}, an execution of any backtracking extension
of A on a random 3-CNF formula with ΔAn clauses takes time 2Ω(n) with constant
probability.

2. For each A ∈ {ORDERED-DLL,GUC}, an execution of algorithm A-FS on a ran-
dom 3-CNF formula with ΔAn clauses takes time 2Ω(n) w.h.p.

2.2 Proving Upper Bounds for Satisfiability Thresholds

The simplest upper bound on the satisfiability threshold of random k-CNF formulas
comes from taking the union bound over all assignments σ ∈ {0, 1}n of the probability
that each one is satisfying. That is,

Pr[Fk(n, rn) is satisfiable] ≤
∑
σ

Pr[σ satisfies Fk(n, rn)] =
[
2(1− 2−k)r

]n → 0 ,

for all r > r∗k, where 2(1− 2−k)r
∗
k = 1. It is easy to see that r∗k/(2

k ln 2)→ 1.
Note that the above argument holds even for k = n, in which case satisfiability

reduces to the coupon collector’s problem over {0, 1}n. By standard results, in this
case the number of clauses to cover the cube is very close to 2n ln(2n) = n2n ln 2.
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Aggregating these assignments, for the sake of comparison, into groups of size 2n−k so
that they are comparable to k-clauses, recovers the union bound above. In other words,
the simplicity (and the weakness) of the union bound is that it treats the 2n−k distinct
assignments forbidden by each k-clause as a random multiset of the same size. As one
can imagine, this phenomenon is stronger as the cubes are larger, i.e., for smaller values
of k. For example, r∗3 = 5.19.., but a long series of increasingly sophisticated results has
culminated with the bound r3 < 4.49 by Díaz et al. [13]. In the extreme case k = 1, the
birthday paradox readily implies that a collection of Θ(n1/2) random 1-clauses is w.h.p.
unsatisfiable, yet the union bound only gives r1 ≤ 1, i.e., requires Ω(n) 1-clauses.

For the special case k = 2, it has long been shown, independently, by Chvátal and
Reed [9] and Goerdt [17] that r2 = 1. In all these proofs, the fact r2 ≤ 1 is established
by exploiting the existence of succinct certificates of unsatisfiability for 2-SAT enabling
proofs that proceed by identifying “most likely” unsatisfiable subformulas in the evolu-
tion of F2(n, rn). Intriguingly, early non-rigorous arguments of statistical physics [23]
recover the fact r2 ≤ 1 without relying on the fact that 2-SAT is in P. It is precisely this
feature that we exploit in the present work.

2.3 Applying the Interpolation Method to Random CNFs Formulas

To prove Theorem 1 we abandon standard combinatorial proofs of unsatisfiability and
turn to a remarkable tool developed by Francesco Guerra [18], called the interpolation
method, to deal with the Sherrignton Kirkpatrick model (SK) of statistical physics. Fol-
lowing Guerra’s breakthrough, Franz and Leone [14], in a very important paper, applied
the interpolation method to random k-SAT and random XOR-SAT to prove that certain
expressions derived via the non-rigorous replica method of statistical physics for these
problems, correspond to rigorous lower bounds for the free energy of each problem. As
such, these expressions can, in principle, be used to derive upper bounds for the satis-
fiability threshold of each problem, yet this involves the solution of certain functional
equations that appear beyond analytical penetration. In [24], Panchenko and Talagrand
showed that the results of [14] can be derived in a simpler and uniform way, unifying
the treatment of different levels of Parisi’s Replica Symmetry Breaking.

In a recent paper [6], Bayati, Gamarnik and Tetali, showed that a combinatorial ana-
logue of the interpolation method can be used to elegantly derive an approximate sub-
additivity property for a number of CSPs on Erdős-Renyi and regular random graphs.
This allowed them to prove the existence of a number of limits in these problems, in-
cluding the existence of a limit for the size of the largest independent set in a random
regular graph. At the same time, the simplicity of their combinatorial approach comes
at the cost of losing the capacity to yield quantitative bounds for the associated limiting
quantities.

To overcome these problems we will apply a recently developed [5] energetic in-
terpolation method to random mixtures of 2- and 3-clauses. This, implicitly, exploits
the second order nature of random 2-SAT phase transitions to gain in computational
tractability.
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3 The Energetic Interpolation Method

In the more standard models of random k-SAT, the number of clauses m is fixed (not a
random variable). The interpolation method requires that m is a Poisson random vari-
able with mean E[m] = rn. Since the standard deviation of the Poisson distribution is
the square root of its mean we have m = (1 + o(1))rn w.h.p., thus not affecting any
asymptotic results regarding densities.

We shall work with the random variable Hn,r(σ), know as the Hamiltonian, counting
the number of unsatisfied clauses in the instance for each σ ∈ {0, 1}n. We will some-
times refer to Hn,r(σ) as the energy function. The goal of the method is to compute
lower bounds on the following quantity

ξr = n−1
E

[
min

σ∈{0,1}n
Hn,r(σ)

]
. (1)

Note that proving lim infn→∞ ξr > 0 implies that the satisfiability threshold is upper
bounded by r, since the random variable n−1minσ Hn,r(σ) is known to be concen-
trated in a o(n) window [8].

Given σ = (x1, x2, . . . , xn) we will write Hn,r(σ) as the sum of m functions
Ea(xa1 , ..., xak

), one for each clause a. That is, Ea(xa1 , ..., xak
) = 1 if the associ-

ated clause is not satisfied and 0 otherwise. The basic object of the energetic interpo-
lation method is a modified energy function that interpolates between Hn,r(σ) and the
energy function of a dramatically simpler (and fully tractable) model. Specifically, for
t ∈ [0, 1], let

Hn,r,t(x1, . . . , xn) =

mt∑
m=1

Eam(xam,1 , ..., xam,k
) +

n∑
i=1

ki,t∑
j=1

ĥi,j(xi) , (2)

where mt is a Poisson random variable with mean E[mt] = trn, the ki,t’s are i.i.d.
Poisson random variables with mean E[ki,t] = (1 − t)kr, and the functions ĥi,j(·) are
i.i.d. random functions distributed as the function of (4) below. Before delving into the
meaning of the random functions ĥi,j(·), which are the heart of the method, let us first
make a few observations about (2). To begin with, note that for t = 1, equation (2) is
simply the energy function of the original model, i.e., a sum of m functions counting
whether each clause has been violated or not. On the other hand, for t < 1, we see that,
in expectation, (1 − t)m of these clause-functions have been replaced by k times as
many ĥ-functions, each of which takes as input the value of a single variable in the as-
signment. A good way to think about this replacement is as a decombinatorialization of
the energy function wherein (combinatorial) k-ary functions are replaced by univariate
functions. As one can imagine, for t = 0 the model is fully tractable. In particular, if

ξr(t) =
1

n
E

[
min

σ∈{0,1}n
Hn,r,t(σ))

]
, (3)

one can readily compute ξr(0).
The main idea of the interpolation method is to select the univariate functions ĥi(·)

independently, from a probability distribution that reflects aspects of the geometry of the
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underlying solution space. A particularly appealing aspect of the energetic interpolation
method is that it projects all information about the geometry of the solution space into a
single probability p, which can be interpreted as the probability that a variable picked at
random will be frozen, i.e., have the same value in all optimal assignments. The method
then delivers a valid bound for any choice of p ∈ [0, 1] and the bound is then optimized
by choosing the best value of p, i.e., performing a single-parameter search.

Let “1”, “0”, and “ ∗ ” denote the binary functions {h(0) = 1, h(1) = 0}, {h(0) =
0, h(1) = 1}, and {h(0) = 0, h(1) = 0} respectively. One can think of function 1 as
being 1 (unhappy) when the input is not 1, of function 0 as being 1 when the input is not
0, and of function ∗ as never being 1. Let h(x) be a random function in {“0”, “1”, “ ∗ ”}
with Pr(h(·) = “1”) = Pr(h(·) = “0”) = p/2 and let the random function ĥ(x) be
defined as follows

ĥ(x) = min
y1,...,yk−1

{E(y1, .., yk−1, x) +

k−1∑
i=1

hi(yi)} , (4)

where E(·) is a random clause-function and the functions hi(·) are i.i.d. random func-
tions distributed as h(x) i.e. ĥ(·) = “1” with probability 2−kpk−1.

The main point of the interpolation method is that as t goes from 1 to 0, we can
control in the change of ξr(t), hence the name. Specifically, one has the following.

Theorem 3 ([5]).
ξr ≥ ξr(0)− r(k − 1)2−kpk . (5)

Determining ξr(0) is a tractable task and establishing ξr > 0 implies that Fk(n, rn) is
w.h.p. unsatisfiable.

For completeness, we present the proof of Theorem 3 in Appendix A.

4 Energy Density Bounds for (2 + p)-SAT

Let F2,3(n, ε,Δ) denote a random CNF formula over n variables consisting of m2

random 2-CNF clauses, where m2 is a Poisson random variable with mean E[m2] =
(1 − ε)n and m3 random 3-CNF clauses, where m3 is a Poisson random variable with
mean E[m3] = Δn. Thus, the energy function is now

Hn,ε,Δ(σ) = H
(2)
n,1−ε(σ) +H

(3)
n,Δ(σ) ,

where H
(2)
n,1−ε(σ) is the k-SAT energy function for k = 2 and r = 1−ε, while H

(3)
n,Δ(σ)

is the energy function for k = 3 and r = Δ. Similarly the interpolation function is the
sum of the two independent interpolation functions corresponding to k = 2 and k = 3,
i.e.,

Hn,ε,Δ,t(x1, . . . , xn) = H
(2)
n,1−ε,t(x1, . . . , xn) +H

(3)
n,Δ,t(x1, . . . , xn) . (6)

Letting

ξε,Δ(t) = n−1
E

[
min

σ∈{0,1}n
Hn,ε,Δ,t(σ)

]
, (7)

the analogue of Theorem 3 for random mixtures of 2- and 3-clauses is the following.
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Theorem 4. For every value of p ∈ [0, 1],

ξε,Δ ≥ ξε,Δ(0)−
1

4
(1− ε)p2 − 1

4
Δp3 . (8)

Proof. As with Theorem 3, the probability joint distribution implicit in the expectation
of ξε,Δ(t) can be written as the product of Poisson random functions, due to the in-
dependence among the random variables appearing in Hn,ε,Δ,t(x1, . . . , xn). Now, the
derivative with respect to t gives rise to two independent set of equations similar to
the ones in (14) and (15) for k = 2 and k = 3, where the base energy function is
Hn,ε,Δ(σ). Since all the relevant properties of the mixture are captured by its set of
frozen variables, the theorem follows simply by applying the proof of (12) in Theorem
3 twice.

5 Application to (2 + p)-SAT

In this section we give first an analytical expression for ξε,Δ(0) and then compute a
lower bound for it. We have

ξε,Δ(0) = n−1
E

[
min

σ∈{0,1}n
Hn,ε,Δ,0(σ)

]

= n−1
E

⎡⎣ min
σ∈{0,1}n

⎛⎝ n∑
i=1

⎛⎝k2,i∑
j=1

ĥ2,i,j(xi) +

k3,i∑
j=1

ĥ3,i,j(xi)

⎞⎠⎞⎠⎤⎦
= n−1

E

⎡⎣ n∑
i=1

min
xi∈{0,1}

⎛⎝k2,i∑
j=1

ĥ2,i,j(xi) +

k3,i∑
j=1

ĥ3,i,j(xi)

⎞⎠⎤⎦
= n−1

n∑
i=1

E

⎡⎣ min
xi∈{0,1}

⎛⎝k2,i∑
j=1

ĥ2,i,j(xi) +

k3,i∑
j=1

ĥ3,i,j(xi)

⎞⎠⎤⎦ ,

where the k2,i’s and the k3,i’s are Poisson random variables with means 2(1−ε) and 3Δ
respectively, as defined in (6). Note now that the n expectations in the above summation
are identical, thus

ξε,Δ(0) = E

⎡⎣ min
x∈{0,1}

⎛⎝ s2∑
j=1

ĥ2,j(x) +

s3∑
j=1

ĥ3,j(x)

⎞⎠⎤⎦ , (9)

where s2 and s3 are Poisson random variables with means 2(1−ε) and 3Δ respectively,
and the functions ĥ2,j(·) and ĥ3,j(·) are i.i.d. copies of the function ĥ(·) in (4) for k = 2

and k = 3, respectively, i.e., random functions in {“0”, “1”, “ ∗ ”} with Pr(ĥk,j(·) =

“1”) = Pr(ĥk,j(·) = “0”) = 2−kpk−1.
Let lk,0, lk,1, and lk,∗ denote the number “0”, “1”, and “*” functions, respectively

among the ĥk,j(·) functions inside the summation in (9). Conditional on the value of sk,
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the random vector (lk,0, lk,1, lk,∗) is distributed as a multinomial random vector with sk
trials and probability vector (2−kpk−1, 2−kpk−1, 1− 2−k+1pk−1), therefore,

ξε,Δ(0) =
∞∑
x=0

∞∑
y=0

x∑
l2,0=0

x−l2,0∑
l2,1=0

y∑
l3,0=0

y−l2,0∑
l3,1=0

min{l2,0 + l3,0, l2,1 + l3,1} ×

Poi(2(1 − ε), x)Multi(l2,0, l2,1, x− l2,0 − l2,1)×
Poi(3Δ, y)Multi(l3,0, l3,1, y − l3,0 − l3,1) ,

where Multi(·, ·, ·) denotes the multinomial density function.
Changing the limits of all summations to infinity, does not change the value of

ξε,Δ(0), since Multi(·, ·, ·) evaluates to zero for negative numbers, hence, we can in-
terchange the order of the summations to get

ξε,Δ(0) =

∞∑
l2,0=0

∞∑
l2,1=0

∞∑
l3,0=0

∞∑
l3,1=0

min{l2,0 + l3,0, l2,1 + l3,1} ×

∞∑
x=0

Poi(2(1− ε), x)Multi(l2,0, l2,1, x− l2,0 − l2,1)×

∞∑
y=0

Poi(3Δ, y)Multi(l3,0, l3,1, y − l3,0 − l3,1) .

The last equation can be simplified by summing out the randomness in the Poisson ran-
dom variables. The result is that l2,0 and l2,1 become two independent Poisson random
variables with mean 1

2 (1− ε)p, that is,

∞∑
x=0

Poi(2(1− ε), x)Multi(l2,0, l2,1, x− l2,0 − l2,1) =

Poi((1− ε)p/2, l2,0)× Poi((1 − ε)p/2, l2,1) .

Similarly, l3,0 and l3,1become two independent Poisson random variables with mean
3
8Δp2. Moreover, letting

λ =
1

2
(1− ε)p+

3

8
Δp2 ,

we see that l0 = l2,0 + l3,0 is itself a Poisson random variable with mean λ, since the
sum of two independent Poisson random variables with means λ1 and λ2 is a Poisson
random variable with mean λ = λ1 + λ2. Thus,

ξε,Δ(0) =

∞∑
l0=0

∞∑
l1=0

min{l0, l1} × Poi (λ, l0)× Poi (λ, l1) ,

i.e., ξε,Δ(0) is the expected value of the minimum of two independent Poisson random
variables l0, l1 with mean λ. Consequently, the bound of Theorem 4 becomes

ξε,Δ ≥ E [min{l0, l1}]−
1

4
(1− ε)p2 − 1

4
Δp3 . (10)
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Finally, we note that

E [min{l0, l1}] =
∞∑
i=0

i

⎛⎝2Poi(λ, i)

⎛⎝1−
i−1∑
j=0

Poi(λ, j)

⎞⎠− (Poi(λ, i))2

⎞⎠ . (11)

Thus, to compute lower bounds for (10) is enough to truncate (11) at any value of i. In
particular, by letting ε = 0.0001, Δ = 1.0001 and i = 50, we get that for p = 1.2 ·10−3

the truncated version of (10) is greater than 0, implying that a random CNF formula with
0.9999n 2-clauses and 1.0001n 3-clauses is w.h.p. unsatisfiable.
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A Proof of Theorem 3

Proof. Since ξr(1) = ξr(0) +
∫ 1

0 ξ′r(t)dt and since r(k − 1)2−kpk does not depend on
t, it suffices to show that −r(k − 1)2−kpk is an lower bound for ξ′r(t), i.e., we have to
show that for all t ∈ [0, 1],

ξ′r(t) ≥ −r(k − 1)2−kpk . (12)

We begin by computing ξ′r(t). Let minσ Hm(σ) and minσ Hki(σ) denote the random
variable minσ Hn,t(σ) conditioned on the values of the random variables mt and ki,t
respectively, that is

min
σ

Hm(σ) = min
σ

Hn,r,t(σ)
∣∣∣
mt=m

and min
σ

Hki(σ) = min
σ

Hn,r,t(σ)
∣∣∣
ki,t=ki

and more generally

min
σ

Hm,k1,...,kn(σ) = min
σ

Hn,r,t(σ)
∣∣∣
mt=m,k1,t=k1,...,kn,t=kn

.

Denote the Poisson density function with mean μ as Poi(μ, z) = e−μ(μz/z!). Since the
random variable mt and the random variables ki,t are independent, we can write the
expectation in (3) as

http://link.aps.org/doi/10.1103/PhysRevE.56.1357
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ξr(t) =
∑

m,k1,...,kn

Poi(trn,m)

n∏
i=1

Poi((1 − t)rk, ki)
1

n
E[min

σ
Hm,k1,...,kn(σ)] .

By differentiating ξr(t) with respect to t we get

ξ′r(t) =
∞∑

m=0

∂

∂t
Poi(trn,m)

1

n
E[minHm(σ)] + (13)

n∑
i=1

∞∑
ki=0

∂

∂t
Poi((1− t)rk, ki)

1

n
E[minHki(σ)] .

Recall now that (∂/∂t)Poi(trn,m) = −rnPoi(trn,m) + rnPoi(trn,m − 1). Thus,
the derivative with respect to t in the first summation in (13) can be written as

− r
∞∑

m=0

Poi(trn,m)E[minHm(σ)] + r
∞∑

m=1

Poi(trn,m− 1)E[minHm(σ)] =

r

∞∑
m=0

Poi(trn,m) [E[minHm+1]− E[minHm]] . (14)

Similarly, the derivatives in the double sum in (13) with respect to t can be written as

−rk
1

n

n∑
i=1

∞∑
ki=0

Poi((1− t)rk, ki) [E[minHki+1]− E[minHki ]] . (15)

Now, a crucial observation is that (14) is r times the expected value of the change in
minH after adding a random clause, while (15) is −rk times the expected value of the
change in minH after adding a single ĥ function whose argument is a variable selected
uniformly at random. Thus, to establish (12) we need to show that the expected change
in minH caused by adding a random clause minus k times the expected change caused
by adding a random function ĥ is at most −r(k − 1)2−kpk. Equivalently, we need to:

1. Consider the experiment:
– Select: (i) a random formula H from the distribution Hn,r,t, (ii) a random

clause c, (iii) a random variable x ∈ {x1, . . . , xn}, and (iv) a random ĥ-
function.

– Let H ′ = H(σ) + Ec, H ′′ = H(σ) + ĥ(x).
– Let Y = (minH ′ −minH)− k(minH ′′ −minH).

2. Prove that EY , over the choice of H, c, ĥ, is at most −r(k − 1)2−kpk.

The averaging task in Step 2 above appears quite daunting, as we need to average
over H . The reason we can establish the desired conclusion is that, in fact, something
far stronger holds. Namely, we will prove that for every realization of H , the condi-
tional expectation of Y , i.e., the expectation over only c, h and ĥ, satisfies the desired
inequality.
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Specifically, Let H0(·) denote any realization of Hn,r,t(·). Let C∗ ⊆ {0, 1}n be the
set of optimal assignments in H0. A variable xi is frozen if its value is the same in all
optimal assignments. Let O∗ be the set of frozen variables corresponding to H0. We are
going to compute the expected value in the change of minσ{H0(σ)} after adding a new
factor node Eanew(xanew,1 , . . . , xanew,k

) and after adding an individual factor ĥnew(·) to a
variable selected u.a.r.

Adding a new factor Enew(x1,new, . . . , xk,new) will change the minimum value by 1
iff all the variables appearing in Enew are frozen, i.e., {xanew,1 , . . . , xanew,k

} ⊆ O∗, and
the sign of all the frozen variables in the clause associated with Enew is not equal to its
frozen value. For, otherwise, any non frozen variable could be adjusted to make the new
factor zero. The probability that {xanew,1 , . . . , xanew,k

} ⊆ O∗ is (|O∗| /n)k, since each
of the variables in a random clause are selected uniformly at random with replacement.
Thus,

E

[
min
σ
{H0(σ) + E(xanew,1 , . . . , xanew,k

)}
]
−min

σ
{H0(σ)} = 2−k

(
|O∗|
n

)k

.

The change after adding a new individual factor ĥnew(·) to variable selected uniformly at
random can be computed in a similar way. In this case the minimum value will change
by 1 only if the selected variable x is frozen and if the new factor forces the variable x
to take its non-frozen value. This requires that both of the following occur:

– The variable x is frozen to the opposite sign from the one it has in the random
clause E(y1, ..., yk−1, x) in the added factor. This event occurs with probability
|O∗|/(2n).

– The k− 1 random functions, distributed as h(·), are all “0” or “1” functions and the
(k − 1)-tuple (y∗1 , ..., y

∗
k−1) that minimizes

∑
hi(yi) does not satisfy the random

clause in the factor. This event occurs with probability (p/2)k−1.

Therefore,

E

[
min
σ
{H0(σ) + ĥnew(x)}

]
−min

σ
{H0(σ)} = 2−kpk−1 |O∗|

n
.

Thus the value ξ′(t) conditional on H0 is

ξ′(t)|H0 = r2−k

(
|O∗|
n

)k

− rk2−kpk−1 |O∗|
n

.

We finish the proof by noting that

−ξ′(t)|H0 − r(k − 1)2−kpk = 2−k

(
−r

(
|O∗|
n

)k

+ rkpk−1 |O∗|
n
− r(k − 1)pk

)
is always non-positive since the polynomial F (x, p) = xk − kpk−1x+ (k − 1)pk ≥ 0
for all 0 ≤ x, p ≤ 1. To see this last statement note that:

– F (0, p), F (1, p), F (x, 0), F (x, 1) ≥ 0.
– The derivative of F with respect to p is 0 only when p = x, wherein F (x, x) = 0.
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Abstract. We consider the weighted satisfiability problem for Boolean circuits
and propositional formulæ, where the weight of an assignment is the number of
variables set to true. We study the parameterized complexity of these problems
and initiate a systematic study of the complexity of its fragments. Only the mono-
tone fragment has been considered so far and proven to be of same complexity
as the unrestricted problems. Here, we consider all fragments obtained by seman-
tically restricting circuits or formulæ to contain only gates (connectives) from a
fixed set B of Boolean functions. We obtain a dichotomy result by showing that
for each such B, the weighted satisfiability problems are either W[P]-complete
(for circuits) or W[SAT]-complete (for formulæ) or efficiently solvable. We also
consider the related counting problems.

1 Introduction

Satisfiability of circuits and formulæ are fundamental problems, which are the core of
many complexity classes. This is true not only in the “classical” complexity setting but
also in parameterized complexity theory. Here, with each problem instance we asso-
ciate a parameter. Instances with the same parameter are thought to share a common
structure. A parameterized problem is fixed-parameter tractable (in FPT) if it can be
solved in polynomial time for each fixed value of the parameter, where the degree of
the polynomial does not depend on the parameter. Much like in the classical setting, to
give evidence that certain algorithmic problems are not in FPT one shows that they are
complete for superclasses of FPT, like the classes in the so-called W-hierarchy.

Weighted satisfiability (where the weight of a solution is given by the number of
variables assigned true) gives rise to a parameterized version of the problems of satis-
fiability of circuits or formulæ. The goal is then to decide the existence of satisfying
assignments of weight exactly k, where k is the parameter. From a complexity theoretic
viewpoint, these parameterized problems are very hard since they are W[P]-complete
for circuits and W[SAT]-complete for formulæ (see, e.g., [8]).
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This intractability result raises the question for restrictions leading to fragments of
lower complexity. Concerning formulæ such restrictions have been considered in pre-
vious work. Indeed Marx [10] studied the parameterized complexity of satisfiability
problems in the famous Schaefer’s framework where formulæ are restricted to general-
ized conjunctive normal form with clauses from a fixed set of relations (the constraint
language). He obtained a dichotomy classification by showing that for every possible
constraint language the weighted satisfiability problem for generalized CNF formulæ
is either in FPT or W[1]-complete (thus, in any case, much lower than the W[SAT]-
completeness for general weighted SAT). A similar yet different approach is not to re-
strict the syntactic shape of the formulæ by stipulating a certain normal form but rather
to require formulæ to be constructed from a restricted set of Boolean functions B (in
contrast to the Schaefer framework, one might say that these are semantic restrictions).
Such formulæ are called B-formulæ. This approach has first been taken by Lewis, who
showed that deciding satisfiability of B-formulæ is NP-complete if and only if the set
of Boolean functions B has the ability to express the negation of implication �→ [9].
Since then this approach has been applied to a wide range of algorithmic problems
from the area of circuits [14,3] or propositional formulæ in, e.g., temporal logics [2] or
non-monotonic logics [5].

The goal of this paper is to follow this approach and to show that Post’s lattice allows
to completely classify the complexity of weighted satisfiability for all possible sets of
allowed Boolean functions. We consider both circuits and formulæ, and the complex-
ity of deciding whether they admit a satisfying assignment of weight exactly k. We
show that depending on the set B of allowed connectives the parameterized weighted
satisfiability problem is either W[P]-complete (for circuits) and W[SAT]-complete for
formulæ, or in P. More precisely, we prove that the complexity of these problems is
W[P]-complete or W[SAT]-complete (depending on whether they concern circuits or
formulæ) as soon as B can express either the function x ∧ (y ∨ z), or any 2-threshold
function as for example the ternary majority function. The problem becomes solvable in
polynomial time in all remaining cases. Thus, in a sense, we exactly pinpoint the reason
for intractability of weighted satisfiability by exhibiting which Boolean functions make
the problem hard.

Besides the decision problem, we study the complexity of the corresponding count-
ing problems. We prove here also a dichotomy theorem in showing that the problems
are either #W[P]-complete (or #W[SAT]-complete), or in FP. The frontier of this di-
chotomy is not the same as in the decision case, since some tractable decision problems,
as, e.g., the weighted satisfiability problem in which only the connective→ is allowed,
become hard counting problems.

Our results are summarized in Fig. 1. White sets B of Boolean functions lead to easy
problems, black sets lead to hard problems. The gray colored nodes correspond to those
sets B for which the decision problems are easy, but the counting problems are hard.

The rest of the paper is structured as follows. We first give the necessary prelim-
inaries. Afterwards, we define the weighted satisfiability considered herein. We then
classify the parameterized complexity of these problems. Next, we consider the count-
ing problems and finally conclude with a discussion of the results.
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2 Preliminaries

Parameterized complexity. We assume familiarity with the basic classes and reducibil-
ity notions from parameterized complexity theory, see, e.g., [8,12], such as FPT, W[P],
W[SAT], fpt-reductions and Turing fpt-reductions.

Boolean circuits and propositional formulae. We assume familiarity with propositional
logic. A Boolean function is an n-ary function f : {0, 1}n → {0, 1}. We define Boolean
circuits (see also [17]) in the standard way as directed acyclic graphs with each node of in-
degree k > 0 labeled by a Boolean function of arity k. For non-commutative functions,
there is in addition an ordering on the incoming edges. Nodes of in-degree 0 are either
labeled as Boolean constants 0 or 1, or as input nodes. In addition, one node of out-
degree 0 is labeled as the output node. We think of the input nodes as being numbered
1, . . . , n. This definition of a Boolean circuit corresponds to the intuitive idea that a
circuit consists of a set of gates which are either input gates, or compute some Boolean
function with arguments taken from the predecessor gates. The value computed by the
circuit is the result computed in the distinguished output-gate. So, a circuit C with n
input nodes naturally computes an n-ary Boolean function, we denote it by fC .

We denote the value computed by C on input a ∈ {0, 1}n by C(a). If C(a) = 1,
we say that a satisfies C. We call C satisfiable if there is some tuple a ∈ {0, 1}n that
satisfies C. We define the weight of a tuple a = (a1, . . . , an) ∈ {0, 1}n to be

∑n
i=1 ai,

the number of 1-entries of a. We say C is k-satisfiable if it is satisfied by a tuple of
weight k. A circuit C is monotone if for all a = (a1, . . . , an) ∈ {0, 1}n such that
C(a) = 1, a1 ≤ b1, . . . an ≤ bn implies C(b1, . . . bn) = 1.

A formulaϕ is a circuit where the underlying graph forms a tree. Hence, such circuits
can always be written as a formula in the usual string representation without growing
significantly in size. For a general circuit, the length of its “formula representation”
can be exponential in the size of the original circuit. Further we denote by ϕ[α/β] the
formula obtained from ϕ by replacing all occurrences of α with β. The set Var(ϕ)
denotes the set of variables occurring in the formula

Deciding the k-satisfiability of a Boolean circuit, p-WCIRCUIT-SAT, where k is
taken to be the parameter, is of fundamental importance for parameterized complex-
ity theory. Indeed, p-WCIRCUIT-SAT is W[P]-complete under fpt-reductions (see [8,
Theorem 3.9]). Deciding the k-satisfiability of a Boolean formula,p-WSAT, is W[SAT]-
complete by definition.

Given B a finite set of Boolean functions, a B-circuit (resp. a B-formula) is a
Boolean circuit (a formula) using only functions (connectives) from B.

Clones of Boolean functions. A clone is a set of Boolean functions that is closed under
superposition, i.e., it contains all projections (that is, the functions f(a1, . . . , an) = ak
for 1 ≤ k ≤ n and n ∈ N) and is closed under arbitrary composition. Let B be a finite
set of Boolean functions. We denote by [B] the smallest clone containing B and call
B a base for [B]. The set [B] corresponds to the set of all Boolean functions that can
be computed by B-circuits. All closed classes of Boolean functions were identified by
Post ([13]). Post also found a finite base for each of them and detected their inclusion
structure, hence the name of Post’s lattice (see Figure 1).
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In order to define the clones, we require the following notions, where f is an n-ary
Boolean function:

– f is c-reproducing if f(c, . . . , c) = c, c ∈ {0, 1}.
– f is monotonic (or, monotone) if a1 ≤ b1, a2 ≤ b2, . . . , an ≤ bn implies

f(a1, . . . , an) ≤ f(b1, . . . , bn).
– f is c-separating of degree k if for all A ⊆ f−1(c) of size |A| = k there exists an

i ∈ {1, . . . , n} such that (a1, . . . , an) ∈ A implies ai = c, c ∈ {0, 1}.
– f is c-separating if f is c-separating of degree |f−1(c)|.
– f is self-dual if f(x1, . . . , xn) ≡ ¬f(¬x1, . . . ,¬xn).
– f is affine if it is of the form f(x1, . . . , xn) = x1 ⊕ · · · ⊕ xn ⊕ c with c ∈ {0, 1}.

In the following we will often use well-known Boolean functions, as ∧, ∨, ¬, ⊕,→ the
implication function and the ternary majority operation maj (defined by
maj(x1, x1, x3) = 1 if and only if x1 + x2 + x3 ≥ 2). We will also refer to q-threshold
functions as functions f verifying f(x1, . . . , xn) = 1 if and only if

∑n
i=1 xi ≥ q. Ob-

serve that maj is thus a ternary 2-threshold function. More generally Tn
k will denote the

k-threshold function of arity n.
A list of all clones with definitions and finite bases is given in Table 1 on page 345,

see also, e.g., [4]. Clones of particular importance in this paper, either because they
are of technical importance or because they mark points in Post’s lattice where the
complexity of our problems changes, are the following:

– The clone of all Boolean functions BF = [∧,¬] = [∧,∨,¬, 0, 1].
– The monotonic clones M∗, e.g., M2 = [∧,∨] and M = [∧,∨, 0, 1].
– The dual clones D∗, e.g., D2 = [maj].
– The disjunctive clones V∗, e.g., V = [∨, 0, 1].
– The conjunctive clones E∗, e.g., E = [∧, 0, 1].
– The affine clones L∗, e.g., L = [⊕, 0, 1].
– The implication clone S∗0, e.g., S0 = [→].

We will often add some function f /∈ C to a clone C and consider the clone C′ =
[C ∪ {f}] generated out of C and f . With Post’s lattice one can determine this C′

quite easily: it is the lowest clone above C that contains f . The following list contains
identities we will frequently use.

– [S02 ∪ {0, 1}] = [S12 ∪ {0, 1}] = BF

– [S00 ∪ {0, 1}] = [D2 ∪ {0, 1}] = [M2 ∪ {0, 1}] = [S10 ∪ {0, 1}] = M

– [S10 ∪ {1}] = [M2 ∪ {1}] = M1

– [S00 ∪ {0}] = [M2 ∪ {0}] = M0

– [D2 ∪ {1}] = S201, [D2 ∪ {0}] = S211

Let f be an n-ary Boolean function. A B-formula ϕ such that Var(ϕ) ⊇ {x1, . . . , xn}
is a B-representation of f(x1, . . . , xn) if it holds that σ : Var(ϕ) → {0, 1} satisfies ϕ
if and only f(σ(x1), . . . , σ(xn)) = 1. Such a B-representation exists for every f ∈ [B].
Yet, it may happen that the B-representation of some function uses some input variable
more than once.

Example 1. Let h(x, y) = x ∧ ¬y. An {h}-representation of the function x ∧ y is
h(x, h(x, y)).
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Table 1. The list of all Boolean clones with definitions and bases, where Tn
k denotes the k-

threshold function of arity n,

Clone Definition Base

BF All Boolean functions {x ∧ y,¬x}
R0 {f ∈ BF | f is 0-reproducing} {x ∧ y, x⊕ y}
R1 {f ∈ BF | f is 1-reproducing} {x ∨ y, x ↔ y}
R2 R0 ∩ R1 {x ∨ y, x ∧ (y ↔ z)}
M {f ∈ BF | f is monotone} {x ∧ y, x ∨ y, 0, 1}
M0 M ∩ R0 {x ∧ y, x ∨ y, 0}
M1 M ∩ R1 {x ∧ y, x ∨ y, 1}
M2 M ∩ R2 {x ∧ y, x ∨ y}
S0 {f ∈ BF | f is 0-separating} {x → y}
Sn
0 {f ∈ BF | f is 0-separating of degree n} {x → y,Tn+1

2 }
S1 {f ∈ BF | f is 1-separating} {x � y}
Sn
1 {f ∈ BF | f is 1-separating of degree n} {x � y,Tn+1

n }
Sn
02 Sn

0 ∩ R2 {x ∨ (y ∧ ¬z),Tn+1
2 }

S02 S0 ∩ R2 {x ∨ (y ∧ ¬z)}
Sn
01 Sn

0 ∩M {Tn+1
2 , 1}

S01 S0 ∩M {x ∨ (y ∧ z), 1}
Sn
00 Sn

0 ∩ R2 ∩M {x ∨ (y ∧ z),T3
2} if n = 2,

{Tn+1
2 } if n ≥ 3

S00 S0 ∩ R2 ∩M {x ∨ (y ∧ z)}
Sn
12 Sn

1 ∩ R2 {x ∧ (y ∨ ¬z),Tn+1
n }

S12 S1 ∩ R2 {x ∧ (y ∨ ¬z)}
Sn
11 Sn

1 ∩M {Tn+1
n , 0}

S11 S1 ∩M {x ∧ (y ∨ z), 0}
Sn
10 Sn

1 ∩ R2 ∩M {x ∧ (y ∨ z),T3
2} if n = 2,

{Tn+1
n } if n ≥ 3

S10 S1 ∩ R2 ∩M {x ∧ (y ∨ z)}
D {f ∈ BF | f is self-dual} {maj(x,¬y,¬z)}
D1 D ∩ R2 {maj(x, y,¬z)}
D2 D ∩M {maj(x, y, z)}
L {f ∈ BF | f is affine} {x⊕ y, 1}
L0 L ∩ R0 {x⊕ y}
L1 L ∩ R1 {x ↔ y}
L2 L ∩ R2 {x⊕ y ⊕ z}
L3 L ∩ D {x⊕ y ⊕ z ⊕ 1}
E {f ∈ BF | f is constant or a conjunction} {x ∧ y, 0, 1}
E0 E ∩ R0 {x ∧ y, 0}
E1 E ∩ R1 {x ∧ y, 1}
E2 E ∩ R2 {x ∧ y}
V {f ∈ BF | f is constant or a disjunction} {x ∨ y, 0, 1}
V0 V ∩ R0 {x ∨ y, 0}
V1 V ∩ R1 {x ∨ y, 1}
V2 V ∩ R2 {x ∨ y}
N {f ∈ BF | f is essentially unary} {¬x, 0, 1}
N2 N ∩ D {¬x}
I {f ∈ BF | f is constant or a projection} {id, 0, 1}
I0 I ∩ R0 {id, 0}
I1 I ∩ R1 {id, 1}
I2 I ∩ R2 {id}
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Fig. 1. Graph of all Boolean clones

3 Weighted Satisfiability Problems

Let B be a finite set of Boolean functions. We are interested in the complexity of
weighted satisfiability problems as a function of the set B of allowed connectives. We
define weighted satisfiability problems for B-circuits and for B-formulæ as follows:

Problem: p-WSAT(B)

Input: a B-formula ϕ and k ∈ N

Parameter: k

Question: Does ϕ have a satisfying assignment of weight exactly k?

The corresponding problem for circuits is denoted by p-WCIRCSAT(B).
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Our goal is to obtain a complexity classification of these problems according to B.
Observe that if B1 and B2 are two finite sets of Boolean functions such that B1 ⊆
[B2], then every function of B1 can be expressed by a B2-formula, its so-called B2-
representation. This provides a canonical fpt-reduction from p-WCIRCSAT(B1) to
p-WCIRCSAT(B2): Given (C1, k) an input of the first problem, construct in logarith-
mic space the pair (C2, k) in which C2 is obtained from C1 in replacing all B1-functions
by their B2-representation (observe that since B1 and B2 are not part of the input the
cost of computing these representations is not taken into account in the complexity of
the reduction). However, since the B2-representation of some function may use some
input variable more than once (see Example 1) this reduction is not necessarily polyno-
mial when we turn to formulæ. In order to avoid an exponential blow-up when dealing
with formulæ we will seek short representations, i.e., representations in which every
variable appears exactly once. We say that a set B efficiently implements an n-ary func-
tion f if there is a B-formula ϕ that is equivalent to f(x1, . . . , xn) and in which each
xi appears exactly once. In that case the above reduction applies to formulæ as well,
and we get a canonical fpt-reduction from p-WSAT({f}) to p-WCIRCSAT(B).

4 The Complexity of Weighted Satisfiability Problems

In the following B denotes a finite set of Boolean functions,

Lemma 2. p-WSAT(B) is in W[SAT] and p-WCIRCSAT(B) is in W[P].

Proof. For circuits it follows from the fact that {∧,∨,¬} can represent all Boolean
functions. Therefore, p-WCIRCSAT(B) ≤fpt p-WCIRCSAT({∧,∨,¬}), the latter be-
ing in W[P] by definition, thus proving membership in W[P]. For formulæ the fact that
p-WSAT(B) ≤fpt p-WSAT({∧,∨,¬}) follows from [16, Theorem 4.7]. ��

Lemma 3. If B contains the constants 0 and 1, and if M ⊆ [B], then p-WSAT(B) is
W[SAT]-complete, and p-WCIRCSAT(B) is W[P]-complete.

Proof. It is proved in [1] that p-WSAT({∧,∨}) is W[SAT]-complete and that
p-WCIRCSAT({∧,∨}) is W[P]-complete. Since M ⊆ [B], either [B] = M or [B] =
BF. In both cases, since by assumption B contains the two constants and according
to [15, Lemma 4], B efficiently implements the functions ∧ and ∨. This shows that
p-WSAT({∧,∨}) ≤fpt p-WSAT(B), thus concluding the proof for formulæ. The same
reduction actually shows the hardness result for the circuit problem. ��

The following lemma shows that we can freely use the constant 1 as soon as the function
∧ can be computed by a B-circuit.

Lemma 4. If [B] contains the conjunction function then p-WSAT(B∪{1}) fpt-reduces
to p-WSAT(B) and p-WCIRCSAT(B ∪ {1}) fpt-reduces to p-WSAT(B).

Proof. Let ϕ be a B ∪ {1}-formula. Let ϕ′ := ϕ[1/t] ∧ t, where t is a fresh variable.
Since ∧ ∈ [B] the formula ϕ′ can be represented by a B-formula. Moreover, it is
clear that ϕ has a satisfying assignment of weight k if and only if ϕ′ has a satisfying
assignment of weight k + 1, thus showing that p-WSAT(B ∪ {1}) ≤fpt p-WSAT(B).
The same proof shows a similar result for circuits. ��
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Dealing with the constant 0 requires additional tricks. First let us introduce variants
of our problems as technical tools: p-WSAT+(B) and p-WCIRCSAT+(B) denote our
original problems restricted to monotone instances. Let us observe that Lemmas 3 and
4 still hold for these variants. Obviously proving hardness for these variants is enough
for proving hardness for the original problems.

Definition 5. Let l be a positive integer. A formula ψ is l-costly if every satisfying as-
signment of ψ has weight at least l.

Lemma 6. If for every non-negative integer k there exists a (k + 1)-costly B-formula,
then we obtain the reductions p-WSAT+(B ∪ {0}) ≤fpt p-WSAT+(B) and
p-WCIRCSAT+(B ∪ {0}) ≤fpt p-WCIRCSAT+(B).

Proof. Letϕbe a monotoneB∪{0}-formula. Letψbe a (k+1)-costlyB-formula overm
variables. Consider the B-formulaϕ′ obtained from ϕ in replacing every occurrence of 0
byψ(y1, . . . , ym), where theyi’s are fresh variables. If there is a satisfying assignment for
ϕ of weight k, then it can be extended to a satisfying assignment of ϕ′ of same weight by
setting all the yi’s to 0. Conversely, any truth assignment to the variables of ϕ′ of weight
k makes the formula ψ false (since it is (k+1)-costly). Therefore, the restriction of such
an assignment to the variables of ϕ provides a satisfying assignment of ϕ of weight at
most k. Since by assumption ϕ is monotone this implies that ϕ is k-satisfiable. To sum
up,ϕ has a satisfying assignment of weight k if and only if ϕ′ has a satisfying assignment
of weight k, thus concluding the proof. The same proof holds for circuits. Observe that in
the reduction the size of ϕ′ is in the worse case the size of ϕ times the size of ψ, which is
an arbitrary function depending on k. Therefore, the reduction here is an fpt-reduction,
but not a many-one-log-space reduction as in Lemma 4. ��

Lemma 7. If [B] contains some q-threshold function (of arbitrary arity n ≥ q) where
q ≥ 2, then there exists an l-costly B-formula for any l ≥ 1.

Proof. Build a balanced tree of depth d whose gates are q-threshold functions, with
q ≥ 2. Every satisfying assignment of this tree must have weight at least qd. Thus, in
choosing d large enough, say such that qd > l, we can build this way an l-costly B-
formula. ��

Lemma 8. If D2 ⊆ [B], then p-WSAT(B) is W[SAT]-complete and p-WCIRCSAT(B)
is W[P]-complete.

Proof. Suppose that D2 ⊆ [B]. Note that in this case M ⊆ B ∪ {0, 1}. Therefore,
p-WSAT+(B∪{0, 1}) is W[SAT]-complete and p-WCIRCSAT+(B∪{0, 1}) is W[P]-
complete according to Lemma 3. The hardness result for the formula problem is proved
by the following sequence of reductions: p-WSAT+(B ∪ {0, 1}) ≤fpt p-WSAT+(B ∪
{0}) ≤fpt p-WSAT+(B) ≤fpt p-WSAT(B). The first reduction holds according to
Lemma 4 since [B ∪ {0}] is a superset of S211, and thus ∧ ∈ [B]. Observe that B can
express the ternary majority function (see Table 1), which is a 2-threshold function.
Thus, the second reduction follows from Lemma 7 and Lemma 6. As mentioned above
the last reduction is trivial. The same sequence of reductions provides the desired result
for circuits. ��
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Lemma 9. If S10 ⊆ [B], then p-WSAT(B) is W[SAT]-complete, and
p-WCIRCSAT(B) is W[P]-complete.

Proof. Suppose that S10 ⊆ [B]. We still have M ⊆ [B ∪ {0, 1}], therefore
p-WSAT+(B∪{0, 1}) is W[SAT]-complete according to Lemma 3. Hardness is proved
by the following sequence of reductions: p-WSAT+(B ∪ {0, 1}) ≤fpt p-WSAT+(B ∪
{1}) ≤fpt p-WSAT+(B). The first reduction holds according to Lemma 7 and Lemma
6. Indeed [B ∪ {1}] is a superset of M1, and thus a superset of D2. For this reason
[B ∪ {1}] contains the ternary majority function, which is a 2-threshold function. The
second reduction follows from Lemma 4 since ∧ ∈ S10 and thus ∧ ∈ [B]. The same
sequence of reductions provides the desired result for circuits. ��

Lemma 10. If Sn00 ⊆ [B] for some n ≥ 2, then p-WSAT(B) is W[SAT]-complete and
p-WCIRCSAT≤(B) is W[P]-complete.

Proof. Observe that M = [Sn00 ∪ {0, 1}], and hence that M ⊆ [B ∪ {0, 1}] . Thus,
according to Lemma 3, p-WSAT+(B ∪ {0, 1}) is W[SAT]-complete. The lemma fol-
lows then from the following sequence of reductions: p-WSAT+(B ∪ {0, 1}) ≤fpt

p-WSAT+(B∪{0}) ≤fpt p-WSAT+(B). The first reduction holds according to Lemma
4 since M0 = [Sn00 ∪ {0}], and hence ∧ ∈ [B ∪ {0}]. Observe that Sn00 contains the
2-threshold function T2

n+1. Hence, the second reduction follows from Lemma 6 and
Lemma 7. The same sequence of reductions provides the desired result for circuits. ��

In the following lemmas we prove tractability results for circuit problems (tractability
for formulæ follows trivially as a special case).

Lemma 11. If [B] ⊆ V, or [B] ⊆ E, or [B] ⊆ L, then p-WSAT(B) and
p-WCIRCSAT(B) are in P.

Proof. The basic idea is to compute a normal form of the functions computed by such
B-circuits, from which it is easy to decide whether the circuits are k-satisfiable.

First, let V2 ⊆ [B] ⊆ V. Let C(x1, . . . , xn) be a B-circuit. The Boolean function
described by C can be expressed as fC(x1, . . . , xn) = a0 ∨ (a1 ∧x1)∨ . . .∨ (an ∧xn),
where the ai’s are in {0, 1}. The values ai, where 0 ≤ i ≤ n, can be determined easily
by using the following simple facts: a0 = 0 if and only if fC(0, . . . , 0) = 0 and ai = 0
for 1 ≤ i ≤ n if and only if a0 = 0 and fC(0

i−1, 1, 0n−i) = 0. This can be checked
in polynomial time since the value problem for B-circuits is known to be in P (see
[14]).We conclude that the normal form, from which deciding k-satisfiability is easy,
can be computed efficiently.

