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Abstract

Theories of visual object recognition must solve the problem of recognizing 3D objects
given that perceivers only receive 2D patterns of light on their retinae. Recent findings from
human psychophysics, neurophysiology and machine vision provide converging evidence for
‘image-based’ models in which objects are represented as collections of viewpoint-specific
local features. This approach is contrasted with ‘structural-description’ models in which
objects are represented as configurations of 3D volumes or parts. We then review recent
behavioral results that address the biological plausibility of both approaches, as well as
some of their computational advantages and limitations. We conclude that, although the
image-based approach holds great promise, it has potential pitfalls that may be best overcome
by including structural information. Thus, the most viable model of object recognition may be
one that incorporates the most appealing aspects of both image-based and structural-descrip-
tion theories. 1998 Elsevier Science B.V. All rights reserved
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1. Introduction

It has been over a decade sinceCognitionpublished its special issue on ‘Visual
Cognition’ (Pinker, 1984a). That volume addressed topics such as mental imagery,
visual attention and object recognition. Since that time there has been tremendous
progress in each of these domains, but no where more so than in visual object
recognition. In 1984 relatively little was known about the nature of the mental

0010-0277/98/$19.00 1998 Elsevier Science B.V. All rights reserved
PII S0010-0277(98)00026-2

C O G N I T I O N

Cognition 67 (1998) 1–20

* Corresponding author. Tel.: +1 401 8631148; fax: +1 401 8632255; e-mail: Michael_Tarr@brown.edu



representations used in human object recognition. Cognitive neuroscientific meth-
ods were still in their infancy and computational models of recognition were based
primarily on Marr’s (1982) work. In 1998 we know much more about object recog-
nition through research in each of these domains. First, psychophysical studies have
revealed many facets of the amazing human capacity to recognize objects (Jolicoeur,
1985; Biederman, 1987; Tarr and Pinker, 1989; Bu¨lthoff and Edelman, 1992; Hum-
phrey and Khan, 1992). Second, a wide range of neuroscientific methods have been
used to investigate the neural basis of object recognition in non-human primates and
brain-damaged humans (Perrett et al., 1987; Farah, 1990; Goodale and Milner, 1992;
Logothetis et al., 1995; Tanaka, 1996). Third, there have been significant advances
in the sophistication, robustness and ecological validity of computational models
(Poggio and Edelman, 1990; Ullman and Basri, 1991; Hummel and Stankiewicz,
1996b).

In this special issue we present recent work by some of the most creative scientists
studying the problem of visual recognition. Moore and Cavanagh take a classic
demonstration, the perception of ‘two-tone’ images, and turn it into a method for
understanding the nature of object representations in terms of surfaces and the
interaction between bottom-up and top-down processes. Tarr and Gauthier use
computer graphics to explore whether viewpoint-dependent recognition mechan-
isms can generalize between exemplars of perceptually-defined classes. Goodale
and Humphrey use innovative psychophysical techniques to investigate dissociable
aspects of visual and spatial processing in brain-injured subjects. Perrett, Oram and
Wachsmuth combine neurophysiological single-cell data from monkeys with com-
putational analyses to provide a new way of thinking about the mechanisms that
mediate viewpoint-dependent object recognition and mental rotation. Ullman’s
work also addresses possible mechanisms that may account for viewpoint-depen-
dent behavior, but from the perspective of machine vision. Finally, Schyns synthe-
sizes work from many areas, providing a coherent account of how stimulus class and
recognition task interact. What is notable is that this group of contributors brings
together a wide range of methodologies to a common problem. Moreover, much of
the work presented in this volume provides converging evidence for a common
approach – what we refer to as ‘image-based’ or ‘view-based’ recognition. The
key idea of the image-based approach is that object representations encode visual
information as it appears to the observer from a specific vantage point. Note that,
although such a claim is actually neutral with regard to particular types of features,
including pixel regions, shape contours, texture, etc., it does imply that features,
regardless of their content, are viewpoint-dependent. Consequently, the usefulness
of a given feature for recognition will diminish as that feature changes its appear-
ance with changes in viewpoint and overall recognition performance will be view-
point-dependent.

2. Models of recognition

The study of visual object recognition is often motivated by the problem of
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recognizing 3D objects given that we only receive 2D patterns of light on our retinae.
A commonly-held solution, popularized by Marr (1982), is that the goal of vision is to
reconstruct the 3D scene. Reconstruction assumes that visual perception is a hier-
archical process which begins with local features that are combined into progres-
sively more complex descriptions (also see Pinker, 1984b). Note that the types of
features used and how they are combined is completely deterministic. That is, parti-
cular types of features and the relations between them are pre-defined and used for
reconstruction across all images. Moreover, the presence or absence of a given
feature is absolute-there is no ‘middle ground’ in which there is partial or probabil-
istic evidence for a feature. Thus, lines are grouped into contours, contours into
surfaces, and surfaces into objects. At the endpoint of the reconstruction process
Marr and Nishihara (1978) assumed that viewer-centered descriptions (what Marr
termed ‘sketches’) are remapped into 3D object-centered representations. This final
step was motivated by Marr and Nishihara’s (1978) suggestion that object represen-
tations should be relatively stable, that is, they should generalize or be invariant over
changes in the retinal image. Otherwise, Marr and Nishihara argued, new, distinct
representations would be required for each small variation in the image of a given
object, e.g. for each change in 3D position, each change in illumination, etc. More
concretely, this meant that object representations should be object-centered rather
than viewer-centered-hence their conjecture that objects are represented as config-
urations of 3D parts or volumes.

