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ABSTRACT 

Åse Karttunen 

THE ROLE OF INTEGRINS IN ENTEROVIRUS INFECTIONS AND IN 

METASTASIS OF CANCER  

The Department of Virology, University of Turku, Turku, the Department of Virology, 

Haartman Institute, and the Helsinki Biomedical Graduate School, University of 

Helsinki, Helsinki, and the Department of Biochemistry and Pharmacy, Åbo Akademi 

University, Turku, Finland. Annales Universitatis Turkuensis, Medica-Odontologica, 

Yliopistopaino, Helsinki, 2010. 

 

Integrins are a family of transmembrane glycoproteins, composed of two different 

subunits (α and β). Altered expression of integrins in tumor cells contributes to 

metastasis tendency by influencing on the cells‟ attachment to adjacent cells and their 

migration. Viral pathogens, including certain enteroviruses, use integrins as receptors. 

Enteroviruses have also been suggested to be involved in the etiopathogenesis of type 1 

diabetes.                                                                                                                                     

     The study focuses on the role of integrins in the pathogenesis of metastasis to 

cortical bone and on type 1 diabetes (T1D) and echovirus 1 infection. In the first part 

of the thesis, the role of different integrins in the initial attachment of MDA-MD-231 

breast cancer cells to bovine cortical bone disks was studied. A close correlation 

between α2β1 and α3β1 integrin receptor expression and the capability of the tumor to 

attach to bone were observed. In the second part, a possible correlation between 

susceptibility to enterovirus infections in diabetic children and differences in 

enterovirus receptor genes, including certain integrins, was investigated. In parallel, 

virus-specific neutralizing antibodies and diabetic risk alleles were studied. In the 

diabetic group, an amino acid change was detected in the polio virus receptor and the 

neutralizing antibody titers against echovirus 30 were lower. However, to obtain 

statistically sustainable results, a larger number of individuals should be analyzed. 

Echovirus 1 (EV1) enters cells by attaching to the α2I domain of the α2β1 integrin. In 

the third part EV1 was shown to attach to a chimeric receptor construct of the 

transferrin receptor and the α2I domain and to enter cells through clathrin-mediated 

endocytosis that is normally not used by the virus. The chimeric receptor was recycled 

to the plasma membrane, whereas the virus remained in intracellular vesicles. The virus 

replication cycle was initiated in these cells, suggesting that evolution pressure could 

possibly cause the virus to evolve to use a different entry mechanism. Moreover, a 

cDNA microarray analysis of host gene expression during EV1 replication showed that 

0.53% of the total genes, including several immediate early genes, were differently 

expressed. 

Keywords: Integrin, breast cancer, metastasis, human enterovirus, echovirus 1, type 

1 diabetes, clathrin mediated endocytosis 

 

 



 

 

 

 

TIIVISTELMÄ 

Åse Karttunen 

INTEGRIINIEN MERKITYS ENTEROVIRUSINFEKTIOSSA JA SYÖVÄN 

ETÄPESÄKKEIDEN MUODOSTUMISESSA  

Virusoppi, Turun Yliopisto, Haartman-instituutti, Virologian osasto ja 

Biolääketieteellinen tutkijakoulu, Helsingin Yliopisto, Helsinki, ja Biokemian ja 

farmasian laitos, Åbo Akademi, Turku. Annales Universitatis Turkuensis, 

Yliopistopaino, Helsinki, 2010. 

 

Integriinit ovat solukalvon läpäiseviä glykoproteiineja, jotka koostuvat kahdesta 

alayksiköstä (alfa ja beta). Ne ovat vuorovaikutuksessa solukalvon kanssa 

soluadheesiossa ja migraatiossa. Muuttunut integriinien ilmentyminen syöpäsoluissa 

vaikuttaa soluadheesioon ja soluliikkuvuuteen ja voi täten vaikuttaa solun taipumukseen 

muodostaa etäpesäkkeitä. Tiettyjen integriinien tuotto rintasyövässä korreloituu 

sairauden ennusteeseen ja metastasointiherkkyyteen. Eräät enterovirukset hyödyntävät 

solun integriinejä päästääkseen solun sisälle. Enterovirusten aiheuttamat taudinkuvat 

ihmisissä vaihtelevat nuhakuumeista sydänlihastulehduksiin ja 

keskushermostoinfektioihin. Enterovirusinfektioilla voi olla merkitystä myös tyypin I 

diabeteksen puhkeamisessa.  

Tässä väitöskirjatyössä on tutkittu integriinien osuutta syövän etäpesäkkeiden 

leviämisessä luukudokseen sekä niiden toimintaa enterovirusten, kuten echovirus 1:n 

reseptoreina ja reseptorien ilmentymistä suhteessa tyypin I diabetekseen. Väitöskirjan 

ensimmäisessä osatyössä tutkittiin integriinien merkitystä rintasyöpäsolujen 

varhaisessa kiinnittymisessä kortikaalisille luukiekoille. Vahva yhteys nähtiin α2β1 ja 

α3β1 integriinien ilmentymisessä ja kyvyssä sitoutua kortikaaliseen luukudokseen. 

Toisessa osatyössä tutkittiin, voisivatko muutokset enterovirusten 

reseptorimolekyyleissä korreloida tyypin 1 diabeteksen puhkeamiseen. 

Sekvenssianalyysi tehtiin kuuden tunnetuimman enterovirusreseptorin (PVR, ICAM-1, 

DAF, CAR, v3 ja 21 integriini) geenialueilta, ja virusspesifiset vasta-aineet 

määritettiin seerumista. Diabetesryhmästä geenivaihtelua löytyi PVR:sta ja vasta-aineet 

echovirus 30:tä vastaan olivat matalammat kuin kontrolliryhmässä. Tulokset pitää 

kuitenkin vielä varmistaa suuremmassa ryhmässä tilastollisen luotettavuuden 

selvittämiseksi. Echovirus I (EV1) sitoutuu 21 integriinin 2 alayksikön I-domeeniin 

(2I), ja kolmannessa osatyössä osoitettiin että virus pystyi infektoimaan solut, jotka 

ilmensivät pinnallaan reseptorikimeeraa, missä 2I-jakso oli liitetty 

transferriinireseptoriin. Virus kuljetettiin soluun klatriinivälitteisesti, mikä eroaa EV1:n 

normaalisti käyttämistä soluuntukeutumisreiteistä. Lisäksi cDNA-mikrosiruanalyysi 

isäntäsolun geeniekspressiosta EV1-replikaation aikana osoitti, että 0.53% 

geeniekspressiosta oli muuttunut, sisältäen monia solun toiminnalle keskeisiä geenejä. 
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1 INTRODUCTION 

Integrins are a family of transmembrane glycoproteins that interact with the 

extracellular matrices in cell adhesion and migration. Altered expression of integrins 

in tumor cells contribute to metastasis tendency by affecting attachment to adjacent 

cells and migration tendency. Breast cancer is characterized by frequent skeletal 

metastasis. One possibility that might explain the bone selectivity is that the breast 

cancer cells express surface adhesion molecules that facilitate their adherence to 

proteins present in the bone microvasculature matrix. In addition to natural ligands 

(such as vitronectin and collagen), viral pathogenes, including certain enteroviruses, 

utilize the cellular integrin receptors to enter the host cells. Enteroviruses belonging to 

the picornavirus group are among the most common viruses infecting humans 

globally. Several studies have suggested that enteroviruses could also be involved in 

the etiopathogenesis of type 1 diabetes. 

    This thesis aims to elucidate the role of enterovirus receptors including the integrins 

in the pathogenesis of metastasis to cortical bone and type 1 diabetes and echovirus 1 

infection in four different subprojects. In the first subproject, the most important 

integrins in initial anchorage of human breast cancer to cortical bone matrix were 

investigated. In the second subproject, a possible correlation between the 

susceptibility to enterovirus infections and/or frequent occurrence of enterovirus 

antibodies in prediabetic and diabetic children with differences in integrin and other 

enterovirus receptor genes were studied. In parallel, virus-specific neutralizing 

antibodies and diabetic risk alleles were investigated. The third and fourth subproject 

concentrated on echovirus 1 (EV1) which uses α2β1 integrin as a cellular receptor. In 

the third subproject, the EV1 entry via a chimeric receptor construct of transferrin 

receptor and α2 I domain was studied. The aim was to analyze if EV1 is able enter 

cells by clathrin directed entry which is normally not used by the virus, and establish 

productive infection. In the fourth subproject the host gene expression was 

investigated during EV1 endocytosis and replication. 
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2 REVIEW OF THE LITERATURE 

2.1 INTEGRINS 

Integrins are a family of cell surface glycoproteins composed of at least 18 different  

subunits and eight  subunits that attach noncovalently forming 24 different heterodimers 

(Hynes, 2002) (Fig 1., Table 1). The extracellular N-domain of the - and -subunits have 

up to 1104 residues and 778 residues respectively, a single transmembrane (TM) domain 

and a C-terminal, cytoplasmic tail. Integrins function as receptors for extracellular matrix 

(ECM) proteins and are important in cell-cell interactions during differentiation, malignant 

transformation, immune recognition and blood coagulation. Integrins bind to diverse 

ligands, including many ECM proteins such as collagen, fibronectin, laminin, vitronectin, 

von Willebrand factor and thrombospondin, ICAMs, members of the immunoglobulin 

superfamily, (IgSF) and plasma proteins, like fibrinogen (Hynes & Lander, 1992). In 

addition, a restricted number of proteins interact with integrins within the plasma 

membrane bilayer. These include caveolins, leukocyte surface antigen CD47, urokinase-

plasminogen activator receptor (u-PAR) and certain tetraspanins (Barberis et al., 2000, 

Chapman et al., 1999, Giancotti, 2000, Hemler et al., 1985). 

Nine of the vertebrate -subunits contain an approximately 190 amino acids long I 

(”inserted‟‟) domain (Whittaker & Hynes, 2002). In those I domain integrins, the domain 

is the major ligand binding site. The I domain is a member of a family of von Willebrand 

A domains (VWA). The globular domain is composed of a GTPase-like domain, with a 

metal-ion-binding site (MIDAS). Dependent of the conformation of MIDAS, I domains 

can exist in both high affinity and low affinity ligand-binding conformation (Emsley et al., 

2000, Lee et al., 1995a, Lee et al., 1995b) that is essential for binding of some ligands, 

e.g. collagen (Emsley et al., 2000). The I domain interacts with a β-propeller, which is a 

G-protein-like domain formed from seven similar structural units (Springer, 1997). In 

integrins lacking a I domain, the main ligand-binding sites are in the I domain, the -

propeller and the upper surface of the  subunit (Xiong et al., 2001). 

The leg of the -subunit is composed of a thigh domain and two calf domains. All -

subunits contain a head with an I-like domain, which shares common structures with the 

I domains (Lee et al., 1995a) including MIDAS. The leg of the -subunit consists of a 

plexin-semaphorin-integrin (PSI) domain, hybrid domain, four cystein–rich repeats (I-

EGF; epidermal growth factor domains) and a novel cystatin-like fold (Hynes, 2002).  

The cytoplasmic tail is crucial for modulating ligand-integrin interactions into dynamic 

cellular responses, such as cell spreading or migration and endocytosis. The intracellular  
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domains are linked to the actin 

cytoskeleton and several adapter 

molecules including vinculin, talin 

or α-actin (Zamir & Geiger, 2001). 

All integrins, except 64, are 

coupled to the actin cytoskeleton. 

The 4 integrin subunit differs 

from the others by having a long 

cytoplasmic tail of about 1000 

amino acids instead of around 50 

amino acids that interact with the 

intermediate filaments. Conserved 

regions of TM and cytoplasmic 

tail of both  and  integrin 

subunits have been reported to be 

essential in the regulation of 

integrin activation. The integrin 

can be locked in an inactive state 

by disulfide-bounds in the TM 

domain. Constitutive activation of 

integrin can be maintained by 

mutation in TM region or 

truncation of tail sequence (Banno 

& Ginsberg, 2008). Binding of 

talin to the cytoplasmic part of the 

 subunit induces a series of 

conformational changes that 

induce formation of an active extracellular domain with high affinity for ligands (Ulmer et 

al., 2003, Vinogradova et al., 2002). 

Collagens are the most abundant proteins in the mammalian body. The collagen family 

contains at least 13 different proteins. Collagen fibers and fibrils give the structural 

support that is needed in the skeletal tissue, blood vessel and in the extracellular matrix in 

different tissues in the body. Type I collagen is the most abundant of the collagens and is 

expressed predominantly in tissues like skin, tendons and in the ECM of the skeleton 

where it is the major protein of the bone matrix. Amino acid residues of the I domain of an 

integrin determine its ligand-binding specificity to different collagens (Dickeson et al., 

1998, Nykvist et al., 2000). The α2I domain D219 has been suggested to be important for 

collagen I binding (Smith et al., 2000), while in the α1 I domain that has higher affinity 

for collagen IV the corresponding amino acid is R218. In α10 and α11 this position has 

Table 1. Human Integrins (Modified from Johnson et al., 

2009) 

Integrin   Ligands 

Integrins recognize the RGD peptide 

α5β1 Fibronectin 

α8β1 Fibronectin, vitronectin, tenacin C,  

osteopontin, nefronectin 

αVβ4 Fibronectin, vitronectin 

αVβ3 Fibrinogen, fibronectin, vitronectin,  

tenascin C, osteopontin, bone sialoprotein,  

MMP-2, CYR61 

αVβ5 Vitronectin 

αVβ6 Fibronectin, TGF-β-LAP 

αVβ8 Vitronectin 

αIIbβ3 Fibrinogen,  fibronectin, vitronectin 

The Integrin Collagen receptor subfamily  

α1β1 Collagens, semaphorin 7A (laminins) 

α2β1 Collagens, tenascin C, (laminins) 

α10β1 Collagens 

α11β1 Collagens 

Leucocyte integrin subfamily 

αDβ2 ICAM, VCAM 

αMβ2 ICAM, VCAM, iC3b, factor X, fibrinogen 

αLβ2 ICAM,  

αXβ2 Fibrinogen, plasminogen, heparin, iC3b 

α4β7 Fibronectin, VCAM 

αEβ7 E-cadherin 

Integrins containing an α3, α4, α6, α7 or α9 α subunit 

α3β1 Laminins (collagens) 

α4β1 Fibronectin, VCAM 

α6β1 Laminins  

α6β4 Laminins 

α7β1 Laminins 

α9β1 Tenascin C, osteopontin, ADAMs,  

factor XIII, VCAM, VEGF-C, VEGF-D 
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R241 and T238 respectively. In addition, α1β1 and α2β1 attach to some non-collagen 

ligands involved in cell adhesion, such as laminin 1 and 2. Furthermore, α1β1 can bind to 

the cartilage protein matrilin-1 (Makihira et al., 1999) and α2β1 to the cartilage protein 

chondroadherin (Camper et al., 1997). All ligands for α1β1 and α2β1, except 

chondroadherin, support cell spreading. α10β1 attaches to type II collagen (Camper et al., 

1998), while α11β1 is known to attach to fibrillar collagen I-III (Popova et al., 2007).  