Tractability for E2 ⊆ [B] ⊆ E follows as above in computing the dual normal form,
i.e., fC(x1, . . . , xn) = a0 ∧ (a1 ∨ x1) ∧ . . . ∧ (an ∨ xn).

Finally let L2 ⊆ [B] ⊆ L. The proof follows by computing the normal form as
fC(x1, . . . , xn) = a0⊕ (a1∧x1)⊕ . . .⊕ (an∧xn). Similar to the above the values ai’s
can be easily determined by n well-chosen oracles to the circuit value problem. Again
deciding k-satisfiability is easy from this normal form. ��
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Lemma 12. If S00 ⊆ [B] ⊆ S0 then p-WSAT(B) and p-WCIRCSAT(B) are in P.

Proof. Observe that → is the basis of S0. Since B ⊆ S0 any B-circuit can be trans-
formed in logarithmic space into an {→}-circuit in locally replacing each gate f ∈ B
by its {→}-representation. Note that such a circuit has satisfying assignments of all pos-
sible weights (except may be the all-0 one). To see this, start from the output gate and go
backwards. At every gate take backwards the edge corresponding to the right argument
of the implication. Thus we get a path from the output gate to a ‘target-gate’ which is
either a variable or the constant 1 (the constant 0 does not appear by assumption). In
case of a variable, setting this variable to 1 is sufficient to satisfy the circuit. Therefore
from this we can build satisfying assignments of any weight ≥ 1. If by the described
procedure we reach the constant 1, then the circuit represents a tautology. The special
case of the all-0 assignment has to be dealt with separately. ��

We are now in a position to state our main result for weighted satisfiability decision
problems. Indeed a careful examination of Post’s lattice shows that the above lemmas
cover all the lattice and thus provide a complete classification.

Theorem 13. Let B be a finite set of Boolean functions.

1. If D2 ⊆ [B] or S10 ⊆ [B] or Sn00 ⊆ [B] for some n ≥ 2, then p-WSAT(B) is
W[SAT]-complete, and p-WCIRCSAT(B) is W[P]-complete under fpt-reductions.

2. In all other cases p-WSAT(B) and p-WCIRCSAT(B) are in P.

5 Complexity of the Counting Problems

There are natural counting problems associated with the decision problems studied
above.

Problem: p-#WSAT(B)

Input: a B-formula ϕ and k ∈ N

Parameter: k

Output: Number of satisfying assignments for ϕ of weight exactly k

The corresponding problem for circuits is denoted by p-#WCIRCSAT(B).
In the following, as proposed in [8], we use ≤fpt to designate a parsimonious fpt-

reduction, while ≤fpt-T will refer to a Turing fpt-reduction. Let us now introduce two
complexity classes, which are the counting analogues of W[SAT] and W[P]. To the
best of our knowledge, the class #W[SAT] has not been considered in the literature so
far.

Definition 14. The class #W[SAT] is the closure of p-#WSAT({∧,∨,¬}) under fpt-
parsimonious reductions, that is

#W[SAT] := [p-#WSAT({∧,∨,¬})]fpt.

Whereas it was originally defined in terms of counting accepting runs of a κ-restricted
nondeterministic Turing machines, the class #W[P] can be defined in a similar way
(see, e.g., [8, page 366]):
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Definition 15. The class #W[P] is the closure of p-#WCIRCSAT({∧,∨,¬}) under
fpt-parsimonious reductions, that is

#W[P] := [p-#WCIRCSAT({∧,∨,¬})]fpt.

Proposition 16. p-#WSAT(B) is in #W[SAT] and p-#WCIRCSAT(B) is in #W[P].

Proof. This follows from the proof of Lemma 2 in observing that all reductions are
parsimonious. ��

We first state two lemmas which allow to take care of the constants. The first one is
simply the observation that the reduction in Lemma 4 is parsimonious.

Lemma 17. If [B] contains the conjunction function then p-#WSAT(B ∪ {1}) parsi-
moniously fpt-reduces to p-#WSAT(B) and p-#WCIRCSAT(B∪{1}) parsimoniously
fpt-reduces to p-#WCIRCSAT(B).

Given a formula ϕ, let #Satk(ϕ) denote its number of satisfying assignments of weight
exactly k.

Lemma 18. If [B] contains the disjunction function then p-#WSAT(B ∪ {0}) Tur-
ing fpt-reduces to p-#WSAT(B) and p-#WCIRCSAT(B ∪ {0}) Turing fpt-reduces to
p-#WCIRCSAT(B).

Proof. Let ϕ be a B ∪ {0}-formula. Let ϕ′ := ϕ[0/f ] ∨ f , where f is a fresh vari-
able. Since ∨ ∈ [B] the formula ϕ′ can be represented by a B-formula. Moreover,
#Satk(ϕ

′) = #Satk(ϕ) +
(

n
k−1

)
, thus showing that p-#WSAT(B ∪ {0}) ≤fpt

p-WSAT(B). The reduction consists of a precomputation phase, one oracle call, and
then some postcomputation, namely the summation of the result from the oracle and
the binomial coefficient; hence it is actually a 1-Turing fpt-reduction. The same reduc-
tion holds for circuits. ��

Lemma 19. If M2 ⊆ [B], then p-#WSAT(B) is complete for the class #W[SAT] and
p-#WCIRCSAT(B) is complete for #W[P], both under Turing fpt-reductions.

Proof. First we prove that p-#WSAT({∧,∨,¬}) ≤fpt-T p-#WSAT({∧,∨}). Let ϕ be
a {∧,∨,¬}-formula. Without loss of generality one can suppose that ϕ is in negation
normal form, NNF. Indeed, if it is not the case one can transform it in NNF in polyno-
mial time in pushing the negation symbols in front of variables in applying de Morgan’s
laws and the double negation elimination. Now we use a well-known reduction to ex-
press a general formula as conjunction of a monotone and a negated monotone formula.
The formula ϕ(x̄) = ϕ(x1, . . . , xn) is mapped to ψ(x1, . . . , xn, y1, . . . , yn) where ¬xi

is replaced by a fresh variable yi. This gives

#Satk(ϕ(x̄)) = #Satk(ψ(x̄, ȳ) ∧
∧n

i=1(xi ∨ yi) ∧ ¬
∨n

i=1(xi ∧ yi))
= #Satk(α(x̄, ȳ) ∧ ¬β(x̄, ȳ))

where α and β are {∧,∨}-formulæ defined by

α(x̄, ȳ) = ψ(x̄, ȳ) ∧
n∧

i=1

(xi ∨ yi) and β(x̄, ȳ) =

n∨
i=1

(xi ∧ yi).
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Thus we have
#Satk(ϕ) = #Satk(α)−#Satk(α ∧ β).

Indeed, if a k-assignment satisfies α but not α ∧ β, then it satisfies α ∧ ¬β. Conversely
a k-assignment that satisfies α∧¬β, satisfies α and does not satisfy α∧ β. This proves
that p-#WSAT({∧,∨,¬}) 2-Turing fpt-reduces to p-#WSAT({∧,∨}).

Now, M ⊆ [B ∪ {0, 1}], hence there are short B ∪ {0, 1}-representations of ∧ and
∨ [15], therefore p-#WSAT({∧,∨}) ≤fpt p-#WSAT(B ∪ {0, 1}). Since both ∨ and
∧ are in M2, and thus in B we can get rid of the constants by applying successively
Lemmas 18 and 17.

For circuits p-#WCIRCSAT({∧,∨,¬}) is #W[P]-complete by definition (see Def.
15). The completeness of p-#WCIRCSAT({∧,∨}) results from the fact that the reduc-
tion from the weighted satisfiability of Boolean circuits to the weighted satisfiability of
monotone circuits given in [8, Thm 3.14] is parsimonious . Then the same sequence of
reductions as in the case of formulæ allows to conclude. ��

Lemma 20. If S10 ⊆ [B], then p-#WSAT(B) is complete for the class #W[SAT] and
p-#WCIRCSAT(B) is complete for #W[P], both under Turing fpt-reductions.

Proof. Observe that M1 ⊆ [B ∪ {1}], therefore, by Lemma 19, p-#WSAT(B ∪ {1})
is #W[SAT]-complete. The result is then obtained by the reduction p-#WSAT(B ∪
{1}) ≤fpt p-#WSAT(B), which follows from Lemma 17 since ∧ ∈ S10 ⊆ [B]. A
similar proof provides the result for circuits. ��

Lemma 21. If S00 ⊆ [B], then p-#WSAT(B) is complete for the class #W[SAT]
and p-#WCIRCSAT(B) is complete for #W[P]-complete, both under Turing fpt-
reductions.

Proof. Similar to the proof above in using the fact that p-#WSAT(B ∪ {0}) is
#W[SAT]-complete and the reduction p-#WSAT(B ∪ {0}) ≤fpt-T p-#WSAT(B),
which is obtained through Lemma 18. ��

Lemma 22. If D2 ⊆ [B], then p-#WSAT(B) is #W[SAT]-complete and
p-#WCIRCSAT(B) is #W[P]-complete, both under Turing fpt-reductions.

Proof. Observe that [D2 ∪ {1}] = S201, therefore according to Lemma 21 we get hard-
ness for p-#WSAT(B ∪ {1}). It remains to show that p-#WSAT(B ∪ {1}) ≤fpt

p-#WSAT(B). For this we will use some specific functions gl which belong to D2

(for they are self-dual) and which are defined as follows:

gl(x1, . . . , xl, 0) = x1 ∧ . . . ∧ xl, and gl(x1, . . . , xl, 1) = x1 ∨ . . . ∨ xl.

Let maj denote the ternary majority function, which is also a function from D2. Let ϕ
be a B ∪ {1}-formula. Consider ϕ′ defined by:

ϕ′ := maj(ϕ[1/t], t, gk+2(y1, . . . , yk+2, t)),

where t and the yi’s are fresh variables. Then we map (ϕ, k) to (ϕ′, k + 1). Observe
that every assignment which sets t to 0 and that satisfies ϕ′ has at least weight k + 2
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(and thus is too costly). Now consider assignments that set t to 1 and that satisfies ϕ′.
Either they satisfy gk+2(y1, . . . , yk+2, 1) = y1 ∨ . . . ∨ yk+2 or they don’t. In the latter
case they have to satisfy ϕ. To sum up we have the following equality:

#Satk(ϕ
′) =

k−1∑
j=1

(
k + 2

j

)(
n

k − j − 1

)
+#Sat(k−1)(ϕ).

As in Lemma 18 above, we thus obtain a 1-Turing fpt-reduction. Note that we do not
obtain a Turing polynomial-time-reduction, since the time required to compute the B-
representation of gk+2 maybe too high; we only have parameterized polynomial-time.

��

Lemma 23. If B ⊆ V, or B ⊆ E, or B ⊆ L, then p-#WSAT(B) is in FP.

Proof. Easy after having computed the normal form as in Lemma 11.

We are now in a position to state the full classification for the counting problems.

Theorem 24. Let B be a finite set of Boolean functions.

1. If D2 ⊆ [B] or S10 ⊆ [B] or S00 ⊆ [B], then p-#WSAT(B) is #W[SAT]-
complete and p-#WCIRCSAT(B) is #W[P]-complete, both under Turing fpt-
reductions.

2. In all other cases p-#WSAT(B) and p-#WCIRCSAT(B) are in FP.

6 Conclusion

In this paper we obtained a complete classification of the parameterized complexity of
the weighted satisfiability problem, depending on the Boolean functions allowed to ap-
pear, both for formulas and for Boolean circuits, and both in the decision and in the
counting context. It may seem a little disappointing not to see any involved FPT al-
gorithm in our classification, contrary to the classification of Marx [10] in Schaefer’s
framework that revealed some nontrivial FPT algorithms. However let us advocate that
Post’s framework does not seem well adapted to such nontrivial algorithms. Indeed in
the classifications that appeared in the literature in the past, the tractable cases usu-
ally turned out to be trivially algorithmically solvable (with the possible exception of
auto-epistemic logic [5] in which a nontrivial algorithm was developed for the affine
fragment).

Parameterized counting complexity was introduced in [7,11], but surprisingly is not
much developed so far. We see our paper also as a contribution to this study. While the
class #W[P] was introduced in [7] in analogy to W[P], we here introduced #W[SAT]
in analogy to W[SAT], and we present natural complete satisfiability problems for both
classes. So we believe our study makes a step towards a better understanding of counting
problems within parameterized complexity.

One might also consider the variants of the weighted satisfiability problem in which
the task is to find a satisfying assignment of weight at most k or at least k. Preliminary
results exist for the monotone fragment, see, e.g., [8,6]. We leave further results for
these variants as future work.
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Abstract. We consider a CNF formula F as a multiset of clauses: F =
{c1, . . . , cm}. The set of variables of F will be denoted by V (F ). Let
BF denote the bipartite graph with partite sets V (F ) and F and an
edge between v ∈ V (F ) and c ∈ F if v ∈ c or v̄ ∈ c. The matching
number ν(F ) of F is the size of a maximum matching in BF . In our
main result, we prove that the following parameterization of MaxSat

is fixed-parameter tractable: Given a formula F , decide whether we can
satisfy at least ν(F ) + k clauses in F , where k is the parameter.

A formula F is called variable-matched if ν(F ) = |V (F )|. Let δ(F ) =
|F |− |V (F )| and δ∗(F ) = maxF ′⊆F δ(F ′). Our main result implies fixed-
parameter tractability of MaxSat parameterized by δ(F ) for variable-
matched formulas F ; this complements related results of Kullmann (2000)
and Szeider (2004) for MaxSat parameterized by δ∗(F ).

To prove our main result, we obtain an O((2e)2kkO(log k)(m+n)O(1))-
time algorithm for the following parameterization of the Hitting Set

problem: given a collection C ofm subsets of a ground set U of n elements,
decide whether there is X ⊆ U such that C ∩X �= ∅ for each C ∈ C and
|X| ≤ m−k, where k is the parameter. This improves an algorithm that
follows from a kernelization result of Gutin, Jones and Yeo (2011).

1 Introduction

In this paper we study a parameterization of MaxSat. We consider a CNF
formula F as a multiset of clauses: F = {c1, . . . , cm}. (We allow repetition of
clauses.) We assume that no clause contains both a variable and its negation,
and no clause is empty. The set of variables of F will be denoted by V (F ), and
for a clause c, V (c) = V ({c}). A truth assignment is a function τ : V (F ) →
{true, false}. A truth assignment τ satisfies a clause C if there exists x ∈
V (F ) such that x ∈ C and τ(x) = true, or x̄ ∈ C and τ(x) = false. We will
denote the number of clauses in F satisfied by τ as satτ (F ) and the maximum
value of satτ (F ), over all τ , as sat(F ).

Let BF denote the bipartite graph with partite sets V (F ) and F with an edge
between v ∈ V (F ) and c ∈ F if v ∈ V (c). The matching number ν(F ) of F is
the size of a maximum matching in BF . Clearly sat(F ) ≥ ν(F ).

The problem we study in this paper is as follows.

A. Cimatti and R. Sebastiani (Eds.): SAT 2012, LNCS 7317, pp. 355–368, 2012.
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(ν(F ) + k)-SAT
Instance: A CNF formula F and a positive integer α.
Parameter : k = α− ν(F ).
Question: Is sat(F ) ≥ α?

In our main result, we show that (ν(F )+k)-SAT is fixed-parameter tractable by
obtaining an algorithm with running time O((2e)2kkO(log k)(n+ m)O(1)), where
e is the base of the natural logarithm. (We provide basic definitions on parame-
terized algorithms and complexity, including kernelization, in the next section.)

The deficiency δ(F ) of a formula F is |F | − |V (F )|; the maximum deficiency
δ∗(F ) = maxF ′⊆F δ(F ′). A formula F is called variable-matched if ν(F ) =
|V (F )|. Our main result implies fixed-parameter tractability of MaxSat pa-
rameterized by δ(F ) for variable-matched formulas F .

There are two related results: Kullmann [13] obtained an O(nO(δ∗(F )))-time
algorithm for solving MaxSat for formulas F with n variables and Szeider
[19] gave an O(f(δ∗(F ))n4)- algorithm for the problem, where f is a function
depending on δ∗(F ) only. Note that we cannot just drop the condition of being
variable-matched and expect a a similar algorithm: it is not hard to see that the
satisfiability problem remains NP-complete for formulas F with δ(F ) = 0.

A formulaF isminimal unsatisfiable if it is unsatisfiable butF \c is satisfiable for
every clause c ∈ F . Papadimitriou andWolfe [17] showed that recognition of min-
imal unsatisfiable CNF formulas is complete for the complexity class DP . Kleine
Büning [11] conjectured that for a fixed integer k, it can be decided in polynomial
time whether a formula F with δ(F ) ≤ k is minimal unsatisfiable. Independently,
Kullmann [13] and Fleischner and Szeider [8] (see also [7]) resolved this conjec-
ture by showing that minimal unsatisfiable formulas with n variables and n + k
clauses canbe recognized innO(k) time. Later, Szeider [19] showed that the problem
is fixed-parameter tractable by obtaining an algorithm of running time O(2kn4).
Note that Szeider’s results follow from his results mentioned in the previous para-
graph and the well-known fact that δ∗(F ) = δ(F ) holds for every minimal unsat-
isfiable formula F . Since every minimal unsatisfiable formula is variable-matched,
our main result also implies fixed-parameter tractability of recognizing minimal
unsatisfiable formula with n variables and n+ k clauses, parameterized by k.

To obtain our main result, we introduce some reduction rules and branch-
ing steps and reduce the problem to a parameterized version of Hitting Set,
namely, (m − k)-Hitting Set defined below. Let H be a hypergraph. A set
S ⊆ V (H) is called a hitting set if e ∩ S �= ∅ for all e ∈ E(H).

(m− k)-Hitting Set

Instance: A hypergraph H (n = |V (H)|, m = |E(H)|) and a positive
integer k.
Parameter : k.
Question: Does there exist a hitting set S ⊆ V (H) of size m− k?

Gutin et al. [10] showed that (m−k)-Hitting Set is fixed-parameter tractable
by obtaining a kernel for the problem. The kernel result immediately implies a
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2O(k2)(m+n)O(1)-time algorithm for the problem. Here we obtain a faster algo-
rithm for this problem that runs in O((2e)2kkO(log k)(m+n)O(1)) time using the
color-coding technique. This happens to be the dominating step for solving the
(ν(F ) + k)-SAT problem.

It has also been shown in [10] that the (m− k)-Hitting Set problem cannot
have a kernel whose size is polynomial in k unless NP ⊆ coNP/poly. In this paper,
we give a parameter preserving reduction from this problem to the (ν(F ) + k)-
SAT problem, thereby showing that (ν(F )+k)-SAT problem has no polynomial
sized kernel unless NP ⊆ coNP/poly.
Organization of the Rest of the Paper. In Section 2, we provide additional
terminology and notation and some preliminary results. In Section 3, we give a
sequence of polynomial time preprocessing rules on the given input and justify
their correctness. In Section 4, we give two simple branching rules and reduce the
resulting input to a (m− k)-Hitting Set problem instance. Section 5 gives an
improved fixed-parameter algorithm for the (m−k)-Hitting Set problem using
color coding. Section 6 summarizes the entire algorithm, and show its correctness
and analyzes its running time. Section 7 shows the hardness of kernelization
result. Section 8 concludes with some remarks.

2 Additional Terminology, Notation and Preliminaries

Graphs and Hypergraphs. For a subset X of vertices of a graph G, NG(X)
denotes the set of all neighbors of vertices in X . When G is clear from the con-
text, we write N(X) instead of NG(X). A matching saturates all end-vertices of
its edges. For a bipartite graph G = (V1, V2;E), the classical Hall’s matching the-
orem states that G has a matching that saturates every vertex of V1 if and only
if |N(X)| ≥ |X | for every subset X of V1. The next lemma follows from Hall’s
matching theorem: add d vertices to V2, each adjacent to every vertex in V1.

Lemma 1. Let G = (V1, V2;E) be a bipartite graph, and suppose that for all
subsets X ⊆ V1, |N(X)| ≥ |X | − d for some d ≥ 0. Then ν(G) ≥ |V1| − d.

A hypergraph H = (V (H),F) consists of a nonempty set V (H) of vertices and a
family F of nonempty subsets of V called edges of H (F is often denoted E(H)).
Note that F may have parallel edges, i.e., copies of the same subset of V (H). For
any vertex v ∈ V (H), and any E ⊆ F , E [v] is the set of edges in E containing v,
N [v] is the set of all vertices contained in edges of F [v], and the degree of v is
d(v) = |F [v]|. For a subset T of vertices, F [T ] =

⋃
v∈T F [v].

CNF Formulas. For a subset X of the variables of CNF formula F , FX denotes
the subset of F consisting of all clauses c such that V (c) ∩X �= ∅. A formula F
is called q-expanding if |X |+ q ≤ |FX | for each X ⊆ V (F ). Note that, by Hall’s
matching theorem, a formula is variable-matched if and only if it is 0-expanding.
For x ∈ V (F ), n(x) and n(x̄) denote the number of clauses containing x and the
number of clauses containing x̄, respectively. Given a matching M , an alternating
path is a path in which the edges belong alternatively to M and not to M .



358 R. Crowston et al.

A function π : U → {true, false}, where U is a subset of V (F ), is called a
partial truth assignment. A partial truth assignment π : U → {true, false} is
an autarky if π satisfies all clauses of FU . We have the following:

Lemma 2. [4] Let π : U → {true, false} be an autarky for a CNF formula F
and let γ be any truth assignment on V (F )\U . Then for the combined assignment
τ := πγ, it holds that satτ (F ) = |FU |+satγ(F \FU ). Clearly, τ can be constructed
in polynomial time given π and γ.

Autarkies were first introduced in [16]; they are the subject of much study, see,
e.g., [7,14,19], and see [12] for an overview.

Parameterized Complexity. A parameterized problem is a subset L ⊆ Σ∗×N

over a finite alphabet Σ. L is fixed-parameter tractable if the membership of
an instance (x, k) in Σ∗ × N can be decided in time f(k)|x|O(1), where f is
a function of the parameter k only [6,9]. Given a parameterized problem L, a
kernelization of L is a polynomial-time algorithm that maps an instance (x, k) to
an instance (x′, k′) (the kernel) such that (i) (x, k) ∈ L if and only if (x′, k′) ∈ L,
(ii) k′ ≤ h(k), and (iii) |x′| ≤ g(k) for some functions h and g. It is well-known
[6,9] that a decidable parameterized problem L is fixed-parameter tractable if
and only if it has a kernel. Polynomial-size kernels are of main interest, due to
applications [6,9], but unfortunately not all fixed-parameter problems have such
kernels unless coNP⊆NP/poly, see, e.g., [2,3,5].

For a positive integer q, let [q] = {1, . . . , q}.

3 Preprocessing Rules

In this section we give preprocessing rules and their correctness.
Let F be the given CNF formula on n variables andm clauses with a maximum

matching M on BF , the variable-clause bipartite graph corresponding to F . Let
α be a given integer and recall that our goal is to check whether sat(F ) ≥ α. For
each preprocessing rule below, we let (F ′, α′) be the instance resulting by the
application of the rule on (F, α). We say that a rule is valid if (F, α) is a Yes

instance if and only if (F ′, α′) a Yes instance.

Reduction Rule 1. Let x be a variable such that n(x) = 0 (respectively n(x̄) =
0). Set x = false (x = true) and remove all the clauses that contain x̄ (x).
Reduce α by n(x̄) (respectively n(x)).

The proof of the following lemma is immediate.

Lemma 3. If n(x) = 0 (respectively n(x̄) = 0) then sat(F ) = sat(F ′) + n(x̄)
(respectively sat(F ) = sat(F ′) + n(x)) and so Rule 1 is valid.

Reduction Rule 2. Let n(x) = n(x̄) = 1 and let c′ and c′′ be the two clauses
containing x and x̄, respectively. Let c∗ = (c′−x)∪(c′′−x̄) and let F ′ be obtained
from F be deleting c′ and c′′ and adding the clause c∗. Reduce α by 1.
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Lemma 4. sat(F ) = sat(F ′) + 1 and so Rule 2 is valid.

Proof. Consider any assignment for F . If it satisfies both c′ and c′′, then the same
assignment will satisfy c∗. So when restricted to variables of F ′, it will satisfy
at least sat(F )− 1 clauses of F ′. Thus sat(F ′) ≥ sat(F )− 1 which is equivalent
to sat(F ) ≤ sat(F ′) + 1. Similarly if an assignment γ to F ′ satisfies c∗ then at
least one of c′, c′′ is satisfied by γ. Therefore by setting x true if γ satisfies c′′

and false otherwise, we can extend γ to an assignment on F that satisfies both
of c′, c′′. On the other hand, if c∗ is not satisfied by γ then neither c′ nor c′′ are
satisfied by γ, and any extension of γ will satisfy exactly one of c′, c′′. Therefore
in either case sat(F ) ≥ sat(F ′) + 1. We conclude that sat(F ) = sat(F ′) + 1, as
required. ��

Our next reduction rule is based on the following lemma proved in Fleischner et
al. [7, Lemma 10], Kullmann [14, Lemma 7.7] and Szeider [19, Lemma 9].

Lemma 5. Let F be a CNF formula. Given a maximum matching in BF , in
time O(|F |) we can find an autarky π : U → {true, false} such that F \ FU

is 1-expanding.

Reduction Rule 3. Find an autarky π : U → {true, false} such that F \FU

is 1-expanding. Set F ′ = F \ FU and reduce α by |FU |.

The next lemma follows from Lemma 2.

Lemma 6. sat(F ) = sat(F ′) + |FU | and so Rule 3 is valid.

After exhaustive application of Rule 3, we may assume that the resulting formula
is 1-expanding. For the next reduction rule, we need the following results.

Theorem 1 ([19]). Given a variable-matched formula F , with |F | = |V (F )|+1,
we can decide whether F is satisfiable in time O(|V (F )|3).

Consider a bipartite graph G = (A,B;E). We say that G is q-expanding if for all
A′ ⊆ A, |NG(A

′)| ≥ |A′| + q. Clearly, a formula F is q-expanding if and only if
BF is q-expanding. From a bipartite graph G = (A,B;E), x ∈ A and q ≥ 1, we
obtain a bipartite graph Gqx, by adding new vertices x1, . . . , xq to A and adding
edges such that new vertices have exactly the same neighborhood as x, that is,
Gqx = (A ∪ {x1, . . . , xq}, B;E ∪ {(xi, y) : (x, y) ∈ E}). The following result is
well known.

Lemma 7. [15, Theorem 1.3.6] Let G = (A,B;E) be a 0-expanding bipartite
graph. Then G is q-expanding if and only if Gqx is 0-expanding for all x ∈ A.

Lemma 8. Let G = (A,B;E) be a 1-expanding bipartite graph. In polynomial
time, we can check whether G is 2-expanding, and if it is not, find a set S ⊆ A
such that |NG(S)| = |S|+ 1.
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Proof. Let x ∈ A. By Hall’s Matching Theorem, G2x is 0-expanding if and only
if ν(G2x) = |A|+2. Since we can check the last condition in polynomial time, by
Lemma 7 we can decide whetherG is 2-expanding in polynomial time. So, assume
that G is not 2-expanding and we know this because G2y is not 0-expanding for
some y ∈ A. By Lemma 3(4) in Szeider [19], in polynomial time, we can find a set
T ⊆ A ∪ {y1, y2} such that |NG2y(T )| < |T |. Since G is 1-expanding, y1, y2 ∈ T
and |NG2y (T )| = |T | − 1. Hence, |S|+ 1 = |NG(S)|, where S = T \ {y1, y2}. ��

For a formula F and a set S ⊆ V (F ), F [S] denotes the formula obtained from
FS by deleting all variables not in S.

Reduction Rule 4. Let F be a 1-expanding formula and let B = BF . Using
Lemma 8, check if F is 2-expanding and otherwise find a set S ⊆ V (F ) with
|NB(S)| = |S|+1. Let M be a matching that saturates S in B[S ∪NB(S)] (that
exists as B[S ∪NB(S)] is 1-expanding). Use Theorem 1 to decide whether F [S]
is satisfiable, and proceed as follows.

F [S] is satisfiable: Obtain a new formula F ′ by removing all clauses in NB(S)
from F . Reduce α by |NB(S)|.

F [S] is not satisfiable: Let y denote the clause in NB(S) that is not matched
to a variable in S by M . Let Y be the set of all clauses in NB(S) that can be
reached from y with an M -alternating path in B[S ∪NB(S)]. (We will argue
later that Y = NB(S).) Let c

′ be the clause obtained by deleting all variables
in S from ∪c′′∈Y c′′. That is, a literal l belongs to c′ if and only if it belongs
to some clause in Y and is not a variable from S. Obtain a new formula F ′

by removing all clauses in NB(S) from F and adding c′. Reduce α by |S|.

Lemma 9. If F [S] is satisfiable then sat(F ) = sat(F ′) + |NB(S)| else sat(F ) =
sat(F ′) + |S| and thus Rule 4 is valid.

Proof. We consider two cases.
Case 1: F [S] is satisfiable. Since F [S] is satisfiable, any truth assignment for
F ′ can be extended to an assignment for F that satisfies every clause in NB(S).
Therefore sat(F ) ≥ sat(F ′)+|NB(S)|. The inequality sat(F ) ≤ sat(F ′)+|NB(S)|
follows from the fact, any optimal truth assignment to F when restricted to F ′

will satisfy at least sat(F )− |NB(S)| clauses.
Case 2: F [S] is not satisfiable. Let F ′′ = F ′ \ c′. As any optimum truth
assignment to F will satisfy at least sat(F ) − |NB(S)| clauses of F ′′, it follows
that sat(F ) ≤ sat(F ′′) + |NB(S)| ≤ sat(F ′) + |NB(S)|.

Let S′ be the set of variables in S appearing in clauses in Y . Since Y is made
up of clauses that are reachable in BF [S] by an M -alternating path from the
single unmatched clause y, |Y | = |S′| + 1. It follows that |NB(S)\Y | = |S\S′|,
and M matches every clause in NB(S)\Y with a variable in S\S′. Furthermore,
NB(S\S′)∩Y = ∅ as otherwise the matching partners of some elements of S\S′

would have been reachable by an M -alternating path from y, contradicting the
definition of Y and S′. Thus S \ S′ has an autarky such that F \ FS\S′ is 1-
expanding which would have been detected by Rule 3, hence S \ S′ = ∅ or
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S = S′. That is, all clauses in NB(S) are reachable from the unmatched clause
y by an M -alternating path.

Suppose that there exists an assignment γ to F ′, that satisfies sat(F ′) clauses
of F ′ that also satisfies c′. Then there exists a clause c′′ ∈ Y that is satisfied
by γ. As c′′ is reachable from y by an M -alternating path, we can modify M
to include y and exclude c′′, by taking the symmetric difference of the matching
and the M -alternating path from y to c′′. This will give a matching saturating
S and Y \ c′′, and we use this matching to extend the assignment γ to one
which satisfies all of NB(S)\c′′. We therefore have satisfied all the clauses of
NB(S). Therefore since c′′ is satisfied in F ′′ but does not appear in F, we have
satisfied extra |NB(S)| − 1 = |S| clauses. Suppose on the other hand that every
assignment γ for F ′′ that satisfies sat(F ′′) clauses does not satisfy c′′. We can
use the matching on B[S∪NB(S)] to satisfy |NB(S)|−1 clauses in NB(S), which
would give us an additional |S| clauses in NB(S). Thus sat(F ) ≥ sat(F ′′) + |S|.

As |NB(S)| = |S| + 1, it suffices to show that sat(F ) < sat(F ′′) + |NB(S)|.
Suppose that there exists an assignment γ to F that satisfies sat(F ′′)+ |NB(S)|
clauses, then it must satisfy all the clauses of NB(S) and sat(F ′′) clauses
of F ′′′′. As F [S] is not satisfiable, variables in S alone can not satisfy all of
NB(S). Hence there exists a clause c′′ ∈ NB(S) such that there is a variable
y ∈ c′′ \S that satisfies c′′. But then c′′ ∈ Y and hence y ∈ c′ and hence c′ would
be satisfiable by γ, a contradiction as γ satisfies sat(F ′) clauses of F ′. ��

4 Branching Rules and Reduction to (m− k)-Hitting Set

Our algorithm first applies Reduction Rules 1, 2, 3 and 4 exhaustively on (F, α).
Then it applies two branching rules we describe below, in the following order.

Branching on a variable x means that the algorithm constructs two instances
of the problem, one by substituting x = true and simplifying the instance and
the other by substituting x = false and simplifying the instance. Branching
on x or y being false means that the algorithm constructs two instances of
the problem, one by substituting x = false and simplifying the instance and
the other by substituting y = false and simplifying the instance. Simplifying
an instance is done as follows. For any clause c, if c contains a literal x with
x = true, or a literal x̄ with x = false, we remove c and reduce α by 1. If c
contains a literal x with x = false, or a literal x̄ with x = true, and c contains
other literals, remove x from c. If c consists of the single literal x = false or x̄
with x = true, remove c.

A branching rule is correct if the instance on which it is applied is a Yes-
instance if and only if the simplified instance of (at least) one of the branches is
a Yes-instance.

Branching Rule 1. If n(x) ≥ 2 and n(x̄) ≥ 2 then we branch on x.

Before attempting to apply Branching Rule 2, we apply the following rearranging
step: For all variables x such that n(x̄) = 1, swap literals x and x̄ in all clauses.
Observe now that for every variable n(x) = 1 and n(x̄) ≥ 2.
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Branching Rule 2. If there is a clause c such that positive literals x, y ∈ c
then we branch on x being false or y being false.

Branching Rule 1 is exhaustive and thus its correctness also follows. When we
reach Branching Rule 2 for every variable n(x) = 1 and n(x̄) ≥ 2. As n(x) = 1
and n(y) = 1 we note that c is the only clause containing these literals. Therefore
there exists an optimal solution with x or y being false (if they are both true
just change one of them to false). Thus, we have the following:

Lemma 10. Branching Rules 1 and 2 are correct.

Let (F, α) be the given instance on which Reduction Rules 1, 2, 3 and 4, and
Branching Rules 1 and 2 do not apply. Observe that for such an instance F the
following holds:

1. For every variable x, n(x) = 1 and n(x̄) ≥ 2.
2. Every clause contains at most one positive literal.

We call a formula F satisfying the above properties special. In what follows we
describe an algorithm for our problem on special instances. Let c(x) denote the
unique clause containing positive literal x. We can obtain a matching saturating
V (F ) in BF by taking the edge connecting the variable x and the clause c(x).
We denote the resulting matching by Mu.

We first describe a transformation that will be helpful in reducing our problem
to (m − k)-Hitting Set. Given a formula F we obtain a new formula F ′ by
changing the clauses of F as follows. If there exists some c(x) such that |c(x)| ≥ 2,
do the following. Let c′ = c(x) − x (that is, c′ contains the same literals as c(x)
except for x) and add c′ to all clauses containing the literal x̄. Furthermore
remove c′ from c(x) (which results in c(x) = (x) and therefore |c(x)| = 1).

Next we prove the validity of the above transformation.

Lemma 11. Let F ′ be the formula obtained by applying the transformation de-
scribed above on F . Then sat(F ′) = sat(F ) and ν(BF ) = ν(BF ′ ).

Proof. We note that the matching Mu remains a matching in BF ′ and thus
ν(BF ) = ν(BF ′ ). Let γ be any truth assignment to the variables in F (and F ′)
and note that if c′ is false under γ then F and F ′ satisfy exactly the same clauses
under γ (as we add and subtract something false to the clauses). So assume that
c′ is true under γ.

If γ maximizes the number of satisfied clauses in F then clearly we may assume
that x is false (as c(x) is true due to c′). Now let γ′ be equal to γ except the value
of x has been flipped to true. Note that exactly the same clauses are satisfied in
F and F ′ by γ and γ′, respectively. Analogously, if an assignment maximizes the
number of satisfied clauses in F ′ we may assume that x is true and by changing
it to false we satisfy equally many clauses in F . Hence, sat(F ′) = sat(F ). ��

Given an instance (F, α) we apply the above transformation repeatedly until no
longer possible and obtain an instance (F ′, α) such that ν(BF ) = ν(BF ′). Thus,
by the above transformation we may assume that |c(x)| = 1 for all x ∈ V (F ).
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For simplicity of presentation we denote the transformed instance by (F, α). Let
C∗ denote all clauses that are not matched by Mu (and therefore only contain
negated literals). We associate a hypergraph H∗ with the transformed instance.
Let H∗ be the hypergraph with vertex set V (F ) and edge set E∗ = {V (c) | c ∈
C∗}.

We now show the following equivalence between (ν(F ) + k)-SAT on special
instances and (m− k)-Hitting Set.

Lemma 12. Let (F, α) be the transformed instance and H∗ be the hypergraph
associated with it. Then sat(F ) ≥ α if and only if there is a hitting set in H∗ of
size at most |E(H∗)| − k, where k = α− ν(F ).

Proof. We start with a simple observation about an assignment satisfying the
maximum number of clauses of F . There exists an optimal truth assignment to
F , such that all clauses in C∗ are true. Assume that this is not the case and let
γ be an optimal truth assignment satisfying as many clauses from C∗ as possible
and assume that c ∈ C∗ is not satisfied. Let x̄ ∈ c be an arbitrary literal and note
that γ(x) = true. However, changing x to false does not decrease the number
of satisfied clauses in F and increases the number of satisfied clauses in C∗.

Now we show that sat(F ) ≥ α if and only if there is a hitting set in H∗ of size
at most |E(H∗)| − k. Assume that γ is an optimal truth assignment to F , such
that all clauses in C∗ are true. Let U ⊆ V (F ) be all variables that are false in γ
and note that U is a hitting set in H∗. Analogously if U ′ is a hitting set in H∗

then by letting all variables in U ′ be false and all other variables in V (F ) be true
we get a truth assignment that satisfies |F | − |U ′| constraints in F . Therefore if
τ(H∗) is the size of a minimum hitting set in H∗ we have sat(F ) = |F |− τ(H∗).
Hence, sat(F ) = |F | − τ(H∗) = |V (F )| + |C∗| − τ(H∗) and thus sat(F ) ≥ α if
and only if |C∗| − τ(H∗) ≥ k, which is equivalent to τ(H∗) ≤ |E(H∗)| − k. ��

Therefore our problem is fixed-parameter tractable on special instances, by the
following known result.

Theorem 2 ([10]). There exists an algorithm for (m − k)-Hitting Set run-

ning in time 2O(k2) +O((n+m)O(1)).

In the next section we give a faster algorithm for (ν(F ) + k)-SAT on special
instances by giving a faster algorithm for (m− k)-Hitting Set.

5 Improved FPT Algorithm for (m − k)-Hitting Set

To obtain a faster algorithm for (m− k)-Hitting Set, we utilize the following
concept of k-mini-hitting set introduced in [10].

Definition 1. Let H = (V,F) be a hypergraph and k be a nonnegative integer.
A k-mini-hitting set is a set Smini ⊆ V such that |Smini| ≤ k and |F [Smini]| ≥
|Smini|+ k.
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Lemma 13 ([10]). A hypergraph H has a hitting set of size at most m − k
if and only if it has a k-mini-hitting set. Moreover, given a k-mini-hitting set
Smini, we can construct a hitting set S with |S| ≤ m− k such that Smini ⊆ S in
polynomial time.

Next we give an algorithm that finds a k-mini-hitting set Smini if it exists, in time
ck(m+ n)O(1), where c is a constant. We first describe a randomized algorithm
based on color-coding [1] and then derandomize it using hash functions. Let
χ : E(H) → [q] be a function. For a subset S ⊆ V (H), χ(S) denotes the
maximum subset X ⊆ [q] such that for all i ∈ X there exists an edge e ∈ E(H)
with χ(e) = i and e ∩ S �= ∅. A subset S ⊆ V (H) is called a colorful hitting
set if χ(S) = [q]. We now give a procedure that given a coloring function χ
finds a minimum colorful hitting set, if it exists. This algorithm will be useful in
obtaining a k-mini-hitting set Smini.

Lemma 14. Given a hypergraph H and a coloring function χ : E(H)→ [q], we
can find a minimum colorful hitting set if there exists one in time O(2q(m+n)).

Proof. We first check whether for every i ∈ [q], χ−1(i) �= ∅. If for any i we have
that χ−1(i) = ∅, then we return that there is no colorful hitting set. So we may
assume that for all i ∈ [q], χ−1(i) �= ∅. We will give an algorithm using dynamic
programming over subsets of [q]. Let γ be an array of size 2q indexed by the
subsets of [q]. For a subset X ⊆ [q] by γ[X ] we denote the size of a smallest set
W ⊆ V (H) such that χ(W ) = X . We obtain a recurrence for γ[X ] as follows:

γ[X ] =

{
min(v∈V (H),χ({v})∩X �=∅){1 + γ[X \ χ({v})]} if |X | ≥ 1,

0 if X = ∅.

The correctness of the above recurrence is clear. The algorithm computes γ[[q]]
by filling the γ in the order of increasing set sizes. Clearly, each cell can be filled
in time O(n+m) and thus the whole array can be filled in time O(2q(n+m)).
The size of a minimum colorful hitting set is given by γ[[q]]. We can obtain a
minimum colorful hitting set by the routine back-tracking. ��

Now we describe a randomized procedure to obtain a k-mini-hitting set Smini

in a hypergraph H , if there exists one. We do the following for each possible
value p of |Smini| (that is, for 1 ≤ p ≤ k). Color E(H) uniformly at random with
colors from [p+ k]; we denote this random coloring by χ. Assume that there is
a k-mini-hitting set Smini of size p and some p+ k edges e1, . . . , ep+k such that
for all i ∈ [p + k], ei ∩ Smini �= ∅. The probability that for all 1 ≤ i < j ≤ p+ k

we have that χ(ei) �= χ(ej) is
(p+k)!

(p+k)p+k ≥ e−(p+k) ≥ e−2k. Now, using Lemma 14

we can test in time O(2p+k(m + n)) whether there is a colorful hitting set of
size at most p. Thus with probability at least e−2k we can find a Smini, if there
exits one. To boost the probability we repeat the procedure e2k times and thus
in time O((2e)2k(m+n)O(1)) we find a Smini, if there exists one, with probability

at least 1− (1− 1
e2k

)e
2k ≥ 1

2 . If we obtained Smini then using Lemma 13 we can
construct a hitting set of H of size at most m− k.
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To derandomize the procedure, we need to replace the first step of the proce-
dure where we color the edges of E(H) uniformly at random from the set [p+k]
to a deterministic one. This is done by making use of an (m, p+ k, p+ k)-perfect
hash family. An (m, p+k, p+k)-perfect hash family, H, is a set of functions from
[m] to [p+k] such that for every subset S ⊆ [m] of size p+k there exists a func-
tion f ∈ H such that f is injective on S. That is, for all i, j ∈ S, f(i) �= f(j).
There exists a construction of an (m, p + k, p + k)-perfect hash family of size
O(ep+k · kO(log k) · logm) and one can produce this family in time linear in the
output size [18]. Using an (m, p+ k, p+ k)-perfect hash family H of size at most
O(e2k · kO(log k) · logm) rather than a random coloring we get the desired deter-
ministic algorithm. To see this, it is enough to observe that if there is a subset
Smini ⊆ V (H) such that |F [Smini]| ≥ |Smini| + k then there exists a coloring
f ∈ H such that the p+ k edges e1, . . . , ep+k that intersect Smini are distinctly
colored. So if we generate all colorings from H we will encounter the desired
f . Hence for the given f , when we apply Lemma 14 we get the desired result.
This concludes the description. The total time of the derandomized algorithm is
O(k22k(m+ n)e2k · kO(log k) · logm).

Theorem 3. There exists an algorithm solving (m − k)-Hitting Set in time
O((2e)2kkO(log k)(m+ n)O(1)).

By Theorem 3 and the transformation discussed in Section 4 we have the fol-
lowing Theorem.

Theorem 4. There exists an algorithm solving a special instance of (ν(F )+k)-
SAT in time O((2e)2kkO(log k)(m+ n)O(1)).

6 Complete Algorithm, Correctness and Analysis

The complete algorithm for an instance (F, α) is as follows.
Find a maximum matching M on BF and let k = α − |M |. If k ≤ 0, return

Yes. Otherwise, apply Reduction Rules 1 to 4, whichever is applicable, in that
order and then run the algorithm on the reduced instance and return the answer.
If none of the Reduction Rules apply, then apply Branching Rule 1 if possible,
to get two instances (F ′, α′) and (F ′′, α′′). Run the algorithm on both instances;
if one of them returns Yes, return Yes, otherwise return No. If Branching Rule
1 does not apply then we rearrange the formula and attempt to apply Branching
Rule 2 in the same way. Finally if k > 0 and none of the reduction or branching
rules apply, then we have for all variables x, n(x) = 1 and every clause contains
at most one positive literal, i.e. (F, α) is a special instance. Then solve the
problem by reducing to an instance of (m−k)-Hitting Set and solving in time
O((2e)2kkO(log k)(m+ n)O(1)) as described in Sections 4 and 5.

Correctness of all the preprocessing rules and the branching rules follows from
Lemmata 3, 4, 6, 9 and 10.

Analysis of the algorithm. Let (F, α) be the input instance. Let μ(F ) = μ =
α − ν(F ) be the measure. We will first show that our preprocessing rules do
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not increase this measure. Following this, we will prove a lower bound on the
decrease in the measure occurring as a result of the branching, thus allowing us
to bound the running time of the algorithm in terms of the measure μ. For each
case, we let (F ′, α′) be the instance resulting by the application of the rule or
branch. Also let M ′ be a maximum matching of BF ′ .

Reduction Rule 1. We consider the case when n(x) = 0; the other case when
n(x̄) = 0 is analogous. We know that α′ = α−n(x̄) and ν(F ′) ≥ ν(F )−n(x̄) as
removing n(x̄) clause can only decrease the matching size by n(x̄). This implies
that μ(F ) − μ(F ′) = α − ν(F ) − α′ + ν(F ′) = (α − α′) + (ν(F ′) − ν(F )) ≥
n(x̄)− n(x̄). Thus, μ(F ′) ≤ μ(F ).

Reduction Rule 2. We know that α′ = α−1. We show that ν(F ′) ≥ ν(F )−1.
In this case we remove the clauses c′ and c′′ and add c∗ = (c′ − x) ∪ (c′′ − x̄).
We can obtain a matching of size ν(F ) − 1 in BF ′ as follows. If at most one of
the c′ and c′′ is the end-point of some matching edge in M then removing that
edge gives a matching of size ν(F )−1 for BF ′ . So let us assume that some edges
(a, c′) and (b, c′′) are in M . Clearly, either a �= x or b �= x. Assume a �= x. Then
M \ {(a, c′), (b, c′′)} ∪ {(a, c∗)} is a matching of size ν(F ) − 1 in BF ′ . Thus, we
conclude that μ(F ′) ≤ μ(F ).

Reduction Rule 3. The proof is the same as in the case of Reduction Rule 1.

Reduction Rule 4: The proof that μ(F ′) ≤ μ(F ) in the case when F [S] is
satisfiable is the same as in the case of Reduction Rule 1 and in the case when
F [S] is not satisfiable is the same as in the case of Reduction Rule 2.