Although there is a theoretical elegance to this approach, it has never been
obvious that recovering descriptions of 3D parts from 2D images is generally pos-
sible. Indeed, during the 1980s numerous machine vision researchers attempted to
implement reconstruction algorithms with only marginal success (Nalwa, 1993).
Thus, one argument that favors the image-based approach is that it does not require
reconstruction. Indeed, given that our visual systems are given viewer-centered
images as input, it would not be altogether surprising if visual recognition was
based on similar mental representations.

Notwithstanding these potential problems, Marr’s work has had tremendous
impact on the study of vision, and, in particular, helped to shift the focus of high-
level vision research from visual imagery (e.g. Kosslyn, 1980) to visual object
recognition during the 1980s. One of the most prominent theories to come out of
this era was the ‘Recognition-By-Components’ model (RBC) by Biederman (1987).
The RBC model built on Marr and Nishihara’s earlier work on object recognition,
proposing that objects are represented as collections of volumes or parts. What RBC
added, however, were additional syntactic constraints that specified the allowable
types of volumes, how such volumes might be recovered from 2D images, and the
types of qualitative spatial relations that connect such volumes. RBC also followed
the stricture that object representations should be stable and, consequently, proposed
that the configurations of parts that are used to describe objects are invariant across
changes in viewpoint (up to significant changes in the visible part structure (Bieder-
man and Gerhardstein, 1993)), illumination, and color (Biederman and Ju, 1988).
Thus, the RBC approach, often referred to as a ‘structural-description’ model, pro-
vides a computationally-elegant, but completely deterministic (i.e. the elements of
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the representation are pre-defined and such elements are either present or absent),
answer to the question of how human perceivers recognize objects across changes in
viewpoint.

Although RBC has been very influential, it is still not clear that any approach
that relies on the recovery of 3D volumes is robust enough to subserve general
object recognition. Moreover, the actual evidence for viewpoint-invariance in
human visual recognition (as predicted by RBC) is somewhat thin – the most
notable experiments that obtain viewpoint invariance for rotations in depth1 (Bie-
derman and Gerhardstein, 1993) having only limited generalizabilty to other recog-
nition tasks and stimulus sets (Hayward and Tarr, 1995; Tarr and Bu¨lthoff, 1995;
Tarr et al., 1997). In contrast, psychophysical and neurophysiological studies from
the late 1980s and early 1990s offer a somewhat different conclusion – under a wide
variety of experimental conditions, human object recognition performance is
strongly viewpoint-dependent across rotations in depth (Bu¨lthoff and Edelman,
1992; Edelman and Bu¨lthoff, 1992; Humphrey and Khan, 1992; Tarr, 1995). Con-
verging evidence for this result has come from single-cell recording studies in the
inferior temporal cortex of monkeys (Logothetis et al., 1995). From a computational
perspective this result is rather surprising because view-dependent object represen-
tations are necessarily less stable than view-invariant representations – yet the data
seem to imply that humans rely on image-based representations that are viewpoint-
dependent.

On the face of it, the image-based approach to recognition appears to be subject to
Marr and Nishihara’s criticism of viewer-centered models – that each distinct view-
point of an object necessitates a separate representation. What Marr and Nishihara
omitted was that the stability constraint only holds if there is no means for general-
izing from one image to another. For instance, if observers can compensate for
changes in viewpoint by a normalization process, they may be able to use a small
number of viewer-centered representations to recognize objects in any orientation in
space (i.e., a ‘multiple-views’ representation). Indeed, proponents of the image-
based approach have offered a variety of different mechanisms for generalizing
from unfamiliar to familiar views, including mental rotation (Tarr and Pinker,
1989), view interpolation (Poggio and Edelman, 1990) and linear combinations of
views (Ullman and Basri, 1991). Even more sophisticated (Ullman, 1998) and
neurally-plausible (Perrett et al., 1998) generalization mechanisms are presented
in this volume.