The other five integrins with I domain (D, E, M, L and X) (Rose et al., 2007) 

are leukocyte integrins. The leukocyte integrins bind to counter receptors, including E-

cadherin and intercellular and vascular adhesion molecules (ICAMs or VCAM 

correspondingly). Some of them also attach to plasma proteins such as plasminogen and 

fibrinogen or iC3b in the complement system (Table 1). 

 

 

 

 

 

 

Several members of the integrin family, including α5β1, α8β1, αIIbβ3, αVβ3, αVβ5, 

αVβ6 and αVβ8, (Table 1), recognize an arginine-glycine-aspartic acid (RGD) tripeptide 

sequence in molecules such as fibrinogen, fibronectin, vitronectin, von Willebrand factor 

and laminins. Peptides containing the RGD motif, can efficiently block these integrin-

ligand interactions (Hynes, 1992, Ruoslahti & Pierschbacher, 1987). 

Other integrins containing neither the I domain nor the RGD sequence include the 

subunits α3, α4, α6, α7 and α9. The integrin subunits α3, α6 and α7 are all part of laminin-

Figure 2. Schematic structure of collagen 

binding integrin. (Modified from Humphries, 

2002; Hynes, 2002; White et al., 2004).  

 

Figure 1. 18 α integrin subunits and eight 

β integrin subunits are able to form 24 

heterodimeric integrins.  
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binding integrins and are needed for the integrity of tissues such as kidney, skin and 

muscle (Table 1). α4 and α9 integrin subunits recognize ECM proteins, some plasma 

proteins, counter receptors belonging to the immunoglobulin superfamily and vascular 

endothelial cell growth factors (Vlahakis et al., 2007) (Table 1).  

Outside-in signaling may be propagated by ligand binding to the extracellular domain, 

which initiates conformational changes that are mediated to the TM and cytoplasmic 

domains, and causes integrin clustering into discrete domains, such as focal adhesion 

domains (Arnaout et al., 2005). Integrin ECM site focal adhesion is formed by 

aggregation of several signalling and structural molecules, including focal adhesion kinase 

(FAK), Src, PI-3-Kinase, RhoGAP, paxillin, talin, p130CAS, integrin linked kinase (ILK) 

and Caveolin-1 in ECM (Gahmberg et al., 2009). The downstream signals following 

integrin ligation can modify cell function by altered cell morphology, cell migration or 

stability, regulation of cell differentiation and apoptosis. Inside-out signalling occurs by 

action of non-integrin cellular receptors or cytoplasmic molecules causing activation of 

signalling pathways inside the cell leading to either activation/deactivation of integrins.   

Integrins have been implicated in various diseases and disease processes from 

inflammation, atherosclerosis to cancer. Altered expression of integrins in cancer cells 

contributes to metastasis tendency by influencing the cells‟ attachment to adjacent cells 

and their migration. Moreover, several viral pathogenes, including adenoviruses 

(Wickham et al., 1993), cytomegaloviruses (Feire et al., 2004), flaviviruses (La Linn et 

al., 2005), picornaviruses (Bergelson et al., 1992, Berinstein et al., 1995, Roivainen et al., 

1994), rotaviruses (Ciarlet et al., 2002, Guerrero et al., 2000) and togaviruses (La Linn et 

al., 2005) use integrins as receptors to enter the host cell.  

2.2 THE ROLE OF INTEGRINS IN BREAST CANCER METASTASIS TO THE 

SKELETON  

Breast cancer is characterized by frequent skeletal metastasis. One possibility that might 

explain the common bone metastases is that the breast cancer cells express adhesion 

molecules that facilitate their adherence to the cell surface molecules present in the bone 

microvasculature matrix. Integrins mediate cellular adhesion and are crucial for the 

regulation of tissue integrity and several other functions in mammalian tissues. Integrins 

are involved in all steps of the metastasis process, including migration, invasion and 

colonization of target tissues (White & Muller, 2007), as well as in forming the 

vasculature crucial for tumor growth (Akalu et al., 2005, Goel & Languino, 2004). 

The first stage of metastasis in a primary breast tumor is weakened adhesion to 

adjacent cells and migration from the primary tumor. This involves two properties that 

include forward movement of the cells and crossing the dense collagenous tissue 

http://en.wikipedia.org/wiki/Flavivirus
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surrounding the tumor by degrading the extracellular matrix or, alternatively, squeezing 

through interstitial spaces (Wolf et al., 2003).  

Integrins control the motility of cells. Migration movements include such as, 

synchronized processes of integrin engagement and actin cytoskeleton rearrangements 

(Giannone et al., 2004, Ridley, 2001). Integrin clustering at focal contact sites activates 

actin polymerization, mediated by members of the Rho family of small GTPases, 

including Rho, Rac and cdc42, providing the physical force for forward migration (Ridley 

et al., 2003). Furthermore, integrins are also implicated in the directionality of cell 

movement and breakdown of restrictive cell-cell adhesive structures. These properties are 

mediated through amplification of growth factor-derived signals (White & Muller, 2007).  

Spreading of cells from the primary tumor requires simultaneous ability to degrade 

surrounding ECM barrier and to pass through the endothelial cell layer surrounding blood 

vessels. Degradation needs activation of membrane-bound or secreted proteases, generated 

by both tumor cells and inflammatory stromal cells. Matrix degradation includes 

membrane-bound or secreted proteases, such as members of the matrix metalloproteinase 

(MMP) family, which in invasive breast cancer cells are dependent on integrin expression 

(Baum et al., 2007, Brooks et al., 1996). Integrins have been shown to both promote 

MMP-mediated proteolysis and increase their expression (White & Muller, 2007). 

Inhibition of integrin expression in invasive breast tumor cells decreases MMP activity 

leading to reduction in invasive activity (Morini et al., 2000). Metastatic cancer cells have 

been reported to utilize integrins for attachment to the basement membrane in a distant 

environment (Van der Velde-Zimmermann et al., 1997, van der Pluijm et al., 1997). 

Basement membrane is composed of thin sheets of dense ECM enveloping all epithelial 

organs and functions as a barrier to macromolecules and cells (Albini et al., 2004). 

Normal human breast epithelial cells express α1β1, α2β1, α3β1, α6β4 and αvβ3 

integrins (Alford & Taylor-Papadimitriou, 1996, Damjanovich et al., 1997, Glukhova et 

al., 1995), whereas a common feature of breast tumors is altered expression of α1β1, 

α2β1, α3β1, α6β1 and α6β4 integrins (Alford & Taylor-Papadimitriou, 1996, Koukoulis et 

al., 1991).  

αvβ3 integrin mediates adhesion of cancer cells and osteoclasts to the bone matrix 

(Harms et al., 2004). It can bind to an RGD peptide sequence present in many bone matrix 

proteins including vitronectin, osteopontin (OPN) and bone sialoprotein (Cacciari & 

Spalluto, 2005, Harms et al., 2004). Adhesive proteins, such as αvβ3, may mediate 

malignat cell addhesion to platelets (Nash et al., 2002), an association that could protect 

tumor cells from clearance by the immune system (Nieswandt et al., 1999). The αvβ3 

integrin may also favour tumor cell adhesion to the vessel endothelium and their 

subsequent extravasation into distant tissues (Pontier & Muller, 2008). 

The αvβ3 integrin has been shown to mediate certain cellular responses to OPN, a 

bone-derived phosphoglycoprotein related to aggressive disease progression and skeletal 
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metastasis (Furger et al., 2003). This can lead to upregulation of metastasis-promoting 

factors, such as MMPs and the Met/HGF receptor (Tuck et al., 2000). Induced expression 

of the αvβ3 integrin in malignant breast cancer has been shown to improve the survival of 

tumor cells after intravasation (Pontier & Muller, 2008). The αvβ3 integrin has also been 

implicated to be important in the metastasing process of breast cancer cells to bone. Breast 

metastatic cells and breast cancer-derived bone metastasis expressed high levels of the 

integrin (Liapis et al., 1996). In vivo -selected MDA-MB-231 cells that metastase only to 

bone show increased expression of the αvβ3 integrin (Hall et al., 2006). Inhibitors of the 

αvβ3 were shown to reduce bone metastasis in breast cancer patients and in an animal 

model after intracardiac injection of MDA-MB-435 cells (Harms et al., 2004). In a study 

with prostate cancer cells, blocking antibodies against the αvβ3 integrin inhibited 

attachment to crude bone protein extract by over 90% (Hullinger et al., 1998).  

Furthermore, the αvβ3, together with the α5β1 integrin, has been implicated in breast 

cancer to promote proliferation signaling by interacting with growth receptor partners 

(Pontier & Muller, 2008). These events have been reported to regulate migration of 

malignant cells by coupling, for instance, to MMP9 metalloprotease (Felding-Habermann 

et al., 2001, Rolli et al., 2003). In animal models, administration of peptides designed to 

block the integrins α5β1 and αvβ3 impaired growth and metastasis of invasive breast 

cancer (Khalili et al., 2006, White & Muller, 2007). 

Increase in the expression of the collagen/laminin receptor α2β1 has been reported in 

many human malignancies (Jones et al., 1992, Pignatelli et al., 1990, Suzuki et al., 1993). 

In animal models, the α2β1 and the fibronectin receptor α4β1 have been shown to be 

responsible for selective metastasis of cancer cells to the skeleton (Chan et al., 1991, 

Matsuura et al., 1996). Controversially, reduction or loss of the α2β1 integrin has been 

observed in several breast cancers (Alford et al., 1998, Lanzafame et al., 1996) and it has 

associated with increased metastatic potential (Arihiro et al., 1993).  

β1 integrin subunit expression is abnormal in approximately 30-50% of breast cancers 

and correlates with poor differentiation of the tumor (Cordes & Park, 2007). β1 integrin 

signaling has been observed to be involved in various stages of cancer progression, 

including invasion, migration and metastasis (Elliott et al., 1994, Fujita et al., 1995). The 

signaling depends on binding to extracellular ligands, including fibronectin and laminin-1. 

Decreased β1 integrin expression in breast tumors has been reported to correlate with 

more aggressive disease (Gonzalez et al., 1999, Lanzafame et al., 1996, Pignatelli et al., 

1992). Conversely, increased β1 integrin signaling has also been reported to promote 

tumorigenesis by facilitating the activity of growth factor receptors (Wang et al., 1998, 

Wang et al., 2002). Inhibitory antibody against the β1 integrin induced apoptosis and 

decreased proliferation in three-dimensional cell cultures and in animal models of breast 

cancer (Yao et al., 2007). Overexpression of the β1 integrin was further reported to be 

associated with decreased survival in invasive cancer of breast (Yao et al., 2007) and 
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pancreas (Bottger et al., 1999), and cutaneous melanoma (Nikkola et al., 2004). The 

controversial tumor-promoting effect of both reduced and induced β1 integrin gene 

expression could be explained by different cellular regulation mechanisms (Yao et al., 

2007).  

Some other integrins have also been associated in the biology of breast cancer. β4 

integrin-coupled signaling has been reported to be involved in breast cancer progression. 

α3β1 was suggested to be critical for migration, invasion and metastasis of a breast cancer 

cell line MDA-MB-231 to the skeleton (Morini et al., 2000) and the expression levels of 

the α3β1 integrin were higher in breast cancer metastases than in primary tumors. 

Furthermore, invasion was suggested to be dependent on the activity of MMP-9 (Morini et 

al., 2000). In an in vivo study, expression of signaling-defective β4 integrin in mammary 

epithelium delayed breast tumor progression in mice (Guo et al., 2006). The α6β1 and 

α6β4 integrins have been shown to contribute to breast cancer cell survival during cellular 

stress (Chung & Mercurio, 2004).  

Some of the published results concerning the role of integrins in the breast cancer 

skeletal metastasis process are controversial, which could partly be explained by different 

surface expression of integrins on tumor cells. The αvβ3 integrin has been shown in 

numerous studies to be crucial for breast cancer cell attachment to bone surface. However, 

in the MDA-MB-231 cells that express low levels of the αvβ3 integrin, other integrins 

were suggested to be important in the metastasis to bone (Morini et al., 2000, Wong et al., 

1998). Differences in experimental procedures may also affect the experimental results, 

for instance in studies by Morini et. al and Wong et al. showing the αvβ3 integrin not to be 

important in the initial attachment of MDA-MB-231 cells to bone (Morini et al., 2000, 

Wong et al., 1998). Pluijm et al. suggested the opposite in a study where cells were 

permitted to attach and spread on bone matrix over a long time span, possibly causing 

upregulation of additional surface integrins at the plasma membrane (van der Pluijm et al., 

1997). In addition, factors other than the integrin expression profile could also affect the 

cell metastatic potential.  

2.3 PICORNAVIRUSES 

Picornaviruses are small (30 nm) nonenveloped animal viruses with a single-stranded 

infectious RNA genome. The family Picornaviridae is divided into twelve genera (aphto-, 

avihepato-, cardio-, entero-, erbo-, hepato-, kobu-, parecho-, seneca-, sapelo-, tescho- and 

tremoviruses) (http://www.picornaviridae.com) (Table 2). Every genus is further 

divided into species consisting of virus serotypes. Previously, picornavirus classification 

was based mainly on their pathogenesis in laboratory animals and antigenic properties 

(Hyypiä et al., 1997), but the current classification utilizes the genomic sequences of the 
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viruses. Picornaviruses are responsible for a diversity of diseases, such as poliomyelitis 

(polioviruses, PVs), common cold (human rhinoviruses; HRVs), hepatitis (hepatitis A 

virus), and foot-and-mouth-disease in cattle (foot-and-mouth-disease viruses; FMDVs) 

(Table 2).  

Enteroviruses are among the most common viruses infecting humans globally. Human 

enteroviruses (HEVs) have former been classified into echoviruses (EVs), coxsackie A 

viruses (CAVs), coxsackie B viruses (CBVs) and polioviruses (PVs). In the current 

classification, HEVs are grouped into seven species: enterovirus A, B, C, and D, and 

rhinovirus A, B and C (Table 1). Enteroviruses are associated with a wide variety of 

illnesses, in all age groups, ranging from minor febrile disease to more severe conditions, 

including poliomyelitis, meningitis, encephalitis, myocarditis and neonatal generalized 

infection (Li et al., 2007). Most infections are, however, mild or asymptomatic (Grist et 

al., 1978). The principal site of infection is the epithelium of the respiratory or the 

gastrointestinal tracts. This can be followed by viremia (occurrence of viruses in the 

blood) that may cause transfer of the infection to secondary target organs. Enteroviruses 

have also been suggested to be involved in the development of some chronic diseases, 

such as type 1 diabetes (T1D) (Hyöty & Taylor, 2002) and dilated cardiomyopathy 

(Knowlton, 2008).  

