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Preface

This volume contains the papers presented at SAT 2012, the 15th International
Conference on Theory and Applications of Satisfiability Testing, held during
June 16-20 in Trento, Italy. SAT 2012 was co-organized and hosted by Fon-
dazione Bruno Kessler (FBK) and the University of Trento (UniTN), Italy.

The SAT series originated in 1996 as a series of workshops, and later developed
into the primary annual meeting for researchers studying the propositional satis-
fiability problem. Importantly, here SAT is interpreted in a rather broad sense:
besides plain propositional satisfiability, it includes the domains of MaxSAT and
Pseudo-Boolean (PB) constraints, Quantified Boolean Formulae (QBF), Satisfi-
ability Modulo Theories (SMT), Constraints Programming (CSP) techniques for
word-level problems and their propositional encoding. To this extent, many hard
combinatorial problems can be encoded as SAT instances, in the broad sense men-
tioned above, including problems that arise in hardware and software verification,
Al planning and scheduling, OR resource allocation, etc. The theoretical and prac-
tical advances in SAT research over the past 20 years have contributed to making
SAT technology an indispensable tool in these domains. The topics of the confer-
ence span practical and theoretical research on SAT (in the broader sense above)
and its applications, and include, but are not limited to, theoretical issues, solving
and advanced functionalities, and applications.

SAT 2012 hosted two workshops: CSPSAT 2012 (Second International Work-
shop on the Cross-Fertilization Between CSP and SAT), and PoS 2012 (Third
International Workshop on Pragmatics of SAT), and four competitive events:
Max-SAT 2012 (7th Max-SAT Evaluation), PB12 (Pseudo-Boolean Competition
2012), QBFEVAL 2012 (QBF Competition 2012), and SAT Challenge 2012.

In SAT 2012 we introduced for the first time the possibility of submitting
tool-presentation papers, and of directly submitting poster-presentation papers
(2-page abstracts). Overall there were 112 submissions (88 full, 10 tool, and
14 poster papers). Each submission was reviewed by at least three Program
Committee members; for the fist time for SAT, the review process also involved
a rebuttal phase. The committee decided to accept 52 papers (29 full, 7 tool and
16 poster papers). Note that seven full papers were accepted as posters.

The program also included two remarkable invited talks:

— Aaron Bradley from the University of Colorado at Boulder, presented
“Understanding 1C3”

— Donald Knuth from Stanford University presented “Satisfiability and The
Art of Computer Programming”

Given the interest of the scientific community outside SAT for the work of Donald
Knuth, his talk was open to non-SAT 2012 attendees, and included a question-
answering session on general topics in computer science.
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SAT 2012 was co-located with the Second International SAT/SMT Summer
School, with a program over four days that hosted 16 speakers. The school gave
many students the opportunity to attend SAT 2012.

Our first thanks go to the Program Committee members and to the additional
reviewers, who did a thorough and knowledgeable job and enabled the assembly
of this body of high-quality work.

We thank the authors for their submissions, and for their collaboration in
further improving their papers. A special thank goes to our invited speakers,
Aaron Bradley and Donald Knuth, for accepting our invitation and for their
very stimulating contributions.

We thank the organizers of the school, of the workshops and of the compet-
itive events: Alberto Griggio and Stefano Tonetta for SAT/SMT School, Yael
Ben Haim and Yehuda Naveh for CSPSAT 2012, Daniel Le Berre and Allen Van
Gelder for PoS 2012, Josep Argelich, Chu Min Li, Felip Manya and Jordi Planes
for Max-SAT 2012, Vasco Manquinho and Olivier Roussel for PB12, Massimo
Narizzano for QBFEVAL 2012, Adrian Balint, Anton Belov, Matti Jarvisalo and
Carsten Sinz for SAT Challenge 2012.

A special thank goes to Martina Lorenzi, Silvia Malesardi, Moira Osti, and
to all the other members of the Ufficio Eventi of FBK and Ufficio Convegni of
UniTN, who largely contributed to the success of this event.

We also thank the developers and maintainers of the EasyChair conference
management system, which was of great help with the paper submission, review-
ing, discussion, and with the assembly of the proceedings.

We gratefully acknowledge the generous contributions of our sponsors (in
alphabetical order): IBM Research, Intel™ Corporation, Jasper Technologies,
Microsoft Research INRIA, Microsoft Research, NEC, plus the support of FBK,
of UniTN and of the SAT Association. SAT 2012 was held also under the aus-
pices of TrentoRise and of the European Association for Theoretical Computer
Science, Italian Chapter.

May 2012 Alessandro Cimatti
Roberto Sebastiani
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Understanding IC3*

Aaron R. Bradley

ECEE Department, University of Colorado at Boulder
bradleya@colorado.edu

Abstract. The recently introduced model checking algorithm, IC3, has
proved to be among the best SAT-based safety model checkers. Many
implementations now exist. This paper provides the context from which
IC3 was developed and explains how the originator of the algorithm
understands it. Then it draws parallels between IC3 and the subsequently
developed algorithms, FAIR and IICTL, which extend IC3’s ideas to the
analysis of w-regular and CTL properties, respectively. Finally, it draws
attention to certain challenges that these algorithms pose for the SAT
and SMT community.

1 DMotivation

In Temporal Verification of Reactive Systems: Safety, Zohar Manna and Amir
Pnueli discuss two strategies for strengthening an invariant property to be in-
ductive [13]: “(1) Use a stronger assertion, or (2) Conduct an incremental proof,
using previously established invariants.” They “strongly recommend” the use of
the second approach “whenever applicable,” its advantage being “modularity.”
Yet they note that it is not always applicable, as a conjunction of assertions can
be inductive when none of its components, on its own, is inductive. In this paper,
the first method is referred to as “monolithic”—all effort is focused on producing
one strengthening formula—while the second method is called “incremental.”

1.1 Monolithic and Incremental Proof Methods

A simple pair of transition systems clarifies the two strategies and the limitations
of the second:

x, y =1, 1 1 x, vy := 1,1 1
while x: 2 while x:
X, y:=x+ 1, y + x 3 X, y' =x+y,y+x 3

The star-notation indicates nondeterminism. Suppose that one wants to prove,
for both systems, that P :y > 1 is invariant.

Consider the first system. To attempt to prove the invariant property P, one
can apply induction:

* Work supported in part by the Semiconductor Research Corporation under contract
GRC 2271.

A. Cimatti and R. Sebastiani (Eds.): SAT 2012, LNCS 7317, pp. 1-14, 2012.
© Springer-Verlag Berlin Heidelberg 2012



2 A.R. Bradley

— It holds initially because

r=1ANy=1 =y>
~ ~ - N
initial condition P
— But it does not hold at line 3 because

yzlnd' =z+1Ay =yt+azAy >
~ P ~ ~ N~
Pl

=

transition relation

The first step of an inductive proof of an invariant property is sometimes called
ingtiation; the second, consecution [I3]. In this case, consecution fails. Hence, an
inductive strengthening of P must be found.

The first step in strengthening P is to identify why induction fails. Here, it’s
obvious enough: without knowing that x is nonnegative, one cannot know that
y never decreases. The assertion ¢ : x > 0 is inductive:

— it holds initially: z =1Ay=1= 2 >0, and
— it continues to hold at line 3, where x is updated:
r>0A =+ 1Ay =y+az=2
N~ ~ PN
#1 transition relation

0.
g

">
~
L

Now P : y > 1 is inductive relative to p; because consecution succeeds in the
presence of ¢5:

r>0ANy> 1A =z+ 1Ay =y+az=y >1
N SN ~ - N
#1 P transition relation P!

This use of “previously established invariants” makes for an “incremental proof”:
first establish ¢1; then establish P using 1. Here, each assertion is simple and
discusses only one variable of the system. The inductive strengthening of P :
y > 1is thus z > 0 Ay > 1. Of course, the stronger assertion z > 1 Ay > 1
would work as well.

In the second transition system, neither x > 0 nor y > 1 is inductive on its
own. For example, consecution fails for x > 0 because of the lack of knowledge
about y:

r>0N =z+yny =y+zA2>0.

Establishing y > 1 requires establishing the two assertions together:

— initiation: c =1Ay=1=2x>0Ay>1
— consecution: x > 0Ay > 1A' =xz+yAy =y+z=2">0Ay > 1.

An incremental proof seems impossible in this case, as only the conjunction of
the two assertions is inductive, not either on its own. Thus, for this system, one
must invent the inductive strengthening of P all at once: z > 0Ay > 1.

Notice that the assertion x > 0 Ay > 1 is inductive for the first transition
system as well and so could have been proposed from the outset. However, espe-
cially in more realistic settings, an incremental proof is simpler than inventing
a single inductive strengthening, when it is possible.
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1.2 Initial Attempts at Incremental, Inductive Algorithms

IC3 is a result of asking the question: if the incremental method is often better for
humans, might it be better for algorithms as well? The first attempt at addressing
this question was in the context of linear inequality invariants. Previous work
had established a constraint-based method of generating individual inductive
linear inequalities [7]. Using duality in linear programming, the constraint-based
method finds instantiations of the parameters ag, as,...,a, in the template

apro +a1xy + -+ ap_1Tp-_1 +a, >0

that result in inductive assertions. A practical implementation uses previously
established invariants when generating a new instance [17]. However, an enumer-
ative algorithm generates the strongest possible over-approximation—for that
domain—of the reachable state space, which may be far stronger than what is
required to establish a given property.

A property-directed, rather than enumerative, approach is to guide the search
for inductive instances with counterexamples to the inductiveness (CTIs) of the
given property [5]. A CT1is a state (more generally, a set of states represented by
a cube; that is, a conjunction of literals) that is a counterexample to consecution.

In the first system above, consecution fails for P :y > 1:

y>1Ad =x+1Ay =y+azsy >1.

A CTI, returned by an SMT solver, is ¢+ = —1 Ay = 1. Until this state is
eliminated, P cannot be established. The constraint system for generating an
inductive instance of the template ax+by+c > 0 is augmented by the constraint
a(—1) +b(1) + ¢ < 0. In other words, the generated inductive assertion should
establish that the CTI z = —1 Ay = 1 is unreachable. If no such assertion
exists, other CTIs are examined instead. The resulting lemmas may be strong
enough that revisiting this CTI will reveal an assertion that is inductive relative
to them, finally eliminating the CTI. But in this example, the instance z > 0
(a=1,b=0, c=0) is inductive and eliminates the CTI.

In the context of hardware model checking, this approach was developed
into a complete model checker, called FSIS, for invariance properties [4]. Rather
than linear inequality assertions, it generates clauses over latches. While the al-
gorithm for generating strong inductive clauses is not trivial, understanding it
is not essential for understanding the overall model checking algorithm, which is
simple. The reader is thus referred to previous papers to learn about the clause-
generation algorithm [4, [3]. Consider finite-state system S : (i, z, I(z), T (z,4,2"))
with primary inputs ¢, state variables (latches) z, a propositional formula I(z)
describing the initial configurations of the system, and a propositional formula
T(x,1,z') describing the transition relation, and suppose that one desires to es-
tablish the invariance of assertion P. First, the algorithm checks if P is inductive
with two SAT queries, for initiation and consecution, respectively:

I=P and PAT =P .
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If they hold, P is invariant. If the first query fails, P is falsified by an initial state,
and so it does not hold. If consecution fails—the likely scenario—then there is a
state s that can lead in one step to an error; s is a CTL

The inductive clause generation algorithm then attempts to find a clause
c that is inductive and that is falsified by s. If one is found, ¢ becomes an
incremental lemma, ¢, relative to which consecution is subsequently checked:

1t APANT = P .

If consecution still fails, another CTI ¢ is discovered, and again the clause gen-
eration algorithm is applied. This time, however, the generated clause need only
be inductive relative to 7, in line with Manna’s and Pnueli’s description of in-
cremental proofs. In this manner, a list of assertions, @1, 2, . .., @k, is produced,
each inductive relative to its predecessors, until P A \\; ¢; is inductive.

But what is to be done if no clause exists that both eliminates s and is
inductive? In this case, the target is expanded: the error states grow from —P to
=PV s; said otherwise, the property to establish becomes P A —s. Every CTI is
handled in this way: either a relatively inductive clause is generated to eliminate
it, or it is added to the target. The algorithm is complete for finite-state systems.

One important, though subtle, point in applying the incremental method is
that the invariance property, P, that is to be established can be assumed when
generating new inductive assertions. That is, a generated assertion need only
be inductive relative to P itself. For suppose that auxiliary information ¢ is
inductive relative to P, and P is inductive relative to 1:

WAPANT = and YAPANT = P,

Then clearly ¥ A P itself is inductive.
In the second transition system of Section [[LT], this extra information makes
a difference. Consider consecution again for P:

y>1Ind' =z+yny =y+az=>y >1.

It fails with, for example, the CTI x = —1 Ay = 1. While z > 0 eliminates this
CTI, it is not inductive on its own. However, it is inductive relative to P:
21 ANxz>0AT —x+y/\y —y+x:>x >0 .

N~ ~ - - N~ -~ -

#1 tran51t10n relation ®1

*v(

By assuming P, an incremental proof is now possible. Once sufficient strength-
ening information is found, this seemingly circular reasoning straightens into an
inductive strengthening.

However, this trick does not fundamentally strengthen the incremental proof
methodology. There are still many situations in which the purely incremental
approach is impossibleEI Experiments with FSIS made it clear that this weakness
had to be addressed.

! Consider, for example, a similar transition relation with three variables updated ac-
cordingtox, y, z :=x +y, y+ 2z, z+ x. Neither x > 0 nor z > 0 is inductive
relative to P :y > 1.
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1.3 Other SAT-Based Approaches

This section considers the strengths and weaknesses, which motivate IC3, of
other SAT-based approaches.

At one extreme are solvers based on backward search. Exact SAT-based sym-
bolic model checking computes the set of states that can reach an error, relying
on cube reduction to accelerate the analysis [14]. Conceptually, it uses the SAT
solver to find a predecessor, reduces the resulting cube, and then blocks the
states of that cube from being explored again. At convergence, the blocking
clauses describe the weakest possible inductive strengthening of the invariant.
Sequential SAT similarly reduces predecessor cubes, but it also reduces state
cubes lacking unexplored predecessors via the implication graph of the associ-
ated (unsatisfiable) SAT query [12]. This latter approach computes a convenient
inductive strengthening—mnot necessarily the weakest or the strongest. FSIS is
like this latter method, except that, when possible, it uses induction to reduce
a predecessor state cube, which can allow the exploration of backward paths to
end earlier than in sequential SAT, besides producing stronger clauses.

The strength of pure backward search is that it does not tax the SAT solver.
Memory is not an issue. Its weakness is that the search is blind with respect
to the initial states. In the case of FSIS, its selection of new proof obligations
is also too undirected; some predecessors trigger more informative lemmas than
others, but FSIS has no way of knowing which. Perhaps because of this lack of
direction, successful modern SAT-based model checkers, other than IC3, derive
from BMC [I]. BMC is based on unrolling the transition relation between the
initial and error states. Thus, the SAT solver considers both ends in its search.

While BMC is strong at finding counterexamples, it is practically incomplete.
Interpolation (ITP) [15] and k-induction [I8] address this practical incomplete-
ness. The latter combines BMC (which becomes initiation) with a consecution
check in which the transition relation is unrolled & times and the property is
asserted at each non-final level. When that check fails, k is increased; in a finite-
state context, there is a k establishing P if P is invariant. In practice, the suf-
ficient k is sometimes small, but it can also be prohibitively large. Like exact
model checking, k-induction cannot find a convenient strengthening; rather, its
strengthening is based on a characteristic of the transition system.

ITP goes further. Rather than unrolling from the initial states (BMC) or
applying induction directly (k-induction), it unrolls from the current frontier
F;, which contains at least all states at most i steps from an initial state. If
the associated SAT query is unsatisfiable, the algorithm extracts an interpolant
between F; and the k-unrolling leading to a violation of P, which serves as the
(i + 1)-step over-approximation F;;1. If the query is satisfiable, the algorithm
increases k, yielding a finer over-approximating post-condition computation. The
size of the unrolling that yields a proof can be smaller in practice than that
of k-induction. Tuning the interpolant finder can allow it to find convenient
assertions, potentially accelerating convergence to some inductive strengthening.

BMC-based approaches have the advantage of giving meaningful consider-
ation to both initial and error states. However, they have the disadvantage of
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being monolithic. They search for a single, often complex, strengthening, which
can require many unrollings in practice, overwhelming the SAT solver.

IC3 addresses the weaknesses of both types of solvers while maintaining their
strengths. Like the backward search-based methods, it relies on many simple
SAT queries (Section ZI]) and so requires relatively little memory in practice.
Like the BMC-based methods, it gives due consideration to the initial and error
states (Section 22)). It can be run successfully for extended periods, and—for
the same reasons—it is parallelizable. Compared to FSIS, it uses the core idea
of incrementally applying relative induction but applies it in a context in which
every state cube is inductively generalizable. Hence, induction becomes an even
more powerful method for reducing cubes in 1C3.

2 IC3

Manna’s and Pnueli’s discussion of incremental proofs is in the context of man-
ual proof construction, where the ingenuity of the human is the only limitation
to the discovery of intermediate lemmas. In algorithms, lemma generation is
typically restricted to some abstract domain [§] such as linear inequalities [9] or
a fixed set of predicates [10]. Thus, the case in which a CTI cannot be elimi-
nated through the construction of a relatively inductive assertion arises all too
frequently, making FSIS, in retrospect, a rather naive algorithm.

The goal in moving beyond FSIS was to preserve its incremental character
while addressing the weakness of backward search and the weakness of the in-
cremental proof method: the common occurrence of mutually inductive sets of
assertions that cannot be linearized into incremental proofs. In other words, what
was sought was an algorithm that would smoothly transition between Manna’s
and Pnueli’s incremental methodology, when possible, and monolithic inductive
strengthening, when necessary.

This section discusses IC3 from two points of view: IC3 as a prover and 1C3
as a bug finder. It should be read in conjunction with the formal treatment
provided in the original paper [3]. Readers who wish to see IC3 applied to a
small transition system are referred to [19].

2.1 Perspective One: IC3 as a Prover

IC3 maintains a sequence of stepwise over-approximating sets, Fy =
I, Iy, F>, ..., Fy, Fr+1, where each set F; over-approximates the set of states
reachable in at most ¢ steps from an initial state. Every set except Fjy1 is a
subset of P: F; = P. Once F}, is refined so that it excludes all states that can
reach a —P-state in one transition, Fj11, too, is strengthened to be a subset
of P by conjoining P to it. Fj is considered the “frontier” of the analysis. A
final characteristic of these sets is that I; AT = Fj ;. That is, all successors of
F-states are Fj;i-states.

This description so far should be relatively familiar. Forward BDD-based
reachability [16], for example, computes exact i-step reachability sets, and if any
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such set ever includes a —P-state, the conclusion is that the property does not
hold. ITP also computes i-step reachability sets, and like IC3’s, they are over-
approximating. However, when ITP encounters an over-approximating set that
contains a —P-state, it refines its approximate post-image operator by further
unrolling the transition relation, rather than addressing the weaknesses of the
current stepwise sets directly. The crucial difference in the use of these sets
between IC3 and ITP is that IC3 refines all of the sets throughout its execution ]
Putting these properties together reveals two characteristics of the reach sets.
First, any state reachable in i steps is an Fj-state. Second, any Fj;-state cannot
reach a —P-state for at least k — ¢ 4+ 1 steps. For example, an FJ-state can
actually be a = P-state, and an Fj-state may reach an error in one step. But an
Fy,_1-state definitely cannot transition to a ~P-state (since Fy_1 AT = F] and
Now, the property to check is whether P is inductive relative to F}. Since
Fy, = P, the following query, corresponding to consecution for P relative to F},
is executed:
F,ANT =P . (1)

Suppose that the query succeeds and that Fj, is itself inductive: Fj, AT = Fy.
Then Fj is an inductive strengthening of P that proves P’s invariance.

Now suppose that the query succeeds but that Fj is not inductive. Fj; can
be strengthened to Fj41 A P, since all successors of F-states are P-states. Ad-
ditionally, a new frame Fjo is introduced. IC3 brings in monolithic inductive
strengthening by executing a phase of what can be seen as a simple predicate
abstraction (propagateClauses [3]). Every clause that occurs in any F; is treated
as a predicate. A clause’s occurrence in F; means that it holds for at least ¢
steps. This phase allows clauses to propagate forward from their current posi-
tions. Crucially, subsets of clauses can propagate forward together, allowing the
discovery of mutually inductive clauses. For ¢ ranging from 1 to k, IC3 computes
the largest subset C' C F; of clauses such that the following holds (consecution
for C relative to F;):

FEANT = c’.

These clauses C' are then conjoined to Fj;1. Upon completion, Fj11 becomes
the new frontier. Many of the stepwise sets may be improved as lemmas are
propagated forward in time. If Fy, = Fy41, then F} is inductive, which explains
how F}, is determined to be inductive in the case above.

Finally, suppose that query () fails, revealing an Fj-state s (more generally,
a cube of Fj-states) that can reach a —P-state in one transition; s is a CTL
In other words, the problem is not just that F} is not inductive; the problem
is that it is not even strong enough to rule out a —P-successor, and so more

2 Of course, one might implement ITP to reuse previous over-approximating sets, so
that it too could be seen to refine them throughout execution. Similarly, one might
use transition unrolling in IC3. But for completeness, ITP relies on unrolling but not
continual refinement of all stepwise sets, whereas IC3 relies on continual refinement
of all stepwise sets but not unrolling.
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reachability information must be discovered. IC3 follows the incremental proof
methodology in this situation: it uses induction to find a lemma showing that s
cannot be reached in k steps from an initial state. This lemma may take the form
of a single clause or many clauses, the latter arising from analyzing transitive
predecessors of s.

Ideally, the discovered lemma will prove that s cannot ever be reached. Less
ideally, the lemma will be good enough to get propagated to future time frames
once P becomes inductive relative to Fi. But at worst, the lemma will at least
exclude s from frame F}, and even Fk+1§.

Specifically, IC3 first seeks a clause ¢ whose literals are a subset of those of —s
and that is inductive relative to Fj; that is, it satisfies initiation and consecution:

I=c and FuAhenT = .

Such a clause proves that s cannot be reached in k + 1 steps. However, there
may not be any such clause. It may be the case that a predecessor t exists that
is an Fy-state and that eliminates the possibility of a relatively inductive clause.
In fact, ¢t could even be an Fk_l-stateE

Here is where IC3 is vastly superior to FSIS, and where it sidesteps the
fundamental weakness of the incremental proof method. A failure to eliminate s
at F}, is not a problem. Suppose that a clause ¢ is found relative to Fj_o rather
than Fj_q or F (the worst case):

I=c¢ and FoNcANT =¢ .

Because ¢ is inductive relative to Fj_o, it is added to Fj_1: no successor of
an (Fx_2 A ¢)-state is a —c-state. If even with this update to Fj_1, s still can-
not be eliminated through inductive generalization (the process of generating a
relatively inductive subclause of —s), then the failing query

Fooi A=s AT = =8 (2)

reveals a predecessor t that was irrelevant for Fy,_o but is a reason why inductive
generalization fails relative to Fy_,. This identification of a reason for failure of
inductive generalization is one of IC3’s insights. The predecessor is identified
after the generation of ¢ relative to Fj_s so that ¢ focuses IC3 on predecessors
of s that matter for Fj_;. The predecessor t is not just any predecessor of s: it
is specifically one that prevents s’s inductive generalization at Fy_;. IC3 thus
has a meaningful criterion for choosing new proof obligations.

Now IC3 focuses on t until eventually a clause is produced that is inductive
relative to frame Fj_o and that eliminates ¢ as a predecessor of s through frame
Fy_1. Focus can then return to s, although ¢ is not forgotten. Inductive general-
ization of s relative to F_; may succeed this time; and if it does not, the newly
discovered predecessor would again be a reason for its failure.

3 The clause eventually generated for s relative to Fj strengthens Fjy; since it is
inductive relative to Fj.

4 However, it cannot be an Fj_p-state, for then s would be an Fy_i-state, and its
successor —P-state an Fy-state. But it is known that Fj = P.
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It is important that, during the recursion, all transitive predecessors of s
be analyzed all the way through frame Fj. This analysis identifies mutually in-
ductive (relative to Fy) sets of clauses. Only one of the clauses may actually
eliminate s, but the clauses will have to be propagated forward together since
they support each other. It may be the case, though, that some clauses are too
specific, so that the mutual support breaks down during the clause propaga-
tion phase. This behavior is expected. As IC3 advances the frontier, it forces
itself to consider ever more general situations, until it finally discovers the real
reasons why s is unreachable. It is this balance between using stepwise-specific
information and using induction to be as general as possible that allows IC3 to
synthesize the monolithic and incremental proof strategies into one strategy.

2.2 Perspective Two: IC3 as a Bug Finder

Although IC3 is often inferior to BMC for finding bugs quickly, industry ex-
perience has shown that IC3 can find deep bugs that other formal techniques
cannot. This section presents IC3 as a guided backward search. While heuristics
for certain decision points may improve IC3’s performance, the basic structure of
the algorithm is already optimized for finding bugs. In particular, IC3 considers
both initial and error states during its search. The following discussion develops
a hypothetical, but typical, scenario for IC3, one which reveals the motivation
behind IC3’s order of handling proof obligations. Recall from the previous section
that IC3 is also intelligent about choosing new proof obligations.

Suppose that query () revealed state s, which was inductively generalized
relative to Fj_o; that query (2)) revealed t as an Fj,_;-state predecessor of s; and
that ¢ has been inductively generalized relative to Fj_s3. At this point, IC3 has
the proof obligations {(s, k —1), (¢, k —2)}, indicating that s and ¢ must next
be inductively generalized relative to Fy_1 and Fj_o, respectively. As indicated
in the last section, neither state will be forgotten until it is generalized relative
to F}, even if s happens to be generalized relative to Fj first.

At this point, with the proof obligations {(s, k — 1), (¢, k — 2)}, it is fairly
obvious that until ¢ is addressed, IC3 cannot return its focus to s; ¢t would still
cause problems for generalizing s relative to Fy_;. While focusing on ¢, suppose
that u is discovered as a predecessor of ¢ during an attempt to generalize ¢
relative to Fy_o. Although ¢ cannot be generalized relative to Fj_o, v may well
be; it is, after all, a different state with different literals. Indeed, it may even be
generalizable relative to Fy. In any case, suppose that it is generalizable relative
to Fj_o but not higher, resulting in one more proof obligation: (u, k—1). Overall,
the obligations are now {(s, k —1), (¢, k—2), (u, k—1)}.

The question IC3 faces is which proof obligation to consider next. It turns out
that correctness requires considering the obligation (¢, k — 2) first [3]. Suppose
that ¢ and u are mutual predecessorsﬁ Were (u, k — 1) treated first, ¢ could

5 The current scenario allows it. For t’s generalization relative to Fi_3 produced a
clause at Fi_o that excludes ¢, which means that the generalization of u relative to
Fy,_2 ignores t. Therefore, it is certainly possible for u to be generalized at Fj_o,
leaving obligation (u, k —1).
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be discovered as an F}_;-state predecessor of u, resulting in a duplicate proof
obligation and jeopardizing termination. But one might cast correctness aside
and argue that u should be examined first anyway—perhaps it is “deeper” than
s or t given that it is a predecessor of .

Actually, the evidence is to the contrary. The obligations (u, k& — 1) and
(t, k —2) show that u is at least k steps away from an initial state (recall that
u has been eliminated from Fj_1), whereas ¢ is at least only k — 1 steps away.
That is, IC3’s information predicts that ¢ is “closer” to an initial state than is u
and so is a better state to follow to find a counterexample trace.

Thus, there are two characteristics of a proof obligation (a, ) to consider:
(1) the length of the suffix of a, which leads to a property violation, and (2) the
estimated proximity, ¢ 4+ 1, to an initial state. In the example above, s, t, and u
have suffixes of length 0, 1, and 2, respectively; and their estimated proximities
to initial states are k, k — 1, and k, respectively. Both correctness and intuition
suggest that pursuing a state with the lowest proximity is the best bet. In the case
that multiple states have the lowest proximity, one can heuristically choose from
those states the state with the greatest suffix length (for “depth”) or the shortest
suffix length (for “short” counterexamples)—or apply some other heuristic.

From this perspective, IC3 employs inductive generalization as a method of
dynamically updating the proximity estimates of states that lead to a violation
of the property. Inductive generalization provides for not only the update of
the proximities of explicitly observed CTI states but also of many other states.
When F, AT = P’ holds, all proximity estimates of —=P-predecessors are k + 1,
and so another frame must be added to continue the guided search.

The bug-finding and proof-finding perspectives agree on a crucial point: even
if the initial CTI s has been inductively generalized relative to F}, its transitive
predecessors should still be analyzed through Fj in order to update their and
related states’ proximity estimates. A consequence of this persistence is that 1C3
can search deeply even when k is small.

3 Beyond IC3: Incremental, Inductive Verification

Since IC3, the term incremental, inductive verification (IIV) has been coined
to describe algorithms that use induction to construct lemmas in response to
property-driven hypotheses (e.g., the CTIs of FSIS and IC3). Two significant
new incremental, inductive model checking algorithms have been introduced.
One, called FAIR, addresses w-regular (e.g., LTL) properties [6]. Another, called
IICTL, addresses CTL properties [I1]. While this section does not describe each
in depth, it attempts to draw meaningful parallels among IC3, FAIR, and IICTL.
Most superficially, FAIR uses IC3 to answer reachability queries, and IICTL uses
IC3 and FAIR to address reachability and fair cycle queries, respectively.

An ITV algorithm can be characterized by (1) the form of its hypotheses, (2)
the form of its lemmas, (3) how it uses induction, and (4) the basis of general-
ization. For IC3, these characterizations are as follows:
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1. Hypotheses: Counterexamples to induction (CTIs). When consecution fails,
the SAT solver returns a state explaining its failure, which IC3 then inductively
generalizes, possibly after generating and addressing further proof obligations.

2. Lemmas: Clauses over state variables. A clause is generated in response to a
CTI, using only the negation of the literals of the CTI.

3. Induction: Lemmas are inductive relative to stepwise information.

4. Generalization: Induction guides the production of minimal clauses—clauses
that do not have any relatively inductive subclauses. The smaller the clause,
the greater is the generalization; hence, induction is fundamental to gener-
alization in I1C3.

FAIR searches for reachable fair cycles, or “lasso” counterexamples. The funda-
mental insight of FAIR is that SCC-closed sets can be described by sequences of
inductive assertions. In other words, an inductive assertion is a barrier across the
state space which the system can cross in only one direction. A transition from
one side to the other is a form of progress, since the system can never return to
the other side. FAIR is characterized as an IIV algorithm as follows:

1. Hypotheses: Skeletons. A skeleton is a set of states that together satisfy all
Biichi fairness conditions and that all appear on one side of every previously
generated barrier. The goal is to connect the states into a “lasso” through
reachability queries.

2. Lemmas: An inductive assertion. Each lemma provides one of two types
of information: (1) global reachability information, which is generated when
IC3 shows that a state of a skeleton cannot be reached; (2) SCC information,
which is generated when IC3 shows that one state of the skeleton cannot
reach another. In the latter case, all subsequent skeletons must be chosen
from one “side” of the assertion.

3. Induction: SCC-closed sets are discovered via inductive assertions.

4. Generalization: Proofs constructed by IC3 can be refined to provide stronger
global reachability information or smaller descriptions of one-way barriers.
Furthermore, new barriers are generated relative to previous ones and tran-
sect the entire state space, not just the “arena” from which the skeleton was
selected. Exact SCC computation is not required.

IICTL considers CTL properties hierarchically, as in BDD-based model check-
ing [16], but rather than computing exact sets for each node, it incrementally
refines under- and over-approximations of these sets. When a state is unde-
cided for a node—that is, it is in the over-approximation but not in the under-
approximation—its membership is decided via a set of SAT (for EX nodes),
reachability (for EU nodes), or fair cycle (for EG nodes) queries. IICTL is char-
acterized as an II'V algorithm as follows:

1. Hypotheses: A state is undecided for a node if it is included in the upper-
bound but excluded from the lower-bound. If it comes up during the analysis,
its status for the node must be decided.

2. Lemmas: Lemmas refine the over- and under-approximations of nodes, either
introducing new states into under-approximations or removing states from
over-approximations.
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3. Induction: Induction is used to answer the queries for EU and EG nodes.

4. Generalization: Generalization takes two forms. For negatively answered
queries, the returned proofs are refined to add (remove) as many states
as possible to the under-approximations (from the over-approximations) of
nodes, rather than just the motivating hypothesis state. For positively an-
swered queries, the returned traces are generalized through a “forall-exists”
generalization procedure, again to decide as many states as possible in ad-
dition to the hypothesis state.

All three algorithms are “lazy” in that they only respond to concrete hypotheses
but are “eager” in that they generalize from specific instances to strong lemmas.
Furthermore, all hypotheses are derived from the given property, so that the
algorithms’ searches are property-directed.

4 Challenges for SAT and SMT Solvers

The queries that ITV methods pose to SAT solvers differ significantly in character
from those posed by BMC, k-induction, or ITP. There is thus an opportunity for
SAT and SMT research to directly improve the performance of 1TV algorithms.

IC3 is the first widespread verification method that requires highly efficient
incremental solvers. An incremental interface for IC3 must allow single clauses
to be pushed and popped; it must also allow literal assumptions. ITV algorithms
pose many thousands to millions of queries in the course of an analysis, and
so speed is crucial. FAIR requires even greater incrementality: the solver must
allow sets of clauses to be pushed and popped.

ITV methods use variable orders to direct the generation of inductive clauses.
An ideal solver would use these variable orders to direct the identification of the
core assumptions or to direct the lifting of an assignment.

The inductive barriers produced in FAIR provide opportunities for general-
ization (in the cycle queries [6]) but are not required for completeness. Using
all such barriers overwhelms the solver, yet using too few reduces opportunities
for generalization. Therefore, currently, a heuristic external to the solver decides
whether to use a new barrier or not. Ideally, a solver would provide feedback
on whether a group of clauses has been used or not for subsequent queries.
Those clause groups that remain unused for several iterations of FAIR would be
removed. This functionality would allow direct identification of useful barriers.

IV algorithms gradually learn information about a system in the form of
lemmas. Thus, a core set of constraints, which includes the transition relation,
grows and is used by every worker thread. On a multi-core machine, replicat-
ing this set of constraints in each thread’s solver instance uses memory—and
memory bandwidth—poorly, and this situation will grow worse as the number
of available cores grows. An ideal solver for IIV algorithms would provide access
to every thread to a growing core set of constraints. Each thread would then
have a thread-specific view in which to push and pop additional information for
incremental queries.
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Finally, IC3 has shown itself to be highly sensitive to the various behaviors
of SAT solvers. Swapping one solver for another, or even making a seemingly
innocuous adjustment to the solver, can cause widely varying performance—even
if the average time per SAT call remains about the same. For example, a SAT
solver that is too deterministic can cause IC3 to dwell on one part of the state
space by returning a sequence of similar CTIs, so that IC3 must generate more
lemmas. Identifying the desirable characteristics of a solver intended for IC3 will
be of great help.

5 What’s Next?

Fundamentally, IC3 should not be seen as a clause-generating algorithm. Rather,
the insight of IC3 is in how it can harness seemingly weak abstract domains to
produce complex inductive strengthenings. At first glance, it seems that 1C3’s
abstract domain is CNF over state variables. In fact, the abstract domain is
conjunctions of state variables (over the inverse transition relation; see next
paragraph), which is, practically speaking, the simplest possible domain.

If that perspective seems unclear, think about how IC3 works: to address CT1
s, it performs what is essentially a simple predicate abstraction over the inverse
of the transition relation, where the predicates are the literals of s. This process
produces a cube d C s—that is, a conjunction of a subset of the predicates—that
lacks —d-predecessors (within a stepwise context F;); therefore, the clause —d is
inductive (relative to F;). It is the incremental nature of IC3 that produces, over
time, a conjunction of clauses.

Recalling the linear inequality domain [5] seems to confuse the issue, how-
ever. Where are the disjunctions in that context? To understand it, consider the
polyhedral domain [9]. If it were to be used in the same way as the state variable
domain of IC3, then each CTI would be analyzed with a full polyhedral analysis,
each lemma would take the form of a disjunction of linear inequalities, and 1C3
would produce proofs in the form of a CNF formula of linear inequalities. That
approach would usually be unnecessarily expensive. Clearly, the polyhedral do-
main is not being used. Instead, the domain is much simpler: it is a domain of
half—spaces@

Therefore, the next step, in order to achieve word-level hardware or software
model checking, is to introduce new abstract domains appropriate for IC3—
domains so simple that they could not possibly work outside the context of IC3,
yet sufficiently expressive that IC3 can weave together their simple lemmas into
complex inductive strengthenings.

Acknowledgments. Thanks to Armin Biere, Zyad Hassan, Fabio Somenzi, and
Niklas Een for insightful discussions that shaped my thinking on how better to
explain IC3, and to the first three for reading drafts of this paper.

5 A Boolean clause can be seen as a half-space over a Boolean hypercube. The author
first pursued inductive clause generation (in FSIS) because of the parallel with linear
inequalities.
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Abstract. Stochastic local search solvers for SAT made a large progress
with the introduction of probability distributions like the ones used by
the SAT Competition 2011 winners Sparrow2010 and EagleUp. These
solvers though used a relatively complex decision heuristic, where prob-
ability distributions played a marginal role.

In this paper we analyze a pure and simple probability distribution
based solver probSAT, which is probably one of the simplest SLS solvers
ever presented. We analyze different functions for the probability distri-
bution for selecting the next flip variable with respect to the performance
of the solver. Further we also analyze the role of make and break within
the definition of these probability distributions and show that the gen-
eral definition of the score improvement by flipping a variable, as make
minus break is questionable. By empirical evaluations we show that the
performance of our new algorithm exceeds that of the SAT Competition
winners by orders of magnitude.

1 Introduction

The propositional satisfiability problem (SAT) is one of the most studied NP-
complete problems in computer science. One reason is the wide range of SAT’s prac-
tical applications ranging from hardware verification to planning and scheduling.
Given a propositional formula in conjunctive normal form (CNF) with variables
{z1,...,2n} the SAT-problem consists in finding an assignment for the variables
such that all clauses are satisfied.

Stochastic local search (SLS) solvers operate on complete assignments and
try to find a solution by flipping variables according to a given heuristic. Most
SLS-solvers are based on the following scheme: Initially, a random assignment
is chosen. If the formula is satisfied by the assignment the solution is found. If
not, a variable is chosen according to a (possibly probabilistic) variable selection
heuristic, which we further call pickVar. The heuristics mostly depend on some
score, which counts the number of satisfied/unsatisfied clauses, as well as other
aspects like the “age” of variables, and others. It was believed that a good

A. Cimatti and R. Sebastiani (Eds.): SAT 2012, LNCS 7317, pp. 16-E9] 2012.
© Springer-Verlag Berlin Heidelberg 2012
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flip heuristic should be designed in a very sophisticated way to obtain a really
efficient solver. We show in the following that it is worth to “come back to
the roots” since a very elementary and (as we think) elegant design principle
for the pickVar heuristic just based on probability distributions will do the job
extraordinary well.

It is especially popular (and successful) to pick the flip variable from an un-
satisfied clause. This is called focussed local search in [I1IT4]. In each round, the
selected variable is flipped and the process starts over again until a solution is
eventually found. Depending on the heuristic used in pickVar SLS-solvers can be
divided into several categories like GSAT, WalkSAT, and dynamic local search
(DLS).

Most important for the flip heuristic seems to be the score of an assign-
ment, i.e. the number of satisfied clauses. Considering the process of flipping one
variable, we get the relative score change produced by a candidate variable for
flipping as: (score after flipping minus score before flipping) which is equal to
(make minus break). Here make means the number of newly satisfied clauses
which come about by flipping the variable, and break means the number of
clauses which become false by flipping the respective variable. To be more pre-
cise we will denote make(z,a) and break(x,a) as functions of the respective flip
variable z and the actual assignment a (before flipping). Notice that in case of
focussed flipping mentioned above the value of make is always at least 1.

Most of the SLS solvers so far, if not all, follow the strategy that whenever the
score improves by flipping a certain variable from an unsatisfied clause, they will
indeed flip this variable without referring to probabilistic decisions. Only if no
improvement is possible as is the case in local minima, a probabilistic strategy
is performed, which is often specified by some decision procedure. The winner of
the SAT Competition 2011 category random SAT, Sparrow, mainly follows this
strategy but when it comes to a probabilistic strategy it uses a probability distri-
bution function instead of a decision procedure [2]. The probability distribution
in Sparrow is defined as an exponential function of the score. In this paper we
analyze several simple SLS solvers that use only probability distributions within
their search.

2 The New Algorithm Paradigm

We propose a new class of solvers here, called probSAT, which base their prob-
ability distributions for selecting the next flip variable solely on the make and
break values, but not necessarily on the value of (make minus break), as it was
the case in Sparrow. Our experiments indicate that the influence of make should
be kept rather weak — it is even reasonable to ignore make completely, like in
implementations of WalkSAT. The role of make and break in these SLS-type
algorithms should be seen in a new light. The new type of algorithm presented
here can also be applied for general constraint satisfaction problems and works
as follows.
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Algorithm 1. ProbSAT

Input : Formula F' , maxTries, maxFlips
Output: satisfying assignment a or UNKNOWN
1 for i =1 to maxTries do

2 a + randomly generated assignment
3 for j =1 to maxFlips do
4 if (a is model for F') then
5 return a
6 Cy + randomly selected unsat clause
7 for x in C, do
8 compute f(z,a)
: : 5 flz,a)
9 var < random variable x according to probability S co, f(=a)
10 flip(var)

11 return UNKNOWN;

The idea here is that the function f should give a high value to variable z
if flipping = seems to be advantageous, and a low value otherwise. Using f the
probability distribution for the potential flip variables is calculated. The flip
probability for = is proportional to f(z,a). Letting f be a constant function
leads in the k-SAT case to the probabilities (i, cee ,i) morphing the probSAT
algorithm to the random walk algorithm that is theoretically analyzed in [12]. In
all our experiments with various functions f we made f depend on break(z,a)
and possibly on make(z,a), and no other properties of z and a. In the follow-
ing we analyze experimentally the effect of several functions to be plugged in

for f.

2.1 An Exponential Function
First we considered an exponential decay, 2-parameter function:

(Cm)make(:r,a)
f(l',a) = (cb)break(x,a)

The parameters are ¢, and ¢,,,. Because of the exponential functions used here
(think of ¢* = e%”) this is reminiscence of the way Metropolis-like algorithms
(see [14]) select a variable. We call this the exp-algorithm. Notice that we separate
into the two base constants ¢, and ¢, which allow us to find out whether there
is a different influence of the make and the break value — and there is, indeed.
It seems reasonable to try to maximize make and to minimize break. There-
fore, we expect ¢, > 1 and ¢, > 1 to be good choices for these parameters.
Actually, one might expect that ¢, should be identical to ¢, such that the above
formula simplifies to ¢maeke—break — cscorechange for an appropriate parameter c.
To get a picture on how the performance of the solver varies for different
values of ¢, and ¢, we have done a uniform sampling of ¢, € [1.0,4.0] and
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Fig. 1. Parameter space performance plot: The left plots show the performance
of different combinations of ¢, and ¢, for the exponential (upper left corner) and the
polynomial (lower left corner) functions. The darker the area the better the runtime of
the solver with that parameter settings. The right plots show the performance variation
if we ignore the make values (correspond to the cut in the left plots) by setting ¢, = 1
for the exponential function and ¢, = 0 for the polynomial function.

of ¢, € [0.1,2.0] for this exponential function and of ¢, € [-1.0,1.0] for the
polynomial function (see below). We have then ran the solver with the different
parameter settings on a set of randomly generated 3-SAT instances with 1000
variables at a clause to variable ratio of 4.26. The cutoff limit was set to 10
seconds. As a performance measure we use parl(: penalized average runtime,
where a timeout of the solver is penalized with 10-(cutoff limit). A parameter
setting where the solver is not able to solve anything has a parl0 value of 100.
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In the case of 3-SAT a very good choice of the parameters is ¢, > 1 (as
expected) and ¢, < 1 (totally unexpected), for example, ¢, = 3.6 and ¢,, = 0.5
(see Figure 1 left upper diagram and the survey in Table[l]) with a small variation
depending on the considered set of benchmarks. In the interval ¢, € [0.3, 1.8]
the optimal choice of parameters can be described by the hyperbola-like function
(cy — 1.3) - ¢ = 1.1. Almost optimal results were also obtained if ¢, is set to 1
(and ¢ to 2.5), see Figure 1, both upper diagrams. In other words, the value of
make is not taken into account in this case.