While generalizing over viewpoints has been accepted as one way of providing
stability within image-based models, generalizing over different instances of a per-
ceptually-defined class has been seen as a far more difficult problem (Biederman and
Gerhardstein, 1995). Consider that almost every behavioral study that has reported
viewpoint-dependent recognition has also used tasks in which subjects must discri-

1There are several studies that have obtained orientation invariance for rotations in the picture plane
(Corballis et al., 1978; Tarr and Pinker, 1990). This result, however, is not considered diagnostic for
theories of recognition in that there are both image-based and structural-description models that predict
recognition costs over changes in picture-plane orientation (Tarr and Pinker, 1989; Hummel and Bieder-
man, 1992).
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minate between visually-similar objects, not object classes. For example, subjects
might be asked to distinguish robins from sparrows, but not birds from cars. Thus,
there is little data that directly addresses the question of how basic-level (Rosch et
al., 1976) or entry-level (Jolicoeur et al., 1984) recognition is accomplished.
Although more specific recognition discrim-inations are no doubt important, it is
relatively uncontroversial that visual recognition most frequently functions at the
basic level. Moreover, with the exception of RBC theory, most models of human
visual recognition have failed to provide well-specified mechanisms for class-level
recognition. Image-based models seem particularly problematic in this regard-
because objects are represented as viewpoint-specific images it is assumed that
the representations are also specific to particular exemplars, not object classes.
The common claim is that image-based or view-based representations are templates
based on inflexible linear coordinates, and, as such, cannot accommodate the varia-
tions in image geometry that characterize different exemplars of a single object class
(Hummel, 1998). Indeed, as reviewed below, this is only one of several oft-cited
critiques of image-based models.

3. Evidence for the image-based approach

Criticisms that portray image-based theories as overly simplistic are no longer
tenable as arguments against such theories. This claim is supported by recent exten-
sions of the image-based approach (Edelman, 1995b; Beymer and Poggio, 1996;
Moses et al., 1996) and by the new work presented in this volume. While it is true
that earlier image-based models suffered because of simplifying assumptions (e.g.
locating features at fixedx, y coordinates in the image-plane), theorists were well-
aware of the problem. For instance, in one of the seminal papers on the image-based
approach, Poggio and Edelman (1990; p. 264) state that ‘The key issue of how to
detect and identify image features that are stable for different illuminations and
viewpoints is outside the scope of this paper...[the model] does not require thex,
y coordinates of image features as inputs: other parameters of appropriate features
could also be used...Recognition of noisy or occluded objects, using realistic feature
identification schemes, requires an extension of the scheme...’. What we have wit-
nessed over the past several years are serious attempts to extend the image-based
approach. For instance, Bricolo et al. (1997) employ features characterized by small
brightness regions that can be located at any position within the image, thereby
facilitating flexible object representations. Amit and Geman (1997) use similar
features, but relate the spatial positions of such features in a manner that allows
for a highly robust matching scheme. There have also been attempts to develop
models that use less local representations of shape. For example, Hayward and Tarr
(1997) found that observers were sensitive to both the metric and qualitative struc-
ture of image contours in 3D objects.

Concurrent with efforts to extend the image-based approach, there has been a
great deal of scrutiny regarding the biological validity of the structural-description
approach. In particular, a variety of labs has tested the specific predictions of RBC
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and related theories that posit the recovery of view-invariant parts. Behavioral
results suggest that such models offer only limited explanatory power. For example,
several studies (Bu¨lthoff and Edelman, 1992; Humphrey and Khan, 1992; Tarr,
1995) have demonstrated that, when subjects are trained to recognize novel objects
in a small set of viewpoints, not only are the generalization patterns viewpoint-
dependent, but, critically, they are related to the distance between an unfamiliar
test view and the nearest familiar view. Such results provide strong evidence for
object representations based on multiple image-based views matched to input shapes
through normalization processes. Supporting this claim, Logothetis et al. (1995)
trained monkeys to recognize novel objects similar to those used in Bu¨lthoff and
Edelman (1992). Recordings in the inferior temporal cortex of these monkeys reveal
‘view-tuned’ neurons, that is, cells that are preferentially active for specific instances
of these trained objects in specific views. Moreover, for a given object, Logothetis et
al. (1995) found that different neurons coded for different views, thereby providing a
multiple-views representation similar to that inferred from behavioral data. It should
be noted, however, that Logothetis et al. (1995) also found some evidence for view-
independent neurons for some objects. The question is whether such neurons arise as
a result of the derivation of truly viewpoint-invariant object representations or
because multiple view-tuned neurons simply feed into a single neuron.

As mentioned, one criticism of this body of results is that the stimuli used in these
experiments were typically drawn from a single visually-similar class, e.g. ‘paper-
clip objects’ (Bülthoff and Edelman, 1992) or ‘cube objects’ (Tarr, 1995; Fig. 1a).
In part due to this limitation, it is popularly held that both structural-description
and image-based models explain elements of human visual recognition. For exam-

Fig. 1. (a) The top pair of objects are drawn from the same visually-similar class (adapted from Tarr,
1995). (b) The bottom pair of objects are qualitatively dissimilar from one another in terms of both image
structure and parts (adapted from Hayward, 1998).
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ple, structural-descriptions providing categorical-level access and image-based
mechanisms providing within-class or exemplar-specific level access (Jolicoeur,
1990).