Branching Rule 1. Consider the case when we set x = true. In this case,
α′ = α − n(x). Also, since no reduction rules are applicable we have that F is
2-expanding. Hence, ν(F ) = |V (F )|. We will show that after the removal of n(x)
clauses, the matching size will remain at least ν(F )−n(x)+1 (= |V (F )|−n(x)+
1 = |V (F ′)| − n(x) + 2.) This will imply that μ(F ′) ≤ μ(F ) − 1. By Lemma 1,
it suffices to show that in B′ = BF ′ , every subset S ⊆ V (F ′), |NB′(S)| ≥
|S| − (n(x)− 2). The only clauses that have been removed by the simplification
process after setting x = true are those where x appears positively and the
singleton clauses (x̄). hence, the only edges of G[S ∪NB[S]] that are missing in
NB′(S) from NB(S) are those corresponding to clauses that contain x as a pure
literal and some variable in S. Thus, |NB′(S)| ≥ |S|+2−n(x) = |S|− (n(x)−2)
(as F is 2-expanding).

The case when we set x = false is similar to the case when we set x = true.
Here, also we can show that μ(F ′) ≤ μ(F )− 1. Thus, we get two instances, with
each instance (F ′, α′) having μ(F ′) ≤ μ(F )− 1.

Branching Rule 2. The analysis here is the same as for Branching Rule 1 and
again we get two instances with μ(F ′) ≤ μ(F )− 1.

We therefore have a depth-bounded search tree of depth at most μ =
α − ν(F ) = k, in which any branching splits an instance into two instances.
Thus the search tree has at most 2k instances. As each reduction and branching
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rule takes polynomial time, and an instance to which none of the rules apply can
be solved in time O((2e)2μμO(log μ)(m+ n)O(1)), we have that the total running
time of the algorithm is at most O((2e)2kkO(log k)(n+m)O(1)).

Theorem 5. There is an algorithm solving (ν(F ) + k)-SAT in time
O((2e)2kkO(log k)(n+m)O(1)).

7 Hardness of Kernelization

In this section, we show that (ν(F )+k)-SAT does not have a polynomial kernel,
unless coNP ⊆ NP/poly. To do this, we use the concept of a polynomial time
and parameter transformation [3,5]: Let L and Q be parameterized problems.
We say a polynomial time computable function f : Σ∗ × N → Σ∗ × N is a
polynomial time and parameter transformation from L to Q if there exists a
polynomial p : N → N such that for any (x, k) ∈ Σ∗ × N, (x, k) ∈ L if and only
if f(x, k) = (x′, k′) ∈ Q, and k′ ≤ p(k).

Lemma 15. [3, Theorem 3] Let L and Q be parameterized problems, and sup-
pose that Lc and Qc are the derived classical problems. Suppose that Lc is NP-
complete, and Qc ∈ NP. Suppose that f is a polynomial time and parameter
transformation from L to Q. Then, if Q has a polynomial kernel, then L has a
polynomial kernel.

Theorem 6. (ν(F )+k)-SAT has no polynomial kernel, unless coNP ⊆ NP/poly.

Proof. By [10, Theorem 3], there is no polynomial sized kernel for the problem of
deciding whether a hypergraph has a hitting set of size |E(H)|−k, where k is the
parameter unless coNP ⊆ NP/poly. We prove the theorem by a polynomial time
parameter preserving reduction from this problem. Then the theorem follows
from Lemma 15, as (ν(F ) + k)-SAT is NP-complete.

Given a hypergraph H , construct a CNF formula F as follows. Let the vari-
ables of F be the vertices of H . For each variable x, let the unit clause (x) be a
clause in F . For every edge E in H , let cE be the clause containing the literal
x̄ for every x ∈ E. Observe that F is matched, and that H has a hitting set of
size |E(H)| − k if and only if sat(F ) ≥ n+ k. ��

8 Conclusion

We have shown that for any CNF formula F , it is fixed-parameter tractable to
decide if F has a satisfiable subformula containing α clauses, where α− ν(F ) is
the parameter. Our result implies fixed-parameter tractability for the problem
of deciding satisfiability of F when F is variable-matched and δ(F ) ≤ k, where
k is the parameter. In addition, we show that the problem does not have a
polynomial kernel unless coNP ⊆ NP/poly.

If every clause contains exactly two literals then it is well known that we can
satisfy at least 3m/4 clauses. From this, and by applying Reduction Rules 1 and
2, we can get a linear kernel for this version of the (ν(F ) + k)-SAT problem. It
would be nice to see whether a linear or a polynomial sized kernel exists for the
(ν(F ) + k)-SAT problem if every clause has exactly r literals.
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Abstract. Given a Boolean function as input, a fundamental problem is to find a
Boolean circuit with the least number of elementary gates (AND, OR, NOT) that
computes the function. The problem generalises naturally to the setting of mul-
tiple Boolean functions: find the smallest Boolean circuit that computes all the
functions simultaneously. We study an NP-complete variant of this problem ti-
tled Ensemble Computation and, especially, its relationship to the Boolean satisfi-
ability (SAT) problem from both the theoretical and practical perspectives, under
the two monotone circuit classes: OR-circuits and SUM-circuits. Our main re-
sult relates the existence of nontrivial algorithms for CNF-SAT with the problem
of rewriting in subquadratic time a given OR-circuit to a SUM-circuit. Further-
more, by developing a SAT encoding for the ensemble computation problem and
by employing state-of-the-art SAT solvers, we search for concrete instances that
would witness a substantial separation between the size of optimal OR-circuits
and optimal SUM-circuits. Our encoding allows for exhaustively checking all
small witness candidates. Searching over larger witness candidates presents an
interesting challenge for current SAT solver technology.

1 Introduction

A fundamental problem in computer science both from the theoretical and practical per-
spectives is program optimisation, i.e., the task of finding the most efficient sequence
of elementary operations that carries out a specified computation. As a concrete exam-
ple, suppose we have eight variables x1, x2, . . . , x8 and our task is to compute each
of the eight sums depicted in Fig. 1. What is the minimum number of SUM gates that
implement this computation?

This is an instance of a problem that plays a key role in Valiant’s study [18] of
circuit complexity over a monotone versus a universal basis; Fig. 1 displays Valiant’s
solution. More generally, the problem is an instantiation of the NP-complete Ensemble
Computation problem [8]:

(SUM-)Ensemble Computation. Given as input a collection Q of nonempty
subsets of a finite set P and a nonnegative integer b, decide (yes/no) whether
there is a sequence

Z1 ← L1 ∪ R1, Z2 ← L2 ∪ R2, . . . , Zb ← Lb ∪ Rb
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x₁
x₂
x₃
x₄
x₅
x₆
x₇
x₈

  x₂ + x₃ + x₄ + x₅ + x₆ + x₇ + x₈
x₁       + x₃ + x₄ + x₅ + x₆ + x₇ + x₈
x₁ + x₂       + x₄ + x₅ + x₆ + x₇ + x₈
x₁ + x₂ + x₃       + x₅ + x₆ + x₇ + x₈
x₁ + x₂ + x₃ + x₄       + x₆ + x₇ + x₈

  x₁ + x₂ + x₃ + x₄ + x₅       + x₇ + x₈
x₁ + x₂ + x₃ + x₄ + x₅ + x₆       + x₈
 x₁ + x₂ + x₃ + x₄ + x₅ + x₆ + x₇

Fig. 1. An instance of ensemble computation (right) and a circuit that solves it (left)

of union operations, where
(a) for all 1 ≤ j ≤ b the sets Lj and Rj belong to {{x} : x ∈ P} ∪

{Z1, Z2, . . . , Zj−1},
(b) for all 1 ≤ j ≤ b the sets Lj and Rj are disjoint, and
(c) the collection {Z1, Z2, . . . , Zb} contains Q.

It is also known that SUM-Ensemble Computation remains NP-complete even if the
requirement (b) is removed, that is, the unions need not be disjoint [8]; we call this vari-
ant OR-Ensemble Computation. Stated in different but equivalent terms, each set A in
Q in an instance of SUM-Ensemble Computation specifies a subset of the variables in
P whose sum must be computed. The question is to decide whether b arithmetic gates
suffice to evaluate all the sums in the ensemble. An instance of OR-Ensemble Compu-
tation asks the same question but with sums replaced by ORs of Boolean variables, and
with SUM-gates replaced by OR-gates. We will refer to the corresponding circuits as
SUM-circuits and OR-circuits.

Despite the fundamental nature of these two variants of monotone computation, little
seems to be known about their relative power. In particular, here we focus the following
open questions:

(Q1) Given an OR-circuit for a collection Q, how efficiently can it be rewritten as a
SUM-circuit?

(Q2) Are there collections Q that require a significantly larger SUM-circuit than an
OR-circuit?

Answering these questions would advance our understanding of the computational ad-
vantage of, in algebraic terms, idempotent computation (e.g. the maximum of variables)
over non-idempotent computation (e.g. the sum of variables); the ability to express the
former succinctly in terms of the latter underlies recent advances in algebraic and combi-
natorial algorithms [2]. Interestingly, it turns out that the questions have strong connec-
tions to Boolean satisfiability (SAT) both from the theoretical and practical perspectives,
as will be shown in this paper.
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As the main theoretical contribution, we establish a connection between (Q1) and the
existence of non-trivial algorithms for CNF-SAT. In particular, we show (Theorem 2)
that the existence of a subquadratic-time rewriting algorithm implies a nontrivial algo-
rithm for general CNF-SAT (without restrictions on clause length), i.e., an algorithm
for CNF-SAT that runs in time O(2cnm2n) for a constant 0 < c < 1 that is indepen-
dent of the number of variables n and the number of clauses m. It should be noted that
the existence of such an algorithm for CNF-SAT is a question that has attracted sub-
stantial theoretical interest recently [3,14,16,21]. In particular, such an algorithm would
contradict the Strong Exponential Time Hypothesis [11], and would have significant im-
plications also for the exponential-time complexity of other hard problems beyond SAT.
Intuitively, our result suggests that the relationship of the two circuit classes may be
complicated and that the difference in the circuit sizes could be large for some collec-
tions Q. Furthermore, we show (Proposition 2) that our main result is tight in the sense
that (Q1) admits an quadratic-time algorithm.

Complementing our main theoretical result, we address (Q2) from the practical per-
spective. While it is easy to present concrete instances for which the difference in size
between optimal SUM-circuits and OR-circuits is small, finding instances that witness
even a factor-2 separation between the number of arithmetic gates is a non-trivial chal-
lenge. In fact, our best construction (Theorem 1) achieves this factor only asymptoti-
cally, leaving open the question whether there are small witnesses achieving factor 2.
As the main practical contribution, we employ state-of-the-art SAT solvers for studying
this witness finding task by developing a SAT encoding for finding the optimal circuits
for a given ensemble. We show experimentally that our encoding allows for exhaus-
tively checking all small witness candidates. On the other hand, searching over larger
witness candidates presents an interesting challenge for current SAT solvers.

As for related earlier work, SAT solvers have been suggested for designing small cir-
cuits [4,6,7,12,13], albeit of different types than the ones studied in this work. However,
our focus here is especially in circuits implementing an ensemble of Boolean functions.
A further key motivation that sets this work apart from earlier work is that our inter-
est is not only to find efficient circuits, but also to discover witnesses (ensembles) that
separate SUM-circuits and OR-circuits.

2 OR-Circuits, SUM-Circuits, and Rewriting

We begin with some key definitions and basic results related to OR- and SUM-circuits
and the task of rewriting an OR-circuit into a SUM-circuit: We show that a SUM-circuit
may require asymptotically at least twice as many arithmetic gates as an OR-circuit, and
present two rewriting algorithms, one of which rewrites a given OR-circuit with g gates
in O(g2) time into a SUM-circuit. In particular, a SUM-circuit requires at most g times
as many arithmetic gates as an OR-circuit.

2.1 Definitions

For basic graph-theoretic terminology we refer to West’s introduction [19]. A circuit is
a directed acyclic graph C whose every node has in-degree either 0 or 2. Each node of
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C is a gate. The gates of C are partitioned into two sets: each gate with in-degree 0 is
an input gate, and each gate with in-degree 2 is an arithmetic gate. The size of C is the
number g = g(C) of gates in C. We write p = p(C) for the number of input gates in C.
For example, the directed acyclic graph depicted on the left in Fig. 1 is a circuit with 26
gates that partition into 8 input gates and 18 arithmetic gates.

The support of a gate z in C is the set of all input gates x such that there is a directed
path in C from x to z. The weight of a gate z is the size of its support. All gates have
weight at least one, with equality if and only if a gate is an input gate. For example,
in Fig. 1 the five columns of gates consist of gates that have weight 1, 2, 4, 6, and 7,
respectively.

In what follows we study two classes of circuits, where the second class is properly
contained within the first class. First, every circuit is an OR-circuit. Second, a circuit C
is a SUM-circuit if for every gate z and for every input gate x it holds that there is at
most one directed path in C from x to z.

We adopt the convention of using the operator symbols “∨” and “+” on the arithmetic
gates to indicate the type of a circuit. Fig. 2 below displays an example of both types of
circuits. We observe that the circuit on the left in Fig. 2 is not a SUM-circuit because the
bottom right gate can be reached from the input x1 along two distinct directed paths.

x₁
x₂
x₃
x₄
x₅ x₁ ∨ x₂ ∨ x₃ ∨ x₄ ∨ x₅

∨ x₁ ∨ x₂
x₁ ∨ x₂ ∨ x₃
x₁ ∨ x₄
x₁ ∨ x₄ ∨ x₅

∨

∨

∨

∨

x₁
x₂
x₃
x₄
x₅ x₁ + x₂ + x₃ + x₄ + x₅

x₁ + x₂
x₁ + x₂ + x₃
x₁ + x₄
x₁ + x₄ + x₅

Fig. 2. An OR-circuit (left) and a SUM-circuit (right)

Let (P,Q) be an instance of ensemble computation, that is, let P be a finite set and
let Q be a set of nonempty subsets of P . We adopt the convention that for a SUM-
ensemble all circuits considered are SUM-circuits, and for an OR-ensemble all circuits
considered are OR-circuits. We say that a circuit C solves the instance (P,Q) if (a) the
set of input gates of C is P ; and (b) for each A ∈ Q, there exists a gate in C whose
support is A. The size of the solution is the size of C. A solution to (P,Q) is optimal
if it has the minimum size over all possible solutions. A circuit C′ implements a circuit
C if for every gate z of C there is a gate z′ of C′ such that z and z′ have the same
support. A circuit rewriting algorithm takes as input a circuit C and outputs (i) a circuit
C′ that implements C; and (ii) a mapping z �→ z′ that identifies each gate z in C with
a corresponding gate z′ in C′.

2.2 Bounds for Separation

The size of an optimal solution to an instance (P,Q) is dependent on whether we are
considering an OR-ensemble or a SUM-ensemble. To see this, let us consider Fig. 2.
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Observe that both circuits solve the same instance (P,Q), but only the circuit on the
right is a SUM-circuit. We claim that both circuits are optimal. Indeed, observe that the
instance has five distinct sets of size at least 2. At least one arithmetic gate is required
for each distinct set of size at least 2. Thus, the circuit on the left in Fig. 2 is optimal.
Analogously, on the right in Fig. 2 at least four arithmetic gates are required to compute
the first four sets in the instance, after which at least two further SUM-gates are required
to produce the fifth set because the first four sets intersect pairwise.

The following construction shows that asymptotically (that is, by taking a large
enough h and w) at least twice the number of arithmetic gates may be required in an
optimal SUM-circuit compared with an optimal OR-circuit.

Theorem 1. For all h, w = 1, 2, . . . there exists an ensemble whose optimal OR-circuit
has (h + 1)w − 1 arithmetic gates and whose optimal SUM-circuit has (2w − 1)h
arithmetic gates.

Proof. Take P = {x0} ∪ {xi,j : i = 1, 2, . . . , h; j = 1, 2, . . . , w} and let Q consist of
the following sets. For each j = 1, 2, . . . , w and for each i = 1, 2, . . . , h, insert the set
{x0, x1,j , x2,j , . . . , xi,j} to Q. Let us say that this set belongs to chain j. Finally, insert
the set P into Q. Let us call this set the top. In total Q thus has hw + 1 sets, and the
largest set (that is, the top) has size hw + 1.

Every OR-circuit that solves (P,Q) must use one OR-gate for each element in each
chain for a total of hw gates. Excluding the element x0 which occurs in all sets in Q,
the top has size hw, and the largest sets in each chain have size h. Thus, at least w − 1
OR-gates are required to construct the top. In particular, an optimum OR-circuit that
solves (P,Q) has hw + w − 1 = (h + 1)w − 1 arithmetic gates.

Next consider an arbitrary SUM-circuit that solves (P,Q). Observe that each chain
requires h distinct SUM-gates, each of which has x0 in its support. There are hw such
SUM-gates in total, at most one of which may be shared in the subcircuit that computes
the top. Such a shared SUM-gate has weight at most h + 1, whereas the top has weight
hw + 1. Thus the subcircuit that computes the top can share weight at most h + 1 and
must use non-shared SUM-gates to accumulate the remaining weight (if any), which
requires h(w − 1) gates. Thus, the SUM-circuit requires at least hw + h(w − 1) =
(2w − 1)h arithmetic gates.

Remark 1. Traditional nonconstructive tools for deriving lower bounds to circuit size
appear difficult to employ for this type of separation between two monotone circuit
classes. Indeed, it is easy to show using standard counting arguments that most en-
sembles (P,Q) with |P | = |Q| = r require Ω(r2/ log r) gates for both OR- and
SUM-circuits, but showing that there exist ensembles where the required SUM-circuit
is significantly larger than a sufficient OR-circuit appears inaccessible to such tools.

2.3 Upper Bounds for Rewriting

Let us now proceed to study the algorithmic task of rewriting a given OR-circuit into a
SUM-circuit. In particular, our interest is to quantify the number of extra gates required.
We start with the observation that no extra gates are required if all gates in the given
OR-circuit have weight at most 4.
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Proposition 1. Every OR-circuit with g gates of weight at most 4 can be rewritten into
a SUM-circuit with g gates. Moreover, there is an algorithm with running time O(g)
that rewrites the circuit.

Proof. Let C be an OR-circuit with g gates given as input. First, topologically sort the
nodes of C in time O(g). Then, compute the support of each gate by assigning unique
singleton sets at the input gates and evaluating the gates in topological order. Finally,
proceed in topological order and rewrite the gates of the circuit using the following
rules. Input gates do not require rewriting. Furthermore, every OR-gate of weight 2 can
be trivially replaced with a SUM-gate. Each OR-gate z with weight 3 either has the
property that the in-neighbours z1, z2 of z have disjoint supports (in which case we
may trivially replace z with a SUM-gate) or z1, z2 have weight at least 2. In the latter
case, if at least one of z1, z2 has weight 3 (say, z1), we may delete z and replace it with
z1; otherwise rewrite z so that one of its in-neighbours is z1 and the other in-neighbour
is the appropriate input gate. Each OR-gate z with weight 4 either has in-neighbours
z1, z2 with disjoint supports or z1, z2 have weight at least 3 and at least 2, respectively.
Again we may either delete z or rewrite z so that one of its in-neighbours is z1 and the
other in-neighbour is the appropriate input gate. It is immediate that this rewriting can
be carried out in time O(g).

Next we observe that an OR-circuit can always be rewritten into a SUM-circuit with at
most g times the number of gates in the OR-circuit.

Proposition 2. There exists an algorithm that in time O(g2) rewrites a given OR-circuit
with g gates into a SUM-circuit.

Proof. The algorithm operates as follows. Let C be an OR-circuit with g gates and p
input gates given as input. Topologically sort the nodes of C in time O(g). Suppose
the input gates of C are x1, x2, . . . , xp. Associate with each of the g gates an array of
p bits. Then, iterate through the gates of C in topological order. For each input gate
xj , initialise the bit array associated with xj so that the jth bit is set to 1 and the other
bits are set to 0. For each OR-gate z with in-neighbours z1, z2, assign the bit array
associated with z to be the union of the bit arrays associated with z1 and z2. This step
takes time O(gp). Finally, iterate through the gates of C. For each arithmetic gate z,
output a SUM-circuit that computes the sum of the at most p inputs specified by the
bit array associated with z. This requires at most p − 1 SUM-gates for each z. The
algorithm takes O(gp) time and outputs a circuit with O(gp) gates. The claim follows
because p ≤ g.

3 Subquadratic Rewriting Implies Faster CNF-SAT

Complementing the quadratic-time algorithm in Proposition 2, this section studies the
possibility of developing fast (subquadratic-time) algorithms for rewriting OR-circuits
as SUM-circuits. In particular, we show that the existence of such a subquadratic-time
rewriting algorithm would, surprisingly, yield a non-trivial algorithm for general CNF-
SAT (cf. Refs. [16,21] and [20, Theorem 5]).
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Theorem 2. Let 0 < ε ≤ 1. If there is an algorithm that in time O(g2−ε) rewrites a
given OR-circuit with g gates into a SUM-circuit, then there is an algorithm that solves
CNF-SAT in time O

(
2(1−ε/2)nm2−εn

)
, where n is the number of variables and m is

the number of clauses.

Proof. Let 0 < ε ≤ 1 be fixed and let A be a circuit rewriting algorithm with the
stated properties. We present an algorithm for CNF-SAT. Let an instance of CNF-SAT
given as input consist of the variables x1, x2, . . . , xn and the clauses C1, C2, . . . , Cm.
Without loss of generality (by inserting one variable as necessary), we may assume
that n is even. Call the variables x1, x2, . . . , xn/2 low variables and the variables
xn/2+1, xn/2+2, . . . , xn high variables. The algorithm operates in three steps.

In the first step, the algorithm constructs the following OR-circuit. First let us observe
that there are 2n/2 distinct ways to assign truth values (0 or 1) to the low variables. Each
of these assignments indexes an input gate to the circuit. Next, for each clause Ci, we
construct a subcircuit that takes the OR of all input gates that do not satisfy the clause
Ci, that is, the input gate indexed by an assignment a to the low variables is in the OR
if and only if no literal in Ci is satisfied by a. For each Ci, this subcircuit requires at
most 2n/2 − 1 OR-gates. Let us refer to the output gate of this subcircuit as gate Ci.
Finally, for each assignment b to the high variables, construct a subcircuit that takes
the OR of all gates Ci such that the clause Ci is not satisfied by b. Let us refer to the
output gate of this subcircuit as gate b. The constructed circuit has p = 2n/2 inputs and
g ≤ m(2n/2 − 1) + 2n/2(m − 1) = O(2n/2m) gates. The construction time for the
circuit is O(2n/2mn).

In the second step, the algorithm rewrites the constructed OR-circuit using
algorithm A as a subroutine into a SUM-circuit in time O(g2−ε), that is, in time
O(2(1−ε/2)nm2−ε). In particular, the number of gates in the SUM-circuit is G =
O(2(1−ε/2)nm2−ε). For a gate z in the OR-circuit, let us write z′ for the corresponding
gate in the SUM-circuit.

In the third step, the algorithm assigns the value 1 to each input a′ in the SUM-circuit
(any other inputs are assigned to 0), and evaluates the SUM-circuit over the integers using
O(2(1−ε/2)nm2−ε) additions of O(n)-bit integers. If there exists a gate b′ that evaluates
to a value less than 2n/2, the algorithm outputs “satisfiable”; otherwise the algorithm
outputs “unsatisfiable”. The running time of the algorithm is O(2(1−ε/2)nm2−εn).

To see that the algorithm is correct, observe that in the OR-circuit, the input a occurs
in the support of b if and only if there is a clause Ci such that neither a nor b satisfies
Ci. Equivalently, the assignment (a, b) into the n variables is not satisfying (because it
does not satisfy the clause Ci). The rewrite into a SUM-circuit enables us to infer the
presence of an a′ that does not occur in the support of b′ by counting the number of a′

that do occur in the support of b′. SUM-gates ensure that each input in the support of b′

is counted exactly once.

Theorem 2 thus demonstrates that unless the strong exponential time hypothesis [11]
fails, there is no subquadratic-time algorithm for rewriting arbitrary OR-circuits into
SUM-circuits.
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4 Finding Small Circuits Using SAT Solvers

We next develop a SAT encoding for deciding whether a given ensemble has a circuit
of a given size.

4.1 SAT Encoding

We start by giving a representation of an OR- or SUM-circuit as a binary matrix. This
representation then gives us a straightforward way to encode the circuit existence prob-
lem as a propositional formula.

Let (P,Q) be an OR- or SUM-ensemble and let C be a circuit of size g that solves
(P,Q). For convenience, let us assume that |P | = p, |Q| = q and P = {1, 2, . . . , p}.
Furthermore, we note that outputs corresponding to sets of size 1 are directly provided
by the input gates, and we may thus assume that Q does not contain sets of size 1. The
circuit C can be represented as a g × p binary matrix M as follows. Fix a topological
ordering z1, z2, . . . , zg of the gates of C such that zi = i for all i with 1 ≤ i ≤ p (recall
that we identify the input gates with elements of P ). Each row i of the matrix M now
corresponds to the support of the gate zi so that for all 1 ≤ j ≤ p we have Mi,j = 1
if j is in the support of zi and Mi,j = 0 otherwise. In particular, for all 1 ≤ i ≤ p we
have Mi,i = 1 and Mi,j = 0 for all j 
= i. Figure 3 displays an example.

x₁
x₂
x₃
x₄
x₅ x₁ ∨ x₂ ∨ x₃ ∨ x₄ ∨ x₅

∨ x₁ ∨ x₂
x₁ ∨ x₂ ∨ x₃
x₁ ∨ x₄
x₁ ∨ x₄ ∨ x₅

∨

∨

∨

∨

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 1 0 0 0
1 1 1 0 0
1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 3. An OR-circuit (left) and a matrix describing the circuit (right)

Now, C (viewed as an OR-circuit) solves (P,Q) if and only if the matrix M satisfies

(a) for all i with 1 ≤ i ≤ p it holds that Mi,i = 1 and Mi,j = 0 for all j 
= i,
(b) for all i with p + 1 ≤ i ≤ g there exist k and � such that 1 ≤ k < � < i and for all

j with 1 ≤ j ≤ p it holds that Mi,j = 1 if and only if Mk,j = 1 or M�,j = 1, and
(c) for every set A in Q there exists an i with 1 ≤ i ≤ g such that for all j with

1 ≤ j ≤ p it holds that Mi,j = 1 if j ∈ A and Mi,j = 0 otherwise.

Similarly, C (viewed as a SUM-circuit) solves (P,Q) if and only if the matrix M satis-
fies conditions (a), (c), and

(b’) for all i with p + 1 ≤ i ≤ g there exist k and � such that 1 ≤ k < � < i and for
all j with 1 ≤ j ≤ p it holds that Mi,j = 1 if and only if Mk,j = 1 or M�,j = 1
and that Mk,j = 0 or M�,j = 0.
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Based on the above observations, we encode an ensemble computation instance as SAT
instance as follows. Given an OR-ensemble (P,Q) and integer g as input, we construct
a propositional logic formula ϕ over variables Mi,j , where 1 ≤ i ≤ g and 1 ≤ j ≤ p,
so that any assignment into variables Mi,j satisfying ϕ gives us a matrix that satisfies
conditions (a)–(c). We encode condition (a) as

α =
p∧

i=1

(
Mi,i ∧

∧
j �=i

¬Mi,j

)
.

Similarly, we encode the conditions (b) and (c), respectively, as

β =
g∧

i=p+1

i−2∨
k=1

i−1∨
�=k+1

p∧
j=1

(
(Mk,j ∨ M�,j) ↔ Mi,j

)
, and

γ =
∧

A∈Q

g∨
i=p+1

[(∧
j∈A

Mi,j

)
∧
(∧

j /∈A

¬Mi,j

)]
.

The desired formula ϕ is then ϕ = α∧ β ∧ γ. For a SUM-ensemble, we replace β with

β′ =
g∧

i=p+1

i−2∨
k=1

i−1∨
�=k+1

p∧
j=1

(
((Mk,j ∨ M�,j) ↔ Mi,j) ∧ (¬Mk,j ∨ ¬M�,j)

)
.

4.2 Practical Considerations

There are several optimisations that can be used to tune this encoding to speed up SAT
solving. The resulting SAT instances have a high number of symmetries, as any circuit
can be represented as a matrix using any topological ordering of the gates. This makes
especially the unsatisfiable instances difficult to tackle with SAT solver. To alleviate this
problem, we constrain the rows i for p + 1 ≤ i ≤ g appear in lexicographic order, so
that any circuit that solves (P,Q) has a unique valid matrix representation. Indeed, we
note that the lexicographic ordering of the gate supports (viewed as binary strings) is a
topological ordering. We insert this constraint to the SAT encoding as the formula

g∧
i=p+2

i−1∧
k=p+1

[
(Mi,1∨¬Mk,1)∧

p∧
j1=2

((j1−1∧
j2=1

(Mi,j2 ↔ Mk,j2)
)
→ (Mi,j1 ∨¬Mk,j1 )

)]
.

We obtain further speedup by constraining the first t arithmetic gates to have small
supports. Indeed, the ith arithmetic gate in any topological order has weight at most
i + 1. Thus, we fix t = 6 in the experiments and insert the formula

t∧
i=1

∧
S⊆P

|S|=i+2

¬
(∧

j∈S

Mp+i,j

)
.

Further tuning is possible if Q is an antichain, that is, if there are no distinct A, B ∈ Q
with A ⊆ B. In this case an optimal circuit C has the property that every gate whose
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support is in Q has out-degree 0. Thus, provided that we do not use the lexicographical
ordering of gates as above, we may assume that the gates corresponding to sets in Q
are the last gates in the circuit, and moreover, their respective order is any fixed order.
Thus, if Q = {A1, A2, . . . , Aq} is an antichain, we can replace γ with

q∧
i=1

[( ∧
j∈Aj

Mg−q+i,j

)
∧
( ∧

j /∈Aj

¬Mg−q+i,j

)]
to obtain a smaller formula. Finally, we note that we can be combine this with the
lexicographic ordering by requiring that only rows i for p + 1 ≤ i ≤ g − q are in
lexicographic order.

5 Experiments

We report on two series of experiments with the developed encoding and state-of-the-
art SAT solvers: (a) an exhaustive study of small ensembles aimed at understanding the
separation between OR-circuits and SUM-circuits, and (b) a study of the scalability of
our encoding by benchmarking different solvers on specific structured ensembles.

5.1 Instance Generation and Experimental Setup

For both series of experiments, the problem instances given to SAT solvers were gener-
ated by translating the encoding in Sect. 4 into CNF. We used the symmetry breaking
constraints and antichain optimisations described in Sect. 4.2; without these, most in-
stances could not solved by any of the solvers.

The formula encoding an input ensemble (P,Q) and a target number of gates g was
first translated into a Boolean circuit and then into CNF using the bc2cnf encoder
(http://users.ics.tkk.fi/tjunttil/circuits/), which implements the stan-
dard Tseitin encoding [17]. The instance generator and a set of interesting handpicked
CNF-level benchmark instances are available at

http://cs.helsinki.fi/u/jazkorho/sat2012/.

When working with an ensemble, the size of the optimal OR-circuit or optimal SUM-
circuit is not generally known. Thus, we structured the experiments for a given ensem-
ble (P,Q) with |P | = p and |Q| = q as a sequence of jobs that keeps the ensemble
(P,Q) fixed and varies the target number of gates g. We start from a value of g for
which a circuit is known to exist (p(1 + q)) and then decrease the value in steps of 1
until we hit an unsatisfiable instance at g = u; an optimal circuit then has g = u + 1
gates.

The experiments were run on Dell PowerEdge M610 blade servers with two quad-
core 2.53-GHz Intel Xeon processors and 32 GB of memory. We report the user times
recorded via time under Linux (kernel version 2.6.38). In the timed benchmarking
runs we ran one simultaneous job on a single server, but in the explorative experiments
we ran multiple jobs per server in parallel. SAT solvers used were Minisat 2.2.0 [5]
and Lingeling 587f [1] (two CDCL solvers among the best for application instances),
Clasp 2.0.4 [9] (CDCL solver, one of the best for crafted instances), and March rw [10]
(a DPLL-lookahead solver, one of the best for unsatisfiable random instances).

http://users.ics.tkk.fi/tjunttil/circuits/
http://cs.helsinki.fi/u/jazkorho/sat2012/


Finding Efficient Circuits for Ensemble Computation 379

5.2 Optimal Circuits for All Small Ensembles

We say that two ensembles (P,Q1) and (P,Q2) are isomorphic if there is a permutation
of P that takes Q1 to Q2. The optimal circuit size is clearly an isomorphism invariant of
an ensemble, implying that in an exhaustive study it suffices to consider one ensemble
from each isomorphism class.

We carried out an exhaustive study of all nonisomorphic ensembles (P,Q) across
the three parameter ranges (i) p = 5 and 2 ≤ q ≤ 7, (ii) p = 6 and 2 ≤ q ≤ 7, and (iii)
p = 7 and 2 ≤ q ≤ 6 subject to the following additional constraints: (a) every set in Q
has size at least 2, (b) every set in Q contains at least two points in P that each occur in
at least two sets in Q, and (c) the ensemble is connected (when viewed as a hypergraph
with vertex set P and edge set Q). We generated the ensembles using the genbg tool
that is part of the canonical labelling package nauty [15].

For all of the generated 1,434,897 nonisomorphic ensembles, we successfully deter-
mined the optimum OR-circuit size and the optimum SUM-circuit size in approximately
4 months of total CPU time using Minisat. Among the instances considered, we found
no instance where the gap between the two optima is more than one gate. The smallest
ensembles in terms of the parameters p and q where we observed a gap of one gate
occurred for p = 5 and q = 5, for exactly 3 nonisomorphic ensembles; one of the en-
sembles with accompanying optimal circuits is displayed in Fig. 2. A further analysis
of the results led to Theorem 1 and Proposition 1.

After this work the next open parameters for exhaustive study are p = 7 and q = 7
with 13,180,128 nonisomorphic ensembles.

In general, the large number of isomorphism classes for larger p and q makes an
exhaustive search prohibitively time-consuming. A natural idea would be to randomly
sample ensembles with given parameters to find an ensemble witnessing a large sepa-
ration between optimal OR- and SUM-circuits. However, as highlighted in Remark 1,
most ensembles require both a large OR-circuit and a large SUM-circuit, suggesting
that random sampling would mostly give instances with small difference between op-
timal OR- and SUM-circuits. This intuition was experimentally supported as follows.
We generated random ensembles (P,Q) by setting P = {1, 2, . . . , p} and drawing uni-
formly at random a Q consisting of q subsets of P of size at least 2. We generated 1,000
instances for p = q = 9 and for p = q = 10. Among these instances, we found only
one instance (with p = q = 10) where the gap between the optimal OR-circuit and and
the optimal SUM-circuit was 2, while we know that instances with larger separation do
exist for these parameters. However, there were 49 instances with p = q = 10 where
the optimal circuit sizes were not found within a 6-hour time limit.

5.3 Scaling on Structured Ensembles

To test the scalability of our encoding and to benchmark different solvers, we also stud-
ied two parameterised families of structured ensembles for varying family parameters
and target number of gates g. The first family is illustrated by the Valiant’s construc-
tion in Fig. 1 for p = 8. This family is parameterised by the number of inputs p, with
P = {1, 2, . . . , p} and Q = {P \ {i} : i ∈ P}. As benchmarks we generated CNF in-
stances for p = 8, 9, 10, 11 and g = 2p, 2p + 1, . . . , 2p + 20 using the SUM-encoding



380 M. Järvisalo et al.

and the antichain optimisation. The second family is given in Theorem 1 and is pa-
rameterised by two parameters h and w. As benchmarks we generated CNF instances
for h = 3 and w = 5 and g = 32, 33, . . . , 52 using both the OR-encoding and the
SUM-encoding.

The results for the two benchmark families are reported in Figs. 4 and 5. The solver
March rw was omitted from the second benchmark due to its poor performance on
the first benchmark family. In an attempt to facilitate finding upper bounds for even
larger instances, we also tested the local search solver SATTIME2011, which performed
notably well on satisfiable crafted instances in the 2011 SAT Competition. However, in
our experiments on instances from the satisfiable regime, SATTIME2011 was unable to
find the solution within the 3600-second time limit already for the ensembles in Fig. 4
with p = 8 and g = 26, 27, 28.
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Fig. 4. Solution times for different SAT solvers as a function of the number of gates on SUM-
ensembles corresponding to Valiant’s construction (Fig. 1). The data points highlighted with
larger markers and a vertical dashed line indicate the smallest circuits found. The horizontal
dashed line at 3600 seconds is the timeout limit for each run. As the instance size p grows, the un-
satisfiable instances with g just below the size of the optimal circuit rapidly become very difficult
to solve.
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Fig. 5. Solution times for different SAT solvers as a function of the number of gates on OR- and
SUM-ensembles from Theorem 1 with parameters w = 5 and h = 3. The data points highlighted
with larger markers and a vertical dashed line indicate the smallest circuits found. The horizontal
dashed line at 3600 seconds is the timeout limit for each run. The optimal OR circuit is small,
and SAT solvers have no difficulty in finding it.

6 Conclusions

We studied the relative power of OR-circuits and SUM-circuits for ensemble compu-
tation, and developed tight connections to Boolean satisfiability from both the theoret-
ical and practical perspectives. As the main theoretical contribution, we showed that,
while OR-circuits can be rewritten in quadratic-time into SUM-circuits, a subquadratic-
time rewriting algorithm would imply that general CNF-SAT has non-trivial algorithms,
which would contradict the strong exponential time hypothesis. From the practical per-
spective, we developed a SAT encoding for finding smallest SUM- and OR-circuits
for a given ensemble. State-of-the-art SAT solvers proved to be a highly useful tool
for studying the separation of these two circuit classes. Using the developed encod-
ing, we were able to exhaustively establish the optimum OR-circuit and SUM-circuit
sizes for all small instances, which contributed to our analytical understanding of the
problem and led to the theoretical results presented in this paper. Our publicly avail-
able instance generator may also be of independent interest as a means of generating
interesting benchmarks.

Larger, structured instances provide interesting challenges for current state-of-the-
art SAT solver technology. Further developments either on the encoding or the solver
level—including tuning SAT solvers especially for this problem—would allow for pro-
viding further understanding to the problem of separating different circuit classes.

Acknowledgment. We thank Teppo Niinimäki for insight concerning the construction
in Theorem 1.
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Abstract. Modern conflict-driven clause learning (CDCL) SAT solvers are very
good in solving conjunctive normal form (CNF) formulas. However, some appli-
cation problems involve lots of parity (xor) constraints which are not necessarily
efficiently handled if translated into CNF. This paper studies solving CNF formu-
las augmented with xor-clauses in the DPLL(XOR) framework where a CDCL
SAT solver is coupled with a separate xor-reasoning module. New techniques for
analyzing xor-reasoning derivations are developed, allowing one to obtain smaller
CNF clausal explanations for xor-implied literals and also to derive and learn new
xor-clauses. It is proven that these new techniques allow very short unsatisfiabil-
ity proofs for some formulas whose CNF translations do not have polynomial
size resolution proofs, even when a very simple xor-reasoning module capable
only of unit propagation is applied. The efficiency of the proposed techniques is
evaluated on a set of challenging logical cryptanalysis instances.

1 Introduction

Modern propositional satisfiability (SAT) solvers (see e.g. [1]) have been successfully
applied in a number of industrial application domains. Propositional satisfiability in-
stances are typically encoded in conjunctive normal form (CNF) which allows very
efficient Boolean constraint propagation and conflict-driven clause learning (CDCL)
techniques. However, such CNF encodings may not allow optimal exploitation of the
problem structure in the presence of parity (xor) constraints; such constraints are abun-
dant especially in the logical cryptanalysis domain and also present in circuit verifi-
cation and bounded model checking. An instance consisting only of parity constraints
can be solved in polynomial time using Gaussian elimination, but even state-of-the-art
SAT solvers relying only on basic Boolean constraint propagation and CDCL can scale
poorly on the corresponding CNF encoding.

In this paper we develop new techniques for exploiting structural properties of xor
constraints (i.e. linear equations modulo 2) in the recently introduced DPLL(XOR)
framework [2,3] where a problem instance is given as a combination of CNF and xor-
clauses. In the framework a CDCL SAT solver takes care of the CNF part while a
separate xor-reasoning module performs propagation on the xor-clauses. In this paper
we introduce new techniques for explaining why a literal was implied or why a conflict
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occurred in the xor-clauses part; such explanations are needed by the CDCL part. The
new core idea is to not see xor-level propagations as implications but as linear arithmetic
equations. As a result, the new proposed parity explanation techniques can (i) provide
smaller clausal explanations for the CDCL part, and also (ii) derive new xor-clauses
that can then be learned in the xor-clauses part. The goal of learning new xor-clauses
is, similarly to clause learning in CDCL solvers, to enhance the deduction capabili-
ties of the reasoning engine. We introduce the new techniques on a very simple xor-
reasoning module allowing only unit propagation on xor-clauses and prove that, even
when new xor-clauses are not learned, the resulting system with parity explanations can
efficiently solve parity problems whose CNF translations are very hard for resolution.
We then show that the new parity explanation techniques also extend to more general
xor-reasoning modules, for instance to the one in [2] capable of equivalence reasoning
in addition to unit propagation. Finally, we experimentally evaluate the effect of the
proposed techniques on a challenging benchmark set modelling cryptographic attacks.

Related Work. In [4] a calculus combining basic DPLL without clause learning and
Gauss elimination is proposed; their Gauss rules are similar to the general rule ⊕-Gen
we use in Sect. 8. The solvers EqSatz [5], lsat [6], and March eq [7] incorporate parity
reasoning into DPLL without clause learning, extracting parity constraint information
from CNF and during look-ahead, and exploiting it during the preprocessing phase
and search. MoRsat [8] extracts parity constraints from a CNF formula, uses them for
simplification during preprocessing, and proposes a watched literal scheme for unit
propagation on parity constraints. Cryptominisat [9,10], like our approach, accepts a
combination of CNF and xor-clauses as input. It uses the computationally relatively ex-
pensive Gaussian elimination as the xor-reasoning method and by default only applies
it at the first levels of the search; we apply lighter weight xor-reasoning at all search lev-
els. Standard clause learning is supported in MoRsat and Cryptominisat; our deduction
system characterization of xor-reasoning allows us to exploit the linear properties of
xor-clauses to obtain smaller CNF explanations of xor-implied literals and xor-conflicts
as well as to derive and learn new xor-clauses.

2 Preliminaries

An atom is either a propositional variable or the special symbol � which denotes the
constant “true”. A literal is an atom A or its negation ¬A; we identify ¬� with ⊥
and ¬¬A with A. A traditional, non-exclusive or-clause is a disjunction l1 ∨ · · · ∨ ln
of literals. An xor-clause is an expression of form l1 ⊕ · · · ⊕ ln, where l1, . . . , ln are
literals and the symbol ⊕ stands for the exclusive logical or. In the rest of the paper,
we implicitly assume that each xor-clause is in a normal form such that (i) each atom
occurs at most once in it, and (ii) all the literals in it are positive. The unique (up to
reordering of the atoms) normal form for an xor-clause can be obtained by applying the
following rewrite rules in any order until saturation: (i) ¬A⊕ C � A⊕�⊕ C, and
(ii) A⊕A⊕ C � C, where C is a possibly empty xor-clause and A is an atom. For
instance, the normal form of ¬x1⊕x2⊕x3⊕x3 is x1⊕x2⊕�, while the normal form
of x1 ⊕ x1 is the empty xor-clause (). We say that an xor-clause is unary if it is either
of form x or x⊕� for some variable x; we will identify x⊕� with the literal ¬x. An
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xor-clause is binary (ternary) if its normal form has two (three) variables. A clause is
either an or-clause or an xor-clause.

A truth assignment π is a set of literals such that � ∈ π and ∀l ∈ π : ¬l /∈ π. We
define the “satisfies” relation |= between a truth assignment π and logical constructs as
follows: (i) if l is a literal, then π |= l iff l ∈ π, (ii) if C = (l1∨· · ·∨ ln) is an or-clause,
then π |= C iff π |= li for some li ∈ {l1, . . . , ln}, and (iii) if C = (l1 ⊕ · · · ⊕ ln) is
an xor-clause, then π |= C iff π is total for C (i.e. ∀1 ≤ i ≤ n : li ∈ π ∨ ¬li ∈ π) and
π |= li for an odd number of literals of C. Observe that no truth assignment satisfies the
empty or-clause () or the empty xor-clause (), i.e. these clauses are synonyms for⊥.

A cnf-xor formula φ is a conjunction of clauses, expressible as a conjunction

φ = φor ∧ φxor, (1)

where φor is a conjunction of or-clauses and φxor is a conjunction of xor-clauses. A
truth assignment π satisfies φ, denoted by π |= φ, if it satisfies each clause in it; φ
is called satisfiable if there exists such a truth assignment satisfying it, and unsatis-
fiable otherwise. The cnf-xor satisfiability problem studied in this paper is to decide
whether a given cnf-xor formula has a satisfying truth assignment. A formula φ′ is a
logical consequence of a formula φ, denoted by φ |= φ′, if π |= φ implies π |= φ′

for all truth assignments π. The set of variables occurring in a formula φ is denoted
by vars(φ), and lits(φ) = {x,¬x | x ∈ vars(φ)} is the set of literals over vars(φ).
We use C [A/D] to denote the (normal form) xor-clause that is identical to C except
that all occurrences of the atom A in C are substituted with D once. For instance,
(x1 ⊕ x2 ⊕ x3) [x1/(x1 ⊕ x3)] = x1 ⊕ x3 ⊕ x2 ⊕ x3 = x1 ⊕ x2.

3 The DPLL(XOR) Framework

The idea in the DPLL(XOR) framework [2] for satisfiability solving of cnf-xor formu-
las φ = φor ∧ φxor is similar to that in the DPLL(T ) framework for solving satisfia-
bility of quantifier-free first-order formulas modulo a background theory T (SMT, see
e.g. [11,12]). In DPLL(XOR), see Fig. 1 for a high-level pseudo-code, one employs a
conflict-driven clause learning (CDCL) SAT solver (see e.g. [1]) to search for a satisfy-
ing truth assignment π over all the variables in φ = φor ∧ φxor.1 The CDCL-part takes
care of the usual unit clause propagation on the cnf-part φor of the formula (line 4 in
Fig. 1), conflict analysis and non-chronological backtracking (line 15–17), and heuris-
tic selection of decision literals (lines 19–20) which extend the current partial truth
assignment π towards a total one.