As mentioned, it turns out that the influence of make is rather weak, there-
fore it is reasonable, and still leads to very good algorithms — also because the
implementation is simpler and has less overhead — if we ignore the make-value
completely and consider the one-parameter function:

f(x,a) — (Cb)—break(x,a)

We call this the break-only-exp-algorithm.

2.2 A Polynomial Function

Our experiments showed that the exponential decay in probability with growing
break-value might be too strong in the case of 3-SAT. The above formulas have
an exponential decay in probability comparing different (say) break-values. The
relative decay is the same when we compare break = 0 with break = 1, and
when we compare, say, break = 5 with break = 6. A “smoother” function for
high values would be a polynomial decay function. This led us to consider the
following, 2-parameter function (¢ = 1 in all experiments):

(make(x,a))m

fz,a) = (e + break(z,a))e

We call this the poly-algorithm. The best parameters in case of 3-SAT turned
out to be ¢, = —0.8 (notice the minus sign!) and ¢, = 3.1 (See Figure 1, lower
part). In the interval ¢,, € [-1.0, 1.0] the optimal choice of parameters can be
described by the linear function ¢, + 0.9¢,, = 2.3. Without harm one can set
cm = 0, and then take ¢, = 2.3, and thus ignore the make-value completely.
Ignoring the make-value (i.e. setting ¢, = 0) brings us to the function

f(z,a) = (e + break(xz,a))™

We call this the break-only-poly-algorithm.

2.3 Some Remarks

As mentioned above, in both cases, the exp- and the poly-algorithm, it was a
good choice to ignore the make-value completely (by setting ¢,, = 1 in the exp-
algorithm, or by setting ¢, = 0 in the poly-algorithm). This corresponds to the
vertical lines in Figure 1, left diagrams. But nevertheless, the optimal choice in
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both cases, was to set ¢,,, = 0.5 and ¢, = 3.6 in the case of the exp-algorithm (and

0.5make 3.6—(break+mak€/2), This

similarly for the poly-algorithm.) We have 3 gbreak R
can be interpreted as follows: instead of the usual scorechange = make — break
a better score measure is —(break + make/2).

The value of ¢, determines the greediness of the algorithm. We concentrate
on ¢ in this discussion since it seems to be the more important parameter.
The higher the value of ¢, the more greedy is the algorithm. A low value of
¢y (in the extreme, ¢, = 1 in the exp-algorithm) morphs the algorithm to a
random walk algorithm with flip probabilities (i yeen ’1€) like the one considered
in [12]. Examining Figure[2] almost a phase-transition can be observed. If ¢, falls
under some critical value, like 2.0, the expected run time increases tremendously.
Turning towards the other side of the scale, increasing the value of ¢, i.e. making
the algorithm more greedy, also degrades the performance but not with such an
abrupt rise of the running time as in the other case.

3 Experimental Analysis of the Functions

To determine the performance of our probability distribution based solver we
have designed a wide variety of experiments. In the first part of our experiments
we try to determine good settings for the parameters ¢; and ¢, by means of
automatic configuration procedures. In the second part we will compare our
solver to other state-of-the-art solvers.

3.1 The Benchmark Formulae

All random instances used in our settings are uniform random k-SAT problems
generated with different clause to variable ratios, which we denote with a. The
class of random 3-SAT problems is the best studied class of random problems
and because of this reason we have four different sets of 3-SAT instances.

1. 3sat1k[I5]: 10° variables at o = 4.26 (500 instances)

2. 3sat10k[15]: 10* variables at o = 4.2 (500 instances)

3. 3satComplI6]: all large 3-SAT instances from the SAT Competition 2011
category random with variables range 2 - 103...5 - 10* at a = 4.2 (100
instances)

4. 3satExtreme: 10°...5 - 10° variables at o = 4.2 (180 instances)

The 5-SAT and 7-SAT problems used in our experiments come from [15]: 5sat500
(500 variables at o = 20) and 7sat90 (90 variables at o = 85). The 3satlk,
3sat10k, 5satb00 and 7sat90 instance classes are divided into two equal sized
classes called train and test. The train set is used to determine good parameters
for ¢, and ¢, and the second class is used to report the performance. Further
we also include the set of satisfiable random and crafted instances from the SAT
Competition 2011.
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Table 1. Parameter setting for ¢, and c¢,,: Each cell represents a good setting for
¢, and ¢, dependent on the function used by the solver. Parameters values around
these values have similar good performance.

3satlk 3satl0k 5satb00 7sat90
exp(cy, cm) 3.6 0.5 3.97 0.3 3.1 1.3 3214
poly(cy, cm) 3.1 -0.8 2.86 -0.81 - -
exp(cp) 2.50 2.33 3.6 4.4
poly(cy) 2.38 2.16 - -

3.2 Good Parameter Setting for ¢, and c,,

The problem that every solver designer is confronted with is the determination
of good parameters for its solvers. We have avoided to accomplish this task by
manual tuning but instead have used an automatic procedure.

As our search space is relatively small, we have opted to use a modified version
of the iterated F-race [5] configurator, which we have implemented in Java. The
idea of F-race is relatively simple: good configurations should be evaluated more
often than poor ones which should be dropped as soon as possible. F-race uses
a family Friedman test to check if there is a significant performance difference
between solver configurations. The test is conducted every time the solvers have
been run on an instance. If the test is positive poor configurations are dropped,
and only the good ones are further evaluated. The configurator ends when the
number of solvers left in the race is less than 2 times the number of parameters
or if there are no more instances to evaluate on.

To determine good values for ¢, and ¢, we have run our modified version of
F-race on the training sets 3satlk, 3sat10k, 5sat500 and 7sat90. The cutoff time
for the solvers were set to 10 seconds for 3satlk and to 100 seconds for the rest.
The best values returned by this procedure are listed in Table 1. Values for the
class of 3sat1lk problems were also included, because the preliminary analysis of
the parameter search space was done on this class. The best parameter of the
break-only-exp-algorithm for k-SAT can be roughly described by the formula
Cp = kO'S.

For the 3sat10k instance set the parameter space performance plots in Fig-
ure ] looks similar to that of 3satlk (Figure [Il), though the area with good
configurations is narrower, which can be explained by the short cutoff limit of
100 seconds used for this class (SLS solvers from the SAT Competition 2011 had
an average runtime of 180 seconds on this type of instances).

In case of 5sat500 and 7sat90 we have opted to analyze only the exponential
function because the polynomial function, other than in the 3SAT case, exhibited
poor performance on these sets. Figure[3shows the parameter space performance
plot for the 5sat500 and 7sat90 sets. When comparing these plots with those
for 3-SAT, the area with good configurations is much larger. For the 7-SAT
instances the promising area seems to take almost half of the parameter space.
The performance curve of the break-exp-only algorithm is also wider than that
of 3-SAT and in the case of 7-SAT no clear curve is recognizable.
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Fig. 2. Parameter space performance plot: The runtime of the solver using dif-
ferent function and for varying ¢, and ¢, on a the 3sat10k instances set

4 FEvaluations

In the second part of our experiments we compare the performance of our solvers
to that of the SAT Competition 2011 winners and also to WalkSAT SKC. An
additional comparison to a survey propagation algorithm will show how far our
probSAT local search solver can get.

4.1 Soft- and Hardware

The solvers were run on a part of the bwGrid clusters [4] (Intel Harpertown
quad-core CPUs with 2.83 GHz and 8 GByte RAM). The operating system was
Scientific Linux. All experiments were conducted with EDACC, a platform that
distributes solver execution on clusters [I].
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Fig. 3. Parameter space performance plot: The runtime of the exp-solvers with
different functions and varying ¢, and ¢, on a the 5sat500 instances at the top and on
the 7sat90 instances bottom

4.2 The Competitors

The WalkSAT SKC solver is implemented within our own code basis. We use
our own implementation and not the original code provided by Henry Kautz,
because our implementation is approximately 1.35 times faster. We have used
version 1.4 of the survey propagation solver provided by Zecchiniﬂ, which was
changed to be DIMACS conform. For all other solvers we have used the binaries
from the SAT Competition 20117

!http://users.ictp.it/~zecchina/SP/
2 http://www.cril.univ-artois.fr/SAT11/
solvers/SAT2011-static-binaries.tar.gz


http://users.ictp.it/~zecchina/SP/
http://www.cril.univ-artois.fr/SAT11/solvers/SAT2011-static-binaries.tar.gz
http://www.cril.univ-artois.fr/SAT11/solvers/SAT2011-static-binaries.tar.gz
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Parameter Settings for Competitors. Sparrow is highly tuned on our target
set of instances and incorporates optimal settings for each set within its code.
WalkSAT has only one single parameter, the walk probability wp. In case of
3-SAT we took the optimal values for wp = 0.567 computed in [7]. Because
we could not find any settings for 5-SAT and 7-SAT problems we have run our
modified version of F-race to find good settings. For 5sat500 the configurator
reported wp = 0.25 and for 7sat90 wp = 0.1. The survey propagation solver was
evaluated with the default settings reported in [I7].

4.3 Results

We have evaluated our solvers and the competitors on the test set of the instance
sets 3satlk, 3sat10k, 5sat500 and 7sat90 (note that the training set was used only
for finding good parameters for the solvers). The parameter setting for ¢, and
¢m are those from Table[] (in case of 3-SAT we have always used the parameters
for 3sat10k). The results of the evaluations are listed in Table

Table 2. Evaluation results: Each cell represents the parl0 runtime and the number
of successful runs for the solvers on the given instance set. Results are highlighted if
the solver succeeded in solving all instances within the cutoff time, or if it has the best
parl0 runtime. Cutoff times are 600 seconds for 3satlk, 5sat500 and 7sat90 and 5000
seconds for the rest.

3sat10k 3satComp 3satExtreme  5sat500 Tsat90
exp(cp, Cm) 46.6  (998) 93.84 (500) - 12.49 (10%) 201.68 (974)
poly(cp,cm)  46.65 (996) 76.81 (500) - - -
exp(cp) 53.02 (997) 126.59 (500) - 7.84 (103) 134.06 (984)
poly(cp) 22.80 (1000) 54.37 (500) 1121.34 (180) -

Sparrow2011 199.78 (973) 498.05 (498) 47419 (10) 9.52 (10%) 14.94 (10%)
WalkSAT 61.74 (995) 172.21 (499) 1751.77 (178) 14.71 (10%) 69.34 (994)
sp 1.4 3146.17 (116) 18515.79 (63) 599.01 (180) 5856 (6) 6000 (0)

On the 3-SAT insatances, the polynomial function yields the overall best per-
formance. On the 3-SAT competition set all of our solver variants exhibited the
most stable performance, being able to solve all problems within cutoff time. The
survey propagation solver has problems with the 3sat10k and the 3satComp prob-
lems (probably because of the relatively small number of variables). The good per-
formance of the break-only-poly-solver remains surprisingly good even on the 3sa-
tExtreme set where the number of variables reaches 5 - 10° (ten times larger than
that from the SAT Competition 2011). From the class of SLS solvers it exhibits
the best performance on this set and is only approx. 2 times slower than survey
propagation. Note that a value of ¢;, = 2.165 for the break-only-poly solver further
improved the runtime of the solver by approximately 30% on the 3satExtreme set.

On the 5-SAT instances the exponential break-only-exp solver yields the best
performance being able to beat even Sparrow, which was the best solver for
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5-SAT within the SAT Competition 2011. On the 7-SAT instances though the
performance of our solvers is relatively poor. We observed a very strong variance
of the run times on this set and it was relatively hard for the configurator to
cope with such high variances.

Overall the performance of our simple probability based solvers reaches state-
of-the-art performance and can even get into problem size regions where only
survey propagation could catch ground.

Scaling Behavior with IN. The survey propagation algorithm scales linearly
with IV on formulas generated near the threshold ratio. The same seems to hold
for WalkSAT with optimal noise as the results in [7] shows. The 3satExtreme
instance set contains very large instances with varying N € {10°...5-10%}. To
analyze the scaling behavior of our probSAT solver in the break-only-poly variant
we have computed for each run the number of flips per variable performed by
the solver until a solution was found. The number of flips per variable remains
constant at about 2-10% independent of N. The same holds for WalkSAT, though
WalkSAT seems to have a slight larger variance of the run times.

Results on the SAT Competition 2011 Random Set. We have compiled
an adaptive version of our probSAT solver and of WalkSAT, that first checks the
size of the clauses (i.e. k) and then sets the parameters accordingly (like Spar-
row2011 does). We have ran this solvers on the complete satisfiable instances set
from the SAT Competition 2011 random category along with all other competi-
tion winning solvers from this category: Sparrow2011, sattime2011 and EagleUp.
Cutoff time was set to 5000 seconds. We report only the results on the large set,
as the medium set was completely solved by all solvers and the solvers had a
median runtime under one second. As can be seen from the results of the cactus
plot in Figure dl the adaptive version of probSAT would have been able to win
the competition. Interestingly is to see that the adaptive version of WalkSAT
would have ranked third.

Results on the SAT Competition 2011 Satisfiable Crafted Set. We have
also ran the different solvers on the satisfiable instances from the crafted set of
SAT Competition 2011 (with a cutoff time of 5000 seconds). The results are
listed in Table Bl We have also inculded the results of the best three complete
solvers from the crafted category. The probSAT solver and the WalkSAT solver
performed best in their 7-SAT break-only configuration solving 81 respectively
101 instances. The performance of WalkSAT could not be improved by changing
the walk probability. The probSAT solver though exhibited better performance
with ¢b = 7 and a switch to the polynomial break-only scheme, being then able
to solve 93 instances. With such a high ¢b value (very greedy) the probability of
getting stuck in local minima is very high. By adding a static restart strategy
after 2 - 10* flips per variable the probSAT solver was then able to solve 99
instances (as listed in the table).

The high greediness level needed for WalkSAT and probSAT to solve the crafted
instances indicates that this instances might be more similar to the 7-SAT in-
stances (generally to higher k-SAT). A confirmation of this conjecture is that
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Fig. 4. Results on the “large” set of the SAT Competition 2011 random instances

Sparrow with fixed parameters for 7-SAT instances could solve 103 instances vs.
104 in the default setting. We suppose that improving SLS solvers for random in-
stances with large clause length would also yield improvements for non random
instances.

To check weather the performance of SLS solvers can be improved by prepro-
cessing the instances first, we have run the preprocessor of lingeling [3], which
incorporates all main preprocessing techniques, to simplify the instances. The
results unluckily show the contrary of what would have been expected (see Table
[3). None of the SLS solvers could benefit from the preprocessing step, solving
equal or less instances.

Table 3. Results on the crafted satisfiable instances: Each cell reports the
number of solved instances within the cutoff time (5000 seconds). The first line shows
the results on the original instances and the second on the preprocessed instances.

sattime Sparrow WalkSAT probSAT MPhaseSAT  clasp  SArTagnan

(complete) (complete) (complete)
Crafted 107 104 101 99 93 81 46
Crafted pre. 86 97 101 95 98 80 48

5 Comparison with WalkSAT

In principle, WalkSAT [10] also uses a certain pattern of probabilities for flipping
one of the variables within a non-satisfied clause. But the probability distribution
does not depend on a single continuous function f as in our algorithms described
above, but uses some non-continuous if-then-else decisions as described in [10].

In Table 3 we compare the flipping probabilities in WalkSAT (using the noise
value 0.57) with the break-only-poly-algorithm (with ¢, = 2.3) and the break-
only-exp-algorithm (with ¢, = 2.5) using a few examples of break-values that
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might occur within a 3-CNF clause. Even though the probabilities look very
similar, we think that the small differences renders our approach to be more
robust in case of 3-SAT and 5-SAT.

Table 4. Probability comparison of WalkSAT and probSAT: The first columns
show some typical break-value combinations that occur within a clause in a 3-SAT
formula during the search. For the different solvers considered here the probabilities
for the each of the 3 variables to be flipped are listed.

breaks WalkSAT break-only-poly  break-only-exp

0 0 0 033 033 033 033 0.33 0.33 0.33 0.33 0.33
0 01 05 05 0 0.46 0.46 0.08 0.42 0.42 0.16
01 1 10 O 0 0.72 0.14 0.14 0.56 0.22 0.22
01 2 10 0O 0 0.79 0.15 0.06 0.64 0.26 0.1

0 2 2 10 0 0 0.88 0.06 0.06 0.76 0.12 0.12
1 1 1 033 033 0.33 0.33 0.33 0.33 0.33 0.33 0.33
1 1 2 04 04 019 042 042 0.16 0.42 042 0.16
1 2 2 062 019 019 056 0.22 0.22 0.56 0.22 0.22
1 2 3 062 0.19 019 063 0.24 0.13 0.64 0.26 0.1

6 Summary and Future Work

We introduced a simple algorithmic design principle for a SLS solver which does
its job without heuristics and “tricks”. It just relies on the concept of probability
distribution and focused search. It is though flexible enough to allow plugging
in various functions f which guide the search.

Using this concept we were able to discover a non-symmetry regarding the
importance of the break and make-values: the break-value is the more important
one; one can even do without the make-value completely.

We have systematically used an automatic configurator to find the best pa-
rameters and to visualize the mutual dependency and impact of the parameters.

Furthermore, we observe a large variation regarding the running times even on
the same input formula. Therefore the issue of introducing an optimally chosen
restart point arises. Some initial experiments show that performing restarts, even
after a relatively short period of flips (e.g. 20N) does give favorable results on
hard instances. It seems that the probability distribution of the number of flips
until a solution is found, shows some strong heavy tail behavior (cf. [9],[I3]).

Plugging in the age property into the distribution function and analyze how
strong its influence should be is also of interest.

Finally, a theoretical analysis of the Markov chain convergence and speed of
convergence underlying this algorithm would be most desirable, extending the
results in [12].
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Abstract. Most state of the art SAT solvers for industrial problems
are based on the Conflict Driven Clause Learning (CDCL) paradigm.
Although this paradigm evolved from the systematic DPLL search algo-
rithm, modern techniques of far backtracking and restarts make CDCL
solvers non-systematic. CDCL solvers do not systematically examine all
possible truth assignments as does DPLL.

Local search solvers are also non-systematic and in this paper we show
that CDCL can be reformulated as a local search algorithm: a local search
algorithm that through clause learning is able to prove UNSAT. We
show that the standard formulation of CDCL as a backtracking search
algorithm and our new formulation of CDCL as a local search algorithm
are equivalent, up to tie breaking.

In the new formulation of CDCL as local search, the trail no longer
plays a central role in the algorithm. Instead, the ordering of the literals
on the trail is only a mechanism for efficiently controlling clause learning.
This changes the paradigm and opens up avenues for further research and
algorithm design. For example, in QBF the quantifier places restrictions
on the ordering of variables on the trail. By making the trail less impor-
tant, an extension of our local search algorithm to QBF may provide a
way of reducing the impact of these variable ordering restrictions.

1 Introduction

The modern CDCL algorithm has evolved from DPLL, which is a systematic
search through variable assignments [4]. CDCL algorithms have evolved through
the years, various features and techniques have been added [10] that have demon-
strated empirical success. These features have moved CDCL away from exhaus-
tive search, and, for example, [9] has argued that modern CDCL algorithms are
better thought of as guided resolution rather than as exhaustive backtracking
search.

New features have been added as we have gained a better understanding of
CDCL both through theoretical developments and via empirical testing. For
example, the important technique of restarts was originally motivated by theo-
retical and empirical studies of the effect of heavy-tailed run-time distributions
[7] on solver run-times.

* Supported by Natural Sciences and Engineering Research Council of Canada.

A. Cimatti and R. Sebastiani (Eds.): SAT 2012, LNCS 7317, pp. 30-43, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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Combinations of features, however, can sometimes interact in complex ways
that can undermine the original motivation of individual features. For exam-
ple, phase saving, also called light-weight component caching, was conceived
as a progress saving technique, so that backtracking would not retract already
discovered solutions of disjoint subproblems [I2] and then have to spend time
rediscovering these solutions. However, when we add phase saving to restarts,
we reduce some of the randomization introduced by restarts, potentially limit-
ing the ability of restarts to short-circuit heavy-tailed run-times. Nevertheless,
even when combined, restarts and phase saving both continue to provide a useful
performance boost in practice and are both commonly used in CDCL solvers.

When combined with a strong activity-based heuristic, phase saving further
changes the behavior of restarts. In this context it is no longer obvious that
restarts serve to move the solver to a different part of the search space. Instead,
it can be shown empirically that after a restart a large percentage of the trail
is re-created exactly as it was prior to the restart, indicating that the solver
typically returns to the same part of the search space. In fact, there is evidence to
support the conclusion that the main effect of restarts in current solvers is simply
to update the trail with respect to the changed heuristic scores. For example, [14]
show that often a large part of the trail can be reused after backtracking. With
the appropriate implementation techniques reusing rather than reconstructing
the trail can speed up the search by reducing the computational costs of restarts.

In this paper we examine another feature of modern SAT solvers that ties
them with the historical paradigm of DPLL: the trail used to keep track of the
current set of variable assignments. We show that modern SAT solvers, in which
phase savings causes an extensive recreation of the trail after backtracking, can
actually be reformulated as local search algorithms.

Local search solvers work with complete truth assignments [15], and a single
step usually consists of picking a variable and flipping its value. Local search
algorithms have borrowed techniques from CDCL. For example, unit propagation
has been employed [6I82], and clause learning as also been used [I]. However,
such solvers are usually limited to demonstrating satisfiability, and often cannot
be used to reliably prove UNSAT. Our reformulation of the CDCL algorithm
yields a local search algorithm that is able to derive UNSAT since it can perform
exactly the same steps as CDCL would. It also gives a different perspective on
the role of the trail in CDCL solvers. In particular, we show that the trail can be
viewed as providing an ordering of the literals in the current truth assignment, an
ordering that can be used to guide clause learning. This view allows more flexible
clause learning techniques to be developed, and different types of heuristics to be
supported. It also opens the door for potentially reformulating QBF algorithms,
which suffer from strong restrictions on the ordering of the variables on the trail.

Section [2] examines the existing CDCL algorithm and describes our intuition
in more detail. Section [3 presents a local search formulation of the modern CDCL
algorithm and proves that the two formulations are equivalent. Section @l presents
some simple experiments which suggest further directions for research. Section
concludes the paper.
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Algorithm 1: Modern CDCL algorithm

Data: ¢—a formula in CNF
Result: TRUE if ¢ is SAT, FALSE if ¢ is UNSAT
1 w4+ 0 ; C + 0 while TRUE do

2 7 < unitPropagate(¢ U C, 7)
3 if reduce(¢ U C,m) contains an empty clause then
4 ¢ + clauseLearn(m,¢ U C)
5 if ¢ = () then return FALSE
6 Cc=cCcu{c}
7 7 = backtrack(c)
8 else if ¢ is TRUE under m then return TRUE
9 else
10 v <— unassigned variable with largest heuristic value
11 v < phase[v]
12 w.append(v)
13 end
14 if timeToRestart() then backtrack(0)
15 end

2 Examining the CDCL Algorithm

A modern CDCL algorithm is outlined in Algorithm [Il Each iteration starts
by adding literals implied by unit propagation to the trail «. If a conflict is
discovered clause learning is performed to obtain a new clause ¢ = (a — y).
The new clause is guaranteed to be empowering, which means that it is able
to produce unit implications in situations when none of the old clauses can [13].
In this case, ¢’ generates a new implication y earlier in the trail, and the solver
backtracks to the point where the new implication would have been made if the
clause had previously been known. Backtracking removes part of the trail in
order to add the new implication in the right place. On the next iteration unit
propagation will continue adding implications, starting with the newly implied
literal y. If all variables are assigned without a conflict, the formula is satisfied.
Otherwise, the algorithm picks a decision variable to add to the trail. It picks
an unassigned variable with the largest heuristic value, and restores its value
to the value it had when it was last assigned. The technique of restoring the
variable’s value is called phase saving. We will say that the phase of a variable
v, phase[v], is the most recent value it had; if v has never been assigned, phase[v]
will be an arbitrary value set at the beginning of the algorithm; if v is assigned,
phase[v] will be its current value.

Lastly, sometimes the solver restarts: it removes everything from the trail
except for literals unit propagated at the top level. This might be done according
to a set schedule, or some heuristic [3].

As already mentioned, after backtracking or restarting, the solver often recre-
ates much of the trail. For example, we found that the overwhelming majority
of assignments Minisat makes simply restore a variable’s previous value. We
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Assignments and flips in Minisat (millions)
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Fig.1. Assignments and flips on both solved and unsolved (after a 1000s timeout)
instances of SAT11 dataset. Sorted by the number of assignments.

have ran Minisat on the 150 problems from the SAT11 dataset of the SAT com-
petition, with a timeout of 1000 seconds. Figure [Il shows the distribution of
assignments Minisat made, and the number of “flips” it made, where flips are
when a variable is assigned a different value than it had before. On average, the
solver performed 165.08 flips per conflict, and 3530.4 assignments per conflict.
It has already been noted that flips can be correlated with the progress that the
solver is making [3].

Whenever the solver with phase saving backtracks, it removes variable as-
signments, but unless something forces the variable to get a different value, it
would restore the old value when it gets to it. So, we can imagine that the solver
is working with a complete assignment, which is the phase settings for all the
variables phase[v], and performing a flip from =l to [ only in one of the following
cases. (1) [ is implied by a new conflict clause. (2) [ is implied by a variable
that was moved up in the trail because its heuristic value was upgraded. Or (3)
[ is implied by another “flipped” variable. Phase saving ensures that unforced
literals, i.e., decisions, cannot be flipped.

In all of these cases [ is part of some clause ¢ that is falsified by the current
“complete” assignment (consisting of the phase set variables); ¢ would then be-
come its reason clause; at the point when [ is flipped, c is the earliest encountered
false clause; and [ is the single unassigned variable in ¢ (i.e., without ¢, [ would
have been assigned later in the search). As we will see below, we can use these
conditions to determine which variable to flip in a local search algorithm.

Note that we will not consider the randomization of decision variables in this
paper, although this could be accommodated by making random flips in the
local search algorithm. The benefits of randomizing the decision variables are
still poorly understood. In our experiments we found that turning off random-
ization does not noticeably harm performance of Minisat. Among ten runs with
different seeds, Minisat solved between 51 and 59 instances, on average 55. With
randomization turned off, it solved 56.
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Algorithm 2: Local Search
Data: ¢ - a formula in CNF
Result: TRUE if ¢ is SAT, FALSE if ¢ is UNSAT
while TRUE do
I < initValues()
while ¢|; contains FALSE clauses do
if timeToRestart() then break
v < pickVar(I)
flip(v)
end
end
return TRUE

© 00 N O W N

3 Local Search

Algorithm 2 presents a generic local search algorithm. A local search solver works
with a complete assignment I. At each stage in the search, it picks a variable
and flips its value. There are different techniques for choosing which variable to
flip, from simple heuristics such as minimizing the number of falsified clauses
[15], to complicated multi-stage filtering procedures [16].

Typically, the algorithm tries to flip a variable that will reduce the distance
between the current complete assignment and a satisfying assignment. However,
estimating the distance to a solution is difficult and unreliable, and local search
solvers often get stuck in local minima. It was noted that it is possible to escape
the local minimum by generating new clauses that would steer the search. Also,
if new non-duplicated clauses are being generated at every local minimum, the
resulting algorithm can be shown to be complete. An approach exploiting this
fact was proposed, using a single resolution step to generate one new clause at
each such point [5]. The approach was then extended to utilize an implication
graph, and incorporate more powerful clause learning into a local search solver,
resulting in the CDLS algorithm [I]. However, as we will see below, CDLS cannot
ensure completeness because the clause learning scheme it employs can generate
redundant clauses.

The main difficulty for such an approach is the generation of an implication
graph from the complete assignment I. The first step consists of identifying
once-satisfied clauses. A clause c is considered to be once-satisfied by a literal
z and a complete assignment I if there is exactly one literal z € ¢ that is true
inI (enl={x}).

Theoretically, any clause ¢y with —z € ¢ that is false under I can be resolved
with any clause ¢, that is once-satisfied by literal . This resolution would pro-
duce a non-tautological clause cg which is false under I and which can potentially
be further resolved with other once-satisfied clauses. However, in order to be use-
ful, the algorithm performing such resolutions needs to ensure that it does not
follow a cycle or produce a subsumed clause.
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In order to avoid cycles, it is sufficient to define some ordering 1 on variables
in I, and only allow the resolution of falsified clauses ¢y and once-satisfied clauses
¢o when all of the false literals in ¢, precede the satisfying literal in the ordering
1. However, a simple ordering does not ensure that the new clauses are useful.

Clause learning can be guided more effectively by considering the effects of
unit propagation. We define an ordering ¢ on the complete assignment I to be
a sequence of literals ) = {x1,x2,..., 2} from I (Vi.x; € T). A literal z; € ¢ is
implied in 9 if there is some clause (—zj,,...,"xj,, ;) with j1 < jo < -+ <
Jn < 4. In this case j, is called an implication point for z; (the implication
point is 0 if the clause is unit). z; is said to be implied at k if k is the smallest
implication point for x;.

Finally, an ordering ¥ will be said to be UP-compatible if for any z; € v, if
x; is implied at j,, then it must appear in the ordering v as soon after j, as pos-
sible. In particular, UP-compatibility requires that any literals between x; and
its smallest implication point j,, i.e., the literals x;, ,,...,2;_1, also be implied
in ¢. For example, for a set of clauses (a), (—a,—b,—c), (—¢,d), the orderings
{a,c,d,b} and {c,d, b, ~a} are UP-compatible, but {c,d, b,a} or {c,b,d,—a} are
not. In the first case, a is implied by the clause (a), but follows non-implied ec.
In the second, d is implied by ¢ with (—¢, d), but follows non-implied b.

A CDCL solver that ignores all conflicts would produce a UP-compatible or-
dering. However, not every UP-compatible ordering can be produced by a CDCL
solver. This is because the definition considers only the given assignment, and
does not take into account falsified clauses. So, it is possible that for some literal
xi, -x; is implied by a smaller prefix of the assignment, but this implication is
ignored because it disagrees with the current assignment.

Given a complete assignment I and a UP-compatible ordering 1 we can define
a decision literal to be any literal in ¢ that is not implied. For each x; € 1,
we can define the decision level of x; to be the number of decision literals in
{x1,x2,...,2;}. For each implied literal, we can say that its reason is the clause
that implied it. Note that the reason clauses are always once-satisfied by I. So,
the ordering 9 gives us an implication graph over which clause learning can be
performed as in a standard CDCL solver.

Consider a false clause ¢ = (e, " ey, - -, Te,) With ¢4 < 2 < ... < ¢p.
If 2., had been in I, it would have been implied at the same decision level
as T, ,. We will call such —z,, a failed implication. We will say that z., is
f-implied at a decision level 7 if it is a failed implication at the decision level i
but not earlier.

The scheme used by CDLS [1]] is to construct a derived partial interpre-
tation I'. Let i be the first decision at which a failed implication —z; occurs
due to some clause (8, —xy). I’ is then the prefix of ¥ up to and including all
variables with decision level i. If ; € I’, then x; and -z are implied at the
same decision level, and clause learning can be performed as usual. We will call
this kind of failed implication conflicting. In this case the execution is identi-
cal to a corresponding run of a CDCL solver, so the resulting clause is subject
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to all the guarantees a CDCL solver provides. In particular, the new clause is
guaranteed to be empowering [13].

If xy ¢ I’ then —x; does not cause a conflict. It is a failed implication sim-
ply because it is incompatible with the current assignment. We shall call this
kind of failed implication a non-conflicting implication. In CDLS the learning
scheme is only applied when no variable flip is able to reduce the number of
falsified clauses. So, there must be some clause (o, x ) that is once-satisfied by
x;. CDLS then extends I’ by including decisions {a — I'} as assumptions. In the
new I’, both o and 3 are falsified, so both 5 and -~z are implied, which causes
a conflict that can be used as a starting point for clause learning. However, no
guarantees apply to the new clause in this case. Because the added assumptions
are not propagated, it is possible that the newly generated clause is not only not
empowering, but is actually subsumed by existing clauses. For example, suppose
the formula contains clauses (z1, €2, ¢), (21, x2, 7x3) and (3, 7¢). Suppose that
the current assignment contains (—x1, -2, 23, ¢). If 23 is chosen as the first deci-
sion, the conflict immediately occurs because —c is a failed implication at the first
level. The implication graph, after adding the necessary assumptions, contains
only two clauses, (—z3,—c) and (21,2, c¢). The resulting clause, (z1,x2, x3),
repeats a clause already in the database.

Instead of stopping at the first failed implication, we could use a larger prefix
of 1. Namely, we could apply learning to the first conflicting failed implication.
However, this would not guarantee an unsubsumed new clause. It is possible
that clause learning generates a clause (o, ) implying = that is the same as one
of the previously ignored clauses causing a (non-conflicting) failed implication.

The problem arises because, from the point of view of CDCL, z; is not a
conflict. Instead of doing clause learning, a CDCL algorithm would have flipped
xy and continued with the search. Picking a correct ordering 1) would not help
either. The problem here is with objective functions used to guide local search.

The following example is for the objective function that minimizes the number
of satisfied clauses. Suppose we have the following clauses: (a,b), (¢, d), (—a,c),
(=b,d), (—c,a), (—d,b). An assignment m = (—a, =b, ¢, —d) is a local minimum:
it falsifies two clauses. No literal flip falsifies less, and no ordering of 7 produces
a conflicting implication. If we initially set —a, the two implications are b and
—c. The first is a failed implication because it disagrees with 7. The two possible
implications from —c¢ are d and —a. The first is a failed implication, and the
second is already set. All the other variables are completely symmetrical.

To avoid this problem, the flips need to be guided using some notion of unit
propagation. Intuitively, a non-conflicting failed implication does not give enough
information to clause learning, and thus would not produce a useful conflict. So,
it should be resolved using a flip rather than clause learning, and should not
constitute a local minimum.

Algorithm B demonstrates a strategy to guide the local search outlined in
Algorithm 2] It selects a UP-compatible ordering ¢ on I (of course, this could be
updated incrementally and not generated from scratch every time). It then picks
the first failed implication on . If it is conflicting, clause learning is performed.
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Algorithm 3: pickVar(I)
Data: I - a complete assignment
Result: y - next variable to flip
1 <— UP-compatible ordering on [
y < first failed implication in v
if -y is conflicting then
¢ < firstUIP(v)
if ¢ =0 then EXIT(FALSE)
attachClause(c); y < c.implicate
end
return y
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Note that the resultant clause c is guaranteed to be FALSE under I, and it would
produce a failed implication at an earlier level. If an empty clause is derived, the
formula is proven unsatisfiable. Otherwise, the new failed implication is now the
earliest, and is non-conflicting, so the new implicate needs to be flipped.

One detail that is left out of the above algorithm is how to pick the ordering
1. Note that if we are given some base ordering v, we can construct a UP-
compatible ordering v in which decision literals respect 1. In this case 1 plays
the role of the variable selection heuristic. Of course, the heuristic must be chosen
carefully so as not to lead the algorithm in cycles. An easy sufficient condition
is when 1)y, is only updated after clause learning, as VSIDS is.

3.1 Connection to CDCL

In this section, we will focus on Algorithm 2] guided by the variable selection and
clause learning technique presented in Algorithm [Bland with no restarts. We will
refer to this as A2l We will refer to Algorithm [I] as Al

Define a trace of an algorithm A to be a sequence of flips performed and
clauses learned by A. Note that this definition applies to both ARl and A[l recall
that for Al a flip is an assignment where the variable’s new value is different
from its phase setting.

Theorem 1. For any heuristic h there is a heuristic h’ such that for any input
formula ¢, Al with h would produce the same trace as Ald with h' (provided they
make the same decisions in the presence of ties).

Proof. We will say that a heuristic & is stable for (a version of) CDCL algorithm
A if during any execution of A with h we have h(v1) > h(ve) for some decision
variable vy only if h(vy) > h(ve) also held just before vo was last assigned.

Intuitively, a heuristic is stable if the ordering of decision variables is always
correct with respect to the heuristic, and is not simply historical. One way to
ensure that a heuristic is stable is to restart after every change to the heuristic.
For example, the VSIDS heuristic is stable for a version of Al which restarts
after every conflict.
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We will first prove the claim for a heuristic h that is stable for Al Then, we
will show that for any h, we can find an equivalent i’ that is stable for Al and
such that Al with A’ produces the same trace as with h.

Let the initial assignment of Al be the same as the initial phase setting of
ARl and let both algorithms use the same heuristic h. It is easy to verify that if
a partial execution of Al has the same trace as a partial execution of ARl that
means that the phase setting of any variable in Alll matches its value in ARl

To show that Alland ARlwould produce the same trace when run on the same
formula ¢, we will consider partial executions. By induction on n, we can show
that if we stop each algorithm just after it has produced a trace of length n, the
traces will be identical.

If n = 0, the claim trivially holds. Also note that if one algorithm halts after
producing trace T', so will the other, and their returned values will match. Both
algorithms will return FALSE iff T ends with an empty clause. If A2 has no failed
implications, then Al will restore all variables to their phase values and obtain
a solution, and vice versa. Suppose the algorithms have produced a trace T'.

Let S be the Next Flip or Learned Clause of Al Let 7 be the trail of Al
just before it produced S.

Because h is stable for Alll then the heuristic values of the decision variables in
7 are non-increasing. That is because if h(vy) > h(vz) for two decision variables,
then the same must have held when v, was assigned. If v; had been unassigned
at that point, it would have been chosen as the decision variable instead. So, vq
must have been assigned before vs.

So, m is a UP-compatible ordering respecting h over the partial assignment:
any implication is placed as early as possible in 7, and non-implied (decision)
literals have non-increasing heuristic value. Because unit propagation was per-
formed to completion (except for possibly the last decision level), and because
the heuristic value of all unassigned literals is less than that of the last decision
literal, m can always be extended to a UP-compatible ordering ) on I.

Let C' = {a,v} be the clause that caused v to be flipped to TRUE if S is a
flip; otherwise, let it be the conflicting clause that started clause learning, with
v being the trail-deepest of its literals. In both cases, C is FALSE at P;, so v is a
failed implication in . This is the first conflict encountered by All so there are
no false clauses that consist entirely of literals with earlier decision levels. So, v
is the first failed implication in ).

If S is a flip, then v is non-conflicting, and ARl would match the flip. Oth-
erwise, v is a conflicting failed implication, and will cause clause learning. For
the ¥ which matches 7, clause learning would produce a clause identical to that
produced by Alll So, the next entry in the trace of ARl will also be S.

Let S be the Next Flip or Learned Clause of A2l Let v be the first failed
implication just before S was performed, and let ¢ be the corresponding UP-
compatible ordering. Let m be the trail of Al just before it produces its next
flip or a learned clause. We will show that whenever 7 differs from v, Alll could
have broken ties differently to make them match. Let v; € m and vy € 9 be the
first pair of literals that are different between m and . Suppose v; is implied.
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Then, because v is UP-compatible, v must also be implied by preceding literals.
So, Al could have propagated ve before v1. If v1 is a decision literal, then so
is vo. Otherwise, vo should have been unit propagated before v; was assigned.
If h(v2) < h(v1), this would break the fact that 1 respects the heuristic. So,
h(ve) > h(v1). Then the same must have been true at the time v; was assigned.
So, vo was at worst an equal candidate for the decision variable, and could have
been picked instead.

So, provided All breaks ties accordingly, it would have the trail = that is a
prefix of . It can continue assigning variables until the trail includes all the
variables at the decision level at which v is f-implied. Because v is the first failed
implication in v, no conflicts or flip would be performed up to that point. At
this point, there will be some clause C = («a,v). If S is a flip, then v is not
conflicting, C' will be unit, and a flip will be performed. If S is a learned clause,
then v is conflicting, which means that v was among the implied literals at this
level. So, clause learning will be performed. Either way, the next entry in the
trace of Alll will also be S.

So, we have shown that A2l and Al would produce the same trace given the
same heuristic A’ which is stable for Alll Now we will sketch a proof that given
any variable heuristic h, we can construct a heuristic A’ which is stable for All
and such that Al with A would produce the same trace as with h’.

We will define h/(v) = h(v) whenever v is unassigned. Otherwise, we will set
K (v) =M +V — D+ 0.5d, where M is some value greater than the maximum
h(v) of all non-frozen variables, V' is the number of variables in the problem,
and D is the decision level at which v was assigned when it became frozen, and
d is 1 if v is decision and 0 otherwise.

Because a heuristic is only considered for unassigned variables, then the be-
havior of the algorithm is unaffected, and it will produce the same traces. Also,
unassigned values always have a smaller heuristic value than those that are as-
signed; those assigned later always have a smaller heuristic value than earlier
decision literals. So, the heuristic is stable for Al

As a corollary: because Algorithm [l is complete, so is Algorithm

3.2 Other Failed Implications

In Algorithm [3] we always choose the first failed implication. However, it is not
a necessary condition to generate empowering clauses.

Theorem 2. Suppose that 1 is UP-compatible ordering on I. Let ¢ be a clause
generated by 1UIP on some failed implication x. Suppose ¢ = (a,y) where y is
the new implicant. If no failed implication that is earlier than x can be derived
by unit propagation from «, then c is empowering.

Proof. Suppose that c is not empowering. Then y can be derived by unit prop-
agation from «. Because y was not implied by « at that level, then the unit
propagation chain contains at least one literal that contradicts the current as-
signment. Let p be such a literal which occurs first during unit propagation.
Then p is a failed implication that can be derived from «a.
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Note that this is sufficient, but not a necessary condition. It is possible that
an earlier failed implication = can be derived from «, but aNx still do not allow
the derivation of y.

3.3 Potential Extension to QBF Solving

The trail has always played a central role in the formalization of the SAT algo-
rithm. It added semantic meaning to the the chronological sequence of assign-
ments by linking it to the way clause learning is performed.

In SAT, this restriction has no major consequences, since the variables can
be assigned in any order. However, in an extension of SAT, Quantified Boolean
Formula (QBF) solving, this restriction becomes important.

In QBF variables are either existentially or universally quantified, and the
inner variables can depend on the preceding ones. Clause learning utilizes a
special universal reduction step, which allows a universal to be dropped from
a clause if there are no existential variables that depend on it. In order to work,
clause learning requires the implication graph to be of a particular form, with
deeper variables having larger decision levels. Because of the tight link between
the trail and clause learning, the same restriction is applied to the order in which
the algorithm was permitted to consider variables. Only outermost variables were
allowed to be picked as decision literals.

This restriction is a big impediment to performance in QBF. One illustration
of this fact is that there is still a big discrepancy between search-based and
expansion based solvers in QBF. The former are constrained to consider variables
according to the quantifier prefix, while the latter are constrained to consider the
variables in reverse of the quantifier prefix. The fact that the two approaches are
incomparable, and that there are sets of benchmarks challenging for one but not
the other, suggests that the ordering restriction plays a big role in QBF. Another
indication of this is the success of dependency schemes, which are attempts to
partially relax this restriction [I1].

The reformulation presented here is a step towards relaxing this restriction.
We show that the chronological sequence of assignments does not have any se-
mantic meaning, and thus should not impose constraints on the solver. Extend-
ing the present approach to QBF should allow one to get an algorithm with the
freedom to choose the order in which the search is performed.