Why then can we claim that current empirical results strongly support image-
based models and provide little evidence for view-invariant models? The answer
lies in a series of recent behavioral studies based on critiques of image-based
studies (Biederman and Gerhardstein, 1993, 1995). Specifically, Biederman and
Gerhardstein (1993) proposed three ‘conditions for invariance’ claimed to be ‘typi-
cal’ of human object recognition. Briefly, the conditions are that: (i) objects
must be decomposable into parts; (ii) each object in the recognition set must be
composed of a distinct configuration of parts; (iii) different viewpoints of the same
object must show the same configuration of parts. These conditions attempt to
exclude almost all earlier studies, e.g. Bu¨lthoff and Edelman (1992) and Tarr
(1995), from consideration as diagnostic of visual recognition. In response to this
critique, researchers began to test recognition performance using experimental
designs that satisfied Biederman and Gerhardstein’s conditions. In particular, each
target object is qualitatively different from the other objects in the recognition set
(Fig. 1b). Results in these studies strongly support image-based models. In almost
every case, even given highly dissimilar objects, recognition performance has been
found to be viewpoint-dependent (Liter, 1995; Hayward and Tarr, 1997; Suzuki et
al., 1997; Hayward, 1998; Tarr et al., 1997, 1998); but see also Biederman and
Gerhardstein (1993).

4. Reconciling image-based and structural-description models

Recent empirical results seem to pose problems for a particular family of struc-
tural-description models, and, most notably, RBC. However, they do not indicate
that all approaches to structural-descriptions are invalid, only that we need to rethink
what kind of structural knowledge is encoded. Indeed, a major goal of vision scien-
tists should be to develop models that provide robust accounts of human perfor-
mance within a combined image-based/structural-description framework (insofar as
the preponderance of behavioral data supports such a framework and that there are
computational advantages to both approaches).

What are the challenges in developing such an approach? First of all, we must
consider the fact that the spectrum of results measuring viewpoint dependency
ranges from almost complete viewpoint invariance (Biederman and Gerhardstein,
1993; Tarr et al., 1998) to extreme viewpoint dependence (Bu¨lthoff and Edelman,
1992; Humphrey and Khan, 1992; Tarr, 1995). What is not the case is that we see a
pattern across experiments in which there is simply either invariance or dependence.
Rather, depending on the homogeneity of the stimulus class and the particular
recognition task, we obtain relatively more or less of an effect (Edelman, 1995a;
Schyns, 1998). This is exemplified by the results of nine experiments reported by
Tarr et al. (1998). They found that under the specific conditions used by Biederman
and Gerhardstein (1993), i.e. match-to-sample recognition of qualitatively-distinct
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3D objects and response time feedback on each trial, recognition performance was
close to viewpoint-invariant. However, given a different recognition task, e.g.
sequential matching or naming, or no feedback, recognition of the same 3D ob-
jects was viewpoint-dependent. A viable model of recognition must account for
this continuum and the conditions under which different values along it are
obtained. Constraining any such account, several recent studies have tested some
of the conditions that appear to determine the degree of viewpoint invariance or
dependence. For example, Tarr and Pinker (1990) found that performance was
viewpoint invariant when subjects recognized 2D shapes that could be discrimi-
nated by a unique one-dimensional ordering of features, but was viewpoint-depen-
dent when the shapes could only be discriminated by using 2D relations between
features. Similarly, Tarr et al. (1997) found that the recognition of 3D objects
containing single unique parts was much less view-dependent as compared to the
recognition of objects containing multiple parts that had to be related to one
another.

Second, we must consider the fact that human perceivers are capable of recogniz-
ing objects at multiple categorical levels, ranging from basic-level (Bartram, 1976;
Jolicoeur, 1985; Biederman and Gerhardstein, 1993) to subordinate-level (Gauthier
et al., 1997) to item-specific (Bu¨lthoff and Edelman, 1992; Humphrey and Khan,
1992; Tarr, 1995) recognition. Models of recognition must account for how we
represent object information that supports multiple levels of access – either through
multiple systems that interact (e.g. with structural-descriptions supporting the cate-
gory level and image-based mechanisms supporting the more specific levels (Joli-
coeur, 1990; Tarr and Pinker, 1990; Marsolek and Burgund, 1997) or through a
single system that is highly adaptable to varying recognition conditions (Biederman
et al., 1997; Edelman, 1995b; Gauthier and Tarr, 1997b).

Third, we must consider the fact that human perceivers vary in the level of
expertise they have for a given stimulus class. The degree of experience an indivi-
dual has had with a class may help to determine the default level of access for
recognition, how sensitive recognition is to image transformations, e.g. brightness
reversal, and to changes in configural information (Gauthier and Tarr, 1997a;
Tanaka and Sengco, 1997; Gauthier et al., 1998). Models of recognition must be
sufficiently plastic to adapt as experience with an object class accumulates. More-
over, it is not enough for a model to simply allow recognition at different levels of
expertise. There must be an account for why performance across various behavioral
measures changes with changes in expertise.