PVs were discovered as early as in 1908 and are the best-known enteroviruses 

(Landsteiner & Popper, 1909). PV infection can cause poliomyelitis which can lead to 

permanent paralysis. The virus has infected human populations for thousands of years. 

Although the poliovirus vaccination campaign has almost eradicated the disease, it is still 

a problem in some parts of the world. On the basis of coxsackievirus pathogenicity in 

laboratory animals, they have originally been divided into subgroups A and B (Dalldorf & 

Sickles, 1948). All CBVs can be propagated in cell culture, while some CAVs can only 

replicate in newborn mice. Echoviruses (enteric, cytopathogenic, orphan viruses) were 

originally recognized due to their ability to replicate exclusively in cell culture, in contrast 

to other enteroviruses which infected laboratory animals (Anonymous, 1955).  

Oncolytic enteroviruses are potential agents for future cancer therapy. In 2004 Shafren 

et al. reported that CAV21 induced rapid oncolysis of human melanoma cells, 

overexpressing the virus receptors DAF and ICAM-1 in vitro and in vivo in mice bearing 

multiple melanoma xenografts (Shafren et al., 2004). This study was followed by 

additional reports implicating CAV21 to posses oncolytic potential in multiple melanoma 

(Au et al., 2007), breast tumors (Skelding et al., 2009) and prostate tumors (Berry et al., 

2008) both in vitro and in vivo. CAV21 administrated to end-stage melanoma patients 

showed no adverse effect (Parato et al., 2005). In 2005 Shafren et al. showed EV1 to be 

oncolytic for cultured malignant ovarian cells expressing high levels of α2β1 integrin, but 

not for nonmalignant control cells (Shafren et al., 2005). The oncolytic effect was further 

determined by using human ovarian cancer xenografts in mice in which the tumor burden 
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was rapidly reduced, and in prostate and gastric cancer models (Berry et al., 2008, Haley 

et al., 2009, Shafren et al., 2005).  

Table 2. Contemporary classification of picornaviruses (http://www.picornaviridae.com) 

Genus Species (No. of serotypes) 
Enteroviruses Human enterovirus A (21 types) (HEV-A) 

 -Human coxsackieviruses A2-A8, A10, A12, A14, A16 

A A A16  -Human enterovirus 71 

 -Human echoviruses 76, 89, 90, 91 

 -Simian enteroviruses enterovirus 92, SV19, SV43, SV46, A13 

 Human enterovirus B (59 types) (HEV-B) 

 -Human coxsackieviruses B1-B6 

 -Human coxsackieviruses A9 

 -Human echoviruses 1-7, 9, 11-21, 24-27, 29-33 

 -Human enteroviruses 69, 73-75, 77-88, 93, 97-98, 100-101, 106-107  

 -Simian enterovirus SA5 

 Human enterovirus C (19 types) (HEV-C) 

 -Human coxsackieviruses A1, A11, A13, A17, A19, A20-A22, A24 

 -Human poliovirus 1-3 

 - Human enteroviruses 95-96, 99, 102, 104-105, 109 

 Human enterovirus D (3 types) (HEV-D) 

 -Human enteroviruses 68, 70, 94 

 Simian enterovirus A (3 types) 

 Bovine enterovirus (2 types) 

 Porcine enterovirus B (2 types) (PEV-B) 

 Human rhinovirus A (74 types) 

 -Human Rhinovirus 1-2, 7-13, 15-16, 18-25, 28-34, 36, 38-41, 43-47, 49- 

 51, 53-68, 71, 73-78, 80-82, 85, 90, 94-96, 98, 100 

 Human rhinovirus B (25 types) 

 -Human Rhinovirus 3-6, 14, 17, 26-27, 35, 37, 42, 48, 52, 69, 70, 72, 79, 83, 84, 

 72, 79, 83-84, 86, 91-93, 97, 99 

 Human rhinovirus C 

Cardiovirus Encephalomyocarditis virus (1 type) 

  Theilovirus (12 types)  

Aphtovirus Foot-and-mouth disease virus (7 types) 

 Equine rhinitis virus (1 type) 

 Bovine rhinitis B virus 

Hepatovirus Hepatitis A virus  

Parechovirus Human parechovirus (14 types) 

 Ljungan virus 

Erbovirus Equine rhinitis B virus (3 types) 

Kobuvirus Aichi virus (1 type) 

 Bovine kobuvirus (1 type) 

Teschovirus Porcine teschovirus (11 types) 

Sapelovirus Porcine sapelovirus 

 Simian sapelovirus  

 Avian sapelovirus 

Senecavirus Seneca Valley virus 

Tremovirus Avian encephalomyelitis virus  

Avihepatovirus Duck hepatitis A virus 
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2.3.1 Structure of picornaviruses  

The picornavirus genome is enclosed in an icosachedral capsid containing 60 copies of 

each of the four structural proteins VP1 to VP4. The capsid proteins bound together form 

the structural unit of the capsid, the protomer. Five protomers are arranged into a pentamer 

and 12 pentamers form the capsid. VP1, VP2 and VP3 remain external, while VP4 is 

buried within the capsid. The picornavirus genome is a positive-strand RNA molecule of 

7.2 to 8.5 kilobases (kb) (Figure 3). It has a small virus-encoded protein (VPg) covalently 

linked to its 5‟ terminus, while the 3‟ end is polyadenylated. The 3‟ and 5‟ ends contain 

untranslated regions (5‟UTR and 3‟UTR, respectively). 5‟UTR includes an internal 

ribosome entry site (IRES) and a cloverleaf secondary structure. IRES directs the initiation 

of translation in a cap-independent manner (Pelletier & Sonenberg, 1988), whereas the 

cloverleaf structure is a multifunctional replication element which interacts with viral and 

cellular proteins to form a ribonucleoprotein complex (Li et al., 2007). The 3‟UTR 

contains a secondary structure, a pseudoknot, that has an important role in the regulation 

of viral RNA synthesis (Jacobson et al., 1993). The open reading frame (ORF) is 

translated into one single large polyprotein (between 2100-2400 amino acids, aa), which is 

further proteolytically cleaved into three precursor proteins P1, P2 and P3 and finally into 

four structural proteins (VP1-4) and seven nonstructural proteins (2A-C, 3A-D). 2A 

functions as a protease only in enteroviruses and rhinoviruses, and 3C in all picornaviruses 

(Hanecak et al., 1982, Toyoda et al., 1986). 3D is an RNA-dependent RNA polymerase. 

 

 

 

Figure 3. The enterovirus genome. The polyprotein is initially proteolytically cleaved into P1, P2 

and P3 regions. The P1 region is processed into the structural proteins VP1-VP4, while P2 and P3 

are processed into non-structural proteins.  

2.3.2 Picornavirus infection cycle 

To initiate infection, the virus needs to attach to a receptor on the cell surface (see step 1 

in Fig. 4). The infection of most picornavirus infections is associated with major structural 
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modifications of the virion to the altered („A‟) particle in order to release the viral RNA 

(vRNA). VP4 is absent in A particles, and the amino terminus of VP1 is externalized. For 

many enteroviruses, this structural change is known to be triggered by receptor binding 

(Rossmann et al., 2002). For other picornaviruses, such as the minor receptor group of 

HRVs, it is driven by the acidic pH within the endosomes (Dreschers et al., 2007). 

Enteroviruses are subsequently endocytosed and the viral genome is released into the cell 

cytosol (Pietiäinen et al., 2005) (see step 2 in Fig. 4). The VPg protein is removed from 

the 5‟UTR in the cytoplasm and the genome is translated (see step 3 in Fig. 4) to a 

polyprotein precursor, which is then cleaved to provide the viral proteins crucial for 

genome replication and particle assembly particles (see step 4 in Fig. 4). 

In picornaviruses, like in other RNA viruses, the virus genome synthesis occurs in 

replication complexes on membraneous vesicles that are induced by virus proteins (Egger 

et al., 2002). All the nonstructural proteins are involved in the viral RNA replication. In 

the initial step in replication, the positive strand viral RNA is copied to minus strand RNA 

(see step 5 in Fig. 4). This is followed by the production of new positive strand RNA 

molecules (see step 6 in Fig. 4). Enteroviruses inhibit cellular protein synthesis by 

cleaving the cellular initiation factor eIF4G, thus preventing the binding of the 5‟ cap-

binding initiator factor eIF4E to cellular mRNAs with specific activity of the 2A protein 

(Etchison et al., 1982, Gradi et al., 1998). Already 2 h after the initiation of the PV 

infection translation of nearly all cellular genes is replaced by viral mRNA translation 

(Etchison et al., 1982). However, the translation of the picorna viral genome is not 

affected because of the IRES that allows cap-independent translation of RNA (Dorner et 

al., 1984, Pelletier & Sonenberg, 1989). Alternatively, picornaviruses can dephosphorylate 

two low-molecular-weight cellular proteins 4E-BP1 and 4E-BP2, which are then able to 

bind to EIF4E and block its binding to EIF4G (Gingras et al., 1998). Furthermore, a 

picornavirus infection can inhibit cellular RNA synthesis by inhibiting the DNA-

dependent RNA polymerases I, II and III (Clark & Dasgupta, 1990, Falk et al., 1990, 

Yalamanchili et al., 1996). 

After sufficient synthesis of picornavirus capsid proteins and genomic RNA, the 

encapsidation of viral particles is initiated (see step 7 in Fig. 4). The viral particles are 

released by cell lysis (see step 8 in Fig. 4). The replication cycle of enteroviruses ranges 

from 5 to 10 h in cell culture. Approximately 50 000 new virus particles are produced in 

one cell but only 0.1-2% of them are infectious (Racaniello, 2001).  

 

 



  

 

 

 

 

 

 

25 

 

Figure 4. Schematic overview of the picornavirus replication cycle: 1) Attachment, 2) Entry and 

uncoating, 3) Translation, 4) Protein processing, 5-6) RNA replication, 5) (-) strand RNA 

synthesis, 6) (+) strand RNA synthesis, 7) Assembly and 8) Release. 

2.4 CELLULAR RECEPTORS FOR PICORNAVIRUSES 

To infect cells, viruses need to attach to molecules on the cell surface. Viruses use as 

receptors a wide range of molecules including proteins, carbohydrates and glycolipids. 

Virus-induced change in the receptor structure may induce signaling that activates the 

host-cell and regulates the entry process. The receptor binding can alter the virus structure 

triggering uncoating. Furthermore, accessory molecules may be needed for successful cell 

entry and virus uncoating. Picornaviruses may attach to several different molecules, 

including members of the immunoglobulin superfamily (IgSF) and integrins (Table 3 and 

Fig. 5).  
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Figure 5. Schematic picture of proteins known to function as enterovirus receptors. (Modified 

from Evans and Almond, 1998).  

Integrins are used as receptors by some picornaviruses. αv-integrin-binding 

picornaviruses, such as human parechoviruses (HPV1) (Joki-Korpela et al., 2001), CAV9 

(Roivainen et al., 1994,Williams et al., 2004), some EV9 strains (Zimmermann et al., 

1995) and FMDVs (Fox et al., 1989) posses an RGD motif in their VP1 capsid protein 

that functions as a binding site for αv-integrins (Chang et al., 1992, Fox et al., 1989) 

(Table 3). However, RGD-independent infection of CAV9 (Hughes et al., 1995, 

Roivainen et al., 1991, Roivainen et al., 1996) and FMDV (Jackson et al., 1996, Sa-

Carvalho et al., 1997) has been reported, indicating that these viruses can use alternative 

receptors. Indeed, FMDV with mutated RGD sequence uses as receptor heparan sulphate 

(HS) (Baranowski et al., 2000).  

Glucose-regulated protein 78 (GRP78, a member of the heat shock protein-70 family), 

is a coreceptor for CAV9 (Triantafilou et al., 2002) while MHC class I (Triantafilou et al., 

2002) and beta2 microglobulin (Triantafilou et al., 1999, Heikkilä et al., 2010) participates 

in the endocytotic process of the virus. In HPEV1 infection, the RGD motif has been 

shown to be critical for the infection initiation (Boonyakiat et al., 2001), other molecules 

like MMP9 may participate in the entry process (Pulli et al., 1997). In addition, several 

non-RGD EVs were recently shown to attach to αv integrins (Ylipaasto et al., 2010) 

(Table 3).  

The 21 integrin (collagen and laminin receptor) functions as a receptor for EV1 

(Bergelson et al., 1992, Bergelson et al., 1993, Ohman et al., 2001). The α2I domain can 

exist in either closed or open conformation (Emsley et al., 2000). The open conformation 

occurs in activated integrins prior to ligand binding, suggesting that it represents a high 

avidity state of the α2I domain. EV1 and collagen interactions with the α2I domain differ 

considerably. The MIDAS amino acids and concomitant supporting by Mg2
+
 are crucial 

for collagen attachment to the α2I domain, while these factors are not necessary in EV1 
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attachment to the integrin (Bergelson et al., 1993, King et al., 1997). Collagen, like all 

natural ligands, favours binding to the open α2I domain (Aquilina et al., 2002, Tulla et al., 

2001) and α2I domain binding triggers conformation change from closed to open 

conformation (Emsley et al., 2000). Furthermore, clustering, either by collagen or 

antibody to the 21, triggered rapid and transient activation of p38 MAPK (Jokinen et  

 

Table 3. Examples of picornavirus host cell receptors (Joki-Korpela et al., 2001, Racaniello, 

2001, Williams et al., 2004,  Ruiz-Saenz et al., 2009, Triantafilou et al., 2002,Yamayoshi et al., 

2009, Yang et al., 2009,Ylipaasto et al., 2010).  

RECEPTOR(S) Virus 

Integrins  

α2β1 integrin Echovirus 1 

αvβ3 integrin Echovirus 25, 30, 32; Coxsackievirus A9 

αvβ6 integrin Coxsackievirus A9 

αvβ1 and αvβ3 integrin Human parechovirus 1 

αvβ1, αvβ3, αvβ6, αvβ8  and α5β1 integrin Foot-and-mouth disease virus 

IgSF-like  

Poliovirus receptor, PVR; CD155,  Polioviruses 

Intercellular adhesion molecule 1, ICAM-1; CD54 Coxsackieviruses A13, A18, A21 

 Major receptor group of rhinoviruses 

Coxsackievirus-adenovirus receptor, CAR Coxsackieviruses B1-B6 

HAV cellular receptor 1, HAVcr-1 Hepatitis A virus 

SRC-like  

Decay-accelerating factor, DAF; CD55 Coxsackieviruses A21; Echoviruses 3, 6, 7, 

 11-13, 20, 21, 24, 29, 30 

 Enterovirus 70 

 Coxsackieviruses B1, B3, B5 

Others  

Sialic acid Enterovirus 70, 71 

 Rhinovirus 87 

Heparan sulphate Foot-and-mouth disease virus  

 

 

 

 (culture adapted) 

 Certain echovirus serotypes 

Low-density lipoprotein receptor; LDL-R Minor receptor group of rhinoviruses 

β2 microglobulin, β2m Certain echovirus serotypes 

 Coxsackievirus A9 

Glucose-regulated protein 78   Coxsackievirus A9 

Scavenger receptor class B, memBer 2, SCARB2 Enterovirus 71 

SA-linked glycans Enterovirus 71 
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al., 2010). EV1, unlike any other ligand known, preferred binding to the closed α2I 

domain and inactive 21 integrin (Jokinen et al., 2010, Xing et al., 2004). EV1-induced 

21 integrin clustering did not significantly activate the p38 MAPK signaling cascade 

(Jokinen et al., 2010). Instead, EV1 clustering activated PKC, which previously was 

shown to be needed for EV1 endocytosis (Upla et al., 2004). This suggested that EV1 

induced clustering does not trigger similar conformational change of 21 integrin, 

caused by either collagen or antibodies (Jokinen et al., 2010). 