To extend to QBF, the definition of UP-compatible ordering would need to
be augmented to allow for universal reduction. One way to do this would be to
constrain the ordering by quantifier level, to ensure that universal reduction is
possible and any false clause would have an implicate. However, this ordering
is no longer linked to the chronological sequence of variables considered by the
solver, and will be well-defined after any variable flip. At each step, the solver
will be able to choose which of the failed implications to consider, according to
some heuristic not necessarily linked to its UP-compatible ordering.

So, decoupling the chronological variable assignments from clause learning
would allow one to construct a solver that would be free to consider variables in
any order, and would still have well-defined clause learning procedure when it
encounters a conflict.
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Table 1. Problems from SAT11 solved within a 1000s timeout by Minisat with phase
saving, and by the modified versions C n, where n is the number of full runs the solver
performs at each restart. C All is the version that performs exclusively full runs. The
number of problems solved is shown for All, True and False instances.

Family Minisat C 1 Cs5 C 10 C 100 C 1000 C All
ATF ATF ATFATUVFATVFATFATF
fuhs (34) 109 1108 2 9 81 9 8 110 7 310 8 2 7 7 0
manthey (9) 33 0 2 2022033033 0110000
jarvisalo (47) 24 816 24 816 24 915241014 25 916 17 61115 6 9
leberre (17) 11 4 7 3 6 714 6 813 6 713 6 712 5 7 7 1 6
rintanen 30) 9 7 2 8 5 3 7 43 8 53 8 53 211101
kullmann (13) 2 2 0 3 3 0 3 3 0 2 2 0 4 4 0 3 3 0 3 3 0
Total (150) 59 33 26 60 32 28 59 32 27 59 34 25 63 34 29 45 24 21 33 17 16

4 Experiments

We have investigated whether subsequent failed implications, mentioned in Sec-
tion 3.2, can be useful in practice. To evaluate this, we have equipped Minisat
with the ability to continue the search ignoring conflict clauses. Note: here we
use a version of Minisat with phase saving turned on.

This is equivalent to building a UP-compatible assignment with no non-
conflicting failed implications.

For each decision level, it would only store the first conflict clause encoun-
tered, because learning multiple clauses from the same decision level is likely to
produce redundant clauses. After all the variables are assigned, it would back-
track, performing clause learning on each stored conflict, and adding the new
clauses to the database. We will say that one iteration of this cycle is a full run.

Obviously, not yet having any method of guiding the selection, the algorithm
could end up producing many unhelpful clauses. To offset this problem, and to
evaluate whether the other clauses are sometimes helpful, we constructed an
algorithm that performs a full run only some of the time.

We have added a parameter n so that at every restart, the next n runs of the
solver would be full runs. We experimented with n € {1,5,10,100,1000} and
with a version which only performs full runs.

We ran the modified version on the 150 benchmarks from SAT11 set of the
Sat Competition, with timeout of 1000 seconds. The tests were run on a 2.8GHz
machine with 12GB of RAM.

Table [l summarizes the results. As expected with an untuned method, some
families show improvement, while for others the performance is reduced. How-
ever, we see that the addition of the new clauses can improve the results for
both satisfiable instances (as in benchmarks sets leberre and kullmann), and
unsatisfiable ones (as in fuhs and rintanen).

Figure 2l compares the number of conflicts learned while solving the problems
in Minisat and C 100. For instances which only one solver solved, the other
solver’s value is set to the number of conflicts it learned within the 1000s timeout.
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Fig. 2. The number of conflicts needed to solve the problem. Below the line are in-
stances on which C 100 encountered fewer conflicts than Minisat.

We note that in the conflict count for C 100 we include all the conflicts it
ever learned, so a single full run might add many conflicts at once. These are
unfiltered, so we expect that good heuristics and pruning methods can greatly
reduce this number. However, even with all the extra conflicts C 100 encounters,
there is a fair number of cases where it needs fewer conflicts to solve the problem
than Minisat.

5 Conclusion

We have presented a reformulation of the CDCL algorithm as local search. The
trail is shown to be simply an efficient way to control clause learning. By de-
coupling clause learning from the chronological sequence in which variables are
considered, we introduce new flexibility to be studied.

One potential application of this flexibility would be to produce QBF solvers
whose search space is not so heavily constrained by the variable ordering. An-
other is to find good heuristics to choose which conflict clauses are considered
during search.

Current CDCL solvers effectively maintain a UP-compatible ordering on the
trail by removing the order up to the place affected by a flip, and recomputing
it again. An interesting question worth investigating is whether it is possible to
develop algorithms to update the order more efficiently.
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Abstract. We prove that the graph tautology principles of Alekhnovich,
Johannsen, Pitassi and Urquhart have polynomial size pool resolution
refutations that use only input lemmas as learned clauses and without
degenerate resolution inferences. These graph tautology principles can
be refuted by polynomial size DPLL proofs with clause learning, even
when restricted to greedy, unit-propagating DPLL search.

1 Introduction

DPLL algorithms with clause learning have been highly successful at solving real-
world instances of satisfiability (SAT), especially when extended with techniques
such as clause learning, restarts, variable selection heuristics, etc. The basic
DPLL procedure without clause learning or restarts is equivalent to tree-like
resolution. The addition of clause learning makes DPLL considerably stronger.
In fact, clause learning together with unlimited restarts is capable of simulating
general resolution proofs [12]. However, the exact power of DPLL with clause
learning but without restarts is unknown. This question is interesting both for
theoretical reasons and for the potential for better understanding the practical
performance of DPLL with clause learning.

Beame, Kautz, and Sabharwal [3] gave the first theoretical analysis of DPLL
with clause learning. Among other things, they noted that clause learning with
restarts simulates full resolution. Their construction required the DPLL algo-
rithm to ignore some contradictions, but this was rectified by Pipatsrisawat and
Darwiche [12] who showed that SAT solvers which do not ignore contradictions
can also simulate resolution. (See [2] for the bounded width setting.)

[3] also studied DPLL clause learning without restarts. Using “proof trace
extensions”, they were able to show that DPLL with clause learning and no
restarts is strictly stronger than any “natural” proof system strictly weaker than
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resolution. Here, a natural proof system is one in which proofs do not increase
in length when variables are restricted to constants. However, the proof trace
method and the improved constructions of [97] have the drawback of introducing
extraneous variables and clauses, and using contrived resolution refutations.

There have been two approaches to formalizing DPLL with clause learning as
a static proof system rather than as a proof search algorithm. The first approach
was pool resolution with a degenerate resolution inference [16J9]. Pool resolution
requires proofs to have a depth-first regular traversal similarly to the search space
of a DPLL algorithm. Degenerate resolution allows resolution inferences in which
the hypotheses may lack occurrences of the resolution literal. Van Gelder [16]
argued that pool resolution with degenerate resolution inferences simulates a
wide range of DPLL algorithms with clause learning. He also gave a proof, based
on [I], that pool resolution with degenerate inferences is stronger than regular
resolution, using extraneous variables similar to proof trace extensions.

The second approach [7] is the proof system regWTRI that uses a “partially
degenerate” resolution rule called w-resolution, and clause learning of input lem-
mas. [7] showed that regWRTT exactly captures non-greedy DPLL with clause
learning. By “non-greedy” is meant that contradictions may need to be ignored.

It remains open whether any of DPLL with clause learning, pool resolution,
or the regWRTT proof system can polynomially simulate general resolution. One
approach to answering these questions is to try to separate pool resolution (say)
from general resolution. So far, however, separation results are known only for
the weaker system of regular resolution; namely, Alekhnovitch et al. [1], gave an
exponential separation between regular resolution and general resolution based
on two families of tautologies, variants of the graph tautologies GT’ and the
“Stone” pebbling tautologies. Urquhart [I5] subsequently gave a related sepa-
ration[] In the present paper, we call the tautologies GT’ the guarded graph
tautologies, and henceforth denote them GGT instead of GT’.

The obvious next question is whether pool resolution (say) has polynomial
size proofs of the GGT tautologies or the Stone tautologies. The main result of
the present paper resolves the first question by showing that pool resolution does
indeed have polynomial size proofs of the graph tautologies GGT. Our proofs
apply to the original GGT principles, without the use of extraneous variables in
the style of proof trace extensions; and our refutations use only the traditional
resolution rule, not degenerate resolution inferences or w-resolution inferences.
In addition, we use only learning of input clauses; thus, our refutations are also
regWRTI proofs (and in fact regRTI proofs) in the terminology of [7]. As a
corollary of the characterization of regWRTI by [7], the GGT principles have
polynomial size refutations that can found by a DPLL algorithm with clause
learning and without restarts (under the appropriate variable selection order).

It is still open if there are polynomial size pool resolution refutations for the
Stone principles. A much more ambitious project would be to show that pool

! Huang and Yu [10] also gave a separation of regular resolution and general resolution,
but only for a single set of clauses. Goerdt [§] gave a quasipolynomial separation of
regular resolution and general resolution.
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resolution or regWRTT can simulate full resolution, or that DPLL with clause
learning and without restarts can simulate full resolution. It is far from clear
that this holds, but, if so, our methods may represent a step in that direction.

The first idea for constructing our pool resolution or regRTT proofs might be
to try to follow the regular refutations of the graph tautology clauses GT,, as
given by [I4I5/17): however, these refutations cannot be used directly since the
transitivity clauses of GT,, are “guarded” in the GGT,, clauses and this yields
refutations which violate the regularity/pool property. So, the second idea is that
the proof search process branches as needed to learn transitivity clauses. This
generates additional clauses that must be proved: to handle these, we develop a
notion of “bipartite partial order” and show that the refutations of [I4J517] can
still be used in the presence of a bipartite partial order. The tricky part is to be
sure that exactly the right set of clauses is derived by each subproof.

Our refutations of the GGT,, tautologies can be modified so that they are
“greedy” and “unit-propagating”. This means that, at any point in the proof
search process, if it is possible to give an “input” refutation of the current clause,
then that refutation is used immediately. The greedy and unit-propagating con-
ditions correspond well to actual implemented DPLL proof search algorithms
which backtrack whenever a contradiction can be found by unit propagation (c.f.,
[9]). The paper concludes with a short description of a greedy, unit-propagating
DPLL clause learning algorithm for GGT,,.

For space reasons, only the main constructions for our proofs are included
in this extended abstract. Complete proofs are in the full version of the paper
available at the authors’ web pages and at http://arxiv.org/abs/1202.2296.

2 Preliminaries and Main Results

Propositional variables range over the values True and False. The notation x
expresses the negation of z. A literalis either a variable x or a negated variable x.
A clause C' is a set of literals, interpreted as the disjunction (V) of its members.

Definition 1. The various forms of resolution take two premise clauses A and
B and a resolution literal x, and produce a new clause C' called the resolvent.

A B
C

It is required that x ¢ A and x ¢ B. The different forms of resolution are:

Resolution rule. Here A:= A’V x and B:= B’V z, and C is A’V B’.

Degenerate resolution rule. [0[16] If x € A and z € B, we apply the resolution
rule to obtain C. If A contains x, and B doesn’t contain x, then the resolvent
C is B. If A doesn’t contain x, and B contains x, then the resolvent C is A.
If neither A nor B contains the literal x or x, then C is the lesser of A or B
according to some tiebreaking ordering of clauses.

w-resolution rule. [7] Here C := (A\ {x}) Vv (B\{z}). If the literal x ¢ A (resp.,
x & B), then it is called a phantom literal of A (resp., B).
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A resolution derivation of a clause C from a set F' of clauses is a sequence of
clauses that derives C from the clauses of F' using resolution. Degenerate and
w-resolution derivations are defined similarly. A refutation of F' is a derivation
of the empty clause. A refutation is tree-like if its underlying graph is a tree.
A resolution derivation is regular provided that, along any path in the directed
acyclic graph, each variable is resolved at most once and provided that no vari-
able appearing in the final clause is used as a resolution variable.

Resolution is well-known to be sound and complete; in particular, C' is a
consequence of F' iff there is a derivation of some C’ C C' from F'.

We define pool resolution using the conventions of [7], who called this concept
“tree-like regular resolution with lemmas”. The idea is that any clause appearing
in the proof is a learned lemma and can be used freely from then on.

Definition 2. The postorder ordering <t of the nodes in a tree T is defined so
that if w is a node of T, v a node in the subtree rooted at the left child of w, and
w a node in the subtree rooted at the right child of u, then v <p w <7 u.

Definition 3. A pool resolution proof from a set of initial clauses F is a res-
olution proof tree T that fulfills the following conditions: (a) each leaf is labeled
either with a clause of F' or with a clause (called a “lemma”) that appears earlier
in the tree in the < ordering; (b) each internal node is labeled with a clause
and a literal, and the clause is obtained by resolution from the clauses labeling
the node’s children, by resolving on the given literal; (c) the proof tree is regular;
(d) the root is labeled with the conclusion clause (the empty clause in the case of
a pool refutation).

The notions of degenerate pool resolution proof and pool w-resolution proof are
defined similarly. Note that [I6/9] defined pool resolution to be the degenerate
pool resolution system, so our notion of pool resolution is more restrictive than
theirs. (Our definition is equivalent to the one in [6], however.)

A “lemma” in part (a) of Definition Blis called an input lemma if it is derived
by input subderivation, namely by a subderivation in which each inference has
at least one hypothesis which is a member of F or is a lemma.

The various graph tautologies, sometimes also called “ordering principles”
use a size parameter n > 1, and variables x; ; with ¢,j € [n] and ¢ # j, where
[n] ={0,1,2,...,n—1}. A variable z; ; will intuitively represent the condition
that ¢+ < j with < intended to be a total, linear order. We thus adopt the
convention that x; ; and x;; are the identical literal. This identification makes
no essential difference to the complexity of proofs of the tautologies, but reduces
the number of literals and clauses, and simplifies definitions.

The following tautologies are based on Krishnamurthy [IT]. These tautologies,
or similar ones, have also been studied by [TABITIATIITT].

Definition 4. Let n > 1. Then GT,, is the following set of clauses:

(ap) The clauses \/;; xj, for each value i < n.
The transitivity clauses T; ik = x;; V T; V T for all distinct 1,7,k in
Yo J> J Js ,
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Note that the clauses T; j x, T}.x,; and T} ; ; are identical.

The next definition is from [I] who used the notation GT,,. They used partic-
ular functions r and s for their lower bound proof, but since our upper bound
proof does not depend on the details of r and s we leave them unspecified. We
require that r(i, j, k) # s(i, j, k) and that the set {r(i,7,k),s(i,4,k)} & {i,7,k}.
W.lo.g., r(i,j, k) =r(j, k,i) = r(k,i,j), and similarly for s.

Definition 5. Let n > 1, and let (i, j, k) and s(i,j,k) be functions mapping
[n)® — [n] as above. The guarded graph tautology GGT,, consists of:

(ag) The clauses \/;; xj:, for each value i <n.
(vy) The guarded transitivity clauses T; j .V s and T j 1 V Ty s, for all distinct
1,7,k in [n], where r =r(i,5,k) and s = s(i, 4, k).

Theorem 1. The guarded graph tautology principles GGT,, have polynomial
size pool resolution refutations.

Theorem 2. The guarded graph tautology principles GGT,, have polynomial
size, tree-like regular resolution refutations with input lemmas.

A consequence of Theorem [2]is that the GGT,, clauses can be shown unsatisfi-
able by non-greedy polynomial size DPLL searches using clause learning. This
follows via Theorem 5.6 of [7]. Even better, we can improve the constructions
of Theorems [[ and [2] to show that the GGT,, principles can be refuted also by
greedy, unit-propagating polynomial size DPLL searches with clause learning.

Definition 6. Let R be a tree-like regqular resolution (or w-resolution) refutation
with input lemmas from the initial clauses I'. Let C be a clause in R. Define
I'(C) to be I' plus every clause D <gr C in R that is derived by an input subproof.
Define CT to be the set of literals that occur as a literal (or as a literal or phantom
literal) in any clause on the path from C down to the root of R.

The refutation R is greedy and unit-propagating provided that, for each clause
C of R, if there is an input derivation from I'(C) of some clause C' C C* which
does not resolve on any literal in C, then C is derived in R by such a derivation.

Note that, as proved in [3], the condition that there is a input derivation from
I'(C) of some C' C C* which does not resolve on literals in C't is equivalent to
the condition that if all literals of CT are set false then unit propagation yields a
contradiction from I'(C). (In [3], these are called “trivial” proofs.) This justifies
the terminology “unit-propagating”.

Theorem 3. The guarded graph tautology principles GGT,, have greedy, unit-
propagating, polynomial size, tree-like, reqular w-resolution refutations with input
lemmas.

A similar theorem holds for greedy, unit-propagating pool resolution refutations
with degenerate resolution inferences.

Theorem 4. There are DPLL search procedures with clause learning which are
greedy, unit-propagating, but do not use restarts, that refute the GGT,, clauses
in polynomial time.
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3 Proof of Main Theorems

The following theorem is an important ingredient of our upper bound proof.

Theorem 5. (Stalmarck [I4], Bonet-Galesi [5], Van Gelder [I7]) The sets GT,,
have regular resolution refutations P, of polynomial size O(n?).

The refutations P, can be modified to give refutations of GGT,, by first deriving
each transitive clause T; j » from the two guarded transitivity clauses of (). This
however destroys the regularity property, and in fact no polynomial size regular
refutations exist for GGT,, [1J.

As usual, a partial order on [n] is an antisymmetric, transitive relation binary
relation on [n]. We shall be mostly interested in “partial specifications” of partial
orders: partial specifications are not required to be transitive.

Definition 7. A partial specification, 7, of a partial order is a set of ordered
pairs T C [n] X [n] which are consistent with some (partial) order. The minimal
partial order containing T is the transitive closure of . We write i <. j to denote
(i,7) € T, and write i <% j to denote that (i,j) is in the transitive closure of T.

The T-minimal elements are the i’s such that j <, i does not hold for any j.

We are primarily interested in particular kinds of partial orders, called “bipar-
tite” partial orders, which do not have any chain of inequalities z < y < z.

Definition 8. A bipartite partial order is a binary relation m on [n] with disjoint
domain and range. The set of m-minimal elements is denoted M.

Figure [l shows an example. The bipartiteness of 7 arises from the fact that M
and [n] \ M, partition [n] into two sets. Note that if ¢ <, j, then i € M, and
j & M. In addition, M, contains the isolated points of 7.

Definition 9. Let 7 be a specification of a partial order. The bipartite partial
order T that is associated with 7 is defined by letting i <, j hold for precisely
those i and j such that i is T-minimal and © <% j.

It is easy to check that 7 is a bipartite partial order. The intuition is that
m retains only the information about whether ¢ <* j for minimal elements ¢, and
forgets the ordering that 7 imposes on non-minimal elements. (See Fig. )

Definition 10. Let w be a bipartite partial order on [n]. Then GT ,, is the set
of clauses containing:

(a) The clauses \/;4; %, for each value i € Mx.

(B) The transitivity clauses T; j i = x; j V&V Tk, for all distinct i, 5,k in M.
(Vertices i, 4, k" in Fig.[d show an example.)

(v) The transitivity clauses T; ;i for all distinct i, j, k such that i,j € My and
i Ak and j <; k. (As shown in Fig.[2)



50 M.L. Bonet and S. Buss

6 10 7 8 9 11

o1 °2

Fig. 1. Example of a partial specification of a partial order (left) and the associated
bipartite partial order (right)

[n] \ Mx:

M,

Fig.2. A bipartite partial order 7 is pictured, with the ordered pairs of m shown as
directed edges. (For instance, j < k holds.) The nodes i, j, k shown are an example of
nodes used for a transitivity axiom x;; V x;k V zk,; of type (7). The nodes i, 7, k" are
an example of the nodes for a transitivity axiom of type (3).

GT, , is satisfiable if 7 is nonempty, for example by the assignment that sets
xj; true for some fixed j ¢ M, and every ¢ € M., and sets all other variables
false. However, there is no assignment which satisfies GT., and is consistent
with 7. This fact is proved by the regular derivation P, of Lemma [Il

Definition 11. For 7 a bipartite partial order, the clause (\/7) is defined by

(\/7‘(‘) = {xij 1<z 7}

Lemma 1. Let 7 be a bipartite partial order on [n|. Then there is a regular
derivation Pr of (\/7) from the set GTr .

The only variables resolved on in Py are the following: the variables x; ; such
that i,j € My, and the variables ;1 such that k ¢ My, i € Mx, and i £, k.

Lemma [Tl implies that if 7 is the bipartite partial order associated with a partial
specification 7 of a partial order, then the derivation P, does not resolve on any
literal whose value is set by 7. This is proved by noting that if i <, j, then
j & M.

If 7 is empty, M, = [n] and there are no clauses of type (7). In this case,
GTy p, is identical to GT,,, and Py is the refutation of GT,, of Theorem

Lemma [Tlis proved similarly to Theorem [l taking care to resolve on variables
in the correct order. The proof is left to the full version of the paper.

Proof (of Theorem [1l). We will construct a series of “LR partial refutations”,
denoted Ry, R1, Ra,...; this process eventually terminates with a pool refutation
of GGT,,. The terminology “LR partial” indicates that the refutation is being
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constructed in left-to-right order, with the left part of the refutation properly
formed, but with many of the remaining leaves being labeled with bipartite
partial orders instead of with valid learned clauses or initial clauses from GGT,,.

An LR partial refutation R is a tree with nodes labeled with clauses that form
a correct pool resolution proof, except possibly at the leaves (the initial clauses).
Furthermore, it must satisfy the following conditions.

a. R is a tree. The root is labeled with the empty clause. Each non-leaf node
in R has a left child and right child; the clause labeling the node is derived
by resolution from the clauses on its two children.

b. For C a clause occurring in R, define 7(C) to be the set of ordered pairs
(i, ) such that z; ; € C*. Note that C' C C" by definition. In many cases,
7(C) will be a partial specification of a partial order, but this is not always
true. For instance, if C is a transitivity axiom, 7(C) has a 3-cycle and is not
consistent as a specification of a partial order.

c. Leaves of R are flagged as “finished” or “unfinished”.

d. Each finished leaf L is labeled with either a clause from GGT,, or a clause
that occurs to the left of L in the postorder traversal of R.

e. For an unfinished leaf labeled with clause C, the set 7(C) is a partial spec-
ification of a partial order. Furthermore, letting 7w be the bipartite partial
order associated with 7(C), the clause C' is equal to (\/7).

Property e. is crucial for avoiding degenerate resolution inferences, and is a novel
part of our construction. As shown below, each unfinished leaf, labeled with a
clause C' = (\/7), will be replaced by a derivation S. The derivation S often will
be based on Pj, and thus might be expected to end with exactly the clause C;
however, some of the resolution inferences needed for P, might be disallowed
by the pool property. So S will instead be a derivation of a clause C’ such that
C C C’ C C*. The condition C" C C™ is required because any literal z € C'\ C
will be handled by modifying the refutation R by propagating = downward in R
until reaching a clause that already contains z. The condition C' C CT ensures
that such a clause exists. The fact that ¢’ O C means that enough literals are
present for the derivation to use only (non-degenerate) resolution inferences —
indeed our constructions will pick C so that it contains the literals that must be
present for use as resolution literals.

The construction begins by letting Ry be the “empty” refutation, containing
just the empty clause. Of course, this clause is an unfinished leaf, and 7(0) = ().

Assume R; has been already constructed, with C' the leftmost unfinished
clause. R;y1 will be formed by replacing C' by a refutation S of some clause C’
such that C C C' C C*.

We need to describe the (LR partial) refutation S. By e., C is (\/7). The
intuition is that we would like to let S be the derivation P, of C from Lemma /[Tl
The first difficulty with this is that P, is dag-like, and the LR-refutation is
intended to be tree-like. This difficulty, however, can be circumvented by just
expanding P, which is regular, into a tree-like regular derivation with lemmas by
the simple expedient of using a depth-first traversal of P,.. The second, and more
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serious, difficulty is that P is a derivation from GT,,, not GGT,,; namely, P,
uses the transitivity clauses of GT,, instead of the guarded transitivity clauses
of GGT,,. These transitivity clauses T; ;; are handled one at a time treating
them, as needed, with four separate cases. Case (i) requires no change to Py;
cases (i1) and (ii7) require a small change; and case (iv) abandons the subproof P,
and instead “learns” the transitivity clause.

By the remark made after Lemma [Tl no literal in CT is used as a resolution
literal in P.

(?) If an initial transitivity clause of P, already appears earlier in R; (that is,
to the left of C'), then it is already learned, and can be used freely in Py.

In the remaining cases (i1)-(iv), the transitivity clause T; ; ; is not yet learned.
Let the guard variable for T; ;  be x, s, so r =r(i, j, k) and s = s(4, j, k).

(77) Suppose case (i) does not apply and that the guard variable x, s or its
negation z, s is a member of Ct. The guard variable thus is used as a
resolution variable somewhere along the branch from the root to clause C.
Then, as just argued above, Lemma [I] implies that z, s is not resolved on
in Pr. Therefore, we can add the literal x, s or z, s (respectively) to the clause
T; ;1 and to every clause on any path below T; ;; until reaching a clause
that already contains that literal. This replaces T; ; » with one of the initial
clauses T; j . V 2rs or Tj j 1 V xr s of GGT,,. By construction, it preserves the
validity of the resolution inferences of R; as well as the regularity property.
Note this adds the literal z, ; or z,  to the final clause C’ of the modified P.
This maintains the property that C C C' C C™.

(717) Suppose case (i) does not apply and that z, s is not used as a resolution
variable anywhere below T; ;1 in Py and is not a member of C*. In this
case, P, is modified so as to derive the clause T; ;j from the two GGT,,
clauses T3 j 1 V s and T; j 1 V s by resolving on x, .. This maintains the
regularity of the derivation. And, henceforth Tj ;  will be learned.

If all of the transitivity clauses in P, can be handled by cases (i)-(ii), then we
use P; to define R;y;. Namely, let P, be the derivation P, as modified by the
applications of cases (i) and (i27). The derivation P! is regular and dag-like, so
we can recast it as a tree-like derivation S with lemmas, by using a depth-first
traversal of P/. The size of S is linear in the size of P/, since the only new clauses
in S are clauses which are repeated as lemmas and, as an overestimate, there are
at most two lemmas per clause in P,. The final line of S is the clause C’, namely
C plus the literals introduced by case (ii). The derivation R;1 is formed from R;
by replacing the clause C' with the derivation S of C’, and then propagating each
new literal z € C' \ C downward, adding x to clauses below S until reaching a
clause that already contains x. Since S contains no unfinished leaf, R;;1 contains
one fewer unfinished leaves than R;.

On the other hand, if even one transitivity axiom T; ;; in Py is not covered
by the above three cases, then case (iv) must be used instead. This introduces a
completely different construction to form S:
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(iv) Let T; ;, be any transitivity axiom in P, that is not covered by cases (3)-
(#49). The guard variable z, ¢ is used as a resolution variable in P, somewhere
below T ; ; in general, this means we cannot use resolution on z, s to derive
T; j,, while maintaining the pool property. Hence, Py is no longer used, and
we instead form S with a short left-branching path that “learns” Tj ; 5. This
will generate two or three new unfinished leaf nodes. Since unfinished leaf
nodes in a LR partial derivation must be labeled with clauses from bipartite
partial orders, it is also necessary to attach short derivations to these unfin-
ished leaf nodes to make the unfinished leaf clauses of S correspond correctly
to bipartite partial orders. These unfinished leaf nodes are then kept in R;11
to be handled at later stages. There are separate constructions depending
on whether T; ; 1, is a clause of type (8) or (7); some of the details are given
below.

First suppose T; j 1, is of type (), and thus z; , appears in C. (Refer to Fig. [2)
Let x, s be the guard variable for the transitivity axiom 7; ; . The derivation S
will have the form

Sy
Ti,j,kaxr,s CTi,j,kamr,s - Lt S
T; jk Ti g Ti, k> T=[jk;j R(3)] 2ot
Tiyj Tjkes T=[jk; R(3)] Tjir Tjk T-[jk;iR(5)]

Lj.k> T-[jk]
The notation 7_[;;) denotes the disjunction of the negations of the literals in
7 omitting the literal x; . We write “R(j)” to indicate literals z; ¢ such that
J =z £. (The “R(j)” means “range of j”.) Thus 7_[;z;;r(;) denotes the clause
containing the negations of the literals in 7, omitting x;; and any literals x; ¢
such that j < £. The clause 7_[;.;r(;) is defined similarly, and the notation
extends in the obvious way.

The upper leftmost inference of S is a resolution inference on the variable z, .
Since T; ; is not covered by either case (i) or (i), the variable x,, does not
appear in or below clause C' in R;. Thus, this use of =, ; as a resolution variable
does not violate regularity. Furthermore, since T; ;5 is of type (), we have
iAr ()], JAr(0)ls 1A )k, and kA, (cyi. Thus the literals x; ; and x;x do not
appear in or below C, so they also can be resolved on without violating regularity.

Let C1 and Cy be the final clauses of S; and S, and let C] be the clause
below C; and above C. The set 7(C2) is obtained by adding (j,4) to 7(C), and
similarly 7(CT) is 7(C) plus (i,7). Since T; j x is type (), we have i,j € M.
Therefore, since 7(C) is a partial specification of a partial order, 7(Cs) and
7(Cy ) are also both partial specifications of partial orders. Let w2 and m; be the
bipartite orders associated with these two partial specifications (respectively).
We will form the subproof S; so that it contains the clause (\/71) as its only
unfinished clause. This will require adding inferences in S; which add and remove
the appropriate literals. The first step of this type already occurs in going up
from C{ to C since this has removed z; ) and added x; 1, reflecting the fact
that j is not m-minimal and thus x;, € m but x;; ¢ m. Similarly, we will
form S5 so that its only unfinished clause is (\/72).
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0o

7
(a) xjyhxi,@z,wj,i,ﬂ'* (b) l’j,k,l’i,ez,l'j,i,ﬂ*

Fig. 3. The partial orders for the fragment of S> shown in ()

The situation for the subproof Ss is shown in Fig. [3] which shows an extract
from Fig. & the edges shown in part (a) of the figure correspond to the literals
in the final line Cy of S5. Recall that literals x; ¢ such that j <. ¢ are omitted
from the last line of Sy. (Correspondingly, the edge from i to ¢; is omitted
from Fig. Bl) Cy may not correspond to a bipartite partial order as it may not
partition [n] into minimal and non-minimal elements; thus, Cy may not qualify
to be an unfinished node of R;;1. (An example of this in Fig. Ba) is that
J =7(Co) @ =7(Cy) {2, corresponding to x;; and x; 4, being in Cy.) The bipartite
partial order o associated with 7(C2) is equal to the bipartite partial order that
agrees with 7 except that each i <, ¢ condition is replaced with the condition
J <, €. (This is represented in Fig. B((b) by the fact that the edge from i to {2
has been replaced by the edge from j to £5. Note that the vertex ¢ is no longer
a minimal element of my; that is, i ¢ M,.) We wish to form S3 to be a regular
derivation of the clause i, T_[jx;r(j) from the clause (\/72).

The subproof of Sy for replacing z; ¢, in 7 with z; ¢, in w3 is

’
Sy o -, o .- restof Sp
* 1
Ljir Lilys Lha,j LjkrLj oy Lj,is T ( )
*
LjkyLilys Ljiy T

where 7 i T_[jr,iR(j);ito]- The part labeled “rest of So” will handle similarly the
other literals ¢ such that ¢ <, ¢ and j A £. The final line of S} is T}, ¢,. This is
a GT,, axiom, not a GGT,, axiom; however, it can be handled by the methods of
cases (¢)-(¢4). Namely, if T} ; ¢, has already been learned by appearing somewhere
to the left in R;, then S} is just this single clause. Otherwise, let the guard
variable for T} ; ¢, be @, o. If 2,/ o is used as a resolution variable below Tj ; 4,,
then replace T} ; ¢, with T} ; ¢, V @ s O Tj i, V Ty &, and propagate the x,s o
or z,/ ¢ to clauses down the branch leading to T} ; ¢, until reaching a clause that
already contains that literal. Finally, if =,/ s has not been used as a resolution
variable in R; below C, then let S consist of a resolution inference deriving (and
learning) T ; ¢, from the clauses Tj; ¢,, Zr o and T} ; ¢y, Ty o

To complete the construction of Sa, the inference () is repeated for each value
of ¢ such that i <, ¢ and j 4, £. The result is that S has one unfinished leaf
clause, and it is labelled with the clause (\/72).

We next describe the subproof S; of S. The situation is shown in Fig. [ As in
the formation of S5, the final clause C7 in S; may need to be modified in order
to correspond to the bipartite partial order m; which is associated with 7(C).
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(a) ik, Tjeq, Tij, T (b) @ik, Tieq, Tig, T

Fig. 4. The partial orders for the fragment of S; shown in ()

First, note that the literal x;; is already replaced by x; in the final clause
of S;. The other change that is needed is that, for every ¢ such that j <, ¢
and ¢ A, ¢, we must replace x;, with z;, since we have j A, £ and i <,, /.
Vertex ¢35 in Fig. @ is an example of a such a value £. The ordering in the final
clause of S; is shown in part (a), and the desired ordered pairs of 7; are shown
in part (b). Note that j is no longer a minimal element in 7.

The replacement of x; ¢, with x; ¢, is effected by the following inference, letting
T NOW e (iR (i);j6s]-

/
St -, ¢ .- restof Sy
* 2
Li,js Ljlgs Tlg,i Li,ks Tilgy Lij, T ( )
*
TiksTj,lss Ti,5,T

The “rest of S1” will handle similarly the other literals ¢ such that j <, ¢
and ¢ A £. Note that the final clause of Sj is the transitivity axiom T; ; r,.
The subproof S} is formed in the same way that S} was formed above. Namely,
depending on the status of the guard variable x, o for T} ; ¢, , one of the following
is done: (@) the clause T; j ¢, is already learned and can be used as is, or (i¢) one of
Ty ¢ OF Ty o is added to the clause and propagated down the proof, or (iii) the
clause T; j ¢, is inferred using resolution on z,s o and becomes learned.

To complete the construction of S7, the inference () is repeated for each value
of ¢ such that j <, ¢ and ¢ £, ¢. The result is that S; has one unfinished leaf
clause, and it corresponds to the bipartite partial order 7.

That completes the construction of the subproof S for the subcase of (iv)
where T; ; 1, is of type (7). Now suppose T; ;  is of type (3). (For instance, the
values 7, j, k' of Fig. Bl) In this case the derivation S will have the form

Ti,j,hxhs n,j7k,$r7s 53 o
Tijin Li,js Liks T-[jR(i),kR(iUj)] Sa v
Ti,js Lj,ks T=[R(i),kR(iU)] Tijs Ty T-[RGOK)] O
Ti,5, T-[fR(NK)] Zj,i5s T=[iR(5)]
™

where ;. is the guard variable for T; ;. We write [7_[jr(ink)] to mean the
negations of literals in 7w omitting any literal z;, such that ¢ <, ¢ and k < /.
Similarly, m_[;r(i),kr(iuj) indicates the negations of literals in 7, omitting the
literals ;¢ such that ¢ <, £ and the literals xy ; such that i < € or j <, £.
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Note that the resolution on z, s used to derive T; ;j does not violate reg-
ularity, since otherwise T; ; » would have been covered by case (i). Likewise,
the resolutions on z; j, ;, and x;; do not violate regularity since T ;1 is of
type (8).

The subproofs Ss, S4, and S5 are handled similarly to the way the subproofs
S1 and S; were handled above, albeit with some extra complications in the Sy
case. The detailed constructions are in the full version of the paper.

Once some R; has no unfinished clauses, we have the desired pool refutation.
We claim that the process stops after polynomially many stages.

To prove this, recall that R;;; is formed by handling the leftmost unfinished
clause using one of cases (i)-(iv). In the first three cases, the unfinished clause
is replaced by a derivation based on P,. Since P, has size O(n3), this means
that the number of clauses in R;11 is at most the number of clauses in R; plus
O(n?). Also, by construction, R;y; has one fewer unfinished clauses than R;. In
case (i) however, R;;1 is formed by adding up to O(n) many clauses to R; plus
adding either two or three new unfinished leaf clauses. However, case (iv) always
causes at least one transitivity axiom T; ; » to be learned. Therefore, case (iv) can
occur at most 2(5) = O(n®) times. Consequently at most 3-2(3) = O(n®) many
unfinished clauses are added throughout the entire process. It follows that the
process stops with R; having no unfinished clauses for some i < 6(2) = 0(n?).
Therefore there is a pool refutation of GGT,, with O(n°) lines.

By inspection, each clause in the refutation contains O(n?) literals. This is
because the largest clauses are those corresponding to (small modifications of)
bipartite partial orders, and because bipartite partial orders can contain at most
O(n?) many ordered pairs. Furthermore, the refutations P, for the graph tautol-
ogy GT,, contain only clauses of size O(n?). Q.E.D. Theorem[I]

The proofs of Theorems 2 and [J] are left to the full version of the paper, but
use similar methods. Theorem [ follows from the algorithm implicit in the proof
of Theorem [Bl The following gives a sketch of the algorithm for DPLL search
with clause learning which always succeeds in finding a refutation of the GGT,,
clauses. At each point in the DPLL search procedure, there is a partial assign-
ment 7, and the search algorithm must do one of the following:

(1) If unit propagation yields a contradiction, then learn a clause T; ; » if possi-
ble, and backtrack.

(2) Otherwise, if there are any literals in the bipartite partial order 7 associated
with 7 which are not assigned a value, branch on one of these literals to set
its value.

(3) Otherwise, determine whether there is a clause T; j  which is used in the
proof P, whose guard literals are resolved on in P,. (See Lemmalll) If not,
do a DPLL traversal of Py, eventually backtracking from the assignment 7.

(4) Otherwise, let T; ; 1 block P, from being traversed, and branch on its vari-
ables in the order given in the above proof. From this, learn the clause T; ; 1.
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Abstract. The alternation of existential and universal quantifiers in a quantified
boolean formula (QBF) generates dependencies among variables that must be
respected when evaluating the formula. Dependency schemes provide a general
framework for representing such dependencies. Since it is generally intractable
to determine dependencies exactly, a set of potential dependencies is computed
instead, which may include false positives. Among the schemes proposed so
far, resolution path dependencies introduce the fewest spurious dependencies. In
this work, we describe an algorithm that detects resolution-path dependencies in
linear time, resolving a problem posed by Van Gelder (CP 2011).

1 Introduction

Deciding the satisfiability of quantified boolean formulas (QBF) is a canonical PSPACE-
complete problem [14]. Under standard complexity theoretic assumptions, that means
it is much harder than testing satisfiability of propositional formulas. The source of
this discrepancy can be found in variable dependencies introduced by the alternation of
universal and existential quantifiers in a QBF. The kind of dependencies we consider
can be illustrated with the following example:

F=VaIy (zV-y)A(-zVy)

While F is satisfiable, there is no single satisfying assignment to y. Instead, the value
of y that satisfies F depends on the value of x.

For formulas in prenex normal form, it is safe to assume that a variable depends on
all variables to its left in the quantifier prefix, but this assumption may result in a large
number of spurious dependencies. More accurate representations of the dependency
structure in a formula can be exploited for various purposes, and variable dependencies
have been studied in a series of works, including [[1-4}, 1912, [15].

Unfortunately, the problem of computing variable dependencies exactly is PSPACE-
complete [[12]. In practice one therefore computes an over-approximation of dependen-
cies that may contain false positives. This leads to a trade-off between tractability and
generality.
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In a recent paper, Van Gelder [15] introduced resolution-path dependencies and ar-
gued that they generate fewer spurious dependencies than all previously considered
notions of variable dependency (see Figure[T).

Van Gelder stated as an open problem whether resolution-path dependencies can be
computed in polynomial time [[15]. In this work, we solve this problem by describing a
linear-time algorithm that identifies resolution-path dependencies. We obtain this result
by a reduction to the problem of finding properly colored walks in edge-colored graphs,
which is in turn solved using a variant of breadth-first search. We thus show that the
most general dependency relation among those considered so far is tractable.

Dependency schemes are a generic framework for representing variable dependen-
cies [12] that are useful in various settings. In particular, they have recently been
built into state-of-the-art QBF solvers, with beneficial effects [9, [10]. We prove that
resolution-path dependencies give rise to a dependency scheme, thereby providing a
basis for their use across a variety of applications.

The proofs of statements marked with (x) have been omitted due to space con-
straints. They can be found in the full version of this paper, which is available on
arXiv:1202.3097.

2 Preliminaries

2.1 Quantified Boolean Formulas

In this section, we cover basic definitions and notation used throughout the paper. For
an in-depth treatment of theoretical and practical aspects of QBFs, we refer the reader
to [I6] and [3], respectively.

We consider quantified boolean formulas in quantified conjunctive normal form
(QCNF). A QCNF formula consists of a (quantifier) prefix and a CNF formula, called
the matrix. A CNF formula is a finite conjunction of clauses, where each clause is a
finite disjunction of literals. We identify a CNF formula with the set of its clauses, and
a clause with the set of its literals. Literals are negated or unnegated propositional vari-
ables. If x is a variable, we put x = —z and —~x = z, and let var(x) = var(—z) = x.

Resolution Path — Quadrangle — Triangle \

N

Strict Standard — Standard — Trivial

Fig. 1. Various notions of variable dependency ordered by generality [[15]. An arrow from A to
B should be read as “A is strictly more general than B.” Trivial dependencies include all pairs
of variables not contained in the same quantifier block as dependent and serve as a baseline.
Standard dependencies [12] identify dependencies based on a notion of local connectivity of
clauses, extending ideas introduced in work on universal expansion (2, [3]. Triangle dependen-
cies generalize standard dependencies without increasing the worst-case asymptotic runtime [[12].
Quadrangle dependencies in turn refine triangle dependencies, and strict standard dependencies
refine standard dependencies [13]. Resolution path dependencies are based on a sophisticated
notion of connectivity motivated by properties of Q-resolution [15].
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If X is a set of literals, we write X for the set {z : @ € X }. For a clause C,
we let var(C') be the set of variables occuring (negated or unnegated) in C. For a
QCNF formula F with matrix F', we put var(F) = var(F) = Joep var(C), and
lit(F) = war(F) U var(F). We call a clause tautological if it contains the same
variable negated as well as unnegated. Unless otherwise stated, we assume that the
matrix of a formula does not contain tautological clauses (tautological clauses can
be deleted without changing satisfiability of a formula). The prefix of a QCNF for-
mula F is a sequence Q127 ... Qux, of quantifications Q;x;, where x1,...,x, are
pairwise distinct variables in var(F) and Q; € {V,3} for 1 < ¢ < n. We define
the depth of variable x,, as dr(z,) = p, and let gr(x,) = Qp. A QCNF formula
F' is obtained from F by quantifier reordering if there is a permutation i1, ...,17,
of 1,...,n such that 7/ = Q;, %, ..., Qq, ;, F', where F' denotes the matrix of F.
The sets of existential and universal variables occurring in F are given by vars(F) =
{z € wvar(F) : qr(zx) = 3} and vary(F) = {z € var(F) : qr(x) = Y}, re-
spectively. We call a literal ¢ existential (universal) if var(¢) is existential (universal).
We assume that every variable in var(F) appears in the prefix of F, and — conversely
— that every variable quantified in the prefix appears in F. The size of a QCNF formula
F with matrix F is defined as |F| = >~ |C|.

For a set X of variables, a truth assignment is a mapping 7 : X — {0, 1}. We extend
7 to literals by setting 7(—x) = 1 — 7(z), forx € X. Let 7 : X — {0, 1} be a truth
assignment and F' a CNF formula. By F[r] we denote the formula obtained from F by
removing all clauses containing a literal £ such that 7(¢) = 1, and removing from every
clause all literals ¢ for which 7(¢) = 0; moreover, if F is a QCNF formula, we write
F[r] for the formula obtained from F by replacing its matrix F' with F'[7] and deleting
all superfluous quantifications in its prefix.

