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Abstract

Over the past decade a growing number of high resolution, three-dimensional, X-ray
computed tomography images of multiphase porous media systems have become available,
as have the number of algorithms to analyze both the pore space and the fluid partitioning
imaged within the voids. Here we consider the measurement of fluid-fluid and fluid-solid
surfaces at residual fluid conditions in a Berea sandstone sample. 3D reconstructions of the
residual fluid blobs show qualitative behaviour which is in agreeement with conventional
wisdom. We consider the measurement of fluid-solid contact angle via such images. We
elucidate the challenge in identifying triple points (points with three phases in contact)
and describe an algorithm for contact angle measurement. Results from application of the
contact angle algorithm indicate the ability to distinguish wetting and non-wetting fluid
blobs and reveal satisfactory agreement with experimental wettability measurements.

1. Introduction

Accurate geometrical information on fluid-fluid and fluid-solid interaction at the pore
scale is crucial in understanding fluid displacement. In recent years, X-ray computed
tomography (CT) technology [Flannery et al., 1987] has been extended to the ability to
contrast fluids in the pore space of core samples [Seright et al., 2002, 2003; Turner et al.,
2004; Wildenschild et al., 2002, 2005; Al-Raoush and Willson, 2005; Prodanovic et al., in
press], and therefore to the study of fluid partitioning in the 3D pore space. 3D studies can
help illuminate the fluid competition mechanisms at the pore level. The measurements
obtained from such studies contribute naturally to network flow model computation, an
important tool for predicting flow at the core scale.

In extensive studies of Berea sandstone fluid displacement experiments [Prodanovic
et al., in press; Seright et al., in press], we presented results on oil and water partitioning
in the pore space at residual fluid conditions, as well as the effects on residual fluid
distribution due to the injection and gelation of a water-based gel. Here we analyze the
residual fluid blobs from that Berea experiment. We focus on a representative subvolume
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of the imaged core and categorize volumetric and surface features of all residual fluid blobs
located in the subvolume. While a few residual fluid blobs studies have been reported
in the literature for sphere packs, either from X-ray tomography [Culligan et al., 2004;
Al-Raoush and Willson, 2005] or from solidified residual phase [Chatzis et al., 1983], to
our knowledge ours is the first systematic study of residual fluid blobs in a naturally
occurring, consolidated porous medium.

We focus our attention on the ability to measure contact angles from CT images. We
present a robust algorithm for contact angle determination based on fluid surfaces re-
construction from segmented images and apply it to the Berea sample. The algorithm
represents the addition of a valuable tool to complement existing wettability measure-
ments.

Before discussing effects, specific to our image based procedure, that affect the accuracy
of contact angle measurement, we note that there are three physical effects which lead to
the expectation that a range of contact angles will be observed when making measurements
from fluid displacement in core samples.

1. As time required for collecting a CT image is much longer than flow time-scales, CT
imaging must occur at static flow conditions, e.g. residual conditions. Although the core
may be imaged at residual drainage conditions, in the static image there is no knowledge
whether, during the approach to residual conditions, a specific (part of) a fluid surface
was in fact locally advancing or receding. Thus contact angle hysteresis would predict
more than one contact angle.

2. Contact angles are defined from a force-balance equation (Young’s equation) applied
at a fluid-fluid-grain triple contact. Experimental measurements of contact angle have a
length-scale component of “irreproducibility” due to surface roughness [Morrow, 1975].
Measurement of contact angle size can vary if two separate length scales (e.g. mm vs.
µm) are applied to measure angles at a given triple-point.

Figure 1. A wetting fluid blob traversing a corner in a non-flat solid sur-
face. The interface arrives at the left side of the corner with the contact
angle θ (left); the contact angle increases during a pinning period under
which the meniscus swings but the triple point remains fixed (center); the
interface leaves the corner when the angle reaches the value θ with respect
to the right side (right).