In Cryo-EM reconstruction of EV1 interactions with a α2I domain-GST fusion protein, 

the α2I domain was shown to attach to VP1, VP2 and VP3 in the canyon of the virus. The 

MIDAS motif faced the canyon floor, although not in close contact with the virus, making 

it impossible for the α2I domain to bind collagen and virus simultaneously. Virus binding 

to α2I domain did not, however, induce virus uncoating. EV1 was able to attach 

simultaneously to multiple GST-α2I fusion proteins supporting the observation that EV1 

attachment induces α2β1 clustering (Xing et al., 2004).  

Immunoglobulin superfamily. Poliovirus receptor (PVR; CD155), coxsackievirus-

adenovirus receptor (CAR), ICAM-1 (CD54), and hepatitis A virus cellular receptor 1 

(HAVcr-1) are members of the IgSF and function as receptors for many picornaviruses, 

including PVs, CBVs, major group HRVs, CAVs and hepatitis A virus (Table 3). These 

proteins have an extracellular part, consisting of a variable number of Ig-like domains with 

disulphide bonds, a transmembrane domain and a short cytoplasmic domain. The N-

terminal part of these receptors binds to the canyon in the virus particle (Rossmann et al., 

2002).  

All the three poliovirus serotypes utilize the PVR (Mendelsohn et al., 1989). There are 

two different functional PVRs, produced by alternative splicing, that differ only in the 

cytoplasmic sequence. PVR contains three extracellular IgSF domains (D1, D2 and D3) 

(Chothia & Jones, 1997) (Fig. 5). In folding D1 exhibits similarities with Ig variable 

domain, whereas the two other domains resemble immunoglobulin constant domains. 

Residues in the domain D1 of PVR have been reported to be involved in PV binding 

(Rossmann et al., 2002). The cytoplasmic domain of PVR attaches to the light chain of 

dynein motor complex and is suggested to transport vesicles containing intact PV in 

retrograde axonal transport to the neuronal-cell body (Mueller et al., 2002, Ohka et al., 

2004).  

ICAM-1 is recognized by members of the HRV major receptor group (Table 3), e.g. 

HRV14 and 16 (Greve et al., 1989, Staunton et al., 1989), and is also used by some 

CAVs, e.g. CAV 21 (Newcombe et al., 2003, Shafren et al., 1997a). ICAM-1 forms cell 

adhesions between leukocytes and endothelium by binding to lymphocyte function-

associated antigen-1 (LFA-1; CD11a/CD18), a member of the integrin family, and the 

plasma protein fibrinogen, (Marlin & Springer, 1987). ICAM-1 contains five IgSF 

domains (Fig. 3). HRVs and CAV21 attach to the first aminoterminal IgSF of ICAM-1 



  

 

 

 

 

 

 

29 

(Kolatkar et al., 1999, Olson et al., 1993). Although the binding site of ICAM-1 to HRVs 

and CAV 21 canyons differs (Rossmann et al., 2002, Xiao et al., 2005), the interaction in 

both viruses induces conformational changes that destabilize the viruses and enhance the 

releases their genomes (Rossmann., 1994). 

CAR functions as a cellular receptor for all CBVs (Bergelson et al., 1997, Tomko et 

al., 1997). It has two IgSF domains (Fig. 5) and is localized in intercellular contact sites in 

epithelial cell junctions, thus interacting in the regulation of the flow of ions and 

macromolecules, including viruses, across cell monolayers (Cohen et al., 2001). These 

tight junctions contain integral membrane proteins, which adher adjacent cell membranes 

in close contact with cytoplasmic scaffolding proteins that provide a contact to 

intracellular signaling molecules and cytoskeleton. An interesting aspect is that CAR is 

downregulated in some tumors (Fuxe et al., 2003, Okegawa et al., 2001, Sachs et al., 

2002) and expression of transfected CAR causes inhibition of cell proliferation, 

suggesting that it could operate as a tumor suppressor (Anders et al., 2003). CBVes attach 

to several amino acids in the first domain of CAR (He et al., 2001) and virus binding to 

receptor induces conformational changes in the capsid (Goodfellow et al., 2005, Milstone 

et al., 2005).  

Other picornavirus receptors. In addition to integrins and IgSF receptors, 

picornaviruses can use some others receptors, such as decay-accelerating factor (DAF), 

very-low-density lipoprotein receptor (VLDL-R), heparan sulphate (HS), sialic acids and 

β2 microglobulin (β2-m). Decay-accelerating factor (DAF) is a glycoprotein that 

participates in the regulation of complement activity (Nicholson-Weller et al., 1982) and 

can act as the cellular receptor for several echovirus serotypes (Bergelson et al., 1994, 

Clarkson et al., 1995, Powell et al., 1998, Ward et al., 1994), enterovirus 70 and as a 

secondary cellular receptor for CAV21 and CBV 1, 3 and 5 (Bergelson et al., 1995, 

Shafren et al., 1995) (Table 3). DAF is widely expressed in different mammalian cell 

types and contains four short consensus repeats (SRC) linked by a 

glycosylphosphatidylinositol (GPI) anchor (Medof et al., 1987) (Fig. 5). EV7 (Clarkson et 

al., 1995, He et al., 2002), EV12 (Bhella et al., 2004, Pettigrew et al., 2006), EV11 (Lea et 

al., 1998) and CBV3 (Bergelson et al., 1995) bind to regions near and of the third SRC 

domain, while enterovirus 70 (Karnauchow et al., 1996) and CAV21 (Shafren et al., 

1997b) interacts with the first SRC domain. Virus-DAF interaction appears not to be 

sufficient to induce virus uncoating and A particle formation (Milstone et al., 2005).  

The cellular receptors for the HRV minor receptor groups are members of the low 

density lipoprotein receptor (LDLR) family, including the low density lipoprotein receptor 

(LDLR), the very low density lipoprotein receptor (VLDLR) and LDLR related protein 1 

(LRP1) (Nykjaer & Willnow, 2002, Vlasak et al., 2005). HS is a glycosaminoglycan 

ubiquitously expressed in mammalian cells. HS is naturally involved in cell adhesion, 

migration, proliferation, and differentiation. In addition, it binds to several signaling 
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molecules and a number of other ligands (Tumova et al., 2000). Some picornaviruses 

attach to HS, like FMDV (Jackson et al., 1996), swine vesicular disease virus (Escribano-

Romero et al., 2004), CBV3 (Zautner et al., 2003), Theiler‟s murine encephalomyelitis 

virus (Reddi & Lipton, 2002), some EVs (Goodfellow et al., 2001) and HRV54 (Khan et 

al., 2007) (Table 3). 

Sialic acids are a family of negatively charged sugar molecules located at the cell 

surface, most often on glycans of glycoproteins, glycosphingolipids, and the proteoglycan 

keratan sulphate (Angata & Varki, 2002). A couple of enteroviruses, including 

enteroviruses 70 (Alexander & Dimock, 2002, Haddad et al., 2004, Nokhbeh et al., 2005) 

and 71 (Yang et al., 2009) and RHV87 (Uncapher et al., 1991), have been reported to use 

sialic acids. β2-m associates with MHC class I molecules on the cell surface (Bjorkman et 

al., 1987, Madden, 1995).  

β2-m has been suggested in antibody  inhibition studies to function as a receptor for 

CAV9 (Heikkilä et al., 2010, Triantafilou et al., 1999) and some EVs serotypes including 

EV1 (Ward et al., 1998). 

2.5 INTERNALIZATION OF PICORNAVIRUSES INTO HOST 
CELLS 

Table 4. Internalization pathways of enteroviruses. 

Endocytic pathway Virus Reference 

Chlathrin-dependent CBV3 (Chung et al., 2005) 

 EV6 (Leveque et al., 2007) 

 PV (Kronenberger et al., 1998, Willingmann et al., 

1989)  

 HRV2 (Brabec et al., 2003, Schober et al., 1998) 

 HRV14 (Grunert et al., 1997, Schober et al., 1998) 

 HRV16 (Lau et al., 2008) 

 HPEV1 (Joki-Korpela et al., 2001) 

Lipid raft /Caveolae- 

dependent 

 

CAV9 

 

(Triantafilou & Triantafilou, 2003) 

 CBV4 (Triantafilou & Triantafilou, 2004) 

 EV1 (Karjalainen et al., 2008, Marjomäki et al., 2002, 

Pietiäinen et al., 2004) 

 EV6 (Leveque et al., 2007) 

 PV (Coyne et al., 2007a) 

Macropinocytosis CAV9 (Heikkilä et al., 2010) 

 CBV3 (Coyne et al., 2007b) 

 EV1 (Karjalainen et al., 2008, Marjomäki et al., 2002, 

Pietiäinen et al., 2004) 

Other PV  (Brandenburg et al., 2007) 

 HRV14 (Khan et al., 2010) 
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To infect the cell picornaviruses must penetrate the plasma membrane. Most 

nonenveloped viruses, like picornaviruses, use endocytosis for host cell entry. 

Picornaviruses enter the host cell by clathrin-dependent and lipid raft/caveolin-dependent 

pathways and by macropinocytosis (Table 4.). Many viruses are able to switch from one 

uptake mechanism to another or simultaneously utilize more than one endocytic route 

(Sieczkarski & Whittaker, 2005). 

2.5.1 Clahrin-dependent endocytosis  

Clathrin-mediated endocytosis is essential for several cellular mechanisms, including 

nutrient uptake, synaptic vesicle recycling, and transport of receptors and ion channels 

from the cell membrane (Brodsky et al., 2001, Cremona & De Camilli, 1997, Hirst & 

Robinson, 1998, Marsh & McMahon., 1999). The clathrin molecule has a conformation of 

a triskelion with three kinked extensions that radiate from a central vertex (Kirchhausen, 

2000). Clathrin-coated pits concentrate cargo proteins for internalization (Kirchhausen, 

2000), and internalization can occur constitutively or in response to stimuli. Several 

proteins, including adaptor complex AP-2, dynamin GTPase, neuronal adaptor protein 

AP180, CALM (Nonet et al., 1999, Zhang et al., 1998) and Eps 15 regulate the assembly 

and fission of the pits (Benmerah et al., 1999, Chen et al., 1999). Dynamin GTPase 

catalyzes vesicle fission upon hydrolysis of GTP (Mettlen et al., 2009). The internalized 

clathrin-coated vesicle is rapidly uncoated and fuses with early endosomes (EEs) 

(Chappell et al., 1986). Some ligands detach from their receptors in the slightly acidic 

milieu of EEs. Endocytosed receptors can be recycled back to the plasma membrane from 

EEs in a fast (approximately 5 min) or a slow (approximately 15-30min) recycling 

pathway. In the latter the cargo is first shuttled to endocytic recycling compartment (ERC) 

before transport to recycling endosome (RE), while in fast recycling the cargo enters 

directly from EE in RE. Alternatively, the cargo can be transported from EEs to late 

endosome (LE), with a lower pH in 5 to 15 minutes. The transport from EE to LE has 

been suggested to be mediated by an endosomal carrier vesicle (ECV) (Clague et al., 

1994, Gu & Gruenberg, 1999, Gu & Gruenberg., 2000). Some cargoes are transported 

from LEs into lysosomes, which have an acidic pH and hydrolytic enzymes for 

degradation (Fig 6.).  

Rab proteins belong to the Ras superfamily of GTPases, which includes four other 

families; Ras, Rho, Arf and Ran (Garcia-Ranea & Valencia, 1998, Takai et al., 2001). Ras 

and Rho have a role in cell growth and motility, while Rab, together with the latter two, 

regulates intracellular trafficking. Several Rabs are involved in clathrin-dependent 

endocytosis in endosomal vesicles (Table 5). Examples of other important molecules in 

the chlathrin-dependent entry route include the Rab5 effectors, EEA1 and PI(3)K, needed 
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in EE fusion. EEA1 functions as a tethering protein between two Rab5 positive 

membranes (Rothman & Warren, 1994). 

 

 

Figure 6. Endocytic pathways. Internalization pathways for cargo include macropinocytosis, 

clathrin mediated endocytosis and lipid raft endocytosis mechanisms. 

Transferrin (Tf) transport is a widely used marker for clathrin-mediated entry. Tf 

belongs to a family of iron-binding proteins. The iron-Tf complex binds to the transferrin 

receptor (TfR) and is rapidly endocytosed through clathrin-coated pits (Mellman, 1996). 

TfR is constitutively endocytosed, and the rate of recycling is further enhanced by Tf 

binding. From the clathrin-coated vesicle the Tf-TfR is transported to EEs. In the 

endosomal acidic environment of the EE, iron is released from Tf and the resultant apo-

Tf-TfR is recycled to the plasma membrane (Hedman et al., 1987, Morgan, 1996, Qian et 

al., 1997) in either a rapid or slow recycling route (Grant & Donaldson, 2009).  

Several viruses, including adenoviruses, alphaviruses, hantaviruses, orthomyxoviruses, 

parvoviruses and picornaviruses (DeTulleo & Kirchhausen, 1998, Evans & Almond, 1998, 

Marsh & Pelchen-Matthews, 2000), utilize clathrin–mediated endocytosis. The incoming 

viruses are most often exposed to the acidic milieu of endosomes. Many viruses respond 

to the pH decrease by undergoing changes that lead to endosomal membrane penetration 

and viral genome release. Some enteroviruses (Table 4), aphthovirus, FMDV and 

parechovirus HPEV1 are picornaviruses that have been shown to use clathrin-mediated 

entry. 
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Table 5. Rab proteins involved in clathrin-dependent endocytosis. 

2.5.2 Lipid raft/caveolae-mediated endocytosis  

Lipid rafts are small (10-200 nm), heterogeneous, highly dynamic, sterol and 

sphingolipid-enriched domains that compartmentalize cellular processes (Pike, 2006). The 

main components of lipid rafts are sphingolipids, (glycol-) phospholipids, and cholesterol. 

Cholesterol partition into sphingolipid bilayer makes it more flexible and enables 

substantial lateral movement of the lipid rafts in the membrane (Simons & Ikonen, 1997). 