The evaluation function v on QCNF formulas is recursively defined by v(JxF) =
max(v(F[z — 0]),v(Flz — 1])), v(VaF) = min(v(Flz — 0]),v(Flz — 1])),
v(@) = 1, and v({@}) = 0, where = — ¢ denotes the assignment 7 : {z} — {0,1}
such that 7(z) = . A QCNF formula F is satisfiable if v(F) = 1 and unsatisfiable
if v(F) = 0. Two formulas F and F’ are equivalent if v(F) = v(F'). We call a
clause ternary if it contains at most three literals. A QCNF formula is ternary if all of
the clauses in its matrix are ternary. We denote the class of ternary QCNF formulas by
Q3CNE

2.2  Q-Resolution

Q-resolution [7] is an extension of propositional resolution. Let F be QCNF formula
with matrix F. A tree-like Q-resolution derivation of clause D from F is a pair 7 =
(T, \) of a rooted binary tree 7" and a labeling A satisfying the following properties.
The labeling A assigns to each node a clause, and to each edge a variable. The leaves
of T are labeled with clauses of F’, and the root of 7' is labeled with D. Whenever a
node ¢ has two children ¢’ and ¢”, then there is an existential literal ¢ such that £ € A(t'),
Le Nt"),and A(tt") = A(tt"") = var(€). Moreover, A(t) = (A()\{£}H)UNE)\{¢})
and A(t) is non-tautological. We call A(t) the (Q-)resolvent of A\(t') and \(t""), and say
that A(t) is obtained by resolution of A(t') and A(t"") on variable var(¢). If a node ¢ has
a single child ¢/, then A(¢) = A(t') \ {¢} and A(¢t') = var(¥) for some tailing universal
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literal £ in A(t'). A universal literal £ is tailing in A(¢') if for all existential variables
x € var(A(t')), wehave 07 (x) < 0x(var(f)). The clause A(t) is the result of universal
reduction of A(t') on variable var(¢). We call an instance of resolution or universal
reduction in 7 a derivation step in w. We say 7 is strict if for every path ty,...,t,
from the root of T" to one of its leaves we have 07 (A(¢;ti41)) < 0r(A(tix1tiye)), for
alli € {1,...,n — 2}. We call 7 regular if every existential variable appears at most
once as an edge-label on a path from the root of 7" to one of its leaves. For a tree-like
Q-resolution derivation 7 = (T, \), we define the set of resolved variables of 7 as
resvar(m) = {y € varg(F) : there is an edge e € T such that A(e) = y}. We
define the height of a tree-like Q-resolution derivation 7 = (7, \) as the height of T'.
A tree-like Q-resolution derivation of the empty clause from F is called a Q-resolution
refutation of F.

Theorem 1. A QCNF formula F is unsatisfiable if and only if it has a strict, tree-like
Q-resolution refutation.

Proof. Completeness of “ordinary” Q-resolution is proved in [7]. It is straightforward
to turn the derivations used in this proof into strict, tree-like derivations. O

3 Dependency Schemes

For a binary relation R over some set IV we write R* to denote the reflexive and tran-
sitive closure of R, i.e., the smallest set R* such that R* = R U {(z,z) : = €
ViU {(z,y) : 3z suchthat (z,z) € R* and (z,y) € R}. Moreover, we let
R(z) = {y : (z,y) € R} forx € V, and R(X) = J,cx R(z) for X C V.
For a QCNF formula F, we define the binary relation Rr over var(F) as Rr =
{(z,y) : z,y € var(F), 0r(x) < dr(y)}. Thatis to say, Rr assigns to each vari-
able x the variables on the right of x in the prefix.

Definition 1 (Shifting). Let F be a QCNF formula and X C wvar(F). We say the
QCNF formula F' is obtained from F by down-shifting X, in symbols F' = S*(F, X),
if F' is obtained from F by quantifier reordering such that the following conditions
hold:

X = Rz /(x) for some x € var(F) = var(F').
) < dx(y) ifand only if S r(x) < d£(y) forall z,y € X.

1.
2.
3. ) < 0x(y) ifand only if §r(x) < §r(y) forall z,y € var(F) \ X.

(5]:/(%
(5]:/(%
For example, let F = JzVyIzVuVw F, and X = {z,z,u}. Then SHF,X) =

VyVYw3dzr3dzVu F. Note that the result of shifting is unique. In general, shifting does
not yield an equivalent formula.

Definition 2 (Dependency scheme). A dependency scheme D assigns to each QCNF
formula F a binary relation Dy C Rz such that F and S*(F, D%(z)) are equivalent
for all x € var(F). A dependency scheme D is tractable if Dx can be computed in
time that is polynomial in | F|.
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Intuitively, for a QCNF formula F, variable € var(F), and dependency scheme D,
the set Dz (x) consists of variables that may depend on x. More specifically, if we
want to simplify F by moving the variable x to the rightmost position in the prefix,
we can use a dependency scheme to identify a set X so that down-shifting of X U {z}
preserves satisfiability. Typically, we are interested in dependency schemes that allow
us to identify sound shifts for entire sets of variables.

Definition 3 (Cumulative). A dependency scheme D is cumulative if for every QCNF
formula F and set X C var(F), F and S*(F, D% (X)) are equivalent.

Cumulative dependency schemes play a crucial role in the context of backdoor sets [[12],
and have been integrated in search-based QBF solvers [10].

It is easy to verify that we can transpose adjacent quantifications Q,zQyy in the
prefix of a QCNF F as long as y ¢ D z(x) for some dependency scheme D. In other
words, every dependency scheme satisfies the property defined below.

Definition 4 (Sound for Transpositions). Let D be a function that assigns to each
QCNF formula F a binary relation Dr C Ry. We say D is sound for transpositions
if any two QCNF formulas F = Qiz1...Qrz,:Qry1%r41. .. QuanF and Qiz1 ...
Qr+1Zr+1Qry. . . Quuy, F are equivalent given that (x,.,x,41) ¢ Dr.

Further restrictions are required when going beyond individual transpositions: let 7 =
Vz3y3z F, where F' is the CNF encoding of z <> (x V y), and let D be a mapping such
that D(F) = Dy = 0 and D(F') = Rz for F' # F. F is satisfiable and remains
satisfiable after transposing y and x (or y and z) in the prefix. However, the formula
SH(F, D%(x)) = Jy3zVaz F is unsatisfiable. So D is sound for transpositions but not
a dependency scheme.

Definition 5 (Continuous). Let D be a function that maps each QCNF formula F to
a binary relation Dr C Ry. We say D is continuous if the following holds for every
Pair F = lel o QTxTQT-‘rle-‘rl' .. ann,F and F' = lel s Qr—&-lxr—&-lerr
... QuanF of OCNF formulas: Dr(v) = Dz (v) for v € var(F) \ {z,, £r41}, and
Dxi(xz,) C Dr(x,) aswell as Dri(xr41) 2 Dr(zr41)-

Lemma 1. (x) Let D be a function that maps each QCNF formula F to a binary rela-
tion Dy C Rx. If D is sound for transpositions and continuous, then D is a cumulative
dependency scheme.

Lemma 2. (x) Let D' be a function that maps each QCNF formula F to a binary
relation D> C Ry, and let D be a cumulative dependency scheme. If Dy C D'; for
all formulas F, then D' is a cumulative dependency scheme as well.

4 Resolution-Path Dependencies

In this section, we will define the resolution path dependency scheme, which corre-
sponds to the resolution-path dependency relation proposed by Van Gelder [15]. We
justify this change of name by proving that the resolution path dependency scheme is
indeed a cumulative dependency scheme.
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Van Gelder [15] gives two definitions for resolution paths (Definitions 4.1 and 5.2),
the former being more restrictive than the latter. The former definition is problematic as
we will explain in Example[2lbelow. Hence we will base our considerations on the latter
definition, which defines resolution paths as certain walks in a graph associated with a
QBF formula. However, to avoid clashes with graph-theoretic terminology introduced
below, we simply define resolution paths as particular sequences of clauses and literals.

Definition 6 (Resolution Path). Let F be a QCNF formula with clause set F' and
X C warz(F). An X-resolution path in F is a sequence of clauses and literals
by, Ch, 0, le, Co bl .. Ly, Cr, Ll satisfying the following properties:

1. C; € Fand{;,l; € lit(F) fori € {1,...,n}.

El,ﬁg S Cl-fori S {1, e 77’L}.

3l =L and U}, i € X UKX, forie{l,...,n—1}.

4. var(l;) # var(l;) fori € {1,...,n}, and ty # 0,,.
Ifl1,..., 0, is an X-resolution path in F, we say that {1 and {), are resolution con-
nected in F with respect to X.

Example 1. Let F = Jy;FyaVa1 JysVaee C1 A Co A C3 A Cy, where Cy = (21 V 22 V
Y2V y1), C2 = (-1 V —y2 V —w1), C3 = (—y1 V ~y3), and Cy = (—y1 V yi3).

The sequence x1, C1, y1, w1, Ca,y3 is a {y1 }-resolution path in F, and so the liter-
als 21 and —y3 are resolution connected with respect to {y; }. By contrast, the sequence
—x1, Cy, —y1, Cs, —ys is not a resolution path in F, because —y; is followed by a clause
instead of the complementary literal y; . O

Resolution path dependencies are induced by a pair of resolution paths that connect the
same two variables in reverse polarities:

Definition 7 (Dependency Pair). Let F be a QCNF formula and x,y € var(F). We
say (x,y) is a resolution-path dependency pair in F with respect to X C var3(F) if at
least one of the following conditions holds:

— x and y, as well as —x and —y, are resolution connected in F with respect to X.
— x and —y, as well as —~x and y, are resolution connected in F with respect to X.

Definition 8 (Resolution-Path Dependency Scheme). The resolution-path dependency
scheme is a mapping D' that assigns to each QCNF formula F the relation DF* =

{(x,y) € Rr : qr(x) # qr(y) and (x,y) is a resolution-path dependency pair in F

with respect to Ry (z) \ (vary(F) U {z,y}) }.

In the formula F of Example 1 above, (y1, 1) is resolution-path dependency pair with
respect to (), and (z1, y3) is a resolution-path dependency pair with respect to {y1,y2}.
But while (y1,21) € D%, we have (z1,y3) ¢ D%, because - is not resolution
connected in F to either of y3 or —ys with respect to Rr(x1) \ {ys} = 0.

The next lemma will be needed in the proof of Theorem 2] below.

Lemma 3 ([13]). (x) Let F be QCNF formula, £,¢' € lit(F) where £ # 0, and ™ =
(T, \) a regular, tree-like Q-resolution derivation of a clause D such that ¢,¢' € D.
Then £ and U’ are resolution connected in F with respect to resvar(m).

The following result corresponds to Theorem 4.7 in [[15].



64 F. Slivovsky and S. Szeider

Theorem 2 ([15]). (x) Let F be a QCNF formula where Yu is followed by e in the
quantifier prefix, so that 6r(e) = dr(u) + 1. Suppose (u,e) ¢ D%°. Let F' be the
result of transposing Je and Vu in the quantifier prefix. Then F' and F are equivalent.

With the next example, we illustrate the importance of allowing consecutive clauses
with a tautological Q-resolvent in the definition of resolution paths.

Example 2. Let G = VuJeFwVaIyIz C7 A CL A CL A CY A CE, where C1 = (uV y),
Ch = (~yV-zVv),Ct = (-vVzVz),C) = (-2Ve),and Cf = (—uV —e). Figure[2
shows a Q-resolution derivation of the clause (u V e) from G. By Lemma[3] there must
be a {v,y, z}-resolution path in G connecting u and e, and indeed it is straightforward
to check that u, C1,y, —y, Ch, v, —w,C}, z, -z, C}, e is a resolution path. The literals
—w and —e are trivially resolution connected, so (u, e) is a resolution path dependency
pair with respect to {v,y, 2}, and (u,e) € D%. This is a genuine dependency: it is
easily verified that switching Vu and Je in the prefix of G results in a formula that is
unsatisfiable, while G itself is satisfiable.

Note that the clauses C% and C% do not have a non-tautological resolvent. All reso-
lution paths in G between u and e lead through C% and C%. Consequently, if we would
restrict Definition [§] so as to require consecutive clauses in a resolution path to have a
non-tautological Q-resolvent (as in Definition 4.1 of [[15]), v and e would no longer be
resolution connected in G, and e would not be identified as dependent on w. O

Theorem 3. D™ is a cumulative dependency scheme.

Proof. We prove that D™ is (a) continuous and (b) sound for transpositions. The result
then follows by Lemmal[ll (a) Let F and ' be QCNF formulas such that 7 is obtained
from F by quantifier reordering. Let x € var(F) = var(F'), and P = Rr(z) \
(vary(F) U{z}), P = Rr/(x) \ (vary(F') U {z}). The set of P-resolution paths
in F starting from « is identical to the set of P’-resolution paths in F’ starting from
z unless Rr(x) # Rr(x). If Rr(z) € Rp/(x), every P-resolution path in F is a
P’-resolution path in F'. It is an easy consequence that D™ is continuous.

(b) Let F be a QCNF formula and z,y € var(F) so that d(y) = dr(x) + 1 and
(x,y) ¢ D5 If € vary(F) and y € vars(F), the result follows from Theorem 2

uVy —yV-xVo -wvVaxVz —zVe
N /s \ /-
uV -z Vv —vVzxVe
x x
uV o —vVe
X /
uVe

Fig. 2. Q-resolution derivation of u V e from G
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Suppose = € vars(F) and y € vary(F). Let F' be the result of transposing 3z and Vy
in the quantifier prefix of F. Because of (z,y) ¢ D%, we must have (y, z) ¢ D', so
we can again apply Theorem[2]and conclude that F and F' are equivalent. If gz (x) =
qr(y), equivalence is trivial. O

Using Lemma[2] we can conclude that all dependency relations appearing in Figure[ll
are cumulative dependency schemes.

5 Computing Resolution-Path Dependencies

This section will be devoted to proving that D™ is tractable. More specifically, we will
show that the set of literals that are resolution connected to a given literal in a QCNF
formula F with respect to a set X C war3(F) can be computed in linear time. This
result in turn establishes linear time-tractability of deciding whether a pair of variables
is contained in D7,

We will reduce the problem of finding resolution paths to the task of finding properly
edge-colored walks in certain edge-colored graphs. A graph G consists of a finite set
V(G) of vertices and a set E(G) of edges, where the edge between two vertices u
and v is denoted by uwv or equivalently vu. All graphs we consider are undirected
and simple (i.e., without self-loops or multi-edges). If G is a graph and v € V(G),
elements of the set Ng(v) = {w € V(G) : vw € E(G)} are called neighbors
of vin G. In a c-edge-colored graph G, every edge e € E(G) is assigned a color
xa(e) € {1,...,k}. Given a (not necessarily edge-colored) graph G, a walk from s

to t in G is a sequence of vertices 7 = v1,vs,...,V,, Where v1 = s, v, = ¢, and
vivi41 € E(G) fori =1,...,n — 1. If further v; # v;4o foralli € {1,...,n — 2},
7 is said to be retracting-free. A walk m = v1,...,v, in a c-edge-colored graph G is

properly edge-colored (PEC) if x G (v;vit1) # XG(Vip1vig2) foralli € {1,...,n—2}.
A walk vy, ..., v, satisfying v; # v; for distinct ¢,j € {1,...,n} is a path. A PEC
walk which is a path is called a PEC path. The length of a walk v1, ..., v,+1 i8S n. For
2-edge-colored graphs, we use the names red and blue to denote the colors 1 and 2,
respectively.

Note that there can be a PEC walk from a vertex s to a vertex ¢ without there being
a PEC path from s to ¢. For instance, consider a 2-edge-colored graph with vertex set
{s,u,v,w,t} and edge set {su, ut, uv, uw, vw}, such that wv and uww are red and the
remaining edges are blue. The sequence s, u, v, w, u,t is a PEC walk from s to t, but
there is no PEC path from s to ¢.

Construction. Let 7 be a QCNF formula with matrix F, and let X C var3(F). We
construct two graphs Gz, x and G’z y:

— For the set of vertices of G x, we choose I' U lit(F). Its edge set consists of all
edges —zz for z € X, and all edges C¢ where £ € C.

— We define G’F,  to be a 2-edge-colored graph with vertex set li¢t(F) and edge set
E,. U Ey, where the set E,. consists of all edges —zz for z € X, and Fj, consists of
all edges £¢' such that there is a clause C' € F with ¢,¢' € C. The edges in E, are
red, while those in Ej, are blue.
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For general QCNF formulas F, the size of G’]_-’ y can be quadratic in the size of F,
since every clause of size n gives rise to a clique with n vertices. This can be avoided
by using the following trick: we first convert F to a Q3CNF formula F” and then carry
out the construction. For any set X’ C var(F’), we can clearly compute G’ ., in
time O(|F’|). Furthermore, it is well known that SAT can be reduced to 3SAT in linear
time [8]. We show that this reduction preserves resolution connectedness.

Lemma 4. (x) Let F be an arbitrary QCNF formula and X C wvar3(F). In time
O(|F|), one can construct a Q3CNF formula F' and a set X' C varz(F') satisfying
the following property: two literals {,¢' € lit(F) are resolution connected in F with
respect to X if and only if £ and ¢’ are r-connected in F' with respect to X'

Proposition 1. Given a Q3CNF formula F and a set X C vars(F), the graph G’z
can be constructed in time O(|F)|).

Y3 Y3

—x1 - RN
&*\——Q?yzi\:iﬂyl
o Qe
\ \\,,__/O\Zp‘_,/ Y1
\\ /// //
N 7z
O T .-~
X2 T2

Fig. 3. The graphs G = x (left)and G’z y (right) for the formula F of Example[lland X = {y1,ys}.
Red edges of G’z x are represented by solid lines, and blue edges by dashed lines.

Lemma 5. Let F be a QCNF formula, X C var3(F), and £,¢' € lit(F) such that
L # 0. The following statements are equivalent:

1. £ and ' are resolution connected in F with respect to X.

2. There is a retracting-free walk (1, C1, 0}, la, Ca, by, ... by, Cp, 01, in Gr x from ¢
to l', where C; € F and {;,0; € lit(F) fori € {1,...,n}.

3. There is a PEC walk in G’}-,X from £ to ¢’ whose first and last edges are blue.

Proof. (1 = 2) Suppose ¢ and ¢’ are resolution connected in F with respect to X . Then
there exists an X -resolution path m = ¢1,C4,¢},¢3,Cs, ... Ly, Cp, Ll in F from ¢
to ¢'. We claim that 7 is already a retracting-free walk in Gz x of the desired form.
Because 7 is a resolution path, we have £,11 = ¢/ and therefore ¢/¢, 11 in E(Gr x)
forall¢ € {1,...,n — 1}. Moreover, because ¢;, £, € C; fori € {1,...,n}, we have
0;Ci, lC; € E(Gr x) as well. So 7 is indeed a walk in Gr x. Since var(¢;) #
var(¢;) fori € {1,...,n}, = must be retracting-free.



Computing Resolution-Path Dependencies in Linear Time 67

2=3)Letm = {1,C1,0,,...,0,,Cp, L, be aretracting-free walk from £ to ¢ in
Gr x sothatC; € Fand /¢, ¢}, € lit(F) fori € {1,...,n}. We show that the sequence
m = {1,04,..., Ly, 0, is a PEC walk from £ to ¢’ in G’z - whose first and last edges
are blue. Let ¢,C;, C;¢; be a pair of consecutive edges in m where ¢ € {1,...,n}. By
construction of Gr x, we have ¢;, ¢; € C;. Because 7 is retracting-free, ¢; # ¢;, and
thus there is a blue edge ¢/} in G’z x. Foralli € {1,...,n — 1}, the edge £;£; 1 of 7
is ared edge in G’}-’X. So 7’ is a walk in G’}-’X. Moreover, the first and last edges of 7
are blue, and it is easily to verified that 7’ is PEC.

(3= 1) Now let m = £1, 01, 02,05, ..., 0y, ¢}, be a PEC walk from £ to ¢' in G’z x
whose first and last edges are blue. By construction of G’}-, . for every blue edge ¢,/
traversed by , there is a clause C; in F' such that ¢;, ¢} € C;, fori € {1,...,n}. For
every red edge (;¢;q, where i € {1,...,n — 1}, we have {;1; = ¢} and €}, (; 1 €
X U X. Let 7’ be the sequence ¢1,C1, £y, ... Ly, Cy, £,,. 7' is an X -resolution path in
F: we already know that 7’ satisfies conditions 1-3 of Definition[6l To verify condition
4, we must show that var(¢;) # var(¢;) foralli € {1,...,n}. Suppose to the contrary
that var(¢;) = wvar(¢;) for some i € {1,...,n}. Because G’z y does not contain
self-loops, this implies ¢, = ¢;. But then ¢;,¢; € C;, contrary to the assumption
that F' does not contain tautological clauses. This concludes the proof that 7’ is an
X -resolution path in F. It follows that ¢ and ¢’ are resolution connected in F with
respect to X. a

Algorithm PEC-Walk. We now describe the algorithm PEC-Walk that takes as input a
2-edge-colored graph G and a vertex s € V(G), and computes the set of vertices ¢ such
that there is a PEC walk from s to ¢ whose first and last edges are blue. We maintain a
set () containing (ordered) pairs of vertices (v, w) joined by edges that can be traversed
by a PEC walk starting from s. Initially, ) is empty. For each vertex v, we store a set
Y(v) C {red, blue}, where ¢ € 1(v) indicates that there is a PEC walk from s to v
ending in an edge with color c. In an initialization phase, we first set ¢)(u) = () for all
vertices u. We then add all pairs (s, v) to @ such that v is a neighbor of s and sv is a
blue edge, inserting blue into ¢ (v) at the same time. In the main procedure, we repeat
the following steps until () is empty: we remove a pair (v, w) from () and add all pairs
(w,u) to @ such that u is a neighbor of w, wu is an edge with color ¢ different from
the color of vw, and c is not already in ¥ (w). For every pair (v, w) we put into ), we
add its color to ¢ (w).

Lemma 6. Let G be a 2-edge-colored graphand s € V(G). Oninput (G, s), PEC-Walk
runs in time O(|E(G)| + |[V(GQ)]).

Proof. Every ordered pair of vertices joined by an edge is examined at most twice and
added to @) at most once. The algorithm terminates when () is empty, and an element is
removed from @ in each iteration. Initialization can take at most O(|E(G)| + |V (G)])
steps. So the time required by the entire algorithm is O(|E(G)| + [V (G))). |

Lemma 7. Let G be a 2-edge-colored graph, s,t € V(G), s # t, and let 1) be a vertex
labeling generated by running PEC-Walk on input (G, s). There is a PEC walk from s
to t whose first edge is blue and whose last edge has color ¢ € {red, blue} if and only

ifce(t)
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Proof. By the preceding lemma, the algorithm always terminates and produces a label-
ing 1.

(<) Let t be a vertex of G different from s. We show that if ¢ € (¢), there is a
PEC walk from s to ¢ whose first edge is blue and whose final edge has color c. We
proceed by induction on the number n of times the algorithm enters the main loop with
¢ ¢ Y(t). f n = 0, color ¢ is added to () during the initialization phase, so there
must be a blue edge st. Assume the statement holds for all 0 < k < n, and ¢ is added to
t(t) in iteration n+ 1. Then there must be a pair (v, t) with yg(vt) = ¢ which is added
to ( in this iteration. That is the case only if a pair (u,v) is removed from @) during
the same iteration with yg(uv) = ¢/, where ¢’ # ¢. The pair (u,v) must have been
inserted into () before iteration n + 1, at which point ¢’ was added to ¥ (v). Applying
the induction hypothesis, we can conclude there must be a PEC walk from s to v such
that its first edge is blue and its last edge has color ¢’. By appending vt to this walk, we
obtain a PEC walk from s to ¢ with the desired properties.

(=) Suppose there is a PEC walk from s to ¢ whose first edge is blue and whose last
edge has color c. Let n be the smallest integer that is the length of such a walk. We will
show by induction on 7 that ¢ € 1)(¢). The case n = 1 is taken care of by the initializa-
tion phase of the algorithm. Suppose the statement holds for all n € {1,...,m}. Let
Vg, - - - , Um+1 be a PEC walk from s to ¢ with the property that its first edge is blue and its
last edge has color ¢, and assume there is no shorter PEC walk with this property. Then
Vo, - -+, U, is @ PEC walk from s to vy, so that vov; is blue, and xG(Vm—1vm) = ¢
where ¢ # ¢’. There can be no k < m such that there is a PEC walk of length & from
s to v,, whose first edge is blue and whose last edge has color ¢’: otherwise, one could
append vy, Uy, +1 to this path to obtain a PEC walk from s to v,,,11 whose initial edge is
blue and whose final edge has color ¢ of length £ 4+ 1 < m + 1, a contradiction. We can
therefore apply the induction hypothesis and conclude that ¢’ € ¥(v,,). Let (w, vy,)
be the pair that was removed from () in the iteration of the main loop in which ¢’ was
added to ¢ (v,, ). Because ¢’ # ¢, in the same iteration the pair (vy,, Uy 41) must have
been added to @ and ¢ put into to 1) (v, +1), unless already ¢ € ¥ (vp41). O

The next result is immediate from Lemmas[6] and[7]

Proposition 2. Given a 2-edge-colored graph G, a vertex s € V(G), and some ¢ €
{red, blue}, the set of vertices reachable from s along some PEC walk in G whose first
edge is blue and whose last edge has color ¢ can be computed in time O(|E(G)| +

V(@)D
With all the pieces in place, it is now straightforward to prove our main result.

Theorem 4. Given a QCNF formula F and a pair of variables x,y € var(F), one can
decide whether (x,y) € D% in time O(|F|). Hence the resolution-path dependency
scheme is tractable.

Proof. We prove that there is a linear time decision algorithm. We first check whether
qr(z) # qr(y) and (z,y) is in Rr. Using Lemma[l we can then in linear time
compute a QCNF formula 7’ and a set R’ from F and Rx(x) \ (vary(F) U{z,y}) so
that two literals are resolution connected in F’ with respect to R’ if and only if they are
resolution connected in F with respect to Rr(x) \ (vary(F) U {x,y}). We can then
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construct the graph G, p, and determine for all pairs £, £, with £, € {z, -z} and
¢, € {y, -y} whether there is a properly edge-colored walk from ¢, to ¢, whose first
and last edges are blue, which by Lemma[3]is equivalent to ¢, and ¢, being resolution
connected in F’ with respect to R’ (according to Propositions[Iland 2] this can be done
in linear time). Using this information, it is straightforward to decide whether (z, y) is
a resolution-path dependency pair in F with respect to Rr(z) \ (vary(F) U {z,y}).
Each of these steps requires linear time, so we need O(|F|) time in total. O

Samer and Szeider [[12] generalized the notion of a strong backdoor set from CNF for-
mulas to QCNF formulas, by adding the requirement that the backdoor set is closed
under a cumulative dependency scheme. They showed that evaluating QCNF formulas
is fixed-parameter tractable (fpt) when parameterized by the size of a smallest strong
backdoor set (with respect to the classes QHORN or Q2CNF) provided that the consid-
ered cumulative dependency scheme is tractable. By Theorems[3and[4] one can use the
resolution path dependency scheme here and thus get an fpt result that is stronger than
the results achieved by using any of the other dependency schemes appearing in Fig. [11

For an existentially quantified variable y in a QCNF F, the entire ser D'Z(y) can be
computed in linear time: we first determine the sets D = { ¢ € [it(F) : y is resolution
connected to £ in F with respect to Rx(y) \ vary(F) } and D_, = { £ € lit(F) : ~y is
resolution connected to ¢ in F with respect to Rr(y) \ vary(F) } and store them in a
data structure that allows us to decide membership of literals in constant time (say, an
array). To determine D'?*(y), we simply check for each element = of Rx N vary(F)
whether x € D and ~x € D_,or—~x € Dandx € D_,.

Unfortunately we cannot use the same approach to compute the set of dependent
variables D'%*(x) for a universal variable x € vary(F). For every existential variable
y € vars(F), resolution paths that entail (2, y) € D% cannot contain y or —y. Hence
the relevant resolution paths are subject to different constraints for each y, and it is not
sufficient in general to construct G’z y for a single set X.

6 Minimal Dependency Schemes

The fact that the resolution-path dependency scheme is the bottom element of the lattice
represented in Figure [T] gives reason to wonder whether it is the most general depen-
dency scheme. However, computing a minimal dependency scheme is complete for
PSPACE [12]. Since the resolution path dependency scheme is tractable, it follows that
it cannot be minimal. Can we instead prove that D™ is minimal relative to a class of
“natural” dependency schemes? At the very least, such a class should include all the
dependency schemes considered so far, which have the following feature in common:
whether a pair of variables is considered dependent is determined almost entirely in
terms of the matrix. We use this property to define a candidate class.

Definition 9. A dependency scheme D is called a matrix dependency scheme if it sat-
isfies the following property: Let F and F' be QCNF formulas such that F' is ob-
tained from F by quantifier reordering. Moreover, let x € var(F) such that Ry (x) =
Ryri(x). Then for any y € var(F), we have (z,y) € D if and only if (x,y) € Dr.

The next proposition can be easily verified by inspecting Definition[S]
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Proposition 3. The resolution-path dependency scheme D™ is a matrix dependency
scheme.

Unfortunately, D™ is not even the most general matrix dependency scheme. We now
show that there is a cumulative matrix dependency scheme which is strictly more gen-
eral than D™. Let F be an arbitrary QCNF formula.

Definition 10. We let D™ : F +— D%, where D3 = { (z,y) € Rr : thereisa
Sformula F! = Qi1 ... QuaQuy . .. Quay F obtained from F by quantifier reordering,
such that Ry (z) 2 Ry/(x) and v(F') # v(F"), where F"' = Qiz1 ... QuyQex . ..
Qnzy F}

Proposition 4. (x) D™ is a cumulative matrix dependency scheme.

Proposition 5. (x) For every QCNF formula F, the relation D} is contained in D',
and containment is strict in some cases.

The reduction applied in the proof of the following result essentially corresponds to the
one used by Samer and Szeider to establish PSPACE-hardness of computing minimal
dependency schemes [12].

Proposition 6. (x) Let F be a QCNF formula with matrix F and z,y € var(F). The
problem of deciding whether there exists a matrix dependency scheme D such that
(2,9) ¢ Dris X¥-hard.

One may object that these considerations do not rule out the possibility that D™ is
the most general tractable matrix dependency scheme. That this is not the case can be
seen from the following simple argument. For any nonnegative integer k, we define
a mapping D¥ such that for any QCNF formula F we have D% = D™ if |F| < £k,
and D% = D' otherwise. As both D™ and D™ are cumulative matrix dependency
schemes and the relevant properties are defined pointwise, any such function D* must
be a cumulative matrix dependency scheme as well. Moreover, each scheme DF is
clearly tractable and from the proof of Proposition 5 we know that DF is strictly more
general than D™ for k& > 5.

7 Conclusion

We have shown that resolution path dependencies give rise to a cumulative dependency
scheme that can be decided in linear time. While the latter result is optimal for the
decision problem, we see at least two obstacles for an efficient implementation. First,
computing the entire relation D' using our current algorithm requires O(|F|?) time,
which is prohibitive for practical purposes. Second, it is unclear whether one can find
succinct representations of the relation D2 similar to those used for the standard de-
pendency scheme [9]. We leave this issues for future work.

To capture the kind of variable dependencies relevant for expansion-based QBF
solvers, Samer considered an alternative definition of dependency schemes based on
variable independence [[11]. It might be interesting to study resolution path dependen-
cies in this context as well.
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Abstract. Knuth (1990) introduced the class of nested formulas and
showed that their satisfiability can be decided in polynomial time. We
show that, parameterized by the size of a smallest strong backdoor set
to the base class of nested formulas, computing the number of satisfying
assignments of any CNF formula is fixed-parameter tractable. Thus, for
any k > 0, the satisfiability problem can be solved in polynomial time
for any formula F' for which there exists a set B of at most k variables
such that for every truth assignment 7 to B, the reduced formula F[7]
is nested; moreover, the degree of the polynomial is independent of k.

Our algorithm uses the grid-minor theorem of Robertson and Seymour
(1986) to either find that the incidence graph of the formula has bounded
treewidth—a case that is solved by model checking for monadic second
order logic—or to find many vertex-disjoint obstructions in the incidence
graph. For the latter case, new combinatorial arguments are used to find
a small backdoor set. Combining both cases leads to an approximation
algorithm producing a strong backdoor set whose size is upper bounded
by a function of the optimum. Going through all assignments to this set
of variables and using Knuth’s algorithm, the satisfiability of the input
formula can be decided. With a similar approach, one can also count the
number of satisfying assignments of the given formula.

1 Introduction

In a 1990 paper [20] Knuth introduced the class of nested CNF formulas and
showed that their satisfiability can be decided in polynomial time. A CNF
formula is mested if its variables can be linearly ordered such that there is no
pair of clauses that straddle each other; a clause ¢ straddles a clause ¢ if there are
variables z,y € var(c) and z € var(¢’) such that < z < y in the linear ordering
under consideration. NESTED denotes the class of nested CNF formulas. For an
example see Figure[Il Since nested formulas have incidence graphs of bounded
treewidth [2], one can use treewidth-based algorithms [I0J34] to even compute
the number of satisfying truth assignments of nested formulas in polynomial
time (incidence graphs are defined in Section 2]). Hence the problems SAT and
#SAT are polynomial for nested formulas.

* The full version of the paper is available on arXiv [16].

A. Cimatti and R. Sebastiani (Eds.): SAT 2012, LNCS 7317, pp. 72-85, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. Incidence graph of the nested formula F = /\?:1 ¢ with c1 =tV —wu, c2 =
uVoVw,ca=wVz,ca=zV-y cs=yV-z c=tVuV-w, cr =V 2z,

cs=-tVwVzx

The aim of this paper is to extend the nice computational properties of nested
formulas to formulas that are not nested but are of small distance from being
nested. We measure the distance of a CNF formula F' from being nested as the
size of a smallest set B of variables, such that for all partial truth assignments 7
to B, the reduced formula F'[7] is nested. Such a set B is called a strong backdoor
set with respect to the class of nested formulas [37], or strong NESTED-backdoor
set, for short. Once we have found such a backdoor set of size k, we can decide
the satisfiability of F' by checking the satisfiability of 2* nested formulas, or
for model counting, we can take the sum of the number of models of the 2*
nested formulas. Thus the problems SAT and #SAT can be solved in time
O(2F|F|°) where |F| denotes the length of F and k denotes the size of the given
strong NESTED-backdoor set; ¢ is a small constant. In other words, the problems
SAT and #SAT are fized-parameter tractable for parameter k (for background
on fixed-parameter tractability see Section 2]). However, in order to use the
backdoor set we must find it first. Is the detection of strong NESTED-backdoor
sets fixed-parameter tractable as well?

Let sbn(F') denote the size of a smallest strong NESTED-backdoor set of a
CNF formula F. To find a strong backdoor set of size at most k = sbn(F') one
can try all possible sets of variables of size at most k, and check for each set
whether it is a strong backdoor set. However, for a formula with n variables
we have to check (Z) = 2(n¥) such sets. Thus, this brute-force approach scales
poorly in k and does not provide fixed-parameter tractability, as the order of
the polynomial increases with k.

In this paper we show that one can overcome this limitation with a more
sophisticated algorithm. We show that the problems SAT and #SAT are fized-
parameter tractable when parameterized by sby, the size of a smallest strong
NESTED-backdoor set, even when the backdoor set is not provided as an input.

Our algorithm is constructive and uses the Grid Minor Theorem of Robert-
son and Seymour [32] to either find that the incidence graph of the formula has
bounded treewidth—a case that is solved using model checking for monadic sec-
ond order logic [I]—or to find many vertex-disjoint obstructions in the incidence
graph. For the latter case, new combinatorial arguments are used to find a small
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strong backdoor set. Combining both cases leads to an algorithm producing a
strong backdoor set of a given formula F of size at most 2¥ for k = sbn(F).

Solving all the 22" resulting nested formulas provides a solution to F'.

Our result provides a new parameter sby that makes SAT and #SAT fixed-
parameter tractable. The parameter sby is incomparable with other known pa-
rameters that make SAT and #SAT fixed-parameter tractable. Take for instance
the treewidth of the incidence graph of a CNF formula F', denoted tw*(F'). As
mentioned above, SAT and #SAT are fixed-parameter tractable for parameter
tw* [10[34], and tw*(F) < 3 holds if sbx(F) = 0 (i.e., if F € NESTED) [2].
However, by allowing only sbn(F) = 1 we already get formulas with arbitrarily
large tw*(F'). This can be seen as follows. Consider an n x n grid whose vertices
represent variables of a CNF formula F;, and subdivide each edge of the grid
with a clause of Fi,. It is well known that the n x n grid, n > 2, has treewidth n
and that subdividing edges does not decrease the treewidth of a graph (folklore).
Now take a new variable x and add it positively to all horizontal clauses and
negatively to all vertical clauses, where a clause is horizontal (resp. vertical) if
it subdivides a horizontal (resp. vertical) edge of the n x n grid in a natural
layout. Let F)? denote the new formula. Since the incidence graph of Fj, is
a subgraph of the incidence graph of F?, we have tw*(F7?) > tw*(F,) > n.
However, setting x to true removes all horizontal clauses and thus yields a for-
mula whose incidence graph is a disjoint union of paths, which is easily seen to
be nested. Similarly, setting x to false yields a nested formula as well. Hence
{z} forms a strong NESTED-backdoor set, and so sbx(F) = 1. One can also
construct formulas where sby is large and tw™ is small, for example by taking
the variable-disjoint union F' of formulas F; = (x; Vy; V 2;) A (—x; Vy; V z;) with
sbn(F;) = 1 and tw*(F;) = 2, 1 < i < n. Then tw*(F) = tw*(F;) = 2, but
SbN(F) = Z?:l SbN(Fi) =n.

One can also define deletion backdoor sets of a CNF formula F with respect
to a base class of formulas by requiring that deleting all literals z, ~x with x € B
from F produces a formula that belongs to the base class [29]. For many base
classes it holds that every deletion backdoor set is a strong backdoor set, but in
most cases, including the base class NESTED, the reverse is not true. In fact, it is
easy to see that if a CNF formula F' has a NESTED-deletion backdoor set of size k,
then tw*(F) < k+ 3. In other words, the parameter “size of a smallest deletion
NESTED-backdoor set” is dominated by the parameter incidence treewidth and
therefore of limited interest. We note in passing, that one can use the algorithm
from [24] to show that the detection of deletion NESTED-backdoor sets is fixed-
parameter tractable.

Related Work. Williams et al. [37] introduced the notion of backdoor sets to
explain favorable running times and the heavy-tailed behavior of SAT and CSP
solvers on practical instances. The parameterized complexity of finding small
backdoor sets was initiated by Nishimura et al. [28] who showed that with respect
to the classes of Horn formulas and of 2CNF formulas, the detection of strong
backdoor sets is fixed-parameter tractable. Their algorithms exploit the fact that
for these two base classes strong and deletion backdoor sets coincide. For other
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base classes, deleting literals is a less powerful operation than applying partial
truth assignments. This is the case for the class NESTED but also for the class
RHORN of renamable Horn formulas [7]. In fact, finding a deletion RHORN-
backdoor set is fixed-parameter tractable [30], but it is open whether this is the
case for the detection of strong RHORN-backdoor sets. For clustering formulas,
detection of deletion backdoor sets is fixed-parameter tractable, detection of
strong backdoor sets is most probably not [29]. Very recently, the authors of
the present paper showed that for the base class FOREST, of formulas whose
incidence graph is acyclic, there is a fixed-parameter approximation algorithm
for strong backdoor sets. That is, the following problem is fixed-parameter
tractable: find a strong FOREST-backdoor set of size at most k or decide that
there is no strong FOREST-backdoor set of size at most 2% [I3]. The present
paper extends the ideas from [I3] to the significantly more involved case with
NESTED as the base class, which is a strict superclass of FOREST.

We conclude this section by referring to a recent survey on the parameterized
complexity of backdoor sets [14].

2 Preliminaries

Parameterized Complezity. Parameterized Complexity is a two-dimensional
framework to classify the complexity of problems based on their input size n and
some additional parameter k [SIT27]. It distinguishes between running times of
the form f(k)n9®) where the degree of the polynomial depends on k& and running
times of the form f(k)n®®) where the exponential part of the running time is
independent of n. A parameterized problem is fized-parameter tractable (FPT)
if there exists an algorithm that solves an input of size n and parameter k in time
bounded by f(k)no(l). In this case we say that the parameter dependence of the
algorithm is f and we call it an FPT algorithm. Parameterized Complexity has
a hardness theory, similar to the theory of NP-completeness to show that certain
problems have no FPT algorithm under complexity-theoretic assumptions.

Graphs. Let G = (V,E) be a simple, finite, undirected graph. Let S C V
and v € V. We denote by G — S the graph obtained from G by removing all
vertices in S and all edges incident to vertices in S. We denote by G[S] the graph
G—(V\S). The (open) neighborhood of vis N(v) = {u € V : uv € E}, the (open)
neighborhood of S is N(S) = J,cg N(u)\ S, and their closed neighborhoods are
Nv] = N(v)U{v} and N[S] = N(S)US, respectively. A v1—vy path P of length
k in G is a sequence of k pairwise distinct vertices (v1,va,- - ,vk) such that
v;V;41 € E for each ¢ € {1,...,k — 1}. The vertices v; and vy are the endpoints
of P and all other vertices from P are internal. An edge is internal to P if it is
incident to two internal vertices from P. Two or more paths are independent if
none of them contains an inner vertex of another.

A tree decomposition of G is a pair ({X; : i € I'},T) where X; CV, i€ I, and
T is a tree with elements of I as nodes such that (i) for each edge uv € E, there
is an ¢ € I such that {u,v} C X;, and (ii) for each v € V, T[{i € [ : v € X,}]
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is connected and has at least one node. The width of a tree decomposition is
max;es | X;| — 1. The treewidth [3I] of G is the minimum width taken over all
tree decompositions of G and it is denoted tw(G). A graph is planar if it can be
drawn in the plane with no crossing edges. For other standard graph-theoretic
notions not defined here, we refer to [6].

CNF Formulas and Satisfiability. We consider propositional formulas in con-
junctive normal form (CNF) where no clause contains a complementary pair
of literals. For a clause ¢, we write lit(c) and var(c) for the sets of literals
and variables occurring in ¢, respectively. For a CNF formula F' we write
cla(F) for its set of clauses, lit(F)) = .cqa(r) lit(c) for its set of literals, and
var(F) = Ue,eca(r) var(c) for its set of variables.

For a set X C var(F) we denote by 2% the set of all mappings 7 : X — {0, 1},
the truth assignments on X. A truth assignment on X can be extended to the
literals over X by setting 7(—z) = 1 — 7(x) for all z € X. Given a CNF formula
F and a truth assignment 7 € 2% we define F[r] to be the formula obtained
from F' by removing all clauses ¢ such that 7 sets a literal of ¢ to 1, and removing
the literals set to 0 from all remaining clauses.

A CNF formula F is satisfiable if there is some 7 € 2"(F) with F[r] = 0.
SAT is the NP-complete problem of deciding whether a given CNF formula is
satisfiable [4I22]. #SAT is the #P-complete problem of determining the number
of distinct 7 € 2¥2"(F) with F[r] = () [35].

Nested Formulas. Consider a linear order < of the variables of a CNF formula F'.
A clause ¢ straddles a clause ¢’ if there are variables x,y € var(c) and z € var(c’)
such that ¢ < z < y. Two clauses overlap if they straddle each other. A CNF
formula F' is nested if there exists a linear ordering < of var(F') in which no
two clauses of I overlap [20]. The satisfiability of a nested CNF formula can be
determined in polynomial time [20].

The incidence graph of F is the bipartite graph inc(F) = (V, E) with V =
var(F) U cla(F) and for a variable x € var(F) and a clause ¢ € cla(F') we have
xzc € E if x € var(c). The sign of the edge xc is positive if z € lit(c) and negative
if -z € lit(c). Recall that tw*(F') denotes the treewidth of inc(F).

The graph inc+u(F) is inc(univ(F')), where univ(F') is obtained from F by
adding a wuniversal clause c¢* containing all variables of F. By a result of
Kratochvil and Kfivdnek [2I], F is nested if and only if inc+u(F') is planar.
Since tw*(F') < 3 if F is nested [2], the number of satisfying assignments of F
can also be counted in polynomial time [T0J34].