3. Difficulties with surface regularity dependence have lead to standards for experimen-
tal measurement of contact angles; specifically to employing highly polished, planar, solid
surfaces. (The contact angles associated with the two fluids involved will therefore sum to
180 degrees.) This will not be the case with grain surfaces contacted in real porous media.
As shown on Fig. 1. and discussed in detail by Lindquist [in press], the contact angle
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experiences a range of values during a period of “pinning” when a fluid-fluid meniscus
swings around a corner of the solid surface.

2. Experimental Procedure

The image sequence analyzed here has been studied previously. For continuity, we
briefly review the experimental procedure from which the images were produced; we refer
the interested reader to Prodanovic et al. [in press] for greater detail.

A 6.5 mm diameter, 35 mm length core was taken from a larger Berea sample having
bulk absolute permeability 0.464 µm2 (0.47 Darcy) and porosity 22%. Experimentally
determined Amott-Harvey wettability indexes taken on similar Berea cores have values
ranging from 0.5 to 0.8, with an average value of 0.7. The core was saturated with
brine containing 1% NaCl and 0.1% CaCl2 and imaged at the tomographic facility on
the X2B beam line [Deckman et al., 1991] at the National Synchrotron Light Source at
Brookhaven National Laboratory. Beam energy was 33.3 keV. A 2.52 mm long section
centrally located along the length of the cylindrical core was imaged at a voxel resolution of
4.93 µm. Using the experimental setup described by Seright et al. [2003], the core was then
successively imaged at residual fluid conditions occurring during a sequence of floods. The
experimental apparatus enabled the sequence of fluid injections to be performed without
removing the core from the mounting stage. After each image, the rock core was rotated
back to its initial position allowing for one-to-one voxel correspondence between the initial
and subsequent images.

The fluid injection sequence was: 35 pore volumes (PV) of oil; 70 PV of brine; 10 PV of
aqueous gelant; 20 PV of oil; 2.5 PV of brine. Fluid was injected with a pressure drop of
117.2 kPa across the length of the core. After gel injection, but before imaging, the core
was heated to ∼ 60◦C for 12 hours to effect gelation. The aqueous gelant was Cr(III)-
acetate-HPAM (hydrolyzed polyacrylamide) consisting of (by weight) 0.5% Alcoflood 935
HPAM, 0.0417% Cr(III) acetate, 1% NaCl, and 0.1% CaCl2. The oil was hexadecane
doped with 10% (by weight) iodohexadecane. The addition of iodohexadecane to the
hexadecane improves the X-ray attenuation contrast between the oil and water phases (at
the cost of severely reducing contrast between the oil and solid phases). All experiments
were performed at room temperature except during gelation. The fluid viscosities were:
brine - 10−3 mPa-s (1 cP), hexadecane - 3.3 · 10−3 mPa-s, gelant - 20 · 10−3 mPa-s.

For purposes of reference, the sequence of images will be identified as sw (brine saturated
core), swr (residual brine after oil flood), sor (residual oil after brine flood), gel (post gel
placement), gelswr (residual brine from oil flood post gel placement), and gelsor (residual
oil from brine flood post gel placement).

We note that the driving pressure gradient was reduced to zero before each residual
fluid-condition image was acquired. Thus there is the expectation of local relaxation of
the meniscus, which may, in fact, tend to reduce contact angle variation due to pinning.

3. Image Analysis

Our geometrical analysis of the CT images is based upon improvements and extensions
to the 3DMA-Rock software package [Lindquist, 1999]. The algorithms utilized to analyze
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fluid partitioning include fluid/grain and fluid/fluid segmentation, fluid-fluid and fluid-
solid interface reconstruction, and the statistical description of the fluid partitioning at
the scale of individual pores.

3.1. Segmentation. For segmentation, we employ an indicator kriging algorithm [Oh
and Lindquist, 1999] which produces a voxelized interface (i.e. an interface that is the
union of voxel faces) between two phases. By design, the kriging algorithm is a bi-phase
segmentation algorithm; it segments phase P from its complement P c. Thus segmentation
of n phases can be achieved in n − 1 applications of the segmentation algorithm.