Small lipid rafts can form larger platforms by protein-protein and protein-lipid interactions 

(Pike, 2006). Raft formation and/or stabilization is thought to be a highly regulated 

process that occurs only in response to activation by a stimulus, e.g. receptor clustering 

(Hammond et al., 2005). Specific proteins, such as caveolins (Mukherjee et al., 1999) and 

flotillins (Rajendran et al., 2003) are thought to organize rafts into specialized membrane 

domains.  

Lipid rafts have a role in the antigen presentation (Gombos et al., 2004, Gombos et al., 

2006), signal transduction and act in sorting of trans-Golgi network (Keller & Simons, 

1998, Simons & van Meer, 1988) and endosomes (Mukherjee et al., 1999). Many 

pathogens, including bacteria (Lafont & van der Goot, 2005) and viruses (Chazal & 

Gerlier, 2003, Pelkmans, 2005), have evolved to use lipid rafts for their own 

internalization.  

Several receptors and signaling proteins (e.g. Src, Lck, and CD4) are associated with 

lipid rafts, while others colocalize upon activation (Gupta & DeFranco, 2003, Kabouridis 

Rab Function Reference 

Rab 4 Rapid recycling from EE to plasma 

membrane 

(Deneka et al., 2003, Yudowski et al., 

2009) 

Rab5 Transport from EE to LE (Bucci et al., 1992, Gorvel et al., 1991) 

Rab7 Transport from EE to LE for 

certain molecules 

(Fan et al., 2003, Feng et al., 1995, Press et 

al., 1998) 

 Transport from late LE to 

lysosome 

(Bottger et al., 1996, Bucci et al., 2000, 

Meresse et al., 1995, Schimmoller & 

Riezman, 1993) 

Rab10 Implicated to be involved in 

transport between EE and RE 

(Babbey et al., 2006, Chen et al., 2006a) 

Rab11 Transport from EE to ERC (Naslavsky et al., 2006) 

 Recycling from EE to plasma 

membrane 

(Sheff et al., 1999) 

 Transport from ERC to RE and 

recycling to the plasma membrane 

(Weigert et al., 2004) 

Rab22A Transport from EE to ERC (Magadan et al., 2006) 

Rab35 Rapid recycling  from EE to 

plasma membrane 

(Kouranti et al., 2006) 
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et al., 1997). Some proteins that lack transmembrane spans are targeted to lipid raft 

domains, particularly proteins with GPI-anchors (Brown & London, 1998, Gombos et al., 

2008). Transmembrane proteins are generally excluded from tightly packed lipid raft 

structures (Fastenberg et al., 2003, van Duyl et al., 2002). Nevertheless, transmembrane 

proteins can be directed to lipid rafts by addition of raft targeting signals. At least four 

different raft-dependent pathways are thought to exist in mammalian cells. These 

pathways differ in their requirements for dynamin and small GTPases organizing the 

endocytosis and cargo selection. Two of the pathways are dynamin-dependent, and of 

those two, one is regulated by caveolin and the other is dependent on RhoA. The two other 

dynamin-independent lipid rafts are controlled by Rho GTPases Cdc42 and GTPase Arf 6 

respectively (Upla et al., 2009).  

Caveolae are flask-shaped invaginations in the plasma membrane that contain 

sphingolipids, cholesterol, polymerase I and transcript release factor (PTRF)-cavin and 

caveolin proteins (Anderson, 1998, Hill et al., 2008, Simons & Ikonen, 1997). The 

caveolin proteins are thought to form a hairpin structure in the membrane. They have a 

central 33-amino acid long hydrophobic domain, with both the N-terminus and C-terminus 

facing the cytoplasm (Dietzen et al., 1995, Dupree et al., 1993, Monier et al., 1995). 

Cholesterol binds tightly in a 1:1 ratio to caveolin, and it is crucial for stabilizing of the 

caveolin oligomers (Monier et al., 1996) and involved in signaling and trafficking 

mechanisms of caveolae.  

Caveolae have been implicated in several functions including cell signaling, vesicular 

transport and lipid regulation. Caveolar endocytosis is used by natural ligands (e.g. 

albumin, cholesterol) (Schnitzer et al., 1994, Smart et al., 1996), toxins (e.g. cholera toxin; 

CTx) (Montesano et al., 1982, Nichols, 2002), bacteria (e.g. E. coli) (Shin et al., 2000), 

viruses (Pelkmans & Helenius, 2002) and prions (Peters et al., 2003). Due to the important 

regulatory role of caveolae in several signaling cascades, mutations or defects in caveolin 

proteins contribute to the pathogenesis of some diseases, including type 2 diabetes, cancer, 

cardiovascular diseases, atherosclerosis, pulmonary fibrosis and some types of 

degenerative muscular dystrophies (Schwencke et al., 2006).  

Caveolae have been suggested to be involved in the regulation of various pathways, 

including those regulated by integrins, by clearing proteins from the plasma membrane 

(Pelkmans et al., 2005). Integrins regulate multiple pathways, some of which can be 

constitutively activated in cancer cells by the lack of cellular regulation by caveolin-1. 

Caveolin-1 expression is suppressed in some oncogenically transformed cells, leading to 

the absence of detectable caveolae (Koleske et al., 1995). For instance, decreased 

caveolin-1 expression in breast cancer cells contributes to higher invasive potential (Sloan 

et al., 2004). Reexpression of caveolin-1 in tumor cells restores anchorage-dependent 

growth (Engelman et al., 1997). 
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Caveolae are partially immobile in the plasma membrane, and activation by ligand 

binding to receptor may trigger internalization. Tyrosin phosporylation of caveolin-1 can 

activate caveolae endocytosis. Internalization activation temporarily recruits GTP-binding 

protein dynamin to caveolae, triggering fission of caveolae by subsequent hydrolysis of 

GTP and constriction of caveolae neck. Internalization of caveolae is further dependent on 

reorganization of the cytoskeleton by depolymerization of actin (Parton et al., 1994). After 

pinching off from the plasma membrane, caveolae may connect to microtubule-associated 

proteins for transport (Schnitzer et al., 1995). The cytoplasmic caveolae can fuse with 

caveosomes (Pelkmans et al., 2001) or alternatively deliver their cargo to endosomal 

vesicles of the clathrin-mediated pathway (Pelkmans et al., 2004). Caveosomes have a 

neutral pH, and they are caveolin-1 positive and rich in cholesterol and glycosphingolipids 

(Pelkmans et al., 2001). The cargo can be delivered from caveolar vesicles and 

caveosomes further to the endosomes, Golgi, ER or lysosoms, a process that may involve 

microtubule-directed transport (Conrad et al., 1995, Nichols, 2002). 

Virus entry by caveolar endocytosis. Since SV40 was shown to enter the cell by 

caveolar endocytosis (Anderson et al., 1996), a growing number of viruses, including the 

enteroviruses EV1 (Marjomäki et al., 2002), PV (Coyne et al., 2007a), respiratory 

syncytial virus (Brown et al., 2002) and filoviruses (Empig & Goldsmith, 2002) were 

shown to utilize caveolin-mediated endocytosis. A benefit for viruses to use caveolae 

entry is that they avoid the acidic endosomes/lysosomes. The caveolae-dependent 

endocytosis transports the pathogens to a specific destination, e.g. SV40 to the 

endoplasmic reticulum (Pelkmans et al., 2001), cholera toxin to the Golgi compartment 

(Nichols, 2002) and EV1 to the perinuclear space (Marjomäki et al., 2002). EV1 attaches 

to the host cell by binding to the 2 I domain (2I) of the 21 integrin on the cell 

surface (Bergelson et al., 1992). In former studies, the virus has been shown to internalize 

together with the integrin receptor in either caveolin-1 positive or negative vesicles and is 

later transported to caveosomes (Marjomäki et al., 2002, Pietiäinen et al., 2004). The virus 

infection was shown to be dependent on dynamin-2 in some cell lines (Karjalainen et al., 

2008, Pietiäinen et al., 2004) and partly on cholesterol (Marjomäki et al., 2002, Pietiäinen 

et al., 2004), and the need of an intact actin cortex was shown to vary according to cell 

type (Pietiäinen et al., 2004). However, later studies indicate that the majority of the 

viruses use alternative entry process that is independent of both clathrin and caveolin.  

Picornaviruses utilizing both lipid raft/caveolae and clathrin entry routes. A few 

picornavirus serotypes, including CBV3, FMDV and EV6, have been shown to use both 

lipid raft/caveolin and clathrin-dependent routes of endocytosis, depending on cell type or 

genetic variation in the virus genome (Chung et al., 2005, Coyne et al., 2007b, Leveque et 

al., 2007, Wang et al., 1993). CBV3 were found to use clathrin-dependent entry in Hela 

cells (Chung et al., 2005), while another CBV3 strain infecting HeLa CCL-2 cells 

required dynamin and lipid rafts (Patel et al., 2009). In polarized epithelial cells, virus 
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entry from tight junction (TJ) is dependent on caveolin, Ras, Rab5 and Rab34 GTPases 

involved in macropinocytoses and independent of dynamin (Coyne et al., 2007b). FMDV 

that is virulent for susceptible animals has been shown to attach to five different integrins 

(table 3) (Ruiz-Saenz et al., 2009). Tissue culture adaption of some FMDV serotypes 

causes loss of virulence in animals and integrins as cellular receptors. Instead, those 

serotypes utilize cell surface HS molecules as receptors. In two strains of genetically 

engineered FMDV, the first was able to bind to both HS and integrin and entered the cells 

by both clathrin and caveolin-mediated entry, while the second that only utilized HS as 

cellular receptor colocalized with caveolin (ODonnell et al., 2008). The cell entry of two 

strains of EV6 was studied, where one had the ability to hemaglutinate human 

erythrocytes, a feature related to the virus attachment to DAF (Powell et al., 1999), while 

the other virus strain had lost its hemaglutinating capacity due to inability to attach to 

DAF. DAF are concentrated in the plasma membrane within the lipid rafts domain. DAF-

binding EV6 strain did enter through a lipid raft-dependent pathway, while the non-DAF-

binding strain endocytosed through clathrin-directed pathway (Leveque et al., 2007).  

Other endocytotic pathways through lipid rafts. In addition to caveolae entry, at 

least three other lipid raft endocytotic pathways have been proposed to exist. These 

include a dynamin-dependent pathway regulated by RhoA. RhoA GTPases are important 

in the regulation of cytoskeletal dynamics and are connected to several cellular processes, 

including vesicular transport. The two other lipid rafts-mediated entry pathways are 

dynamin-independent. One of them is controlled by Rho GTPases Cdc42, while the other 

is regulated by GTPase Arf 6. Activity of Rac1, Cdc42, N-WASP and a GTPase regulator, 

connected with a focal adhesion kinase 1 upstream of Cdc42 (Lundmark et al., 2008), 

triggers the forming of acidic endocytotic vesicles called clathrin-independent carriers 

(CLICs) (Chadda et al., 2007, Kalia et al., 2006, Kumari & Mayor, 2008, Sabharanjak et 

al., 2002). The CLICs obtain Rab5 and EEA1 and fuse with other CLICs forming GPI-

anchored, protein-enriched early endosomal compartments (GEECs). The GEECs 

subsequently fuse with the sorting endosomes of the clathrin pathway in a process that 

needs both PI3K and Rab5 (Kalia et al., 2006).  

Arf6-dependent lipid raft recycling internalization pathways have been reported to be 

utilized by GPI-anchors and some integral membrane proteins, such as β1-integrins. The 

internalized molecules enter phosphatidylinositol-(4,5)-bisphosphate (PIP2)- and 

cholesterol-containing membranes before being transported to the sorting endosomes of 

the clathrin pathway. The cargo can be further transported to recycling endosomes by a 

Rab22-dependent process or alternatively shuttled to the lysosomal vesicles.   

Flotilins are raft-associated proteins that are located in microdomains and able to form 

membrane curvature and endocytosis (Babuke & Tikkanen, 2007, Frick et al., 2007, 

Glebov et al., 2006). The regulation mechanism for this entry process is still unsolved.  

EV1 have been reported to use an alternative entry process that is independent of both 
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clathrin and caveolin and in some cell types of dynamin. The virus attached to a lipid raft 

is internalized in endosomes that maturate further into multivesicular structures which 

recruit caveolin-1 by fusing with caveolae or caveosomal structures, thus forming 

structures that may be considered as late caveosomes (Karjalainen et al., 2008). 

2.5.3 Macropinocytosis 

By macropinocytosis, cells are able to take up large quantities of extracellular fluids and 

macromolecules. Some microbial pathogens also utilize this pathway to enter the cells. 

Macropinocytosis is either a stimulated or constitutively active process depending on the 

cell type. Dendritic cells take up antigens and, after processing them into peptides, present 

them to T-cells. Macropinocytosis is driven by actin polymerization causing circular 

ruffles of the plasma membrane to form large endocytotic macropinosome vesicles. 

Mostly macropinocytosis is growth factor-induced, although various molecules can induce 

ruffling independent of growth factors (Mercer & Helenius, 2009). Macropinocytosis can 

be induced by external stimulation, e.g. by growth factors that trigger activation of 

receptor tyrosine kinase (RTKs), which leads to a signaling cascade that alters the 

dynamics of actin filaments and  results in ruffling. Ras superfamily GTPases are 

important in this process, and RTK activation of Ras activates three parallel signaling 

pathways containing Rac1, Rab5, Arf6 and phosphotidyl-3-kinase (PI(3)K) (Bar-Sagi & 

Feramisco, 1986, Bar-Sagi et al., 1987), which together cooperate to modulate ruffle 

formation, macropinosome closure and membrane transport (Lanzetti et al., 2004).  

Several kinases are crucial for macropinocytosis, and one of the most important is the 

p21-activated kinase 1 (Pak1), a serine/threonine kinase activated by Rac1 and Cdc42. 

Pak1 is needed during all stages of macropinocytosis. It regulates cytoskeleton dynamics 

and motility and activates numerous effectors needed for membrane ruffling and 

macropinosome closure (Dharmawardhane et al., 2000, Liberali et al., 2008, Parrini et al., 

2005). Other kinases, important for membrane ruffling and macropinosome formation are 

protein kinase C (PKC) (Amyere et al., 2000, Miyata et al., 1989) and c-Src. Na
+
/H

+
 

exchangers are also important markers for the macropinosome (West et al., 1989). 

Macropinocytosis has been reported in several studies to be used as an entry route by 

viruses, including vaccinia virus, rubella virus, human immunodeficiency virus type I 

(HIV-1), herpes simplex virus 1 (HSV1) and adenoviruses (Ad) (Mercer & Helenius, 

2008). Some viruses are thought to use macropinocytosis as a direct endocytotic route, 

while others may use it indirectly to assist in viral infection and simultaneously use other 

endocytotic mechanisms (Mercer & Helenius, 2008). Two enteroviruses, EV1 and CBV3, 

have so far been suggested to use macropinocytosis in their entry. EV1 is attached to its 

receptor, the α2β1 integrin, and internalized into vacuolar structures. The infection was 
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shown to be dependent on several molecules known to be involved in macropinocytosis, 

such as Pak1, PI(3)K, PLC, Rac1 and Na
+
/H

+
 exchangers. The infection required 

cholesterol and actin dynamics (Karjalainen et al., 2008) and was further shown to be 

dependent on C-terminal-binding protein-1/brefeldinA-ADP ribosylated substrate 

(CtBP1/BARS) (Liberali et al., 2008). In polarized epithelial cells, CBV3 enters cells 

from epithelial TJ within macropinosomes (Coyne et al., 2007b). Virus entry was 

dependent on caveolin, Ras, Rab5 and Rab34 GTPases, Na
+
/H

+
 exchangers and PKC, but 

independent of dynamin (Coyne & Bergelson, 2006). 