Finally, it is crucial to realize that performance in a given recognition task is
actually the product of a complex interaction between all of these factors: homo-
geneity of the stimulus class; categorical level; and level of expertise (Gauthier,
1998; Schyns, 1998). As a rule, extant models of recognition have tended to focus on
only one or two of these factors, for example, comparing face recognition to non-
face object recognition (Farah, 1992), or contrasting basic-level with subordinate-
level recognition (Biederman, 1987). Recent models have certainly begun to move
away from such simple dichotomies (e.g. Edelman, 1995a), but there is clearly still a
great deal of work to be done.
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5. Current problems with image-based models

It is our contention that new approaches to image-based recognition can account
for the complete range of human recognition performance. However, meeting this
challenge may necessitate abandoning old notions of what is meant by an image-
based or view-based model. In particular, because there is some behavioral evidence
to support both image-based representations and structural-descriptions, as well as
computational strengths for each, it seems likely that a viable model will encompass
elements of both. In order to see why this is the case, let us examine some of the most
oft-cited problems with ‘traditional’ image-based models.

5.1. Class generalization and categorical representation

Image-based models typically represent the appearance of a specific object from a
specific viewpoint. As such, they are exemplar-based and seemingly poor candidates
for class-level recognition. Moreover, even if it is possible to generalize from
familiar exemplars of a class to unfamiliar exemplars, mechanisms for specifying
category membership and representing perceptually-defined categories as categories
are less than obvious.

5.2. Hyper-sensitivity, inflexibility and combinatorial explosions

Even for the recognition of a single object, an image-based approach may have
difficulties in generalizing across slight variations in appearance. Marr and Nishi-
hara (1978) suggested that object representations should be sensitive in order to
discriminate between visually-similar objects. However, sensitivity should not be so
great that each specific change in the image necessitates a distinct representation.
Therefore, if image-based information does not generalize across viewing condi-
tions, an excessive number of representations may be required to capture the appear-
ance of only a single object. Indeed, image-based models often appear prone to this
problem in that some approaches have posited inflexible or ‘holistic’ representations
that are ill-suited for generalizing from known to unknown viewing conditions.
Although it has been argued that trading ‘memory for computation’ in this manner
is acceptable, it is unclear that there can ever be sufficient memory to compensate for
a system that allows for only minimal generalization.

5.3. Matching algorithms and normalization mechanisms

In order for image-based representations to generalize between exemplars or
between views, robust matching algorithms must be specified. That is, there must
be some mechanism for measuring the perceptual similarity (within some domain)
between an input image and known objects. One possibility is that we simply
measure local pixel or brightness similarity across images, but it is doubtful that
such representations will exhibit the necessary robustness because they are likely to
be highly unstable over image transformations. An alternative might be to measure
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similarity across the output of receptive fields, although it is unclear that what
are still relatively local descriptions of the image will suffice. More plausibly,
relational information between local features is needed. A second issue is how to
match an unfamiliar view of an object to a familiar view of the same object. Image-
based models have often appealed to mental transformations or alignment models
that seem to beg the question. At issue is that such processes must establish the
direction of rotation before executing a rotation or alignment. Determining this
information seems to imply that recognition, at least at a coarse level, has already
occurred.

6. Extending the image-based approach

6.1. Interpolation across views

How do we extend image-based models to address such problems? As alluded to
earlier, there has been increasing interest in developing image-based models that can
generalize between familiar and unfamiliar views for a given object and between
familiar and unfamiliar exemplars for a given class. Indeed, some of the earliest
computational approaches to image-based recognition relied on mechanisms that
effectively measured the visual similarity between different views rather than
executing a transformation, for example, the view interpolation model of Poggio
and Edelman (1990). In this approach, specific object views are described as sets of
viewpoint-dependent features (e.g. the output of receptive fields). Each view can
then be considered a point in a high dimensional space that captures the appearance
of all possible views. Generalization from unknown to known views (those in
memory) is accomplished by establishing the location of the unknown view within
this space and measuring the similarity of its features relative to the features of the
nearest known views, that is, ‘interpolating’ across the view space. Such models are
appealing in that they do not require the precomputation of ‘alignment keys’ (Ull-
man, 1989) or other information about the shape prior to recognition (see also
Ullman, 1998). Moreover, there is some psychophysical evidence to support the
view interpolation approach (Bu¨lthoff and Edelman, 1992; Edelman and Bu¨lthoff,
1992). Critically, more recent computational instantiations of view interpolation
have adopted more flexible representations of image features (Bricolo et al.,
1997; Riesenhuber and Poggio, 1998) based on neurophysiological results that
provide evidence for view-tuned neurons (Logothetis et al., 1995). Reinforcing
the biological plausibility of this approach, Perrett et al. (1998) offer specific neu-
rophysiological evidence for ‘evidence accumulation’ across collections of local
features, a mechanism similar to that proposed in some of the recent computational
models.

6.2. Interpolation across exemplars

One insight that has helped extend the image-based approach is that interpolation
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need not only occur between views of an object. It is equally plausible that inter-
polation can occur between different exemplars of a perceptually-defined object
class. Thus, just as an unknown view can be recognized through interpolation to a
visually-similar nearby view, an unknown exemplar can be recognized through
interpolation to a visually-similar exemplar (Lando and Edelman, 1995; Beymer
and Poggio, 1996). Psychophysical evidence for exactly this sort of class general-
ization has begun to accrue (Moses et al., 1996; Gauthier and Tarr, 1997b) and is
discussed in detail by Tarr and Gauthier (1998). Indeed, the neural mechanisms
proposed by Perrett et al. (1998) could readily extend to measuring the similarity
of local features across class instances2.