The three phase (solid, oil and brine) segmentations needed were achieved as follows.
The core was initally saturated with a wetting fluid (brine) and imaged. Subsequent
images contained both oil and water phase in the pore space. The segmentation of the
solid phase is performed on this first (two phase) brine saturated image; the solid phase
location in subsequent images in the flooding sequence is inherited from its location in
the first. In the subsequent images, the indicator kriging algorithm is applied only to the
pore (non-solid) space to perform the segmentation of the occupying two fluid phases.

Segmentation produces false-positive and false-negative errors, which are somewhat
easier to correct in solid-void segmentation than in fluid-fluid segmentation. In solid-
void phase segmentation, false positives appear as isolated clusters of (apparent) grain
phase voxels. Detached grains are clearly unphysical and may be due to misidentified
void voxels (false positives) or because a narrow connecting grain “bridge” is below voxel
resolution and the voxels comprising the bridge are identified as void (false negatives). We
handle detached grains by converting them to void phase. Similarly, isolated clusters of
pore space voxels are produced either by misidentified grains (false negatives) or because
narrow connecting void tubes at sub-voxel resolution are lost. While isolated pores are
physical, they cannot contribute to fluid motion; for all practical purposes they can be
converted to grain phase. In practice, such conversions change the overall porosity by a
minor fraction of a percent.

In segmenting fluids, these arguments do not apply. However, while segmentation may
produce significant numbers of isolated blobs of either fluid phase, in practice such blobs
occupy a negligible fraction of total pore space. We therefore choose to retain all fluid
phase blobs. In our analysis, however, we impose a minimum fluid blob size requirement
to protect our results from segmentation errors and finite resolution effects.

In computing connectivity of either fluid phase, it is important to choose and retain
a 6-connected, 26-connected distinction between the two phases. We treat the wetting
phase (brine) as 26-connected and the non-wetting phase as 6-connected. The identifica-
tion of each individual blob of a fluid phase is achieved via grassfire algorithm (of the
appropriate connectivity). Interior blobs are those not connected to the volume boundary.
We compute the number, location and size of the individual blob of each fluid phase.

3.2. Interphase surfaces generation in three phase images. Voxelized surfaces are
well known to be poor reconstructions of true surfaces; triangulated surfaces produce
superior reconstructions. A triangulated interface between two phases in a volumetric
image is most commonly determined by the marching cubes algorithm [Lorensen and Cline
, 1987]. The key idea of the marching cubes algorithm is as follows: if two neighboring (in
a 6-connected sense) voxels belong to two different phases, the interphase interface must
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intersect the straight line joining the respective voxel centers. This point of intersection is
identified as a vertex of the interphase surface. In a voxelized image, these surface vertices
can be connected in a consistent triangulation proceeding cube-by-cube, where each cube
consists of 8 neighboring voxel centers (hence the “marching cubes” designation). In a
grey-scale image, the surface vertices can be chosen to follow any particular intensity
contour; in a segmented (binary) image, the surface vertices are normally chosen to follow
the 0.5 contour (i.e. the vertex is always at the midpoint between two voxel centers).

The application of marching cubes to locate interphase surfaces in porous media was
introduced by Dalla et al. [2002]. The authors verified the algorithm on digitized repre-
sentations of analytically known solid surfaces (sphere packs). The work identifies two
sources of error, (1) sphere digitization effects and (2) systematic surface vertex position-
ing errors (i.e. systematic use of the midpoint between two voxel centers to position a
surface vertex). Increasing the resolution of the digitization (decreasing voxel size) re-
duces the first type of errors; however, the second error cannot be similarly eliminated.
For the surface area of a single sphere, the relative error due to the second source is never
smaller than 8.4%.