To handle the parity constraints in the xor-part φxor, an xor-reasoning module M is
coupled with the CDCL solver. The values assigned in π to the variables in vars(φxor)
by the CDCL solver are communicated as xor-assumption literals to the module (with
the ASSIGN method on line 6 of the pseudo-code). If l1, ..., lm are the xor-assumptions
communicated to the module so far, then the DEDUCE method (invoked on line 7) of
the module is used to deduce a (possibly empty) list of xor-implied literals l̂ that are
logical consequences of the xor-part φxor and xor-assumptions, i.e. literals for which

1 See [2] for a discussion on handling “xor-internal” variables occurring in φxor but not in φor.
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solve(φ = φor ∧ φxor):
1. initialize xor-reasoning module M with φxor

2. π = 〈〉 /*the truth assignment*/
3. while true:
4. (π′, confl) = UNITPROP(φor, π) /*unit propagation*/
5. if not confl : /*apply xor-reasoning*/
6. for each literal l in π′ but not in π: M .ASSIGN(l)
7. (l̂1, ..., l̂k) = M.DEDUCE()
8. for i = 1 to k:
9. C = M.EXPLAIN(l̂i)

10. if l̂i = ⊥ or ¬l̂i ∈ π′: confl = C, break
11. else if l̂i /∈ π′: add l̂i to π′ with the implying or-clause C
12. if k > 0 and not confl :
13. π = π′; continue /*unit propagate further*/
14. let π = π′

15. if confl : /*standard Boolean conflict analysis*/
16. analyze conflict, learn a conflict clause
17. backjump or return “unsatisfiable” if not possible
18. else:
19. add a heuristically selected unassigned literal in φ to π
20. or return “satisfiable” if no such variable exists

Fig. 1. The essential skeleton of the DPLL(XOR) framework

φxor ∧ l1 ∧ ... ∧ lm |= l̂ holds. These xor-implied literals can then be added to the cur-
rent truth assignment π (line 11) and the CDCL part invoked again to perform unit
clause propagation on these. The conflict analysis engine of CDCL solvers requires
that each implied (i.e. non-decision) literal has an implying clause, i.e. an or-clause
that forces the value of the literal by unit propagation on the values of literals appear-
ing earlier in the truth assignment (which at the implementation level is a sequence of
literals instead of a set). For this purpose the xor-reasoning module has a method EX-
PLAIN that, for each xor-implied literal l̂, gives an or-clause C of form l′1 ∧ ... ∧ l′k ⇒ l̂,
i.e. ¬l′1 ∨ ... ∨ ¬l′k ∨ l̂, such that (i) C is a logical consequence of φxor, and (ii) l′1, ..., l

′
k

are xor-assumptions made or xor-implied literals returned before l̂. An important spe-
cial case occurs when the “false” literal⊥ is returned as an xor-implied literal (line 10),
i.e. when an xor-conflict occurs; this implies that φxor ∧ l1 ∧ ... ∧ lm is unsatisfiable. In
such a case, the clause returned by the EXPLAIN method is used as the unsatisfied clause
confl initiating the conflict analysis engine of the CDCL part (lines 10 and 15–17).

In addition to the ASSIGN, DEDUCE, and EXPLAIN methods, an xor-reasoning mod-
ule must also implement methods that allow xor-assumptions to be retracted from the
solver in order to allow backtracking in synchronization with the CDCL part (line 17).

Naturally, there are many xor-module integration strategies that can be considered in
addition to the one described in the above pseudo-code. For instance, the xor-explanations
for the xor-implied literals can be computed always (as in the pseudo-code for the sake
of simplicity) or only when needed in the CDCL-part conflict analysis (as in a real im-
plementation for efficiency reasons).
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⊕-Unit+:
x C

C [x/�]
⊕-Unit−:

x⊕� C

C [x/⊥]

Fig. 2. Inference rules of UP; the symbol x is variable and C is an xor-clause

4 The Xor-Reasoning Module “UP”

To illustrate our new parity-based techniques, we first introduce a very simple xor-
reasoning module “UP” which only performs unit propagation on xor-clauses. As such
it can only perform the same deduction as CNF-level unit propagation would on the
CNF translation of the xor-clauses. However, with our new parity-based xor-implied
literal explanation techniques (Sect. 5) we can deduce much stronger clauses (Sect. 6)
and also new xor-clauses that can be learned (Sect. 7). In Sect. 8 we then generalize
the results to other xor-reasoning modules such as the the one in [2] incorporating also
equivalence reasoning.

As explained above, given a conjunction of xor-clauses φxor and a sequence l1, . . . , lk
of xor-assumption literals, the goal of an xor-reasoning module is to deduce xor-implied
literals and xor-conflicts over ψ = φxor ∧ l1 ∧ · · · ∧ lk. To do this, the UP-module im-
plements a deduction system with the inference rules shown in Fig. 2. An UP-derivation
on ψ is a finite, vertex-labeled directed acyclic graph G = 〈V,E, L〉, where each vertex
v ∈ V is labeled with an xor-clause L(v) and the following holds for each vertex v:

1. v has no incoming edges (i.e. is an input vertex) and L(v) is an xor-clause in ψ, or
2. v has two incoming edges originating from vertices v1 and v2, and L(v) is derived

from L(v1) and L(v2) by using one of the inference rules.

As an example, Fig. 3 shows a UP-derivation for φxor ∧ (¬a) ∧ (d) ∧ (¬b), where
φxor = (a⊕ b⊕ c)∧ (c⊕d⊕e)∧ (c⊕e⊕f) (please ignore the “cut” lines for now). An
xor-clause C is UP-derivable on ψ, denoted by ψ "UP C, if there exists a UP-derivation
on ψ that contains a vertex labeled with C; the UP-derivable unary xor-clauses are the
xor-implied literals that the UP-module returns when its DEDUCE method is called. In
Fig. 3, the literal f is UP-derivable and the UP-module returns f as an xor-implied lit-
eral after ¬a, d, and ¬b are given as xor-assumptions. As a direct consequence of the
definition of xor-derivations and the sound-
ness of the inference rules, it holds that if
an xor-derivation on ψ contains a vertex la-
beled with the xor-clause C, then C is a
logical consequence of ψ, i.e. ψ "UP C
implies ψ |= C. A UP-derivation on ψ is
a UP-refutation of ψ if it contains a vertex
labeled with the false literal⊥; in this case,
ψ is unsatisfiable. A UP-derivation G on ψ
is saturated if for each unary xor-clause C
such that ψ "UP C it holds that there is
a vertex v in G with the label L(v) = C.
Note that UP is not refutationally complete, Fig. 3. A UP-derivation
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e.g. there is no UP-refutation of the unsatisfiable conjunction (a ⊕ b) ∧ (a ⊕ b ⊕ �).
However, it is “eventually refutationally complete” in the DPLL(XOR) setting: if each
variable in ψ occurs in a unary clause in ψ, then the empty clause is UP-derivable iff ψ
is unsatisfiable; thus when the CDCL SAT solver has assigned a value to all variables
in φxor, the UP-module can check whether all the xor-clauses are satisfied.

As explained in the previous section, the CDCL part of the DPLL(XOR) framework
requires an implying or-clause for each xor-implied literal. These can be computed by
interpreting the ⊕-Unit+ and ⊕-Unit− rules as implications

(x) ∧ C ⇒ C [x/�] (2)

(x⊕�) ∧ C ⇒ C [x/⊥] (3)

respectively, and recursively expanding the xor-implied literal with the left-hand side
conjunctions of these until a certain cut of the UP-derivation is reached. Formally, a cut
of a UP-derivation G = 〈V,E, L〉 is a partitioning (Va, Vb) of V . A cut for a non-input
vertex v ∈ V is a cut (Va, Vb) such that (i) v ∈ Vb, and (ii) if v′ ∈ V is an input
vertex and there is a path from v′ to v, then v′ ∈ Va. Now assume a UP-derivation
G = 〈V,E, L〉 for φxor ∧ l1 ∧ ... ∧ lk. For each non-input node v in G, and each cut
W = 〈Va, Vb〉 of G for v, the implicative explanation of v under W is the conjunction
Expl(v,W ) = fW (v), there fW is recursively defined as follows:

E1 If u is an input node with L(u) ∈ φxor, then fW (u) = �.
E2 If u is an input node with L(u) ∈ {l1, ..., lk}, then fW (u) = L(u).
E3 If u is a non-input node in Va, then fW (u) = L(u).
E4 If u is a non-input node in Vb, then fW (u) = fW (u1) ∧ fW (u2), where u1 and u2

are the source nodes of the two edges incoming to u.

Based on Eqs. (2) and (3), it is easy to see that φxor |= Expl(v,W )⇒ L(v) holds. The
implicative explanationExpl(v,W ) can in fact be read directly from the cut W as in [2]:
Expl(v,W ) =

∧
u∈reasons(W ) L(u), where reasons(W ) = {u ∈ Va | L(u) /∈ φxor ∧

∃u′ ∈ Vb : 〈u, u′〉 ∈ E} is the reason set for W . A cut W is cnf-compatible if L(u) is a
unary xor-clause for each u ∈ reasons(W ). Thus if the cut W is cnf-compatible, then
Expl(v,W )⇒ L(v) is the required or-clause implying the xor-implied literal L(v).

Example 1. Consider again the UP-derivation on φxor ∧ (¬a) ∧ (d) ∧ (¬b) in Fig. 3. It
has four cuts, 1–4, for the vertex v12, corresponding to the explanations ¬a ∧ d ∧ ¬b,
c ∧ d, c ∧ (c⊕ e⊕�), and e ∧ c, respectively. The non-cnf-compatible cut 3 cannot be
used to give an implying or-clause for the xor-implied literal f but the others can; the
one corresponding to the cut 2 is (¬c ∨ ¬d ∨ f). ♣

The UP-derivation bears an important similarity with “traditional” implication graph of
a SAT solver where each vertex represents a variable assignment: graph partitions are
used to derive clausal explanations for implied literals. Different partitioning schemes
for such implication graphs have been studied in [13], and we can directly adopt some
of them for our analysis. A cut W = (Va, Vb) for a non-input vertex v is:

1. closest cut if W is the cnf-compatible cut with the smallest possible Vb part. Ob-
serve that each implying or-clause derived from these cuts is a clausification of a
single xor-clause; e.g., (¬c ∨ ¬e ∨ f) obtained from the cut 4 in Fig. 3.
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2. first UIP cut if W is the cut with the largest possible Va part such that reasons(W )
contains either the latest xor-assumption vertex or exactly one of its successors.

3. furthest cut if Vb is maximal. Note that furthest cuts are also cnf-compatible as their
reason sets consist only of xor-assumptions.

In the implementation of the UP-module, we use a modified version of the 2-watched
literals scheme first presented in [14] for or-clauses; all but one of the variables in
an xor-clause need to be assigned before the xor-clause implies the last one. Thus it
suffices to have two watched variables. MoRsat [8] uses the same data structure for
all clauses and has 2 × 2 watched literals for xor-clauses. Cryptominisat [9] uses a
scheme similar to ours except that it manipulates the polarities of literals in an xor-
clause while we take the polarities into account in the explanation phase. Because of this
implementation technique, the implementation does not consider the non-unary non-
input vertices in UP-derivations; despite this, Thm. 3 does hold also for the implemented
inference system.

5 Parity Explanations

So far in this paper, as well as in our previous works [2,3], we have used the inference
rules in an “implicative way”. For instance, we have implicitly read the ⊕-Unit+ rule as

if the xor-clauses (x) and C hold, then C [x/�] also holds.

Similarly, the implicative explanation for an xor-implied literal l̂ labelling a non-input
node v under a cnf-compatible cut W has been defined to be a conjunction Expl(v,W )

of literals with φxor |= Expl (v,W )⇒ l̂ holding. We now propose an alternative method
allowing us to compute a parity explanationExpl⊕(v,W ) that is an xor-clause such that

φxor |= Expl⊕(v,W )⇔ l̂

holds. The variables in Expl⊕(v,W ) will always be a subset of the variables in the
implicative explanation Expl(v,W ) computed on the same cut.

The key observation for computing parity explanations is that the inference rules can
in fact also be read as equations over xor-clauses under some provisos. As an example,
the ⊕-Unit+ rule can be seen as the equation (x)⊕C ⊕� ⇔ C [x/�] provided that (i)
x ∈ C, and (ii) C is in normal form. That is, taking the exclusive-or of the two premises
and the constant true gives us the consequence clause of the rule. The provisos are easy
to fulfill: (i) we have already assumed all xor-clauses to be in normal form, and (ii)
applying the rule when x /∈ C is redundant and can thus be disallowed. The reasoning
is analogous for the ⊕-Unit− rule and thus for UP rules we have the equations:

(x) ⊕ C ⊕� ⇔ C [x/�] (4)

(x ⊕�)⊕ C ⊕� ⇔ C [x/⊥] (5)

As all the UP-rules can be interpreted as equations of form “left-premise xor right-
premise xor true equals consequence”, we can expand any xor-clause C in a node of
a UP-derivation by iteratively replacing it with the left hand side of the corresponding
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equation. As a result, we will get an xor-clause that is logically equivalent to C; from
this, we can eliminate the xor-clauses in φxor and get an xor-clause D such that φxor |=
D ⇔ C. Formally, assume a UP-derivationG = 〈V,E, L〉 for φxor∧l1∧...∧lk. For each
non-input node v in G, and each cut W = 〈Va, Vb〉 of G for v, the parity explanation
of v under W is Expl⊕(v,W ) = fW (v), there fW is recursively defined as earlier for
Expl(v,W ) except that the case “E4” is replaced by

E4 If u is a non-input node in Vb, then fW (u) = fW (u1)⊕ fW (u2)⊕�, where u1

and u2 are the source nodes of the two edges incoming to u.

We now illustrate parity explanations and show that they can be smaller (in the sense of
containing fewer variables) than implicative explanations:

Example 2. Consider again the UP-derivation given in Fig. 3. Take the cut 4 first; we
get Expl⊕(v12,W ) = c ⊕ e ⊕ �. Now φxor |= Expl⊕(v12,W )⇔ L(v12) holds as
(c ⊕ e ⊕ �) ⇔ f , i.e. c ⊕ e ⊕ f , is an xor-clause in φxor. Observe that the implicative
explanation c∧e of v12 under the cut is just one conjunct in the disjunctive normal form
(c ∧ e) ∨ (¬c ∧ ¬e) of c⊕ e⊕�.

On the other hand, under the cut 2 we get Expl⊕(v12,W ) = d. Now φxor |=
Expl⊕(v12,W )⇔ L(v12) as d ⇔ f , i.e. d ⊕ f ⊕ �, is a linear combination of the
xor-clauses in φxor. Note that the implicative explanation for v12 under the cut is (c∧d),
and no cnf-compatible cut for v12 gives the implicative explanation (d) for v12. ♣

We observe that vars(Expl⊕(v,W )) ⊆ vars(Expl (v,W )) by comparing the definitions
of Expl(v,W ) and Expl⊕(v,W ). The correctness of Expl⊕(v,W ), formalized in the
following theorem, can be established by induction and using Eqs. (4) and (5).

Theorem 1. Let G = 〈V,E, L〉 be a UP-derivation on φxor ∧ l1 ∧ · · · ∧ lk, v a node in
it, and W = 〈Va, Vb〉 a cut for v. It holds that φxor |= Expl⊕(v,W )⇔ L(v).

Recall that the CNF-part solver requires an implying or-clause C for each xor-implied
literal, forcing the value of the literal by unit propagation. A parity explanation can be
used to get such implying or-clause by taking the implicative explanation as a basis and
omitting the literals on variables not occurring in the parity explanation:

Theorem 2. Let G = 〈V,E, L〉 be a UP-derivation on φxor ∧ l1 ∧ · · · ∧ lk, v a node
with L(v) = l̂ in it, and W = 〈Va, Vb〉 a cnf-compatible cut for v. Then φxor |=
(
∧

u∈S L(u))⇒ l̂, whereS = {u ∈ reasons(W ) | vars(L(u)) ⊆ vars(Expl⊕(v,W ))}.

Observing that only expressions of the type fW (u) occurring an odd number of times
in the expression fW (v) remain in Expl⊕(v,W ), we can derive a more efficient graph
traversal method for computing parity explanations. That is, when computing a parity
explanation for a node, we traverse the derivation backwards from it in a breadth-first
order. If we come to a node u and note that its traversal is requested because an even
number of its successors have been traversed, then we don’t need to traverse u further
or include L(u) in the explanation if u was on the “reason side” Va of the cut.

Example 3. Consider again the UP-derivation in Fig. 3 and the cnf-compatible cut 1
for v12. When we traverse the derivation backwards, we observe that the node v9 has an
even number of traversed successors; we thus don’t traverse it (and consequently neither



Conflict-Driven XOR-Clause Learning 391

v8, v5, v4 or v1). On the other hand, v6 has an odd number of traversed successors and it
is included when computing Expl⊕(v12,W ). Thus we get Expl⊕(v12,W ) = L(v6) =
(d) and the implying or-clause for f is d⇒ f , i.e. (¬d ∨ f). ♣

Although parity explanations can be computed quite fast using graph traversal as ex-
plained above, this can still be computationally prohibitive on “xor-intensive” instances
because a single CNF-level conflict analysis may require that implying or-clauses for
hundreds of xor-implied literals are computed. In our current implementation, we
compute the closest cnf-compatible cut (for which parity explanations are very fast
to compute but equal to implicative explanations and produce clausifications of single
xor-clauses as implying or-clauses) for an xor-implied literal l̂ when an explanation is
needed in the regular conflict analysis. The computationally more expensive furthest
cut is used if an explanation is needed again in the conflict-clause minimization phase
of minisat.

6 Resolution Cannot Polynomially Simulate Parity Explanations

Intuitively, as parity explanations can contain fewer variables than implicative expla-
nations, the implying or-clauses derived from them should help pruning the remaining
search space of the CDCL solver better. We now show that, in theory, parity expla-
nations can indeed be very effective as they can allow small refutations for some for-
mula classes whose CNF translations do not have polynomial size resolution proofs.
To do this, we use the hard formulas defined in [15]; these are derived from a class
of graphs which we will refer to as “parity graphs”. A parity graph is an undirected,
connected, edge-labeled graph G = 〈V,E〉 where each node v ∈ V is labeled with
a charge c(v) ∈ {⊥,�} and each edge 〈v, u〉 ∈ E is labeled with a distinct vari-
able. The total charge c(G) =

⊕
v∈V c(v) of an parity graph G is the parity of all

node charges. Given a node v, define the xor-clause α(v) = q1 ⊕ . . .⊕ qn ⊕ c(v)⊕�,
where q1, . . . , qn are the variables used as labels in the edges connected to v, and
xorclauses(G) =

∧
v∈V α(v). For an xor-clause C over n variables, let cnf(C) de-

note the equivalent CNF formula, i.e. the conjunction of 2n−1 clauses with n literals in
each. Define clauses(G) =

∧
v∈V cnf(α(v)).

As proven in Lemma 4.1 in [15], xorclauses(G) and clauses(G) are unsatisfiable if
and only if c(G) = �. The unsatisfiable formulas derived from parity graphs can be
very hard for resolution: there is an infinite sequence G1, G2, . . . of degree-bounded
parity graphs such that c(Gi) = � for each i and the following holds:

Lemma 1 (Thm. 5.7 of [15]). There is a constant c > 1 such that for sufficiently
large m, any resolution refutation of clauses(Gm) contains cn distinct clauses, where
clauses(Gm) is of lengthO(n), n = m2.

We now present our key result on parity explanations: for any parity graph G with
c(Gi) = �, the formula xorclauses(G) can be refuted with a single parity explanation
after a number of xor-assumptions have been made:

Theorem 3. Let G = 〈V,E〉 be a parity graph such that c(G) = �. There is a UP-
refutation for xorclauses(G)∧ q1 · · · ∧ qk for some xor-assumptions q1, . . . , qk, a node
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v with L(v) = ⊥ in it, and a cut W = 〈Va, Vb〉 for v such that Expl⊕(v,W ) = �. Thus
xorclauses(G) |= (� ⇔ ⊥), showing xorclauses(G) unsatisfiable.

By recalling that CDCL SAT solvers are equally powerful to resolution [16], and that
unit propagation on xor-clauses can be efficiently simulated by unit propagation their
CNF translation, we get the following:

Corollary 1. There are families of unsatisfiable cnf-xor formulas for which DPLL(XOR)
using UP-module (i) has polynomial sized proofs if parity explanations are allowed, but
(ii) does not have such if the “classic” implicative explanations are used.

In practice, the CDCL part does not usually make the correct xor-assumptions needed
to compute the empty implying or-clause, but if parity explanations are used in learning
as explained in the next section, instances generated from parity graphs can be solved
very fast.

7 Learning Parity Explanations

As explained in Sect. 5, parity explanations can be used to derive implying or-clauses,
required by the conflict analysis engine of the CDCL solver, that are shorter than those
derived by the classic implicative explanations. In addition to this, parity explanations
can be used to derive new xor-clauses that are logical consequences of φxor; these xor-
clauses D can then be learned, meaning that φxor is extended to φxor ∧ D, the goal
being to increase the deduction power of the xor-reasoning module. As an example,
consider again Ex. 2 and recall that the parity explanation for v12 under the cut 2 is
d. Now φxor |= (d ⇔ f), i.e. φxor |= (d ⊕ f ⊕ �), holds, and we can extend φxor to
φ′

xor = φxor ∧ (d⊕ f ⊕�) while preserving all the satisfying truth assignments. In fact,
it is not possible to deduce f from φxor ∧ (d) by using UP, but f can be deduced from
φ′

xor∧ (d). Thus learning new xor-clauses derived from parity explanations can increase
the deduction power of the UP inference system in a way similar to conflict-driven
clause learning increasing the power of unit propagation in CDCL SAT solvers.

However, if all such derived xor-clauses are learned, it is possible to learn the same
xor-clause many times, as illustrated in the following example and Fig. 4.

Example 4. Let φxor = (a ⊕ b ⊕ c ⊕ �) ∧ (b ⊕ c ⊕ d ⊕ e) ∧ ... and assume that CNF
part solver gives its first decision level literals a and ¬c as xor-assumptions to the UP-
module; the module deduces b and returns it to the CNF solver. At the next decision
level the CNF part guesses d, gives it to UP-module, which deduces e, returns it to the
CNF part, and the CNF part propagates it so that a conflict occurs. Now the xor-implied
literal e is explained and a new xor-clause D = (a ⊕ d ⊕ e ⊕ �) is learned in φxor.
After this the CNF part backtracks, implies ¬d at the decision level 1, and gives it to the
UP-module; the module can then deduce ¬e without using D. If ¬e is now explained,
the same “new” xor-clause (a⊕ d⊕ e⊕�) can be derived. ♣
The example illustrates a commonly occurring case in which a derived xor-clause con-
tains two or more literals on the latest decision level (e and d in the example); in such a
case, the xor-clause may already exist in φxor. A conservative approach to avoid learn-
ing the same xor-clause twice, under the reasonable assumption that the CNF and xor-
reasoning module parts saturate their propagations before new heuristic decisions are
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Fig. 4. Communication between CNF part and UP-module in a case when duplicate xor-clauses
are learned; the d and a superscripts denote decision literals and xor-assumptions, respectively

made, is to disregard derived xor-clauses that have two or more variables assigned on
the latest decision level. If a learned xor-clause for xor-implied literal l̂ does not have
other literals on the latest decision level, it can be used to infer l̂ with fewer decision lit-
erals. Note that it may also happen that an implying or-clause for an xor-implied literal
l̂ does not contain any literals besides l̂ on the latest decision level; the CNF part may
then compute a conflict clause that does not have any literals on the current decision
level, which needs to be treated appropriately.

In order to avoid slowing down propagation in our implementation, we store and
remove learned xor-clauses using a strategy adopted from minisat: the maximum num-
ber of learned xor-clauses is increased at each restart and the “least active” learned
xor-clauses are removed when necessary. However, using the conservative approach to
learning xor-clauses, the total number of learned xor-clauses rarely exceeds the number
of original xor-clauses.

8 General Xor-Derivations

So far in this paper we have considered a very simple xor-reasoning module capable
only of unit propagation. We can in fact extend the introduced concepts to more general
inference systems and derivations. Define an xor-derivation similarly to UP-derivation

except that there is only one inference rule, ⊕-Gen :
C1 C2

C1 ⊕ C2 ⊕�
, where C1 and C2

are xor-clauses. The inference rule ⊕-Gen is a generalization of the rules Gauss− and
Gauss+ in [4]. Now Thms. 1 and 2 can be shown to hold for such derivations as well.

As another concrete example of xor-reasoning module implementing a sub-class of
⊕-Gen, consider the Subst module presented in [2]. In addition to the unit propagation
rules of UP in Fig. 2, it has inference rules allowing equivalence reasoning:

⊕-Eqv+ :
x⊕ y ⊕� C

C [x/y]
⊕-Eqv− :

x⊕ y C
C [x/(y ⊕�)]

where the symbols x and y are variables while C is an xor-clause in the normal form
with an occurrence of x. Note that these Subst rules are indeed instances of the more
general inference rule⊕-Gen. For instance, given two xor-clauses C1 = (c⊕d⊕�) and
C2 = (b⊕ d⊕ e), the Subst-system can produce the xor-clause C2 [d/c] = (b⊕ c⊕ e)
which is also inferred by ⊕-Gen: (C1⊕C2⊕�) = ((c⊕ d⊕�)⊕ (b⊕ d⊕ e)⊕�) =
(b⊕ c⊕ e).

Subst-derivations are defined similarly to UP-derivations. As an example, Fig. 5
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shows a Subst-derivation on φxor∧(a), where
φxor = (a⊕b⊕c)∧ (a⊕c⊕d)∧ (b⊕d⊕e).
The literal e is Subst-derivable on φxor ∧ (a);
the xor-reasoning module returns e as an xor-
implied literal on φxor after a is given as
an xor-assumption. The cnf-compatible cut
1 for the literal e gives the implicative ex-
planation (a) and thus the implying or-clause
(¬a∨e) for e. Parity explanations are defined
for Subst in the same way as for UP; the par-
ity explanation for the literal e in the figure

Fig. 5. A Subst-derivation

is � and thus the implying or-clause for e is (e). Observe that e is not UP-derivable
from φxor ∧ (a), i.e. Subst is a stronger deduction system than UP in this sense.

Parity explanations can also be computed in another xor-reasoning module, EC pre-
sented in [3], that is based on equivalence class manipulation. We omit this construction
due to space constraints.

9 Experimental Results

We have implemented a prototype solver integrating both xor-reasoning modules (UP
and Subst) to minisat [17] (version 2.0 core) solver. In the experiments we focus on the
domain of logical cryptanalysis by modeling a “known cipher stream” attack on stream
ciphers Bivium, Crypto-1, Grain, Hitag2, and Trivium. To evaluate the performance
of the proposed techniques, we include both unsatisfiable and satisfiable instances. In
the unsatisfiable instances, generated with grain-of-salt [18], the task is to recover the
internal cipher state when 256 output stream bits are given. This is infeasible in practice,
so the instances are made easier and also unsatisfiable by assigning a large enough
number of internal state bits randomly. Thus, the task becomes to prove that it is not
possible to assign the remaining bits of the internal cipher state so that the output would
match the given bits. To include also satisfiable instances we modeled a different kind
of attack on the ciphers Grain, Hitag2 and Trivium where the task is to recover the
full key when a small number of cipher stream bits are given. In the attack, the IV and
a number of key stream bits are given. There are far fewer generated cipher stream
bits than key bits, so a number of keys probably produce the same prefix of the cipher
stream. All instances were converted into (i) the standard DIMACS CNF format, and
(ii) a DIMACS-like format allowing xor-clauses as well. Structurally these instances
are interesting for benchmarking xor-reasoning as they have a large number of tightly
connected xor-clauses combined with a significant CNF part.

We first compare the following solver configurations: (i) unmodified minisat, (ii)
up: minisat with watched variable based unit propagation on xor-clauses, (iii) up-pexp:
up extended with parity explanations, (iv) up-pexp-learn: up-pexp extended with xor-
clause learning, and (v) up-subst-learn: up using Subst-module to compute parity xor-
explanations and xor-clause learning. The reference configuration up computes closest
cnf-compatible cut parity explanations, and the other configurations use also furthest
cuts selectively as described in Sect. 5. We also tested first UIP cuts, but the performance
did not improve.
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Fig. 6. Number of solved instances with regard to time and decisions on satisfiable Trivium bench-
mark (1020 instances, 51 instances per generated cipher stream length ranging from 1 to 20 bits)

Bivium Crypto-1 Grain Hitag2 Trivium
Solver # Dec. Time # Dec. Time # Dec. Time # Dec. Time # Dec. Time
minisat 51 834 80.9 51 781 691.1 1 - - 35 428 440.0 51 55 5.7
up 51 985 127.7 51 1488 1751.8 51 40 13.8 39 291 403.9 51 59 8.0
up-pexp 51 1040 147.8 51 1487 1748.2 51 35 10.9 37 124 148.0 51 62 9.8
up-pexp-learn 47 651 114.0 51 1215 1563.0 36 122 87.7 37 222 255.4 51 24 3.7
up-subst-learn 47 616 336.4 51 1037 2329.5 37 70 90.3 36 215 374.8 51 29 12.9
cryptominisat-2.9.2 51 588 89.8 51 0 0.06 51 89 10.4 51 0 0.07 51 71 6.04

Fig. 7. Results of the unsatisfiable benchmarks showing the number of solved instances (#) within
the 4h time limit, median of decisions (×103), and median of solving time

The results for the satisfiable Trivium benchmarks are shown in Fig. 6. Learning
xor-clauses reduces the number of decisions needed substantially, and in the case of the
computationally less expensive UP reasoning module this is also reflected in the solving
time and in the number of solved instances. On the other satisfiable benchmark sets
learning new xor-clauses also reduced the number of required decisions significantly
but the number of propagations per decision is also greatly increased due to increased
deduction power and the reduction is not really reflected in the solving time.

The results for the unsatisfiable benchmarks are shown in Fig. 7. Parity explanations
reduce decisions on Grain and Hitag2, leading to fastest solving time. Learning parity
explanations reduces explanations on all benchmarks except Grain and gives the best
solving time on Trivium. Equivalence reasoning seems to reduce decisions slightly with
the cost of increased solving time. Obviously more work has to be done to improve data
structures and adjust heuristics so that the theoretical power of parity explanations and
xor-clause learning can be fully seen also in practice.

We also ran cryptominisat version 2.9.2 [10] on the benchmarks. As shown in Figs. 6
and 7, it performs (i) extremely well on the unsatisfiable Crypto-1 and Hitag2 instances
due to “failed literal detection” and other techniques, but (ii) not so well on our satisfi-
able Trivium instances, probably due to differences in restart policies or other heuristics.

10 Conclusions

We have shown how to compute linearity exploiting parity explanations for literals de-
duced in an xor-reasoning module. Such explanations can be used (i) to produce more
compact clausal explanations for the conflict analysis engine of a CDCL solver in-
corporating the xor-reasoning module, and (ii) to derive new parity constraints that
can be learned in order to boost the deduction power of the xor-reasoning module. It
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has been proven that parity explanations allow very short refutations of some formulas
whose CNF translations do not have polynomial size resolution proofs, even when us-
ing a simple xor-reasoning module capable only of unit-propagation. The experimental
evaluation suggests that parity explanations and xor-clause learning can be efficiently
implemented and demonstrates promising performance improvements also in practice.
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Abstract. We study the problem of encoding cardinality constraints (threshold
functions) on Boolean variables into CNF. Specifically, we propose new encod-
ings based on (perfect) hashing that are efficient in terms of the number of clauses,
auxiliary variables, and propagation strength. We compare the properties of our
encodings to known ones, and provide experimental results evaluating their prac-
tical effectiveness.

1 Introduction

Modern Boolean satisfiability (SAT) solvers are powerful tools, capable of solving many
practical problems with millions of variables within minutes. They come well-tuned
off-the-shelf, allowing non-expert users to solve a wide range of complex problems
quickly. However, using a SAT solver to solve general constraint satisfaction problems
(CSPs) requires encoding the problem into strict conjunctive normal form (CNF). The
method of encoding can dramatically affect the runtime of a SAT solver and its memory
consumption. Hence, the problem of encoding CSPs into CNF is well studied within
both the CSP and SAT communities.

In this paper, we consider the special (and probably the most common) case of en-
coding cardinality constraints (on Boolean variables) of the form ≤k(X1, . . . , Xn) into
CNF. The ≤k(X1, . . . , Xn) constraint, on variables X1, . . . , Xn, is satisfied if at most
k of them are assigned TRUE. A CNF encoding of ≤k(X1, . . . , Xn) is a formula F on
variables X1, . . . , Xn and (possibly) additional auxiliary variables Y1, . . . , Y�, satisfy-
ing the following conditions:

– for any assignment x to X1, . . . , Xn with at most k TRUEs (in short |x| ≤ k), there
is an assignment y = y1y2 · · · y� to Y1, . . . , Y� such that (x ∪ y) |= F ;

– if x is an assignment to X1, . . . , Xn with |x| > k, then for all assignments y to
Y1, . . . , Y�, (x ∪ y) �|= F .

The constraints ◦k(X1, . . . , Xn), ◦ ∈ {<,>,≥,=}, and their CNF encodings are
defined similarly, and can be all translated to at most two1 constraints of the form
≤k(X1, . . . , Xn). Therefore, throughout this paper (except in Section 4.2), we will fo-
cus on the ≤k(X1, . . . , Xn) type, with a further restriction of 0 < k < n (the cases
k = 0 and k = n can be handled trivially).

1 One in all cases other than ‘=’.

A. Cimatti and R. Sebastiani (Eds.): SAT 2012, LNCS 7317, pp. 397–409, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Cardinality constraints arise naturally in many problems with optimization flavor
(e.g., “Is there a solution in which at most/at least k of the variables (from a certain set)
are set to TRUE/FALSE?”), and in problems where multi-valued variables are expressed
with Boolean variables (e.g., “Is there a solution in which exactly one of the Boolean
variables representing each multi-valued variable is set to TRUE?”). Furthermore, any
symmetric function on n Boolean variables (i.e., a function whose value depends only
on the number of input variables assigned TRUE) can be expressed as a disjunction of
at most n cardinality constraints.

1.1 Efficient Encodings and Related Work

An efficient CNF encoding F of the cardinality constraint ≤k(X1, . . . , Xn) has the
following characteristics:

– Few clauses.
– Few auxiliary variables.
– One (or better both) of the following properties preserving arc-consistency under

unit propagation:
Pconfl: for any partial assignment x̂ to X with |x̂| > k, the formula F under x̂

implies the empty clause (contradiction) with unit propagation (UP);
Pextend: for any partial assignment x̂ to X with |x̂| = k, the formula F under x̂

assigns FALSE to all unassigned variables in X with UP (note that this property
implies the first one, but not vice versa).

In short, a (c, a, p) encoding is an encoding with c(n, k) clauses, a(n, k) auxiliary vari-
ables and propagation strength p ∈ {Pconfl,Pextend, ∅}.

The naive (often called binomial) encoding of ≤k(X1, . . . , Xn) has parameters
(
(

n
k+1

)
, 0,Pextend); it is a conjunction of all2

(
n

k+1

)
clauses of the form (¬Xi1 ∨ · · · ∨

¬Xik+1
). The exponential dependance of its size on k makes the naive encoding im-

practical except for small n and k. The following table summarizes several interesting
methods for encoding the ≤k(X1, . . . , Xn) constraint into CNF efficiently:

Name parameters origin
Sequential counter (O(kn), O(kn),Pextend) [Sin05]
Parallel counter (O(n), O(n), ∅) [Sin05]
Binary∗ (O(kn log n), O(kn), ∅) [FPDN05, FG10]
Product (O(kn+ k2nk/(k+1)), O(knk/(k+1)),Pextend) [FG10]
Commander (O(22kn), O(kn),Pextend) [FG10]
Sorting networks (O(n log2 n), O(n log2 n),Pextend) [ES06]
Cardinality networks (O(n log2 k), O(n log2 k),Pextend) [ANOR09]
Totalizer (O(n2), O(n logn),Pextend) [BB03]
Linear (O(n), O(n), ∅) [War98]

(* The binary encoding for k = 1 has parameters (O(n log n), log n,Pextend) [FPDN05].)
While the parallel-counter based encoding is smallest in size, it lacks the propagation
strength that is crucial for SAT solver performance. On the other hand, encodings with

2 Recall that we assume k < n.
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strong propagation properties have a size that is super-linear in n, making them imprac-
tical for very large n and k. In their recent work, Frisch and Giannaros [FG10] discuss
these tradeoffs, and survey and compare several known and new encodings. As [FG10]
conclude, the sequential-counter based encoding from [Sin05] seems to perform better
than other known encodings in practice (for problems that are not considered too small),
and it is the method we use here as a benchmark against our encodings3.

1.2 Our Contribution

PHF-Based Encoding. In Section 4, we propose a method for encoding cardinality
constraints into CNF with perfect hash functions (PHFs) (see the definition in Section
2). The high-level idea behind this method is to reduce (using PHFs) the problem of
encoding ≤k(X1, . . . , Xn) to several disjoint problems of encoding ≤k(Y1, . . . , Yr) for
r 1 n. From the special structure of PHFs, we get the following: 1) any (partial) as-
signment that satisfies the original constraint can be extended to an assignment that
satisfies all the smaller constraints; 2) any assignment falsifying the original constraint
must also falsify one of the smaller constraints. Hence, it suffices to enforce the smaller
constraints only, using any of the known encodings at hand. Furthermore, this reduc-
tion inherits propagation strength and incrementality4 of the used encodings. When
constructed using the sequential-counter based method (on the reduced constraints),
we obtain an encoding that uses the fewest number of auxiliary variables among all
encodings listed in the table above. The parameters of our encodings are of the form
(nkc log n, kc logn,Pextend), where c depends on the PHF used (and can be as small
as 4).

Encoding At-Least-k. In Section 4.2, we describe how to encode the ≥k(X1, . . . , Xn)
constraint using PHFs. Although ≥k(X1, . . . , Xn) can be trivially reformulated in terms
of an at-most type constraint (namely, ≤n−k(¬X1, . . . ,¬Xn)), the problem with this
transformation is that for 1 < k1 n/2 it blows up the size of the encoding in all but the
non-propagating methods. We show how PHF and sequential-counter based encodings
can handle ≥k(X1, . . . , Xn) constraints natively, without any size penalties. In fact, the
encodings we get have parameters (kc logn, kc logn,Pconfl), where c again is a small
constant depending on the PHF used. Note that here both the number of clauses and the
number of auxiliary variables are subliniar in n (however, the clauses themselves are
larger).

Hybrid Encoding. While interesting from a theoretical point of view, our experi-
ence shows that the PHF based methods become practical only when k is significantly
smaller than n (e.g., a small constant versus hundreds of thousands). This is because the

3 The performance of the parallel-counter based encodings from [Sin05] was not measured in
[FG10]. However, as our results in Section 6 indicate, despite being smallest in size, their lack
in propagation strength makes them much worse in practice than the sequential-counter based
encodings.

4 Incrementality is the property of an encoding that allows tightening the cardinality bound
by setting values to some variable(s). This property is useful when applying a sequence of
decreasing/increasing cardinality constraints in the process of search for the optimal value.
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number of copies of the reduced problem (corresponding to the number of hash func-
tions in a perfect hash family) grows quadratically in k. To overcome the impracticality
of the PHF based encodings, we propose a hybrid encoding, combining simple (non-
perfect) hashing, parallel-counter, and sequential-counter based encodings. The idea
here is similar: reduce one big problem to several small ones (but fewer than before),
and enforce the smaller constraints with the sequential-counter method. In contrast to
the previous construction, here we do not require perfect reduction; that is, we may have
a situation where, under some assignment, the original constraint is falsified, but all the
small ones to which we reduced are satisfied. Therefore, to make the encoding still cor-
rect, we add the parallel-counter based encoding on the original variables. Due to the
exponential coverage vs the number-of-copies nature of hashing, we can guarantee that
the strong propagation properties of the sequential-counter method are preserved for
most of the assignments, even when reducing to only a single small problem. Namely,
this hybrid encoding enjoys partial Pextend propagation strength, in the sense that most
(but not all) of the partial assignments with ≥ k TRUEs are forcing propagation as re-
quired. However, it is much smaller in size (e.g., for k1 n, an encoding that propagates
most (> 99%) of the partial assignments has only O(n) clauses and auxiliary variables,
and is nearly the same in size as the asymptotically-optimal parallel-counter based en-
coding). In addition, the hybrid encoding is simpler to implement. It can be viewed as
a simple way to augment the parallel-counter encoding with propagation strength using
a small number of small sequential counters.

Experimental Evaluation. The experimental evaluation in Section 6 compares various
versions of the hybrid encoding to the sequential and parallel-counter based methods on
a benchmark set containing encodings of different optimization and scheduling prob-
lems, kindly provided to us by the authors of [ANOR09].

It is clear that there is a sharp time-memory tradeoff between the counter-based en-
codings. Namely, whenever it is possible, with respect to memory limitations, to encode
the constraints with the sequential-counter based method, the solver performance im-
proves dramatically, compared to the parallel-counter based encoding. On the other
hand, the parallel-counter based encoding is very efficient in terms of memory, but
slower due to lack of propagation strength.

Our bottom-line conclusion is that with the hybrid encoding, we can enjoy both
worlds: it is as fast as the sequential-counter based encoding (even faster), and its mem-
ory consumption is very close to that of the parallel-counter based encoding.

2 Perfect Hashing

An (n, 
, r,m) perfect hash family (PHF) is a collection H = h1, . . . , hm of functions
mapping [n] = {1, . . . , n} to [r] that satisfies the following property: for every subset
S ⊆ [n] of size |S| ≤ 
, there is i ∈ [m] such that |hi(S)| = |S|. Namely, at least one
of the functions hashes S perfectly, with no collisions. Fixing 
 and r, we usually look
for the smallest m = m(n) for which an (n, 
, r,m) perfect hash family exists.

Naturally, the task becomes easier when r is larger than 
 (and is impossible when
r < 
). For the case r = 
, m can be bounded by O(
e� logn). Allowing r = 
2,
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m can be bounded by O(
 logn). These upper bounds can be obtained using standard
probabilistic arguments (for example, see [CLRS09]). However, constructing such fam-
ilies explicitly and efficiently imposes additional penalty on their size. See [KM03] and
[FK84] for more details on explicit constructions of PHFs.

Before we describe how PHFs are useful for cardinality-constraint encodings, we
sketch three simple constructions of PHFs for small 
 and r. The first construction is
straightforward, the second is (to our knowledge) new, and the third one was proposed
to us by Noga Alon.

3 Perfect Hashing – Constructions

3.1 (n, 2, 2, �logn	) PHF

Set m 	 �logn�. For i ∈ [m] and j ∈ [n], let hi(j) map to the ith bit of j, when j is
written in binary base. Since every two numbers differ in at least one bit, the functions
hi form a (n, 2, 2, �logn�) PHF.

3.2 (n, 3, 3, �log2
3 n	) PHF

For i1, i2 ∈ [log3 n], and j ∈ [n], write j in ternary base and define

hi1,i2(j) =

⎧⎪⎨⎪⎩
(i1th digit of j + i2th digit of j) mod 3, i1 < i2

i1th digit of j, i1 = i2

(i1th digit of j − i2th digit of j) mod 3, i1 > i2

.

We now prove the property of perfect hashing. Let j1, j2, and j3 be three different
indices ∈ [n]. We need to show the existence of i1, i2 such that

hi1,i2(j1) �= hi1,i2(j2), hi1,i2(j1) �= hi1,i2(j3),

and hi1,i2(j2) �= hi1,i2(j3). Since j1 �= j2, there exists i1 such that the i1th digit of j1
differs from the i1th digit of j2. If the i1th digits of j3 has the (remaining) third value,
then hi1,i1 separates the three j’s, and we are done. Otherwise, j3 has the same i1th
digit as, w.l.o.g, j1. So let i2 be a digit in which j1 differs from j3. W.l.o.g i1 < i2. If
all three j’s have different i2th digits, hi2,i2 separates the three j’s, and we are done.
Otherwise, j2 has the same i2th digit as either j1 or j3. W.l.o.g, the i2th digit of j2 is
the same as the i2th digit of j1; this is depicted in the following table:

j i1th digit i2th digit
j1 x z
j2 y z
j3 x w

Here x �= y and z �= w are four ternary digits. Since x+ z �= y+ z and x+ z �= x+w,
the only way hi1,i2 will not separate the three j’s is if y + z = x + w. Similarly, the
only way hi2,i1 will not separate j1, j2, and j3 is if y − z = x − w. But adding these
two equalities yields the contradiction x = y, so either hi1,i2 or hi2,i1 must separate j1,
j2, and j3.
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3.3 (n, �, Õ(�2 logn), �2 logn) PHF

This construction is useful in practice for 
1 n.
Let p1, . . . , pm be the first m prime numbers. For every i ∈ [m], let the function hi

map [n] to {0, . . . , pi − 1} as follows:

hi(j) = j mod pi.

Now let S ⊆ [n] be a set that is not hashed perfectly by any of the functions hi. This
means that for every i ∈ [m] there are j �= j′ ∈ S so that

j = j′ mod pi.

Equivalently, for all i ∈ [m]

pi |
∏

j<j′∈S

(j′ − j),

and since pi are primes,

p1 · p2 · · · pm |
∏

j<j′∈S

(j′ − j).

Since p1 ·p2 · · · pm > 2m and
∏

j<j′∈S(j
′− j) < n|S|2 , we must have m < |S|2 logn.

In other words, setting m = 
2 logn assures that every set of size ≤ 
 is perfectly
hashed by some function hi.

The largest prime used, pm, is the upper bound on r in this construction, which by
the Prime Number Theorem is bounded by O(m lnm). Combined with the inequality
above, we get

r < O(|S|2 logn(log |S|+ log logn)) = Õ(
2 logn).

4 New Encodings Based on PHFs

In this section, we describe how to encode the ≤k(X1, . . . , Xn) and ≥k(X1, . . . , Xn)
constraints into CNF using PHFs. We start with the general parameterized construc-
tions, analyze them, and then instantiate them with several different parameters for
comparison against known encodings.

4.1 Encoding the ≤k(X1, . . . , Xn) Constraint

Fix r > k and an (n, k + 1, r,m) perfect hash family H = h1, . . . , hm : [n] → [r].
Perform the following steps for all i ∈ [m]:

1. Introduce r auxiliary variables Y i
1 , . . . , Y

i
r .

2. Encode implications Xj → Y i
hi(j)

(using binary clauses (¬Xj ∨ Y i
hi(j)

)) for all
j ∈ [n].

3. Encode an ≤k(Y
i
1 , . . . , Y

i
r ) constraint using the sequential-counter based encoding

from [Sin05].

The final CNF encoding of ≤k(X1, . . . , Xn) is the conjunction of all the clauses gener-
ated in Step 2 and Step 3 for i = 1, . . . ,m.
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Correctness. To verify that the encoding is correct, assume first that we start with an
assignment x to X = X1, . . . , Xn with weight > k. Let b1, . . . , bk+1 be the first k + 1
indices corresponding to variables assigned TRUE in x. Since H is an (n, k + 1, r,m)
perfect hash family, there must be i ∈ [m] so that hi(bj) �= hi(bj′) for all 1 ≤ j <
j′ ≤ k + 1. In addition, by the implication clauses introduced in Step 2, the k + 1
distinct Y i

j variables to which hi(bj) are mapped (for j = 1, . . . , k + 1) are forced to
be TRUE. Consequently, the ≤k(Y

i
1 , . . . , Y

i
r ) constraint encoding introduced in Step 3

for that particular index i is falsified.
Now assume that we start with an assignment x to X with weight ≤ k. Then, by

construction, each one of the i copies of the auxiliary variables can be assigned values
of overall weight ≤ k, and furthermore, the corresponding ≤k(Y

i
1 , . . . , Y

i
r ) constraints

can all be simultaneously satisfied.