One caveat about image-based generalization processes is that view interpolation
is possible because the view space for a given object or class tends to vary smoothly.
That is, across a wide range of adjacent viewpoints, there are only small qualitative
changes in the projected image of the object. When dramatic changes in the image
do occur, such as when a major part comes in or out of view (Biederman and
Gerhardstein, 1993; Hayward and Tarr, 1997; Hayward, 1998), it is probable that
interpolation mechanisms may fail across this boundary (referred to as a ‘visual
event’ by Koenderink, 1987). Under such conditions it may be that explicit3 view-
invariant structural information is required to map a view of an object onto a
qualitatively different view of that same object – a possibility we discuss below.

Similarly, interpolation between different exemplars is only likely when the two
are visually similar, that is, when the space of exemplars defining the object class
varies smoothly. How likely is the assumption of smoothness? For many basic-level
classes, the answer may be quite likely. Several recent computational studies have
assessed how easily familiar objects can be categorized into stable visually-defined
classes. Using only silhouette or boundary contour information readily extracted
from images, it has been found that large numbers of exemplars can be separated
into perceptual categories. Critically, these categories correspond quite closely to
those that might be delineated by human perceivers (Ullman, 1996; Cutzu and Tarr,
1997). A similar conclusion regarding the perceptual stability of basic-level classes
has been reached by developmental psychologists studying the acquisition of visual
category information in infants. For example, Quinn et al. (1993) found that 3–4-
month-old infants were capable of discriminating images of birds from dogs and
cats, as well as images of dogs and cats from one another. Presumably, given the
limited experience such young infants have had with these object classes, their
performance must be based on visual information available in the images, not on
conceptual knowledge acquired through the names assigned to the objects. Indeed,
in the original formulation of basic-level categories, Rosch et al. (1976) posited that

2While the view-tuned neurons reported in Logothetis et al. (1995) appeared to have their highest
activation when presented with a specific exemplar, e.g. a particular ‘paperclip’ object, the same neurons
sometimes showed above-resting-level activation for the presentation of visually-similar objects, suggest-
ing that within-class generalization may have occurred.

3We use the term explicit here because we mean a distinct, explicitly represented description of an
object’s structure. As discussed below, we propose that image-based representations also encode implicit
structural information in terms of the relative positions of local features.
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most classes have a perceptual basis and, in particular, that silhouettes might provide
this basis. Overall, these results suggest that generalization within perceptually-
defined classes is a plausible extension to image-based models. On the other
hand, much as multiple-views are necessary to represent the complete 3D structure
of an object (Tarr, 1995), multiple exemplars will be necessary to represent the
complete range of object classes.

Multiple-views or multiple-exemplar representations alone do not provide a basis
for representing 3D objects. What are needed are organizing principles that provide
a ‘glue’ between qualitatively dissimilar views or exemplars (qualitatively similar
views or exemplars may be related on the basis of visual similarity and interpolation
mechanisms). For multiple-views representations, two types of information may be
available as evidence that distinct and geometrically dissimilar views arise from the
same 3D object.

6.3. Temporal associations

Consider that from one moment to the next, the most likely image to follow
an image of given object is another view of that same object. Using simple occur-
rence-based association mechanisms (i.e. Hebbian learning) the visual system
could come to associate distinct views. Specifically, the more often that two images
temporally co-occur, regardless of image similarity (Miyashita, 1993), the more
strongly they will be associated. If we couple this with some measure of perceptual
similarity, we have a powerful mechanism for building multiple-views representa-
tions. Although the existence this type of temporal association is somewhat spec-
ulative, there are recent psychophysical, neurophysiological, and computational
results that provide some evidence in this direction (Miyashita, 1993; Wallis,
1996a,b).

6.4. Explicit structural information

Associations between views may also be formed by explicitly represented struc-
tural information. We have already alluded to the fact that there are instances for
which structural information about an object may be critical. Insofar as a structural-
description of a given object is stable over changes in viewpoint, it may provide a
mechanism for linking two distinct views. However, given the problems we have
raised for structural-descriptions based on 3D parts, what kind of structural informa-
tion might offer sufficient stability, yet not predict complete invariance? One can-
didate is a ‘medial-axis’ representation derived from an object’s silhouette, that is, a
skeletal description of the object. The idea of using medial-axis representations is
quite old, being first proposed in Blum’s ‘Grassfire’ model (Blum, 1967). Blum’s
idea was that if the edges of an object’s silhouette are simultaneously ‘ignited’, the
flames will burn inward until they collide or interfere with one another, thereby
leaving a skeleton describing the shape of the object. More recent instantiations of
this idea have provided computationally robust methods for recovering skeletal
descriptions (Kimia et al., 1995; Zhu and Yuille, 1996). Additionally, there is recent
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behavioral evidence suggesting that medial-axis representations are computed early
in visual processing (Kovacs and Julesz, 1994).