As we deal with images at a fixed voxel resolution, both sources of error come in to play,
and can be especially large for estimating surfaces of blobs comprised of small numbers
of voxels.
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water voxel centers
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Sw \ (Sg U So)

Sg − grain phase boundary

Sw − water phase boundary
So − oil phase boundary
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Sg      SoU

Sg      SwU

Figure 2. A 2D example of the surface separating three phases as deter-
mined by the marching cubes algorithm. The grain phase boundary, Sg, is
the union of the cyan, blue, and magenta lines; the oil phase boundary, So,
is the union of the cyan, green, and yellow lines; the water phase boundary,
Sw, is the union of the yellow, red, and magenta lines. The triangular region
bounded by the red, green and blue line segments is “exterior” to all three
phases and represents the digitized version of a triple-contact line (point).

We note that the marching cubes algorithm is a two-phase surface finding algorithm;
it locates the surface between phase P and P c. Consider an image consisting of a grain
phase (G) and two fluid phases, oil (O) and brine (W ). Let Sg denote the interphase
surface between G and Gc as determined by marching cubes. Surfaces So and Sw are
defined analogously. Fig. 2. illustrates (in 2D) the problem with finding three-phase
contact lines when employing marching cubes; the three surfaces do not meet along a line
of three-phase contact. Rather the surfaces isolate a finite volume of unclassified phase.
The presence of this unclassified phase region complicates estimation of fluid-grain contact
angles since the oil-water interface, So ∩ Sw, (yellow line in Fig. 2.) does not extend to
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the grain phase boundary. Fig. 3. provides a three dimensional view of this problem for
a single oil blob.

a) b)

Figure 3. a) View of a single oil blob extracted from the image swr. Colors
correspond to the legend in Fig. 2.: magenta - the area of the blob surface in
contact with grain; yellow - the area in contact with water; red - the ribbon
of triangles in contact with a region of indeterminate phase. b) A magnified
view of a portion of the surface, with surface triangle edges outlined for
clarity. The red strip of triangles separates the oil-water surface from the
oil-grain surface, preventing a direct measurement of oil-grain contact angle.

4. A contact angle algorithm

We describe an algorithm that approximates the fluid-fluid-solid contact angles by
extending the triangulated surface Sow to Sg.

For notational compactness we denote surface intersection as SAB := SA ∩ SB. and
surface exclusion by S̄A := SA\(SB∪SC) for any three distinct phases A, B, C ∈ {o, w, g}.
Triangulated surfaces consist of vertices, edges and triangles. Two vertices are considered
adjacent if they are joined by an edge; two triangles are considered adjacent if they share
an edge. We assume consistently oriented surfaces; when surface SA is produced by the
marching cubes algorithm, its triangles are consistently oriented with the normals of all
triangles pointing outwards from phase A. The marching cubes algorithm guarantees
that, where the two surfaces SA and SB intersect, the triangle vertices of the two surfaces
align perfectly but the adjacency structure of the vertices (i.e. their organization into
triangles) may differ. The triangle normal directions will also be opposite for the two
surfaces. Thus we take the triangles and their normals on the surface intersection SAB to
be inherited from SA, and the triangles and their normals on SBA to be inherited from
SB.

We have implemented the following algorithm using the triangulated surface library
GTS (available at http://gts.sourceforge.net/index.html/).
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Contact Angle Algorithm for an Oil-Water Surface

(1) Traverse the set V consisting of all vertices v on the intersection curve S̄o ∩ Sow

(e.g. the curve of intersection of the red and yellow surfaces in Fig. 3. b)).
(2) For each v:

(a) Find Tow, the set of all triangles from Sow adjacent to v. Let ~now be the
average of all triangle normals in Tow.

(b) Find the set Wv of all vertices w on the intersection curve S̄o ∩ Sog that are
adjacent to v.

(c) Let Tog be the set of all triangles from Sog that are adjacent to any vertex in
Wv. Let ~nog be the average of all triangle normals in Tog.

(d) Compute θo = ∠(~now,−~nog).
(3) Analogously, find θw for each vertex v′ on the intersection of surfaces S̄w and Swo.