Size. The encoding requires m · n + m · O(r · k) clauses (the first term comes from
Step 2, and the second term comes from Step 3) and it uses m · r + m · O(r · k)
auxiliary variables (the first term is the Y variables, and the second term comes from
the sequential counter encodings on the Y ’s).

Propagation strength. The encoding is Pextend: Suppose that a partial assignment x̂
to X has exactly k variables set to TRUE. We show that unit propagation sets all other
variables to FALSE. Let b1, . . . , bk be the k indices corresponding to variables assigned
TRUE, and let bk+1 be the index of any other variable. Using the perfect hashing prop-
erty, take hi so that hi(bj) �= hi(bj′ ) for all 1 ≤ j < j′ ≤ k + 1. The implications
clauses of Step 2 imply by unit propagation a partial assignment ŷ on Y i

1 , . . . , Y
i
r with

Y i
hi(bj)

set to TRUE for 1 ≤ j ≤ k. Since the sequential counter (Step 3) is Pextend,
unit propagation extends ŷ by assigning FALSE to all other variables in that copy, in-
cluding the variable Y i

hi(bk+1)
. This triggers again the binary implications from Step 2,

and unit propagation assigns Xbk+1
to FALSE.

Instantiation. Using the probabilistic5 PHFs with 
 = k+1, r = 
2 and m = O(
 log n)
(see Section 2), we get (O(nk logn + k4 logn), O(k4 logn),Pextend) encoding for
≤k(X1, . . . , Xn). Compared, e.g., to the sequential-counter based encoding, this con-
struction uses slightly more clauses (a factor of logn), but for large enough n it con-
sumes a significantly smaller number of variables (k4 logn vs kn). Furthermore, apart
from the naive encoding (whose size is exponential in k) this encoding uses the fewest
number of auxiliary variables among all encoding methods listed above.

Instantiating this construction with k = 1 and 
 = r = 2 based on the corresponding
PHF from Section 3.1, we get (n logn, logn,Pextend) encoding for ≤1(X1, . . . , Xn),
with properties similar to the binary encoding [FPDN05]. The PHFs from Sections 3.2
(for k = 2) and 3.3 (for any k) yield to (n log2 n, log2 n,Pextend) and (O(k2n logn+
k5 log2 n(log k + log logn)), O(k5 logn),Pextend) encodings, respectively.

5 We stress that probabilistic arguments are only required to prove the existence of such families;
in practice, one can find such PHFs by brute-force search, and then hard-code them in the
software once and for all. In the cost of size penalty, there are also derandomized versions of
the probabilistic constructions [AN96].
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4.2 Encoding the ≥k(X1, . . . , Xn) Constraint

The straightforward way to implement the at-least constraints is to negate the at-most
constraints: having at least k TRUEs out of n variables is equivalent to having at most
n−k TRUEs out of the n negated literals. The problem with this simple transformation
is that moving from k 1 n to k ≈ n imposes a big size penalty for all but the non-
propagating encodings (this is due to the fact that encoding size grows with k). In this
section we show how the PHF-based encodings can handle the ≥k(X1, . . . , Xn) con-
straint natively. To this end, we need to invert the sequential-counter based encoding.

A Sequential-Counter Based Encoding for the ≥k(X1, . . . ,Xn) Constraint

Construction. The sequential-counter circuit described in [Sin05] is an example of
a monotone circuit with n inputs X1, . . . , Xn and a single output Z computing the
≥k(X1, . . . , Xn) constraint. In other words, given a full assignment to all of the Xis,
Z evaluates to TRUE if and only if the number of Xis assigned to TRUE is at least
k. One can convert this circuit into CNF via the Tseitsin encoding (see also Theorem
2 from [BKNW09] and Theorems 7 and 8 from [Bai11] for the connection between
monotone circuits and the corresponding CNF encodings), and to add the unit clause
(Z) enforcing the output of the circuit to be TRUE. The resulting CNF has O(kn)
clauses, O(kn) auxiliary variables6, correctly encodes the ≥k(X1, . . . , Xn) constraint,
and is Pextend.

Optimization. One can optimize the above construction due to polarity considerations,
encoding the ≥k(X1, . . . , Xn) constraint as follows:

– Introduce the auxiliary variables Yi,j for all i ∈ [n] and j ∈ [k].
– Introduce the clauses:

1. (¬Y1,1 ∨X1),
2. (¬Y1,j) for for 1 < j ≤ k,
3. (¬Yi,j ∨ Yi−1,j−1) for 1 < i ≤ n and 1 < j ≤ k,
4. (¬Yi,j ∨ Yi−1,j ∨Xi) for 1 < i ≤ n and 1 ≤ j ≤ k,
5. (Yn,k).

The Boolean variables Yi,j represent the statements “at least j out of X1, . . . , Xi are
TRUE”. The clauses from (3) enforce the implications Yi,j → Yi−1,j−1, and the clauses
from (4) enforce the implications Yi,j → (Yi−1,j∨Xi). The unit clause (5) corresponds
to the “output of the circuit”. (The unit clause is not added when using this encoding
as a building block.) This version of the ≥k(X1, . . . , Xn) encoding has roughly 2kn
clauses and kn auxiliary variables, and is Pextend.

A PHF-Based Encoding for the ≥k(X1, . . . , Xn) Constraint Fix r > k and an
(n, k, r,m) perfect hash family H = h1, . . . , hm : [n] → [r]. Perform the following
steps for each i ∈ [m]:

1. Introduce an auxiliary variable Zi and r auxiliary variables Y i
1 , . . . , Y

i
r .

2. Introduce implications Y i
d → (

⋃
hi(j)=d Xj) for all d ∈ [r].

6 Here we can see the advantage of having k � n.
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3. Encode the ≥k(Y
i
1 , . . . , Y

i
r ) using the sequential-counter based construction de-

scribed above. Let Zi denote the variable corresponding to the circuit’s output.

The final CNF encoding is the conjunction of the clauses in Step 2, the clauses in Step
3 for i = 1, . . . ,m, and the clause (

⋃m
i=1 Zi).

Correctness. Let x be an assignment to X1, . . . , Xn with weight≥ k, and let b1, . . . , bs
(s ≥ k), be the indices corresponding to the variables assigned TRUE in x. We can
extend this assignment to Y i

j s by assigning Y i
j to TRUE whenever Y i

j = hi(bj) for
some j; this assignment satisfies all of the clauses in Step 2. This assignment (uniquely)
extends to satisfy all of the clauses in Step 3, and for every i, Zi is true if and only if
the weight of the assignment to Y i

1 , . . . , Y
i
m is at least k. Since H is an (n, k, r,m)

PHF, there exists at least one i ∈ [m] with hi(bj) �= hi(bj′) for all 1 ≤ j < j′ ≤ k.
Consequently, for that index i, Zi is TRUE and the remaining clause (

⋃m
i=1 Zi) is also

satisfied.
For the other direction, assume that x has weight < k. Then by Step 2 for all i ∈ [m],

there are at most k− 1 values of d for which Y i
d can be TRUE. It follows by Step 3 that

each Zi is always FALSE, in conflict with the clause (
⋃m

i=1 Zi).

Properties. The encoding has O(m · r · k) clauses7 and O(m · r · k) variables, and is
Pconfl. The Pconfl property can be shown directly, but we do not present it here since
it also follows by Theorem 2 from [BKNW09] and Theorems 7 and 8 from [Bai11].
We leave as an open question if it is possible to modify the construction to be able to
enforce the stronger Pextend property as well.

Instantiation. Using the probabilistic PHFs with 
 = k+1, r = 
2 and m = O(
 log n)
(see Section 2), we get (O(k4 logn), O(k4 logn),Pconfl) encoding for ≥k(X1,
. . . , Xn). The PHFs from Sections 3.2 (for k = 2) and 3.3 (for any k) yield (log2 n,
log2 n,Pconfl) and (O(k5 logn), O(k5 logn),Pconfl) encodings, respectively.

5 Hybrid Encodings

In this section we show how to augment the parallel-counter based encoding (which
is nearly optimal in size) with partial propagation strength, using (non-perfect) hash
functions.

Given c hash functionsH = {hi : [n] → [r]}ci=1, a hybrid encoding of the ≤k(X1,
. . . , Xn) constraint is formed as follows:

– Enforce the ≤k(X1, . . . , Xn) constraint on X1, . . . , Xn using the parallel-counter
based method.

– For each 1 ≤ i ≤ c:
• Add implications Xj =⇒ Y i

hi[j]
for all j ∈ [n].

• Enforce the ≤k(Y
i
1 , . . . , Y

i
r ) constraint on Y i

1 , . . . , Y
i
r using one of the known

methods.
7 Note that the number of clauses is significantly smaller than for the at-most constraint, however

the clauses themselves are larger.
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The correctness of this encoding follows by construction. It has O
(
c · (n + cl(k, r))

)
clauses and uses O

(
n+c ·aux(k, r)

)
auxiliary variables, where cl(k, r) and aux(k, r)

are the number of clauses and auxiliary variables used by the method of encoding ap-
plied to enforce each of the ≤k(Y

i
1 , . . . , Y

i
r ) constraints. When using one of the encod-

ings with Pextend we also inherit a “partial Pextend”, where ρ-fraction of all partial
assignments with weight ≤ k are propagating as required. The parameter ρ depends on
c, r, k and n, and a crude lower bound on it can be obtained with elementary calcula-
tion. In practice, however, we observed that setting r = 2k has already a positive effect
on propagation strength, even when using only one hash function (i.e. with c = 1). In
Section 6 we evaluate hybrid encodings that use the sequential-counter based method
to enforce the constraints ≤k(Y

i
1 , . . . , Y

i
r ) with c = 1, 2, 3, 5 and r = 2k.

6 Experiments

In this section we compare various versions of the hybrid encoding to the sequential and
parallel-counter based encodings8 on a benchmark set produced from the Partial Max-
SAT division of the Third Max-SAT evaluation9. The benchmarks were produced (and
kindly provided to us) by the authors of [ANOR09]. Out of roughly 14,000 benchmarks
we extracted all those (1344) instances containing at least one cardinality constraint
with 1 < k < n and n > 10k.

6.1 Setting

We ran the experiments on a Linux based workstation with Intel Xeon E5430 processor
and 8GB of RAM. The encoding time was not counted, and it was negligible for all
but the sequential-counter based method (where it was still small compared to solving
time). As a SAT solver we used Minisat 2.2.0 (with preprocessing enabled).

6.2 Results – Conclusion

Our bottom-line conclusion is that with the simplest version of the hybrid encoding,
where r = 2k and c = 1 (see Section 5), we can enjoy both of the advantages of the
counter based encodings: the hybrid encoding is even faster than the sequential-counter
based encoding, and its memory consumption is very close to that of the parallel-counter
based encoding.

Another interesting observation is that the performance of hybrid encodings deteri-
orates (quite consistently) when the number of hash functions increase. This may be
explained by the fact that the number of new tuples perfectly hashed by each additional
hash function decreases exponentially faster than the increase in the encoding size.

8 As a byproduct, our experiments compare the two counter-based methods from [Sin05] among
themselves.

9 See http://www.maxsat.udl.cat/08/
index.php?disp=submitted-benchmarks.

http://www.maxsat.udl.cat/08/index.php?disp=submitted-benchmarks
http://www.maxsat.udl.cat/08/index.php?disp=submitted-benchmarks
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6.3 Results – Details

The following notation is used in all tables/plots below.

– The sequential and parallel-counter based encodings are denoted by Seq and Par
respectively.

– Hybrid encodings with r = 2k and 1,2,3, and 5 hash functions (copies), all using
the sequential-counter based encoding for the small constraints, are denoted by
HybSeq1, HybSeq2, HybSeq3, and HybSeq5 respectively.

– A hybrid encoding with r = 2k and 1 hash function, using the parallel-counter
based encoding for the small constraints, is denoted by HybPar1.

We analyze several aspects of encodings’ performance:

Table 1. Cell i, j indicates the number of instances (out of 1344) for which the encoding in the
ith row is strictly faster than the encoding in the jth column

Seq HybSeq1 HybSeq2 HybSeq3 HybSeq5 Par HybPar1
Seq 0 362 479 626 909 803 491

HybSeq1 963 0 919 1028 1158 918 723
HybSeq2 847 398 0 938 1138 803 553
HybSeq3 702 301 376 0 1060 743 464
HybSeq5 428 175 191 270 0 645 284

Par 520 403 518 589 687 0 355
HybPar 830 590 776 866 1044 965 0

Table 2. Counting for each encoding the number of instances on which it was faster than all other
encodings

Seq HybSeq1 HybSeq2 HybSeq3 HybSeq5 Par HybPar1
#fastest 173 422 179 83 19 142 326

Table 3. Means and medians of various measures for each encoding

Seq HybSeq1 HybSeq2 HybSeq3 HybSeq5 Par HybPar1
Medians

Run time (seconds) 1.54 1.09 1.31 1.48 1.72 1.68 1.13
Number of clauses 186886 107678 127632 147978 181534 88876 95360

Number of variables 116624 72544 80354 88898 103414 65042 65828
Number of decisions 1835 15128 13280 14636 16536 103340 43192
Number of conflicts 208 2470 2214 2128 2126 9992 5429

Memory consumption (MB) 39 24 26 29 34 22 23
Means

Run time (seconds) 16.57 15.08 15.68 17.34 21.76 31.76 18.9
Number of clauses 560204 218825 296379 371470 521646 144145 158424

Number of variables 391897 192718 228558 264372 336001 156930 158953
Number of decisions 42825 438311 185851 179692 181976 1991480 799956
Number of conflicts 23596 41508 37271 40083 42076 113130 58261

Memory consumption (MB) 123 52 66 77 101 42 43
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– Size of the resulting CNF formula, as reflected by the number of clauses, the num-
ber of variables, and memory consumption of the SAT solver.

– Solver run time (counting parsing and preprocessing as well).
– Propagation strength, as reflected by the number of decisions and the number of

conflicts during the run of the SAT solver.

7 Concluding Remarks and Future Work

We presented new methods to encode cardinality constraints into CNF based on per-
fect hashing. This approach, coupled with existing methods, leads to encodings with
sublinear number of clauses and auxiliary variables, and strong propagation properties.

From a practical perspective, we proposed to use the hybrid approach (with non-
perfect hashing) to boost the performance of existing counter based encodings.

We list the following directions for further research.

Optimizing the Ingredients: Several components of our encodings can be tuned or
replaced for performance optimization: the underlying encoding applied on the re-
duced problems, the values of r and c (see Sections 2 and 5), and the underlying
perfect hash family constructions. The amount of freedom is large, and we are con-
vinced that the experimental results can be further improved.

Application to More General Constraints: It is possible that similar approach, based
on perfect hash families and other related combinatorial structures like block de-
signs, can be used for efficient encoding of other Pseudo-Boolean constraints.

Acknowledgments. We thank the authors of [ANOR09] for sharing with us their
benchmark set, and Noga Alon for proposing the construction in Section 3.3. We also
thank the anonymous reviewer for pointing out [BKNW09] and [Bai11], whose results
were partially reproved in the initial version of this manuscript.
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Abstract. The research community on complex networks has developed
techniques of analysis and algorithms that can be used by the SAT com-
munity to improve our knowledge about the structure of industrial SAT
instances. It is often argued that modern SAT solvers are able to exploit
this hidden structure, without a precise definition of this notion.

In this paper, we show that most industrial SAT instances have a high
modularity that is not present in random instances. We also show that
successful techniques, like learning, (indirectly) take into account this
community structure. Our experimental study reveal that most learnt
clauses are local on one of those modules or communities.

1 Introduction

In recent years, SAT solvers efficiency solving industrial instances has undergone
a great advance, mainly motivated by the introduction of lazy data-structures,
learning mechanisms and activity-based heuristics [11,18]. This improvement is
not shown when dealing with randomly generated SAT instances. The reason for
this difference seems to be the existence of a structure in industrial instances [25].

In parallel, there have been significant advances in our understanding of com-
plex networks, a subject that has focused the attention of statistical physicists.
The introduction of these network analysis techniques could help us to under-
stand the nature of SAT instances, and could contribute to further improve the
efficiency of SAT solvers. Watts and Strogatz [24] introduce the notion of small
world, the first model of complex networks, as an alternative to the classical ran-
dom graph models. Walsh [23] analyzes the small world topology of many graphs
associated with search problems in AI. He also shows that the cost of solving
these search problems can have a heavy-tailed distribution. Gomes et al. [14,15]
propose the use of randomization and rapid restart techniques to prevent solvers
from falling on the long tail of such kinds of distributions.

The notion of structure has been addressed in previous work [14,16,13,17,3].
In [22] it is proposed a method to generate more realistic random SAT problems
based on the notions of characteristic path length and clustering coefficient. Here

� This research has been partially founded by the CICYT research projects TASSAT
(TIN2010-20967-C04-01/03) and ARINF (TIN2009-14704-C03-01).

A. Cimatti and R. Sebastiani (Eds.): SAT 2012, LNCS 7317, pp. 410–423, 2012.
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we use a distinct notion of modularity. In [6], it is shown that many SAT in-
stances can be decomposed into connected components, and how to handle them
within a SAT solver. They discuss how this component structure can be used to
improve the performance of SAT solvers. However, their experimental investiga-
tion shows that this is not enough to solve more efficiently SAT instances. The
notion of community is more general than the notion of connected components.
In particular, it allows the existence of (a few) connections between communities.
As we discus later, industrial SAT instances use to have a connected component
containing more than the 99% of the variables. Also, in [1] some techniques are
proposed to reason with multiple knowledge bases that overlap in content. In
particular, they discuss strategies to induce a partitioning of the axioms, that
will help to improve the efficiency of reasoning.

In this paper we propose the use of techniques for detecting the community
structure of SAT instances. In particular, we apply the notion of modularity [19]
to detect these communities. We also discuss how existing conflict directed clause
learning algorithms and activity-based heuristics already take advantage, indi-
rectly, of this community structure. Activity-based heuristics [18] rely on the idea
of giving higher priority to the variables that are involved in (recent) conflicts.
By focusing on a sub-space, the covered spaces tend to coalesce, and there are
more opportunities for resolution since most of the variables are common.

2 Preliminaries

Given a set of Boolean variables X = {x1, . . . , xn}, a literal is an expression of
the form xi or ¬xi. A clause c of length s is a disjunction of s literals, l1∨ . . .∨ ls.
We say that s is the size of c, noted |c|, and that x ∈ c, if c contains the literal x
or ¬x. A CNF formula or SAT instance of length t is a conjunction of t clauses,
c1 ∧ . . . ∧ ct.

An (undirected) graph is a pair (V,w) where V is a set of vertices and w :
V × V → R

+ satisfies w(x, y) = w(y, x). This definition generalizes the classical
notion of graph (V,E), where E ⊆ V × V , by taking w(x, y) = 1 if (x, y) ∈ E
and w(x, y) = 0 otherwise. The degree of a vertex x is defined as deg(x) =∑

y∈V w(x, y). A bipartite graph is a tuple (V1, V2, w) where w : V1 × V2 → R
+.

Given a SAT instance, we construct two graphs, following two models. In the
Variable Incidence Graph model (VIG, for short), vertices represent variables,
and edges represent the existence of a clause relating two variables. A clause
x1 ∨ . . . ∨ xn results into

(
n
2

)
edges, one for every pair of variables. Notice also

that there can be more than one clause relating two given variables. To preserve
this information we put a higher weight on edges connecting variables related by
more clauses. Moreover, to give the same relevance to all clauses, we ponderate
the contribution of a clause to an edge by 1/

(
n
2

)
. This way, the sum of the

weights of the edges generated by a clause is always one. In the Clause-Variable
Incidence Graph model (CVIG, for short), vertices represent either variables or
clauses, and edges represent the occurrence of a variable in a clause. Like in the
VIG model, we try to assign the same relevance to all clauses, thus every edge
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connecting a variable x with a clause C containing it has weight 1/|C|. This
way, the sum of the weights of the edges generated by a clause is also one in this
model.

Definition 1 (Variable Incidence Graph (VIG)). Given a SAT instance Γ
over the set of variables X, its variable incidence graph is a graph (X,w) with
set of vertices the set of Boolean variables, and weight function:

w(x, y) =
∑
c∈Γ

x,y∈c

1(|c|
2

)
Definition 2 (Clause-Variable Incidence Graph (CVIG)). Given a SAT
instance Γ over the set of variables X, its clause-variable incidence graph is a
bipartite graph (X, {c | c ∈ Γ}, w), with vertices the set of variables and the set
of clauses, and weight function:

w(x, c) =

{
1/|C| if x ∈ c
0 otherwise

3 Modularity in Large-Scale Graphs

To analyze the structure of a SAT instance we will use the notion of modularity
introduced by [20]. This property is defined for a graph and a specific partition of
its vertices into communities, and measures the adequacy of the partition in the
sense that most of the edges are within a community and few of them connect
vertices of distinct communities. The modularity of a graph is then the maximal
modularity for all possible partitions of its vertices. Obviously, measured this
way, the maximal modularity would be obtained putting all vertices in the same
community. To avoid this problem, Newman and Girvan define modularity as the
fraction of edges connecting vertices of the same community minus the expected
fraction of edges for a random graph with the same number of vertices and same
degree.

Definition 3 (Modularity of a Graph). Given a graph G = (V,w) and a
partition P = {P1, . . . , Pn} of its vertices, we define their modularity as

Q(G,P ) =
∑
Pi∈P

∑
x,y∈Pi

w(x, y)∑
x,y∈V

w(x, y)
−

⎛⎜⎜⎝
∑
x∈Pi

deg(x)∑
x∈V

deg(x)

⎞⎟⎟⎠
2

We call the first term of this formula the inner edges fraction, IEF for short,
and the second term the expected inner edges fraction, IEFe for short. Then,
Q = IEF− IEFe.

The (optimal) modularity of a graph is the maximal modularity, for any pos-
sible partition of its vertices: Q(G) = min{Q(G,P ) | P}.
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Since the IEF and the IEFe of a graph are both in the range [0, 1], and, for the
partition given by a single community, both have value 1, the optimal modularity
of graph will be in the range [0, 1]. In practice, Q values for networks showing a
strong community structure range from 0.3 to 0.7, higher values are rare [20].

There has not been an agreement on the definition of modularity for bipartite
graphs. Here we will use the notion proposed by [4] that extends Newman and
Girvan’s definition by restricting the random graphs used in the computation of
the IEFeto be bipartite. In this definition, communities may contain vertices of
V1 and of V2.

Definition 4 (Modularity of a Bipartite Graph). Given a graph G =
(V1, V2, w) and a partition P = {P1, . . . , Pn} of its vertices, we define their
modularity as

Q(G,P ) =
∑
Pi∈P

∑
x∈Pi∩V1
y∈Pi∩V2

w(x, y)

∑
x∈V1
y∈V2

w(x, y)
−

∑
x∈Pi∩V1

deg(x)∑
x∈V1

deg(x)
·

∑
y∈Pi∩V2

deg(y)∑
y∈V2

deg(y)

There exist a wide variety of algorithms for computing the modularity of a
graph. Moreover, there exist alternative notions and definitions of modularity
for analyzing the community structure of a network. See [12] for a survey in the
field. The decision version of modularity maximization is NP-complete [8]. All the
modularity-based algorithms proposed in the literature return an approximated
lower bound for the modularity. They include greedy methods, methods based
on simulated annealing, on spectral analysis of graphs, etc. Most of them have
a complexity that make them inadequate to study the structure of an industrial
SAT instance. There are algorithms specially designed to deal with large-scale
networks, like the greedy algorithms for modularity optimization [19,9], the label
propagation-based algorithm [21] and the method based on graph folding [7].

The first described algorithm for modularity maximization is a greedy method
of Newman [19]. This algorithm starts by assigning every vertex to a distinct
community. Then, it proceeds by joining the pair of communities that result
in a bigger increase of the modularity value. The algorithm finishes when no
community joining results in an increase of the modularity. In other words, it
is a greedy gradient-guided optimization algorithm. The algorithm may also
return a dendogram of the successive partitions found. Obviously, the obtained
partition may be a local maximum. In [9] the data structures used in this basic
algorithm are optimized, using among other data structures for sparse matrices.
The complexity of this refined algorithm is O(md logn), where d is the depth
of the dendogram (i.e. the number of joining steps), m the number of edges
and n the number of vertices. They argue that d may be approximated by logn,
assuming that the dendogram is a balanced tree, and the sizes of the communities
are similar. However, this is not true for the graphs we have analyzed, where the
sizes of the communities are not homogeneous. This algorithm has not been able
to finish, for none of our SAT instances, with a run-time limit of one hour.
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An alternative algorithm is the Label Propagation Algorithm (LPA) proposed
by [21] (see Algorithm 1). Initially, all vertices are assigned to a distinct label,
e.g., its identifier. Then, the algorithm proceeds by re-assigning to every vertex
the label that is more frequent among its neighbors. The procedure ends when
every vertex is assigned a label that is maximal among its neighbors. The order
in which the vertices update their labels in every iteration is chosen randomly. In
case of a tie between maximal labels, the winning label is also chosen randomly.
The algorithm returns the partition defined by the vertices sharing the same
label. The label propagation algorithm has a near linear complexity. However,
it has been shown experimentally that the partitions it computes have a worse
modularity than the partitions computed by the Newman’s greedy algorithm.

The Graph Folding Algorithm (GFA) proposed in [7] (see Algorithm 2) im-
proves the Label Propagation Algorithm in two directions. The idea of moving
one node from one community to another following a greedy strategy is the same,
but, instead of selecting the community where the node has more neighbors, it
selects the community where the movement would most increase the modularity.
Second, once no movement of node from community to community can increase
the modularity (we have reached a (local) modularity maximum), we allow to
merge communities. For this purpose we construct a new graph where nodes are
the communities of the old graph, and where edges are weighted with the sum
of the weights of the edges connecting both communities. Then, we apply again
the greedy algorithm to the new graph. This folding process is repeated till no
modularity increase is possible.

4 Modularity of SAT Instances

We have computed the modularity of the SAT instances used in the 2010 SAT
Race Finals (see http://baldur.iti.uka.de/sat-race-2010/). They are 100
instances grouped into 16 families. These families are also classified as cryptog-
raphy, hardware verification, software verification and mixed, according to their
application area. All instances are industrial, in the sense that their solubility
has an industrial or practical application. However, they are expected to show a
distinct nature.

We have observed that all instances of the same family have a similar mod-
ularity. Therefore, in Table 1, we only show the median of these values. We
present the modularities obtained by LPA on the graphs VIG and CVIG, and
by GFA on the graphs VIG. We have re-implemented both algorithms, and in the
case of LPA, we have developed a new algorithm adapted for bi-partite graphs.
The GFA algorithm is not yet adapted for bipartite graphs. We also study the
connected components as in [6].

We have to remark that both algorithms give a lower bound on the modularity,
hence we can take the maximum of both measures as a lower bound. Having this
in mind, we can conclude that, except for the grieu family, all families show a
clear community structure with values of Q around 0.8. In other kind of networks
values greater than 0.7 are rare, therefore the values obtained for SAT instances
can be considered as exceptionally high.
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Algorithm 1: Label Propagation Algorithm (LPA). The function
most freq label returns the label that is most frequent among a set of ver-
tices. In case of tie, it randomly chooses one of the maximal labels.

1 function most freq label(v, N)
2 SL :={L[v] | v ∈ N};
3 for l ∈ SL do
4 freq[l] :=

∑
v′∈N

l=L[v′]
w(v, v′)

5 Max := {l ∈ SL | freq[l] = max{freq[l] | l ∈ SL}};
6 return random choose(Max)

Input: Graph G = (X,w)
Output: Label L

7 for x ∈ X do L[x] := x; freq[x] := 0;;
8 repeat
9 ord := shuffle(X);

10 changes := false;
11 for i ∈ X do
12 (l, f) := most freq label(i,neighbors(i));
13 changes := changes ∨ f > freq[i];
14 L[i] := l;
15 freq[i] := f

16 until ¬changes;

As one could expect, we obtain better values with GFA than with the LPA
algorithm. The reason for this better performance is that, whereas in the LPA we
use the most frequent label among neighbors (in order to assign a new community
to a node), in the GFA we select the label leading to a bigger increase in the
modularity. The latter is clearly a better strategy for obtaining a bigger resulting
modularity. Moreover, in the GFA a further step is added where communities
can be merged, when no movement of a single node from one community to
another leads to a modularity increase.

If we compare the modularity values for the VIG model (obtained with the
LPA) with the same values for the CVIG model, we can conclude that, in general,
these values are higher for the CVIG model. It could be concluded that the
loss of information, during the projection of the bipartite CVIG graph into the
VIG graph, may destroy part of the modular structure. However, this is not
completely true. Suppose that the instance has no modular structure at all,
but all clauses are binary. We can construct a partition as follows: put every
variable into a distinct community, and every clause into the same community
of one of its variables. Using this partition, half of the edges will be internal, i.e.
IEF = 0.5, IEFe will be nearly zero, and Q ≈ 0.5. Therefore, we have to take
into account that using Barber’s modularity definition for bipartite graphs, as
we do, if vertex degrees are small, modularity can be quite big compared with
Newman’s modularity.
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Algorithm 2: Graph Folding algorithm (GFA)

1 function OneLevel(GraphG = (X,w)) : Label L
2 foreach i ∈ X do L[i] := i repeat
3 changes := false;
4 foreach i ∈ X do
5 bestinc := 0;
6 foreach c ∈ {c | ∃j.w(i, j) �= 0 ∧ L[j] = c} do
7 inc :=∑

L(j)=c w(i, j) − arity(i) ·
∑

L[j]=c arity(j)/
∑

j∈X arity(j);

8 if inc > bestinc then
9 L[i] := c; bestinc := inc; changes := true;

10 until ¬changes;
11 return L;

12 function Fold(Graph G1, Label L) : Graph G2

13 X2 = {c | ∀i, j ∈ c.L[i] = L[j];
14 w2(c1, c2) =

∑
i∈c1,j∈c2

w2(i, j);

15 return G2 = (X2, w2);

Input: Graph G = (X,w)
Output: Label L1

16 foreach i ∈ X do L1[i] := i;
17 L2 := OneLevel(G);
18 while Modularity(G,L1) < Modularity(G,L2) do
19 L1 := L1 ◦ L2;
20 G = Fold(G,L2);
21 L2 := OneLevel(G);

We also report results on the number of communities (|P |) and the fraction
of vertices belonging to the largest community (larg) expressed as a percentage.
If all communities have a similar size, then larg ≈ 1/|P |. In some cases, like
palacios and mizh, we have |P | 5 1/larg. This means that the community
structure corresponds to a big (or few) big central communities surrounded by
a multitude of small communities. In some cases, the sizes of communities seem
to follow a power-law distribution (this is something we would have to check).
The existence of a big community implies an expected inner fraction close to
one, hence a modularity close to zero.

In both algorithms, in every iteration we have to visit all neighbors of every
node. Therefore, the cost of an iteration is linear in the number of edges of the
graph. We observe although than GFA usually needs more iterations than LPA.
This is because, after folding the graph, we can do further iterations, and even
several graph foldings.

We have also studied the connected components of these instances as in [6]. As
we can see, almost all instances have a single connected component, or almost
all variables are included in the same one. Hence the rest of connected com-
ponents contain just a few variables. Therefore, the modularity gives us much
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Table 1. Modularity of 2010 SAT Race instances, using LPA and GFA. Q stands for
modularity, |P | for number of communities, larg. for fraction of vertices in the largest
community, and iter. for number of iterations of the algorithm.

Family
Variable IG Clause-Variable IG Connect.

(#instanc.)
LPA GFA LPA Comp.

Q |P | larg. iter. Q |P | larg. iter. Q |P | larg. iter. |P | larg.

cr
ip
to
. desgen(4) 0.88 532 0.8 36 0.95 97 2 37 0.75 3639 1 25 1 100

md5gen(3) 0.61 7176 0.1 16 0.88 38 7 40 0.78 7904 0.1 42 1 100
mizh(8) 0.00 33 99 6 0.74 30 9 33 0.67 5189 31 43 1 100

h
ar
d
.
ve
r. ibm(4) 0.81 3017 0.6 9 0.95 723 4 32 0.77 19743 0.2 140 70 99

manolios(16) 0.30 66 81 9 0.89 37 9 81 0.76 6080 1 26 1 100
velev (10) 0.47 8 68 9 0.69 12 30 24 0.30 1476 77 31 1 100

m
ix
ed

anbulagan(8) 0.55 30902 0.1 11 0.91 90 2 43 0.72 46689 0.6 26 1 100
bioinf(6) 0.61 87 44 3 0.67 60 17 22 0.64 94027 15 10 1 100
diagnosis(4) 0.61 20279 0.7 15 0.95 68 3 43 0.65 85928 0.1 42 1 100
grieu(3) 0 1 100 2 0.23 9 14 11 0 1 100 14 1 100
jarvisalo(1) 0.57 260 5 8 0.76 19 9 26 0.71 336 1 11 1 100
palacios(3) 0.14 1864 96 58 0.93 1802 6 13 0.76 2899 0.4 35 1 100

so
ft
.
ve
r. babic(2) 0.68 34033 8 54 0.90 6944 10 141 0.73 59743 4 53 41 99

bitverif(5) 0.48 3 57 4 0.87 24 6 29 0.76 33276 0.4 8 1 100
fuhs(4) 0.02 18 99 43 0.81 43 7 30 0.67 12617 0.8 28 1 100
nec(17) 0.07 107 96 31 0.93 65 14 124 0.79 23826 0.8 114 1 100
post(2) 0.36 3·106 53 54 0.81 3·106 9 262 0.72 3·106 6 49 224 99

more information about the structure of the formula. Notice that a connected
component can be structured into several communities.

In Table 2 we show the results for the modularity computed after prepro-
cessing the formula with the Satelite preprocessor [10]. The modularities are
computed using the GFA algorithm. Satelite is an algorithm that applies vari-
able elimination techniques. We can see that these transformations almost does
not affect to the modularity of the formula. However, it eliminates almost all the
small unconnected components of the formula.

5 Modularity of the Learnt Clauses

Most modern SAT solvers, based on variants of the DPLL schema, transform
the formula during the proof or the satisfying assignment search. Therefore, the
natural question is: even if the original formula shows a community structure,
could it be the case that this structure is quickly destroyed during the search
process? Moreover, most SAT solvers also incorporate learning techniques that
introduce new learnt clauses to the original formula. Therefore, a second question
is: how these new clauses affect to the community structure of the formula?
Finally, even if the value of the modularity is not altered, it can be the case that
the communities are changed.
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Table 2. Modularity (computed with GFA) after and before preprocessing the formula
with the Satelite preprocessor [10]

Orig. Preprocessed Formula
Family Form. Modularity Connect.

Comp.
Q Q |P | larg. |P | larg.

cripto. desgen (4) 0.951 0.929 81 3.1 1 100
md5gen (3) 0.884 0.884 18 8.5 1 100
mizh (8) 0.741 0.741 18 9.5 1 100

hard. ver. ibm (4) 0.950 0.905 26 6.1 1 100
manolios (16) 0.890 0.800 16 14.9 1 100
velev (10) 0.689 0.687 6 30.3 1 100

mixed anbulagan (8) 0.909 0.913 47 5.1 1 100
bioinf (6) 0.673 0.657 25 11.1 2 99.9
diagnosis (4) 0.952 0.950 65 3.6 1 100
grieu (3) 0.235 0.235 9 14.3 1 100
jarvisalo (1) 0.758 0.722 11 13.1 1 100
palacios (3) 0.928 0.848 17 10.76 1 100

soft. ver. babic (2) 0.901 0.875 23 9.7 1 100
bitverif (5) 0.875 0.833 19 7.3 1 100
fuhs (4) 0.805 0.743 32 9.6 1 100
nec (17) 0.929 0.879 37 10.3 1 100

We have conducted a series of experiments to answer to the previous ques-
tions. We use the picosat SAT solver [5] (version 846), since it incorporates a
conflict directed clause learning algorithm, activity-based heuristics, and restart-
ing strategies.

In Table 3 we show the values of the original modularity compared with
the modularity obtained after adding the learnt clauses to the original formula.
We can observe that the modularity weakly decreases with the learnt clauses,
but it is still meaningful. Therefore, learning does not completely destroy the
organization of the formula into weakly connected communities.

The question now is, even if the modularity does not decreases very much,
could it be the case that the communities have changed? In other words, there
are still communities, but are they distinct communities?

If a considerable part of learning is performed locally inside one or a few
communities, then the communities will not change. We have conducted another
experiment to see if this is true. For the VIG model, we use the original formula to
get a partition of the vertices, i.e. of the variables, into communities. Then, we use
modularity as a quality measure to see how good is the same partition, applied
to the graph obtained from the set of learnt clauses. Notice that modularity is a
function of two parameters, in this case: the graph is the graph containing the
learnt clauses, and the partition is computed for the formula without the learnt
clauses. Since both graphs (the original formula and the learnt clauses) have the
same set of vertices (the set of variables), this can be done directly.
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Table 3. Modularity (computed with GFA) of the original formula, and of the original
formula with learnt clauses included

Orig. Orig. + Learnt Formula
Family Form. Modularity

Q Q |P | larg.

cripto. desgen (2) 0.951 0.561 53 13.0
md5gen (3) 0.884 0.838 19 8.0
mizh (1) 0.741 0.705 28 11.4

hard. ver. ibm (3) 0.950 0.912 752 6.7
manolios (14) 0.890 0.776 31 11.2
velev (1) 0.689 0.558 6 30.1

mixed anbulagan (4) 0.909 0.876 84 2.6
bioinf (5) 0.673 0.287 32 58.7
grieu (3) 0.235 0.085 6 35.0
palacios (2) 0.928 0.851 2289 7.4

soft. ver. babic (2) 0.901 0.904 6942 10.7
fuhs (1) 0.805 0.670 24 7.6
nec (15) 0.929 0.936 62 7.3

Table 4. Modularity (computed by LPA) of the formula containing the first 100 learnt
clauses, and all learnt clauses. In the first column we show the modularity of the original
formula.

VIG CVIG
Family orig. first 100 all orig first 100 all

desgen (1) 0.89 0.74 0.08 0.77 0.28 0.09
md5gen (1) 0.61 0.74 0.02 0.78 0.96 0.02
ibm (2) 0.84 0.60 0.47 0.81 0.58 0.29
manolios (10) 0.21 0.04 0.10 0.76 0.11 0.09
anbulagan (2) 0.56 0.16 0.01 0.87 0.10 0.04
bioinf (4) 0.62 0.46 0.06 0.68 0.69 0.15
grieu (1) 0.00 0.00 0.00 0.00 0.00 0.00
babic (2) 0.68 0.36 0.36 0.71 0.33 0.33
fuhs (1) 0.66 0.59 0.14 0.71 0.78 0.07
nec (10) 0.12 0.01 0.12 0.78 0.49 0.24

For the CVIG model we must take into account that the graph contains
variables and clauses as vertices. Therefore, the procedure is more complicated.
We use the original formula to get a partition. We remove from this partition
all clauses, leaving the variables. Then, we construct the CVIG graph for the
set of learnt clauses. The partition classifies the variables of this second graph
into communities, but not the clauses. To do this, we assign to each clause the
community of variables where it has more of its variables included. In other
words, given the labels of the variables we apply a single iteration of the label
propagation algorithm to find the labels of the clauses.
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Table 5. Modularity (computed by LPA) of the learnt clauses that have been con-
tributed to prove the unsatisfiability of the original formula. Like in Table 4 we show
results for the first 100 learnt clauses, and for all clauses. We only show results for
unsatisfiable formulas.

VIG CVIG
Family orig. first 100 all orig. first 100 all

md5gen (1) 0.61 0.74 0.02 0.78 0.96 0.02
ibm (2) 0.84 0.50 0.43 0.81 0.58 0.42
anbulagan (1) 0.55 0.03 0.00 0.87 0.13 0.05
manolios (9) 0.20 0.07 0.10 0.76 0.27 0.15
nec (10) 0.12 0.05 0.05 0.78 0.30 0.22

We want to see how fast is the community structure degraded along the exe-
cution process of a SAT solver. Therefore, we have repeated the experiment for
just the first 100 learnt clauses and for all the learnt clauses. We also want to
know the influence of the quality of the learnt clauses. Therefore, we also repeat
the experiment for all the learnt clauses (Table 4), and only using the clauses
that participate in the proof of unsatisfiability (Table 5). Notice that Table 5
contains fewer entries than Table 4 because we can only consider unsatisfiable in-
stances. Notice also that picosat is not able to solve all 2010 SAT Race instances,
therefore Tables 4 and 5 contain fewer instances than Table 1. The analysis of
the tables shows us that the CVIG model gives better results for the original
formula and the first 100 learnt clauses, but equivalent results if we consider all
learnt clauses. There are not significant differences if we use all learnt clauses, or
just the clauses that participate in the refutation. Finally, there is a drop-off in
the modularity (in the quality of the original partition) as we incorporate more
learnt clauses. This means that, if we use explicitly the community structure to
improve the efficiency of a SAT solver, to overcome this problem, we would have
to recompute the partition (after some number of variable assignments or after
a unit clause is learnt) to adjust it to the modified formula, like in [6].

It is worth to remark that, for the experiments in Table 4, the modularity for
the VIG and the CVIG models, and the first 100 learnt clauses, is respectively
0.72 and 0.59. This means that, in the VIG model, around 72% of the first 100
learnt clauses could also be learnt working locally in each one of the communities.
However, the percentage of learnt clauses that connect distinct communities is
very significant.

6 Modularity of Random Formulas

We have also conducted a study of the modularity of 100 random 3-CNF SAT
instances of 104 variables for different clause variable ratios (α). For this experi-
ment we used the GFA on the VIG model. Table 6 shows the results. As we can
see, the modularity of random instances is only significant for very low variable
ratios, i.e., on the leftist SAT easy side. This is due to the presence of a large
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Table 6. Modularity (computed with GFA) of random formulas varying the clause
variable ratio (α), and for n = 104 variables

n α Q |P | larg. iter

104 1 0.486 545 3.8 54
104 1.5 0.353 146 5.1 52
104 2 0.280 53 6.8 51
104 3 0.217 14 15.5 64
104 4 0.178 11 14.8 54
104 4.25 0.170 11 14.6 53
104 4.5 0.163 11 14.7 53
104 5 0.152 11 14.3 51
104 6 0.133 12 13.9 53
104 7 0.120 10 15.0 56
104 8 0.138 6 25.0 50
104 9 0.130 6 24.3 49
104 10 0.123 6 24.4 47
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Table 7. Modularity (computed with GFA) of random formulas at the peak transition
region (clause variable ratio α=4.25), varying the number of variables (n)

n α Q |P | larg. iter

102 4.25 0.177 6 14.5 11
103 4.25 0.187 10.5 11.4 35
104 4.25 0.170 11 12.2 53
105 4.25 0.151 14 6.8 102
106 4.25 0.151 14 5.7 167

quantity of very small communities. Notice, that as α increases, the variables get
more connected but without following any particular structure, and the number
of communities highly decreases. Even for low values of α, the modularity is not
as high as for industrial instances, confirming their distinct nature. We do not
observe any abrupt change in the phase transition point.

As a second experiment with random formulas, we wanted to investigate the
modularity at the peak transition region for an increasing number of variables.
Table 7 shows the results. As we can see, the modularity is very low and it tends
to slightly decrease as the number of variables increases, and seems to tend to a
particular value (0.15 for the phase transition point).

Finally, as with industrial instances, we wanted to evaluate the impact on
modularity of the preprocessing with Satelite [10], and the effect of adding all
the learnt clauses needed to solve the formula by Picosat [5]. Table 8 shows
the results. The preprocessing has almost no impact on the modularity of the
formula, except for α=1, because the preprocessing already solves the formula.
With respect to the addition of learnt clauses, it is interesting to observe that
in the peak transition region α = 4.25, we get the lowest modularity. A possible
explanation is that at the peak region we find the hardest instances, and in
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Table 8. Modularity (computed with GFA) of random formulas with 300 variables
varying the clause variable ratio after and before preprocessing the formula with the
Satelite preprocessor [10], and with all learnt clauses included

n α Orig. Preproc. Learnt Connect.
Comp.

300 1 0.459 0 0.453 1
300 2 0.291 0.235 0.291 1
300 4 0.190 0.188 0.073 1
300 4.25 0.183 0.182 0.041 1
300 4.5 0.177 0.177 0.045 1
300 6 0.150 0.150 0.120 1
300 10 0.112 0.112 0.171 1  0
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order to solve them the learnt clauses added by the solver tend to connect more
communities. In [2] we observed that random SAT instances have not a scale-
free structure1, but that the addition of learnt clauses makes the formula clearly
scale-free. On the contrary, we observe here that modularity tends to decrease
with learning.

7 Conclusions

The research community on complex networks has developed techniques of anal-
ysis and algorithms that can be used by the SAT community to improve our
knowledge about the structure of industrial SAT instances, and, as result, to
improve the efficiency of SAT solvers.

In this paper we address the first systematic study of the community structure
of SAT instances, finding a clear evidence of such structure in most analyzed
instances. In fact, some features, like Moskewicz’s activity-based heuristics, were
already designed thinking on the existence of this kind of structure. Here we go a
step further, and we propose the use of an algorithm that is able to compute the
communities of a SAT instance. It verifies the assumption about the existence
of this community structure. The algorithm could also be used directly by SAT
solvers to focus their search.

References

1. Amir, E., McIlraith, S.A.: Partition-based logical reasoning for first-order and
propositional theories. Artif. Intell. 162(1-2), 49–88 (2005)
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Abstract. In the random k-SAT model, probabilistic calculations are
often limited to the first and second moments, thus giving an idea of
the average behavior, whereas what happens with high probability can
significantly differ from this average behavior. In these conditions, we
believe that the handiest way to understand what really happens in ran-
dom k-SAT is experimenting. Experimental evidence may then give some
hints hopefully leading to fruitful calculations.

Also, when you design a solver, you may want to test it on real in-
stances before you possibly prove some of its nice properties.

However doing experiments can also be tedious, because you must
generate random instances, then measure the properties you want to
test and eventually you would even like to make your results accessible
through a suitable graph. All this implies lots of repetitive tasks, and in
order to automate them we developed a GUI-software called SATLab.

1 Introduction

Random k-SAT has been widely studied for the following reasons:

1. it exhibits a phase transition of satisfiability at a given ratio C between
the number of clauses and the number of variables; it was experimentally
observed that this transition would occur at a ratio C � 4.25 for the standard
3-SAT model, in which all clauses are drawn uniformly and independently
(see [16]);

2. it is assumed to be difficult even on average, especially in the neighborhood
of the above phase transition, which makes this transition particularly inter-
esting (see figure 1).

There have been numerous attempts to locate precisely the observed phase tran-
sition. Statistical physicists gave very tight bounds on the location of the thresh-
old [15,13], however rigorous mathematical bounds are still far from it [1,9,10,7].
Meanwhile some light has been shed onto the structure of the solutions space
and a clustering phenomenon has been investigated [17]. The existence of an
exponential number of solutions clusters has been established under some pa-
rameters [2,14]. Not unconnected with that phenomenon is the question whether
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non-trivial cores of solutions exist [12]. A core is a set of variables constraining
each other; all solutions in a given cluster have the same core.