Backdoors. Backdoor sets are defined with respect to a fixed class C of CNF
formulas, the base class. Let F be a CNF formula and B C var(F'). B is a strong
C-backdoor set of F if F[r] € C for each 7 € 2B. B is a deletion C-backdoor set
of Fif F— B e C, where cla(F — B) = {c\ {z,~x : x € B} : c € cla(F)}.

If we are given a strong C-backdoor set of F' of size k, we can reduce the
satisfiability of F' to the satisfiability of 2% formulas in C. Thus SAT becomes
FPT in k if C is polynomial-time solvable. If C is clause-induced (i.e., F' € C
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implies F’ € C for every F’ such that cla(F’) C cla(F)), any deletion C-backdoor
set of F'is a strong C-backdoor set of F'. The interest in deletion backdoor sets is
motivated for base classes where they are easier to detect than strong backdoor
sets. The challenging problem is to find a strong or deletion C-backdoor set of
size at most k if it exists. We denote by sbn(F') the size of a smallest strong
NESTED-backdoor set.

Minors and Grids. The r-grid is the graph L, = (V, E) with vertex set V =
{(#,7): 1 <i<r,1<j<r}in which two vertices (i,7) and (¢, j') are adjacent
if and only if |i —¢'| +|j — j'| = 1. We say that a vertex (i,j) € V has horizontal
index ¢ and vertical index j.

A graph H is a minor of a graph G if H can be obtained from a subgraph
of G by contracting edges. The contraction of an edge uv makes u adjacent to
all vertices in N(v) \ {u} and removes v. If H is a minor of G, then one can
find a model of H in G. A model of H in G is a set of vertex-disjoint connected
subgraphs of G, one subgraph C, for each vertex u of H, such that if uv is an
edge of H, then there is an edge of G with one endpoint in C, and the other
in C,. We will use Robertson and Seymour’s grid-minor theorem.

Theorem 1 ([32]). For every positive integer r, there exists a constant f(r)
such that if a graph G has treewidth at least f(r), then G contains an r-grid as
a minor.

It is known that f(r) < 202" [33]. A linear-time FPT algorithm (parameterized
by k) by Bodlaender [3] finds a tree decomposition of width at most k of a
graph G if tw(G) < k. A quadratic FPT algorithm (parameterized by r) by
Kawarabayashi et al. [I7] finds an r-grid minor in a graph G if G contains an
r-grid as a minor.

By Wagner’s theorem [36], a graph is planar if and only if it has no Ks3
and no K5 as a minor. Here, K5 denotes the complete graph on 5 vertices and
K3 3 the complete bipartite graph with 3 vertices in both independent sets of
the bipartition.

3 Detection of Strong Nested-Backdoor Sets

Let F be a CNF formula and k be an integer. Our FPT algorithm will count the
number of satisfying truth assignements of F' if F' has a strong NESTED-backdoor
set of size at most k.

The first step of the algorithm is to find a good approximation for a smallest
strong NESTED-backdoor set. Specifically, it will either determine that F' has
no strong NESTED-backdoor set of size at most &, or it will compute a strong
NESTED-backdoor set of size at most 2¢. An algorithm of that kind is called an
FPT-approzimation algorithm [23], as it is an FPT algorithm that computes a
solution that approximates the optimum with an error bounded by a function
of the parameter. In case F' has no strong NESTED-backdoor set of size at
most k, the algorithm stops, and if it finds a strong NESTED-backdoor set B
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of size at most 2%, for every truth assignment 7 to B, a tree decomposition of
inc(F'[7]) of width ast most 3 can be computed in linear time [2/3], and treewidth-
based dynamic programming algorithms can be used to compute the number of
satisfying assignments of F'[7] in polynomial time [I0J34]. We will arrive at our
main theorem.

Theorem 2. The problems SAT and #SAT are fixed-parameter tractable pa-
rameterized by sbn (F).

It only remains to design the FPT-approximation algorithm for strong NESTED-
backdoor set detection. Consider the incidence graph G = (V, E) = inc(F') of F.
By [33], it either has treewidth at most tw(k), or it has a grid(k)-grid as a minor.
We will treat both cases separately. Here,

tW(k‘) 20 2grid(k)57
grid(k) := 4 - \/obs(k) 4 1
obs(k) := 2% . same(k) + k, and
same(k) := 15 - 222,

The functions obs(k) and same(k) will be used in the next subsection.

Lemma 1. There is an FPT algorithm that, given a CNF formula F, a positive
integer parameter k, and a grid(k)-grid as a minor in inc(F), computes a set
S* Cvar(F) of size 20k™) such that every strong NESTED-backdoor set of size
at most k contains a variable from S*.

Lemma 2. There is an FPT algorithm that takes as input a CNF formula F', a
positive integer parameter k, and a tree decomposition of G = inc(F') of width at
most tw(k), and finds a strong NESTED-backdoor set of F' of size k if one exists.

The proof of Lemma[2] [I6] relies on Arnborg et al.’s extension [I] of Courcelle’s
theorem [5]. Lemma [Ilis proven in Subsection Bl and contains the main combi-
natorial arguments of this paper. These two lemmas can now be used to compute
a strong NESTED-backdoor set of F.

Theorem 3. There is an FPT algorithm, which, for a CNF formula F and a
positive integer parameter k, either concludes that F has no strong NESTED-
backdoor set of size at most k or finds a strong NESTED-backdoor set of F of
size at most 2F.

Proof. If k < 1, our algorithm solves the problem exactly in polynomial time.
Otherwise, it runs Bodlaender’s FPT algorithm [3] with input G and parameter
tw(k) to either find a tree decomposition of G of width at most tw(k) or to
determine that tw(G) > tw(k). In case a tree decomposition of width at most
tw(k) is found, the algorithm uses Lemma[2] to compute a strong NESTED-back-
door set of F of size k if one exists, and it returns the answer.
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Fig.2. A NESTED-obstruction leading to a K3 s-minor with the universal clause c¢*

In case Bodlaender’s algorithm determines that tw(G) > tw(k), by [33] we
know that G has a grid(k)-grid as a minor. Such a grid(k)-grid is found by
running the FPT algorithm of Kawarabayashi et al. [I7] with input G and
parameter grid(k). The algorithm now executes the procedure from Lemma [I] to
find a set S* of 2°*") variables from var(F’) such that every strong NESTED-
backdoor set of size at most k contains a variable from S*. The algorithm
considers all possibilities that the backdoor set contains some = € S*; there are
20(:™) choices for x. For each such choice, recurse on Flz = 1] and F[z = 0]
with parameter k£ — 1. If, for some x € S*, both recursive calls return back-
door sets B, and B_,, then return B, U B—, U {z}, otherwise, return No. As
28 — 1 =2-(2¥=1 — 1) + 1, the solution size is upper bounded by 2¥ — 1. On
the other hand, if at least one recursive call returns NO for every x € S*, then
F has no strong NESTED-backdoor set of size at most k. O

In particular, this proves Theorem 2l For showing Theorem [2] one could also
avoid the use of Lemma [2] and directly apply the algorithms from [10/34] to
count the number of satisfying assignments in case tw*(F') < tw(k).

3.1 Large Grid Minor

The goal of this subsection is to prove Lemma[ll Suppose G has a grid(k)-grid
as a minor.

Definition 1. An a-b NESTED-obstruction is a subgraph of inc(F) consisting
of

— five distinct vertices a, b, p1,p2, p3, such that p1,p2, ps are variables,
— three independent a—b paths Py, Py, P, and
— an edge between p; and an internal vertex from P; for each i € {1,2,3}.

In particular, if a path P; has a variable v as an interior vertex, we can take
p; := v. See Figure 2

Lemma 3. If F' is a CNF formula such that inc(F') contains a NESTED-0b-
struction, then F’ ¢ NESTED.

Lemma [ can easily be proven by exhibiting a K3 s-minor in inc+u(F’). The
lemma implies that for each assignment to the variables of a strong NESTED-
backdoor set, at least one variable from each NESTED-obstruction vanishes in the



80 S. Gaspers and S. Szeider

a=(2,1)

Fig. 3. The 5-grid and a highlighted NESTED-obstruction

reduced formula. Using the r-grid, we now find a set O of obs(k) vertex-disjoint
NESTED-obstructions in G.

Lemma 4. Given a grid(k)-grid minor of G = inc(F), a set of obs(k) vertez-
disjoint NESTED-obstructions can be found in polynomial time.

The proof of Lemma [ (see [16]) packs vertex-disjoint NESTED-obstructions, like
the one highlighted in Figure[3l into the grid(k)-grid.

Denote by O a set of obs(k) vertex-disjoint NESTED-obstructions obtained
via Lemma [ A backdoor variable can destroy a NESTED-obstruction either
because it participates in the NESTED-obstruction, or because every setting of
the variable satisfies a clause that participates in the NESTED-obstruction.

Definition 2. Let x be a variable and O a NESTED-obstruction in G. We say
that x kills O if neither inc(F|x = 1]) norinc(F[x = 0]) contains O as a subgraph.
We say that x kills O internally if x € var(O), and that x kills O externally if «
kills O but does not kill it internally. In the latter case, O contains a clause ¢
containing x and a clause ¢’ containing —x and we say that x kills O (externally)
in c and c.

By Lemma 3] for every strong NESTED-backdoor set B of I’ and every NESTED-
obstruction O, there is at least one x € B that kills O.

We will describe an algorithm that first performs a constant number of non-
deterministic steps (guesses) to determine some properties about the strong
NESTED-backdoor set. Each such guess is made out of a number of choices that
is upper bounded by a function of k. The algorithm will then only search for
strong NESTED-backdoor sets that have the determined properties, and such
backdoor sets are called valid. Finally, the algorithm will be made deterministic
by executing each possible combination of nondeterministic steps.

For a fixed series of guesses, the algorithm will compute a set S C var(F)
such that every valid strong NESTED-backdoor set of size at most k contains a
variable from S. The union of all such S, taken over all possible series of guesses,
forms a set S* and each strong NESTED-backdoor set of size at most k contains
a variable from S*. Bounding the size of each S by a function of k enables us
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to bound |S*| by a function of k, and S* can then be used in a bounded search
tree algorithm (see Theorem [3)).

For every strong NESTED-backdoor set of size at most k&, at most k¥ NESTED-
obstructions from O are killed internally since they are vertex-disjoint. The
algorithm guesses k NESTED-obstructions from O that may be killed internally.
Let O’ denote the set of the remaining NESTED-obstructions, which need to be
killed externally.

Suppose F' has a strong NESTED-backdoor set B of size k killing no NESTED-
obstruction from @’ internally. Then, B defines a partition of O’ into 2* parts
where for each part, the NESTED-obstructions contained in this part are killed
externally by the same set of variables from B. Since |O'| = obs(k) — k =
2% . same(k), at least one of these parts contains at least same(k) NESTED-ob-
structions from O’. The algorithm guesses a subset O; C O’ of same(k) NESTED-
obstructions from this part and it guesses how many variables from the strong
NESTED-backdoor set kill the obstructions in this part externally.

Suppose each NESTED-obstruction in Oy is killed externally by the same set
of £ backdoor variables, and no other backdoor variable kills any NESTED-ob-
struction from O,. Clearly, 1 < ¢/ < k. Compute the set of external killers for
each NESTED-obstruction in Og. Denote by Z the common external killers of
the NESTED-obstructions in Og. The presumed backdoor set contains exactly ¢
variables from Z and no other variable from the backdoor set kills any NESTED-
obstruction from O;.

We will define three rules for the construction of S, and the algorithm will
execute the first applicable rule.

Rule 1 (Few Common Killers). If |Z| < |Os|, then set S := Z.

The correctness of this rule follows since any valid strong NESTED-backdoor set
contains ¢ variables from Z and ¢ > 1.

For each O € O, we define an auxiliary graph Go = (Z, Ep) whose edge set
is initially empty. As long as Go has a vertex v with degree 0 such that v and
some other vertex in Z have a common neighbor from O in G, select a vertex u
of minimum degree in Go such that « and v have a common neighbor from O
in G and add the edge uv to Fp. As long as Go has a vertex v with degree 0,
select a vertex u of minimum degree in G such that v has a neighbor v" € V(O)
in G and v has a neighbor v/ € V(O) in G and there is a v’ path in O in
which no internal vertex is adjacent to a vertex from Z \ {v}; add the edge uv
to Eo.

Fact 1. For each O € Oy, the graph Go has minimum degree at least 1.

Recall that no clause contains complimentary literals. Consider two variables
u,v € Z that share an edge in Go. By the construction of G, there is a u—v
path P in G whose internal edges are in O, such that for each variable z € Z,
all edges incident to z and a clause from P have the same sign. Moreover, since
no variable from a valid strong NESTED-backdoor set kills O externally, unless
it is in Z, for each potential backdoor variable = € var(F') \ Z, all edges incident
to z and a clause from P have the same sign. Thus, we have the following fact.
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Fact 2. If u,v € Z share an edge in Go, then for every valid strong NESTED-
backdoor set that does not contain w and v, there is a truth assignment 7 to B
such that inc(F[7]) contains a u—v path whose internal edges are in O.

Consider the multigraph G,,,(Os) = (Z,pcp. Fo), i-e., the union of all Go
over all O € O, where the multiplicity of an edge is the number of distinct sets
FEo where it appears, O € Os.

Rule 2 (Multiple Edges). If there are two vertices u,v € Z such that G, (Os)
has a u—v edge with multiplicity at least 2 - 28 4+ 1, then set S := {u,v}.

Consider any valid strong NESTED-backdoor set B of size k. Then, by Fact[2 for
each u—v edge there is some truth assignment 7 to B such that inc(F[7]) contains
a u—v path in G. Moreover, since each u—v edge comes from a different O € O,
all these u—v paths are independent. Since there are 2* truth assignments to
B but at least 2 - 28 + 1 u—v edges, for at least one truth assignment 7 to B,
there are 3 independent u—v paths Py, P2, Ps in inc(F[r]). We obtain a u—v
NESTED-obstruction choosing as p;,1 < ¢ < 3, a variable from P; or a variable
neighboring a clause from P; and belonging to the same NESTED-obstruction in
Os. Thus, any valid strong NESTED-backdoor set contains u or v.

Now, consider the graph G(Oy) obtained from the multigraph G,,(Os) by
merging multiple edges, i.e., we retain each edge only once.

Rule 3 (No Multiple Edges). Set S to be the 2k wvertices of highest degree in
G(Os) (ties are broken arbitrarily).

For the sake of contradiction, suppose F has a valid strong NESTED-backdoor set
B of size k with BNS = (). First, we show a lower bound on the number of edges
in G(O;) — B. Since G,,,(O;) has at least |g‘same(k‘) edges and each edge has
multiplicity at most 2¥+1, the graph G(O;) has at least ‘Zz'?g?fﬁk) =3-5-2%.|Z|
edges. Let d be the sum of the degrees in G(Oy) of the vertices in BN Z. Now,
the sum of degrees of vertices in S is at least 2d in G(Os), and at least d in
G(Oy) — B. Therefore, G(Os) — B has at least d/2 edges. On the other hand,
the number of edges deleted to obtain G(O;) — B from G(O;) is at most d. It
follows that the number of edges in G(Os) — B is at least a third the number of
edges in G(O;), and thus at least 5- 2% . |Z].

Now, we iteratively build a truth assignment 7 for B. Set H := G(O,) — B.
Order the variables of B as by, ..., bg. For increasing ¢, we set 7(b;) = 0 if in G,
the vertex v € B is adjacent with a positive edge to more paths that correspond
to an edge in H than with a negative edge and set 7(b;) = 1 otherwise; if
7(b;) = 0, then remove each edge from H that corresponds to a path in G that
is adjacent with a negative edge to b;, otherwise remove each edge from H that
corresponds to a path in G that is adjacent with a positive edge to b;.

Observe that for a variable v € B and a path P in G that corresponds to
an edge in G(O;) — B, v is not adjacent with a positive and a negative edge to
P. If v € Z this follows by the construction of Go, and if v ¢ Z, this follows
since v does not kill any NESTED-obstruction from Os. Therefore, each of the k
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iterations building the truth assignment 7 has removed at most half the edges
of H. In the end, H has at least 5|Z| edges.
Next, we use the following theorem of Kirousis et al. [I9].

Theorem 4 ([19]). If a graph has n vertices and m > 0 edges, then it has an
induced subgraph that is [ "5t -vertez-connected.

We conclude that H has an induced subgraph H’ that is 3-vertex-connected.
Let z,y € V(H'). We use Menger’s theorem [25].

Theorem 5 ([25]). Let G = (V, E) be a graph and x,y € V. Then the size of a
minimum x,y-vertex-cut in G is equal to the mazimum number of independent
x—y paths in G.

Since the minimum size of an x,y-vertex cut is at least 3 in H’, there are 3
independent z—y paths in H'. Replacing each edge by its corresponding path in
G, gives rise to 3 walks from x to y in G. Shortcutting cycles, we obtain three
z—y paths Py, P>, P; in G. By construction, each edge of these paths is incident
to a vertex from a NESTED-obstruction in Os. We assume that Py, P>, P3 are
edge-disjoint. Indeed, by the construction of the Gp, O € O, they can only
share the first and last edges. In case P; shares the first edge with Ps, replace
x by its neighbor on P;, remove the first edge from P; and P,, and replace
P53 by its symmetric difference with this edge. Act symmetrically for the other
combinations of paths sharing the first or last edge.

Lemma 5 ([12]). Let G = (V, E) be a graph. If there are two vertices x,y € V.
with 8 edge-disjoint x—y paths in G, then there are two vertices ',y € V with
3 independent x’'—y’ paths in G.

By Lemma [ we obtain two vertices z’,3" in G with 3 independent z'—y’ paths
P{,P;, P; in G. Since the lemma does not presuppose any other edges in G
besides those from the edge-disjoint x—y paths, P/, Py, Py use only edges from
the paths Py, P2, P5. Thus, each edge of P/, Py, P; is incident to a vertex from
a NESTED-obstruction in Og. Thus, we obtain an x'-y’ NESTED-obstruction
with the paths Py, Py, P;, and for each path P/, we choose a variable from this
path or a variable from O, neighboring a clause from this path. We arrive at a
contradiction for B being a valid strong NESTED-backdoor set. This proves the
correctness of Rule Bl

The number of possible guesses the algorithm makes is upper bounded by

(°bsk(k)) . (tsg?(;)k) k= ZO(kS), and each series of guesses leads to a set .S of at
most same(k) variables. Thus, the set S*, the union of all such S, contains at

most 20+) . same(k) = 20*") variables. This completes the proof of Lemma [l

4 Conclusion

We have classified the problems SAT and #SAT as fixed-parameter tractable
when parameterized by the size of a smallest strong backdoor set with respect to
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the base class of nested formulas. As argued in the introduction, this parameter
is incomparable with incidence treewidth.

The parameter dependence makes our algorithm impractical. However, the
class of fixed-parameter tractable problems has proven to be quite robust: Once
a problem is shown to belong to this class, one can start to develop faster and
more practical algorithms. For many cases in the past this has been success-
ful. For instance, the problem of recognizing graphs of genus k& was originally
shown to be fixed-parameter tractable by means of non-constructive tools from
graph minor theory [9]. Later a linear-time algorithm with doubly exponential
parameter dependence was found [26], and more recently, an algorithm with a
single exponential parameter dependence [I§]. It would be interesting to see
whether a similar improvement is possible for finding or FPT-approximating
strong backdoor sets with respect to nested formulas.

We would like to point out that the results of this paper have been recently
generalized to the base class of formulas with bounded incidence treewidth [15].
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Abstract. Building on recent work that adapts failed-literal analysis
(FL) to Quantified Boolean Formulas (QBF), this paper introduces ex-
tended failed-literal analysis (EFL). FL and EFL are both preprocess-
ing methods that apply a fast, but incomplete reasoning procedure to
abstractions of the underlying QBF. EFL extends FL by remembering
certain binary clauses that are implied by the same reasoning proce-
dure as FL when it assumes one literal and that implies a second literal.
This extension is almost free because the second literals are implied any-
way during FL, but compared to analogous techniques for propositional
satisfiability, its correctness involves some subtleties. For the first time,
application of the universal pure literal rule is considered without also
applying the existential pure literal rule. It is shown that using both pure
literal rules in EFL is unsound. A modified reasoning procedure for QBF,
called Unit-clause Propagation with Universal Pure literals (UPUP) is
described and correctness is proved for EFL based on UPUP. Empirical
results on the 568-benchmark suite of QBFEVAL-10 are presented.

Keywords: quantified boolean formulas, QBF, failed literals, extended
failed literals, 1-saturation, look-ahead, preprocessing.

1 Introduction

With the advent of capable solvers for Quantified Boolean Formulas (QBFs),
their use for encoding problems from industrial applications is increasing rapidly.
As with propositional satisfiability, preprocessors have been found to be an im-
portant part of the QBF solving toolkit. Preprocessors typically do a predictable
(polynomially bounded) amount of work to simplify the original formula, making
it more amenable to the complete solver. The newer complete QBF solvers are
typically based on search, a form of back-chaining, whereas preprocessors use
forward reasoning. The two approaches often complement each other nicely.

The essence of failed-literal analysis is to add an assumption that some literal
is true to a given formula and use incomplete (but usually fast) forward reasoning
to see if the formula can now be proven false; if so, then the negation of the
assumed literal can soundly be added to the formula. This idea was introduced
for propositional SAT solving by Jon Freeman [Fre93].
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This paper builds upon recent work of Lonsing and Biere [LBII] that adapts
failed-literal analysis to QBF solving. That work uses the QBF pure-literal rule
[GNTO04] heavily in its incomplete forward reasoning, which they call QBCP. We
re-examine the QBF pure-literal rule, which applies to both existential and uni-
versal literals, and consider those parts separately. We observe that the two parts
operate quite differently and have different properties. We show that neither part is
a super-sound inference rule (in the sense that tree models are preserved, as speci-
fied in Section[); they are only safe heuristics (in the sense that the truth value of a
closed QBF is not changed by their use). (This fact is well-known for propositional
formulas and the existential pure-literal rule, but seems not to have been consid-
ered for the universal pure-literal rule in QBF.) We show that using them both as
though they were super-sound logical inferences can lead to fallacious reasoning in
QBEF. We believe this is the first time that application of the universal pure literal
rule has been considered without also applying the existential pure literal rule.

Then we develop an enhancement of failed literal analysis based on proposi-
tional techniques called 1-saturation, described by Groote and Warners [GW00]
and double unit-propagation look-ahead described by Le Berre [LB01]. We show
that using the universal pure-literal rule and not the existential pure-literal rule
is safe for 1-saturation in QBF.

The essence of 1-saturation in propositional logic is the observation that,
with a given formula, if assuming some literal ¢ allows some other literal p to be
soundly derived, and if assuming ¢ also allows p to be soundly derived, then p
can soundly be added to the formula as a unit clause. Unfortunately for QBF,
literals derived with QBCP are not necessarily super-soundly derived.

We introduce an incomplete forward reasoning procedure that employs unit-
clause propagation (including universal reduction) and the universal pure-literal
rule. We show that this procedure super-soundly derives literals. We call it UPUP
for Unit-clause Propagation with Universal Pure literals.

Although UPUP is weaker than BCP in the sense that it assigns values to
fewer literals, we found experimentally that it is considerably faster, for simple
failed-literal analysis. In addition, it serves as the basis for adapting 1-saturation
to QBF, and it can log proof steps that are verifiable as Q-resolution steps
[KBKF95]. We call our adaptation of 1-saturation to QBF extended failed
literal analysis (EFL).

One reason for our interest in EFL is that it enables a significant fraction of
the popular QBFLIB benchmark suite to be solved with preprocessing alone. The
first QBF preprocessor to solve a significant number of benchmarks in this suite
was sQueezeBF, described by Giunchiglia et al. [GMNI10]. With their publicly
available binary code, QUBE-7.2, we solved 40 of the 568 QBFLIB benchmarks.
Lonsing and Biere reported [LB11] that their QBF failed-literal tool, publicly
available as qxbf, processing the output of sQueezeBF 7.1 when it did not solve
the instance, solved an additional 25 benchmarks. We confirmed the same result
with sQueezeBF 7.2.

Another reason for our interest in EFL is that it can be used without any pure-
literal rule to simplify QBFs without changing the set of tree models. This can
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be important in applications where the tree models themselves are important.
Other popular preprocessors make changes that preserve the value (true or false)
but add and delete tree models as they operate on a true QBF.

The paper is organized as follows [] Section Pl sets forth the notation and basic
definitions. Section [ reviews QBF forms of pure-literal rules. Section [ reviews
QBF abstraction and its combination with failed literal analysis. Extended failed
literal analysis (EFL) is introduced. Existential and universal pure-literal rules
are separated and soundness issues are examined. The main theoretical result
is that EFL with abstraction and the universal pure-literal rule is safe. Experi-
mental results are presented in Section Bl The paper concludes with Section

2 Preliminaries

In general, quantified boolean formulas (QBFs) generalize propositional formulas
by adding operations consisting of universal and existential quantification of
boolean variables. See [KBL99] for a thorough introduction. This paper uses
standard notation as much as possible. One minor variation is that we consider
resolution and universal reduction separately, although some papers combine
them. Also, we use tree models, which are not found in all QBF papers, to
distinguish between super-sound and safe operations, and we define ordered
assignments.

A closed QBF evaluates to either invalid (false) or wvalid (true), as defined by
induction on its principal operator. We use 0 and 1 for truth values of literals
and use true and false for semantic values of formulas.

1. (3a®(x)) is true if and only if (&(0) is true or ¢(1) is true).
2. (Va&(x)) is false if and only if ($(0) is false or $(1) is false).
3. Other operators have the same semantics as in propositional logic.

This definition emphasizes the connection of QBF to two-person games, in which
player E (Existential) tries to set existential variables to make the QBF evaluate
to true, and player A (Universal) tries to set universal variables to make the
QBF evaluate to false. Players set their variable when it is outermost, or for
non-prenex, when it is the root of a subformula (see [KSGCI0] for more details).
Only one player has a winning strategy.

We say that a QBF is in prenex conjunction normal form if all the quantifiers
are outermost operators (the prenex, or quantifier prefix), and the quantifier-free
portion (also called the matrix) is in CNF; i.e., ¥ = (). F consists of prenex
and matrix F. Clauses in F are called input clauses. For this paper QBFs are
in prenex conjunction normal form.

For this paper a clause is a disjunctively connected set of literals. Literals are
variables or negated variables, with overbar denoting negation. Clauses may be
written as literals enclosed in square brackets (e.g., [p,q, r]), and [] denotes the

! See http://www.cse.ucsc.edu/~avg/EFL/ for a longer version of this paper and
other supplementary materials.
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empty clause. Where the context permits, letters e and others near the beginning
of the alphabet denote existential literals, while letters u and others near the
end of the alphabet denote universal literals. Letters like p, ¢,  denote literals
of unspecified quantifier type. The variable underlying a literal p is denoted by
|p| where necessary.

The quantifier prefix is partitioned into maximal contiguous subsequences of
variables of the same quantifier type, called quantifier blocks. Each quantifier
block has a unique gdepth, with the outermost block having qdepth = 1. The
scope of a quantified variable is the qdepth of its quantifier block. We say scopes
are outer or inner to another scope to avoid any confusion about the direction,
since there are varying conventions in the literature for numbering scopes.

Definition 2.1 (Assignment). An assignment is a partial function from vari-
ables to truth values, usually represented as the set of literals mapped to 1. A
total assignment is an assignment to all variables. Assignments are denoted by p,
o, 7. Application of an assignment o to a logical expression is called a restric-
tion and is denoted by q|,, Cls, Flo, etc. Quantifiers for assigned variables
are deleted in V|, .

An ordered assignment is a special term that denotes a total assignment
that is represented by a sequence of literals that are assigned 1 and are in the
same order as their variables appear in the quantifier prefix.

A winning strategy can be presented as an unordered directed tree. If it is a
winning strategy for the E player, it is also called a tree model, which we now
describe. We shorten unordered directed tree to tree throughout this paper. The
qualifier “unordered” means that the children of a node do not have a specified
order; they are a set. Recall that a branch in a tree is a path from the root node
to some leaf node. A tree can be represented as the set of its branches. We also
define a a branch prefix to be a path from the root node that might terminate
before reaching a leaf.

Definition 2.2 (Tree Model). Let a QBF ¢ = a - F be given. In this defini-
tion, o denotes a (possibly empty) branch prefix of some ordered assignment for
®. A tree model M for @ is a nonempty set of ordered assignments for @ that
defines a tree, such that

1. Fach ordered assignment makes F true, i.e., satisfies F in the usual propo-
sitional sense.

2. If e is an existential literal in @ and some branch of M has the prefix (o, e),
then no branch has the prefix (o, e); that is, treating o as a tree node in M,
it has only one child and the edge to that child is labeled e.

3. If u is an universal literal in ® and some branch of M has the prefix (o,u),
then some branch of M has the prefiz (o, u); that is, treating o as a tree
node in M, it has two children and the edges to those children are labeled u
and u.

Although the wording is different, if M is a tree model by this definition, it is
also a tree model by definitions found in other papers [SBOTILBIL|]. If T is a
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partial assignment to all variables outer to existential variable e, then require-
ment [A ensures that the “Skolem function” e(r) is well defined as the unique
literal following T in a branch of M. If the formula evaluates to false, the set of
tree models is empty.

Definition 2.3 (Safe, Super Sound). For this paper purposes, an operation
on a closed QBF is said to be safe if it does not change the truth value of the
formula. An operation on a closed QBF is said to be super sound if it preserves
(i.e., does not change) the set of tree models. Clearly, preserving the set of tree
models is a sufficient condition for safety.

The proof system known as @Q-resolution consists of two operations, resolution
and universal reduction. Q-resolution is of central importance for QBFs because
it is a refutationally complete proof system [KBKE95]. Unlike resolution for
propositional logic, Q-resolution is not inferentially complete. That is, a (new)
clause C might be a super-sound addition to a closed QBF & (i.e., C' evaluates
to true in every tree-model of @), yet no subset of C' is derivable by Q-resolution
(see [LB11], example 6).

Definition 2.4 (Resolution, Universal Reduction). Resolution is defined
as usual. Let clauses C1 = [q,a] and C2 = [q, ], where o and 8 are literal
sequences without conflicting literals among them and without ¢ and q . (Either
or both of a and B may be empty.) Also, let the clashing literal q be an existential
literal. Then resq(Cq,Ca) = aU B is the resolvent, which cannot be tautologous
in Q-resolution.

Universal reduction is special to QBF. Let clause C1 = [q, @], where « is a
literal sequence without conflicting literals and without ¢ and q, the reduction
literal ¢ is a universal literal, and q is tailing for a. A universal literal q is said
to be tailing for a if its quantifier depth is greater than that of any existential
literal in c. Then unrdy(C) = .

Lemma 2.5. Resolution and universal reduction are super-sound operations.
Proof: Straightforward application of the definitions.

3 Pure Literals in QBF

A literal is called pure or monotone if it appears in (the matrix of ) the formula and
its negation does not appear in the formula. In QBF the pure-literal rule consists
of setting any existential pure literal to 1 and setting any universal pure literal to
0. As far as we know, the two parts of this rule have not been considered sepa-
rately. It is well known that the ezistential pure-literal rule does not preserve tree
models, since it does not preserve models in the propositional case. That is, if e
is an existential pure literal, there may be tree models in which e is assigned 0 on
some branches. In such a case, e is not a necessary assignment. Similarly, if u is a
universal pure literal, deleting all occurrences of « in the matrix eliminates some
tree models, in general. Combining abstraction, defined next, with the pure-literal
rule can lead to fallacious conclusions if done carelessly.
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4 QBF Abstraction

The idea of formula abstraction was introduced by Lonsing and Biere [LBI1J.
The idea is to create a formula that is easier to reason about for preprocessing
purposes.

Definition 4.1. Let @ be a closed QBF.

1. Let e be an existential variable in ®. Then the abstraction of ¢ with
respect to e, denoted abst(P, e), is the formula in which all universally
quantified variables with scopes outer to e are changed to existential variables.

2. Let u be a universal variable in @. Then the abstraction of ¢ with re-
spect to u, denoted abst(®, u), is the formula obtained as follows. First,
transpose u to be outermost within its own quantifier block and change it to
an ezistential variable. Then, change all universally quantified variables with
scopes outer to u to existential variables. Any other variables with the same
original scope as u remain universal in abst(P, u).

Thus the outermost scope of abst(®, p) is existential and contains p, whether p
1s existential or universal

Theorem 4.2 [LB11] Let ¢ be a closed QBF. Let p be a variable in ¢. Then
the set of tree models of abst(®P, p) is a superset of the set of tree models of P.

We define a necessary assignment to be an assignment to a variable that oc-
curs in every branch of every tree model. Adding a necessary assignment as a unit
clause in the matrix is clearly super sound. The main idea is to find necessary as-
signments for existential variables in the outermost scope of abstractions of . By
Theorem[4£2] these are also necessary assignments for & when the variable is exis-
tential in @, as well. In the case that a necessary assignment is found for a universal
variable of @ that became existential due to abstraction, ® must be false because
every tree model has branches for both assignments to any universal variable.

Lonsing and Biere detect necessary assignments by using failed literal anal-
ysis: If the assumption that literal p = 1 in the outermost scope of abst(®, p)
derives the empty clause using incomplete forward reasoning, then p is a nec-
essary assignment for both abst(®, p) and @. For incomplete forward reasoning,
they use the QBCP procedure, which consists of unit-clause propagation (in-
cluding universal reduction), and pure literal propagation.

This paper shows how to extend this approach to include 1-saturation:
Separately, assume p and assume p in the outermost scope of abst(®, p). If
neither assumption derives the empty clause by incomplete forward reasoning,
intersect the sets of variables that were assigned during the two propagations

2 Our definition is worded slightly differently from [LBII], but is the same in practice.
If p is universal, by their definition p remains universal in abst(®, p), whereas in
our definition p becomes outer to other variables in its scope and switches to being
existential. But p is assigned a truth value immediately after forming abst(®, p), so
it does not matter whether p is considered existential or universal.
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Fig. 1. QBF for Example 3]

to find additional necessary assignments and equivalent literals. If a variable ¢
was assigned the same value after both assumptions, we want to add ¢ as an
additional necessary assignment. If the assumption of p derives literal ¢ and the
assumption of p derives ¢, we want to add the constraint p = ¢ (as two binary
clauses, say). Our extension needs to be done in such a way that these additions
to @ are at least safe and preferably super sound.

The following example shows that the combination of QBCP, abstraction, and
1-saturation is unsafe.

Example 4.3 Consider abst(®,b), where @ is shown in Figure [ Variables d
and v are temporarily existential. Only the crucial assignments are mentioned.

The assumption of b satisfies Cy. Now w is universal pure, which implies h.

The assumption of b satisfies C5. Existential pure literal propagation assigns
true to j, e, v in that order, satisfying Cy. Now w is again universal pure, which
implies h.

Consequently, EFL using both pure-literal rules would derive h = 1 as a
necessary assignment. However, adding [h] to & changes it from true to false. In
particular, if h = 1 the A player can choose d = 0, v = 0, and w = 0, after which
C1 and Cy form a contradiction.

The original @ is true, as shown by the F player’s strategy: b = 1, ¢ = 1,
e=1,f=0m=1,9g=1,7=1,k=1,n=0, h = w. (The A player must
choose w before the E player chooses h.)

The main theoretical result of the paper is that the universal pure-literal rule can
be combined safely with abstraction and 1-saturation. This is nontrivial because
assigning a universal pure literal to 0 might not be a necessary assignment.

We now describe an incomplete forward reasoning procedure that employs
unit-clause propagation (including universal reduction) and the universal pure-
literal rule.
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Definition 4.4. The procedure UPUP (for Unit-clause Propagation with Uni-
versal Pure literals) consists of applying the following steps to a QBF until none
are applicable or an empty clause is derived.

1. (Unit Prop) If a clause C' has exactly one unassigned existential literal e
and all other literals in C are 0 by previous assignment or universal reduc-
tion, then assign e = 1.

2. (Empty Clause) If all literals in clause C are 0 by previous assignment or
universal reduction, derive the empty clause.

3. (Univ Pure) If u is an unassigned pure universal literal based on previous
assignments, then u may be deleted from all clauses in which it occurs, as
if by undversal reduction. (For bookkeeping, u = 0 might be assigned on this
computation path, but we avoid treating it as a derived literal).

Theorem 4.5 Let & = @.]—' be a closed QBF, let e be an existential literal,
and let p be a literal in @ other than e or e. Let &1 = Q. (FU{p, el}).- It
assuming e in abst(®P, le|) derives p by UPUP, then &, has the same truth value
as &. If the universal pure-literal rule is not used, then @; has the same set of
tree models as @.

Proof: To show that @1 has the same truth value as &, it suffices to show that if
@, is false, then @ is false, because @1 has more constraints. To show that @, has
the same set of tree models as @, it suffices to show that if M is a tree model of
@, then M is a tree model of &;. In this proof we identify the literal p with the
assignment p = 0 and identify p with p = 1.

W.lo.g., let e be innermost in its own quantifier block. If @1 is false, then
every tree model of @ (if there are any) contains some branch on which p =0
and e = 1. Let M be any tree model of &, represented as its set of ordered
assignments, each ordered assignment being a branch in M (Definition 22)). Let
M, be the subset of branches on which e = 1. By hypothesis, some branch of
M. has p = 0. Follow the steps by which p was derived in abst(®, |e]) after
assuming e. Let the sequence of partial assignments o;, for ¢ > 1, denote e = 1
followed by the derived assignments of UPUP, beginning with o; = {e}. Each
literal derived before any use of universal reduction or universal pure-literal rule
is 1 on every branch of M,. Universal reduction can only apply on literals with
quantifier scope inner to e, and cannot falsify a clause or M would not be a tree
model. If step ¢ consists of universal reduction, o; = 0;_1.

Consider the first application of the universal pure-literal rule, say at step
k + 1. Suppose it deletes all occurrences of u in F because all occurrences of u
are in satisfied clauses at this point. We treat this as an operation on F, not an
assignment, SO 041 = 0.

Group the branches of M, by their literals outer to u. Let p be the (partial)
assignment for any such group. Note that p specifies a branch prefix in M to
a specific node whose children are u and w; let us call this node N,. Then
(p, w = 0) and (p, u = 1) produce subtrees of N,, which we denote as T}, =0
and T}, u—1, respectively. That is, the set of branches in M, consistent with p
is equal to ((p, Tp,u=0) U (p,Tpu=1)), where p, T denotes a tree in which every
branch has p as a prefix.
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For each group replace T}, ,—1 by T, 4—0, except that v = 1 replaces u = 0
in their ordered assignments. The assignment in the replacement branch still
satisfies every clause of the matrix. Retain the branches in M. unchanged. This
gives another tree M’. This is a tree model of @ because the variables that
changed from universal to existential in abst(®, |e|) are all outer to e and wu.

By the hypothesis that @, is false, some branch of M/ has p = 0. Therefore,
the T}, ,—o corresponding to some p has p = 0 on some branch. Every branch of
M’ is consistent with oj41. Use M’ in the role of M for further tracking of the
UPUP computation. If the universal pure-literal rule is not used, the original M
is a tree model of @;.

Continuing in this way, we see that after each stage i in the computation, there
is some tree model of @ that is consistent with o; on every branch that contains
e = 1, and further, has p = 0 on some branch that hase = 1. Thus p = 1 cannot be
derived by UPUP after assuming e = 1 if @ is true and @, is false. (Recall that we
do not treat p as “derived” if p is processed as a pure universal literal.) Similarly,
if the universal pure-literal rule is not used, p = 1 cannot be derived by UPUP
after assuming e = 1 if M is a tree model of @ and not of @;. This contradicts the
hypothesis of the theorem, completing the proof.

Several corollaries follow from Theorem and Lemma

Corollary 4.6. Let & = 6 F be a closed QBF, let v be a universal literal, and
let p be a literal in @ other than v or v. Let ®; = a (FU{[p, v]}). If assuming
v in abst(®, |v|) derives p by UPUP, then &, has the same truth value as .

Corollary 4.7. Let & = 6.}' be a closed QBF, let ¢ be a literal, and let p
be a literal in & other than g or ¢. Let &3 = G. (FU{[p]})- If the assumption
that ¢ = 1 in abst(®, |q|) derives p by UPUP and the assumption that ¢ = 0 in
abst(®, |q|) derives p by UPUP, then @5 has the same truth value as @.

Corollary 4.8. Let ¢ = 6.]-' be a closed QBF, let ¢ be a literal, and let p
be a literal in @ other than ¢ or ¢. Let &4 = 6 (FU{lp, q], [p, q|}). If the
assumption that ¢ = 1 in abst(®P,|q|) derives p by UPUP and the assumption
that ¢ = 0 in abst(®, |q|) derives p by UPUP, then @4 has the same truth value
as ¢.

5 Experimental Results

This section describes our experimental procedures and shows the results. Several
procedural issues are discussed first.

As reported, gxbf monitors its own CPU time for certain operations and dis-
continues that kind of operation if its budget is used up. The budget can be
supplied by the user on the command line; otherwise a default (e.g., 40 seconds)
is used. This leads to unrepeatable behavior, even among runs on the same plat-
form, and obviously gives different outcomes across platforms. To make runs
repeatable and platform independent, we introduced functions to estimate CPU
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Table 1. Replication of selected gxbf data in SAT 2011, Table 1, using qxbfCntrs

QBFEVAL-10: 568 formulas

Preproc.: gxbfCntrs Solver  Solved Time (Preproc.) SAT UNSAT
sQueezeBF+(ABST+SAT) depgbf 434 238.24 (42.00) 201 233
SAT depgbf 380 320.02 (8.34) 168 212
ABST+SAT depgbf 377 321.84 (7.24) 167 210
ABST depqbf 375 325.11 (2.84) 168 207
Preproc.: qxbf Solver  Solved Time (Preproc.) SAT UNSAT
sQueezeBF+(ABST+SAT) depgbf 434 239.84 (42.79) 201 233
SAT depgbf 379 32231 (7.17) 167 212
ABST+SAT depgbf 378 323.19  (7.21) 167 211
ABST depgbf 375 327.64  (3.33) 168 207

time based on various counters maintained in the program. The resulting pro-
gram is called gxbfCntrs.

The user interface is unchanged; qxbfCntrs simply compares its (repeatable,
platform independent) estimated CPU time to its budget. The estimation model
was arrived at using linear regression, and was designed to give the same re-
sults as the published paper [LB11], or very close. The estimation model is not
particularly accurate, but the budget amounts are only heuristics, so the overall
performance might be about the same.

To validate this conjecture, we attempted to replicate parts of the published
results for qxbf, using qxbfCntrs with all the same parameters. We chose those
results that were most relevant for the topics of this paper. The replication is
compared with the original in Table[Il For the replication to be meaningful, due
to externally imposed time limits, it was carried out on the same platform, in the
same environment, as the published table. Times shown in Table[I] are measured
by the system; they are not estimates.

In addition, all counts in Tables 2 and 3 of the SAT 2011 paper were con-
firmed during replication. These tables analyze the preprocessor only, giving
it 900 seconds, without internal budgets, so high correspondence is expected.
Here, qxbfCntrs times were about 4% faster and one additional instance was
completed in just under 900 seconds. This can be attributed to compiling with
a newer compiler. One factor helping the close correspondence is that the limits
imposed by the internal budget are often not reached.

In summary, we conclude that the functions for estimating time are adequate
for producing useful repeatable experiments. For all remaining experiments we
use gqxbfCntrs for the baseline against which variations are compared, use the
same estimation functions for monitoring against internal budgets, and drop the
suffix Cntrs from here on.

The main goal of this research is to implement and evaluate 1l-saturation
for QBF. There are many preprocessing techniques known in the literature,
so we are interested to know whether 1-saturation adds new capabilities, or
just finds mostly the same inferences and simplifications as other techniques.
Therefore, our general approach is to apply a strong existing preprocessor to
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Table 2. Effect of pure-literal policies on qxbf, 420 preprocessed but unsolved instances
qxbf follow-on depgbf

N Solved average N Solved average
Pure-lit policy true false seconds true false seconds

exist. and univ. 0 24 76.50 162 134 380
none 0 24 42.11 162 133 380
only univ. 0 24 53.53 162 134 380

the raw benchmarks, then apply failed literals or 1-saturation to the result. We
chose the recently reported blogger since it is open source [BSL11].