Medial-axis representations are appealing for several reasons. First, they are
readily computed from an object’s silhouette or bounding contour, a type of infor-
mation that is recoverable from 2D images (in contrast with 3D part descriptions).
Second, they provide a topological description of object shape that allows the
representation to remain relatively stable over changes in viewpoint, illumination,
color and object configuration (Marr and Nishihara, 1978; Zhu and Yuille, 1996).
Third, the topological nature of the representation facilitates fast and efficient
matching between object descriptions (Kimia et al., 1995).

Given these positives, why do we claim that explicit structural information
only supplements image-based recognition? The answer is that medial-axis repre-
sentations provide only limited information about an object, that is, a coarse
description of its shape. Recognition based on such information would not be
entirely reliable and, at best, might provide a ‘ballpark’ estimate of the cate-
gory (see the examples provided in Zhu and Yuille, 1996). Moreover, we have
already made it clear that recognition may occur at many different categorical
levels. Thus, skeletal descriptions may help constrain the search space dur-
ing recognition, but in and of themselves they are not sufficient for recognition.
As an example, consider an observer that has learned to recognize several views
of a 3D object; unfamiliar views that are similar to familiar views may be re-
cognized through normalization processes such as interpolation. However, be-
cause of qualitative differences between new views and stored views, it may not
always be possible to recognize unfamiliar views through interpolation. Therefore,
new views should be learned as distinct nodes (‘aspects’ in Koenderink, 1987) in
a multiple-views representation. The question is, a node inwhich multiple-
views representation? The answer may be provided by relatively view-invariant
structural information: the skeletal description for a given view may be similar
enough to the skeletal descriptions derived from other views of the same object or
class to help constrain which particular multiple-views object representation is
selected.

It is worth noting that other theorists have taken different directions in combin-
ing image-based information and explicit structural-descriptions. For example,
Hummel and Stankiewicz (1996b) have sought to extend a neural-net implemen-
tation of RBC (Hummel and Biederman, 1992) to include both structural-descrip-
tions based on 3D parts and image-based surface information. Their model is
motivated by the computational problem of ‘binding’ together the different com-
ponent parts that form a structural-description of an object. Interestingly, the re-
presentation of surfaces in their model helps to defray the costs of the binding
process. Thus, image-based and structural information may be both function-
ally and computationally complementary. Indeed, their model is much more
successful than its predecessor–some specific predictions regarding the need for
attention in the binding process and sensitivity to left-right reflection, translation,
and scale changes have been born out in behavioral experiments (Stankiewicz et al.,
1998).
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6.5. Implicit structural information

In contrast to explicit medial-axis descriptions, image-based models may also
incorporate what we refer to as implicit structural information. We use the term
implicit here to denote the fact that this type of structural information does not
provide a global description of object shape, but rather simply codes relations
between local features. Consider that images may be described as collections of
local measures of the image at different locations (e.g. the output of oriented recep-
tive fields, Edelman, 1993; small pixel regions, Bricolo et al., 1997; Amit and
Geman, 1997; qualitative and quantitative measures of shape, color, texture, etc.).
At one extreme, it may be possible to represent these features in a completely
unordered fashion, thereby losing all information regarding the spatial relation
between one local feature and the next. Such a representation would retain only
information about the presence of each feature anywhere within the image. It is clear
that such a model has severe limitations: for example, randomly scrambling the
positions of the features will produce an image that cannot be distinguished from
the original. On the other hand, there is computational evidence that even such
simplistic representations have a surprising degree of explanatory power in terms
of recognizing novel views of 3D objects (Bricolo et al., 1997). At the other extreme,
the relations between local features may be completely deterministic, as in a literal
image where the point-to-point positions between features are rigidly fixed relative
to one another, e.g. described in linear coordinates (Poggio and Edelman, 1990).
This is the kind of shape representation often associated with templates and image-
based models (Hummel and Stankiewicz, 1996a). Obviously, such rigid and com-
pletely deterministic templates where features match absolutely or not at all also
have severe limitations: for example, hyper-sensitivity to trivial metric changes in
the image (Hummel, 1998).

What we propose is a representation of image features somewhere between com-
pletely unordered vectors and rigid templates, that is, a model in which there is
implicit structural information regarding the spatial relations between local features.
The form of the structural information is not a global description of an object in
terms of parts or skeletons, rather, it is a relatively local description that captures the
positional certainty between image measurements. In contrast to this type of statis-
tical relation between features, structural-description models such as RBC relate far
less local features, i.e. 3D parts, in a purely qualitative fashion (e.g. a part is simply
‘above’ a second part rather than more or less above). One way of coding these
implicit relations is as set of weights within a neural network. For example, both
Edelman and Weinshall (1991) and Lades et al. (1993) have proposed taking the
output of receptive-field-like image filters and mapping them directly onto a recog-
nition layer (Williams (1997) has developed a similar model that uses individual
pixels as input). The weights between the input and output layers effectively code
the likelihood of co-occurrence between local features. Thus, the relative positions
of features are probabilistic, thereby providing ‘flexible’ or ‘deformable’ templates
for recognition. Critically, metric variation between a known image of an object
and a new image will not be catastrophic–recognition performance will degrade
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smoothly as the relative positions of features deviate further and further from their
associated relations. The fact that the degree of match varies smoothly with changes
in the image suggests that models incorporating local features in conjunction with
implicit structural information may be compatible with view and class interpolation
mechanisms, for instance, by computing the likelihood of each local feature at
particular locations within the image (Edelman, 1995b).