Handling all these complex properties is a mathematical challenge; therefore
nurtering intuition through experiments seems to be essential in their under-
standing. Another area where experiments on random instances are needed is
the design of new solvers. To these ends we introduce SATLab.

2 SATLab’s Features

2.1 Installing SATLab

SATLab was written in Perl/Tk and plots the graphs through gnuplot. SATLab
has a dedicated website where you can download it and browse through its
documentation: www.pratum.org/satlab.

2.2 What SATLab Does

SATLab draws some random formulas in a given random model, finds some so-
lutions with a SAT-solver, analyzes all of these raw data to infer properties you
want to investigate and finally makes them available on a graph. For example
you can see on figure 1 the well-known complexity peak in random 3-SAT for
various complete solvers.

On this example, what we call first variable is C (the ratio between clauses and
variables), whereas Solver is the second variable. The first and second variables
may be chosen at the user’s discretion, enabling numerous possibilities of graphs.
You can also notice that the y-axis was chosen to be logarithmic, which is an
option for both axes. You can also tune the number of solvings you want to be
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Fig. 1. Algorithmic time complexity of random 3-SAT with respect to C
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averaged over at every point of the graph. The main numeric parameters are N
(the number of variables), C (the ratio number of clauses / number of variables),
K (the clause width) and Seed (a random seed in order to generate different
formulas).

Moreover the GUI is designed in order to eliminate as far as possible the
irrelevant parameters (depending on the requested observation).

2.3 SATLab’s Universe

Besides the aforementioned numeric parameters, SATLab can handle various
kinds of formulas, solvers and properties:

Models of Formulas: standard SAT(where clauses are drawn uniformly and
independently), planted SAT(with a hidden solution), standard NAE-SAT(not
all equal sat, i.e. where each clause is drawn together with its opposite
clause), planted NAE-SAT, and many other planted models described in de-
tail on the website.

Observables: measures on single assignments (such as frozen variables, cores,
the surface of true literals occurrences, the fraction of uniquely satisfied
clauses, the number of clauses a variable flip would break/make etc.), mea-
sures on pairs of assignments (such as Hamming distances, independence of
some of the former quantities), time complexity, a formula generator etc.

Assignments: solutions or random assignments (the latters can be used as
benchmarks for the formers).

Range: the range of variables to consider: either all variables, or variables with
a given number of occurrences, or fixed variables etc.

Solvers: various kinds of solvers are embedded in SATLab: random walk solvers
(UBCSAT [19]), the statistical physics solver SP [5] and some resolution based
solvers (Dew_Satz [3], KCNFS [6] and MiniSat [8]).

SATLab was written in a modular way in object-oriented Perl, so this list may
be extended by adding corresponding Perl modules to it.

3 Case Study: The Structure of the Solutions Space

Figure 2 is the outcome of an experiment designed to check the clustering phe-
nomenon of solutions. We asked WalkSAT [18] to find 100 solutions of a random
instance of 3-SAT at the ratio C = 4.2 with N = 1000 variables, and to plot an
histogram of the Hamming similarities between every couple of solutions. What
we mean by Hamming similarity between two assignments is just the proportion
of variables assigned the same value in both assignments.

You can see two typical distances, which corroborates the presence of clus-
ters. For high values of N there is only one typical distance, maybe because the
number of clusters grows faster than their size, so that 2 random solutions will
almost surely belong to different clusters. What is interesting though, is the fact
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Fig. 2. Such Hamming distances between solutions corroborate the clustering phe-
nomenon

that these solutions of 3-SAT are correlated with respect to their Hamming dis-
tances. Namely their Hamming distances are not centered around 50%, contrary
to solutions of random 3-NAE-SAT. This non-independence between solutions in
3-SAT may explain why the second moment method fails on it (see also [1]).

An explanation of the correlation between solutions might be the presence of
frozen variables (a variable is called frozen when it takes the same value in every
solution). So we asked SATLab to find 100 solutions and to report the number
of variables assigned 1 in a given proportion of solutions: this is figure 3. Frozen
variables are variables assigned 1 in 100% or in 0% of the solutions. You can see
that just below the satisfiability threshold, some variables tend to be frozen or
quasi-frozen.

[2] showed that for large values of k, in a region just below the satisfiability
threshold, almost all solutions of a random k-SAT instance have a non-trivial
core (a core is a set of variables constraining each other; the core is trivial when
this set is empty). On the contrary, experiments conducted by [11] tend to show
that in random 3-SAT almost all solutions have a trivial core. With SATLab we
could observe (cf. figure 4) that in 3-SAT at C = 4.2:

1. most solutions seem indeed to have a trivial core;
2. non-trivial cores seem to exist nevertheless, insofar as formulas typically seem

to have a small number of solutions whose cores are made up of around 80%
of the variables.

The question of the existence of the non-trivial cores is important, because if
they were proved to exist just below the satisfiability threshold, then the bounds
on their existence contained in [12,4] would become upper bounds on the satis-
fiability threshold.
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Abstract. A certificate of (un)satisfiability for a quantified Boolean for-
mula (QBF) represents sets of assignments to the variables, which act as
witnesses for its truth value. Certificates are highly requested for practi-
cal applications of QBF like formal verification and model checking. We
present an integrated set of tools realizing resolution-based certificate
extraction for QBF in prenex conjunctive normal form. Starting from
resolution proofs produced by the solver DepQBF, we describe the work-
flow consisting of proof checking, certificate extraction, and certificate
checking. We implemented the steps of that workflow in stand-alone tools
and carried out comprehensive experiments. Our results demonstrate the
practical applicability of resolution-based certificate extraction.

1 Introduction

Over the last 10 years, several approaches and tools supporting the generation
of certificates for quantified Boolean formulae (QBF) have been presented. An
overview of the status quo of 2009 is given in [7]. Initially, the main goal was
to use certificates for validating the results of QBF solvers instead of relying on
majority votes (only). Therefore, independent verifiers to check the output of a
QBF solver have been developed. Such solver outputs are either clause/cube res-
olution proofs, or functions representing variable assignments. In case of so-called
Skolem/Herbrand functions as output, we obtain QBF (counter-)models [3] and
we gain further information on the solution of a solved problem, e.g., the path
to a bad state in case of model checking. Their extraction, however, is not di-
rectly applicable if the successful variant of DPLL style procedures for QBF is
employed. Most of these tools and solvers are not maintained anymore.

More recently, the circuit solver CirQit [5] has been extended to produce Q-
refutations for true and false QBFs. Due to the circuit representation, solving the
negated formula does not involve any expensive transformations. Furthermore,
(partial) solution strategies can be extracted. However, CirQit cannot exploit its
full strength on formulae in prenex conjunctive normal form (PCNF).

� This work was partially funded by the Vienna Science and Technology Fund
(WWTF) under grant ICT10-018 and by the Austrian Science Fund (FWF) un-
der NFN Grant S11408-N23 (RiSE).
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Fig. 1. Certification workflow

Based on the resolution generation tools discussed above, recently the pro-
totype ResQu [2], which implements an approach to extract Skolem/Herbrand
functions from resolution proofs, was presented. Given a resolution proof for true
or false QBF, such functions can be extracted in linear time.

In this paper, we present a framework for generating QBF certificates from
resolution proofs obtained by the state-of-the-art solver DepQBF [6]. We further
performed an empirical study on the applicability of resolution-based extraction
of QBF certificates and discuss strengths and limitations of this approach.

2 The Certification Framework at a Glance

We provide a complete and solver independent framework to certify and validate
the results of the state-of-the-art QBF solver DepQBF [6]. The workflow is shown
in Fig. 1. The framework consists of loosely coupled stand-alone tools, which
support both proof extraction and checking (QRPcheck) as well as certificate
extraction and validation (QRPcert, CertCheck and PicoSAT).

Trace Extraction. We instrumented DepQBF to output traces in our novel, text-
based QRP format. A trace represents the set of all resolution sequences involved
in generating learnt constraints in a search-based QBF solver. Our approach of
tracing is similar to [8], except that each single resolution step has exactly two
antecedents. This way, exponential worst-case behaviour during reconstruction
of resolvents from unordered lists of antecedents is avoided [4]. Alternatively, the
QIR format [1] used in [5] allows multiple antecedents but predefines the ordering
in which resolvents should be reconstructed. As far as resolution is concerned,
QRP proofs can be checked in deterministic log space, a desirable property of
proof formats suggested in [4].

Proof Extraction and Checking. QRPcheck is a proof checker for resolution-based
traces and proofs of (un)satisfiability in QRP format. Starting with the empty
constraint, QRPcheck extracts the proof from a given trace on-the-fly while
checking each proof step incrementally. Parts irrelevant for deriving the empty
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constraint are omitted. In case of a proof of satisfiability, QRPcheck allows to
check that initial (input) cubes, generated during constraint learning, can be
extended to satisfy the matrix. For this propositional check we are using the
SAT solver PicoSAT.1 In order to handle very large traces and proofs we map
the input file to memory using virtual memory mechanisms (“mmap”).

Certificate Extraction. QRPcert is a tool for extracting Skolem/Herbrand
function-based QBF certificates from resolution proofs in QRP format. It imple-
ments the algorithm of [2] in reverse topological order. Hence, irrelevant parts
are omitted as in proof extraction using QRPcheck. Extracted certificates are
represented as AIGs2, which are simplified by common basic simplification tech-
niques, including structural hashing and constant propagation.

SAT-Based Certificate Checking. The tool CertCheck transforms the given in-
put formula into an AIG and merges the result with the certificate by substi-
tuting each existentially (universally) quantified input variable with its Skolem
(Herbrand) function. The resulting AIG is first translated into CNF via Tseitin
transformation and then checked for being tautological (unsatisfiable). We val-
idate the correctness of the certificate by checking the resulting CNF with the
SAT solver PicoSAT.

3 Experiments

We applied our framework on the benchmark sets of the QBF competitions 2008
and 2010 consisting of 3326 and 568 formulas, respectively3. We considered only
those 1229 and 362 formulas solved by DepQBF within 900 seconds. Instead of
advanced dependency schemes, we used the orderings of quantifier prefixes in
DepQBF. All experiments4 were performed on 2.83 GHz Intel Core 2 Quad ma-
chines with 8 GB of memory running Ubuntu 9.04. Time and memory limits for
the whole certification workflow were set to 1800 seconds and 7 GB, respectively.

Out of 362 solved instances of the QBFEVAL’10 benchmark set, our frame-
work was able to check 348 proofs and extract 337 certificates, of which 275 were
validated successfully. DepQBF required almost 5000 seconds for solving and
tracing the 275 instances that were validated by PicoSAT, whereas the certifica-
tion of those instances needed about 5600 seconds. On 14 instances, QRPcheck
ran out of memory, as the file size of the traces produced by DepQBF were 16
GB on average with a maximum of 27 GB. QRPcert ran out of memory on 11
proofs with an average file size of 3.6 GB and a maximum of 5.9 GB.

The largest number of instances (62) were lost during the validation process.
PicoSAT timed out on 17 instances and ran out of memory on 45 instances. From
62 instances that were not validated by PicoSAT, 51 instances are part of the

1 http://www.fmv.jku.at/picosat
2 ASCII AIGER format: http://fmv.jku.at/aiger/FORMAT.aiger
3 Available at http://www.qbflib.org/index_eval.php
4 Log files and binaries are available from http://fmv.jku.at/cdepqbf/.

http://www.fmv.jku.at/picosat
http://fmv.jku.at/aiger/FORMAT.aiger
http://www.qbflib.org/index_eval.php
http://fmv.jku.at/cdepqbf/
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’mqm’ family, which consists of a total of 128 formulae with 70 instances being
unsatisfiable and 58 satisfiable. PicoSAT was able to validate all 70 unsatisfiable
instances, but did not succeed in validating even one satisfiable instance. This is
due to the fact that proofs of satisfiability tend to grow much larger than proofs
of unsatisfiability mostly because of the size of the initial cubes. For example,
the proofs of the 51 instances that were not validated by PicoSAT have 40000
intial cubes on average, where each cube has an average size of 970 literals.

We evaluated the runtime of each component of the framework w.r.t. the 275
certified instances. First, we compared the time required by DepQBF for solving
and tracing to the aggregated time needed by QRPcheck, QRPcert, CertCheck,
and PicoSAT for certification. Figure 2a shows that the whole certification pro-
cess requires marginally more time than DepQBF on average. It also shows that
only a few instances are responsible for the certification process being slower in
total runtime than DepQBF. In fact, three instances require more than 59% of
the total certification runtime, in contrast to 34% of total solving time.

We further compared the runtime of each component of the framework, which
is depicted in Fig. 2b. More than 77% of the certification time is required for
validating the certificates with PicoSAT, where three instances require over 58%
of the total certification time. Extracting and checking proofs with QRPcheck
requires about 20% of the total certification time, which typically involves heavy
I/O operations in case proof extraction is enabled. Considering all checked in-
stances, disabling proof extraction saves about 54% of the runtime of QRPcheck.
The extraction of certificates and the CNF conversion takes a small fraction of
the total certification time, which is approximately 2% and 1%, respectively.

Table 1 summarizes the results. Certification heavily depends on whether
an instance is satisfiable or unsatisfiable, especially for certificate validation. On
average over 91% of the solved unsatisfiable instances were certified in about 61%
of the solving time. For 74% of the solved satisfiable instances, the certification
took over four times the solving time.

Certificate validation requires most of the time. Particularly vaildating satis-
fiable instances is time-consuming. Given the QBFEVAL’10 set, traces of sat-
isfiable instances are on average 2-3 times larger than traces of unsatisfiable
instances and further contain in the worst case 13 million steps with 1.4 billion
literals and 18 million steps with 1.3 billion literals, respectively. The difference
between proofs of satisfiability and unsatisfiability is even larger by a factor of
eight on average.

An interesting property of the generated AIG certificates is the number of
and-gates involved, where certificates of satisfiability are on average (and in the
median) over 100 times larger than certificates of unsatisfiability. The maximum
number of and-gates generated for AIG certificates of satisfiability and unsatis-
fiability are 147 million resp. 10 million and-gates. Compared to certificates of
unsatisfiability, CNFs generated for validating certificates of satisfiability are on
average up to 70 times larger and contain in the worst-case over 10 times more
clauses with a maximum of 440 million clauses.On certain instances, the file size
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Fig. 2. Runtime comparison, all instances with solving time ≥0.2s considered

of traces were enourmous with almost 52 GB and 27 GB in the worst-case in the
QBFEVAL’08 and QBFEVAL’10 benchmark sets, respectively.

Finally, we investigated the 14 instances (4 sat., 10 unsat.) of the QBFE-
VAL’10 benchmark set that were not checked by QRPcheck due to given memory
constraints. The corresponding traces had an average file size of 16 GB (with 27
GB as a maximum) and 17 million steps with 3.3 billion literals on average. For
these 14 instances, we lifted the previous memory limit of 7 GB and rerun the
experiments on a machine with 96 GB and a time limit of 3600 seconds. As a
consequence, we were able to certify 12 out of 14 instances. On two instances,
PicoSAT timed out while validating CNFs with 3 and 30 million clauses, respec-
tively. Certification of the other 12 instances took less than 4600 seconds in total,
whereas DepQBF required over 7700 seconds for solving and tracing altogether.

Average (median) time for the whole workflow on all 14 instances was 1412
(1014) seconds. The size of extracted proofs ranges from 85% to 0.0001% relative
to trace size, with a maximum of 14.6 GB and a minimum of 13 kB. Average
(median) number of steps was 18 (10) million in traces, and 4 (0.1) million in
extracted proofs. The ratio of proof size over trace size in the number of steps for
each of the 14 instances was 0.23 on average. As an extreme case, the certified sat-
isfiable instance blocks enc 2 b3 ser--opt-9 shuffled.qdimacs resulted in a
trace of more than 50 million steps and 18 GB file size for which a proof of only
38 (!) steps and 47 kB file size was extracted. Average (median) memory usage
for the whole workflow was 19 (18) GB with a maximum of 28 GB.

4 Discussion

In this paper, we presented the first framework for complete and robust certifica-
tion of QBF using the state-of-the-art QBF solver DepQBF. We presented solver
independent tools for proof extraction, proof checking, certificate extraction and
certificate validation. We further performed an extensive evaluation on recent
benchmark sets, which shows that our framework is able to extract certificates
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Table 1. Solved (sv), checked (ch), extracted (ex), validated (va) inst., runtimes

Instances Total Time [s]
sv ch ex va DepQBF QRPcheck QRPcert PicoSAT

2008
sat 494 476 464 397 3502.9 911.6 95.3 13874.1

unsat 735 690 685 673 9863.7 2938.1 831.8 2639.8
total 1229 1166 1149 1070 13366.6 3849.7 927.1 16513.9

2010
sat 157 153 143 86 701.8 80.1 30.9 3247.0

unsat 205 195 194 189 4241.9 1011.5 86.8 1090.0
total 362 348 337 275 4943.7 1091.7 117.6 4337.0

for over 90% of solved instances. Further, we were able to validate over 80% of
extracted certificates, which all were proved correct.

In future work, we consider to extend DepQBF to maintain proofs internally
in order to extract certificates directly from the solver. We also plan to extend
QRPcert to support advanced dependency schemes as applied in DepQBF. Fur-
ther, we want to improve the process of certificate validation as it is considered
to be a bottleneck in the current framework. We believe that this technology
will finally actually enable the application of QBF solving in practice, both in
already proposed as well as new applications.
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Abstract. This paper presents the CNF simplifier Coprocessor 2.0,
an extension of Coprocessor [1]. It implements almost all currently
known simplification techniques in a modular way and provides access
to each single technique to execute them independently. Disabling pre-
processing for a set of variables is also possible and enables to apply
simplifications also for incremental SAT solving. Experiments show that
Coprocessor 2.0 performs better than its predecessor or SatElite [2].

1 Introduction

Simplifying CNF formulae before passing them to SAT solvers increases the
power of the overall tool chain. SAT solvers that do not implement an integrated
preprocessor most of the time utilize the CNF simplifier SatElite [2], which has
been published in 2005. Since that time, new simplification methods like blocked
clause elimination [3] or hidden tautology elimination [4] have been developed,
that reduce the formula further. Most of these new techniques are implemented in
the CNF preprocessor Coprocessor 2.0 in a modular way1. By granting access
to each single technique and the possibility to rearrange the execution order, this
tool can be widely used to remove the redundancy of encoded formulae. Further
features include the ability to rewrite At-Most-One constraints in an Exactly-
One constraint and to exclude white-listed variables, i.e. variables whose set
of models should not change, from preprocessing. This technique is especially
valuable, if the preprocessed formula is used for solving MaxSat by re-encoding
the instance [5], or for incremental SAT solving [6], where clauses are added
to the formula after solving. By keeping the models of the variables of these
clauses, adding them can be done safely whereas the rest of the formula can still
be reduced.

In contrast to its predecessor Coprocessor [1], Coprocessor 2.0 can also
process huge formulae, by limiting expensive techniques. Consequentially, the
performance of the next tool in the execution chain, for example SAT solvers, is
also improved on those instances. An empirical analysis on the performance of the
SAT solver glucose 2 combined with either Coprocessor 2.0 or SatElite [2]

1 The tool as well as a README file and a description of first steps is available at
http://tools.computational-logic.org.

A. Cimatti and R. Sebastiani (Eds.): SAT 2012, LNCS 7317, pp. 436–441, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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reveals that by using the new tool application instances of recent SAT competi-
tions can be solved faster2.

After an overview on preprocessing and tool details in Section 2, a short tool
comparison is given in Section 3.

2 Preprocessing

Simplification techniques can be divided into two categories: (i) model preserv-
ing and (ii) satisfiability preserving techniques. Implemented simplifications of
the first category are Boolean constraint propagation(BCP), self-subsuming res-
olution(SUS), pure literal(PL), hidden tautology elimination(HTE) [4], failed lit-
eral elimination(FLE) [7], probing(PRB) [7,8] and clause vivification(VIV) [9].
The unhiding techniques(UHD) presented in [10] also belong to this category.
Coprocessor 2.0 also implements all other techniques from [10]. All above
techniques can be applied if further clauses should be added to the formula in-
stead of only showing satisfiability. For FLE and PRB, a double lookahead [8] is
used to find more implications. The 1st-UIP conflict analysis is used to retrieve
even more powerful failed literals than in [7]. Additionally, the implementation
of Coprocessor 2.0 already contains another two unpublished simplification
methods that preserve equivalence3. Both techniques try to reduce the size of
the formula by utilizing extended resolution.

The second category, satisfiability preserving techniques, alters the set of mod-
els of the formula and also eliminates variables from the formula. Coprocessor

2.0 implements blocked clause elimination(BCE) [3], variable elimination(BVE) [2]
and equivalence elimination(EE) [11]. The required undo-information for post-
processing the model of the simplified formula is stored as described in [1].

Coprocessor 2.0 is also able to rewrite parts of the formula as described
in [12]. An extension to this algorithm enables the tool to rewrite At-Most-One
constraints also by the 2-product encoding [13], if this encoding produces less
clauses. Currently, only at-most-one constraints are found that are part of an
exactly-one constraint. The algorithms iterates over all clauses C of the formula
and checks whether the current clause is part of an exactly-one constraint. This
check is done by looking whether for all literals l, l′ ∈ C there is a binary clause
{l, l′}. Another feature that is kept from the predecessor is variable renaming:
After all simplifications have been applied, the variables are renamed so that
they are consecutive again.

Finally, a white-list and black-list for variables can be specified. Variables on
the white-list are only used in equivalence preserving techniques to guarantee
that their set of models is not altered. Blacklisted variables are eliminated in any
case, even if the number of clauses increases. These two techniques can be used
for example to calculate the projection of a formula with respect to a certain set
of variables [14]. The white-list is also valuable if the input formula encodes an
optimization problem or is part of an incremental SAT instance. If the white-list

2 Instances and solvers are taken from www.satcompetition.org.
3 Submitted for publication.

www.satcompetition.org
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contains all variables for which clauses might be added to the formula, e.g. by
decreasing the upper bound of the optimization function, the formula is still
valid, even if variables of the remaining formula have been eliminated.

2.1 Limited Preprocessing

Obviously, the highest simplification can be achieved by executing all technique
until completion. However, for big formulae too much time is consumed whereas
solving the original problem might be much faster. Thus, for the most time
consuming techniques, namely SUS, BVE, BCE, PRB, VIV and HTE, limits are
introduced. Whenever the number of execution steps in the algorithm reaches
its limit, the algorithm is not executed any longer. Additionally, a timeout for
the whole preprocessor can be specified.

2.2 Simplifying During Search

A trade-off between run time and simplification power can be to apply the sim-
plification also during search, as for example used in lingeling [15] and Crypto-
MiniSat [16]. In the SAT solver riss [17] that natively uses Coprocessor 2.0

all simplification techniques could be used for preprocessing. Each technique is
randomized during simplification, so that not the same simplification is tried
multiple times without noticing that it cannot be applied. The implementa-
tion of each algorithm is aware of learned clauses, because not all algorithms
can treat both types of clauses equally. The following example shows this effect
for SUS: Let the formula be {{a, b, c, d}, {a, d}}. A learned clause could be the
clause {a, b, c}. By subsumption, {a, b, c, d} is removed, and afterwards the re-
moval strategy of the solver could decide to remove {a, b, c} again. The invalid
resulting formula is {{a, d}}. The correct behavior would torn {a, b, c} into a
clause of the original formula that cannot be removed by the removal strategy.

2.3 Implementation Details

Coprocessor 2.0 schedules its simplification algorithms in a predefined way,
if the user does not define an order. This order is: BCP, PL, SUS, EE, UHD,
HTE, BCE, BVE, PRB and VIV. The cheap techniques are executed first, more
expensive simplifications like BVE are scheduled thereafter and finally deduc-
tion methods as PRB and VIV are applied. Whenever a technique can achieve
a reduction, the procedure starts from top with UP again. Furthermore, for
each simplification algorithm a queue of elements to process is used to only try
simplifications on promising literals.

To provide access to single techniques, the execution order of algorithms can
be given to the preprocessor. A simple grammar enables to also run a combi-
nation of techniques until a fix point is reached, before the next technique is
executed. This feature is especially valuable if new techniques should be tested,
or to normalize formulae before using another tool. For the normalization the
formula can also be sorted before it is printed.
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The preprocessor is part of the SAT solver riss 2.0 and is implemented in
C++. Priority queues are implemented as binary heap. Sets are implemented as
a combination of a look-up table and a vector, because the number of elements
is known before the algorithm execution. Finally, whenever it should be checked
whether elements of a clause C are part of another clause, a vector is used that
stores a value il per element l and a reference value r ≥ 1. Whenever il = r,
the element is in the set, otherwise it is not. Removing the element l is done by
setting il = 0. If all elements in the set should be removed, r is incremented.
When r reaches the maximum value of its type, all values i have to be set to
i = 0 and r is set to r = 1. This way, a single value per literal is sufficient for
set checks with very small overhead. Literals or clause references are not used as
index, because the vector is shared among all techniques and collisions should
be avoided. Besides the occurrence lists for clauses, that store a list of all clauses
C per literal l where l ∈ C, PRB also maintains the data structures for the two-
watched-literal unit propagation. In total, most of these structures trade space
for time so that the memory consumption of the tool can be very high for large
formula.

Since Coprocessor 2.0 is a complex tool that needs to take care about
its current state, the interaction of all implemented techniques and still should
provide a fast implementation, the preprocessor has been tested with CNF de-
bugging tools [18]. Within 48 hours no single error was found for more than 20
million generated test instances. Lingeling [15] has been used as SAT solver for
these experiments.

3 Empirical Results

In this section the default configuration of Coprocessor 2.0 is evaluated. Due
to the fact that both unpublished techniques are disabled during the experi-
ments, the performance of the preprocessor combined with a SAT solver is very
similar to the performance with the SatElite preprocessor, because the perfor-
mance of the SAT solvers does not benefit as much of the other techniques as
from BVE, and Coprocessor 2.0 even limits this technique.

The reduction of application and crafted instances with respect to the number
of clauses is presented for the three preprocessors SatElite, Coprocessor and
Coprocessor 2.0. In total, 658 application instances and 560 crafted instances
from the SAT competitions and SAT races since 2008 have been used as the
underlying benchmark2. Table 1 shows three kinds of data: (i) the number of
clauses in the formula relative to the input formula after the input formula has
been processed by the given tool, (ii) the time it took to handle the instance and
(iii) the total number of instances that have been altered by the tool. For both
the clause reduction and the used time, the median value is presented for the
whole benchmark set. Whereas the reduction is only measured on instances that
have been finished to be processed, the time is cumulated over all benchmark
instances. Preprocessing a formula is aborted after a timeout of 10 minutes.

In total, Coprocessor times out on 20 instances, Coprocessor 2.0 on 15
and SatElite times out on no instance. On the other hand, Coprocessor 2.0
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Table 1. Relative Reduction of the Number of Clauses

Preprocessors SatElite Coprocessor Coprocessor 2.0

Category clauses time touched clauses time touched clauses time touched

Application 62.1% 4 s 639 55.9% 17 s 642 61.8% 7 s 647

Crafted 98.8% 2 s 399 101.1% 3 s 513 90.4% 3 s 435

can handle more instances than its competitors. Since a run time limit can be
specified, timeouts are no problem in praxis. Comparing the reduction of the
tools, Coprocessor results in the best reduction of the number of clauses and
the other two tools behave almost similar, only the run time of Coprocessor

2.0 is a little higher. For crafted instances the picture is different: Coprocessor

2.0 can reduce the size of the formula much more than the other two tools by
keeping a comparable run time. Coprocessor even increases the number of
clauses in the formula. This effect has already been seen in [1] and is caused by
a technique based on extended resolution that is not yet used in Coprocessor

2.0.
With the default configuration, the performance of state-of-the-art SAT sol-

vers, such as glucose 2, can be improved slightly for the benchmark instances
we used for the comparison. Improvements can be achieved by tuning the execu-
tion order of the simplification techniques and their execution limits. Since each
SAT solver behaves different, the tool is not tuned for a specific SAT solver and
benchmark.

4 Conclusion

We present a CNF simplifier that can replace the most widely used preprocessor
SatElite, because it provides similar run time, better reduction, more flexibility
and other valuable features.

The flexibility comes on the one hand from the huge number of simplification
techniques and on the other hand from the ability to choose the execution order
and execution limits per simplification technique. Since adding new techniques is
comparably simple, Coprocessor 2.0 will be updated with more methods, for
example to use hidden literal addition [4] also during blocked clause elimination.
By turning on and off single techniques and the ability to exclude variables from
the simplification, CNF simplifications now also reach neighboring fields such
as incremental SAT solving of MaxSat. Therefore, Coprocessor 2.0 is a nice
tool for both researchers and applicants that encode instances from a high level
description into SAT or that want to apply simplifications before they process a
CNF formula.
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6. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr.

Notes Theor. Comput. Sci. 89(4), 543–560 (2003)
7. Lynce, I., Marques-Silva, J.: Probing-Based Preprocessing Techniques for Proposi-

tional Satisfiability. In: Proceedings of the 15th IEEE International Conference on
Tools with Artificial Intelligence, ICTAI 2003. IEEE Computer Society (2003)

8. Li, C.M.: A constraint-based approach to narrow search trees for satisfiability. Inf.
Process. Lett. 71, 75–80 (1999)
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Abstract. We present SMT-RAT, a C++ toolbox offering theory solver
modules for the development of SMT solvers for nonlinear real arith-
metic (NRA). NRA is an important but hard-to-solve theory and only
fragments of it can be handled by some of the currently available SMT
solvers. Our toolbox contains modules implementing the virtual substitu-
tion method, the cylindrical algebraic decomposition method, a Gröbner
bases simplifier and a general simplifier. These modules can be combined
according to a user-defined strategy in order to exploit their advantages.

1 Introduction

The Satisfiability-Modulo-Theories (SMT) problem is the problem of checking
SMT formulas, i.e. Boolean combinations of constraints of one or more theories,
for satisfiability. SMT solvers use a SAT solver to find satisfying solutions for
the Boolean skeleton of an input SMT formula, which are in turn checked for
consistency with other decision procedures for the underlying theories.

The last decade brought great achievements in the field of SMT solving. For
instance, the SMT-LIB standard defines a common input format for SMT solvers
and provides the community with benchmarks for different theories. In addition,
SMT competitions motivate the development and improvement of SMT solvers.
Nowadays, different efficient SMT solvers are available for several theories, e.g.,
for linear real arithmetic. However, only a few solvers support nonlinear real
arithmetic (NRA), the theory of the reals with addition and multiplication.

Nonlinear real arithmetic was shown to be decidable by Tarski [16]. Though
the worst-case time complexity of solving real-arithmetic formulas is doubly
exponential in the number of variables [18], its existential fragment, which is
addressed by SMT solving, can be solved in exponential time [13]. One of the
most widely used decision procedures for NRA is the cylindrical algebraic de-
composition (CAD) method [6]. Other well-known methods use, e.g., Gröbner
bases [17] or the realization of sign conditions [2]. Some incomplete methods
based on, e.g., interval constraint propagation (ICP) [12] and virtual substitu-
tion (VS) [19], can handle significant fragments and, even though they have the
same worst-case complexity as the complete methods, they are more efficient in
practice. Moreover, they are well-suited for a combination with complete meth-
ods, to which they pass reduced sub-problems.

A. Cimatti and R. Sebastiani (Eds.): SAT 2012, LNCS 7317, pp. 442–448, 2012.
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The methods mentioned above are implemented in different tools. For exam-
ple, QEPCAD [4] implements the CAD method, the Redlog package [11] of the
computer algebra system Reduce offers an optimized combination of the VS, the
CAD, and Gröbner bases methods, and RAHD [15] combines different methods by
a user-defined strategy. The strength of these tools lies in solving conjunctions
of real-arithmetic constraints, but they are not designed for formulas with ar-
bitrary Boolean structures. A natural way to join the advantages of these tools
with those of SAT solving suggests their embedding in an SMT solver.

There are some SMT solvers available which support fragments of NRA.
Z3 [20] applies an optimized combination of linear arithmetic decision proce-
dures, ICP and the VS method. MiniSmt tries to reduce NRA problems to linear
real arithmetic and HySAT/iSAT uses ICP. All these SMT solvers are incom-
plete for NRA, i.e., they can not check satisfiability for all real-arithmetic SMT
formulas.

The development of a complete SMT solver for NRA is problematic because
the aforementioned algebraic decision procedures are not SMT-compliant, i.e.,
they do not fulfill the requirements for the embedding into an efficient SMT
solver. Firstly, in less lazy SMT solving, theory solvers should be able to work
incrementally, i.e., if they determine the satisfiability of a set of constraints, they
should be able to check an extended set of constraints on the basis of the previous
result. Secondly, in case a constraint set is unsatisfiable, theory solvers should
be able to compute an infeasible subset as explanation. Thirdly, they must be
able to backtrack according to the search of the SAT solver.

In this paper, we present the open-source C++ toolbox SMT-RAT, which imple-
ments real-arithmetic constraint simplifier and theory solver modules suited for
the embedding into an SMT solver. Besides standard libraries, SMT-RAT invokes
only the libraries GiNaC and GiNaCRA [14]. The source code with all modules
and a manual with examples can be found at http://smtrat.sourceforge.net/.
Our toolbox SMT-RAT offers an incremental implementation of the VS method
[1,7], which can generate infeasible subsets and supports backtracking. It also
provides two incremental implementations of the CAD method. One can handle
the multivariate case, whereas the other one is specialized on univariate instances
only and can generate infeasible subsets. Furthermore, two simplifier modules
are available based on smart simplifications [10] and Gröbner bases, respectively.

This is the first release of our toolbox. At this stage, we do not aim at com-
peting with state-of-the-art solvers in all categories. For example, we do not yet
offer extensive simplifiers, ICP, or theory solver modules for linear arithmetic.
The main advantages of our toolbox lie in offering (1) complete SMT-compliant
decision procedures, (2) the possibility to combine theory solvers according to a
user-defined strategy, and (3) a modular and extendable open-source implemen-
tation. Syntactically, our strategies are more simple than those proposed in [9].
However, we choose a procedure depending on not only the formula but also on
the history of solving, offering a very flexible approach.

We use SMT-RAT to extend the open-source SMT solver OpenSMT [5] by the
theory NRA. First experimental results comparing this tool with Z3 and CVC3
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[8] indicate that for some highly nonlinear benchmark sets we are able to solve
a much larger number of instances, but for some other benchmark sets we still
need further improvements.

In the following, we first give some preliminaries in Section 2 and a short
introduction to the toolbox design in Section 3. We give some experimental
results in Section 4 and conclude the paper in Section 5.

2 Satisfiability Modulo Real Arithmetic

SMT solving denotes an algorithmic framework for solving Boolean combinations
of constraints from some theories. SMT solvers combine a SAT solver comput-
ing satisfying assignments for the Boolean structure of the SMT formula with
procedures to check the consistency of theory constraints. For more details on
SMT related topics we refer to [3, Ch. 26].

We consider NRA formulas ϕ, which are Boolean combinations of constraints
c comparing polynomials p to 0. A polynomial p can be a constant, a variable x,
or a composition of polynomials by addition, subtraction or multiplication:

p ::= 0 | 1 | x | (p + p) | (p − p) | (p · p)
c ::= p = 0 | p < 0 | p > 0
ϕ ::= c | (¬ϕ) | (ϕ ∧ ϕ) | (∃xϕ)

The semantics of NRA formulas is defined as usual.
Given a polynomial p = a1x

e1,1
1 · · ·xen,1

n + · · · + akx
e1,k

1 · · ·xen,k
n in monomial

normal form, by deg(p) := max1≤j≤k(
∑n

i=1 ei,j) we denote the degree of p. We call
an NRA formula ϕ linear if deg(p) ≤ 1 for all polynomials p in ϕ, and nonlinear
otherwise. Linear real arithmetic (LRA) formulas are linear NRA formulas.

3 Toolbox Design

Our toolbox has a modular C++ class design which can be used to compose
NRA theory solvers for an SMT embedding in a dynamic and hierarchic fash-
ion. Our NRA theory solvers are instances of Manager, which offers an inter-
face to communicate with the environment and which coordinates the satisfi-
ability check according to a user-defined Strategy. Such a strategy combines
basic NRA theory solver modules, derived from Module. Figure 1 shows an ex-
ample configuration. Moreover, a Java-based graphical user interface can be
used for an intuitive and user-friendly specification of strategies (and the au-
tomatic generation of a corresponding Strategy class). Next, we briefly de-
scribe these concepts. For more details we refer to the manual of SMT-RAT at
http://smtrat.sourceforge.net/manual/manual.pdf.
The Formula Class. Formula instances contain, besides a sequence of NRA
constraints, a bitvector storing some information about the problem and the
history of its check. E.g., there is a bit which is 1 if some of the constraints
are equations. Also for each module there is a bit which is 1 if the module was
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SMT solver

SAT
solver

Manager
Strategy

ConditionCondition Condition
. . .

Module Module Module Module . . .

Fig. 1. A snapshot of an SMT-RAT composition embedded in an SMT solver

already invoked on the given problem. Such information can be used to specify
conditions under which a procedure should be invoked for a certain problem.

The Module Class. A module is an SMT-compliant implementation of a proce-
dure (e.g., constraint simplifier, an incomplete procedure or a complete decision
procedure) which can be used for the satisfiability check of NRA formulas. A
module’s interface allows to add constraints, to push and pop backtrack points,
to check the so far added constraints for consistency and to obtain an infeasible
subset of these constraints if they are detected to be inconsistent.

Modules have the opportunity to call other modules (backends) on sub-problems.
A novel achievement of our toolbox is that this call hierarchy is dynamic and
guided by a user-defined strategy. Currently, we only support sequential execu-
tion, parallel solving is planned for later releases.

Inheritance can be used to extend existing modules. Besides the basic type
Module, our toolbox offers five sub-classes. SimplifierModule (SIM ) imple-
ments smart simplifications [10], while GroebnerModule (GSM ) simplifies equa-
tion systems using Gröbner bases and probably detects inconsistency. The CAD
method is implemented in UnivariateCADModule (UCM ) for the univariate case
and in CADModule (MCM ) for the general multivariate case. The last module class
VSModule (VSM ) implements a version of the VS method as published in [7].

The Strategy Class. SMT-RAT offers a framework to integrate single modules
to powerful and efficient composed theory solvers. The composition relies on a
user-defined Strategy that specifies for each Formula instance which module
should be used for its check. A strategy is basically a sequence of condition-
module pairs. For each Formula instance, it determines the first module whose
condition evaluates to true on the bitvector of the formula. E.g., the strategy
“c1 ? (m1) : (c2 ? (m2) : (m3))” determines m1 as module type for ϕ if the
bitvector of ϕ fulfills the condition c1. If ϕ does not fulfill c1 but c2, then an
instance of m2 is called, otherwise of m3.

The Manager Class. The Manager contains references to the available module
instances and to the user-defined strategy. It manages, on the one hand, the
creation and linking of the modules, and, on the other hand, the communication
between them and the environment, e.g., the frontend of an SMT solver.
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Table 1. Running times [sec] of Rat1, Rat2, Z3 and CVC3 on four benchmarks

Rat1 Rat2 Z3 CVC3
solved acc. time solved acc. time solved acc. time solved acc. time

bouncing ball 43/52 4226.24 43/52 424.63 0/52 0.00 0/52 0.00
etcs 2/5 136.15 2/5 135.05 1/5 42.00 1/5 0.11
rectangular pos. 16/22 305.54 16/22 299.54 22/22 27.29 0/22 0.00
zankl 22/166 26.30 22/166 25.81 62/166 1138.96 9/166 2.86

4 Experimental Results

All experiments were performed on an Intel R© CoreTM i7 CPU at 2.80 GHz with
4 GB RAM with Gentoo Linux. We defined two strategies

c1 ? (MCM ) : (c2 ? (UCM ) : (c4 ? (VSM ) : (SIM )))
and c1 ? (MCM ) : (c2 ? (UCM ) : (c3 ? (VSM ) : (c4 ? (GSM ) : (SIM ))))

where c1, c2, c3 and c4 hold if the UCM , the VSM , the GSM and SIM was invoked
and could not solve the given formula, respectively. We embedded two theory
solver components using these strategies into OpenSMT, yielding the SMT solvers
Rat1 and Rat2, respectively, which we compared to CVC3 2.4 and Z3 3.1, the
latter being the winner of last year’s SMT competition for NRA.

Table 1 shows the running times in seconds on four benchmark sets with
the timeout of 150 seconds. The first one models the nonlinear movement of a
bouncing ball which may drop into a hole. The second one is a nonlinear version
of the European Train Control System benchmark set. The third one contains
problems to checks whether a given set of rectangles fits in a given area. The
last benchmark set stems from the SMT competition in 2011.

The results show, that we can solve many examples which Z3 and CVC3 cannot
solve. However, Z3 does a better job in the last two benchmark sets, where
the major part of the formula is linear. Here it can benefit from its ICP and
Simplex solver checking the linear fragment. Nevertheless, the results point out
that we can build efficient SMT solvers for NRA using OpenSMT and SMT-RAT.
Furthermore, it indicates that extending SMT-RAT by modules, e.g. implementing
Simplex or ICP, would lead to significant improvements.

5 Conclusion and Future Work

SMT-RAT is a toolbox contributing several SMT-compliant simplifier and theory
solver modules and a framework to combine them according to a user-defined
strategy. Experimental results show that an SMT solver enriched by SMT-RAT
for solving NRA can compete with state-of-the-art SMT solvers and even solve
instances, which they cannot solve.



SMT-RAT: An SMT-Compliant Nonlinear Real Arithmetic Toolbox 447

The design of SMT-RAT aims at modularity, extensibility, and the easy adding
of new modules. Moreover, we plan to improve the performance of SMT-RAT
compositions by modules implementing, e.g., Simplex and ICP. Furthermore,
we want to extend the framework to allow parallel calls of modules, theory
propagation, and shared heuristics.
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Abstract. Even though the CDCL algorithm and current SAT solvers
perform tremendously well for many industrial instances, the perfor-
mance is highly sensitive to specific parameter settings. Slight modifi-
cations may cause completely different solving behaviors for the same
benchmark. A fast run is often related to learning of ’good’ clauses.

Our tool CoPAn allows the user for an in-depth analysis of conflicts
and the process of creating learnt clauses. Particularly we focus on iso-
morphic patterns within the resolution operation for different conflicts.
Common proof logging output of any CDCL solver can be adapted to
configure the analysis of CoPAn in multiple ways.

1 Introduction and Motivation

Though the vast success of the CDCL approach to SAT solving [12,16,6] is
well-documented, it is not fully understood, why small changes in the choice of
parameters may cause significantly different behavior of the solver. With the
tool presented in this paper, we provide a perspective to find an answer for the
question about subtle differences between successful and rather bad solver runs.

Our tool CoPAn, an abbreviation for Conflict Pattern Analysis, can be used
to analyse the complete learning and conflict analysis of a CDCL solver using the
common proof logging output of the systems. Due to the use of efficient external
data structures, CoPAn manages to cope with a big amount of logged data.

The influence of learning to the SAT solvers’ efficiency is undeniable [10]. On
the one hand new measures for the quality of learnt clauses based on the obser-
vation of CDCL solvers on industrial instances [4] were proposed. On the other
hand it is very promising to turn away from these static measures that cause
a definitive elimination of clauses and focus on a dynamical handling of learnt
clauses [3]. Therefore changes in learning schemes can lead to a considerable
speed-up of the solving process (see [15,4,8]).

We are convinced that CoPAn can help to obtain a better understanding
about when and how good clauses are learnt by the SAT solver. We provide a
tool for in-depth analysis of conflicts and the associated process of producing
learnt clauses.
� This work was supported by DFG-SPP 1307, project “Structure-based Algorithm
Engineering for SAT-Solving”
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In Section 2 we introduce CoPAn and its usability, we present its most im-
portant features, and delineate the option of enhancing the data linked to each
clause such that the focus of analysis can be adapted to meet the requirements of
different users. Section 3 covers the theoretical and algorithmic background of the
tool. We summarize the functionality in Section 4. The tool can be downloaded
from http://algo.inf.uni-tuebingen.de/?site=forschung/sat/CoPAn.

2 The Application

CoPAn has been designed for analyzing CDCL like solvers in terms of their
learning and conflict characteristics. This chapter describes the main function-
ality of the tool and the most important and new ideas of the analysis. The
vast functionality of CoPAn can all be used by the GUI version. Moreover, all
procedures where visualization is not required can also be run as batch jobs to
allow for extensive unattended computations.

2.1 Patterns in Clause Learning

Practical research in SAT solving has shown that the performance of a CDCL
solver to solve one benchmark often depends (amongst others) on the quality of
learning and on rules about when and how to reduce the set of learnt clauses
[6,5,4,3]. It has been shown long time ago that learning the first unit implication
point (FUIP) clearly outperforms other learning schemes [16]. By FUIP those
clauses are learnt that are very close to the conflict itself. However, a learning
scheme does not imply anything about the way how resolution operation are
applied nor about the number of resolutions to terminate learning when the first
unit implication point is reached.

In contrast to any generic learning scheme we focus on different resolution
trees that are applied to learn new clauses. At first CoPAn allows for visualizing
the resolution trees that were logged by a CDCL solver. The main focus, however,
is put on the patterns that can be observed in the resolution trees of different
conflicts rather than pure visualization. In difference to the implication graph
as it is used in [12,15] we consider a resolution graph (tree) that contains one
node for each clause contributing to the conflict. For each resolution operation
an edge is drawn. In CoPAn we consider the resolution graph with additional
edges, a so-called clashing graph: An edge between two nodes (clauses) is drawn
iff they share exactly one clashing literal (see [11]).

Definition 1. Two conflicts c1, c2 exhibit the same resolution pattern iff their
unlabeled resolution graphs g1, g2 are isomorphic. If a resolution graph g1 is
isomorphic to a subgraph of another resolution graph g2 we say that the conflicts
c1 and c2 have common subpatterns.

The decision to focus on clashing graphs rather than on common implication
graphs is due to its direct relation to resolution. Isomorphic subpatterns in dif-
ferent clashing graphs are likely to allow for similar resolution operation.
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Fig. 1. Main view of the CoPAn GUI

2.2 The CoPAn GUI

Figure 1 shows the main view of the CoPAn GUI. The GUI variant always
expects one solver run for a particular benchmark to be loaded. Via the panel on
the left side any conflict can be selected for visualization and deeper interactive
analysis. The left graph shows the common implication graph of the selected
conflict. In the right panel the clashing graph is depicted. The subgraph with
black edges specifies the resolution operation for the selected conflict. Green
edges indicate alternative resolution operations. In contrast to the clashing rule
red edges can be shown to connect clauses with equal literals. Elliptic nodes
indicate learnt clauses. These nodes may be selected in the graph view to jump
to the according conflict to trace reasons of a conflict.

The three panels at the bottom state some additional information about the
selected conflict, the selected node (clause) and the generated clause.