There are (at least) two distinct ways to apply preprocessing. The usual way is
to give limited budgets to the preprocessor(s) with the idea that a complete solver
will do the bulk of the work. Another choice is to give the preprocessor(s) all the
resources and see how many instances they can solve completely. Ideally, for the
latter approach, the preprocessor(s) would run to completion, not be stopped by
time limits. This ideal is not completely far-fetched because preprocessors are
expected to stop in polynomial time. Unfortunately, for some larger benchmarks,
the time to completion is impractically long.

Our computing resource for Tables2 Bl and Figure2is a pair of 48-core AMD
Opteron 6174 computers running Linux with 180 GB of memory each and a 2.2
GHz clock, managed by SunGrid queueing software. Our tests show that this
platform is about two times slower than than the platform used in [LBII] and
for Table [l which is a dedicated cluster running one job per two-core processor.

The principal benchmark suite for QBF currently is the 568 instances used for
QBFEVAL-10. We follow this tradition. The preprocessor bloqqer solved 148
instances (62 true, 86 false), leaving 420. This initial run averaged 8.89 seconds
per instance; all runs completed normally.

The main purpose of this study was to evaluate extended failed-literal analysis
(EFL). This necessitated changing how pure literals were handled. To be sure
any experimental differences are attributable to EFL, we checked the influence
of changes only in pure-literal processing.

The published program qxbf uses pure literals, although it has a command-
line switch to disable all pure literal processing. To incorporate 1-saturation, it
is only necessary to disable ezistential pure literal processing. To measure the
effect of each change in the procedure, we created qxbf noepure, which has the
same logic as qxbf except that existential pure literal processing is disabled.
Table 2] shows the effect of disabling all pure literal processing and the effect
of disabling existential pure literal processing. Indeed, the “only univ.” row in
Table 2] demonstrates UPUP results without 1-saturation.

The data suggests that the existential pure-literal rule did not help qxbf and
the universal pure-literal rule helped a little. These rules have not been examined
separately before. Empirical data shows that pure-literal rules are important
for QDPLL solvers, but possibly that most of the contribution comes from the
universal pure-literal rule (also a source of substantial overhead).



Extended Failed-Literal Preprocessing for QBF 97

Table 3. Additional completely solved instances among 420 instances that were pre-
processed but unsolved by bloqger. qxbf uses FL and both pure-literal rules. eqxbf
uses EFL and the universal pure-literal rule.

blogger only gqxbf, blogger egxbf, bloqger
N Solved avg. N Solved avg. N Solved avg.
Round true false both secs. true false both secs. true false both secs.
1 4 9 13 9 8 29 37 79 11 32 43 58
2 1 0 1 1 1 0 1 75 0 2 2 44
3 0 1 1 1 0 1 1 79 0 1 1 42
total 5 10 15 11 9 30 39 233 11 35 46 144

5.1 Complete Solutions with 1-Saturation

Table Bl compares the solving abilities of blogqer alone, qxbf followed by
bloqger, and eqxbf followed by blogger. There are no time-outs in this table.
The reason for following qxbf and eqxbf by bloqqger is that qxbf and eqxbf
apply a single procedure and have no general simplification capabilities. In fact
they can never detect that a formula is true. Our goal was to evaluate their
solving capabilities in conjunction with other typical preprocessing techniques.
They were run for several rounds in an attempt to reach a fixpoint. However,
we discovered that bloqqer itself does not quickly reach a fixpoint, and stopped
after three rounds.

By the criterion of complete solutions, we observe that extended failed literal
analysis (EFL, eqxbf) produces moderate gains over failed literal analysis (FL,
qxbf). We also confirm that FL produces about the same gains beyond the
initial preprocessor as the 25 reported by Lonsing and Biere [LBI11l Sec. 7]. We
observed 24 additional solutions by qxbf alone. Overall, the data shows that 194
out of 568 QBFEVAL-10 benchmarks can be solved by preprocessing.

For completeness we ran eqxbf with all pure-literal processing disabled. The
program slowed down slightly, but solved the same instances as eqxbf in round
1 of Table Bl This shows that super-sound preprocessing may be feasible, for
applications in which preserving all tree models is important.

5.2 Timed Runs with 1-Saturation and a Complete Solver

This section evaluates whether extended failed literal analysis (EFL) makes
the overall solving task faster. We established a total time limit of 1800 sec-
onds, which is equivalent to about 900 seconds on the newest platforms. We
ran blogger with adaptive command-line parameters so that it would not take
too much of the 1800 seconds on very large benchmarks. The command-line pa-
rameters were set heuristically depending on the numbers of variables, clauses
and literals in the instance. No blogger run on an original QBFEVAL-10 in-
stance took more than 140 seconds for the experiments in this section. After this
common start on the 568 QBFEVAL-10 benchmarks, the solving attempts used
three strategies. All three strategies used depgbf as the complete solver.
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Fig. 2. Timed solving runs. (Larger figure at http://www.cse.ucsc.edu/~avg/EFL.)

To be considered successful, the sum of all preprocessing times and the solving
time had to be under 1800 seconds. The outcomes are summarized in Figure

The first strategy simply runs depgbf on the preprocessed instances with a
time limit of 1800 seconds. Results should be comparable to runs reported in
[BSL11] with 900 seconds time limits.

The second strategy uses one or two rounds of gxbf, bloqqger, as described
in Section B} then runs depgbf. Recall that qxbf uses FL and both pure-literal
rules. For this table gqxbf is given a budget of 80 “estimated seconds” and is
run with an external time limit of 1800 seconds. Time-outs by qxbf occurred
in three instances during round 2. The time limit for blogger was 300 seconds,
but it never came close to timing out.

The third strategy uses one or two rounds of eqxbf, bloqger, as described
in Section 5] then runs depgbf. Recall that eqxbf uses EFL and the universal
pure-literal rule. The details are the same as for the second strategy, except that
eqxbf timed out on only one instance during round 2.

In Figure 2l we observe that eqxbf (EFL), combined with blogger for one or
two rounds, helps depqgbf slightly more than blogger alone. This observation is
confirmed using the Careful Ranking procedures reported in SAT-11 and used
unofficially in that competition [VG1I].

6 Conclusion

This paper presents theoretical analysis of the universal pure-literal rule in com-
bination with formula abstraction and extended failed literal analysis. It shows
that binary clauses can be safely derived. It further shows that the use of the
existential pure-literal rule in combination with formula abstraction is generally
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unsafe. An incomplete forward reasoning procedure called UPUP was imple-
mented and tested. Another result is that binary clauses can be super soundly
derived if no pure-literal rules are used.

Experimental results suggest that EFL provides some improvement in overall
solving performance on the QBFEVAL-10 benchmarks. The previous mark of
148 solved by preprocessing alone now stands at 191, although EFL does not get
all the credit. Preliminary data indicates that EFL does almost as well without
any pure-literal rules, which is important if preserving model trees is important
on true QBFs. Future work should integrate EFL with a general preprocessor,
such as bloqger.

Acknowledgment. We thank Craigslist Inc. for equipment donations that fa-
cilitated this research.
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Abstract. Quantified Boolean formulas generalize propositional formu-
las by admitting quantifications over propositional variables. We compare
proof systems with different quantifier handling paradigms for quantified
Boolean formulas (QBFs) with respect to their ability to allow succinct
proofs. We analyze cut-free sequent systems extended by different quan-
tifier rules and show that some rules are better than some others.

Q-resolution is an elegant extension of propositional resolution to
QBFs and is applicable to formulas in prenex conjunctive normal form.
In Q-resolution, there is no explicit handling of quantifiers by specific
rules. Instead the forall reduction rule which operates on single clauses
inspects the global quantifier prefix. We show that there are classes of
formulas for which there are short cut-free tree proofs in a sequent sys-
tem, but any Q-resolution refutation of the negation of the formula is
exponential.

1 Introduction

Quantified resolution (or Q-resolution) [I0] is a relatively inconspicuous calculus.
It was introduced as an elegant extension of resolution to process quantified
Boolean formulas (QBFs) in prenex conjunctive normal form. Although there
are only a few QBF solvers directly based on Q-resolution, it has gained an
enormous practical importance as a subcalculus in modern DPLL solvers with
clause learning. Moreover, an early proposal for a uniform proof format [9] is
based on resolution. Nowadays many QBF solvers produce Q-resolution proofs
and certificate generation [I] can be based on them.

Sequent calculi [7] are well explored proof systems, which are not restricted to
specific normal forms. Variants of these calculi like tableau systems are widely
used in (first-order) theorem proving for classical and non-classical logics, where
often no clausal normal form is available. Variants of sequent calculi are available
for QBF's and used for a variety of purposes [4/11]. Even some solvers not based
on prenex conjunctive normal form like gpro [6] implement proof search in a
restricted variant of a sequent calculus, and a look at a high-level description of
its main procedure indicates that it is not too far away from DPLL.
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Initially driven by the P =7 NP question [5], propositional proof systems are
well studied and compared with respect to their relative efficency, i.e., their
ability to allow for succinct proofs. In this paper, we compare Q-resolution and
sequent systems for QBFs. The crucial difference between systems for SAT and
systems for quantified SAT (QSAT) is Boolean quantification in the latter, which
allows for more succinct problem representations. As we will see later, there are
different methods to handle quantifiers like the rules implementing semantics
directly, rules inspired by first-order logic, or a completely different technique to
handle quantifiers in Q-resolution. It turns out that the way how quantifiers are
handled strongly influence proof complexity.

Contributions. First we consider cut-free propositional sequent systems extended
by different quantifier rules. We show that these rules have increasing strength
by providing formula classes which can be used for exponential separations.
Second we partially solve the problem stated in [4] whether in sequent systems
with restricted cuts, the quantifier rule introducing propositional formulas can
be polynomially simulated by the one introducing variables. We show this for all
tree-like systems except the one with only propositional cuts. Third we show an
exponential separation between cut-free tree-like sequent systems and arbitrary
Q-resolution. This result is surprising because the first system is extremely weak,
whereas the second one does not have to obey the tree restriction and has an
atomic cut (the resolution rule) in addition. It turns out that the relative strength
comes from the more powerful quantifier rules of the sequent system.

Structure. In Sect. 2], we introduce necessary concepts. Section Bl presents sequent
systems and Q-resolution. Different quantifier rules are compared in Sect. 4 In
Sect. B, we present an exponential separation between cut-free tree-like sequent
systems and arbitrary Q-resolution. We show that the latter cannot polynomially
simulate the former. Concluding remarks are presented in Sect. [

2 Preliminaries

We assume basic familiarity with the syntax and semantics of propositional logic.
We consider a propositional language based on a set PV of Boolean variables and
truth constants T (true) and L (false), both of which are not in PV. A variable
or a truth constant is called atomic. We use connectives from {—, A,V,—} and
A + B is a shorthand for (A — B) A (B — A). A clause is a disjunction of
literals. Tautological clauses contain a variable and its negation and the empty
clause is denoted by O. Propositional formulas are denoted by capital Latin
letters like A, B, C' possibly annotated with subscripts, superscripts or primes.
We extend the propositional language by Boolean quantifiers. Universal (V)
and existential (3) quantification is allowed within a QBF. QBF's are denoted by
Greek letters. Observe that we allow non-prenex formulas, i.e., quantifiers may
occur deeply in a QBF and not only in an initial quantifier prefix. An example for
a non-prenex formula is Vp (p — Vq3r (gArAs)), where p, ¢, r and s are variables.
Moreover, free variables (like s) are allowed, i.e., there might be occurrences of
variables in the formula for which we have no quantification. Formulas without
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free variables are called closed; otherwise they are called open. The universal
(existential) closure of ¢ is Va1 ... Ve, (31 ... Jx,p), for which we often write
VX (3Xp)if X = {x1,...,2,} is the set of all free variables in . A formula in
prenez conjunctive normal form (PCNF) has the form Qip; ... Qnpn A, where
Q11 - .. Qupn is the quantifier prefix, Q; € {V,3} and A is the (propositional)
matriz which is in CNF. The size of a formula ¢, size(yp), is the number of
occurrences of connectives or quantifiers.

Let X¢ and II both denote the set of propositional formulas. For i > 0,
X1 is the set of all QBFs whose prenex forms starts with 3 and which have
i — 1 quantifier alternations. IT! is the dual of X7 and X¥ | C II! as well as
II7 | C X7 holds. We refer to [11] for more details.

The semantics of propositional logic is based on an evaluation function in-
dexed by a variable assignment I for free variables. The semantics is extended
to quantifiers by v (Qp ) = vi(e{p/T}ow{p/L}), where o = Vv if @ = 3, and
o= A if Q = V. We denote by ¢{p/9} the replacement of all (free) occurrences
of p by ¥ in .

A quantified propositional proof system is a surjective PTIME-computable
function F' from the set of strings over some finite alphabet to the set of valid
QBFs. Every string « is then a proof of F(«). Let P, and P, be two proof
systems. Then Py polynomially simulates (p-simulates) P if there is a polynomial
p such that for every natural number n and every formula ¢, the following holds.
If there is a proof of ¢ in P, of size n, then there is a proof of ¢ (or a suitable
translation of it) in P; whose size is less than p(n).

3 Calculi for Quantified Boolean Formulas

We first discuss sequent calculi [7] with different alternative quantifier rules.
Later Q-resolution [I0] is introduced which is applicable to QBFs in PCNF.

3.1 Sequent Calculi for Quantified Boolean Formulas

Sequent calculi do not work directly on formulas but on sequents. A sequent
S is an ordered pair of the form I' H A, where I and A are finite sequences
of formulas. I' is the antecedent of S, and A is the succedent of S. A formula
occurring in one of I" or A is called a sequent formula (of S). We write “+ A”
or “I' 7 whenever I' or A is empty, respectively. The meaning of a sequent
&1,..., P, - Wy, ..., ¥, is the same as the meaning of (A]_, D;) = (Ve &).
The size of S, size(S), is the sum over the size of all sequent formulas in S.
We introduce the axioms and the rules in Fig.[Il In the strong quantifier rules
3l and Vr., g has to satisfy the eigenvariable (EV) condition, i.e., ¢ does not
occur as a free variable in the conclusion of these rules. In the weak quantifier
rules V1 and 3r, no free variable of ¥ is allowed to become bound in #{p/¥}. For
instance, this restriction forbids the introduction of x for y in the (false) QBF
JyVax (x <> y). Without this restriction, the true QBF Vz (x <> z) would result.
In the following, we instantiate the quantifier rules as follows. If the formula
¥ in VI and Jr is restricted to a propositional formula, we call the quantifier
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Fig. 1. Axioms and inference rules for sequent calculi. Principal formulas are marked
by *, auwziliary formulas by *, the other (unmarked) formulas are side formulas.

rules Vil and 3ry. If only variables or truth constants are allowed, then the index
f is replaced by v. Finally, if ¥ is further restricted to truth constants, then the
index is s. We define three different sequent calculi Ggxe (x € {s,v,f}) for QBFs
possessing the quantifier rules with index x and Vr, and 3l.. A fourth calculus,
Ggss, is defined by adopting Vis and Jr, together with the following two rules.

I A (@{p/TYAd{p/L})* v (D{p/TyVe{p/L)", '+ A 2
I'F A (Vpd) s @p®)*, I - A :

All the calculi introduced above are cut-free, i.e., the cut rule

I - Ay, &t &, Iy F Ay

N0 b Ay A cut

is not part of the calculus. For ¢ > 0 and G € {Ggss, Ggse, Gqve, Ggfe}, G; is G
extended by cut, where the cut formula @ is restricted to be a IT7 U X formula.

A sequence proof a of a sequent S (the end sequent) in G is a sequence
S1,...,Sm of sequents such that S, = S and, for every S; (1 < i < m), S; is
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either an axiom of G, the conclusion of an application of a unary inference from
G with premise S;, or the conclusion of an application of a binary inference from
G with premises S, Sk (j, k < i). Proofs in G are called G proofs. If « is a proof
of - @, then « is a proof of the formula ®. A proof « is called tree-like or a tree
proof, if every sequent in « is used at most once as a premise. The length, [(a),
of a is the number m of sequents occurring in « and its size is > | size(.S;).

We denote by G* the version of G which permits only tree proofs. They are
assumed to be in free variable normal form (FVNF) [2[], to which they can be
translated efficiently. A tree proof « is in FVNF, if (i) no free variable from the
end sequent is used as an EV, and (ii) every other free variable z occurring in
« is used exactly once as an EV and appears in « only in sequents above the
application of 3l, or Vr., which introduced z.

Later, we have to trace formula occurrences through a tree proof. The means
to do this is an ancestor relation between formula occurrences in a tree proof [2].
We first define immediate descendants (IDs). If @ is an auxiliary formula of any
rule R except exchange or cut, then @’s ID is the principal formula of R. For the
exchange rules el and er, the ID of @ or ¥ in the premise is @ or ¥, respectively,
in the conclusion. An occurrence of the cut formula does not have any ID. If @ is
a side formula at position ¢ in I', Iy, I's, A, Ay, A of the premise(s), then @’s ID
is the same formula at the same position of the same sequence in the conclusion.
Now, @ is an immediate ancestor of ¥ iff ¥ is an ID of @. The ancestor relation
is the reflexive and transitive closure of the immediate ancestor relation.

G is sound and complete, i.e., a sequent S is valid iff it has a G proof. We will
consider variants of our tree calculi without exchange rules and where sequents
consists of multisets instead of sequences. Since the multiset and the sequence
version are p-equivalent, it is sufficient to consider the multiset version.

The calculus in Fig.[dlis a cut-free variant of calculi proposed by Kraji¢ek and
Pudlak (KP) (cf, e.g., [11]). In the calculi KP;, only X7 U II{ formulas can occur
in a proof. Cook and Morioka [4] modified the KP calculi by allowing arbitrary
QBFs as sequent formulas, but restricting cut formulas to X U IT{ formulas.
Moreover, VI and 3r are replaced by Vi; and Elrf They show in [4] that any
of their system G; (¢ > 0) is p-equivalent to the corresponding system KP; for
proving formulas from X7 U IT]. G; is complete for QBFs (in contrast to KP;).

3.2 The Q-resolution Calculus

The quantified resolution calculus, Q-res, is an extension of propositional resolu-
tion to QBF's [10]. There is no explicit handling of quantifiers by specific rules.
Instead the V reduction rule which operates on single clauses inspects the global
quantifier prefix. As we will see, this processing of quantifiers results in a rela-
tively weak calculus with respect to the ability to produce succinct refutations.

The input for Q-res is a (closed) QBF in PCNF. Quantifier blocks are num-
bered from left to right in increasing order and bound variables from quantifier

! The restriction to propositional formulas is necessary. For unrestricted QBFs, the
hierarchy of calculi would “collapse” to Gi.
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Fig. 2. The rules of the Q-resolution calculus

block 7 have level 4. Literal occurrences in the CNF inherit the level from their
variable in the quantifier prefix. Q-res consists of the propositional resolution rule
JPR over existential literals, the factoring rule PF and the V reduction rule VR,
all of which are shown in Fig. 2l The following is Theorem 2.1 in [I0].

Theorem 1. A QBF ¢ in PCNF is false iff O can be derived from ¢ by Q-res.

A Q-res refutation can be in tree form as well as in sequence form. The length of
a Q-res refutation is the number of clauses in it. The size of a Q-res refutation
is the sum of the sizes of its clauses.

4 Comparing Different Quantifier Rules

We compare Ggss, Ggse, Gqve and Gqfe with respect to p-simulation. Let G €
{Ggse, Gqve, Ggfe}. We reproduce Definition 6 and Lemma 3 from [4] below.

Definition 1. Let ¢ be a quantified QBF in prenex form and let S be the sequent
F . Let a(S) be a Gy proof of S. Then any quantifier-free formula A in «(S) that
occurs as the auxiliary formula of a quantifier inference is called an a-prototype
of v. Define the Herbrand a-disjunction to be the sequent = Aq,..., A, where
Ay, ..., Ay, are all the a-prototypes of p.

Lemma 1. Let ¢ be a quantified QBF in prenex form and let S be the sequent
F . Let a(S) be a Gg proof of S. Then the Herbrand a-disjunction is valid and
it has a purely propositional sequent proof of size polynomial in the size of a(S).

In the construction of the proof of the Herbrand a-disjunction in Lemma [I no
(new) cut is introduced and the form of the proof is retained. Consequently, if
a(S) is cut-free and tree-like, then so is the resulting propositional proof.

Proposition 1. (1) Ggss, cannot p-simulate Ggse™, (2) Gase, cannot p-simulate
Gqve® and (3) Gqve, cannot p-simulate Ggfe™.

We show (3) in detail. Let (F),)n>0 be a sequence of propositional formulas of
the form A_, ((-z;) <> ;) and let ¢, be VX ,3Y , F, with X,, = {z1,...,2,}
and Y, = {y1,...,Yn}. The size of ¢, is linear in n and it has a short proof in
Ggfe* of length linear in n. It can be obtained by (i) introducing eigenvariable ¢;
for a; for all i (1 < i < n), (ii) introducing formula —¢; for y; for alli (1 <i < n)
and (i) proving A;_; ((—¢;) < (¢;)) with O(n) sequents.
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Next we show that any proof of ¢, in Gqve, is exponential in n. The key
observation is that only the introduction of truth constants for y; makes sense.
Otherwise we obtain conjunctive subformulas of the form (—¢;) > v; which are
unprovable. Consequently, all 3r inferences introduce truth constants.

Let «, be an arbitrary Gqve, proof of - ¢,,. By Lemma [l we get a purely
propositional Gqve, proof 3, of the valid Herbrand c,-disjunction

FEua, o Fam

Moreover, the size of ,, is polynomially related to the size of a,. We argue
in the following that this disjunction consists of m = 2" formulas. Let S;, be
the following set {F,{z1/c1,. ., Zn/Cnyy1/t1,- - Yn/tn} | ti € {L, T}} of all
possible substitution instances of F,, with 2" elements. We show in the following
that VdeD d is not valid if D C S,, holds. Then all elements of .S,, have to occur
in the Herbrand av,-disjunction and the exponential lower bound follows.

Let C be an arbitrary instance /\?=1 ((ﬁci) > ti) of F,, which is in S,, but
not in D. Let I be any assignment that makes C' true, i.e., each ¢; is assigned to
the dual of ¢; by I. Now take an arbitrary d € D of the form A", ((—¢;) ¢+ s;).
There must be an index k, 1 < k < n, such that sy # t5. Then (—cg) < sk
is false under I and so is d. Since d has been chosen arbitrarily, all elements of
D are false under I and so is \/ ., d. Consequently, all elements of S, have to
occur in the Herbrand «,-disjunction and the exponential lower bound follows.

For (2), we can use a similar argumentation with (G, ), >0 instead of F,,, where
G,, is of the form A]_, (x; > y;). For (1), the family of formula is (¢, )n>1, where
¥y, is of the form Jz,Vy,, ... Fz1Vy1 (0 VYyn V-V x1 V 11).

Looking at the structure of ¢,,, one immediately realizes that the quantifiers
can be pushed into the formula (“antiprenexed”) in an equivalence-preserving
way. This antiprenexed formula F),: A (Vz;3y;((-z;) <> y;)) has short proofs
in Gqve®, Ggse*and even in Ggss*, mainly because Vz;3y;((—z;) + y;) has a
proof of constant length. A similar statement holds for the other two cases.

4.1 Using Eliminable Extensions to Simulate 3r;/Vl by 3r,/VI,

We show in the following that the weak quantifier rules 3ry and Vi; in Ggfe] can
be simulated efficiently by 3r, and VI, in Gqve; for i > 1. The key idea is to use
a quantified extension e(B) of the form 3z (z <+ B) with B being a propositional
formula. £(B) has a proof a(e(B)) in Gqve™ and Ggse® of constant length.
Given a tree proof . of an end sequent S.. For any occurrence of an inference
Yl and Jry introducing non-atomic propositional formula B, we perform the fol-
lowing. Take an occurrence I of an inference 3ry (the case of Vi is similar) and
a globally new variable ¢, not occurring in . and not introduced as a new vari-
able before. Employ the ancestor relation for I’s auxiliary formula ${p/B} and
get all highest sequents with occurrences of the sequent formula B originating
from I. Start from the next lower sequent of these highest positions downwards
until the conclusion of I and put F(B) = ¢ <» B into the antecedent of each
sequent. If there is already a copy there, then do nothing. If there are strong
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quantifier rules, then there is no violation of the EV condition because we add
only a globally new variable; all the variables from B have been already present
in the sequent before.

Employing the ancestor relation again and starting from &{p/B}, we replace
any formula ¥{p/B} by ¥{p/q} in sequents containing F'(B). This includes a
replacement of B by ¢. Perform the above procedure for each of the w occurrences
of Vl; and 3ry. We have not increased the number of sequents yet, but there are
O(w) additional formulas in any sequent.

We are going to correct the inference tree. We check all sequents with sequent
formulas of the form F'(B) whether binary rules are violated, like, e.g., in the
left inference figure below for the case of Ar. It is replaced by the correct right
figure. (F(B1) and F(B3) are replaced by Fy, Fy for space reasons).

I'F A, &,
Fl,FQ,FFA,Qpl{p/q} F"A,@Q Fl,FQ,FFA,Qpl{p/q} Fl,FQ,FFA,QpQ
Fi,Fo,'F A &1{p/q} N D2 Fi,Fo,'F A, &1{p/q} N D2

wl*

We have to perform two additional corrections, namely (i) to get rid of F(B)
immediately below the conclusion of I and (ii) to correct the situation when B
originating from I occurs as a principal formula in a propositional inference or
as a formula in an axiom of the original proof .. For the former, we use

q< B, I't A, &{p/q}

Ty
F 3z (z < B) Jz(z < B), 'FA, Ipd ~°
r'eA3pd cut

with a cut on a XJ-formula. Let us consider (ii) where B is the principal formula
of a propositional inference. Below is one possible case for B = By V Bs.
F(B), '+ A, B1,B>
vr a
F(B), T+ A, B B,q< BFgq
F(B),['F A, By, B, F(B), F(B),TF A, q cut

F(B),I+4,q " F(B),TFAq °©
cl is needed if F(B) is required in the left branch. The case for the axiom is
simpler. Finally, wl inferences are introduced to remove q < B.

During the proof manipulations, we have added to each sequent O(w) formu-
las. Moreover, by correcting the binary inferences, we added O(w) sequents for
any sequent in the original proof. For each occurrence of B and each of the w
occurrences of the quantifier rules, we added a deduction of length O(1) In total,
we obtain a polynomial increase in length and size.

5 Exponential Separation of Q-res and Gqve*

We stepwisely construct a family (¢, )n>1 of closed QBF's ¢,, for which (1) there
exists short proofs in Gqve®, but (2) any Q-resolution refutation of -, has
length exponential in n. We use the traditional approaches, namely a refutational
approach with resolution and an affirmative approach with sequent systems.
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5.1 The Construction of ¢,

We start with a version of the well-known pigeon hole formula in disjunctive
normal form. The formula for n holes and n + 1 pigeons is given by

("\7 /"\ mm‘> v ( \"/ Vo @A xia,j)> :

i=1 j=1 j=11<i1 <iz<n+1

Let DPH Pf” denote this formula over the variables in X, = {®11,...,Zn+1,n}-
Variable z; ; is intended to denote that pigeon ¢ is sitting in hole j. The usual
(unsatisfiable) version of the pigeon hole formula in CNF, CPHPf ™ is given by

<"/+\1 (jnlxm')> A ( /"\ N (i, v Wm)) ~

i=1 j=11<i1<ig<n+1

The number of clauses in CPHPA" is I,, = (n41)+n2(n+1)/2, size(CPHPX") is
O(n?), and CPHPf” is obtained from —DPH Pf by shifting negations inwards
using de Morgan’s laws and eliminating double negations. Intuitively, we want to
show that the refutation problem corresponding to the negation of the formula

VX, 3Y, (DPHP}" — DPHP,™) (1)

results only in Q-res refutations of length exponential in n. A short Gqve® proof
of () exists which mainly relies on a unification property, namely that (i) Vr.
introduces eigenvariables C,, for X, and (ii) 3r, introduces exactly the same
variables C,, for Y,,, therefore unifying the two versions of DPHP,,. As we will
see later, this instantiation property of dr, is important to get a short proof.

A problem occurs if we want to translate the provability problem of () into
a refutation problem of its negation. Clausifying the disjunctive normal form
DPH P,}:" using distributivity laws results in an exponential number of (tauto-
logical) clauses. We slightly modify the formula to be considered by introducing
new variables of the form z;, ;, ; for disjuncts in DPH PY». This procedure is in
the spirit of the well-known Tseitin translation [13]. We use the “one polarity
optimization” of [12]. For the first n + 1 disjuncts of the form /\;L:1 -y, ; with
1 <i<n+1, we use variables z1,0,0, ..., 2n+1,0,0- For the second part, for any
1 < j <n and the n(n+ 1)/2 disjuncts, we use

212,55+ 5 Z1n41,5y 223,51 - -2 Z2m4 1,55 - - -5 Zngntl,j - (2)

The set of these variables for DPHP,, is denoted by Z,,. Due to this construction,
we can speak about the conjunction corresponding to the variable z;, ;, ;.

We construct the conjunctive normal form TPHPY"#" of DPHPY™#" as fol-
lows. First, we take the clause DZ» = V.c z, Tz over all variables in Z,. The

formula PY»7~ for the first (n + 1) disjuncts of DPHPY" is of the form

n+l n

/\ /\(Zz‘,o,o Vi)

i=1 j=1
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For the remaining n?(n+1)/2 disjuncts of DPHP, ", we have the formula QY= %~

n
AN A (Gans Vun) A Gisg Vi)
j=1

j=11<i; <iz<n-+1

Then TPHPY»#n is DZn A PYn:Zn AQYn7n and size(TPHPY™#") is O(n?) . The
family of formulas we consider in the following is (¢n)n>1, where ¢, is

VX, 3Y,VZ, (TPHP} 7" — DPHP,™). (3)
Formula () is equivalent to formula (B) because DPHP;"is valid. We show that
DPHP)" = 3Z, TPHP)" 7" (4)

holds.

—: Let I be a model of DPHPY" i.e., I = DPHP)" holds.

Case 1: There exists an index i such that I = AJ_, —;; holds. Therefore,
I'=—wi1,....,] E-yinaswellas I = /\;L=1 24,0,0 V ;5 hold. Let us extend
I to an interpretation J such that TPH P:"’Z" is true under J. We set all 23 .m,
from Z, to true under J except z;0,0 which is set to false. Then J = Df“,
J | PY»Zn and J = QYn%n hold.

Case 2: There exist indices i1, 42 and j such that I = y;, ; Ay, ; holds. Then
I E (Ziy,i5.5 V Yis,j) N (Zirsia.j V Yiy.j) holds. Again, we extend I to J such that
JE TPHPB:"’Z" holds. We set all 2., from Z, to true under J except z;, i, ,;
which is set to false. Then J = DZ», J = PY»Zn and J = QY»%» hold.

In both cases, there exists an extension J of I (which interprets all variables
in Z,), such that J = TPHPY*#" Hence, 37, TPHP}"?" is true under I.

«: Let I be an interpretation such that I = 3Z,TPHP)Y"?" holds. Then
there exists an extension J of I (which interprets all variables in Z,,), such that
J }= TPHPY"Z"_ Consequently J |= DZ» holds and at least one z variable has
to be false under J.

Case 1: There exists an index ¢ such that J = —z;0,0 holds. Since J satisfies
Nj=1(2i,00V =i ;), J and also I make A7, =y, ; true. Then I |= DPH P holds.
Case 2: There exist indices i1, iz and j such that J = —z; 4, ; holds. Since
J = (Ziyin,j VYir ) N (%igin,5 V Yis,j) also holds, yi, j A s, ; has to be true under
J and I. Then I = DPHP)" holds.

We continue in the next subsection with the construction of a short proof of ¢,
in Gqve®. Afterwards, we show in Section that any sequence Q-res refutation
of =, possesses a number of clauses which is exponential in n.

5.2 Short Proofs of ¢, in Gqve®

We provide a short proof of ¢, in Gqve®. Observe that any proof of V.X,, DPH Pf“
is exponential (see Theorem 5.3.5 in [3]).
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Proposition 2. Let (pn)n>1 be a family of formulas where o, is given in (3).
Then there exists a proof of &+ ¢, in Gqve™ of size polynomial in n.

We first show that sequents S;, i, ; of the form

n+l n
CniZn (YCn,Zn
Ziyia, g P @ - \/ /\ TCigs \/ \/ (i1, A Cig 5)
i=1 j=1 7=11<i1<ia<n+1

are derivable using O(n?) sequents.

Case 1: z;, i,,; is of the form z; 0 for 1 <7 < n + 1. Take axioms and derive
n
Ci 1y -5 Cin + /\ G5

by applications of Ar and wl using O(n?) sequents. Continue with the derived
sequent by using axioms and applications of =, weakening and VI to generate

=%4,0,05 2i,0,0 V TCi 15+ -+ 5 23,0,0 V TCim /\ G4, 5
j=1
using O(n?) sequents. By applications of Al to the last sequent, we obtain

n

n
=200, [\ (zi0.0 V —eig) B N\ =i
=1 =1

requiring further O(n) sequents. Continue with weakening, Al and Vr to generate

n+l n
Cr,Zn Cn,Z.
=2i0,0, PP, Q7 = \/ /\ﬂcm,\/ Vo (engheny)
i=1 j=1 J=11<i1<i2<n+1

from the sequent above using O(n) sequents. In total, the derivation of each of
the (n + 1) sequents S1,0.0,-..,Sn+1,0,0 requires O(n?) sequents, each of which
consists of O(n) sequent formulas.

Case 2: z;, i, ; occurs as an element in (). Start from axioms and derive
Ci1,j» Cia,j - Ciy,j N\ Cig

by weakenings and Ar using O(1) sequents. Take axioms and apply =i, weaken-
ing, VI and Al to get from the sequent above

TZi1,42,55 (Zihiz,j v Cihj) A (Zil’lé’j v Cizﬁj) - Ciy,j N\ Cig,j
with O(1) further sequents. Using O(n?) weakenings, Al and Vr, we obtain

n+l n

CnZn ()Cn:Zn
TZiig 5 P ' Qn - \/ /\ TCiygs \/ \/ (Cir,j A Cig 5)-

=1 j=1 71=11<i1<i2<n+1
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In total, we have to derive n?(n + 1)/2 sequents using at most a cubic number
of sequents in each derivation. Each sequent has O(n?) sequent formulas.
This completes the case analysis. The sequent

n+l n n

Zn pCn,Zn ()Cn,Zn - o o
Dn 7Pn ?Qn F \/ /\_‘Chﬂ\/ (0117]/\6125‘])

i=1 j=1 j=11<i1 <ig<n+1

can be derived from the O(n?) different sequents S;, ;, ; by repeated applications
of VI using O(n?) sequents. Then we can continue as follows.

Zn PCn,Zn ()Cn,Zn ntl pmn C\/" o L
Dy, Py @ = Vich /\j:l _‘Cz,jv\/j=1 Vlgz‘1<z‘2§n+1(czm V €y 5) y
,
Zn  PCnyZn ()Cn,Zn Cn
DZn, PEnZn QSn7n |- DPHPS
TPHPS™ 7" - DPHPS™

= TPHPS™ 7" — DPHPS"
Vre, 3y, Ve
- VX, 3Y,VZ, (TPHPY 7" — DPHP")

Al A

Hence the overall number of sequents used to derive the indicated end sequent is
O(n"). There are O(n?) sequent formulas in each sequent and each such formula
is a subformula of ,,. Therefore, we have a polynomial size proof of ¢, in Gqve™.

5.3 Q-resolution Refutations of —¢,

We reconsider ¢,, from above. Since ¢, is valid iff —¢,, is unsatisfiable, we use the
latter and show it by Q-resolution. As we will see, any Q-resolution refutation
of =, is exponential in n. Take —¢,, and push negation inwards. Then we get

—py, is unsat iff 3X, VY, 3Z, (TPHPY™#" A CPHP; ") is unsat.

Proposition 3. Any Q-res refutation of 31X, VY, 37, (TPHPZ’“Z" A CPHPf")
has exponential size.

Since the two indicated CNFs TPHPK’“Z” and CPHPf " belong to completely
different languages, no resolution is possible where one parent clause is from the
one part and the other parent clause is from the other part. Therefore

VY, 3Z,(TPHP)"?") is unsat or 3X,(CPHP,") is unsat.

We first consider 3X, (CPH Pf) which is the existential closure of the purely
propositional pigeon hole formula CPHPf" in conjunctive normal form. Only
the propositional resolution rule is applicable because no V variable occurs. By
Haken’s famous result [§], any resolution refutation of CPH Pf" is exponential
in n. Consequently, the same holds for any Q-res refutation of the same formula.
Hence, 3X,, (CPH Pf“) is false and therefore unsatisfiable.

We next consider VY,,32, TPH PZ"’Z". Above we proved the following equiv-
alence DPHP" = 37, TPHP)"#" . Since DPHP}" is valid, so is 32, TPHP)"%"
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and therefore VY,,37, (TPH P,}:Z) is true. By the soundness and completeness
of Q-resolution, no (non-tautological) clause with only universal literals can be
derived. Hence, VYnHZnTPHP?“Z” cannot provide any refutation.

In conclusion, any Q-res refutation of —p is exponential in n. Consider

(TPHP, 7" A CPHP,™) (5)

which can be obtained by instantiating the quantifiers for Y,, properly. Inter-
estingly, there exists a tree (Q-)resolution refutation of (the existential closure
of) formula (B) of size polynomial in n, which identifies the simple way of han-
dling quantifiers by VR to be the weak point in Q-res. Obviously, quantifier rules
resulting an instantiation of the matrix formula can yield more succinct proofs.

From the above complexity analysis of Q-resolution refutations of =, a simple
corollary can be drawn. Let us reconsider 3X,VY,, 32, (TPH Pz’”’Z" A CPH Pf)
to which we apply the QDPLL algorithm with clause learning. The only variables
which are processed are from X,, because CPHPf” is unsatisfiable. Finding the
conflicts results in learned clauses, which can be used to construct a Q-res refuta-
tion of the input formula as a witness for unsatisfiability. Since any Q-resolution
refutation is exponential in n, so is the QDPLL refutation?

6 Conclusion

We studied different techniques to handle quantification in QBFs. Integrated into
a sequent calculus for propositional logic, all discussed combinations of quanti-
fier rules yield sound and complete calculi, differing in their non-deterministic
strength, i.e., their ability to represent proofs succinctly. We have seen that Q-res
is a weaker calculus than sequent systems with reasonable quantifier rules. Al-
though this result seems to be of limited relevance for practical applications, one
should keep in mind that certificates (or solutions) are extracted from Q-res refu-
tations produced by QBF solvers [1]]. Since the size of the certificate corresponds
to the size of the Q-res refutation, a more succinct proof could be beneficial.
We have identified instantiation as the feature for obtaining short proofs for
our formulas. Neither the quantifier handling in Q-res nor semantically motivated
quantifier rules possess this feature. Strong quantifier rules based on semantics
are essentially binary inferences and in general not powerful enough in a cut-free
sequent system. These rules require additional techniques like propagation of
values, formula simplification, dependency directed backtracking, etc. to com-
pensate their weakness. Such techniques can be integrated in sequent systems
via restricted versions of cut or as additional inferences, cf. [6] for examples.
Although Vi and 3r; are the rules with most non-deterministic power, they
are not necessarily required for our problem formulas. They were actually proved
with weaker rules VI, and 3r, allowing only the introduction of variables (and
truth constants). We provided some indication that, at least in some variants of
sequent calculi like Gqve (¢ > 1), the weaker rules are sufficient. But a closer

2 We learned this argument from F. Lonsing (private communication).
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look reveals the practical problem of the Vil and 3ry inferences, the simulation
by extension and the simulation by cut (not discussed here): How does a good
formula for the quantifier, the extension step or the cut rule look like?
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Abstract. We propose two novel approaches for using Counterexample-
Guided Abstraction Refinement (CEGAR) in Quantified Boolean For-
mula (QBF) solvers. The first approach develops a recursive algorithm
whose search is driven by CEGAR (rather than by DPLL). The sec-
ond approach employs CEGAR as an additional learning technique in
an existing DPLL-based QBF solver. Experimental evaluation of the im-
plemented prototypes shows that the CEGAR-driven solver outperforms
existing solvers on a number of families in the QBF-LIB and that the
DPLL solver benefits from the additional type of learning. Thus this ar-
ticle opens two promising avenues in QBF: CEGAR-driven solvers as an
alternative to existing approaches and a novel type of learning in DPLL.

1 Introduction

Quantified Boolean formulas (QBFs) [§] naturally extend the SAT problem by
enabling expressing PSPACE-complete problems, which can be found in a num-
ber of areas [13]. While nonrandom SAT solving has been dominated by the
DPLL procedure, it has proven to be far from a silver bullet for QBF solving. In-
deed, a number of solving techniques have been proposed for QBF [12I3/4UT9IT5],
complemented by a variety of preprocessing techniques [QT4I2115].

This paper extends the family of QBF solving techniques by employing the
counterexample guided abstraction refinement (CEGAR) paradigm [10]. This is
done in two different ways. The first approach develops a novel algorithm, named
RAReQS, that gradually expands the given formula into a propositional one. In
contrast to the existing expansion-based solvers [TII419], the use of CEGAR in
RAReQS enables terminating before the formula is fully expanded and thus sub-
stantially mitigates the problems with memory blowup inherent to expansion-
based solvers. The second approach employs CEGAR as an additional learning
technique in an existing DPLL-based QBF solver. At the price of higher mem-
ory consumption, this learning technique enables more aggressive pruning of

* This work is partially supported by FCT grants ATTEST (CMU-PT/ELE/0009/-
2009) and POLARIS (PTDC/EIA-CCO/123051/2010), by SFI grant BEACON
(09/IN.1/12618), and by Semiconductor Research Corporation contract 2005TJ1366.

A. Cimatti and R. Sebastiani (Eds.): SAT 2012, LNCS 7317, pp. 114-128, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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the search space than the existing techniques [28]. The experimental evaluation
carried out demonstrates that CEGAR-based techniques are useful for a large
number of families in the QBF-LIB [25].

2 Preliminaries

Quantified Boolean formulas (QBF) are assumed, unless noted otherwise, to be
in prenezr form Q1z1...Qnzn.¢ where Q; € {V,3}, z; are distinct variables, and
¢ is a propositional formula using only the variables z; and the constants 0
(false), 1 (true). The sequence of quantifiers in a QBF is called the prefiz and
the propositional formula the matriz. The prefix is divided into quantifier blocks,
each of which is a subsequence Vz; ...Vx, or resp. dz1 ... 3z, , which we denote
by VX or resp. 3X, where X = {z1,...,x,}.

Notation. We write Q for “v” (if Q is “3”) or “3” (if Q is “V").

Whenever convenient, parts of a prefix are denoted as P with possible sub-
scripts, e.g. PIVX P,. ¢ denotes a QBF with the matrix ¢ and a prefix that
contains VX . If the quantifier of a block Y occurs within the scope of the quan-
tifier of another block X, we say that variables in X are upstream of variables
in Y and that variables in Y are downstream of variables in X.

Variable assignments are represented as sets of literals. In particular, an as-
signment 7 to the set of variables X contains exactly one of z, -z for each z € X,
with the meaning that if x € 7, the variable z has the value 1 in 7 and if —x € T,
it has the value 0.

Notation. We write BY for the set of assignments to the variables Y.

For a Boolean formula ¢ and an assignment 7 we write ¢[7] for the substitution
of 7 in ¢. In practice a substitution also performs basic simplifications, e.g.
(mz Vy)[{—z}] = (-0 Vy) = 1. We extend the notion of substitution to QBF so
that it first removes the quantifiers of substituted variables and then substitutes
all occurrences with their assigned values. E.g., if 7 is an assignment to a block
X, then (PLQX Ps. ¢) [7] results in Py Ps. ¢[7].