This set V ′ of vertices is, for the most part, the same as V .
(4) Each vertex in V ∩ V ′ has a computed value for both θo and θw. Scale the two

angles as follows:

θos =
θo

(θo + θw)
· 180, θws =

θw

(θo + θw)
· 180.

(5) Let θ̄o denote the value of θos averaged over all vertices in V ∩ V ′. Compute θ̄w

analogously.

We consider θ̄o and θ̄w to be measures of the oil-solid and water-solid contact angles for
the fluid blob in question. The scaling in step (4) attempts to correct for the measured
contact angles for the non-planarity of the surface, as discussed in §1.

While the algorithm is stated for an oil-water surface, it can be obviously generalized
for any two fluids.

4.1. Algorithm validation. There are a number of factors which combine to potentially
limit the ability to determine contact angles from CT images. These include truncation
effects due to finite voxel size, segmentation error (void/grain and fluid/fluid), and limita-
tions of the marching cubes surface construction noted above. The contact angle algorithm
presented above directly addresses the lack of triple-contact lines in the (union of the)
marching cubes surfaces. There is however also the concern noted by Dalla et al. [2002] of
a systematic error due to the fact that marching cubes places surface vertices only at mid-
points between two voxels. This will limit the range of triangle orientation with respect
to the coordinate axes (and therefore limit the measureable range of contact angles).

We have validated the contact angle detection algorithm with the following test.

Validation Test

Let Z denote the integers. Then (i, j, k) ∈ Z3 denotes a voxel location in a digited
space where unit distance is given by voxel length.

(1) Consider the digitized sphere S, radius r (r ∈ Z) centered at C = (xc, yc, zc) ∈ Z3

which approximates the continuum sphere

f(x, y, z) := (x − xc)
2 + (y − yc)

2 + (z − zc)
2 − r2 = 0 .
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(2) Consider the plane P through C given by

h(x, y, z) := a(x − xc) + b(y − yc) + c(z − zc) = 0 .

Identify sets of grain (G), oil (Fo) and water (Fw) voxels by

G = {(i, j, k) : h(i, j, k) ≤ 0},

Fo = {(i, j, k) : h(i, j, k) > 0 and f(i, j, k) ≤ 0},

Fw = {(i, j, k) : h(i, j, k) > 0 and f(i, j, k) > 0}.

The set Fo of oil voxels forms a digitized hemispherical blob.
(3) Translate P along its normal direction (a, b, c) in discrete units of distance. Under

each successive translation, the set Fo becomes a smaller digitized sphere “cap”,
disappearing when P is translated r units. At each discrete position, the contact
angles for the fluid phases Fo and Fw are determined using the contact angle
algorithm in §4.

Figure 4. Measured contact angle θ̄o for the Fo “blob” as a function of
translation distance for the plane P (translation distance is normalized rel-
ative to r) for three orientations (abc) of P.

Fig. 4. summarizes computed results for the blob contact angle θ̄o for three choices
of plane orientation. If P is aligned with the coordinate axes (left plot), the smallest
measurable angle for θ̄o is approx. 45 degrees (regardless of the resolution, i.e. the radius
of the sphere). If P is not aligned with the grid (remaining plots) all measured angles
are roughly within 10 degrees of the analytic one. In CT images of fluid blobs in geologic
media, the random shapes and orientation of the pore spaces imply that the second two
plots are more typical occurrences.