One of the most advanced features in CoPAn is the search and filter func-
tionality that goes along with resolution patterns. Any resolution pattern that
is shown in the main window can be used to filter all conflicts of the solver’s
run. This allows a user to search for conflicts that exhibit similar resolution
patterns even if the pattern under consideration only constitutes a subgraph of
another learning operation. In Section 3 we describe how these computationally
expensive operations are realized for suitable interactive work.

To allow for in-depth analysis of conflicts CoPAn enables filtering and search
for several different properties and their combinations. Basically, there are two
kinds of properties of conflicts:
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– User-defined properties that can be specified by additional logging informa-
tion of the SAT solver (see section 2.3). A typical user-defined property may
be the LBD value [4] or the backjumping level of a conflict.

– Pre-defined properties that require extra computational work.

The demand of pre-defined properties arose when an early version of CoPAn had
been implemented and new, more complex queries became desirable. There are
several papers that point out or implicitly use the fact that two learnt clauses may
contain a high percentage of equal literals [9,2,14]. Moreover, it is often the case
that a learnt clause subsumes another clause. This motivated the implementation
of subsumption checks. CoPAn can now indicate correlations between similar
resolution patterns and subsumption of conflicts. In Figure 2 a particular conflict
of the solving process of instance li-exam-63 is selected. In the left panel only
those conflicts are listed that exhibit an isomorphic resolution pattern. A value
in the column ’possible subsumption’ states how many clauses are subsumed by
the generated clause of the conflict.

2.3 User-Defined Analysis

To make CoPAn usable for different or changing groups of interest the tool
offers a configurable and extendable interface for analysis. For common use a
SAT solver has to log each clause that was created during conflict analysis.
Optionally, arbitrary properties can be added to the clause as simple key-value
pairs (e.g. a pair ’b 3’ could be added to indicate that this conflict caused a
backjump to level 3). CoPAn allows for filtering and searching for user-defined
properties. A user may be interested in the question if conflicts with the same
resolution pattern have similar LBD values or any new measure of quality. For
a detailed description we refer the reader to the user guide which is available
online.

Fig. 2. Relating subsumption and resolution patterns
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3 Theoretical and Algorithmic Background

Learning from conflicting assignments causes a CDCL based SAT solver to gen-
erate large amounts of clauses during the solving process. Printing these clauses
and the resolution operations produces millions of bytes of data in short time.
To cope with as many conflicts as possible any tool operating with these data
volumes has to use highly efficient data structures that support fast lookups.

To reduce additional software dependencies and for user convenience we do
not use any kind of database system for these lookups, but rather use an effi-
cient implementation of the well-known data structure B+-tree. With the use of
indices for every implemented filter we ensure the required efficient lookup costs
and therefore a smooth behavior of the GUI tool, as well as fast computation of
query results. These index structures have to be built in advance of any follow-
ing investigation and analysis and require the majority of a typical work flow.
But once these B+-trees and corresponding index structures are built further
operations can be executed vastly efficient.

A main feature of CoPAn is the ability to compare the structure of clashing
graphs and different isomorphic patterns within these graphs. For each conflict
that arose during SAT solving a clashing graph is created containing one node
for each clause that contributed to this conflict. An edge is drawn iff two clauses
have exactly one clashing literal [11]. In general, it is unknown whether the
graph isomorphism problem is in P or NP-complete [7], whereas the subgraph
isomorphism problem is known to be NP-complete.

Therefore we only consider those edges of a clashing graph that were actually
used for resolution to create the learnt clause. This is a tree structure with the
clause causing the conflict as the root node. Given the fact that the tree isomor-
phism problem is known to be in P, we are able to efficiently detect isomorphic
clashing graph structures of conflicts in linear time [1].

The use of clashing graphs to compare the structures of conflicts results in a
loss of information regarding the resolution sequence within the solving process,
but is essential to check for isomorphisms efficiently. CoPAn is able to detect
and depict alternative resolutions within the clashing graph structures.

4 Summary

We present our tool CoPAn that was designed to analyse the learning behaviour
of SAT solvers. Schemes and rules for learning have been proven to be significant
for the performance of CDCL solvers. In contrast to previous analysis of learning
we focus on patterns in resolution graphs. To the knowledge of the authors
CoPAn is the first application that analyses resolution patterns of SAT solvers. It
facilitates the study of correlations between several properties of learnt clauses.
A typical task could be to search for significantly common properties among
conflicts with isomorphic resolution pattern. Properties of clauses may be well-
known attributes such as backjumping distance [12], activity [13,6], LBD value [4]
but also user-defined properties. The most important characteristics of CoPAn
can be summarized:
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– Search for isomorphic resolution patterns (within one instance or within a
group of several instances)

– Subsumption checks of (subsets of) clauses
– Specification of user-defined properties that can be linked to clauses
– GUI to visualize conflicts, to explore the effect of various filters, and to trace

learning and proofs interactively
– Preprocessing of logged data to build efficient data structures and indices

for further examinations
– Creation of diagrams for applied filters to plot the distribution of attributes
– Batch processing to analyse sets of instances

We are convinced that CoPAn can support developers of SAT solvers to analyse
the behavior of their solvers. Moreover, CoPAn may be used to evaluate new
quality measures for learnt clauses.

For future work we plan to realize more advanced isomorphism tests, not only
restricted to tree-like patterns. Moreover, the complete clashing graph of a SAT
instance shall be analyzable such that a user may search for isomorphic patterns
within the complete instance. Furthermore, we plan to incorporate the feedback
and suggestions of users and solver engineers.
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Abstract. This paper describes a SAT-based CSP solver Azucar. Azucar
solves a finite CSP by encoding it into a SAT instance using the com-
pact order encoding and then solving the encoded SAT instance with an
external SAT solver. In the compact order encoding, each integer vari-
able is represented by using a numeral system of base B ≥ 2 and each
digit is encoded by using the order encoding. Azucar is developed as a
new version of an award-winning SAT-based CSP solver Sugar. Through
some experiments, we confirmed Azucar can encode and solve very large
domain sized CSP instances which Sugar can not encode, and shows
better performance for Open-shop scheduling problems and the Cabinet
problems of the CSP Solver Competition benchmark.

1 Introduction

A (finite) Constraint Satisfaction Problem (CSP) is a combinatorial problem to
find an assignment which satisfies all given constraints on finite domain vari-
ables [1]. A SAT-based CSP solver is a program which solves a CSP by encoding
it to SAT [2] and searching solutions by SAT solvers.

There have been several SAT-based CSP solvers developed, such as Sugar 1 [3],
FznTini [4], SAT4J CSP [5], and others. Especially, Sugar became a winner of
several categories at the recent International CSP Solver Competitions in two
consecutive years. It uses order encoding [6] which shows good performance
on various applications [6–8] and is known as the only SAT encoding reducing
tractable CSP to tractable SAT [9]. In the order encoding, the Unit Propagation
in SAT solvers corresponds to the Bounds Propagation in CSP solvers.

In this paper, we describe a SAT-based CSP solver Azucar 2. It uses a new
SAT encoding method named compact order encoding [10–12], in which each
integer variable is divided into digits by using a numeral system of base B ≥ 2
and each digit is encoded by using the order encoding. Therefore, it is equivalent
to the order encoding [6] when B ≥ d and it is equivalent to the log encoding [13]

1 http://bach.istc.kobe-u.ac.jp/sugar/
2 http://code.google.com/p/azucar-solver/

A. Cimatti and R. Sebastiani (Eds.): SAT 2012, LNCS 7317, pp. 456–462, 2012.
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when B = 2 where d is the maximum domain size. In that sense, the compact
order encoding is the generalization and integration of both encodings.

Size of generated SAT instances by the compact order encoding using two or
more digits are much smaller than those by the direct [14], support [15], and
order encodings. Therefore, it is another encoding applicable to large domain
sized CSPs besides the log and log-support [16] encodings. In the compact or-
der encoding, the Unit Propagation in SAT solvers corresponds to the Bounds
Propagation in the most significant digit in CSP solvers. Therefore, the conflicts
are likely to be detected with fewer decisions than the log and log-support en-
codings. These observations are confirmed through the experimental results on
Open-Shop Scheduling problems with large domain sizes in which the compact
order encoding is about 5 times faster than the log encoding on average.

Azucar is a first implementation of the compact order encoding and it is de-
veloped as an enhancement version of Sugar. User can specify either the number
of digits m or the base B as the command line option of Azucar. When m = 1 is
specified, Azucar uses the order encoding to encode the given CSP. The log en-
coding is used when B = 2 is specified. If user specifies neither m nor B, Azucar
uses m = 2 by default. In various problems, Azucar with m ∈ {2, 3} shows the
better performance than Sugar especially for large domain sized CSP.

2 Compact Order Encoding

The basic idea of the compact order encoding is the use of a numeral system
of base B ≥ 2 [10–12]. That is, each integer variable x is represented by a

summation
∑m−1

i=0 Bix(i) where m = �logB d� and 0 ≤ x(i) < B for all integer
variables x(i), and each x(i) is encoded by using the order encoding. As described
in Section 1, the compact order encoding is equivalent to the order encoding [6]
when B ≥ d and it is equivalent to the log encoding [13] when B = 2.

In this paper, we will show some examples to encode an integer variable and a
constraint by using the compact order encoding. More details about the compact
order encoding are described in [10–12].

For example, when we choose B = 3, the integer variable x ∈ {0..8} is di-
vided into two digits as follows. Each x(i) represents the i-th digit of x and x(1)

represents the most significant digit.

x(1), x(0) ∈ {0..2}

By using the order encoding, these propositional variables are introduced where
p(x(i) ≤ a) is defined as true if and only if the comparison x(i) ≤ a holds.
p(x(1) ≤ 2) is not necessary since x(1) ≤ 2 is always true.

p(x(1) ≤ 0) p(x(1) ≤ 1)

p(x(0) ≤ 0) p(x(0) ≤ 1)

To represents the order of propositional variables, these two clauses are required.
For instance, ¬p(x(1) ≤ 0) ∨ p(x(1) ≤ 1) represents x(1) ≤ 0⇒ x(1) ≤ 1.

¬p(x(1) ≤ 0) ∨ p(x(1) ≤ 1) ¬p(x(0) ≤ 0) ∨ p(x(0) ≤ 1)
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Order Compact Order Log
Constraint Encoding Encoding Encoding

x ≤ a O(1) O(m) O(log2 d)
x ≤ y O(d) O(mB) O(log2 d)

z = x+ a O(d) O(mB) O(log2 d)
z = x+ y O(d2) O(mB2) O(log2 d)
z = xy O(d2) O(mB3 +m2B2) O(log2

2 d)

Fig. 1. Comparison of different encodings on the number of SAT-encoded clauses

Each constraint is divided into digit-wise constraints and then encoded by using
the order encoding. For example, a constraint x ≤ y (x, y ∈ {0..8}) is encoded
into the following clauses where p is a new propositional variable which represents
¬(x(0) ≤ y(0)). C0 and C1 represent x(1) ≤ y(1), C2, C3 and C4 represent p →
x(1) ≤ y(1) − 1, and C5 and C6 represent ¬(x(0) ≤ y(0))→ p.

C0 : p(x(1) ≤ 0) ∨ ¬p(y(1) ≤ 0)

C1 : p(x(1) ≤ 1) ∨ ¬p(y(1) ≤ 1)

C2 : ¬p ∨ ¬p(y(1) ≤ 0)

C3 : ¬p ∨ p(x(1) ≤ 0) ∨ ¬p(y(1) ≤ 1)

C4 : ¬p ∨ p(x(1) ≤ 1)

C5 : p ∨ p(x(0) ≤ 0) ∨ ¬p(y(0) ≤ 0)

C6 : p ∨ p(x(0) ≤ 1) ∨ ¬p(y(0) ≤ 1)

Let d be the domain size of integer variables, B be the base and m = �logB d�
be the number of digits. Fig. 1 shows the number of clauses required to encode
each constraint. In the compact order encoding, each addition z = x + y and
multiplication z = xy are encoded into O(mB2) and O(mB3 + m2B2) clauses
respectively. It is much less than O(d2) clauses of the order encoding and thus
it can be applicable to large domain CSP.

We also show the relations between the Unit Propagation in SAT solvers in
each encodings and the constraint propagation in CSP solvers. In the order en-
coding, the Unit Propagation in SAT solvers corresponds to the Bounds Prop-
agation in CSP solvers. The compact order encoding can achieve the Bounds
Propagation in the most significant digit while the log encoding achieves the
Bounds Propagation in the most significant bit. Therefore the compact order
encoding can detect the conflicts earlier and thus it can solve CSP faster than
the log encoding.

3 Azucar Implementation

Azucar is an open-source SAT-based CSP solver distributed under the BSD 3-
clause license. Azucar encodes a CSP into SAT by using the compact order
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encoding, and then the SAT-encoded instance are solved by an external SAT
solver such as MiniSat [17], SAT4J [18] or GlueMiniSat 3. Azucar can handle finite
CSP over integers written in Lisp-like input format or XCSP 2.1 format 4 which
is used in the 2009 International CSP Solver Competition. Azucar can receive
one of these options where d is the maximum domain size of integer variables.

– -b B: Azucar uses the numeral system of base B (i.e. m = �logB d�).
– -m m: Azucar divides each integer variable into at most m digits (i.e. B =
� m
√
d�).

The encoder and decoder are written in Java, and the frontend of Azucar is
written in Perl.

4 Performance Evaluation

To evaluate the scalability and efficiency of our encoding used in Azucar, we
used 85 Open-Shop Scheduling problems with very large domain sizes, which are
generated from “j7” and “j8” by Brucker et al. by multiplying the process times
by some constant factor c. The factor c is varied within 10i (i ∈ {0, 1, 2, 3, 4}).
For example, when c = 104, the maximum domain size d becomes about 107.

We compare four different encodings: the order encoding which is used in
Sugar, the compact order encoding with m ∈ {2, 3}, and the log encoding. For
each instance, we set its makespan to the optimum value minus one and then
encode it into SAT. Such SAT-encoded instances are unsatisfiable. We use the
MiniSat solver [17] as a backend SAT solver.

Domain Order Compact Order Log
Factor c Size d #Instances Encoding Encoding Encoding

m = 2 m = 3

1 103 17 13 14 14 14
10 104 17 12 13 13 13
102 105 17 8 13 13 12
103 106 17 0 14 13 12
104 107 17 0 12 13 13

Total 85 34 66 66 63

Fig. 2. Benchmark results of different encodings on the number of solved instances for
OSS benchmark set by Brucker et al. with multiplication factor c

Fig. 2 shows the number of solved instances within 3600 seconds by four
solvers. All times were collected on a Linux machine with Intel Xeon 3.0 GHz,
16GB Memory. “Domain size d” indicates the approximate average of domain
size of integer variables. We highlight the best number of solved instances.

The compact order encoding solved the most instances for any factor c and
totally 66 out of 85 instances rather than 63 by the log encoding and 34 by the

3 http://glueminisat.nabelab.org/
4 http://www.cril.univ-artois.fr/CPAI08/XCSP2 1.pdf
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order encoding. The compact order encoding with m = 3 can be highly scalable
with the growth of c compared with the order encoding. For example, when
c = 1000, it solved 13 out of 17 instances (76%), while none (0%) by the order
encoding due to the memory limitation. Moreover, it is fastest on average when
c ≥ 10. For example, it solved about 5 times faster than the log encoding when
d ≈ 107.

Fig. 3 shows the cactus plot of benchmark results in which the number of
solved instances is on the x-axis and the CPU time is on the y-axis. The compact
order encoding solved the most instances for almost any CPU time limit. For
example, the compact order encoding with m = 3 solved 61 instances within
600 seconds while the order encoding was 25, the compact order encoding with
m = 2 was 56, and the log encoding was 53.
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Fig. 3. Cactus plot of various encodings for 85 OSS instances

To evaluate the efficiency of our encoding for smaller domain CSP, we also
used graph coloring problems published in Computational Symposium on Graph
Coloring and its Generalizations 5 and we confirmed that the compact order
encoding can solve the almost same number of instances compared with the
order encoding even when the domain size is less than 102.

Finally, to evaluate the efficiency of Azucar for large domain CSP, we also used
the Cabinet problems in GLOBAL category in the CSP Solver Competitions and
we confirmed that Azucaris over 1.7 times faster than Sugar on average.

5 Conclusion

In this paper, we described a SAT-based CSP solver Azucar. Through some ex-
periments, Azucar with m ∈ {2, 3} shows the better performance than Sugar

5 http://mat.gsia.cmu.edu/COLOR04/
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especially for large domain sized CSP. Finally, although the compact order en-
coding used in Azucar is developed to encode CSP, it can be applicable to other
problems dealing with the arithmetic constraints.
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Abstract. We propose a framework for SAT researchers to conveniently
try out new ideas in the context of parallel SAT solving without the
burden of dealing with all the underlying system issues that arise when
implementing a massively parallel algorithm. The framework is based
on the parallel execution language X10, and allows the parallel solver
to easily run on both a single machine with multiple cores and across
multiple machines, sharing information such as learned clauses.

1 Introduction

With tremendous progress made in the design of Boolean Satisfiability (SAT)
solvers over the past two decades, a wide range of application areas have begun
to exploit SAT as a powerful back end for declarative modeling of combinatorial
(sub-)problems which are then solved by off-the-shelf or customized SAT solvers.
Many interesting problems from areas such as software and hardware verifica-
tion and design automation often translate into SAT instances with millions of
variables and several million constraints. Surprisingly, such large instances are
not out of reach of modern SAT solvers. This has led practitioners to push the
boundary even further, resulting in plenty of harder instances that current SAT
solvers cannot easily tackle.

In order to address this challenge, SAT researchers have looked to exploiting
parallelism, especially with the advent of commodity hardware supporting many
cores on a single machine, and of clusters with hundreds or even thousands of
cores. However, the algorithmic and software engineering expertise required to
design a highly efficient SAT solver is very different from that needed to most ef-
fectively optimize aspects such as communication between concurrently running
solvers or search threads. Most SAT researchers do not possess deep knowledge
of concurrency and parallelism issues (message passing, shared memory, locking,
deadlocking etc). It is thus no surprise that state-of-the-art parallel SAT solvers
often rely on a fairly straightforward combination of diversification and limited
knowledge sharing (e.g., very short learned clauses), mainly on a single machine.

The goal of this work is to bridge this gap between SAT and systems expertise.
We present a tool called SatX10, which provides a convenient plug&play frame-
work for SAT researchers to try out new ideas in the context of parallel SAT
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solving, without the burden of dealing with numerous systems issues. SatX10 is
built using the X10 parallel programming language [2]. It allows one to incor-
porate and run any number of diverse solvers while sharing information using
one of various communication methods. The choice of which solvers to run with
what parameters is supplied at run-time through a configuration file. The same
source code can be compiled to run on one node, across multiple nodes, and on
a variety of computer architectures, networks, and operating systems. Thus, the
SatX10 framework allows SAT researchers to focus on the solver design aspect,
leaving an optimized parallel implementation and execution to X10.

We demonstrate the capabilities of SatX10 by incorporating into it four dis-
tinct DPLL-based SAT solvers that continuously exchange learned clauses of a
specified maximum size while running on single or multiple nodes of a cluster.

The goal of this paper is not to present a state-of-the-art parallel SAT solver.
Rather, we discuss the design of SatX10 and the API that must be implemented
by any SAT solver to be included in SatX10. The SatX10 harness is available at
http://x10-lang.org/satx10 under an appropriate open source license.

2 Background

We assume familiarity with the SAT problem and DPLL-based sequential sys-
tematic SAT solvers, which essentially are carefully designed enhancements of
tree search, in particular learning clauses when they infer that a partial truth
assignment cannot be extended to a full solution. These solvers typically make
thousands of branching decisions per second and infer hundreds to thousands of
new clauses per second. Most of the successful parallel SAT solvers are designed
to run on a single machine. They exploit diversification, by simply launching
multiple parameterizations of the same solver or of different solvers, and a very
limited amount of knowledge sharing, typically through learned clauses. Three
prominent examples are: ManySat [3], which won the parallel track in the SAT
2009 Competition and is based on different parameterizations of MiniSat and
clause sharing; Plingeling [1], which was a winner in the 2011 SAT Competi-
tion (wall-clock category, Application instances) and runs multiple variations of
lingeling while sharing only unit clauses; and ppfolio [4], which was placed
first and second in the 2011 Competition and simply runs certain five solvers.

2.1 X10: A Parallelization Framework

X10 [2, 5, 7] is a modern programming language designed specifically for pro-
gramming multi-core and clustered systems easily. Unlike C++ or Java, where
threads and network communications are API calls, in X10, parallel operations
are integral to the language itself, making it easy to write a single program that
makes full use of the resources available in a cloud, GPUs, or other hardware.

X10 is a high-level language that gets compiled down into C++ or Java.
Specifically, it runs on Java 1.6 VMs and Ethernet. When compiled to C++,
X10 runs on x86, x86 64, PowerPC, Sun CPUs, and on the BlueGene/P, and

http://x10-lang.org/satx10
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Ethernet and Infiniband interconnects (through an MPI implementation). It
runs on the Linux, AIX, MacOS, Cygwin operating systems. Note that the same
source program can be compiled for all these environments.

Importantly for SatX10, an X10 program can use existing libraries (e.g., se-
quential SAT solvers) written in C++ or Java. This permits us to build a paral-
lel SAT solver by using many sequential SAT solvers (changed in modest ways)
and using a small X10 program to launch them and permit communication be-
tween them. The X10 runtime handles all the underlying communications, thread
scheduling, and other low-level system functions.

X10 follows the APGAS (Asychronous Partitioned Global Address Space)
programming model. This model says that there are independent memory spaces
available to a program, and the program can move data asynchronously between
these memory spaces. In X10, these memory spaces are called places. Functions
and other executable code in the form of closures can also move across places,
to process the data where it resides.

X10’s basic concurrency and distribution features most relevant for SAT solver
designers include a finish block, an async block, and an at block:

– All activities, including parallel activities, inside of a finish block must
complete before moving on past the finish block.

– The contents of an async block can execute in parallel with anything outside
of the async block. This lets the programmer take advantage of multiple
cores within the same place.

– at is a place-shifting operation. Code inside the at block is executed at place
p, not locally. Any referenced data is automatically copied to p.

The X10 language has many other features, such as constrained types, GPU
acceleration, atomic blocks, clocked computations, collectives, and others. These
are not critical to the creation of SatX10 and will not be discussed here.

3 Building Parallel SAT Solvers with X10

The architecture of SatX10 is shown in Fig. 1 as a high level schematic diagram.
Its main components, discussed below, are designed with the goal of providing a
generic way to incorporate a diverse set of SAT solvers and support information
sharing across solvers. The basic integration of a SAT solver in SatX10 requires
only minimal changes to the SAT solver code and one additional header file to
be created. Each constituent SAT solver is enhanced with an X10 part, which is
then used for all parallelization and communication, done transparently by the
X10 back end. We assume below that the solvers are written in C++.

A. SatX10.x10 is the main X10 file that, at runtime, reads in the desired solver
configuration from a “.ppconfig” file (indicating which solvers to launch
with which parameters), sets up solvers at various “places”, executes them,
and sends a “kill” signal to all other solvers when one solver finishes. This
file attaches to the solver at each place user-defined X10 “callbacks” that the
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Fig. 1. A schematic diagram depicting the architecture of SatX10

solver can use to send messages to (or execute methods at) other places, such
as sending a newly learned clause. While our current implementation uses
a one-to-all, asynchronous communication strategy, X10 provides extensive
support for other parallelization schemes such as clocked synchronization and
periodic all-to-all information reduction and communication.

B. SolverSatX10Base.h provides the base C++ class that every SAT solver’s
main “solver” class must inherit from and implement some virtual methods
for. These simple virtual methods include x10 solve(), which solves the in-
stance and returns -1/0/1 based on whether the instance was found to be
unsatisfiable/unknown/satisfiable; x10 printSoln(), which prints a satisfy-
ing assignment; x10 printStats(), which prints solver statistics; etc.

C. SatX10 Solver.h provides the generic C++ base class that, appropriately
extended, acts as the interface between each solver and X10. It provides the
implementation of the callback methods solvers use for communication. For
each solver, a new header file is built with a solver-specific derived class
that has a reference to the main “solver” object. It provides solver-specific
routines, such as converting knowledge to be shared from solver-specific data
types to the generic data types used in SatX10 Solver.h (e.g., converting
a learnt clause in the solver’s internal format to std::vector<int>). The
main X10 routine creates at each place an object of such a derived class.

D. Modifications to solver class : As mentioned above, the main “solver” class
in each SAT solver must inherit from SolverSatX10Base and implement its
pure virtual methods. The entire code for each solver must also be put inside
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a unique namespace so as to avoid conflicting uses of the same object name
across different solvers. Further, the main search routine should be modified
to (i) periodically check an indicator variable, x10 killed, and abort search if
it is set to true, (ii) call the appropriate “callback” method whenever it wants
to send information to (or execute a method at) another place, (iii) periodi-
cally call x10 step() to probe the X10 back end for any incoming information
(e.g., learned clauses or kill signal) sent by other places, and (iv) implement
x10 processIncomingClauses(), which incorporates into the solver a list of
clauses received from other concurrently running solvers. Note that depend-
ing on when in the search process the incoming clause is incorporated, one
may need to properly define “watch” literals, possibly backtrack to a safe
level, and satisfy other solver specific requirements.

To share other kinds of information, one can define methods similar to
x10 processIncomingClauses and x10 bufferOutgoingClauses. The X10
compiler x10c++ is used to compile everything into a single executable. The
communication back end (shared memory, sockets, etc.) is specified as a compi-
lation options, while solver configurations, number of solvers to run, hostnames
across a cluster, etc., are specified conveniently at runtime.

4 Empirical Demonstration

The main objective of this section is to show that SatX10 provides communica-
tion capabilities at a reasonable cost and that it allows effective deployment of
a parallel SAT solver on a single machine as well as across multiple machines.
As stated earlier, designing a parallel solver that outperforms all existing ones
is not the goal of this work.

We used the SatX10 framework to build a parallel SAT solver MiMiGlCi,
composed of Glucose 2.0, Cir Minisat, Minisat 2.0, and Minisat 2.2.0,
with additional parameterizations (e.g., different restart strategies). As a test
bed, we chose 30 instances of medium difficulty from various benchmark families
from the application track of SAT Competition 2011 [6]. All experiments were
conducted on 2.3 GHz AMD Opteron 2356 machines with two 4-core CPUs and
16 GB memory, InfiniBand network, running Red Hat Linux release 6.2.

The results of the evaluation are summarized in Fig. 2 in the form of the
standard “cactus” plot, showing the maximum time (y-axis) need to solve a
given number of instances (x-axis).

The two curves in the left-hand-side plot show the comparison on a single
machine when MiMiGlCi is run on 8 places (i.e., with 8 sequential solvers running
in parallel) while sharing clauses of maximum lengths 1 and 8, respectively. Here
we see a clear gain in performance when sharing clauses of size up to 8, despite
the overhead both on the communication side and for each solver to incorporate
additional clauses. In general, what and how much to share must, of course, be
carefully balanced out to achieve good performance.

The right-hand-side plot in Fig. 2 shows the results on multiple machines.
Specifically, we report numbers for 8 places running on 8 different machines, and
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Fig. 2. Performance on a single machine (left) and on multiple machines (right)

64 places running on a total of 16 machines. The benefit of sharing clauses of
length up to 8 is clear in this setting as well. In fact, 8 places sharing clauses
of length at most 8 performed better than 64 places sharing only unit clauses,
indicating that the ability to conveniently share more can be much more powerful
than simply running more solvers. Not surprisingly, 64 places sharing clauses of
length up to 8 performed the best, solving all instances in 1,000 seconds.

In summary, SatX10 provides a framework to easily build parallel SAT solvers
composed of a diverse set of constituent solvers, with the capability of sharing
information while executing various parameterizations of the constituent solvers
on a single machine or multiple machines. The rich language of X10 underlying
SatX10 handles all parallelization aspects, including parallel execution, and pro-
vides a uniform interface to all constituent SAT solvers. We hope this will serve
as a useful tool in pushing the state of the art in parallel SAT solving.

Acknowledgement. SatX10 originated from an X10-based SAT solver named
PolySat, which was developed in collaboration with David Cunningham.
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An unsatisfiability proof is a series of applications of proof rules on an input
formula to deduce false. Unsatisfiability proofs for a Boolean formula can find
many applications in verification. For instance, one application is automatic
learning of abstractions for unbounded model checking by analyzing proofs of
program safety for bounded steps [6,5,4]. We can also learn unsatisfiable cores
from unsatisfiability proofs, which are useful in locating errors in inconsistent
specifications [10]. These proofs can be used by higher order theorem provers as
sub-proofs of another proof [2].

One of the most widely used proof rules for Boolean formulas is the resolution
rule, i.e., if a∨b and ¬a∨c holds then we can deduce b∨c. In the application of the
rule, a is known as pivot. A resolution proof is generated by applying resolution
rule on the clauses of an unsatisfiable Boolean formula to deduce false. Modern
SAT solvers (Boolean satisfiability checkers) implement some variation of DPLL
that is enhanced with conflict driven clause learning [9,8]. Without incurring
large additional cost on the solvers, we can generate a resolution proof from a
run of the solvers on an unsatisfiable formula [11].

Due to the nature of the algorithms employed by SAT solvers, a generated
resolution proof may contain redundant parts and a strictly smaller resolution
proof can be obtained. Applications of the resolution proofs are sensitive to
the proof size. Since minimizing resolution proofs is a hard problem [7], there
has been significant interest in finding algorithms that partially minimize the
resolution proofs generated by SAT solvers.

In [1], two low complexity algorithms for optimizing the proofs are presented.
Our work is focused on one of the two, namely Recycle-Pivots. Lets consider
a resolution step that produces a clause using some pivot p. The resolution step
is called redundant if each deduction sequence from the clause to false contains a
resolution step with the pivot p. A redundant resolution can easily be removed by
local modifications in the proof structure. After removing a redundant resolution
step, a strictly smaller proof is obtained. Recycle-Pivots traverses the proofs
single time to remove the redundant resolutions partially. From each clause,
the algorithm starts from the clause and follows the deduction sequences to find
equal pivots. The algorithm stops looking for equal pivots if it reaches to a clause
that is used to deduce more than one clause.

In this work, we developed three algorithms that are improved version of
Recycle-Pivots. For the first algorithm, we observe that each literal from
a clause must appear as a pivot somewhere in all the deduction sequences from
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the clause to false. Therefore, we can extend search of equal pivots among the
literals from the stopping clause without incurring additional cost. For the second
algorithm, we observe that the condition for the redundant resolutions can be
defined recursively over the resolution proof structure. This observation leads to
a single pass algorithm that covers even more redundancies but it requires an
expensive operation at each clause in a proof. Note that the second algorithm
does not remove all such redundancies because the removal of a redundancy may
lead to exposure of more. Our third algorithm is parametrized. This algorithm
applies the expensive second algorithm only for the clauses that are used to
derive a number of clauses smaller than the parameter. The other clauses are
handled as in the first algorithm. The parametrization reduces run time for the
third algorithm but also reduces the coverage of the redundancy detection.

We have implemented our algorithms in OpenSMT [3] and applied them on
unsatisfiable proofs of 198 examples from plain MUS track of SAT11 competition.
The original algorithm removes 11.97% of clauses in the proofs of the examples.
The first and the second algorithm additionally remove 0.89% and 10.57% of the
clauses respectively. The third algorithm removes almost as many clauses as the
second algorithm in lesser time for the parameter value as low as 10. We also
observe similar pattern in reduction of the unsatisfiable cores of the examples.
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1 Introduction

For the optimization of SAT solvers, it is crucial that a solver can be trained on
a preferably large number of instances for general or domain specific problems.
Especially for domain specific problems the set of available instances can be in-
sufficiently small. In our approach we built large sets of instances by recombining
several small snippets of different instances of a particular domain.

Also the fuzzer utility [3] builds industrial-like SAT instances by combining
smaller pieces. However, these pieces are a combination of randomly created
circuits and are not derived from an existing pool of instances. In Ansotegui [1]
random pseudo-industrial instances are created in a more formal way.

2 Used Methodology

The presented approach requires small building blocks for the generation of new
SAT instances. Thus, at first stage, blocks have to be identificied and extracted
from existing instances. A block is a subset of clauses S ⊂ C of an instance
and induces to distinguish two different types of variables V : internal variables
σ(V ) only appear within the subset of clauses and connector variables γ(V )
also appear in clauses outside the subset. In difference to [3], blocks are neither
directly given nor can be generated from scratch.

The extraction of blocks is based on the connections between variables and
clauses. The computation uses a weighted variable graph (VG) where an edge
between two variables (vertices) exists iff the variables appear in at least one
clause together. The weight of an edge states the number of common clauses for
its incident variables. Using a VG, we apply different clustering algorithms [2] to
split each instance in logically connected blocks. Edges whose two vertices are
placed in different clusters are called connectors.

The clustering of a VG allows the use of different properties and constraints:
e.g. variables may be clustered considering their weighted connectivity or the
degree of coverage among the clauses they occur in. Connector variables within

� This work was supported by the DFG-SPP 1307, project StrAlEnSAT, and by the
BMBF, projects SANITAS (grant 01M3088C) and RESCAR2.0 (grant 01M3195E).
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one block Si are partitioned regarding the blocks (e.g. Sj , . . . , Sk) of their ad-
jacent vertices: {γ(Si)j ∪ . . . ∪ γ(Si)k} = γ(Si). The cardinality of partitions
|γ(Si)j | (= |γ(Sj)i|) constitutes a general connectivity between any two blocks.

With the use of building blocks it is possible to rearrange existing informa-
tion to generate new instances. Different blocks are joined via their connector
variables. Joined variables will then get the same name in the newly created
instance. For the joining of blocks we analyzed different approaches:

(i) External connector variables of different blocks are joined at random.
(ii) Select two blocks Si �= Sj with a pair of equally sized partitions i.e. ∃ m, k :

|γ(Si)m| = |γ(Sj)k|. Randomly join variables from γ(Si)m and γ(Sj)k.
(iii) In difference to (ii) allow the use of connectors of one block more than once.

There may be Si, Sj , St where both Si and Sj are joined with St via γ(St).

The more constraints are given, the more complex and time consuming the
process of finding matching blocks is. Different strategies to tackle this issue may
be applied: Building blocks in demand can be duplicated with renamed variables.
Secondly, connectors that are too hard to be joined may remain unassigned, i.e.
the according variable is treated as internal variable.

3 Results

This paper sketches a method to construct and rearrange several instances of
different sizes based on a given set of SAT benchmarks. The size of a newly
created instance depends on the constraints and number of blocks used.

To meassure the quality of our approach we compared the run-times for cre-
ated instances compared to the runtimes of the orginal instances that were used
for the assembling. Moreover, we used the set of features presented in [4] and
compared some of the properties in the original and the generated instances.
However, with this approach it is very hard to generate instances of a certain
domain that sustain the relation of several properties of [4].

In future work we plan to extend the shown approach to combine extracted
building blocks with generated blocks (such as in [3]). This could especially help
to generate matching blocks on demand.
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Bounded Model Checking (BMC) is a major verification method for finding er-
rors in sequential circuits. BMC accomplishes this by iteratively unfolding a
circuit k times, adding the negated property, and finally converting the BMC
instance into a sequence of satisfiability (SAT) problems. When considering in-
complete designs (i.e. those containing so-called blackboxes), we rather need the
logic of Quantified Boolean Formulas (QBF) to obtain a more precise model-
ing of the unknown behavior of the blackbox. Here, we answer the question of
unrealizability of a property, where finding a path of length k proves that the
property is violated regardless of the implementation of the blackbox. To boost
this task, solving blackbox BMC problems incrementally has been shown to be
feasible [3], although the restrictions required in the preprocessing phase reduce
its effectiveness. In this paper we enhance the verification procedure when us-
ing an off-the-shelf QBF solver, through a stronger preprocessing of the QBF
formulas applied in an incremental fashion.

We started from the idea of preprocessing only the transition relation [2,3], we
obtain ΦTR-pp by avoiding the elimination of the current and next state variables
s and s′ tagging them as don’t touch, as they will appear again in next unfoldings.
We now improve the preprocessing of the QBF problem by keeping a more com-
pact representation of each unfolding k in the QBF preprocessor, and adding only
the new information of unfolding k + 1. What follow is what we name forward-
incremental unfolding. ΦBMC is a preprocessed QBF representation of I0∧T0,1∧
...∧Tk−1,k for any unfolding step k (where I0 is the initial state, and Ti−1,i is the
transition relation from the time-frame i−1 to i) which is permanently stored in
the preprocessor. The state variables sk in ΦBMC are not touched, so that either
the negated property Φk

¬P or the next transition relation Φk,k+1
TR-pp can be con-

nected to ΦBMC. Φ
k
BMC adds Φk

¬P to a copy ΦBMC, and thus represents the k-th
unfolding of the BMC problem. If Φk

BMC is satisfiable (this can be checked by any
QBF solver) the algorithm terminates; otherwise the clauses of the next transi-

tion relation Φk,k+1
TR-pp are added incrementally to the preprocessor, the prefix of

ΦBMC being extended to the right. The new interface variables sk+1 are declared
don’t touch for this incremental run. Similarly, along the lines of [3], and in order
to loosen some restrictions on preprocessing gate outputs, we perform prepro-
cessing in a backward-incremental way. Here, the don’t touch interface variables
are the inputs of the circuit, and can be used for equivalence reasoning.
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To try our incremental preprocessing methods, we modified sQueezeBF, the
preprocessor built into QuBE7.2 [1], to take the QBF formulas incrementally,
and added the possibility to tag variables as don’t touch and treat them ac-
cordingly. As testbed, we used a range of circuit-based benchmarks built upon
some VHDL designs from www.opencores.org, in which parts were blackboxed,
and we show how the performance of the back-end solvers relies on different
preprocessing methods. Table 1 gives the cumulative times needed to solve the
whole benchmark set by a pool of modern QBF solvers, being the first group
search-based (QuBE-nopp is QuBE with its preprocessor disabled), the second
based on resolution/rewriting techniques, and the third based on portfolio ap-
proaches. For each setting, we provide both the cumulative time and the number
of benchmarks solved. The search-based solvers without preprocessing are posi-
tively affected by incremental preprocessing. Rather, there is almost no difference
for Quantor, while AIGSolve, which cannot find the Tseitin encoded logical gates
destroyed by sQueezeBF, does not deal with preprocessed formulas at all. The
same holds for Quaig. AQME can rather take advantage of our incremental pre-
processing techniques, as it cannot properly handle very large formulas. Among
all solvers, incremental preprocessing delivers the most robust performance.

Table 1. QBF results on incomplete circuit designs using various solvers. Times are
given in seconds, adding a penalty of 7,200s for timeouts and memouts.

Solver
standard BMC

procedure
transition relation

preprocessing
backward
incremental

forward
incremental

time (s) #ps time (s) #ps time (s) #ps time (s) #ps

QuBE 15086.95 21 59729.37 14 28231.85 21 38480.09 21
QuBE-nopp 66170.92 14 5251.25 22 8609.86 21 8392.63 21
DepQBF 78225.33 12 20223.02 20 17211.06 21 16572.38 21

Quantor 97591.99 9 98801.89 9 96924.74 9 96772.89 9
AIGSolve 47739.95 16 146406.03 3 151269.91 1 104319.68 8

AQME 96390.80 10 92883.30 10 43972.26 18 76689.74 13
Quaig 83807.77 11 98564.55 9 97791.62 9 98396.94 9
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Satisfiability solvers targeting industrial instances are currently almost always
based on conflict-driven clause learning (CDCL) [5]. This technique can success-
fully solve very large instances. Yet on small, hard problems lookahead solvers [3]
often perform better by applying much more reasoning in each search node and
then recursively splitting the search space until a solution is found.

The cube-and-conquer (CC) approach [4] has shown that the two techniques
can be combined, resulting in better performance particularly for very hard
instances. The key insight is that lookahead solvers can be used to partition the
search space into subproblems (called cubes) that are easy for a CDCL solver
to solve. By first partitioning (cube phase) and then solving each cube (conquer
phase), some instances can be solved within hours rather than days. This cube-
and-conquer approach, particularly the conquer phase, is also easy to parallelize.

The challenge to make this technique work in practice lies in developing ef-
fective heuristics to determine when to stop partitioning and start solving. The
current heuristics already give strong results for very hard instances, but are far
from optimal and require some fine tuning to work well with instances of differ-
ent difficulty. For example, applying too much partitioning might actually result
in a considerable increase of run time for easy instances. On the other hand,
applying not enough partitioning reduces the benefits of cube-and-conquer.

The most important problem in developing an improved heuristic is that in the
partitioning phase no information is available about how well the CDCL solver
will perform on a cube. In CC’s heuristics, performance of CDCL is assumed to
be similar to that of lookahead: if lookahead refutes a cube, CDCL is expected
to be able to refute similar cubes fast, and if CDCL would solve a cube fast,
lookahead is expected to be able to refute it fast too. However, due to the different
nature of lookahead and CDCL, this is not always true.

To improve cutoff heuristics, we propose concurrent cube-and-conquer (CCC):
an online approach that runs the cube and conquer phases concurrently. When-
ever the lookahead solver makes a new decision, this decision is sent to the CDCL
solver, which adds it as an assumption [2]. If CDCL refutes a cube fast, it will
refute it before lookahead makes another decision. This naturally cuts off easy
branches, so that the cutoff heuristic is no longer necessary.

Although this basic version of CCC already achieves speedups, it can be im-
proved further by applying a (slightly different) cutoff heuristic. This heuristic

� The 2nd and 3rd author are supported by FWF, NFN Grant S11408-N23 (RiSE).
The 2nd author is supported by DARPA contract number N66001-10-2-4087.
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attempts to identify cubes similar to those that CDCL already solved, rather
than estimating CDCL performance based on lookahead performance (as origi-
nally in CC). Cutting off has two advantages: often CDCL can already solve a
cube efficiently without the last few decision variables; further partitioning these
already easy cubes only hampers performance. Additionally, cutting off allows
multiple cubes to be solved in parallel.

Other than improving performance of cube-and-conquer by replacing the cut-
off heuristic, CCC also aims at solving another problem: on some instances
(C)CC performs worse than CDCL regardless of the configuration of the solvers
and heuristics. It seems that lookahead sometimes selects a decision ldec which
results in two subformulas F ∧ ldec and F ∧ ¬ldec that are not easier to solve
separately by CDCL. If the decision is not relevant to CDCL search, (C)CC
forces the CDCL solver to essentially solve the same problem twice. We propose
two metrics that can detect this behavior, in which case CCC is aborted within
5 seconds and the problem is solved by CDCL alone.

Our experiments show that CCC works particularly well on crafted instances.
Without selection of suitable instances, cube-and-conquer and CCC cannot com-
pete with other solvers. However the proposed predictor based on CCC accu-
rately selects instances for which cube-and-conquer techniques are not suitable
and for which a CDCL search is preferred. It is thereby able to solve several
more application and crafted instances than the CDCL and lookahead solvers
it was based on. CCC solves 24 more crafted instances within one hour over all
the SAT 2009 and 2011 competition instances than Plingeling [1], where both
solvers use four threads. For application instances, Plingeling solves one more
instance for a one hour timeout but CCC is slightly better for lower timeouts
(anything below 2500 seconds).

We believe that CCC is particularly interesting as part of a portfolio solver,
where our predictor can be used to predict whether to apply cube-and-conquer
techniques. The authors of SATzilla specifically mention in their conclusion that
identifying solvers that are only competitive for certain kinds of instances still
has the potential to further improve SATzilla’s performance substantially [6].
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During local search, clauses may frequently be satisfied or falsified. Modern SLS algo-
rithms often exploit the falsifying history of clauses to select a variable to flip, together
with variable properties such as score and age. The score of a variable x refers to the
decrease in the number of unsatisfied clauses if x is flipped. The age of x refers to the
number of steps done since the last time when x was flipped.

Novelty [5] and Novelty based SLS algorithms consider the youngest variable in a
randomly chosen unsatisfied clause c, which is necessarily the last falsifying variable of
c whose flipping made c from satisfied to unsatisfied. If the best variable according to
scores in c is not the last falsifying variable of c, it is flipped, otherwise the second best
variable is flipped with probability p, and the best variable is flipped with probability
1-p. TNM [4] extends Novelty by also considering the second last falsification of c,
the third last falsification of c, and so on... If the best variable in c most recently and
consecutively falsified c several times, TNM considerably increases the probability to
flip the second best variable of c.

Another way to exploit the falsifying history of clauses is to define the weight of a
clause to be the number of local minima in which the clause is unsatisfied, so that the
objective function is to reduce the total weight of unsatisfied clauses.

In this paper, we propose a new heuristic by considering the satisfying history of
clauses instead of their falsifying history, and by modifying Novelty as follows: If the
best variable in c is not the most recent satisfying variable of c, flip it. Otherwise, flip
the second best variable with probability p, and flip the best variable with probability
1-p. Here, the most recent satisfying variable in c is the variable whose flipping most
recently made c from unsatisfied to satisfied. The intuition of the new heuristic is to
avoid repeatedly satisfying c using the same variable.

Note that in a clause c, the most recent falsifying variable and the most recent satisfying
variable can be the same variable. In this case, the variable flipped to make c from unsat-
isfied to satisfied was re-flipped later to make c from satisfied to unsatisfied (there can be
other flips between the two flips), and vice versa. In our experiments using instances from
the 2011 SAT competition, this is the case in the randomly selected unsatisfied clause in
more than 95% steps for random 3-SAT. The percentage is less than 90% for random
5-SAT and 7-SAT, and for crafted instances. So the new heuristic is expected to behave
similarly as Novelty on random 3-SAT, but differently for other SAT problems.

We propose a new SLS algorithm called SatTime that implements the new heuristic.
Given a SAT instance φ to solve, SatTime first generates a random assignment and while
the assignment does not satisfy φ, it repeatedly modifies the assignment as follows:

1. If there are promising decreasing variables, flip the oldest one;
2. Otherwise, randomly pick an unsatisfied clause c;
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3. With probability dp, make a diversification step with c. With probability 1-dp, con-
sider the best and second best variables in c according to their score (breaking tie
in favor of the least recently flipped one). If the best variable is not the most recent
satisfying variable of c, then flip it. Otherwise, with probability p, flip the second
best variable, and with probability 1-p, flip the best variable.

The promising decreasing variable and diversification probability dp were defined in
[3]. Probability p is adapted during search according to [2] and dp=p/10. We also im-
plement UnSatTime, which is the same as SatTime, except that the word “satisfying” is
replaced with “falsifying” in UnSatTime.

We run ten times SatTime and UnSatTime on random and crafted instances from the
2011 SAT competition to compare the two heuristics respectively based on satisfying
and falsifying variables. Each solver is given 5000 seconds to solve each instance as
in the competition, but on a Macpro with XEON 2.8 Ghz (early 2008) under Macosx,
which is slower than the computer in the competition. For random 3-SAT, SatTime and
UnSatTime are similar as expected. For random 5-SAT and 7-SAT, SatTime solves in
the average 152.6 instances while UnSatTime solves 140.1 instances. For crafted, Sat-
Times solves in the average 108.5 instances, while UnSatTime solves 103.2 instances.