A Boolean formula in conjunctive normal form (CNF) is a conjunction of
clauses, where a clause is a disjunction of literals, and a literal is either a variable
or its complement. Whenever convenient, a CNF formula is treated as a set of
clauses. For a literal [, var(l) denotes the variable in [, i.e. var(—z) = var(z) = z.

The pseudocode throughout the paper uses the function SAT(¢) to represent
a call to a SAT solver on a propositional formula ¢. The function returns a
satisfying assignment for ¢, if such exists, and returns NULL otherwise.

2.1 Game-Centric View

A QBF can be seen as a a game between the universal player and the existential
player. During the game, the existential player assigns values to the existentially
quantified variables and the universal player assigns values to the universally
quantified ones. A player can assign a value to a variable only if all variables
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upstream of it already have a value. The existential player wins if the formula
evaluates to 1 and the universal player wins if it evaluates to 0.

We note that the order in which values are given to variables in the same
block is unimportant. Hence, by a move we mean an assignment to variables in
a certain block. A concept useful throughout the paper are the winning moves.

Definition 1 (winning move). Consider a (nonprenex) closed QBF QX.$
and an assignment T to X. Then 7T is called a winning move for QX.® if Q=3
and P[7] is true or Q=Y and P[r] is false.

Notation. We write M(QX.®) to denote the set of winning moves for QX.P.

Observation 1. Let ¢ be a QBF.
A closed QBF AX.® is true iff there exists a winning move for 3X. ®.
A closed QBF VY. ® is true iff there does not exist a winning move for VY. ®.

3 Recursive CEGAR-Based Algorithm

Previous work on QBF shows how CEGAR can be used to solve formulas with
2 levels of quantifiers [I7]. Here we generalize this approach to an arbitrary
number of quantifiers by recursion. The recursion follows the prefix of the given
formula starting with the most upstream variables progressing towards more
downstream variables. It tries to find a winning move (Definition 1) for variables
in a certain block by making recursive calls to obtain winning moves for the
downstream variables. The base case of the recursion, i.e., a QBF with one
quantifier, is handled by a SAT solver.

The algorithm is presented as a recursive function returning a winning move
for the given formula, if such move exists. Following the CEGAR paradigm, the
function builds an abstraction which provides candidates for the winning move.
This abstraction is gradually refined as the algorithm progresses. Refinement is
realized by strengthening the abstraction, which means reducing the set of win-
ning moves; strengthening is achieved by applying conjunction and disjunction.

Observation 2. Let @q,...,9, be QBFs with free variables in X.
MWX. (P1V---VP,)) CM(VX. &), i€ l.n.
MWXIY. o) = M(VX. \/HGBY d[ul)
MEXVYQY. &) = M(3X. A ,cpv Plul)

The second half of the above observation gives us a recipe how to eliminate
quantifiers by ezpanding them into the corresponding propositional operator.
One could thus eliminate quantifiers one by one and eventually call a SAT solver
if only one quantifier is left. The clear disadvantage of this approach is that the
formula grows rapidly and therefore performing the expansion is often unfeasible.
This is where CEGAR comes in; the algorithm expands quantifiers carefully,
based on counterexamples that show that the current expansion is too weak. In
this spirit, we define abstraction as a partial expansion of the given formula.
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Algorithm 1. Basic recursive CEGAR algorithm for QBF
1 Function Solve (QX.P)

input : QX. @ is a closed QBF in prenex form with no adjacent
blocks with the same quantifier

output : a winning move for QX. @ if there is one, NULL otherwise
2 begin
3 if @ has no quantifiers then
4 return (Q = 3) ? SAT(¢) : SAT(—¢)
5 end
6 w1
7 while true do
8 a+— (Q@=3)7 N @]+ V,eo @] // build abstraction
9 7/ <~ Solve(Prenex(QX. «)) // find a candidate solution
10 if 7/ = NULL then return NULL // no winning move
11 T {l|ler Avar(l) e X} // filter a move for X
12 < Solve(P[r]) // find a counterexample
13 if 4 = NULL then return 7
14 w—wU{p} // refine
15 end
16 end

Definition 2 (w-abstraction). Let w be a subset of BY .
The w-abstraction of a closed QBF VX3Y. & is the formula VX. \/ o, Pu].
The w-abstraction of a closed QBF IXVY. & is the formula 3X. A ¢, P[u].

Observe that any winning move for QXQY. @ is also a winning move for its
w-abstraction (for arbitrary w). The reverse, however, does not hold. Hence,
following the CEGAR paradigm, we first find a winning move for the abstraction
and then werify that it is also a winning move for the given formula. Verifying
that a given assignment is a winning move entails solving another QBF.

Observation 3. An assignment T is a winning move for a closed QXQY. ¢ iff
QY. @[7] has no winning move.

If a winning move for the abstraction is verified to be a winning move for the
given formula, the move is returned. However, if this is not the case, the ab-
straction is strengthened. [Observation 3 tells us that if an assignment 7 is not
a winning move for QX QY. @, then there is a winning move p for the opposing
quantifier Q for the QBF QY. ®[r]. We say that this move u is a counterezam-
ple to T because it serves as a witness demonstrating that 7 is not a winning
move for QX QY. &. In accordance with the concept of counterexample guided
abstraction refinement, if a counterexample p is found, the current w-abstraction
is strengthened by adding p to w.

When we put these things together, we obtain The algorithm is
given a closed QBF QX. ®. and returns a winning move for QX. @, if such exists,
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and returns NULL otherwise. It is required that QX.® is in prenex form where
no two adjacent blocks have the same quantifiers (the blocks are maximal).
The algorithm starts with w = {); this represents an abstraction that can be
won by any candidate. In each iteration of the CEGAR loop it first solves the
abstraction (ine 9)) and then verifies whether the move winning the abstraction
is also a winning move for the given problem ([ine 12)). These operations are
realized as recursive calls. If there is no winning move for the abstraction, then
there is no winning move for the given problem and the function terminates. If
there is no counterexample to the move winning the abstraction, then this move
is also a winning move for the given problem and the function terminates. If
there is a counterexample to the move winning the abstraction, the abstraction
must be refined ([ne 14).

The precondition of the function that the input formula must be in prenex
form with no adjacent blocks with the same quantifier poses some technical
difficulty. When constructed directly according to its definition (Definition 2J),
the abstraction does not necessarily satisfy this condition.

Consider the case for @ = 3 (Q =V is analogous). The abstraction is of the
form 3X. A ¢, @[u]. Prenexing the abstraction generates fresh variables for each
of the conjuncts @[u], interleaves them into a single prefix, and merges adjacent
blocks that start with the same quantifier. Since each @[u] starts with the exis-
tential quantifier (the substitution of y eliminated the universal variables at the
top), after prenexing, the abstraction’s prefix starts with 3X X5 ... X where X;
are the fresh variables for the conjuncts @[u]. For this reason if a winning move
for the abstraction is computed, only the assignments to the variables X are

considered ([ne11)).

Ezample 1. Consider the QBF Jvw.@, where & = VuIzy. (vVw V) A(TVy)A
(wVy) AV ZE)A(@Vyg), and the candidates {v,w} and {v,w}, and cor-
responding counterexamples {u} and {u@}. Refinement yields the abstraction
Jvw. P[{u}] A @[{u}], with the prenex form Jvwzyx'y'. (vVwVz)A(DVy) A
(@VYAGAOVoVE)AN@VY)A(0VyY)A(Z) with no winning move and
the algorithm terminates with the return value NULL.

3.1 Improving Recursive CEGAR-Based Algorithm

clearly suffers from high memory consumption since in each itera-
tion of the loop the abstraction is increased by the size of the input formula and

the number of its variables is doubled (in the worst case). Recursive calls fur-
ther amplify this unfavorable behavior. For the input formula 3X. @, perform-
ing n; iterations with the counterexamples ul,..., ul , vields the abstraction
Q2 =3X. ¢[ut] A - A p[ul,]. The algorithm subsequently invokes the recursive
call Solve({2) on[line 9 If within this recursive call the loop iterates ny times, its
abstraction is of the form 3X. 2[uf] V- -V 2[u2 | with the size O(n1 x ng x |¢|).
In general, if the algorithm iterates n; times at a recursion level 4, the abstraction
at level k is of the size O(ny X ... X ng X |@]).

To cope with this inefficiency, we exploit the form of the formulas that the
algorithm handles. In the case of the existential quantifier, the abstraction is a
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conjunct, and it is a disjunct in the case of the universal quantifier. For the sake of
uniformity, we bridge these two forms by introducing the notion of a multi-game
where a player tries to find a move that wins multiple formulas simultaneously.

Definition 3 (multi-game). A multi-game is denoted by QX.{P1,...,P,}
where each ®; is a prenex QBF starting with Q or has no quantifiers. The free
variables of each @; must be in X and all ®; have the same number of quantifier
blocks. We refer to the formulas &; as subgames and QX as the top-level prefix.

A winning move for a multi-game is an assignment to the variables X such
that it is a winning move for each of the formulas QX. @;.

Observe that the set of winning moves of a multi-game QX .{®4,...,d,} is the
same as the set of winning moves of the QBF VX.(®1 V --- vV &,,) for Q =V and it
is the same as 3X.(P1 A --- A Dy,) for Q = 3. And, any QBF QX. & corresponds
to a multi-game with a single subgame QX .{®}

To solve multi-games we use The algorithm is given a multi-
game to solve and the abstraction is again a multi-game. To determine whether
the candidate 7 is a winning move, it tests whether it is a winning move for the
subgames in turn. If it finds a subgame ®; s.t. &;[7] is won by the opponent Q
by a move p, then @;[u] is used to strengthen the abstraction.

Since an abstraction is a multi-game, it seems natural to add @;[u] to the set
of its subgames. This, however, cannot be done right away because the formula
is not in the right form. In particular, all the subgames must start with the
opposite quantifier as the top-level prefix. Hence, if ®; is of the form QY QX;. ¥;
and p € BY, then &;[u] = QX,. ¥;[u]. To bring the formula into the right form,
we introduce fresh variables for the variables X; and move them into the top-
level prefix. More precisely, the function Refine(w, Py, 1) is defined as follows
(observe that the subgames remain in prenex form).

Refine(QX {¥1,...,¥,}, QYQX1.¥, p) = QXX{{¥,..., ¥, ¥ [u]}
where X| are fresh duplicates of the variables X1 and W' is ¥ with X1 replaced
by X1

Refine(QX.{y'ﬁ7 LY, QYL e, M) = QX AW, ..., U, Y[u]}
where v is a propositional formula (where no duplicates are needed)
Similarly to after the refinement, the abstraction’s top-level pre-

fix contains additional variables besides the variables X. Hence, values for these
variables are filtered out if a winning move for the abstraction is found.

3.2 Properties of the Algorithms
In CEGAR loop of no candidate or counterexample repeats. In-

tuitively, this is because once a counterexample p is found, the abstraction
is strengthened so that in the future winning moves for the abstraction can-
not be beaten by the move u. Consequently, the loop is terminating and for
a formula QXQY.® the number of its iterations is bounded by the number
of possible assignments to the variables X and Y, i.e. min(?'X‘,Q‘Y‘). In the
worst case, in each iteration the abstraction grows by the size of @. For a multi-

game QX. {P1,...,P,} in the CEGAR loop of[Algorithm 2|no candidates repeat
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Algorithm 2. Recursive CEGAR algorithm for multi-games

1 Function RAReQS (QX.{®1,...,D,})
2 output: a winning move for QX. {®1,...,P,} if there is one; NULL

otherwise
3 begin
4 if @; have no quantifiers then
5 return Q = 3 7 SAT(\, @;) : SAT(—=(V, ®))
6 a+— QX.{}
7 while true do
8 7'+ RAReQS(«) // find a candidate solution
9 if 7/ = NULL then return NULL
10 T {l|ler Avar(l) € X} // filter a move for X
11 for i < 1 to n do p; < RAReQS(®;[7]) // find a
counterexample
12 if u; = NULL for all i € {1..n} then return 7
13 let I € {1..n} be s.t. uy # NULL
14 a < Refine(w, Py, ) // refine
15 end
16 end

but counterexamples may. However, for a given ¢ € 1..n, a counterexample y;
does not repeat. More precisely there are no two distinct iterations of the loop
with the corresponding candidates and counterexamples 71, 1, T2, ft2, such that
p1 = po and py is a winning move for both @;[m] and @;[r] for some i. This
demonstrates termination with the upper bound for the number of iterations
as min(21X!, n x 21Y1). In the worst case, in each iteration the abstraction grows
by the maximum of the sizes of the subgames &1, ...,®,. Soundness and com-
pleteness of the algorithms [[] and 2] are direct consequences of

3.3 Implementation Details

We have implemented a prototype of RAReQS in C++, supporting the QDIMACS
format, with the underlying SAT solver minisat 2.2 [11].

The implementation has several distinctive features. In an ab-
straction computed within a sub-call is forgotten once the call returns. This may
lead to repetition of work and hence the solver supports maintaining these ab-
stractions and strengthening them gradually, similarly to the way SAT solvers
provide incremental interface. This incremental approach, however, tends to lead
to unwieldy memory consumption and therefore, it is used only when the given
multigame’s subgames have 2 or fewer quantification blocks.

If an assignment 7 is a candidate for a winning move that turns out not to
be a winning move, the refinement guarantees that 7 is not a solution to the
abstraction in the future iterations of the CEGAR loop. This knowledge enables
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Algorithm 3. DPLL Algorithm with CEGAR Learning
1. global 7euyr = J;

2. function dpll_solve(®P;,) {
3. while (true) {
4. while (we don't know who has a winning strategy under mey,) {
5. decide 1it(); propagate();
7. }
8. @i, := dpll_learn(®i,);
9. if (we learned who has a winning strategy under @) return;
10. if (last decision literal is owned by winner) {
11. by, := cegar learn(Piy,);
12. }
13. backtrack();
14. propagate(); // Learned information will force a literal.
15. }
16. 1}

us to make the subcall for solving the abstraction more efficient by explicitly
disabling 7 as a winning move for the abstraction. We refer to this technique as
blocking and it is similar to the refinement used in certain SMT solvers [242].
Throughout its course, the algorithm may produce a large number of new
formulas, either by substitution or refinement. Since these formulas tend to be
simpler than the given one, they can be further simplified by standard QBF
preprocessing techniques. The implementation uses unit propagation and mono-
tone (pure) literal rule [9]. These simplifications introduce the complication that
in a multi-game QX .{®,...,P,} the individual subgames might not necessar-
ily have the same number of quantifier levels. In such case, all games with no
quantifiers are immediately put into the abstraction before the loop starts.

4 CEGAR as a Learning Technique in DPLL

The previous section shows that CEGAR can give rise to a complete and sound
algorithm for QBF. In this section we show that CEGAR enables us to extend
existing DPLL solvers with an additional learning technique. To illustrate the
basic idea consider the QBF VX.(3Y. ¢) and a situation when the solver as-
signed values to variables in X and Y such that ¢ is satisfied, i.e., the existential
player won. This assignment has two disjoint parts, mcand and meex, which are
assignments to X and Y, respectively. Conceptually, 7canq corresponds the can-
didate assignment in RAReQS and mex to its counterexample. In this case, the
CEGAR-based learning will correspond to disjoining the formula ¢[mccx| onto ¢,
resulting in VX. (3Y. ¢) V @[mcex|, S0 that meand is avoided in the future.

The CEGAR learning in DPLL is most naturally described in the context
of a non-prenex, non-clausal solver such as GhostQ [18]. Given an assignment
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1. Let X, be the quantifier block of the last decision literal.

Let Q. and @, be such that (Q.X..®.) is a subformula of ®;,.

2. Let m. be a complete assignment for X, created by extending the solver’s
current assignment with arbitrary values for the unassigned variables in
X, and removing variables in blocks other than X,.. This assignment 7,
corresponds to the counterexample in the recursive CEGAR approach.

3. We modify &y, by:

e substituting (3X..@.) with (3X..P.) V P.[r.], if Q. = “F’, or
e substituting (VX..@.) with (VX..@.) A D.[r.], if Q. = “V”.

4. All variables that are bound by a quantifier inside @.[r.] are renamed to

preserve uniqueness of variable names.

Fig.1. CEGAR Learning in DPLL

7, such a solver will tell us that either (1) the existential player has a winning
stategy under 7 (i.e., @i, [n] is true), (2) the universal player has a winning
stategy under 7 (i.e., @i, [7] is false), or (3) it is not yet known which player has
a winning strategy under 7.

We modify such a solver by inserting a call to a new CEGAR-learning pro-
cedure after performing standard DPLL learning, as shown in Algorithm Bl We
write “®;,” to denote the current input formula, i.e., the input formula enhanced
with what the solver has learned up to now. Both standard DPLL learning and
CEGAR learning are performed by modifying @;,. As shown in Algorithm [3]
CEGAR learning is performed only if the last decision literal is owned by the
winner. (The case where the last decision literal is owned by the losing player
corresponds to the conflicts that take place within the underlying SAT solver
in RAReQS.) The CEGAR-learning procedure is shown in Figure [Il Step [ is
justified by Observation Bl below, which in turn is justified by Observation [l

Observation 4. Consider an arbitrary QBF (Q.X..®.), possibly containing
free variables, but where each bound variable is bound by at most one quanti-
fier. Then it follows immediately from definition of quantification that:

IXe®. = \/ @fn] and VXD, = |\ &[n]

reBXe reBXe

(Recall that “B~<” denotes the set of all assignments to X..)
Observation 5. Since conjunction and disjunction are idempotent,

IXo P = (3X..P.) V D.[r.], where 7, € B¥e
VX P, = (VXo.B,) A P[], where m, € BXe
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4.1 Implementation Details

We have implemented a limited version of CEGAR learning in the solver GhostQ
[18]. Our implementation uses a modified version of step [ of Figure [l We
substitute 7, into the original version of the input formula @;,, not the current
version of &;,. Although substituting into the original formula instead of the
current formula potentially reduces the effectiveness of CEGAR learning (since
we can’t learn a refinement of a refinement), it reduces the memory consumed per
refinement. Unit propagation and the Pure Literal Rule are applied to simplify
the result of the substitution, among other optimizations.

Step 2 of Figure[I extends the counterexample 7. to a complete assignment to
the quantifier block X.. This allows completely eliminating a quantifier block,
which may cause two quantifier blocks of the same quantification type to be-
come adjacent to each other. If so, the two adjacent blocks are merged together,
providing greater freedom in selecting variable order.

5 Experimental Results

Our objective was to analyze the effect of CEGAR on the different families of
available benchmarks. Due to do the large number of families in QBF-LIB [25],
we have targeted families from formal verification and planning as two prominent
applications of QBF. Several large and hard families were sampled with 150 files
(terminator, tipfixpoint, Strategic Companies); the area of planning con-
tains four classes for robot planning, each counting 1000 instances with similar
characteristics and thus only one of these classes was selected (Robots2D). The
solvers QuBE7.2, Quantor, and Nenofex were chosen for comparison. QuBE7.2 is
a state-of-the-art DPLL-based solver; Quantor and Nenofex are expansion-based
solvers (c.f. Section 6)). The experimental results were obtained on an Intel Xeon
5160 3GHz, with 4GB of memory. The time limit was set to 800 seconds and the
memory limit to 2GB.

All the instances were preprocessed by the preprocessor blogger [5] and in-
stances solved by the preprocessor alone were excluded from further analysis.
An exception was made for the family Debug where preprocessing turned out to
be infeasible and the family was considered in its unpreprocessed form.

Unlike the other solvers, GhostQ’s input format is not clause-based (QDI-
MACS) but it is circuit-based. To enable running GhostQ on the targeted in-
stances, the solver was prepended with a reverse-engineering front-end. Since
this front-end cannot handle bloqqer’s output, GhostQ was run directly on the
instances without preprocessing. The other solvers were run on the preprocessed
instances (further preprocessing was disabled for QuBE7.2).

The relation between solving times and instances is presented by a cactus
plot in number of solved instances per family are shown in [Table 2t a
comparison of RAReQS with other solvers is presented in[Table 1l More detailed
information can be found at http://sat.inesc-id.pt/~mikolas/satl12.

On the considered benchmarks, RAReQS solved the most instances, approx-
imately 33% more than the second solver QUBE7.2. RAReQS also turned out
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Fig. 2. Cactus plot of the overall results

Table 1. Number of instances solved by RAReQS but not by a competing solver, and
vice versa

GhostQ GhostQ-CEGAR QuBE7.2 Quantor Nenofex
Only RAReQS 1661 1336 998 2436 2564
Only competitor 242 269 46 30 13

to be the best solver for most of the types of the considered instances. [Table 1]
further shows that for each of the other solvers, there is only a small portion of
instances that the other solver can solve and RAReQS cannot. Out of the 801
instances when the solver was aborted, only 50 ran out of of memory.

In several families the addition of CEGAR learning to GhostQ worsened its
performance. With the exception of Robots2D, however, the performance was
worse only slightly. Overall, GhostQ benefited from the additional CEGAR learn-
ing and in particular for certain families. A family worth noting is irqlkeapclte,
where no instances were solved by any of the solvers except for GhostQ-CEGAR.

The usefulness of CEGAR was in particular demonstrated by the families
incrementer-encoder, conformant-planning, trafficlight-controller,
Sorting-networks, and BMC where RAReQS solved significantly more instances
than the existing solvers, and GhostQ-CEGAR improved significantly over GhostQ.
Most notably, for incrementer-encoder (484) and RobotsD2 (700) only one
instance was not solved by RAReQS, and for blackbox-01X-QBF (320) and
trafficlight-controller (1459) RAReQS solved all instances.

6 Related Work

CEGAR has proven useful in number of areas, most notably in model check-
ing [10] and SMT solving [24J2]; more recently it has been applied to handle
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Table 2. Number of instances solved within 800 seconds by each solver. “Lev” indicates
the number of quantifier blocks (min—max) in the family of instances, post-blogqger.

Family Lev. RAReQS GhostQ GhostQ-Cegar QuBE7.2 Quantor Nenofex
trafficlight-ctlr (1459) 1-287 1459 806 1001 1092 955 863
RobotsD2 (700) 2-2 699 350 271 630 0 30
incrementer-encoder (484) 3-119 483 285 477 284 51 27
blackbox-01X-QBF (320) 2-21 320 138 126 224 3 4
Strat. Comp. (samp.) (150) 1-2 107 12 12 107 18 12
BMC (85) 1-3 73 26 48 37 65 64
Sorting-networks (84) 1-3 72 24 32 45 38 38
blackbox-design (27) 5-9 27 27 27 18 0 0
conformant-planning (23) 1-3 17 7 16 5 13 12
Adder (28) 3-7 11 2 2 4 5 9
Lin. Bitvec. Rank. Fun. (60) 3-3 9 0 0 0 0 0
Ling (8) 1-3 8 6 8 8 8 8
Blocks (7) 3-3 7 6 7 5 7 7
fpu (6) 1-3 6 0 0 6 6 6
RankingFunctions (4) 2-2 3 0 0 3 0 0
Logn (2) 3-3 2 2 2 2 2 2
Mneimneh-Sakallah (163) 1-3 110 148 141 89 3 22
tipfixpoint-sample (150) 1-3 26 128 127 22 5 6
terminator-sample (150) 2-2 98 109 103 9 25 0
tipdiam (121) 1-3 55 99 93 54 21 14
Scholl-Becker (55) 1-29 37 43 40 29 32 27
evader-pursuer (15) 5-19 10 11 8 11 2 2
uclid (3) 4-6 0 2 2 0 0 0
toilet-all (136) 1-1 134 133 131 131 135 133
Counter (58) 1-125 30 14 11 20 33 15
Debug (38) 3-5 3 0 0 0 24 6
circuits (63) 1-3 8 4 5 5 9 8
Gent-Rowley (205) 7-81 52 67 67 70 2 0
jmec-quant (+squaring) (20) 3-9 2 0 0 6 0 2
irglkeapclte (45) 2-2 0 0 44 0 0 0
total (4669) 3868 2449 2801 2916 1462 1317

quantification in SMT [27I23]. Special cases of QBF, with limited number of
quantifiers, have been targeted by CEGAR: computing vertex eccentricity [22],
nonmonotonic reasoning [6I16], two-level quantification [17].

A SAT solver was used in [26] to guide DPLL search of a QBF solver and to
cut out unsatisfiable branches. A notion of abstraction was also used in QBF
preprocessing [2I]. This notion, however, differs from the one used in RAReQS
as it means treating universally quantified variables as existentially quantified.

An important feature of RAReQS is the expansion of the given QBF into
a propositional formula, which is then solved by a SAT solver. This technique
is used for preprocessing [7] but also several existing solvers tackle QBF solv-
ing in this way, most notably QUBOS [1], Quantor [4], and Nenofex [19]. Just
as RAReQS uses multi-games, these solvers employ some various techniques
to mitigate the blowup of the expansion (besides preprocessing). QUBOS uses
miniscoping, Quantor tree-like prefizes, and Nenofex uses negation normal form.
In these aspects, the solvers share similarities with RAReQS.

The way the expansion is carried out is significantly different. While the other
solvers start the expansion from the innermost variables, RAReQS starts from
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the outermost variables. The main difference, however, lies in the careful expan-
sion in RAReQS. In the aforementioned solvers, once a variable is scheduled to
be expanded, both of its values are considered in the expansion. In contrast,
in RAReQS only a particular assignment to a block of variables chosen in the
expansion and the expansion is checked whether it is sufficient or not. This is
an important factor for both time and space complexity. For large formulas, the
traditional expansion-based solvers are bound to generate unwieldy formulas but
the use of abstraction in RAReQS enables the solver to stop before this expan-
sion is reached. This leads to generating easier formulas for the underlying SAT
solver and dramatically mitigates the problems with memory blowup.

7 Conclusions and Future Work

Applying the CEGAR paradigm, this paper develops two novel techniques for
QBF solving. The first technique is a CEGAR-driven solver RAReQS and the
second an additional learning technique for DPLL solvers.

In its workings, RAReQS is close to expansion-based solvers (e.g. Quantor,
Nenofex) but with the important difference that the expansion is done step-by-
step, driven by counterexamples. Thus, the solver builds an abstraction of the
given formula by constructing a partial expansion. The downside of this approach
may be that if in the end a full expansion is needed, then RAReQS performs the
same expansion as a traditional expansion-based solver but with the overhead
of intermediate tests for whether or not the expansion is already sufficient.

However, the approach has important advantages. Whenever there is no win-
ning move for the partial expansion, then there is no winning move for the given
formula. This enables RAReQS to quickly stop for formulas with no winning
moves. For formulas for which there is a winning move, RAReQS only needs to
build a strong-enough partial expansion whose winning moves are also likely to be
winning moves for the given formula. The experimental results demonstrate the
ability of RAReQS to avoid the inherent memory blowup of expansion solvers,
and, that careful expansion outperforms a traditional DPLL-based approach on
a large number of practical instances.

We have shown that abstraction-refinement as used in RAReQS is also appli-
cable within DPLL solvers as an additional learning mechanism. This provides a
more powerful learning technique than standard clause/cube learning, although
it requires more memory. Experimental evaluation indicates that this type of
learning is indeed useful for DPLL-based solvers.

In the future we plan to further develop our DPLL solver so that it supports
the full range of CEGAR learning exploited by RAReQS and to investigate
how to fine-tune this learning in order to mitigate the speed penalty for the
cases where the learning provides little information over the traditional learning.
This can not only be done by better engineering of the solver but also devising
schemata that disable the learning once deemed too costly. In RAReQS we plan
to investigate how to integrate techniques used in other solvers. In particular,
more aggressive preprocessing as used in Quantor and techniques for finding
commonalities in formulas used in Nenofex and dependency detection [20].
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Abstract. Henkin quantifiers, when applied on Boolean formulae, yield-
ing the so-called dependency quantified Boolean formulae (DQBF), offer
succinct descriptive power specifying variable dependencies. Despite their
natural applications to games with incomplete information, logic synthe-
sis with constrained input dependencies, etc., DQBF remain a relatively
unexplored subject however. This paper investigates their basic prop-
erties, including formula negation and complement, formula expansion,
and prenex and non-prenex form conversions. In particular, the proposed
DQBF formulation is established from a synthesis perspective concerned
with Skolem-function models and Herbrand-function countermodels.

1 Introduction

Henkin quantifiers [9], also known as branching quantifiers among other names,
generalize the standard quantification by admitting explicit specification, for
an existentially quantified variable, about its dependence on universally quanti-
fied variables. In addition to mathematical logic, Henkin quantifiers appear not
uncommonly in various contexts, such as natural languages [12], computation
[2], game theory [11], and even system design. They permit the expression of
(in)dependence in language, logic and computation, the modelling of incomplete
information in noncooperative games, and the specification of partial dependen-
cies among components in system design, which is the main motivation of this
work.

When Henkin quantifiers are imposed on first-order logic (FOL) formulae, it
results in the formulation of independence-friendly (IF) logic [I0], which was
shown to be more expressive than first-order logic and exhibit expressive power
same as existential second-order logic. However one notable limitation among
others of IF logic under the game-theoretical semantics is the violation of the
law of the excluded middle, which states either a proposition or its negation is
true. Therefore negating a formula can be problematic in terms of truth and fal-
sity. From a game-theoretical viewpoint, it corresponds to undetermined games,
where there are cases under which no player has a winning strategy. More-
over, the winning strategies of the semantic games do not exactly correspond
to Skolem and Herbrand functions in synthesis applications although syntactic
rules for negating IF logic formulae were suggested in [7J6].

A. Cimatti and R. Sebastiani (Eds.): SAT 2012, LNCS 7317, pp. 129-142, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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When Henkin quantifiers are imposed on Boolean formulae, it results in the
so-called dependency quantified Boolean formulae (DQBF), whose satisfiability
lies in the complexity class of NEXPTIME-complete [II]. In contrast to QBF,
which is PSPACE-complete, DQBF offers more succinct descriptive power than
QBF provided that NEXPTIME is not in PSPACE. By expansion on univer-
sally quantified variables, a DQBF can be converted to a QBF with the cost of
exponential blow up in formula size [415].

This paper studies DQBF from a synthesis perspective. By distinguishing for-
mula negation and complement, the connections between Skolem and Herbrand
functions are established. While the law of the excluded middle holds for nega-
tion, it does not hold for complement. The special subset of the DQBF whose
truth and falsity coincide with the existence of Skolem and Herbrand functions,
respectively, is characterized. Our formulation provides a unified view on DQBF
models and countermodels, which encompasses QBF as a special case. Some
fundamental properties of DQBF are studied in Section Bl and the potential
application of DQBF on Boolean relation determinization for input constrained
function extraction is presented in Section [l Discussions and conclusions are
then given in Section B and Section [G] respectively.

2 Preliminaries

As conventional notation, a set is denoted with an upper-case letter, e.g., V'; its
elements are in lower-case letters, e.g., v; € V. The ordered version (i.e., vector)
of V.= {v1,...,v,} is denoted as v = (vy,...,v,). Substituting a term ¢ (re-
spectively a vector of terms t = (t1,...,t,)) for some variable v (respectively a
vector of variables v = (v1,...,v,)) in a formula ¢ is denoted as ¢[v/t] (respec-
tively @lv/t] or ¢[v1/t1,...,vn/ts]). A formula ¢ under some truth assignment
« to its variables is denoted as ¢|q.

2.1 Quantified Boolean Formulae

A quantified Boolean formula (QBF) & over variables V' = {v1,..., v} in the
prenex form is expressed as

lel T kak-¢7

where Q11 - - - Qruk, with Q; € {3,V}, is called the prefiz, denoted Ppe ,and ¢,
a quantifier-free formula over variables V', is called the matriz, denoted ®pix.
We call variable v; in a QBF an existential variable if Q; = 3, or a universal
variable if Q; =V. A QBF is of non-prenex form if its quantifiers are scattered
around the formula without a clean separation between the prefix and the matrix.
Unless otherwise said, we shall assume that a QBF is in the prenex form and is
totally quantified, i.e., with no free variables. As a notational convention, unless
otherwise specified we shall let X = {x1,...,z,} be the set of universal variables
and Y = {y1,...,ym} existential variables.
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Given a QBF @ over variables V', the quantification level £ : V — N of variable
v; € V is defined to be the number of quantifier alternations between 3 and V
from the outermost variable to variable v; in @, e.g., £(vi) = £(v2) = 0,
L(vs) =1, and £(vq) = 2 for QBF Jv1JvaVusTvg.¢.

Any QBF & over variables X UY can be converted into the well-known Skolem
normal form [13]. In the conversion, every appearance of y; € Y in @y is
replaced by its respective newly introduced function symbol F},, corresponding
to the Skolem function of y;, which refers only to the universal variables z; € X
with ¢(z;) < £(y;). These function symbols are then existentially quantified
before (on the left of) other universal quantifiers in @pgc. This conversion, called
Skolemization, is satisfiability preserving. Essentially a QBF @ is true if and only
if its Skolem functions exist such that substituting F),, for every appearance of
yi in @y makes the new formula true (i.e., a tautology).

Example 1. Skolemizing the QBF
Vm13y1Vx23y2.(x1 V Y1 V ﬁyg)(—\l‘l V X2 V yg)

yields
HFyl HFyQVZ‘lVZ‘Q.(JJl \Y Fy1 \Y ﬁFyQ)(—\l‘l V X2 \Y FyQ)

where F, is a 1-ary function symbol referring to 1, and F, is a 2-ary function
symbol referring to x; and zs. Since the QBF is true, Skolem functions exist,
for instance, Fy,, = -~z and Fy, = z1 A z2.

The notion of Skolem function has its dual form, known as the Herbrand function.
For a QBF &, the Herbrand function F,, of variable z; € X refers only to the
existential variables y; € Y with ¢(y;) < {(z;). Essentially a QBF & is false if and
only if Herbrand functions exist such that substituting F;, for every appearance
of z; in Py makes the new formula false (i.e., unsatisfiable) [3].

2.2 Dependency Quantified Boolean Formulae

A dependency quantified Boolean formula (DQBF) generalizes a QBF in its al-
lowance for explicit specification of variable dependencies. Syntactically, a DQBF
@ is the same as a QBF except that in @,¢ an existential variable y; is annotated
with the set S; C X of universal variables referred to by its Skolem function,
denoted as Jy;g,), or a universal variable z; is annotated with the set H; C Y
of existential variables referred to by its Herbrand function, denoted as ij( H,):
where S; and Hj are called the support sets of y; and z;, respectively. However,
either the dependencies for the existential variables or the dependencies for the
universal variables (but not both) shall be specified. That is, a prenex DQBF is
in either of the two forms:

S-form: Vi ---Va,3yig,)  Wms,,) ¢ and (1)
H-form: Va1 g,y VTn(m,) 1 Ym0, (2)

where ¢ is some quantifier-free formula. Note that the syntactic quantification
order in the prefix of a DQBF is immaterial and can be arbitrary because the
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variable dependencies are explicitly specified by the support sets. Such quan-
tification with dependency specification corresponds to the Henkin quantifier
1911

By the above syntactic extension of DQBF, the inputs of the Skolem (respec-
tively Herbrand) function of an existential (respectively universal) variable can
be explicitly specified, rather than inferred from the syntactic quantification or-
der. That is, an existential variable y; (respectively universal variable x;) can be
specified to be semantically independent of a universal variable (respectively an
existential variable) whose syntactic scope covers y; (respectively x;). Unlike the
totally ordered set formed by those of a QBF, the support sets of the existential
or universal variables of a DQBF form a partially ordered set in general. This
extension makes DQBF more succinct in expressive power than QBF [I1].

For the semantics, the truth and falsity of a DQBF can be interpreted by the
existence of Skolem and Herbrand functions. Precisely an S-form (respectively
H-form) DQBF is true (respectively false) if and only if its Skolem (respectively
Herbrand) functions exist for the existential (respectively universal) variables
while the specified variable dependencies are satisfied. Consequently, Skolem
functions serve as the model to a true S-form DQBF whereas Herbrand functions
serve as the countermodel to a false H-form DQBF.

Alternatively, the truth and falsity of a DQBF can be understood from a game-
theoretic viewpoint. Essentially an S-form DQBF can be interpreted as a game
played by one V-player and m noncooperative 3-players [I1]. An S-form DQBF
is true if and only if the 3-players have winning strategies, which correspond to
the Skolem functions. Similarly an H-form DQBF can be interpreted as a game
played by one F-player and n noncooperative V-players. An H-form DQBF is
false if and only if the V-players have winning strategies, which correspond to
the Herbrand functions.

As was shown in [J5], an S-form DQBF @ can be converted to a logically
equivalent@ QBF @' by formula expansion on the universal variables. Assume that
universal variable z; is to be expanded in Formula () and 21 € S;U---U Sk
and z1 € S N+ N Sy,. Then Formula () can be expanded to

Vg VoY1 (s,) - Wh-1(s,_,)
(Sl /0)FYR(Sefor /1) "7 FYm (S 0l /0) FYm (Sl /11) D1 =0 A D=1,

where S;[z1/v] denotes x; in S; is substituted with logic value v € {0,1}, and
@)z, =0 denotes all appearances of 1 in ¢ are substituted with v including those
in the support sets of variables y;(g,) for ¢ = k,...,m. (The subscript of the
support set of an existential variable are helpful for tracing expansion paths.
Different expansion paths of an existential variable result in distinct existential
variables.) Such expansion can be repeatedly applied for every universal vari-
ables. The resultant formula after expanding all universal variables is a QBF,

! Henkin quantifiers in their original proposal [9] specify dependencies for existential
variables only. The dependencies are extended in this paper to universal variables.

2 That is, & and &' characterize the same set of Skolem-function models (by properly
relating the existential variables of @ to those of &).
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whose variables are all existentially quantified. As to be shown in Section [3.2]
expansion can be applied also to H-form DQBF.

3 Properties of DQBF

3.1 Negation vs. Complement

In the light of QBF certification, where there always exists either a Skolem-
function model or a Herbrand-function countermodel to a QBF, one intriguing
question is whether or not the same property carries to DQBF as well. To answer
this question, we distinguish two operators, negation (symbolized by “—") and
complement (by “~"), for DQBF. Let &5 and &y be Formulae [l) and (),
respectively. By negation, we define

_\QSS = 3]}1 s Hanyl(Sl) . -Vym(sm).—'¢ and (3)
~@g = 3z1(gy) 30 H,) VYL VYm0, (4)

By complement, we define

N@H = 3]}1 R Hanyl(Si) .. '\V/ym(s;”)._‘(ﬁ, (6)

where H] = {y; € Y | z; € S;} and S}, = {z; € X | yx & H;}, which follow what
we call the complementary principle of the Skolem and Herbrand support sets.

By the above definitions, one verifies that -—® = @, ~~® = &, and ~P =
~—®. Moreover, because the Skolem functions of ®@g, if they exist, are exactly
the Herbrand functions of =®g, and the Herbrand functions of @y, if they exist,
are exactly the Skolem functions of =@, the following proposition holds.

Proposition 1. DQBF under the negation operation obey the law of the ex-
cluded middle. That is, a DQBF is true if and only if its negation is false.

Since any DQBF can be converted to a logically equivalent QBF by formula
expansion, it also explains that the law of the excluded middle should hold
under negation for DQBF as it holds for QBF.

A remaining question is whether or not the complement of DQBF obeys the
law of the excluded middle. The answer to this question is in general negative as
we show below. Based on the existence of Skolem and Herbrand functions, we
classify DQBF into four categories:

Cs ={® | ® is true and ~@ is false},
Cyg ={® | ¢ is false and ~® is true},

Csgy = {P | ¢ and ~@ are true for S-form &, or false for H-form ¢}, and
Cop ={P | & and ~@ are false for S-form P, or true for H-form P}.

Note that if & € Cg, then ~® € Cg; if & € Cy, then ~® € Cg; if & € Csy, then
~® € Cop; if D € Cp, then ~P € Cy.
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Under the above DQBF partition, observe that the complement of DQBF
obeys the law of the excluded middle if and only if Csy and Cy are empty. In fact,
as to be shown, for any QBF @, ¢ ¢ Csy UCy. As a consequence, the complement
and negation operations for any QBF & coincide, and thus —-~@ = @. However,
for general DQBF, Csy and Cy are not empty as the following two examples
show.

Ezxample 2. Consider the DQBF
D = Va1V223Y1 () Y2 (0y)- (Y1 B 21) A (y2822)) V ((y2 © 2) A (Y1B21)),

where symbols “@” and @ stand for Boolean XOR and XNOR operators, respec-
tively. @ has Skolem functions, e.g., 1 and —zs for existential variables y; and
12, respectively, and —~@ has Herbrand functions, e.g., y2 and y; for universal
variables x1 for xs, respectively. That is, ® € Csy.

Ezxample 3. Consider the DQBF
P = V:UngElyl(xl)Elyg(w).(yl\/—|x1 Vao)A(yaVarV-xe)A(—y1 V—ya V -z V-xs).

It can be verified that ¢ has no Skolem functions, and -~ has no Herbrand
functions. That is, @ € Cy.

By these two examples, the following proposition can be concluded.

Proposition 2. DQBF under the complement operation do not obey the law of
the excluded middle. That is, the truth (falsity) of a DQBF cannot be decided
from the falsity (truth) of its complement.

Nevertheless, if a DQBF @ ¢ Cgy U Cyp, then its truth and falsity can surely
be certified by a Skolem-function model and a Herbrand-function countermodel,
respectively!d That is, excluding ¢ € Csy U Cy, DQBF under the complement
operation obeys the law of the excluded middle.

A sufficient condition for a DQBF not in Csy (equivalently, a necessary con-
dition for a DQBF in Csp) is presented in Theorem [II

Theorem 1. Let ¢ be a quantifier-free formula over variables X UY, let &1 =
Vo Ve Iyies,) FYms,)-¢ and P2 = Vim0 Vg, Y1 IYm-¢ with
Hi={y; €Y |2 € S,,}. Then there exist Skolem functions f = (f1,..., fm)
for @1 and Herbrand functions g = (g1, ..., gn) for @2 only if the composite func-
tion vector g o f admits no fixed-point, that is, there exists no truth assignment
a to variables © = (x1,...,xy,) such that a = g(f(«)).

Proof. Since @, is true and has Skolem functions f, formula ¢[y/f] must be a
tautology. On the other hand, since @, is false and has Herbrand functions g,
formula ¢[x/g] must be unsatisfiable. Suppose that the fixed-point condition o =
g(f(a)) holds under some truth assignment « to x. Then ¢[y/fllo = ¢[x/g]|s
for 8 = f(«) being the truth assignment to y. It contradicts with the fact that
¢ly/ f] must be a tautology and ¢[x/g] must be unsatisfiable.

3 In general a false S-form DQBF has no Herbrand-function countermodel, and a true
H-form DQBF has no Skolem-function model.
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The following corollary shows that @ ¢ Csy for any QBF &.

Corollary 1. For any QBF @, the Skolem-function model and Herbrand-function
countermodel cannot co-ezist.

Proof. If a QBF is false, its Skolem-function model does not exist and the corol-
lary trivially holds. Without loss of generality, assume a true QBF is of the
form & = Jy1Vey - - JynVen.¢. Let {y1 = f1(),-- -, Yn = fn(®1,...,Tn_1)}
be a model for @. Further by contradiction assume there exist a countermodel
{x1=91(y1), -, @n = gn(Y1,---,Yn)} So the fixed-point condition is {x1 =
g1(f10)s- -y 2n = gn(f10, ..., fu(x1,...,&n—1))}. Since no cyclic dependency
presents in the fixed-point equations, the set of equations always has a solution.
In other words, due to the complete ordering of the prefix of a QBF, a fixed-
point exists. By Theorem [Tl the Skolem-function model and Herbrand-function
countermodel cannot co-exist.

A sufficient condition for a DQBF not in Cy can be characterized by procedure
HerbrandConstruct as shown in Figure [Il Note that although the algorithm
computes Herbrand functions of -~®g for a false S-form DQBF &g, it can be
used to compute Skolem functions of =~®g for a true H-form DQBF &y by
taking as input the negation of the formula.