2.6 HOST GENE EXPRESSION INDUCED BY ENTEROVIRUS 

INFECTION  

Enterovirus infections are able to cause dramatic change in the host cell. Certain 

enteroviruses, such as PV1 (Johannes et al., 1999), EV1 (Huttunen et al., 1997, Huttunen 

et al., 1998, Pietiäinen et al., 2000) and EV7 (Huttunen et al., 1997) have been shown to 

affect the expression of eukaryotic immediate early genes (IEGs). Many enteroviruses 

have been shown to control cell death by either activating or inhibiting apoptosis. In 

addition, in PV infected cells concomitant activation of both apoptotic and antiapoptotic 

pathways has been shown to occur (Autret et al., 2008).                                               

Immediate early genes (IEGs) are a class of genes that are rapidly and usually 

transiently activated in response to a wide variety of cellular stimuli (Soloaga et al., 2003). 

The induction of IEGs occurs in the absence of de novo protein synthesis (Platenik et al., 

2000). IEGs function for instance as chemo-attractants, cytoplasmic enzymes, ligand-

dependent transcription factors and inducible transcription factors (ITFs), including the 

Fos protein family (FOS, FOSB, Fra-1, Fra-2), Jun (JUN, JUNB, JUND) (Herdegen & 

Leah, 1998) and some members of activating transcription factors (ATF) (e.g ATFa, ATF-

2 and ATF2, ATF3). These genes are components of the dimeric AP-1 transcription factor 

that regulates a wide range of cellular processes, such as cell proliferation, cell survival 

and differentiation (Shaulian & Karin, 2002).  

Several IEGs have been determined to be increased during EV1 infection. The 

transcription of IEGs JUN, JUNB, and FOS has been shown to increase 5-10 h p.i. in 

EV1-infected cells in a Northern blot analysis (Huttunen et al., 1997) and in studies 

measuring the transcriptional rate of the genes (Huttunen et al., 1998). EV1 infection 

causes activation by phosphorylating both the stress-related p38 mitogen-activated protein 

kinase (MAPK) and the growth signal-related ERK1/2 MAPKs. The growth signal-related 

ERK1/2 MAPKs pathway leads to induction of FOS, whereas p38 MAPK were involved 

in the increased expression of JUNB (Huttunen et al., 1998). Furthermore, in a microarray 

study, EV1 infection induced expression of two IEGs, Fos related antigen (Fra-1) and 
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early growth response 1 (EGR1) 6 h p.i. 10 h p.i induction of both of these IEGs was even 

more strongly induced and the expression of a few additional IEGs was increased, 

including JUN, Krueppel-like factor 10 (KLF10) and c-myc (Pietiäinen et al., 2000). α2β1 

integrin–mediated cell adhesion to type I collagen is known to induce certain IEGs. 

However, IEGs activation has not been observed during early time points of virus 

attachment and endocytosis, suggesting viral replication to be essential for the induction of 

these genes (Huttunen et al., 1997, Pietiäinen et al., 2000). This view was supported by 

the fact that transfection of cells with viral EV1 RNA induced the activation of JUNB and 

that the induction of FOS, JUN and JUNB were also observed in EV7 infected HOS 

pα2AW cells (Huttunen et al., 1997). 

Similar pattern of induction of IEGS in host cells has been shown to occur during the 

infection of other enteroviruses. In PV-infected Hela cells, the expression of some IEGs 

was found to be increased upon the infection (Johannes et al., 1999). These IEGs included 

ATF3, c-myc, cysteine-rich, angiogenic inducer, 61 (CYR61), Pim-1 and KLF10. In 

another study, PV-infection also induced increased expression of Pim-1, c-myc and JUN 

(Pietiäinen et al., 2000). In line with these studies, CBV3 infection was found to 

transiently upregulate ATF3, JUN, FOS (McManus et al., 2002), CYR61 and KLF10 

(Kim et al., 2004). Furthermore, the gene expression profile of CBV3-infected mouse 

hearts showed upregulation of the expression of ATF4, ATF3 and ATF4 (Shaulian & 

Karin, 2002). They can act as transcriptional repressors or attach to JUN in order to induce 

cellular transcription. In a murine model of chronic CBV3 myocarditis, the expression of 

connective tissue growth factor (CTGF) was found to be highly induced (Lang et al., 

2008).  

Apoptosis-related genes. Apoptosis is an active process of cell death characterized by 

DNA fragmentation, nuclear chromatin condensation, membrane blebbing and cell 

shrinkage (Arends et al., 1990). Caspases are molecules involved in apoptosis, which 

belong to a family of cysteine proteases located mainly in the cytosol in the form of 

inactive procaspase. Caspases need proteolytic cleavage for activation. Apoptosis is 

crucial for normal tissue physiology, and disturbed ability of apoptosis is responsible for 

various disorders, such as genetic and autoimmune diseases, neurodegenerative disorders 

and cancer. Furthermore, apoptosis is an effective process by which a virus can induce cell 

death, spread progeny and concomitantly reduce inflammatory and immune response 

(Buenz & Howe, 2006, Everett & McFadden, 2001). 

RNA viruses, like the enteroviruses, replicate much more efficiently than large and 

slow replicating DNA viruses, and their multiplication appears to benefit from rapid 

initiation of cell death. Enterovirus infection can trigger either canonical cytopathic effect 

(CPE) or apoptosis, or both, in host cells (Buenz & Howe, 2006). Several studies have 

proposed anti-apoptotic response from enterovirus infection, counteracting the intrinsic 

apoptosis program triggered by virus-induced modifications in host cell metabolism (van 
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Kuppeveld et al., 2005). However, full-scale apoptosis seems to be activated only at the 

end of enterovirus growth cycle after completed viral replication, indicating anti-apoptotic 

delay rather than blocking of the apoptosis pathway (van Kuppeveld et al., 2005). 

Regardless of the short replication cycle, these viruses are also able to cause persistent 

infection (Buenz & Howe, 2006), affecting the apoptotic balance and escaping the 

immune defense. Apoptosis may also be involved in the pathogenesis of enterovirus 

diseases, such as myocarditis and dilated cardiomyopathy (Carthy et al., 1998), as well as 

neurological diseases (Chen et al., 2007).  

Enteroviruses have been reported to either favor or inhibit apoptotic events in the cell. 

EV71 induced apoptosis in neuronal cells caused stimulation of c-Abi activity, which lead 

to the phosporylation and activation of Cdk5 (Chen et al., 2007). CBV3-induced apoptosis 

has been found to require activation of the MAPK pathway (Luo et al., 2002). CBV3 

infection is frequently the cause of virus-induced myocarditis, and a critical determinant of 

the severity of the disease is early onset of apoptosis (Tam, 2006, Yang et al., 1999). 

However, CBV3 infection has also been shown to promote cell survival by degradation of 

p53 and downregulation of ATF3 (Hwang et al., 2007). PI3K/Akt, which has been 

reported to play an anti-apoptotic role in numerous viral infections (Cooray, 2004), has 

been reported to have a role in the regulation of apoptosis during CBV3 (Esfandiarei et al., 

2004), PV (Autret et al., 2008) and EV71 (Tung et al., 2007, Wong et al., 2005) infection. 

PV is able to prevent tumor necrosis factor (TNF)-triggered apoptosis by abolishing the 

cytokine receptor from the cell membrane (Neznanov et al., 2001). 

Depending of the phase in the PV infection cycle, the virus has been shown to promote 

either cell survival or apoptosis. In PV-infected cells, the amount of phosphorylated Akt 

increased until 30 min p.i and then decreased at 4 h p.i. to a level similar to mock infected 

cells (Autret et al., 2008), and later (6h p.i.) apotosis was triggered by a c-Jun NH2-

terminal kinase (JNK) reaction cascade (Autret et al., 2007).  

2.7 TYPE 1 DIABETES  

 

Type 1 diabetes (T1D) accounts for 5-10% of all the cases of diabetes. It is characterized 

by progressive destruction of insulin-producing β-cells in the pancreatic islets (Devendra 

et al., 2004). The destructive process can start years before the first clinical symptoms. 

Two distinct forms of T1D have been identified: type 1A is caused by cell-mediated 

autoimmune attack on β-cells (Devendra et al., 2004), whereas type 1B is considerably 

less frequent, has no known cause, is characterized by varying degrees of insulin 

deficiency as well as by sporadic periods of ketoacidosis (Abiru et al., 2002). 

Susceptibility to T1D is largely inherited, and over 40% of the familial clustering of T1D 
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can be attributed to genetic variation in the human leukocyte (HLA) region. The direct 

involvement of HLA class II DRB1, DQA1 and DQB1 genes is well recognized. The most 

predisposing DRB1-DQB1 haplotypes are DR3 (DRB1*0301, DQA1*0501, DQB1*0201) 

and DR4 (DRB1*0401/2/4/5, DQA1*0301, DQB1*0302). Of these, the most predisposing 

are DRB1*04 subtypes (0401 and 0405). In addition, other allelic variation affecting 

susceptibility for T1D has been found in classical HLA loci, in class1 and DPB1, and in 

recent research the region of MHC class III has been of particular interest (Valdes et al., 

2010). Clinical T1D starts to develop when one or more environmental triggers alter the 

immune function to initiate β-cell destruction. Several different environmental factors are 

thought to have a role in this process. These include viruses (e.g. enteroviruses, rubella 

virus, endogenous retroviruses and human cytomegalovirus) (Lammi et al., 2005), 

bacterial toxin (bafilomycin A1) (Myers et al., 2001, Myers et al., 2002), environmental 

toxins (e.g. nitrosamines) (Helgason & Jonasson, 1981), nutrition (e.g. early exposure to 

cow‟s milk proteins, cereals or gluten) (Akerblom et al., 2002, Norris et al., 2003, 

Thorsdottir & Ramel, 2003, Vaarala et al., 1999, Virtanen et al., 2000), overweight 

(earlier onset of T1D in obese children) (Betts et al., 2005) and increased hygiene (atopic 

disorders and T1D are more common in affluent societies than in traditional societies with 

a lower degree of hygiene) (Beyan et al., 2003, Kaila & Taback, 2001). 

The pathogenesis of T1D is associated with inflammatory response with infiltration of 

lymphocytes in the islet of Langerhans and production of autoantibodies against β-cell 

antigens. There are three autoantibodies that have been shown to predict clinical T1D. 

These include insulin autoantibodies (IAA), autoantibodies to the 65 kD isoform of 

glutamic acid decarboxylase (GADA), and the phosphatase-related islet antigen 2 (IA-2). 

In addition, recently an additional autoantigen in T1D, a zinc transporter 8 (ZnT8), was 

detected (Wenzlau et al., 2007). 

The most important group of viruses that has been associated with type 1 diabetes 

(T1D) are enteroviruses (Barrett-Connor, 1985, Hyöty & Taylor, 2002, Roivainen et al., 

1998). They replicate in various target organs including the pancreas (Kaplan et al., 1983). 

Association with T1D and enterovirus infections has been reported in prediabetic children 

(Hiltunen et al., 1997, Hyöty et al., 1995), adults (Andreoletti et al., 1997, Gamble et al., 

1969), and infections during pregnancy may contribute to early onset of T1D in childhood 

(Dahlquist et al., 1995). Increased prevalence of enterovirus RNA and higher antibody 

levels against CBVs have been reported in individuals with recent onset of T1D 

(Andreoletti et al., 1997, Gamble et al., 1969, Lönnrot et al., 2000). In a recent study, 

immunochemistry staining with enterovirus capsid protein vp1 antibody of autopsy 

samples showed increased enterovirus prevalence in the islets of patients with recent-onset 

T1D diabetes (Richardson et al., 2009).  

Several enteroviruses have been suggested to have a role in the onset of T1D. CBVs, 

especially serotype CBV4, CAV9 and several serotypes of EVs, such as EV3, 6, 9, 16, 21 
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and 30, have been associated with T1D (Elshebani et al., 2007, Roivainen, 2006, Williams 

et al., 2006). In fact, all enteroviruses that have been investigated in islet cell culture or in 

animals studies contain strains that are able to damage β-cells (Roivainen & Klingel, 

2009). In a non-obese diabetic (NOD) mouse study, only a minority of different CBV4 

strains were able to induce diabetes (Yoon et al., 1986). However, there is evidence that 

some enteroviruses, like CBVs, are less prevalent in countries with high incidence of T1D, 

e.g. Finland, than in genetically similar populations with a low incidence of T1D (e.g. 

Russian Karelia) (Viskari et al., 2005). Frequency of enterovirus infections has decreased 

during the 1980s and 1990s, while the incidence of type 1 diabetes has increased (Viskari 

et al., 2004), suggesting an inverse relation between enterovirus infection and frequency 

of T1D. In addition, pregnant women in Finland had lower enterovirus antibody levels 

than those in Estonia and Karelia (Viskari et al., 2005). The neutralizing antibodies from 

the mother protect the child from infection during the first 3 to 9 months of age. 

Enterovirus infection during 6-12 months of age has been shown to decrease the risk of 

T1D (Blom et al., 1991, Gibbon et al., 1997, Pundziute-Lycka et al., 2000), while severe 

neonatal infections are a risk factor for diabetes (Anonymous, 2000, Dahlquist et al., 

1999). Similar results have been obtained in a study with NOD mice, where early (pre-

insulitis) caused by CBV infection, protected against T1D, while later infection after 

development of insulitis could accelerate the onset of diabetes (Serreze et al., 2005).  

The mechanisms by which enteroviruses are able to affect T1D pathogenesis are still 

largely unsolved, but evidence supporting a few different alternatives exist, including 

direct destruction of islets, molecular mimicry, bystander destruction and viral persistence 

(Richer & Horwitz, 2009).  

Enterovirus infection both in prediabetic individuals and individuals with newly 

diagnosed T1D has been associated with antibodies against T1D-related antigens, such as 

glutamic acid decarboxylase (GAD65) (Baekkeskov et al., 1990), insulin (Palmer, 1987), 

tyrosine phospatases IA-2 and IA-2beta (Notkins et al., 1998) and heat shock protein 

60/65 (Birk et al., 1996, Elias et al., 1990). In a study by Elshebani et al., isolated 

enteroviruses replicated in human β-cells and caused destruction of a share of the cells. 