5. Results

To minimize against segmentation-induced misidentification errors, we consider only
interior blobs of volume 103 voxels (0.00012 mm3) or larger. The blobs were isolated from
a 2563 voxel subregion of a larger Berea image. Table 1. summarizes information on the
blobs isolated in each image of the sequence. While the minimum volume threshold is
somewhat arbitrary, choice was guided by the desire to minimize segmentation errors (as
elaborated in §3.1) as well as to visualize blobs and categorize their behavior.
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Table 1. Overall fluid saturations obtained from image analysis and the
number of interior residual blobs with minimum size 1000 voxels.

number of blobs largest blob volume

(10−3 mm3)

sw so water oil water oil

swr 20% 28 2.97

sor 16% 58 1.22

gel 43% 45 9.71

gelswr 29% 33 1.42

gelsor 55% 21 1.70

a) b)

Figure 5. a) Two views of a typical water blob at water residual conditions
swr. The blob volume is 1.95 · 10−4 mm3. The water-grain contact surface
is colored in gray; and water-oil mensicus is green. b) A typical oil blob
extracted at oil residual conditions sor. The blob volume is 2.57 · 10−4 mm3.
The oil-grain contact surface is gray; the oil-water meniscus is red.

Using 3D graphics, visual examination of individually identified fluid blobs1 reveals the
following generalizations. A typical water blob (Fig. 5. a)) occupies at least one throat
region, and its surface is topologically cylindrical. The water blob surface consists of
water-grain contact and a water-oil meniscus. A large area of the water-oil meniscus
tends to “follow” the water-grain surface closely (film-like behaviour). A typical oil blob
(Fig. 5. b)), on the other hand, occupies a significant fraction of a pore, and the blob
surface is rarely a topological cylinder.

These qualitative differences are quantified by the measurements shown in Fig. 6. Values
of surface area to volume ratios (for all blobs of sufficient size) are presented in Fig. 6. a).
The data show that residual water blobs have consistently larger surface area to volume
ratio (230.52 mm−1 on average) than do residual oil blobs (129.88 mm−1 on average).
The fraction of the blob surface in contact with grain (Fig. 6. b)) is higher for residual
water blobs (water blobs’ average 0.62, oil blobs’ average 0.49). Fig. 6. c) plots the ratio

1A gallery of the fluid blob images is available at http://www.ices.utexas.edu/∼masha/blobs/main.html
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a) b) c)

Figure 6. a) Surface area to volume ratio for blobs from the Berea ex-
periment. Measurements from residual water blobs are marked green, from
residual oil blobs are red. b) Blob-grain contact area (normalized to total
blob surface area) for the same blobs. c) Values of the ratio of oil-water
meniscus area to blob-grain area.

of grain contact to fluid-fluid meniscus area for the blobs. For residual water blobs, the
average ratio is 4.49; more than twice that of the residual oil blob ratio of 2.0.

Figure 7. Measured oil, θ̄o (red), and water, θ̄w (green), contact angles
for each residual blob identified at each residual flow condition. For each
blob, we plot the mean and standard deviation of the water and oil angle
along the surface contact with the solid.

The contact angle algorithm was applied to the surfaces of this set of blobs. Values of
contact angle determined for each blob at each residual fluid condition are summarized
in Fig. 7. For each image, the mean values (over all blobs) of the measured water-grain
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Table 2. Measured mean contact angles (in degrees).

Image swr sor gel gelswr gelsor
water-grain 68 ± 30 65 ± 26 68 ± 27 71 ± 30 71 ± 29

oil-grain 112 ± 30 115 ± 26 112 ± 27 109 ± 30 109 ± 29

and oil-grain contact angles are shown in Table 2. Water (wetting) and oil (non-wetting)
contact angles are well distinguished. Due to rather large standard deviations we cannot
state any shift in the contact angles before and after gel. We note that changing the
connectivity of fluids (i.e., assuming water phase to be 6-connected and oil phase to be
26-connected) affects somewhat the number and sizes of fluid blobs, however the measured
contact angle averages and standard deviations remain stable under such a change.

6. Discussion

We have shown that X-ray tomography, with voxel resolution of 5 microns, can be used
to reconstruct fluid-fluid-grain interfaces in images from core samples. Visual examination
of the images shows that the isolated blobs of residual fluid phase identified in these images
are positioned in the pore space according to conventional wisdom. We have demonstrated
an algorithm to extract measures of contact angle from such images, and shown that
results obtained are sufficient to differentiate between wetting and non-wetting phases.
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