Given a false S-form DQBF & with n > 1 universal variables, procedure Her-
brandConstruct in line 1 collects the support set H,, for universal variable z,,.
Let Hy, = {Ya,»---»Ya, } and the rest be {y4, 1, Ya,, }- It then recursively
constructs the Herbrand functions of the formula expanded on z, until n = 1.

By formula expansion on z,, in line 3, variables {y4,,,,---,¥a,, }, which depend
on z, are instantiated in Pexp, into two copies, say, {yéwr1 , yngv oY Yo}

Then the VariableMerge step in line 6 lets ¢g; = g;r Wanry/Yarss> Yars/Yarsas - -

Yo, [Yam: Yo,/ yam]H In constructing the Herbrand function g, of x,, each as-
signment « to H, is examined. Since Herbrand function aims to falsity ¢, the
value of g, () is set to the x,, value that makes ¢[z1/g1,...,Tn-1/gn—1]a un-
satisfiable.

Theorem 2. Given a false S-form DQBF &, algorithm HerbrandConstruct re-
turns either nothing or correct Herbrand functions, which falsify —~®.

Proof. Observe first that the functions returned by the algorithm satisfy the
support-set dependencies for the universal variables. It remains to show that
olr1/g1, .. .,2n/gn] is unsatisfiable. By contradiction, suppose there exists an
assignment 3 to the existential variables Y such that ¢[z1/g1,...,2n/9n]|lg = 1.
Let v € {0,1} be the value of g,|, for o being the projection of § on H,, C Y.
Then ¢[x1/91,- - Tn—1/9n—1,%n/v]|g = 1. However it contradicts with the way

4 The method to perform VariableMerge in line 6 is not unique. In theory, as long as
no violation of variable dependencies is incurred, any substitution can be applied. In
practice, however the choice of substitution may affect the strength of the algorithm
HerbrandConstruct in terms of the likelihood of returning (non-empty) Herbrand
functions.
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HerbrandConstruct
input: a false S-form DQBF @ = Va1 -+ -V2n3y1 g,y - IYmys,,)-¢> and
the number n of universal variables
output: Herbrand-functions (g1, -, gn) of =~®
01 Hpn:={y:i€Y|xzn &S}
02 if(n>1)
03 Dexp 1= FormulaEzpand (P, z);
04 g := HerbrandConstruct(®exp, n — 1);
05 if (g" = 0) return 0;
06 g = VariableMerge(g');

07 for each assignment o to Hy,

08 if (dlx1/91,---sTn-1/9gn—1]|a,zn=0 is unsatisfiable)
09 gn(a) =0;

10 if (¢[z1/91,-.-, Tn-1/gn-1]]a,zn=1 is unsatisfiable)
11 gn(a) =1;

12 else return (;

13 else

14 for each assignment a to H,

15 if (¢|a,en=0 is unsatisfiable)

16 gn(a) = 0;

17 if (@|a,en=1 is unsatisfiable)

18 gnl@) = 1;

19 else return (;

20 return (gi,...,9n);

end

Fig. 1. Algorithm: Herbrand-function Construction

how gn|q is constructed. Hence the returned Herbrand functions (g1, ..., gn), if
they are not empty, are indeed correct Herbrand functions.

The following corollary shows that @ & Cy for any QBF &.

Corollary 2. If & is a false QBF and its universal variables x1,...,x, follow
the QBF’s prefix order, algorithm HerbrandConstruct always returns non-empty
Herbrand functions.

Proof. We prove the statement by induction on the number of universal vari-
ables. For the base case, without loss of generality consider QBF @ = Jy; - - - Jyy,
VrAyp+1 -+ - Ym-¢. After line 1, HerbrandConstruct enters line 14. Since the QBF
is false and has only one universal variable x, expanding on = yields a purely
existentially quantified unsatisfiable formula: 3y - - Jyr(y oy - - - Iy, -Bla=o0 A
Y1 W @le=1). By its unsatisfiability, for every assignment o to y1,- - -, yx,
formula 3y; ;- 3y, Ola,e=0ATY} 1 - - Y, -@la,=1 must be unsatisfiable. Since
i1 Win-@lae=0 and y;’ -+ - Fy;,-¢la,z=1 share no common variables, at
least one of them must be unsatisfiable. Hence the procedure returns a non-
empty Herbrand function.
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For the inductive step, assume the previous recursive calls for k =1,...,n—1
of HerbrandConstruct do not return (). We show that the current call for &k = n
cannot return (). Expanding @ on x,, yields @eyp, = Vaq - - -Vxn_13y1(51) e Hyk(sk)

=0 /\Ely'k’H(SkH) “*IWm(s,.)-@le.=1)- By the induc-

(Ely;g+1(sk+1) T Ely;n(s.m)qs
tive hypothesis, functions gif, cee 9;2—1 are returned. Moreover, g;r for any ¢ =
1,...,n — 1 is independent of y; and y; for j = k+1,...,m. So we con-
struct g; = g;[. Since g¢1,...,9n—1 have been constructed in a way such that
i Iy (g1 - Ym-dlr1 /g1, -1/ gn—1llz,=0 A Y - Ty Bl /g,
<o Tp—1/9n-1]|=,=1) is unsatisfiable, under every assignment a to y1, - - -, yx for-
mula (Y IWn-0l@1/91, - Tn1/gn-1]lz,=0 A Yy o Fym-dlri/gr, oy
Tn-1/Gn—1]lz,=1) is unsatisfiable. Moreover, since Jy; ,, --- Jy;,. ¢lx1/g1, -+
xnfl/gnfl] x,=0 and 3 y,k/Jrl e Elny ¢[5U1/917 Ty xnfl/gnfl] T,=1 do not share
any variables, at least one of them must be unsatisfiable. So g,, is returned.

Note that the above proof does not explicitly perform the substitution g; =
g;[ [Yar s /Yarirs Yaps /Yarsrs - - - Yan, /Yams Yo, /Ya,,) i VariableMerge because all
g; in fact do not depend on primed or double-primed variables in the QBF case.
Procedure HerbrandConstruct is useful in deriving Herbrand functions not
only for QBF but also for general DQBF as the following example suggests.

Ezample 4. Consider the DQBF @ = Vx1Yx23y1 ;) Fy2(4,)-¢ With ¢ = (y1Vaa)A
(y2Va1)A(—y1 V—ye Voxy Vo). HerbrandConstruct(®, 2) computes Herbrand
functions for ~~@ with the following steps. Expanding @ on xs yields Pexp =
V$13y1(m1)3yé3yg.¢|12:0 A ¢|12:1 with ¢|ZL’2:0 = (yl) A (y/2 \ xl) and ¢|ZL’2:1 =
(Y4 V1) A (—y1 Vs V —eq). The recursive call to HerbrandConstruct(Pexp, 1)
determines the value of function g{(yé, y5) under every assignment « to (y4, y5).
In particular, gJ{(O,O) = 0 due t0 ¢exp = (Y1) A (1) A (21); gJ{(O, 1) =0 (or 1)
due to doxp = (1) A (21) A (71 V 2215 1(1,0) = 0 due t0 foxp = (y1) A (21);
g1(1,1) = 1 due t0 dexp = (1) A (y1 V —@1). So g1 (yh,y5) = yhys (or y3), and
91(y2) = 9llys/v2 5 /y2] = we.

Returning to HerbrandConstruct(®,2), we have dlx1/g1] = (y1 V x2) A (y2) A
(=y1 V =2 V —z2). The value of function go for each assignment « to y; can be
determined with g2(0) = 0 due to ¢[x1/91]|y,=0 = (z2) A (y2) and g2(1) =1 due
to ¢[z1/g1]ly,=1 = (y2) A (~y2 V —z2). That is, g2(y1) = y1. The computed g
and go indeed make ¢lx1 /g1, x2/92] = (y1) A (y2) A (—y1 V —y2) unsatisfiable.

Since the DQBF subset Cg U Cy obeys the law of the excluded middle under
the complement operation, Theorems [I] and Bl provide a tool to test whether a
DQBF & can be equivalently expressed as —~@, that is, whether a DQBF has
either a Skolem-function model or a Herbrand-function countermodel. Figure
shows the four DQBF categories and the regions characterized by Theorems [I]

and 2
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Fixed-point condition Construction algorithm

Fig. 2. Four DQBF categories and regions characterized by Theorems [I] and

3.2 Formula Expansion on Existential Variables

Formula expansion on existential variables for DQBF can be achieved by nega-
tion using De Morgan’s law and expansion on universal variables. It leads to the
following expansion rule, which is dual to expanding universal variables.

Proposition 3. Given a DQBF Nz (g, VTn g, )1 IYm-¢, assume with-
out loss of generality that y1 is to be expanded with y; ¢ Hy U---U Hi_1 and
y1 € HyN---N Hy,. The formula can be expanded to

VL () VTR () VTR (il /0) Y Bk (Hilya /1) Y0 (g2 /0]) T (s [y /1)
HyQ T Hym~¢|y1=0 v ¢|y1=17
where H;[y1/v] denotes yy in H; is substituted with logic value v € {0,1}, and

@|y =0 denotes all appearances of y1 in ¢ are substituted with v including those
in the support sets of variables x;g,) fori =1k, ... ,n.

Such expansion can be repeatedly applied for every existential variables. The
resultant formula after expanding all existential variables is a QBF. Note that,
when Skolem functions are concerned rather than Herbrand functions, the sup-
port sets of the existential variables should be listed and can be obtained from
H; by the aforementioned complementary principle.

Example 5. Consider expanding variable y; of DQBF
D = V1 (1) VT2 (y5) V3 (y5) Y1 FY2TY3.¢-
By De Morgan’s law and expansion on a universal variable, we obtain

P = =31 (4, ) IT2 () T3 (y5) VY1 VY2 VY3. 700
= =321 (0) 321 (1) I2(y,) I3 (y3) VY2 VY3 7Bl y, =0 A 70ly, =1
= V@1 (0) V1 (1) V2 (3,) V3 (y5) FY2TY3-Oly =0 V Dly, =1
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3.3 Prenex and Non-prenex Conversion

This section studies some syntactic rules that allow localization of quantifiers
to sub-formulae. We focus on the truth (namely the Skolem-function model),
while similar results can be concluded by duality for the falsity (namely the
Herbrand-function countermodel), of a formula.

The following proposition shows the localization of existential quantifiers to
the sub-formulas of a disjunction.

Proposition 4. The DQBF
Vedyi g,y FWYm(s,.) -4V B,

where Vx denotes Yay - - -V, sub-formula ¢4 (respectively ¢p) refers to vari-
ables X4 C X and Y4 C Y (respectively Xp C X and Yp C Y), is logically
equivalent to

V. (Vwaﬂym(sal nxa) ayap(sapﬂXA)¢A % Vwbaybl(sblmXB) T aybq<squXB)¢B) )

where variables x. are in X4 N Xp, variables x4 are in X A\ Xp, variables xp
are in Xp\Xa, Yo, € Ya, and y, € Yp.

Proof. A model to the former expression consists of every truth assignment to
X and the induced Skolem function valuation to Y. Since every such combined
assignment to X UY either satisfies ¢4 or ¢, by collecting those satisfying ¢
(respectively ¢p) and projecting to variables X4 U Y4 (respectively Xp U Yg)
the model (i.e., the Skolem functions for y, and yp) to the latter expression can
be constructed. (Note that, for a quantifier Jy; splitting into two, one for ¢4
and the other for ¢p, in the latter expression, they are considered distinct and
have their own Skolem functions.)

In addition, the Skolem functions for Vmaﬂyal(salnXA) e Elyap(saanA)gﬁMa

and those for Vb3 (5, nxp) T TYba( S, XB)¢B|a under every assignment o

to @, can be collected and combined to form a model for the former expression.
In particular the respective Skolem functions f,, |« and f, | under o for y,, and
Y, originating from the same quantifier y; in the former expression are merged
into one Skolem function f; = \/, (Xa(faj|a vV fbk|a)), where Y, denotes the
characteristic function of a, e.g., xo = 1223 for « = (21 = 1,20 = 1,23 = 0).

Ezample 6. Consider the QBF
D = Vo131 Voo Iy2Ve3ys.0a V ¢p

with ¢4 refers to variables x1, z2, 91, y2 and ¢p refers to xa, x3, Y2, y3. It has the
following equivalent DQBF expressions.

b = vxlvx?vx33y1($1)3y2(x1,x2)3y3(x1,x2,x3)'¢A V op
= vxlvang (Elyl(xl)zlyQ(xth)(ZSA Vv 3y2($2)3y3($27x3)¢3)

= Vo (V331391(x1)392(x1,x2)¢;1 \ V$33y2(g¢2)3y3(m2,x3)¢3)
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In contrast, conventionally the quantifiers of the QBF can only be localized to

Va1 3y Ve Iys (04 V Vo3Tysén) .

The following proposition shows the localization of universal quantifiers to a
sub-formula of a conjunction.

Proposition 5. The DQBF

Vedyiis,)  k(s,)-Pa N OB,

where Y& denotes Vxq - - -V, sub-formula ¢a (respectively ¢p) refers to vari-
ables Xo4 € X and Yo C Y (respectively Xp C X and Yp C YY), is logically
equivalent to

Vaﬂyz(SQ) e Elyk(Sk)' (Elyl(s1ﬂXA)¢A) A ¢B,

fory1 € Yp.

Proof. The proposition follows from the fact that the Skolem function of y; is
purely constrained by ¢4 only, and is the same for both expressions. Note that
the former formula is equivalent to VmEIyl(SmXA) . Elyk(sk).rj)A A op.

Essentially DQBF allow tighter localization of quantifier scopes than QBF. On
the other hand, converting a non-prenex QBF to the prenex form may incur
the size increase of support sets of existential variables due to the linear (or
complete order) structure of the prefix. With DQBF, such spurious increase can
be eliminated.

4 Applications

Although to date there is no DQBF solver, we note that the framework pro-
vided by QBF solver sKizzo [I], which is based on Skolemization, can be easily
extended to DQBF solving. A natural application of DQBF is Boolean rela-
tion determinization [8J3] in logic circuit synthesis. Consider a Boolean relation
R(x,y) as a characteristic function (quantifier-free Boolean formula) specifying
the input and output behavior of some (possibly non-deterministic) combina-~
tional system with inputs X and outputs Y. To realize the outputs of the system,
the Skolem functions of the QBF

VaIy.R(x,y)

is to be solved. Often the inputs of some output y; need to be restricted to depend
only on a subset of X. This restriction can be naturally described by DQBF.
Therefore DQBF can be exploited for topologically constrained logic synthesis
[14].
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5 Discussions

IF logic [I0] with the game-theoretical semantics is known to violate the law of
the excluded middle. A simple example is the IF logic formula Vz3y,,.(x = y)
for z,y € {0,1}, where y,, indicates the independence of y on z [7]. It assumes
that not only y is independent of x, but also is x independent of y. That is, it is
equivalent to Va()3Jy).(x = y) in our dependency notation. In a game-theoretic
viewpoint, neither the 3-player nor the V-player has a winning strategy. Therefore
this formula is neither true nor false, and has no equivalent DQBF since any
DQBF can always be expanded into a QBF, whose truth and falsity can be fully
determined.

On the other hand, the game-theoretical semantics of IF logic, when extended
to DQBF, does not provide a fully meaningful approach to synthesizing Skolem
and Herbrand functions. Unlike the unimportance of the syntactic quantification
order in our formulation, the semantic game of IF logic should be played with
respect to the prefix order. Since different orders correspond to different games,
the semantics is not directly useful in our considered synthesis application.

Henkin quantifiers in their original form [9] specified only the dependencies
of existential variables on universal variables. Such restricted dependencies were
assumed in early IF logic [I0] research. As was argued in [7], the dependency of
universal variables on existential variables are necessary to accomplish a sym-
metric treatment on the falsity, in addition to truth, of an IF logic formula. With
such extension, IF logic formulae can be closed under negation. However, how
the dependencies of existential variables and universal variables relate to each
other was not studied. The essential notion of Herbrand functions was missing.
In contrast, our formulation on DQBF treats Skolem and Herbrand functions on
an equal footing. Unlike [7], we restrict a formula to be of either S-form or H-
form, rather than simultaneous specification of dependencies for existential and
universal variables. This restriction makes the synthesis of Skolem and Herbrand
functions for DQBF more natural.

Prior work [1115] assumed DQBF are of S-form only. In [11], a DQBF was for-
mulated as a game played by a V-player and multiple noncooperative 3-players.
This game formulation is fundamentally different from that of IF-logic. The win-
ning strategies, if they exist, of the 3-players correspond to the Skolem functions
of the DQBF. This game interpretation can be naturally extended to H-form
DQBF.

6 Conclusions

The syntax and semantics of DQBF presented in this paper made DQBF a
natural extension of QBF from a certification viewpoint. Basic DQBF properties,
including formula negation, complement, expansion, and prenex and non-prenex
form conversion, were shown. Our formulation is adequate for applications where
Skolem/Herbrand functions are of concern.
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Abstract. This paper introduces Lynx, an incremental programmatic SAT solver
that allows non-expert users to introduce domain-specific code into modern
conflict-driven clause-learning (CDCL) SAT solvers, thus enabling users to guide
the behavior of the solver.

The key idea of Lynx is a callback interface that enables non-expert users to
specialize the SAT solver to a class of Boolean instances. The user writes special-
ized code for a class of Boolean formulas, which is periodically called by Lynx’s
search routine in its inner loop through the callback interface. The user-provided
code is allowed to examine partial solutions generated by the solver during its
search, and to respond by adding CNF clauses back to the solver dynamically
and incrementally. Thus, the user-provided code can specialize and influence the
solver’s search in a highly targeted fashion. While the power of incremental SAT
solvers has been amply demonstrated in the SAT literature and in the context of
DPLL(T), it has not been previously made available as a programmatic API that
is easy to use for non-expert users. Lynx’s callback interface is a simple yet very
effective strategy that addresses this need.

We demonstrate the benefits of Lynx through a case-study from computa-
tional biology, namely, the RNA secondary structure prediction problem. The
constraints that make up this problem fall into two categories: structural con-
straints, which describe properties of the biological structure of the solution,
and energetic constraints, which encode quantitative requirements that the solu-
tion must satisfy. We show that by introducing structural constraints on-demand
through user provided code we can achieve, in comparison with standard SAT ap-
proaches, upto 30x reduction in memory usage and upto 100x reduction in time.

1 Introduction

Conflict-driven clause-learning (CDCL) Boolean SAT solvers have had a huge impact
on a variety of domains ranging from program analysis to Al [3]. This success can
partly be attributed to their simple interface and powerful heuristics. In many cases, a
straightforward translation from a program analysis or Al problem into Boolean for-
mulas in CNF (conjunctive normal form) format is sufficient to leverage the power of
the solver. Unfortunately, there are many other important domains (e.g., biology) where
straightforward translation of problems to CNF clauses leads to formulas that are too

A. Cimatti and R. Sebastiani (Eds.): SAT 2012, LNCS 7317, pp. 143-156, 2012.
(© Springer-Verlag Berlin Heidelberg 2012
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large or complex for solvers to handle. For many of these domains, however, small
domain-specific modifications to the solver can make SAT-based solution feasible. The
challenge addressed by this paper is to enable users to make these small adaptations
with minimal effort and without breaking subtle invariants in the solver implementa-
tion. The solution we provide allows for the resultant specialized solver to be adaptive,
efficient for the problem-at-hand, and easy to build and maintain. Equally important,
users are not burdened with knowing too much about the internals of SAT solvers and
related technologies.

1.1 Our Contributions

— To address the problem described above, we created the solver Lynx that extends
CryptoMiniSat [23]] with an API allowing user-provided code to examine partial
solutions generated by the SAT solver and add CNF clauses back to the solver in
response. The added code is called inside the inner loop of the SAT solver, allowing
the user to tightly integrate problem-specific clause-generation heuristics into the
solver.

We call solvers extended in this way programmatic, i.e., the user can program-
matically influence solver behavior and adapt it to their specific problem domain
in ways that are difficult to achieve otherwise. Programmatic solvers address the
“solvers are unpredictable black boxes” problem by giving users more control over
their search heuristics.

— Using Lynx we developed the first SAT based tool for solving the RNA-folding pre-
diction problem. We present a detailed experimental evaluation of our technique in
comparison with standard approaches. We use the above-mentioned callback inter-
face in efficiently translating the RNA prediction problem into Boolean formulas.
The interface allows Lynx to incrementally translate the RNA-folding structure in-
side the inner loop of the SAT solver, allowing a tighter, highly targeted and more
efficient integration of the SAT solver and the translator.

1.2 Existing Approaches to Incremental and Adaptive Solving

Incremental solvers, that use some form of abstraction-refinement [3l], have been pro-
posed as a solution to the above-mentioned issue of simple but inefficient translations
from problems to Boolean formulas. Instead of translating the entire input problem-
instance into a potentially very large Boolean formula in one step, abstraction-refinement
approaches translate the input instance into Boolean formulas incrementally and call
the solver on these incrementally generated formulas. Such formulas are abstractions of
the input instance and are often easier to solve than the entire input instance. The solver
terminates if it gets the correct result to the input instance by solving an abstraction. Oth-
erwise the solver iteratively refines the abstractions as necessary until it gets the correct
result. Typically these abstractions and their refinements are performed by a layer outside
the inner loop of the SAT solver. For an excellent reference on abstraction-refinement
strategies refer to the Handbook of Satisfiability [3]].

Such incremental SAT solvers with an outside abstraction-refinement loop are rela-
tively easy to build. However, the problem with such an approach is that it may not be
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the most efficient for the problem-at-hand. Indeed, Ohrimenko et al. [[18] have proposed
incremental translation of problems to SAT where the integration of the solver and the
incremental translation is much tighter and more efficient than an outer layer translator.
However, their implementation is non-adaptive, and is specific to a class of difference
logic formulas — they do not provide an API for users to easily adapt or extend the
solver for a previously unknown class of Boolean formulas.

An example of an API that allows users to adapt or extend solvers is the powerful
idea of DPLL(T) [11] aimed at solving Boolean combination of formulas in rich theo-
ries such as integer linear arithmetic, uninterpreted functions and datatypes (aka SMT
solvers [3]]). In this approach, there is a tight integration of a CDCL SAT solver with a
theory solver (aka a T-solver) that can handle conjunction of constraints represented in
arich logic. The CDCL SAT solver does the search on the Boolean structure of the for-
mula without knowing the semantics of the literals, while the T-solver reasons about the
literals themselves adding any new derived literals back to the Boolean CDCL solver
appropriately. The tight integration enables the T-solver to influence the CDCL solver’s
behavior in ways not possible otherwise, and the resultant combination is typically a
solver than can handle arbitrary Boolean combination of theory formulas efficiently.

A lay non-expert user could implement a “T-solver” using the DPLL(T) framework
that reasons about a specific domain (say, theory of RNA folding) and adds constraints
incrementally to the SAT solver. The resultant combination can be a powerful incre-
mental domain-specific solver. However, the DPLL(T) API imposes strict requirements
on the user-specified code (T-solver) to ensure that the resultant combination is sound
and complete. Such requirements make perfect sense for constructing powerful SMT
solvers with complex T-solvers, the problem for which the DPLL(T) approach was
originally proposed. However, for the lay non-expert users such requirements may be
onerous, and may not be essential. Lynx, by contrast provides a simple interface which
is relatively easy to prove correct and is tailored for problem-specific extensions.

1.3 RNA-Folding with Lynx

To explore the benefits of using the Lynx’s callback interface, we applied the technique
to the problem of RNA folding. This is an application of significant practical relevance:
understanding RNA folding is crucial to understanding a number of biological pro-
cesses, including the replication of single-strand RNA viruses such as the poliovirus
which causes polio in humans. Moreover, RNA prediction actually shares important
similarities with other structure prediction problems of biological interest. This prob-
lem is particularly suitable to benchmark our approach. First, a SAT based solution to
this problem is desirable because it gives researchers the ability to easily experiment
with different formulations for the basic problem. Moreover, previous work in the liter-
ature has succeeded in formalizing the problem in a form that lends itself very naturally
to solution with a Boolean SAT solver. SAT based solutions, however, have been elu-
sive because the standard encoding leads to Boolean SAT instances that are too big for
solvers to handle. Using Lynx’s callback interface allowed us to encode instances of
the RNA folding problem in a memory efficient manner, producing the first successful
SAT based solution to this problem. The resultant incremental (or online abstraction-
refinement) solver led to a 30-fold reduction in the amount of memory required to solve
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some of these problems compared to standard SAT approach, and demonstrated dra-
matic time improvements over standard abstraction refinement techniques.

Paper Layout. In Section [2] we provide a detailed overview of our incremental
approach. In Section Bl we provide a self-contained description of the RNA-folding
structure prediction problem. In Section [4] we provide detailed description of our ex-
perimental setup and results. We review the related work in Section[3 and conclude in
Section[6l

2 Incrementality in Lynx

This section details how the callback interface in Lynx makes the solver incremental,
what we sometimes also refer to as online abstraction-refinement or OAR. In order to
facilitate the description, let us introduce a simple running example which shares some
features with the more complex biology application.

The running example is a formula of the form P(x) A C(x) over a vector z =
(xo,x1,...,xN) of Boolean variables, where P(x) consists of some arbitrary set of
constraints and C'() is a cardinality constraint that says that no more than 2 bits in «
can be setto 1.

C(x) = Vigjzn(—a; V o V ~ay)

The above definition of C(z) can be trivially encoded as a set of N® CNF clauses
— too many for large values of V. For this specific case, more efficient encodings exist
using only O(N) clauses, but they are more complicated and require the introduction
of additional SAT variables. By contrast, online abstraction refinement allows us to use
the simple encoding without having to pay the price of introducing N3 clauses.

The first step in using OAR is to divide the problem into a core set of clauses added to
the solver from the very beginning, and a different set of dynamic clauses added to the
solver incrementally by a callback function. The callback function is a user-provided
function M producing a set of clauses given a partial assignment to the variables of the
solver’s input instance. A partial assignment sets each variable in the problem to either
1,0, or L (undefined), and is represented as a vector ¢ € {0, 1, J_}N .

In the case of the example, we define P(x) to be the core clauses, and C(x) to be
the clauses added dynamically by a callback function defined as:

M(t)E{(—\l‘i\/ﬂl‘j\/ﬂl‘k)Ii#j?ék/\tiztjztk:1}

This callback function receives a partial assignment ¢, and returns a set of clauses of
the form (—a; V —x; V —xy) where x;, x; and xj, are variables set to 1 in the partial
assignment (i.e., t; = t; = t; = 1). The clauses produced by the callback function
eliminate those incorrect solutions that would have been eliminated by C'(x), so running
the solver with constraints P(x) and callback function M is the same as solving P(x) A
C(x).

Lynx incorporates the callback function into the solution process by invoking it peri-
odically with the current partial assignment. If the callback function returns any clause,
these are incorporated into the problem. This process continues until an assignment ¢
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is found such that: a) g satisfies all the core constraints, b) ¢ satisfies all the constraints
ever produced by the callback function, and c) the callback function produces an empty
set of clauses when applied to ¢ indicating that the process can be terminated. If the
input problem is unsatisfiable, the solver with the callback function is guaranteed to
report unsatisfiable and terminate. It is possible for the user-code, without any restric-
tions, to render the combination of base solver plus user-code incomplete. However,
we can impose some minimal conditions on the user-code such that the combination is
guarateed to be a complete decision procedure. In particular, one such condition is as
follows: assume the desired input instance to be solved is P(z) A C(x), and P(z) is
input to the base solver. Then, the user-code must “encode” C'(z) exactly. Imposing this
particular condition on the user-code is guaranteed to render the combination complete.

3 Biological Problem Overview

RNA is a versatile polymer essential to all of life. A chain of covalently bound nu-
cleotides, RNA classically acts as a cellular messenger which duplicates DNA sequence
information in the nucleus/nucleoid and transports that code to ribosomes for the con-
struction of proteins. However, this chain can also fold in on itself into a 3-dimensional
globular molecule which catalyzes biological reactions by itself. In fact, modern stud-
ies have suggested that such non-coding RNA (ncRNA) may play even a bigger cellular
role than messenger RNA, with significant effects on metabolism, signal transduction,
gene regulation, and chromosome inactivation. Such RNA function is determined by its
nucleotide composition and 3-dimensional structure, however, relatively little ncRNA
structural data is known [25]], severely limiting our understanding of these mechanisms.
Therefore, algorithmic prediction of RNA structure from its nucleotide sequence has
been a longstanding computational goal.

3.1 Structure Prediction via SAT

The computational problem we address is “how to correctly attribute a unique struc-
tural state to each nucleic acid (or groups of nucleic acids) within an RNA polymer
sequence”. This problem has a long history of solutions based on many different al-
gorithmic models — the most successful of which using a recursive, grammatical ap-
proach introduced by Zuker [26]. In this biophysical model, each nucleotide is allowed
to form a pairwise bond with another, and each pair is assigned an energetic cost based
on spatially adjacent nucleotide types [16]. The most likely structure is predicted by
optimizing pairing configuration according to a fixed thermodynamic scoring system
(energy minimization). Efficient computation is made possible through the imposition
of specific, often biologically-inspired model restrictions — for example, limiting base-
pairs to be sequentially nested (i.e. no “pseudoknots”) and scoring only a subset of all
potential energetic interactions (i.e. only Watson-Crick or wobble base-pairs). Unfortu-
nately, this entangles the optimization techniques used with a particular set of biolog-
ical assumptions. While these methods have shown good predictive accuracy, changes
to the algorithm can be difficult to implement as new scientific data comes to light. For
example, it has been shown that a more complex description of the RNA interaction
energetics can lead to greatly improved results [19].
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We propose a declarative approach for the structure prediction problem, providing
a decoupled platform for reasoning about biological concepts in clear, succinct rules,
backed by the powerful generic optimization of CDCL SAT solvers. This allows bi-
ological models to be tested and flexibly refined using a constraint-based philosophy,
independent of performance improvements to the underlying solver.

To study this approach, we have implemented an RNA structure prediction algorithm
using Lynx. Rather than comparing the benefits and disadvantages of different biolog-
ical models, we base our implementation on an RNA scoring model recently proposed
by Kato, et al. for integer programming optimization [20]. Although other models out-
perform this scoring system’s accuracy, we believe our results are easily generalizable
to greater classes of RNA structures [4] and more complex (non-RNA) structure pre-
diction problems in general.

To implement energy minimization as a SAT-based decision procedure, we pose the
question of whether an assignment exists that is lower than a certain energy threshold
and perform iterative binary search. Despite this search routine, this approach can often
be more efficient than the dynamic programming methods used by grammatical models
as the problem can be finely partitioned into smaller jobs that are run in parallel. Further,
when a sub-optimal solution is sufficient, this method quickly short-circuits, along with
a guarantee of how near the solution is to optimality.

3.2 RNA Secondary Structure Prediction with Pseudoknots

The RNA prediction algorithm described here differentiates itself from classical pre-
diction methods in its goal of predicting pseudoknots. Earlier grammar-based predic-
tors allowed only base-pairs to occur in a recursively nested fashion (i.e. for every
base-pair i-j there exists no base-pair k-/ such that i < k < j < [) to enable highly effi-
cient energy minimization via dynamic programming. However, pseudo-knotted struc-
tures which break this restriction are known to be essential to a number of functions,
such as the Diels-Alder ribozyme and mouse mammary tumor virus [24]. However,
predicting pseudoknotted structures is computationally much harder with fewer solu-
tions [[17020121]]. In fact, the prediction of truly arbitrary pseudoknots has been shown
NP-complete [[14], and classes of pseudoknotted structures are often more easily defined
by the algorithms which recognize them rather than their biological significance [7].
This motivates the use of a declarative approach, allowing easy exploration of different
trade-offs between representation and optimization, especially if the underlying scoring
system is changed from the standard Watson-Crick/wobble base-pair models to more
complex interactions [19]]. However, in the remainder of this work we restrict ourselves
to the model proposed by Kato, et al. [20].

3.3 Encoding RNA Structure Prediction in SAT

Our SAT encoding is formulated by two sets of constraints, structural and energetic, that
control the assignment of a vector of free variables which represent the final structural
solution. The assignment of each free variable indicates whether two nucleotides are
base-paired in the final RNA structure, fixed by structural constraints and an associated
energetic score. Figure[Il depicts this formulation.
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Solution Variables. The set of all properly-nested base-pairs within the final output
RNA structure is represented by the variables X; ;: where ¢ and j indicate the sequence
position of two nucleotides, a value X; ; = T indicates a hydrogen bond base-pair
exists between nucleotides at 7 and j, and X;; = F indicates that no base-pairing
occurs between positions ¢ and j. The set of pseudoknotted base pairs that cannot be
properly nested are similarly represented by the independent variables Y; ;. In this way
pseudoknots are represented solely by the alignment of properly-nested X; ; pairs and
properly-nested Y; ; pairs. Since RNA structure permits any nucleotide position % to pair
with any other position j, a valid biological structure requires a complete assignment of
all X; jsandY; ;s forevery ¢, j (0 < 4, j < length(sequence)). Therefore, the number
of solution variables, the number of resultant constraints, and thus the difficulty of the
SAT problem depends directly on the sequence length of the input RNA.

Structural Constraints. The structural representation places requirements on the as-
signment of the solution bits X; ; and Y; ; to ensure a biologically consistent structure.
Therefore, we declare the following constraints, which must be satisfied in any valid
solution:

Every position ¢ can at most pair with one other position j, independent of whether
that pairing is properly-nested or a pseudoknot (Figure [I{a-d)). Four straightfor-
ward constraints ensure this:
Vi, gk, i<j<k
(Xij AXje) =F A (Yij AYjr) =F A
(Xij AYje) =FA(Yij AXjr) =F
— All base-pairs 4, j are properly nested or a pseudoknot, but not both (Figure[I(e)):
Vi,j (XijNYij) =F
— We define all X; ; and Y; ; base-pairs to be independently knot-free (Figure[Ilf-g)):
Vi, g, k1, i<k<j<l
(Xig AN X)) =F A (Yij AYyy) =F

— We only permit bifurcations within the “normal” base-pairs in X; ; since pseudo-
knots are rare and deserve distinct energetic treatment. Therefore (Figure [[((h):

Vi,jkl,i<k<j<l (Yi;AYy)=F

— Finally, the class of structures with “double-crossing” pseudoknots are rare and
present unusual energetics which are not handled by the energy model we use, thus
we constrain pseudoknots to only cross at most once (Figure [[(i-)):

Vi, g, k,l,m,n, i<m<j<k<n<l
(Xi,j A Ym,n) - (Xk,l = F) AN
(Xk,l A Ym,n) = (Xi7j = F)



150 V. Ganesh et al.

Energetic Constraints. The total energy of an RNA structure is defined as the sum of
experimentally-derived energy parameters [26/20] for every constituent base-pair stack,
where a stack indicates two adjacent base pairs, e.g. X; ; and X; 11 ;1. Energy param-
eters are given in terms of base-pair stacks because nucleotide 7-orbital overlap serves
as a dominant stabilizing factor in RNA structure. Thus, an energy value is assigned to
every base-pair stack X; ; X;11 ;1 according to the four nucleotide types at sequence
positions 4, j, ¢+ 1, and 7 — 1 (Parameters found in [[20]). By including a logical adder of
all possible energetic assignments, we can then define a valid solution as an assignment
of X; ; and Y; ; (subject to structural constraints), where the output of the adder over-
comes some minimum threshold energy Eipreshorq (the energy bound). As a logical
declaration, we write:

Vi j, i <j (XijAXiy15-1) =T = (Ex, ; = EnergyConstant(; j41,j-1)) A
(Yij ANYig1j-1) = T = (By,; = EnergyConstant(; j1,;-1)) A
(Xij AN Xig1,j-1) =F = (EX =0) A
(Yij AYip15-1) = F = (By,, =0),

where EnergyConstant(i,j,i+ 1,7 — 1) indicates the energy score of the four nu-
cleotides found at positions 4, 7, 2 + 1, and j + 1 base-pairing and stacking, and

Z(EX1, + EY,,,j) > Einreshold-
Vi, j

Finally, to enforce that all assigned base-pairs are accounted within the adder by stack-
ing energy parameters, we require:

Vi,j st i<j
(Xic1jm1 A Xij AXigrj-1) =F A
Yicrju1 AYij AYipr 1) =F

E e g -—’—
B B S

x TN N x
ﬂo wo ® movo %o
ij

Fig. 1. RNA Constraints
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4 Experimental Results

In this section we describe the results of our experimental evaluation of Lynx and com-
peting approaches over input tests obtained from a set of RNA sequences. As described
in detail in3 we solve the two dimensional RNA optimum structure prediction problem
(where the structures may have pseudoknots). We ran all experiments on a 3GHz Intel
Xeon X5460 with 64GB of RAM and a 6MB L2 cache with 1 hour timeout per SAT
1nstance.

4.1 Description of Input Tests

We acquired a set of benchmark RNA sequences and structures from the PseudoBase
website [1l]. These RNA sequences are widely used by computational biologists for a
variety of structure prediction tasks. The biological accuracy of our lowest-energy struc-
ture predictions were verified to agree with Kato, et al. [20], whose scoring model we
duplicate. Recall that the optimization problem is treated as a series of decision prob-
lems performing a binary search of the energy space. For each RNA sequence, a cor-
responding SAT instance is therefore constructed containing the energy and structural
constraints along with an energetic bound that captures the minimum and maximum al-
lowed energy for that step in the binary search. Given the precision of our energy model
a search depth of 10 sufficed to identify the minimum energy structure of any structure
tested.

4.2 Experimental Methodology
We solve the structure prediction problem using the following three methods:

— Baseline Approach Using CryptoMiniSat (BA): A standard encoding of our prob-
lem in SAT. We generate the complete SAT encoding (with XOR clauses as appro-
priate) of the RNA secondary structure prediction problem, then use CryptoMiniSat
to solve this problem. We also used MiniSat2 [9]], and found that for this problem
its performance is similar to CryptoMiniSat [23]].

— Offline Abstraction Refinement (OFFA): An encoding of our problem using es-
tablished refinement techniques. Starting with only the energy constraints from the
SAT encoding of the RNA structure prediction problem to form the abstracted con-
straint, we use offline abstraction refinement to obtain a solution to the complete
structure prediction problem. Each refinement step uses CryptoMiniSat to solve the
current SAT problem, computes the set of constraints from the complete structure
prediction problem that are inconsistent with this solution, and generates a new
problem by incrementally adding these constraints to the current problem in SAT.
The refinement process continues until it produces a solution to the complete input
problem.

— Online Abstraction Refinement (ONA): The methodology enabled by our tool
Lynx. Starting with only the energy constraints from the SAT encoding of the RNA
structure prediction problem to form the abstracted constraint, we use online ab-
straction refinement to obtain a solution to the complete structure prediction prob-
lem. After each CryptoMiniSat propagation step, the constraint manager examines
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the current partial solution to find the set of constraints from the full structure pre-
diction problem that conflict with the current solution. It then incrementally adds
these constraints to the current problem before CryptoMiniSat takes the next par-
tial solution step. The difference between the Offline (OFFA) and Online (ONA)
approaches is the granularity of the refinement steps. Each refinement step in the
OFFA version takes place only after CryptoMiniSat produces a complete solution
to the current problem. Each refinement step in the ONA version, in contrast, takes
place at the much finer granularity, every time CryptoMiniSat extends the current
partial solution.

Table 1. Comparison of running times between Baseline (BA), Offline (OFFA), and Online
(ONA) methods. Total cumulative time (across all solver instances during search) is reported,
broken down by the amount of time spent in the SAT solver versus the amount of time spent in
refinement. The number of refinement steps involved is also given. T.O. indicates that a timeout
occured after 1hr of an individual SAT solver instance.

RNA

PKB115
PKB102
PKB119
PKB103
PKB123
PKB154
PKB152
PKB126
PKB124
PKB100
PKB105
PKB118
PKB120
PKB065
PKB205
PKB147
PKB248
PKB072

sequence Baseline Offline
length (sec) Tot(sec)=SAT+Ref (# steps)

24
24
24
25
26
26
26
27
29
31
32
33
36
46
48
51
66
67

4.3 Results

1.4 1.7 = 1.3+0.4 (205)
1.3 1.0 =0.7+0.3 (129)
2.1 3.6 =3.0+0.6 (266)
3.1 6.6 =5.4+1.2 (417)
5.6 24.7 =22.7+2.0 (597)
2.5 3.8 =3.2+0.6 (236)
3.2 6.2 =5.2+1.0 (255)
4.0 6.6 =5.5+1.1 (384)
4.7 5.1=4.4+0.7 (262)
11.0 52.3 =49.4+2.9 (315)
17.0 58.3 = 54.0+4.3 (1004)
13.7 32.8 =29.6+3.2 (591)
36.1 571.1 = 560.6+10.5 (652)

Online

Tot(sec)=S AT+Ref (# steps)
0.8 =0.6+0.2 (2,538)

0.6 = 0.5+0.1 (1,766)

1.6 = 1.3+0.3 (4,108)
3.5=3.1+0.4 (6,191)
7.4 = 6.8+0.6 (8,980)

1.9 = 1.74+0.2 (4,070)
2.3 =2.0+0.3 (5,528)
2.8 =2.5+0.3 (5,874)
2.3=2.1+0.2 (4,635)
6.8 = 6.0+0.8 (11,890)
18.1 = 17.0+1.1 (16,817)
8.2 =7.4+0.8 (12,878)
24.1 =21.9+2.2 (26,370)

185.1  11,341.9 = 11,298.7+43.2 (1,344) 112.7 = 108.1+4.6 (50,508)

388.6 T.O.
1,917.3 T.O.
T.O. T.O.
5,352.6 T.O.

391.6 = 381.9+9.7 (72,922)
1,087.9 = 1,067.2+20.7 (131,321)
T.O.

2,414.1 = 2,367.6+46.5 (286,881)

Table [ presents the total execution times required for the different methods to solve
the RNA structure prediction problems. We ran each method with a timeout of 3600
seconds for each SAT solution problem (i.e., each binary search step). Each row in the
table corresponds to a single RNA. The first column is the number of base pairs in the
RNA sequence. The next column presents the time (in seconds) required for the BA
method to solve the problem. Recall that each problem requires the solution of 10 SAT
instances; the reported total time is the sum of the 10 individual SAT solution times.
The next column presents data from the OFFA method and is of the form ¢ = s + ¢(r).
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Table 2. Comparison of memory usage between Baseline (BA), Offline (OFFA), and Online
(ONA) methods. Given is the maximum memory (in MB) required throughout all SAT solver
instances, along with the sum of the total number of clauses (in thousands) both input and gen-
erated during refinement. T.O. indicates that a timeout occured after lhr of an individual SAT
solver instance.

RNA sequence  Baseline Offline Online

length Mem(MB) / Clauses Mem(MB) / Clauses ~ Mem(MB) / Clauses
PKB115 24 5.0/ 3,223k 5.0 / 94k 72.1/ 82k
PKB102 24 5.0/3,219k 5.0 / 86k 5.0/ 75k
PKB119 24 5.0/ 3,240k 5.0/ 130k 5.0 / 104k
PKB103 25 5.0/ 4,142k 16.5 /174k 5.0/ 136k
PKB123 26 43.4 / 5,244k 19.7 / 226k 74.7 / 168k
PKB154 26 5.0/ 5,204k 5.0/ 128k 5.0 / 106k
PKB152 26 5.0/ 5,220k 16.6 / 174k 5.0/ 128k
PKB126 27 72.1/ 6,544k 74.5/ 171k 5.0/ 129k
PKB124 29 5.0/ 10,076k 5.0/ 142k 5.0/ 108k
PKB100 31 90.5/ 16,937k 23.9/ 376k 90.0 / 231k
PKB105 32 157.4 / 20,584k 75.9 / 448k 95.7 / 260k
PKB118 33 131.9 / 24,870k 23.2/ 355k 22.8/227k
PKB120 36 276.0 / 42,698k 76.7 / 729k 75.3 / 369k
PKBO065 46 1,011.8 / 196,236k 150.6 / 341k 122.9 / 595k
PKB205 48 1,221.3 / 255,861k T.O. 1