However, insulin secretion was reduced in all infected cells, suggesting that these effects 

on β-cells could lead to cellular stress, possibly triggering mechanisms that could affect 

the development of T1D (Elshebani et al., 2007). It has been speculated that enteroviruses 

cause infection leading to engulfment of the infected islets and presentation of β-cell 

antigens in an inflammatory process, a mechanism that has been referred to as bystander 

destruction (Horwitz et al., 1998). The contribution of the bystander mechanism is 

supported by a study where patients with newly diagnosed T1D were found to have 

increased levels of IFN-α and half of these patients were concomitantly positive for 

enterovirus RNA (Chehadeh et al., 2000). Furthermore, local infection in non-islet cells of 

the pancreas might cause inflammation and cytokine-mediated β-cell damage and 
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destruction of β-cells, resulting in exposure of previously hidden autoantigens and 

stimulation of autoreactive T cells, a process referred to as the „‟innocent bystander „‟ 

mechanism (Horwitz et al., 1998). CBV4 and probably most of the enteroviruses can 

trigger production of pro-inflammatory cytokines, such as IL-1β, TNF-α, IL-2 and the 

type 1 interferons (Vreugdenhil et al., 2000).  

In addition, enterovirus infection in any tissue might induce antiviral responses that 

cross-react with autoantigens. This could lead to decreased tolerance to certain antigens 

and autoimmunity (Atkinson et al., 1994, Kaufman et al., 1993, Vreugdenhil et al., 1998). 

The cross-reactivity could arise from molecular mimicry, where similar structures are 

shared between viral and host molecules (Maclaren & Atkinson, 1997, Oldstone, 1998). 

Possible immunological cross-reactivity between enteroviral proteins (2C, VP1 and VP0) 

and β-cell autoantigens (GAD-65, IA-2/IA-2beta and HSP-60) has been documented 

(Härkönen et al., 2002, Härkönen et al., 2003, Varela-Calvino & Peakman, 2003). It has 

been suggested that CBV4 infection could lead to activation of T lymphocytes that cross-

react with pancreatic β-cells. In studies with CBV4, cross-reactivity has been detected 

between homologous regions of the virus antigens and GAD65 and IA-2/IA-2beta 

(Härkönen et al., 2002, Kaufman et al., 1992). A conserved region of the VP1 region of 

the virus was found to cross-react with IA-2/IA-2beta (Härkönen et al., 2002). GAD65 

was found to share a sequence homology with CBV4 protein and 2C protein (Kaufman et 

al., 1992). GAD65 have been shown to be able to activate Th1 cells to secrete IFN-γ, 

which seems to have a role in the pathogenesis of T1D (Karlsson & Ludvigsson, 1998). 

However, this hypothesis has been criticized because of the fact that T-cells do not cross-

react with GAD in vitro (Denman & Rager-Zisman, 2004, Roep et al., 2002). The role of 

GAD65 for T1D development has been tested in vivo. In a study with GAD65-deficient 

NOD mice, the cumulative incidence of autoimmune diabetes was not influenced by this 

gene (Atkinson & Leiter, 1999). Moreover, CBV infections were found to be frequently 

associated with immune reactions against GAD, but the reactions were transient (Cainelli 

et al., 2000). This suggests that other environmental factors are included in the 

development of clinical disease. IA-2 autoantibodies have also been detected in patients 

after enterovirus infection, e.g. in a case of EV9 infection and acute onset of T1D 

(Vreugdenhil et al., 2000), and in a prediabetic individual, EV3 infection induced 

prolonged secretion of this autoantibody (Williams et al., 2006). VP1 of CAV9 has shown 

cross-reactivity with HSP60 (Härkönen et al., 2003). However, mimicry is very common 

in nature, suggesting that the cause is not the phenomenon as such, but rather the crucial 

factor might be impaired immune regulation. 

Fulminant type 1 diabetes, a subtype of type 1B diabetes is characterized by abrupt 

destruction of β-cells and onset of acute hyperglycemia and ketoacidosis (Imagawa et al., 

2000, Tanaka et al., 2000). A recent report by Tanaka et al. suggested a role for 

enteroviruses in fulminant type 1 diabetes in three affected pancreata. They implicated that 
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expression of interferon-γ and CXC chemokine ligand 10 (CXCL10) are initiated in the β-

cells of enterovirus-infected pancreas (Tanaka et al., 2009). This was in line with a former 

study showing that enterovirus infection of pancreatic β-cells induced CXCL10 expression 

within 1-2 days after infection (Berg et al., 2006, Hultcrantz et al., 2007). CXCL10, 

secreted from the β-cells, activates and enhances infiltration of T-cells and macrophages to 

the islet cells. These cells then release inflammatory cytokines, including interferon-γ, 

simultaneously damaging the islets and further increasing CXCL10 secretion, leading to 

accelerated cell-mediated autoimmunity and complete β-cell destruction (Tanaka et al., 

2009). These results were further supported by the lack of induction of CXCL10 or 

interferon-γ in pancreatic β-cells from slowly developing T1D (Tanaka et al., 2009). 
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3 AIMS OF THE STUDY 

Integrins are a family of transmembrane glycoproteins that interact with the ECM in cell 

adhesion and migration. Altered expression of integrins in tumor cells contributes to 

metastasis tendency by influencing attachment to adjacent cells, migration and survival. In 

addition to natural ligands (such as vitronectin and collagen), viral pathogens including 

certain enteroviruses utilize integrins to enter host cells. Enteroviruses cause a wide 

spectrum of illnesses varying from common cold to myocarditis and paralysis. Several 

studies have suggested that enteroviruses could also be involved in the etiopathogenesis of 

type 1 diabetes.  

 

SPECIFIC AIMS: 

1. The role of integrins in the pathogenesis of metastasis to cortical bone  

 To study if certain integrins play a role in the initial attachment of mammary 

carcinoma cells to bone.  

 To study if collagen type 1 would be important in this attachment of tumor cells to 

the skeletal tissue. 

 To determine whether the type and amount of integrins expressed on the cell 

membrane of various tumors correlates with their capability to attach to cortical 

bone. 

 

2. The relevance of polymorphism in enterovirus receptors in type 1 diabetes  

 To study if susceptibility to enterovirus infections and/or frequency of the 

occurrence of enterovirus antibodies in prediabetic and diabetic children would 

correlate with variation in the enterovirus receptor genes.  

 

3. Altered targeting of echovirus 1 from the lipid raft/caveolae internalization route 

to the clathrin pathway 

 To produce a chimeric molecular construct, in which the 2I domain of 21 

integrin was inserted into the extracellular terminus of the transferrin receptor, 

which is endocytosed via the clathrin-dependent route instead of the lipid 

raft/caveolae internalization pathway originally used by the virus. 

 To determine whether the altered receptor and entry route permits successful 

internalization and initiation of EV1 infection. 

 

4. Cellular gene expression during EV1 infection  

 To investigate the cellular gene expression profile induced by EV1 infection with 

specific emphasis on immediate early genes. 
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4 MATERIALS AND METHODS 

4.1 Viruses (II, III)  

Coxsackievirus A9 (CAV9), coxsackievirus A18 (CAV18), coxsackievirus A21 

(CAV21), coxsackievirus B (CBV) 1-6, echovirus 1 (EV1), echovirus 6 (EV6), echovirus 

7 (EV7), echovirus 11 (EV11), echovirus 30 (EV30), human rhinovirus 2 (HRV2), human 

rhinovirus 14 (HRV14) and human parechovirus 1 (HPV1) were originally obtained from 

the American Type Culture Collection (ATCC). The poliovirus strains used were the 

Sabin vaccine strains 1-3 (ATCC). These viruses were used in the neutralization assays 

(see below). EV1 (Farouk strain; ATCC) was propagated in green monkey kidney (GMK) 

cells, the infected cells and the supernatant were freeze-thawed three times and the virus 

was precipitated by PEG/NaCl and purified by ultracentrifugation in 5-20% sucrose 

gradients (Abraham & Colonno, 1984). The infectivities of the viruses were determined 

by plaque titration.  

4.2 Antibodies and other reagents (I, III) 

The following antibodies were used: rabbit antiserum
 
and mouse monoclonal antibody 

(MAb) against caveolin-1 (Transduction Laboratories); anti-CD49b MAb (Immunotech), 

A211E10, recognizing the I domain of the α2 integrin (a kind gift from Fedor 

Berditchevski, Institute of Cancer studies, Birmingham, UK); blocking MAb antibodies 

against α2 (P1E6), α3 (P1B5), α4 (P4G9), and α5 (P1D6) and β1 (P4C10) subunits of 

integrin receptors (GIBCO); mouse anti-human integrin αvβ3 monoclonal antibody 

(Chemicon); rabbit anti-bovine collagen type I polyclonal antiserum (Chemicon); rabbit 

antiserum against Rab11 (Zymed); rabbit antiserum against Rab4 (Abcam); rabbit 

antiserum against mannose 6 phosphate receptor (CI-MPR) (Marjomäki et al. 1990); 

MAb against EEA1 (Transduction Laboratories); MAb PDI (1D3; Stressgen) a rat 

monoclonal antibody (1D4B) against Lamp1 (the Development Hybridoma Bank, 

University of Iowa), mouse anti-GM130 (BD Transduction Laboratories), mouse anti-TfR 

(Zymed); rabbit antiserum against transferrin (Dakopatts); rabbit antiserum against the 

late endosome marker 6C4 (a kind gift from Jean Gruenberg, Department of 

Biochemistry, Geneva, Switzerland); and rabbit antiserum
 

against purified EV1 

(Marjomäki et al. 2002), adsorbed on SAOS-α2β1 cells to reduce the background and 

subsequently filtered. Alexa Fluor (AF) 488-conjugated goat anti-rat IgG, AF488- and 

AF555-conjugated goat anti-mouse IgG and anti-rabbit IgG (Molecular Probes), as well 

as PE–conjugated rat anti-mouse IgG (BD Transduction Laboratories) were used as 

secondary antibodies. Human transferrin (Tf) (Sigma), AF488- and AF568-conjugated Tf 



  

 

 

 

 

 

 

47 

(Molecular Probes) were also used. Blocking RGDS peptide was from GIBCO. 

Collagenase type I, Chlorpromazine hydrochloride and nocodazole were purchased from 

Sigma. 

4.3 Cell cultures (I-III) and transfections (III)  

Several different cell lines were used in the studies, including human cervical cancer cells 

(HeLa), human lung carcinoma A-549 cells, green monkey kidney (GMK) cells, mouse 

fibroblast cells (NIH3T3), Chinese hamster ovary (CHO) cells, baby hamster kidney cells 

(BHK-21), human osteosarcoma cells (SAOS), human breast cancer cells (MDA-MB-

231), human neuroblastoma cells (SH-SY5Y), human T-cell leukemia cell line jurkat, 
rhabdomyosarcoma (RD) cells and prostate cancer cells (PC-3). All these cells were 

originally obtained from the ATCC. The SAOS-α2β1 cell line was obtained by stable 

transfection of the SAOS cells, with expression of a construct encoding the α2 integrin 

(Ivaska et al., 1999). NIH3T3, CHO, BHK-21, SAOS, SAOS-α2β1, MDA-MB-231, SH-

SY5Y, RD and PC-3 cells were grown in DMEM. GMK cells were propagated in MEM 

medium. A549 cells were cultured in F12 medium. Jurkat and Hela cells were grown in 

RPMI-1640 culture medium. The different culture mediums were supplemeted with 10% 

fetal calf serum (FCS), 100 IU/ml penicillin, and 100 μg/ml streptomycin. The SAOS-

α2β1 cells were cultured in the presence of a selection antibody (200 µg/ml of G418; 

Gibco). Transient transfections with the constructs pcDNA/Zeo3.1-TfR-α2I and -TfR were 

performed in subconfluent NIH3T3, BHK-21 and CHO cells with Lipofectamine 2000 

(Invitrogene) according to the manufacturer‟s instructions. 

4.4 RNA and DNA purification (II) 

Confluent A-549 cells, infected with 20 MOI of EV1, were collected after 30 min, 2 h, 4 

h, 6 h and 10 h. Total cellular RNA was in a guanidinium lysis buffer and frozen at -70°C. 

Total RNA was purified by ultracentrifugation thiocyanate-CsCl method (Chirgwin et al., 

1979). Furthermore, the RNA was DNase (Sigma) treated according to the manufactures 

instructions. Alternatively, total RNA was purified according to the manufacturer‟s 

instructions using RNeasy Mini kit (Qiagen) supplemented with QIAshredder (Qiagen) for 

homogenization of cells and RNase-FreeDNase Set (Qiagen) to remove DNA completely 

during RNA purification. 

DNA was isolated from peripheral blood mononuclear cells (PBMCs) by two methods; 

NucleoSpin blood kit (Macherey-Nagel), which was used according to the manufacturer‟s 

instructions, and a non-enzymatic method for purification of DNA from blood (Lahiri & 
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Nurnberger, 1991). In the latter method, PBMCs were lysed with Nonidet P-40 (Sigma) 

and centrifugated. The protein was separated from the nuclear pellet by incubation with 

sodium dodecyl sulfate (SDS) and NaCl precipitation. After centrifugation the DNA from 

the supernatant was extracted by ethanol precipitation.  

4.5 Design of primers, construction of the chimeric receptor and 
sequencing (II, III) 

Oligonucletide primers for polymerase chain reaction (PCR) were selected from the 

region of receptor sequence coding for domains shown to be crucial for enterovirus 

binding (II, Fig 1, Table 1). The oligonucleotide primers for PVR were from exon 2. The 

ICAM-1 primers, amplifying receptors for the major group of HRV and some CAVs were 

from exon 2. The oligonucleotides for CAR were from exons 2 to 5. The oligonucleotide 

primer for the two integrins, α2β1 and αvβ3, were selected from exon 7 of integrin alpha 

2 I-domain and exon 4 of the β3 subunit. The DAF oligonucleotides spanned the SCR2, 

SCR3a and SCR3b regions. 

For construction of a chimeric receptor consisting of TfR and a2I, oligonucletide 

primers were designed for the a2I and the complete TfR. For the cloning procedure, 

BamHI restriction site was added to the 5‟ end and NotI site to the 3‟end of the TfR 

sequence, and NotI and XbaI sites to the 5‟and 3‟ ends of the α2I sequence. 