The majority of models incorporating local image measurements in neural-net-
work architectures have included only simple mappings between features (Edelman
and Weinshall, 1991; Lades et al., 1993; Williams, 1997), e.g. one set of weights
between input and output. As such, these implementations are still template models,
albeit deformable, in that there is only a one layer description for each shape. One
method for increasing the power of this approach is to add compositional structure to
the representation (Bienenstock and Geman, 1995). In this framework local image-
based features would be organized hierarchically into multiple levels of increasing
complexity. For example, highly associated first order relations between image
measurements could themselves be associated at the next level. However, in contrast
to the reconstruction approach, these assemblies would be based on the statistics of
the images shown to the system rather than fixed syntactic constraints.

One appealing aspect of compositionality is that it allows input shapes to be
matched to stored representations through randomized tree searches (Amit and
Geman, 1997). That is, rather than attempting to match all of the features of the
representation during recognition, a series of binary ‘queries’ are performed. Each of
these queries relates the position of one additional feature to the positions of features
already queried. Critically, no particular set of features is required for successful
identification–queries can begin with almost any feature (more informative features
are selected during learning) and can follow many different search paths. Therefore,
recognition should be robust over occlusion and other image variations. Equally
important is that only a small number queries are likely to be necessary to recognize
the input shape (as in the children’s ‘20-questions’ game). Thus, recognition should
be computationally efficient.

A second appealing aspect of the compositional approach is that it allows for
emergent structures at many scales within the image. Thus, more global representa-
tional elements, for instance, surfaces or parts, may arise at some level of the
hierarchy depending on the co-occurrence of image measurements (Fukushima,
1980; Bienenstock et al., 1997). Indeed, because many image measurements are
likely to co-occur repeatedly when one encounters the surfaces of a specific part, it
may be possible to capture the part structure of most objects without the need for
recovery or deterministic processes. However, such representations are still image-
based in that the fundamental units of the representation are measurements of the
image from a particular viewing direction–as such they are individually unlikely to
remain stable over large changes in viewpoint or other viewing parameters. On the
other hand, the inclusion of implicit structural information in the form of composi-
tionality allows for more invariance than would otherwise be possible. To some
extent this is precisely the goal of structural-description models (Marr and Nishi-
hara, 1978), and indeed, differences between such models and our extended image-
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based approach come down to differences in the choice of features and the relations
between such features. It is important to note, however, that these choices are critical
for how each type of theory accounts for behavioral data.

6.6. Perceptual expertise

Our conjectures to this point have not addressed how the visual system achieves
expertise with an object class. Consider the above framework in which object
representations are comprised of features for which the spatial positions are more
or less strongly related to one another. Two characteristics of this approach indicate
that it may help provide an explanation for the phenomenon of perceptual expertise.
First, features that co-occur more frequently will become more strongly associated.
Second, extensive experience with the same features in a consistent configuration
will give rise to more complex features. These simple statistical learning mechan-
isms offer an explanation for the configural sensitivity found in cases of perceptual
expertise, including face recognition (Gauthier and Tarr, 1997a; Tanaka and
Sengco, 1997). Consider that the acquisition of expertise is marked by extensive
practice differentiating similar instances from within a class. Many class-level
features will co-occur in the same configuration with great frequency, for example,
the eyes, nose and mouth of human faces. Such oft-seen features will become
tightly interdependent as the system is fine tuned by experience. Thus, relocating
the position of one such feature will impact the recognition of the other features
much as has been found for parts of human faces (Tanaka and Sengco, 1997) and
for parts of non-face objects when recognized by experts (Gauthier and Tarr,
1997a). Moreover, because of compositionality, new, more stable configur-
ations of features that have greater discriminatory power may emerge as an ob-
server gains experience discriminating exemplars within a class (Gauthier et al.,
1998).

7. Conclusion

Tremendous progress in understanding visual object recognition has been
made over the past decade. Models of recognition have become far more com-
putationally sophisticated. New and exciting findings from cognitive neuro-
science and neurophysiology have offered insights into the brain mechanisms
used during recognition. There has also been an impressive body of behavioral
data collected on human recognition performance. Insights from all of these
domains suggest that new theories hold great promise for explaining biological
object recognition. At the same time, recent work has also illuminated
some of the potential pitfalls of these theories. We have identified some of the
most notable problems and offer possible solutions. What you will find in this
special issue are the ideas of researchers that are working towards this goal, that
of understanding visual recognition using a wide range of new methodolo-
gies.
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