SatTime participated in the 2011 SAT competition and won a silver medal in the ran-
dom category1. Especially, SatTime beat easily all the Conflict Driven Clause Learning
(CDCL) solvers in the crafted sat category (SatTime solved 109 instances while the
best CDCL only solved 93 instances), although SLS has been considered less effective
than CDCL for structured SAT problems for a long time. This is the first time that a
SLS solver enters the final phase of the SAT competition in the crafted category and
beats there all the CDCL algorithms on structured SAT problems.

In the future, we plan to improve SatTime by considering more satisfying variables
of a clause (the 2nd last satisfying variable, the 3rd, and so on...), and by designing
heuristics exploiting both satisfying history and falsifying history of clauses.
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Variable properties such as score and age are used to select a variable to flip. The score
of a variable x refers to the decrease in the number of unsatisfied clauses if x is flipped.
The age of x refers to the number of steps done since the last time when x was flipped. If
the best variable according to scores in a randomly chosen unsatisfied clause c is not the
youngest in c, Novelty [4] flips this variable. Otherwise, with probability p (noise p),
Novelty flips the second best variable, and with probability 1-p, Novelty flips the best
variable. Novelty+ [1] randomly flips a variable in c with probability wp and does as
Novelty with probability 1-wp. Novelty++ [3] flips the least recently flipped variable
(oldest) in c with probability dp, and does as Novelty with probability 1-dp.

The above approaches just use the current properties of variables to select a variable
to flip. These approaches are effective for the problems that do not present uneven distri-
bution of variable and/or clause weights during the search. In other words, problems can
be solved using these approaches when there are no clauses or variables whose weight is
several times larger than the average during the search [6]. However, when solving hard
random or structured SAT problems using these approaches, variable or clause weight
distribution is often uneven. In this case, the falsification history of clauses and/or the
flipping history of variables during the search should be exploited to select a variable to
flip for the problems to be solved.

In this paper, we present a noise mechanism that exploits the history information
to determine noise p. For a falsified clause c, let var fals[c] denote the variable that
most recently falsifies c and let num fals[c] denote the number of the most recent
consecutive falsifications of c due to the flipping of this variable. If the best variable
in c is not var fals[c], this variable is flipped. Otherwise, the second best variable
is flipped with probability p, where p is determined as a function of k=num fals[c]:
{20, 50, 65, 72, 78, 86, 90, 95, 98, 100}, i.e., p=0.2 if k=1, p=0.5 if k=2, ..., p=1 if k ≥
10. This probability vector was empirically turned using a subset of instances.

Another adaptive noise mechanism was introduced in [2] to automatically adjust
noise during the search. We refer to this mechanism as Hoos’s noise mechanism.

SLS solvers TNM and adaptG2WSAT2011 , described in Fig. 1, are both based on
Novelty, but use noise p determined by our noise mechanism at each uneven step, and
use noise p1 adjusted by Hoos noise mechanism at each even step, to flip the second
best variable in the randomly selected unsatisfied clause c when the best variable in c is
the youngest in c. In TNM , a step is even if the variable weight distribution currently
is even (e.g., all variable weights are smaller than 10 × the average variable weight). In
adaptG2WSAT2011 , a step is even if c currently has small weight (e.g., smaller than
10 × the average clause weight). Otherwise the step is uneven.

A. Cimatti and R. Sebastiani (Eds.): SAT 2012, LNCS 7317, pp. 479–480, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



480 C.M. Li, W. Wei, and Y. Li

1: A← randomly generated truth assignment;
2: for flip ←1 to Maxsteps do
3: if A satisfies SAT-formula F then return A;
4: adjust noise p1 according to Hoos’s noise mechanism;
5: if there is any promising decreasing variable
6: then y ← the promising decreasing variable with the largest score;
7: else randomly select an unsatisfied clause c;
8: if the current search step is even
9: then

10: y ← heuristic Novelty+ applied to c using probability p1 (and wp=p1/10);
11: else
12: determine noise p according to var fals[c] and num fals[c];
13: y ← heuristic Novelty++ applied to c using probability p (and dp=p/10);
14: A← A with y flipped;
15: return Solution not found;

Fig. 1. Algorithms TNM and adaptG2WSAT2011

Our noise mechanism is different from Hoos’s noise mechanism in two respects.
First, our mechanism uses the history of most recent consecutive falsifications of a
clause due to the flipping of one variable, while Hoos’s noise mechanism observes the
improvement in the objective function. Second, the noise determined by our mechanism
is clause-specific, while the noise adjusted by Hoos’s noise mechanism is not.

Novelty , Novelty+, or Novelty++ considers the last falsification of c. TNM and
adaptG2WSAT2011 extend them by considering more historical falsifications of c.

TNM won a gold medal in the 2009 SAT competition in the random category and is
competitive for crafted instances. In the 2011 SAT competition, ppfolio won two gold
medals in the crafted sat category, because TNM solved 75 instances, while its other
four constituent algorithms solved 24, 18, 7, and 3 instances, respectively [5]. Solver
adaptG2WSAT2011 performs better than TNM . In the 2011 SAT competition, it
solved 7 more instances than TNM in the random category in phase 1. In addition,
adaptG2WSAT2011 solved 99 instances in the crafted category in phase 1, while the
best CDCL solver solved 81 instances in phase 1 (and 93 instances in phase 2).
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Introduction. Parallel portfolio-based algorithms have become a standard
methodology for building parallel algorithms for SAT. In this methodology, dif-
ferent algorithms (or the same one with different random seeds) compete to solve
a given problem instance. Moreover, the portfolio is usually equipped with coop-
eration, this way algorithms exchange important knowledge acquired during the
search to solve a given problem instance. Portfolio algorithms based on complete
solvers exchange learned clauses which are incorporated within each search en-
gine (e.g. ManySAT [1] and plingeling), while those based on incomplete solvers
[2] exchange the best assignment for the variables found so far in order to prop-
erly craft a new assignment for the variables to restart from. These strategies
range from a voting mechanism where each algorithm in the portfolio suggests
a value for each variable to probabilistic constructions.

In this paper, we focus on incomplete algorithms based on local search and
concretely on Sparrow [3], the winner of the latest SAT competition which out-
performed other local search participants in the random category.

Experiments. In the experiments reported in this paper, we consider two sets
of instances of the SAT’11 competition: random and crafted. In both cases we
only consider known SAT instances. This way, we consider a collection of 369
random and 145 crafted instances. All the experiments were performed on the
Grid’5000 platform, in particular we used a 44-node cluster with 24 cores (2
AMD Opteron 6164 HE processors at 1.7 Ghz) and 44 GB of RAM per node.

We used openMPI to build our parallel solver on top of Sparrow, which is
implemented in UBCSAT. Additionally, we equipped this solver with the coop-
erative strategy Prob-NormalizedW proposed in [2]. Notice that unlike [2] where
the best portfolio construction was selecting different and complementary algo-
rithms, the Sparrow solver outperforms other local search algorithms, at least for
random instances. Therefore, here we only use independent copies of Sparrow.

Each instance was executed 10 times with a timeout of 5 minutes. Table 1
shows the total number of solved instances (#Sol) calculated as the median
across the 10 runs, the Penalized Average Runtime (PAR) computes the av-
erage runtime (in seconds) but where unsolved instances contribute 10 times
the time cutoff, and the speedup is calculated using the following formula:
Speedup=PAR1/PARp, where the sub-index indicates the number of cores.
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As can be observed in this table the cooperative portfolio performs better
than the non-cooperative one for random instances when using up to 16 cores,
however, after this point the performance degrades as the number of cores in-
creases. We attribute this to the fact that increasing the number of cores in-
cludes more diversification, so that algorithms in the portfolio might restart
with quasi-random assignment for the variables. Moreover, the communication
overhead induced by MPI becomes another factor to consider. On the other
hand, for crafted instances both portfolios exhibit a close performance up to 16
cores, after this point the non-cooperative portfolio shows a small performance
improvement in the range of 32 to 256 cores. Then it seems that the algorithm
reach a performance plateau, where little improvement is observed. Finally, it is
worth mentioning that overall, parallel portfolios with and without cooperation
exhibit a better speedup for random instances. We attribute this to the fact that
solutions might be uniformly distributed in the search space, while that this is
not necessarily the case for crafted instances.

Table 1. Performance evaluation of portfolios with and without cooperation

Total cores
random crafted

Prob NormalizedW No Cooperation Prob NormalizedW No Cooperation
#Sol PAR Speedup #Sol PAR Speedup #Sol PAR Speedup #Sol PAR Speedup

1 272 743.7 – 272 743.7 – 85 1150.8 – 85 1150.8 –
4 318 408.9 1.81 309 467.9 1.58 93 985.7 1.16 92 995.8 1.15
8 338 306.9 2.42 326 365.4 2.03 94 941.6 1.22 97 912.2 1.26
16 338 256.8 2.89 335 281.6 2.64 101 861.2 1.33 101 851.5 1.35
32 334 320.9 2.31 342 235.1 3.16 102 821.3 1.40 104 799.4 1.43
64 292 601.6 1.23 346 187.8 3.96 102 811.5 1.41 104 756.2 1.52
128 272 726.0 1.02 355 152.0 4.89 103 823.5 1.39 105 737.3 1.56
256 265 779.8 0.95 357 125.0 5.94 101 830.3 1.38 108 708.2 1.62

Conclusions and Ongoing Work. This paper has presented an experimental
analysis of parallel portfolios of local search algorithms for SAT with and with-
out cooperation. Overall, the experiments show that cooperation is a powerful
technique that helps to improve performance up to a given number of cores for
random instances (usually 16 cores), after this point performance degrades. On
the other hand, the simple non-cooperative scheme seems to scale reasonably
well for a large number of cores. Our current work involves limiting coopera-
tion to groups of solvers (e.g. 16 per group), each group exploits cooperation as
proposed in [2] and limited information is exchanged between groups of solvers.
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Introduction. It is well-known that the order in which variables are processed
in a DPLL-style SAT algorithm can have a substantial effect on its run-time.
Different heuristics, such as VSIDS [2], have been proposed in the past to obtain
good variable orderings. However, most of these orderings are general-purpose
and do not take into account the additional structural information that is avail-
able on a higher problem description level. Thus, structural, problem-dependent
strategies have been proposed (see, e.g., the work of Marques-Silva and Lynce
on special strategies for cardinality constraints [1]).

In this paper, we propose a new, structural variable ordering heuristic that is
specific to the relational model finder Kodkod [3]. Kodkod transforms first-order,
relational logic formulas into equisatisfiable propositional formulas and solves
them using a SAT solver. Structural properties of a Kodkod problem that can
efficiently be extracted in its first-order relational representation get lost in its
propositional encoding. Our proposed heuristic computes the “constrainedness”
of relations, and gives priority to the propositional variables that stem from the
most constrained relations. The constrainedness is computed from Kodkod’s ab-
stract syntax tree, and thus takes the structure of the original relational formula
into account.

Kodkod is a model finder for a widely-used first-order relational logic—a con-
straint language that combines first-order logic and relational algebra, and is
augmented with transitive closure, integer arithmetic, and cardinality opera-
tors. It has been used as the backend engine of several software analysis tools
in order to find bugs in the design and implementation of various software. A
problem in Kodkod consists of a universe declaration, a number of relation dec-
larations, and a formula over those relations. The universe defines a finite set
of uninterpreted atoms that can occur in the models of the problem. A rela-
tion declaration specifies both an upper and a lower bound on the value of that
relation. An upper bound of a relation denotes all the tuples that the relation
may contain, whereas a lower bound denotes all the tuples that it must contain.
Relation bounds are used to specify various information such as partitioning the
universe into types, or defining a partial model for the problem.

Method. Based on the observation that shuffling variables in the SAT encoding
produced by Kodkod can have a tremendous effect on the run-time of the SAT
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solver, we developed strategies to obtain better, Kodkod-specific orderings. We
experimented with two ways to modify MiniSAT’s standard variable ordering:

1. Initializing VSIDS: Instead of using MiniSAT’s default initialization that
assigns variables in the same order in which they occur in the CNF file, we
used a Kodkod-specific initial order.

2. Overriding VSIDS: Here, we partition variables into subsets (S1, . . . , Sk),
and assign variables in Si before any variable occurring in a subset Sj , j > i.
Within each subset, we use VSIDS scores to order variables.

Kodkod-specific variable orderings are computed based on the constraining effect
that a subformula exerts on a relation’s possible values. For example, a subset for-
mula R ⊆ S, written as “R in S” in Kodkod’s language, forces the entries of the
relationR to be false, as soon as the corresponding entries in S are false. Similarly,
for a cardinality restriction,written as “#R <= c” inKodkod,where the constant c is
small,many entries inRhave to be set to false. Thus, the constraining effect of a car-
dinality restriction is usually high.We therefore try to assign variables correspond-
ing to such relations first. The intuition is that the number of unit propagations on
the SAT level can be maximized thereby. In our approach, we iteratively compute
the effect of highly constraining operators (like subset or cardinality restrictions)
on the relations that occur in the constrained relational expressions. The effect is
summarized as a weight that we assign to each relation.

Conclusion. We have implemented several variants of the heuristic outlined
above in a modified version of MiniSAT. Experiments show that the initialization-
based approach is superior to score-overriding. The initial scores blur rapidly
while search advances, but, since MiniSAT is a learning solver, the impact of
score-initialization lasts longer than the induced priorities remain intact.

Experiments with score-overriding reveal no evident trend regarding runtime.
However, using an initialization-based strategy the SAT solving run-time can
be improved considerably in many cases. On a test set of 91 Kodkod problems,
run-times could be improved by a factor of two or more for 26 instances (only
for 6 problems, the runtime got worse by a factor of two or more); the maximal
speed-up was over 800, while the worst deterioration was less than a factor of 4.
Run-time was improved on 58 instances and deteriorated on 33.
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Despite the semantic simplicity of cardinality constraints, the CNF encodings
typically used to solve them invariably turn one constraint into a large number
of CNF clauses and/or auxiliary variables. This incurs a significant cost, both
in space complexity and in runtime, that could be avoided by reasoning about
cardinality constraints directly within a solver. Adding a single, native cardi-
nality constraint instead of numerous clauses and/or auxiliary variables avoids
any space overhead and simplifies the solver’s procedures for reasoning about
that constraint. Inspired by the simple observation that clauses are cardinality
constraints themselves, and thus cardinality constraints generalize clauses, this
work seeks to answer the question: How much of the research on developing
efficient CNF SAT solvers can be applied to solving cardinality constraints?

Additional motivation came from our experience with a native implementa-
tion of cardinality constraints that was included in some early versions of the
MiniSAT solver [3] as a simple, unoptimized example of the solver’s ability to
easily incorporate non-clausal Boolean constraints. That ability incurred un-
wanted overhead and was removed in later versions, and the native cardinality
constraint implementation received little attention compared to the work done
on CNF encodings. In addition to those early versions of MiniSAT, there have
been other implementations of cardinality constraints that could be considered
“native,” but we are aware of none that integrate the constraints into a SAT
solver by simply extending the existing clauses to incur little to no overhead.

For example, any Pseudo-Boolean (PB) solver or Satisfiability Modulo The-
ories (SMT) solver that handles linear integer arithmetic can solve cardinality
constraints directly, as their constraints subsume both clauses and cardinality.
Numerous PB solvers have been developed by extending a SAT solver, but lit-
tle attention was paid to their performance on CNF. We are aware of only one
experimental comparison between a PB solver and its corresponding SAT solver
on CNF instances [2], comparing PBChaff with ZChaff, and the PB version was
found to be consistently slower; the extension to more expressive constraints
came at a noticeable cost. On the contrary, by restricting the solver to cardinal-
ity constraints and not general PB constraints, the implementation in this work
retains those properties and efficiencies.

Asín, et al. [1] evaluated an “SMT-based approach” to cardinality constraints
that solved them without encoding them to CNF. The “SMT” implementation
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was created by “coupling” two solving engines, which does not permit the tight
integration of cardinality into the SAT solver done in this work, and it did not
perform well compared to CNF encodings. Marques-Silva and Lynce [4] explored
modifications to a SAT solver that improved its efficiency when using a particular
CNF encoding, but it still faced the inherent space complexity of such encodings
and was limited to AtMost constraints with a bound of 1.

The aim of this work is to generalize a state-of-the-art SAT solver at negli-
gible cost, producing a “cardinality solver” we call MiniCARD, and to exhibit
the performance of MiniCARD compared to some of the best-performing CNF
encodings of cardinality constraints. MiniCARD outperforms CNF encodings
of cardinality constraints on all pure-cardinality instances tested, and instances
with a mix of clauses and cardinality constraints exhibit mixed results indicating
some effect beyond the performance of the constraints themselves. The modifi-
cations to the solver are minimal, and it retains its performance on pure CNF
instances. Given the feasibility of achieving increased expressive power over CNF
with minor, performance-neutral changes to a state-of-the-art CNF solver, it is
well worth pursuing further research on cardinality solvers.

Several direction of future research are immediately suggested by this work.
The first is to more completely evaluate the performance of MiniCARD relative
to other means of solving cardinality constraints, especially SAT solvers with
preprocessing. Investigations of specific instances are suggested as well, such as
determining how different cardinality implementations affect applications like
CAMUS and MSU4. And finally, cardinality constraints may be a better target
than CNF for many types of problems and constraints for which CNF encodings
have been developed, such as PB constraints. The greater expressive power of
cardinality solvers with equivalent performance on clauses could enable encod-
ings that are both simpler and more efficient than pure CNF encodings.

Acknowledgments. Thanks to Albert Oliveras for providing the MSU4 bench-
marks and to Niklas Sörensson for helpful discussions and advice regarding
MiniSAT.
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2QBF is a restriction of QBF, in which at most one quantifier alternation is
allowed. This simplifying assumption makes the problem easier to reason about,
and allows for simpler unit propagation and clause/cube learning procedures. We
introduce two new 2QBF algorithms that take advantage of 2QBF specifically.
The first improves upon earlier work by Ranjan, Tang, and Malik (2004), while
the second introduces a new ‘free’ decision heuristic that doesn’t need to respect
quantifier order. Implementations of both new algorithms perform better than
two state-of-the-art general QBF solvers on formal verification and AI planning
instances.

Ranjan, Tang, and Malik [4] introduced an algorithm for 2QBF in which two
standard SAT solvers cooperate to solve the formula; in brief, ‘Solver B’ solves
the (complements of) the learnt cubes, while ‘Solver A’ solves the input formula
φ under Solver B’s current assignment to the universally quantified variables.
The solvers iterate back and forth until either fails to find a satisfying solution.

We improved upon this algorithm so that it can be implemented in just a
single augmented SAT solver, rather than two. This solver stores two differ-
ent types of learnt clauses: a set φ∃ of existential clauses (corresponding to the
clauses in Solver A) and a set φ∀ containing the complements of learnt cubes
(corresponding to those in Solver B). As in a standard DPLL-based QBF solver,
this algorithm requires all universals to be assigned before any existentials can
be chosen as decision variables. This algorithm resembles a special case of stan-
dard cube-learning QBF solvers, however, we introduce some new termination
conditions that are specific to 2QBF.

These termination conditions are sufficient to ensure that the solver never
has to handle the case where the implication graph of a conflict contains both
universally and existentially quantified literals at the same decision level. This
dramatically simplifies clause/cube learning: any valid cut in the implication
graph at the current decision level is a learnt existential clause iff the decision
variable was existential, and is (the complement of) a learnt cube iff the decision
variable was universal. In contrast, Quaffle-based QBF solvers require several
additional conditions to be met to ensure that conflict resolution does not resolve
learnt cubes with clauses [1], which complicate both clause learning and unit
propagation; these conditions are implicitly met in 2QBF (so long as the two
shortcuts above are handled), and are met by the standard 1-UIP clause learning
algorithm [2] without modification. We implement this simple 2QBF algorithm
in Mini2QBF, based on MiniSat (version 1.14), and find that it is faster than
state-of-the-art QBF solvers DepQBF [5] and QuBE [6] on real-world formal
verification and AI planning instances (see Table 1).
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Table 1. Results on the 2QBF track instances from QBF Eval ’10, after pre-processing
with sQueezeBF [7]. 86 of the 2QBF track instances were solvable by pre-processing
alone, leaving 114. Average runtimes exclude pre-processing, and are computed over
only the 91 instances that all four solvers solved within the 900 second cutoff.

Mini2QBF Free2QBF DepQBF QuBE 7.2

Avg. Runtime 2.4s 20.4s 10.6s 10.2s
# Solved 99/114 95/114 94/114 93/114

Like standard DPLL-based QBF solvers, this algorithm requires the decision
heuristic to respect the quantifier order: given a formula of the form ∀xy∃zφ,
where φ is a CNF, x and y must be assigned (either through a decision or unit
propagation) before the decision heuristic can pick the variable z as a decision.
It has been a longstanding goal of the QBF community to produce a QBF solver
with a ‘free’ decision heuristic that does not need to make decisions in quantifier
order [3], however, the only such solver previously introduced (a second 2QBF
algorithm from [4]) proved to be too slow for practical applications.

We modify Mini2QBF so that it has a free decision heuristic (using a differ-
ent method than the one introduced in [4]). This solver is able to learn valid cubes
and clauses by implicitly re-arranging the implication graph to prevent clauses and
cubes from being resolved with each other during conflict analysis (which would
otherwise produce ‘mixed terms’ that are neither valid cubes nor valid clauses).
As a consequence of this re-arrangement the solver is biased towards deciding uni-
versal variables at earlier decision levels. We find that although this new solver,
Free2QBF, is slower than Mini2QBF, it is competitive with both general QBF
solvers, making this the first fast 2QBF solver with a free decision heuristic.
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We present work that we have done so far towards devising a method for solving
a specific case of SAT problems: UNSAT 3-SAT. Our goal is not to improve
general SAT solving, but to focus on improving current techniques to solve 3-
SAT and instances which have 2-SAT and 3-SAT structures within them. We
have restricted ourselves to UNSAT instances. Even with these restrictions, these
types of instances are still important, as such occur in practice (e.g. Velev’s
hardware verification instances [5]).

We decompose the solution space into simpler pieces, which are then solved
with an existing solver: MiniSat. One can view the decomposition as a pre-
processing step, in which the original problem is decomposed into a number of
smaller problems, which are then solved and combined to obtain the solution of
the original problem. After processing each smaller problem, we try to extract
important information obtained from the solution process, via clause learning (a
modification of Minisat’s clause learning strategy is used). Any existing solver
may be used as the underlying solver, as long as it outputs sufficient information
about the solution process.

A considerable amount of research has already been done in this direction.
Look-Ahead techniques [7] and backbone heurististics [8] have proven to be good
in the case of random 3-SAT. However, these approaches are noteably weaker
than Conflict Driven Clause Learning methods (e.g. [4], [1], [2]) on industrial
instances, while these solvers are weaker on random instances. A hybrid approach
has been proposed in [10]. For a foundation of branching heuristics, see [6]. For
decomposition strategies, see [3] i [9].

Since we are dealing with 3-SAT and similar instances, when choosing variables
for the decomposition we pick those variables which appear as frequently as pos-
sible within the instance, so that they simplify as many clauses as possible, but at
the same time we want our chosen variables to guide and narrow the assignment
processes for as many other variables as possible (e.g. via implications).

We have compared our solver D-Sat (Decomposition Sat) with MiniSat on
360 different instances. These include random UNSAT 3-SAT and industrial
instances, which are not purely 3-SAT instances. Most of the instances tested
have been used in SAT competitions.
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The experimental results have shown that D-sat performs better than MiniSat
on both the random 3-SAT and certain types industrial instances, even though
our solver uses MiniSat as its underlying solver. It is known that MiniSat does
poorly on random instances, so the comparison on those instances is not of
interest and in fact our solver still cannot compete with state-of-the-art random
SAT solvers. However, results obtained on the industrial instances, which have
a 2-SAT and 3-SAT structure, show promise, since MiniSat is known to perform
good on these instances and our solver performs even better.

There remain a number of issues that must be handled in order to fully exploit
our method. In some cases, clause learning can noteable hurt the execution
time. Defining a good order for the assumptions generated would allow us to
solve satisfiable instances much faster. Modifying an existing solver, rather than
using one as our underlying solver or even writing a new solver could potentially
leading to better results. These are only a few problems out of many that need
to be addressed in order to achieve full potential of our method. Taking into
consideration the experimental results obtained, we trust that further research
in this direction will prove to be worthwhile.
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Restarts and activity based search are two important and correlated components
of modern SAT solvers. On the one hand, updating the activity of the variables
involved in conflict analysis aims to circumscribe the most relevant part of the
Boolean formula. While restarts allow the solver to reorder the variables by fo-
cussing the search on this relevant subformula. This combination allows the solver
to intensify the search and at the same time helps to avoid trashing. This well
known strong connexion between restarts and variable ordering have also a direct
consequence on clause learning. The effect of restarts on clause learning have been
widely investigated (e.g. [1,5]). Our intuition is that if SAT solvers are able to solve
efficiently application instances with millions of variables and clauses, this means
that the most relevant part of the formula (or subset of variables) is of reasonable
size. This is related to the observation previouslymade on the size of backdoor sets
observed on many applications domains. In our previous work, and in the paral-
lel portfolio ManySAT solver, we have shown how the two well known principles
of diversification and intensification principles can be combined in the context of
Masters/Slaves architecture [2]. The Masters perform an original search strategy,
ensuring diversification, while the remaining units, classified as Slaves are there to
intensify their master’s strategy. By intensification we mean that the slave would
explore ”differently” around the search space explored by the Master.

In this paper, we propose to push forward this intensification based search
by collecting the variables encountered during the last conflict analysis. More
precisely, at each conflict, a bottom up traversal of the implication graph is
achieved until the last UIP and the set of variables corresponding to the differ-
ent visited nodes are collected in a queue. At each restart, the solver branch in
priority on the collected variables. When all the variables from the queue are
assigned, the solver follow the usual VSIDS branching heuristic [3]. In this way,
the variables closest to the conflict side are assigned first using the progress sav-
ing literals polarities [4]. This simple intensification principle achieves significant
improvements when integrated to MiniSAT 2.2 SAT solver. Our tests were done
on Intel Xeon quadcore machines with 32GB of RAM running at 2.66 Ghz. For
each instance, we used a timeout of 1 hour of CPU time. We used the whole
set of application instances taken from the 2009 and 2011 SAT competitions.
The number of different instances corresponds to 559. MiniSAT with our inten-
sification strategy (MiniSat+ Intensification) solves 12 more instances than
MiniSat without intensification. These results are depicted in figure 1. It presents
the cumulated time results i.e. the number of instances (x-axis) solved under a
given amount of time in seconds (y-axis). The curve on the left (respectively
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Fig. 1. Results on 2009-2011 SAT competitions (Applications category)

Table 1. Results on some families of application instances

instance SAT? MiniSat MiniSat+I instance SAT? MiniSat MiniSat+I
goldb-heqc-alu4mul N 140.94 128.64 9dlx vliw at b iq1 N 1964.90 28.86
goldb-heqc-term1mul N 54.79 38.40 9dlx vliw at b iq2 N – 70.07
goldb-heqc-i10mul N 187.06 129.14 9dlx vliw at b iq7 N 2642.42 1282.10
goldb-heqc-dalumul N 1663.95 181.31 9dlx vliw at b iq3 N – 189.83
goldb-heqc-frg1mul N – 715.66 9dlx vliw at b iq4 N 1750.56 283.74
goldb-heqc-x1mul N – 2500.59 9dlx vliw at b iq8 N 2293.63 1633.04
velev-engi-uns-1.0-4nd N 9.12 14.60 9dlx vliw at b iq9 N 2410.76 2572.97
velev-live-uns-2.0-ebuf N 18.53 9.84 9dlx vliw at b iq5 N 1631.90 464.47
velev-pipe-sat-1.0-b7 Y 21.51 23.51 9dlx vliw at b iq6 N 1267.90 840.68
velev-vliw-uns-4.0-9C1 N 3378.39 112.87 velev-pipe-uns-1.0-8 N – 414.21
velev-pipe-o-uns-1.1-6 N 619.57 28.26 velev-vliw-uns-4.0-9-i1 N 2095.14 592.52
velev-pipe-o-uns-1.0-7 N 446.30 441.81 velev-pipe-sat-1.0-b10 N 77.69 4.61

right) hand side, show the results obtained on satisfiable (respectively unsatis-
fiable) instances. The improvements are even more important on unsatisfiable
instances. Table 1 shows the results on some known families of SAT instances.
Our motivation behind this paper, is to show that there remains many rooms for
future improvements of the SAT variable ordering heuristics. To the better of
our knowledge, this issue have not received much attention. The improvements
obtained by our simple intensification strategy, suggests that further studies on
the connection between restarts and variables ordering heuristics are needed.
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Among many theories supported by SMT solvers, the theory of finite-precision
bit-vector arithmetic is one of the most useful, for both hardware and soft-
ware systems verification. This theory is also particularly useful for some spe-
cific domains such as cryptography, in which algorithms are naturally expressed
in terms of bit-vectors. Cryptol is an example of a domain-specific language
(DSL) and toolset for cryptography developed by Galois, Inc.; providing an
SMT backend that relies on bit-vector decision procedures to certify the cor-
rectness of cryptographic specifications [3]. Most of these decision procedures
use bit-blasting to reduce a bit-vector problem into pure propositional SAT. Un-
fortunately bit-blasting does not scale very well, especially in the presence of
operators like multiplication or division. For example, the equality x2

[n] − 1[n] =

(x[n] + 1[n]) × (x[n] − 1[n]) is a simple consequence of distributivity and asso-
ciativity laws; but even for small values of n the bit-level representation of this
formula is so huge that it is intractable by current SAT solvers. The main rea-
son for this is the loss of high-level algebraic structure present in the origi-
nal decision problem. The point here is that one can exploit algebraic proper-
ties concerning the domain of bit-vectors to rewrite this problem into an eq-
uisatisfiable, but computationally less hard, problem. For instance, the above
equality can be proved valid as follows (subscripts are omitted for clarity):
x2 − 1 = (x + 1) × (x − 1) ≡ {distributivity × 3; associativity} x2 − 1 =
x2+x−x−1 ≡ {inverse; right identity} x2−1 = x2−1 ≡ {reflexivity} true.
Modern SMT solvers already include a simplification phase that performs some
rewriting on the input problem prior to bit-blasting [4]. Nevertheless, SMT
solvers have to deal with a wide range of application domains, and hence the set
of rewrite rules employed for simplification inevitably excludes many rules that
are useful for some particular domains but may be inconvenient for others.

The present work was motivated by the difficulties reported by the Galois Cryp-
tol team in achieving automatic equivalence checking for public-key cryptography
(PKC). PKC is particularly hard because it involves multiplication and modu-
lar exponentiation on long bit-vectors. Hence, the bit-level representation of any
PKC algorithm is usually so huge that such equivalence problems are too hard for
current SAT solvers, unless a significant amount of rewriting is performed before
bit-blasting. SMT solvers employing high-level rewriting-based techniques have
been shown to be promising, but they are still insufficiently powerful to handle
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hard problems, such as those resulting from PKC. This problemmay be addressed
by combining custom rewrite patterns, somehow encapsulating domain-specific
proof strategies, with standard bit-vector decision procedures. Our first attempt
consisted in extending SMT specifications with algebraic properties provided in
the form of quantified formulas, expecting the SMT solver to use them as rewrite
rules. Unfortunately, we have found that most of the times SMT solvers do not
use these rules effectively, and even become quite unpredictable in the presence of
universal quantifiers. After this failed attempt, we prototyped a rewriting system
in Maude [1] that focuses on simplifying PKC equivalence problems. Employ-
ing a set of 200 handcrafted rewrite rules and a very simple rewriting strategy
enabled us to achieve quite promising results. For instance, this system proved
the correctness of a 16-bit peasant multiplier and SHA-1 implementations in a
few seconds, while the 3.2 version of Z3 [2] times out (16 hours) for the peasant
case and quickly runs out of memory (2 GB) solving the SHA-1 one. Using this
rewriting system as a preprocessing step for Z3 we also achieved good speedups
for some equivalence problems, such as a speedup of 2 for an 8-bit modular
exponentiation algorithm.

Even though there is still considerable work to be done in order to reach a
reasonable degree of automation for PKC equivalence checking, the above results
show the potential of the term-rewriting approach. In the same way that proof
assistants allow defining custom tactics to encapsulate specific proof techniques,
our intention is to encode those proof tactics as rewrite patterns in the context
of SMT solving. This allows simplifications that drastically reduce the size of the
input problem before bit-blasting, leading to better overall performance. Ideally,
SMT solvers should allow easy customization of their solving strategies with such
rules —we are aware of some recent work in this direction. It is worth noting
that we are not relying on complex combinations of rewriting strategies, which
would make our approach more fragile and less scalable. Finally, Maude turned
out to be a good platform for experimentation, but it significantly restricts the
strategies that we could employ and presents some limitations with respect to
achieving perfect subterm sharing. Thus we are presently working on a frame-
work to specify custom rewriting-based simplifications for fixed-size bit-vector
arithmetic, that should allow us to overtake the above limitations.

Acknowledgement. This work is funded by National Funds through the FCT
- Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science
and Technology) within project PTDC/EIA-CCO/105034/2008.

References

1. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: The Maude 2.0 System. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706,
pp. 76–87. Springer, Heidelberg (2003)



Using Term Rewriting to Solve Bit-Vector Arithmetic Problems 495

2. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

3. Erkök, L., Matthews, J.: Pragmatic equivalence and safety checking in Cryptol.
In: Proceedings of the 3rd Workshop on Programming Languages Meets Program
Verification, PLPV 2009, pp. 73–82. ACM, New York (2008)

4. Franzen, A.: Efficient Solving of the Satisfiability Modulo Bit-Vectors Problem and
Some Extensions to SMT. Ph.D. thesis, University of Trento (March 2010)



Learning Polynomials over GF(2) in a SAT Solver
(Poster Presentation)

George Katsirelos1 and Laurent Simon2

1 INRA, Toulouse
george.katsirelos@toulouse.inra.fr

2 LRI, Univ Paris 11
simon@lri.fr

1 Introduction

One potential direction for improving the performance of SAT solvers is by using a
stronger underlying proof system, e.g., [1]. We propose a step in improving the learning
architecture of SAT solvers and describe a learning scheme in the polynomial calculus
with resolution (PCR), a proof system that generalizes both resolution and Gaussian
elimination. The scheme fits the general structure of CDCL solvers, so many of the
other techniques of CDCL solvers should be reusable.

The PCR proof system was introduced in [2]. In it, lines of a proof are polynomials,
which are derived by summing two previous polynomials or multiplying a previous
polynomial by a variable. The system also includes the axioms x2−x = 0, ¬x2−¬x =
0 and x + ¬x = 1 for all variables x. In our approach, we use only polynomials over
GF (2). In this system, a clause (a∨b∨¬c) is expressed as the polynomial¬a¬bc = 0.
A xor-clause (a⊕b⊕¬c) is also naturally expressed, as the polynomial a+b+¬c = 0.
However, neither a clause nor a xor clause can capture a general polynomial such as
xy + zw + pq + 1 = 0. Note that the variables ¬x are not necessary, as they can be
replaced by (1 + x) but using them can drastically reduce the number of monomials.
When written as a sum of monomials, a global order on variables allows a canonical
representation, unique for all equal polynomials.

There is significant previous work that addresses the efficient integration of XOR
(or equivalence) reasoning techniques in SAT solvers, e.g. [3,4]. However, in these ap-
proaches, interaction between the CNF and XOR subproblems is limited to passing unit
clauses from the CNF part to the XOR part and implied clauses from the XOR part to
the CNF part.

2 Structure of the Solver

The structure and main loop of the proposed solver is identical to that of CDCL algo-
rithms (not recalled here). However, the basic constraint stored in this scheme is a poly-
nomial. Therefore, the operations we need to specify are propagating the implications of
polynomials as we make decisions, and learning new polynomials when we encounter
conflicts. The natural way to propagate polynomials is to decompose it into a set of
clauses and one xor-clause. c+

∑k
i=1 mi = 0 where c ∈ {0, 1} and mi =

∏d
j=1 xij can

be decomposed with one new variable ymi for each term mi by the clauses that encode
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ymi ⇐⇒
∧d

j=1 xij and the xor-clause c+
∑k

i=1 ymi = 0. Unfortunately, unit propaga-
tion on this decomposition is not complete. Consider the polynomial ad+ bd+ 1 = 0.
Unit propagation on the corresponding CNF x ⇐⇒ a ∧ d, y ⇐⇒ b ∧ d, x ⊕ y
does nothing, but all solutions have d set to true. We can improve this decomposition
by factoring common subexpressions, but propagation remains incomplete. However,
achieving complete propagation is too expensive and unnecessary.

In order to perform conflict analysis, we define a polynomial resolution step:

yp1 + p2
yq1 + q2{

p1q2 + p2q1 if p1 �= q1
p2 + q2 if p1 = q1

This allows us to use polynomial resolution in much the same way as resolution: we
keep track of the polynomial that forced each literal. On conflict, we iteratively resolve
away the deepest variable until we get a polynomial that satisfies a stopping condition,
such as having a single variable at the decision level. However, there are cases where
polynomial resolution is less well behaved than resolution. First, during conflict anal-
ysis we may get a polynomial which contains no variable from the last decision level.
Second, even if there exists a 1-UIP polynomial, it is not necessarily asserting. Third, a
polynomial may contain variables which are assigned but which do not affect the satis-
fiability of that polynomial under the current assignment. Resolving on these variables
may result in a tautology, so these variables have to be ignored. Additionally, the size
of polynomials may grow quadratically with every polynomial resolution step. To keep
their size in check, we propose several simplification procedures that can reduce their
size, as well as a weakening procedure that, given a polynomial p gives a smaller and
weaker polynomial p′ such that p′ = 1 =⇒ p = 1 and p = 0 =⇒ p′ = 0.

In terms of its theoretical power, this solver is not any more powerful than a CDCL
solver if the input is given in CNF and therefore also strictly less powerful than the
unrestricted polynomial calculus. Thus, we apply a preprocessing step in which we
detect XOR clauses and AND gates to extract implied polynomials, as in [5]. Given
this preprocessing step, the solver is strictly more powerful than CDCL, as it clearly
p-simulates resolution and additionally p-simulates Gaussian elimination but also more
powerful than SMT with XOR reasoning [4].
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In [3], SAT conflict analysis graphs were used to learn additional clauses, which
we refer to as back-clauses. These clauses may be viewed as enabling the powerful
notion of “probing”: Back-clauses make inferences that would normally have to
be deduced by setting a variable deliberately the other way and observing that
unit propagation leads to a conflict. We show that short-cutting this process can
in fact improve the performance of modern SAT solvers in theory and in practice.
Based on out numerical results, it is suprising that back-clauses, proposed over
a decade ago, are not yet part of standard clause-learning SAT solvers.

Back-Clauses. We assume familiarity with SAT conflict analysis [3,4]. Figure 1
shows an example formula and its conflict graph derived after branching on (-1),
(+2), and (+3). A clause such as (1-2+5) in our notation may be thought of as
(x1 ∨¬x2 ∨x5). The corresponding first or rightmost UIP at the decision level is
literal (-10) and the standard clause learnt from this conflict is (-4+10). In [3] it
was found that, for any two consecutive UIPs at level L, we can infer that, under
some context given by the literals on tree levels < L, the left UIP implies the
right UIP. In our example, given 5, 7 implies -10. Written as a clause, this gives
(-5-7-10). It makes sense to add this “back-clause” because unit propagation is
incomplete and may in fact not be able to infer that, given 5, 10 implies -7.
In our example, we can also infer that, given 2, 3 implies 7, or (-2-3+7). Note
that these two clauses imply (-2-5-3-10), also under incomplete unit propagation.
Since back-clauses in general have smaller “contexts” than traditional nogoods
based on all UIPs, we conclude from the following proposition that adding all
back-clauses between adjacent UIPs at level L is, in general, strictly stronger
under unit propagation than adding all UIP nogoods at level L.

A. (1+4) B. (1-2+5)
C. (-2-3-6) D. (-3+6+7)
E. (-4+10+11) F. (-5-7+8)
G. (-5-7+9) H. (-8-9-10)
I. (10-11)

4

9

2

3 -6

7 -11

5

11-108

-1

Fig. 1. An Example Formula and its Conflict Graph
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Fig. 2. Cactus plot showing the maximum time (y-axis, in seconds) needed by MiniSat

with and without Back-Clauses to solve a given number of instances (x-axis). Left: SAT
Race 2010 benchmark. Right: SAT Competition 2011 benchmark.

Proposition 1. By adding the first UIP clause and back-clauses between every
two consecutive UIPs at level L, we enable unit propagation to make all infer-
ences that all traditional nogoods based on all UIPs at level L would.

Empirical Evaluation. We added back-clause lerning as part of version 2.2.0 of
MiniSat [5] and experimented with it on 2.3 GHz AMD Opteron 6134 machines
with eight 4-core CPUs and 64 GB memory, running Scientific Linux release
6.1. As benchmarks we use all of the application instances from the 2010 SAT
Race and the 2011 SAT Competition. Both MiniSat and MiniSat+BC (i.e., with
back-clauses on the decision level) were configured to first simplify the formula
using the SatELite preprocessor [2]. Figure 2 summarizes the results in terms of
the commonly used cactus plot metric. We observe that learning back-clauses is
clearly helpful for both benchmark sets, particularly for harder instances where
the benefits of learning additional clauses become most noticeable.

In conclusion, we rediscovered the idea of learning back-clauses during search,
first introduced in [3]. We showed that adding back-clauses is stronger than
adding no-goods for all UIPs. We hope that our experiemntal findings will help
this technique find its rightful place among modern SAT solving methods.

References

1. Bayardo, R.J.J., Schrag, R.C.: Using CSP look-back techniques to solve real-world
SAT instances. In: Proceedings of AAAI 1997, pp. 203–208 (1997)

2. Eén, N., Biere, A.: Effective Preprocessing in SAT Through Variable and Clause
Elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–
75. Springer, Heidelberg (2005)

3. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A Search Algorithm for Propositional
Satisfiability. IEEE Trans. on Computers 48(5), 506–521

4. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering
an Efficient SAT Solver. In: Proc. DAC, pp. 530–535 (2001)

5. Sorensson, N., Eén, N.: MiniSAT 2.2.0 (2010), http://minisat.se
6. SAT Competition, http://www.satcomptition.org

http://minisat.se
http://www.satcomptition.org


Augmenting Clause Learning

with Implied Literals
(Poster Presentation)

Arie Matsliah1, Ashish Sabharwal2, and Horst Samulowitz2

1 IBM Research, Haifa, Israel
ariem@il.ibm.com

2 IBM Watson Research Center, Yorktown Heights, USA
{ashish.sabharwal,samulowitz}@us.ibm.com

There exist various approaches in SAT solvers that aim at extending inference
based on unit propagation. For instance, probing [5] simply applies unit propaga-
tion of literals at the root node in order to detect failed literals [3] or to populate
literal implication lists. The latter information can then, for instance, be used
to shrink clauses by hidden literal elimination (e.g., if a �→ b then (a∨ b∨ c) can
be reduced to (b ∨ c); cf. [4]).

Here we propose to strengthen clause learning by dynamically inferring literals
that the newly learned clause entails. We say that a literal l is an implied literal
for a clause C if all literals of C entail l. For instance, if a �→ d, ¬b �→ d, and
c �→ d, then (a ∨ ¬b ∨ c) entails d. While this insight has already been exploited
in several methods (e.g., variations of hyper binary resolution and hidden literal
elimination), we apply it to clause learning: when the SAT solver derives a new
conflict clause c, we check if the literals in c imply a single or multiple literals
which can then be propagated as new unit literals.

In order to employ this technique we first need to generate implication lists
L(l) = UnitPropagation(l) for each literal l. This is done at the root node of
the search tree before the solving process starts and then periodically during
search. During this computation, we also add not yet existing binary clauses
corresponding to ∀l ∈ L(p) : ¬l �→ ¬p. As one might expect, we detect failed
literals as well and add and propagate their negations as new unit literals; we do
the same for all literals in the intersection of L(p) and L(¬p) for all p ∈ F . Once
the implied literal lists for each literal are computed, we iterate over the clauses
in the original theory F and propagate all implied literals as new unit clauses.

Ideally we would like to augment these lists with new implications whenever
new clauses have been learned by the solver. However, this operation can be
computationally expensive and we must control how frequently it is performed.
While learned clauses are usually ‘forgotten’ over time, we hold on to the im-
plication lists and only extend them, when possible. Note that this can enable
inference that might not be explicitly captured in the current clausal theory.

Whenever a new clause C is derived, we check whether I =
⋂

l∈C L(l) is non-
empty. If so, we add all p ∈ I as new unit clauses and backtrack the search to the
root (i.e., restart). We reduce the computational effort of computing intersections
by considering learned clauses of only a bounded length.

A. Cimatti and R. Sebastiani (Eds.): SAT 2012, LNCS 7317, pp. 500–501, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Augmenting Clause Learning with Implied Literals 501

Table 1. Performance of Glucose and Glucose+IL on the application category in-
stances of SAT Competition 2011 (selected benchmark families and all instances)

Benchmarks
Glucose Glucose+IL

% Solved PAR10 #Dec. (G1k) % Solved PAR10 #Dec. (G1k)

Goldberg (8) 87.5 9,045 617,058 100.0 774 377,047
Grieu-VMPC (6) 83.3 12,715 8,109,876 100.0 1,286 4,809,073

Jarivsalo-AAAI10 (13) 100.0 485 522,951 100.0 224 218,455
Rintanen-Sokoban (6) 33.3 43,871 2,196,775 66.8 22,241 624,748

Competition 2011 (300) 71.3 19,280 472,059 72.0 18,778 377,712

We implemented this approach in Glucose 2.0 [1] and evaluated the perfor-
mance on all 300 instances of the application track of SAT Competition 2011
[6]. All experiments were conducted on 2.3 GHz AMD Opteron 6134 machines
with eight 4-core CPUs and 64 GB memory, running Scientific Linux release 6.1.
We used a time limit of 6,500 sec (which roughly corresponds to the 5,000 sec
timeout used in the competition), and limited activation of our method to in-
stances with at most 2,000,000 clauses and 200,000 literals appearing in binary
clauses. Implied literals are computed after 150 restarts and from then on in
a geometrically increasing manner with a factor of 1.2. All runs used identical
parameters (e.g., maximum learned clause length to check for implied literals).

Table 1 summarizes the results. For both versions of Glucosewe show the per-
centage of instances solved, the PAR10 score (penalized average runtime where
instances that time out are penalized with 10x the timeout), and the geometric
mean shifted by 1, 000 of the number of decisions made on the instances solved
by both approaches. The first four benchmark families highlight the potential
of our approach. On all shown measures, the impact of implied literals is quite
dramatic. For instance, on the Sokoban benchmark, adding inference based on
implied literals doubles the number of solved instances. The final row shows that
the new approach does not degrade performance of the baseline solver. In fact,
it is able to solve more instances while making 20% fewer decisions.

We have extended this approach to also learn binary clauses when all but
one literal in the learned clause imply a literal. Note that this corresponds to a
generalized version of hyper-binary resolution [2].
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