For amplification of PVR, ICAM-1, DAF, CAR, integrin subunits α2 and β3, DNA 

purified from PBMCs was used as template for the generation of the PCR products by 

AmpliTaq Gold DNA-polymerase (Perkin-Elmer). pAWneo2-α2 construct (Riikonen et 

al., 1995), containing the complete human integrin α2 subunit and pSFV1-TfR vector 

(Liljestrom & Garoff, 1991) with the TfR gene were used as templates for the generation 

of the PCR products by Phusion High-Fidelity DNA Polymerase (Finnzymes). A-

overhangs were added to the 3‟ end of the PCR products by DyNAzyme II DNA 

Polymerase (Finnzymes). The reactions were run in a thermal cycler (Perkin-Elmer 

Cetus). The amplicons were purified using the Qiaex II Gel Extraction Kit (Qiagen). The 

PCR products were first cloned in the pGEM-T Easy Vector System I (Promega) and then 

assembled in a mammalian cell expression vector pcDNA/Zeo3.1+ (Invitrogen) resulting 

in TfR- and α2I-TfR-containing constructs (III, Fig 1). The PCR amplicons and the TfR- 

and α2I-TfR-containing constructs were sequenced with fluorescent dye-labeled 

terminators using an automated DNA Sequencer (Applied Biosystems) according to the 

manufacturer‟s instructions. Primers used for PCR reactions were used in the sequencing 

reactions. Nucleotide sequences were analyzed with Wisconsin Package Version 10.0, 

Genetic Computer Group (GCG; Madison, WI).  
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4.6 RT-PCR (III) 

NIH3T3 cells, which were grown on 24 well plates and transiently transfected with the 

TfR or TfR-α2I constructs, were infected with EV1 (1 h, 4°C) and then incubated for 

different time periods (0 to 24 h) at 37 °C. The cells were harvested and stored at -80 °C 

until tested. The cell pellet was suspended in PBS and subjected to automated nucleic acid 

extraction (Nuclisens easyMag, BioMerieux) with an elution volume of 55 µl. RNA (10 

µl) was reverse-transcribed in two separate reactions with either antisense (4-) or sense 

(3+) primer from the 5‟-noncoding region of picornaviruses as described earlier (Santti et 

al., 1997). EV1 RNA from purified virions with spectrofotometrically determined copy 

number was used as the quantitative standard. PCR was performed in a RotorGene 3000 

instrument (Corbett Life Sciences) in 25 µl reactions containing QuantiTect SYBR Green 

PCR mix (Qiagen, Hilden), 600 nM of 4+ and 3- primers, and 5 µl of the RT-reaction 

product. Amplification steps were: 95°C for 15 min followed by 45 cycles at 95°C for 15 

min, at 65–55°C for 30 s (touch-down 1°C/cycle for first 10 cycles) and at 72°C for 40 s. 

4.7 HLA typing (II)  

The informative HLA-DQB1-DQA1 and DRB1 alleles as genetic risk factors for T1D 

were defined using a typing method based on PCR amplicification of the gene segments 

and hybridization with a panel of lanthanide-labeled sequence-specific oligonucleotide 

probes (Nejentsev et al., 1999).  

4.8 Cell adhesion assay measuring attachment to cortical bone (I)  

Bovine cortical long bones were obtained from a local slaughterhouse and stored at -20 

°C. The femoral cortical shaft was cleaned from soft tissue and bone marrow. The bone 

was cut and shaped on a lathe to round rods with a diameter of 6 mm, which were further 

cut by a diamond wafering saw blade into 200 µm thin disks. The bone slices were placed 

into 96 well microplates (Greiner GmbH, Frickenhausen) and treated with 1% bovine 

serum albumin (BSA) in RPMI 1640 medium for 15 min at RT. MDA-MB-231 cells were 

loaded with acetoxy methyl ester of 2‟, 7‟-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein 

(BCECF-AM) (Molecular Probes) for 15 min at 37 °C in RPMI 1640 medium before 

adding to bone disks. The plates were then centrifuged for 3 min at 800 rpm. The cells 

were washed with a Na
+
-solution (140 mM NaCl, 1mM CaCl2, and 20 mM Hepes (pH 

7,2) and re-suspended in K
+
-solution (pH 8), 140 mM KCl, 1mM CaCl2, and 20 mM 
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Hepes (pH 7,2) containing 10 µM nigericin (Sigma). The fluorescence from cells attached 

to bone was measured in the Fluoroscan II microplate fluorometer (Labsystem).  

4.9 FACS analysis (I, III)  

MDA-MB-231 and CHO cells, transfected with pcDNA/Zeo3.1-TfR and pcDNA/Zeo3.1-

TfR-α2I constructs were detached with EDTA. The MDA-MB-231 cells were incubated 

for 45 min at 4°C in 1:100 dilutions with blocking MAb antibodies against α2 (P1E6), α3 

(P1B5), α4 (P4G9), α5 (P1D6) and β1 (P4C10) subunits of integrin receptors (GIBCO), 

and integrin αvβ3 (Chemicon). The cells were washed with PBS and treated with FITC 

conjugated rabbit anti-mouse Ig (Boehringer Mannheim) for 45 min at 4°C. CHO cells, 

transfected with the pcDNA/Zeo3.1-TfR or pcDNA/Zeo3.1-TfR-α2I constructs, were 

incubated for 1 h with 100 µg/ml of Tf, washed with PBS and incubated with MAb 

against Tf (Dakopatts) and α2I (A211E10). AF488-conjugated goatanti-rabbit and PE-

conjugated ratanti-mouse were used as secondary antibodies. The transfected CHO cells 

were fixed with 4 % formaldehyde for 20 min. Fluorescence intensity was measured by 

FACSCalibur flow cytometer (BD Biosciences, San Jose, CA) and CellQuest Pro 

software (BD Biosciences, San Jose, CA). Raw data was further analyzed with WinMDI 

2.9 software (J. Trotter, Scripps
 
Research Institute, La Jolla, CA). The MDA-MB-231 

cells were analyzed on FACScan cytometer (Becton Dickson, Mountain View, CA, 

USA). 

4.10 Immunofluorescence and confocal microscopy (III) 

During a 1h incubation period at 4 °C EV1 was allowed to bind to the NIH3T3, BHK-21 

or CHO cells transfected with pcDNA/Zeo3.1-TfR or pcDNA/Zeo3.1-TfR-α2I constructs. 

Unbound virus was removed from the cells before further incubation at 37 °C. Human 

holo-Tf, AF488- or AF568-conjugated Tf was added to virus- and mock-infected NIH3T3 

cells transfected with pcDNA/Zeo3.1-TfR or pcDNA/Zeo3.1-TfR-α2I constructs and 

incubated at 37 °C. Alternatively, the transfected NIH3T3 cells were incubated for 15 min 

in the presence of holo-Tf, AF488- or AF568-conjugated Tf prior to infection. The cells 

were fixed with 4 % formaldehyde (Sigma) for 20 min, quenched with 50 mM NH4Cl for 

10 min and permeabilized with 0.3 % Triton-X 100 (BDH) in PBS if not otherwise 

mentioned and stained with primary and secondary antibodies. The cells were studied 

with an axiovert confocal microscope Leica TCS SP2 with HCX PL APO 63x/1.32-0.6 

oil objective or with Olympus Fluoview 1000 confocal setup. Images were acquired using 

Fluotar 60x objective (60 x 1.25, oil) with digital resolution of 512 x 512. False 
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colocalization signals were avoided by scanning fluorescence from different excitation 

wavelengths separately. The images were analyzed with Leica (LCS-Lite) or Olympus 

(FV10-ASW 1.4) software and then converted further to JPEG or TIFF format for 

additional processing in Photoshop (Adobe systems). For quantitative confocal 

microscopy, samples of EV1 infected NIH3T3 cells, transfected with the pcDNA/Zeo3.1-

TfR-α2I construct, were collected at different time points and immunostained with 

antibodies against EV1 and α2I, followed by secondary antibodies (AF488-conjugated 

goat anti-mouse and AF555-conjugated goat anti-rabbit). The samples were examined by 

confocal microscopy, and Z-section images were taken from the upper surface to the 

bottom of each cell. Colocalization of α2I and EV1 in 15 to 20 cells from each time point 

was analysed with BioimageXD (2007). 

4.11 Infectivity assays with drugs (III) 

SAOS- α2 and NIH3T3 cells, transfected with pcDNA/Zeo3.1-TfR or pcDNA/Zeo3.1-

TfR-α2I constructs, were preincubated in 33µM chlorpromazine hydrochloride (Sigma) 

or 25 µM nocodazole (Sigma) for 30 min at 37 °C before addition of EV1 for 1 h at 4 °C. 

Unbound virus was removed and the cells were further incubated at 37 °C for 2min to 6h. 

After fixation, the cells were stained with antibodies against EV1, α2I and EE1, and the 

virus localization in the cell was studied with confocal microscopy.  

4.12 Determination of neutralizing antibody levels (II)  

Serum specimens were diluted serially at 2-fold steps (1:8-65 536) on microtiter plates 

(Nunclon Microtest plates, 96-well). Pretitrated virus solution corresponding to 100 

TCID50 units was added to each well. The viruses that were used included CAV-9,-18, -

21, CBV1-6, EV-1, -6, -7, -11, HRV-1,-14, and HPV1, all obtained from ATTC, and PV 

were Sabin vaccine strains. The mixtures were incubated for 2h at 36 °C and left 

overnight at RT. 30 000 cells were added to each well. GMK cells were used for CAV9, 

CBV1-6, PV1-3 and EV11. HeLa cells were used for HRV-2 and -14 and CAV-18 and -

21, while A-549 cells were used for EV-1,-6-7, -30 and HPV1. The plates were incubated 

at 36°C for 6 days before staining with crystal violet.  
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4.13 Infectivity titration (III) 

For the determination of the viral replication cycle, the NIH3T3 cells transfected with 

pcDNA/Zeo3.1, pcDNA/Zeo3.1-TfR or pcDNA/Zeo3.1-TfR-α2I constructs, SAOS-α2 

cells and A549 cells were infected by EV1 and collected after different time points of 

infection. SAOS-α2 cells were used as positive controls for the transfected NIH3T3 cells. 

After three freeze-thaw cycles, the amount of intracellular virus was determined in 

dilutions of 10
-1

 to 10
-8

 in GMK cells by plaque titration. 

4.14 Human cDNA U133A arrays and clustering 

The Affymetrix Human
 
Genome U133A Array (Affymetrix, Santa Clara, CA, USA) that 

contains 22215
 
human gene cDNA probe sets representing ~ 19,000 genes (i.e.,

 
each gene 

may be represented by more than one probe set), were used to perform gene expression 

analysis. The arrays were scanned and the fluorescence
 

intensities measured by 

Microarray Suite 5.0 software (Affymetrix).
 
The data was transferred to DNA-Chip 

Analyzer software (Affymetrix)
 
for normalization and model-based analysis (Li & Wong, 

2001).
 
For each probe set a detection p-value was calculated, and any

 
probe sets with p < 

0.04 were obtained as “present”, showing that the gene transcript was reliably detected 

(Affymetrix, 2001).
 
 Differently expressed genes were identified by Affymetrix dCHIP 

software (www.dCHIP.org). Alterations exceeding 1.5 were considered significant in 

genes where either of the values was more than 40. To analyze the networks of protein-

protein interactions, the STRING 8.2 database was used (Jensen et al., 2009). 
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5 RESULTS AND DISCUSSION 

5.1 THE ROLE OF INTEGRINS IN BREAST CANCER METASTASIS 
TO THE SKELETON (I) 

Breast cancer cells frequently metastasize to the skeleton. Preferential attachment of breast 

cancer cells to bone-specific molecules may facilitate favored metastasis to the skeleton. A 

requirement for metastatic spread is the capability of the tumor cell to reorganize the 

cytoskeleton to increase cellular motility. Integrin-mediated adhesion is crucial for the 

regulation of tissue integrity and function of mammalian tissue. Integrins have been 

implicated in the multi-step process of metastasis from breast tumor to bone tissue, 

including detachment and escape from primary organ, invasion through ECM and survival 

in circulation, capture to a distant endothelium, extravasation across the endothelium, 

migration through ECM and establishment of secondary tumor through cross-talk with 

osteoclast and osteoblast (Peyruchaud, 2007, White & Muller, 2007). This frequently 

leads to osteolytic (bone destructive) lesion, osteoblastic (bone formation) or mixed lytic 

and blastic lesion can also occur (Kozlow & Guise, 2005). In this study, the role of 

integrins in the initial attachment of mammary carcinomas to bone was analyzed by an in 

vitro microplate attachment assay, measuring the binding of MDA-MB-231 breast cancer 

cells to bovine cortical bone disks. In addition, the correlation between integrin surface 

expression and tumor‟s capability to attach to cortical bone was investigated.  

5.1.1 High surface expression of α2β1 and α3β1 integrins on human 
breast cancer MDA-MB-231 facilitates attachment to cortical bone 
matrix 

The expression of integrin molecules on the human breast cancer cell line MDA-MD-231 

was determined by FACS analysis. The majority of the cells strongly reacted with the 

monoclonal antibodies against β1, α2 and α3 integrin subunits, confirming the presence of 

α2β1 and α3β1 collagen receptors (I, Fig. 1 and Table 1). In addition, antibodies against 

the α5 integrin subunit stained the cells, while antibodies directed against the α4 integrin 

subunit or the αvβ3 integrin gave very weak staining. These results were in line with 

previous studies showing similar patterns of surface integrin expression on these cells 

(Boissier et al., 1997, Morini et al., 2000, van der Pluijm et al., 1997). 

MDA-MB-231 cells have been shown to be able to rapidly attach to cortical bone disks 

(Nordström et al., 1999). To study the relative contribution of the various integrin 

receptors in the rapid attachment process, the MDA-MB-231 cells were pretreated with 

function-blocking monoclonal antibodies against various subunits in the integrins before 
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use in the attachment assay. Pre-treatment of the cells with monoclonal antibodies against 

the β1 or α2 integrin subunit inhibited the MDA-MB-231 cell attachment to cortical bone 

by 75 % and 76 % respectively (I, Fig. 2). Cells pretreated with antibody against the α3 

subunit inhibited attachment by 26 %, while antibodies against the α5 inhibited attachment 

by 8%. Antibodies to α4 did not inhibit, as expected, since α4 was not expressed on the 

MDA-MB-231 cells. Cells pretreated with an antibody against the αvβ3 integrin 

(vitronectin receptor) had no inhibitory effect on the cell attachment. In line with this, a 

tetrapeptide containing the RGD recognition sequence had no inhibitory effect on the 

binding to cortical bone (data not shown). Collagen type I is the major protein present in 

cortical bone (~90% of total protein) (Carter & Spengler, 1978). To further analyze the 

role of this protein in the attachment process, MDA-MB-231 breast cancer cell surface 

collagen receptors were saturated by preincubation with soluble collagen type I. This 

reduced the binding of cell to bone matrix by 85%. The blocking of rapid attachment of 

cancer cells by using inhibiting antibodies against the α2 and β1 integrin subunits or by 

using soluble collagen type I was very close to the 90 % inhibition obtained by pretreating 

the cells with a mouse antiserum raised against the MDA-MB-231 cell line (data not 

shown). The results thus implicate that rapid attachment of MDA-MB-231 breast cancer 

cells to bone matrix mainly involves the α2β1 and α3β1 collagen receptors and collagen 

type I. The stronger inhibition of attachment of cancer cells to cortical bone disks by 

antibodies against the α2β1 integrin, compared with those against the α3β1, is consistent 

with the reports implicating the integrin α2β1 to be the major cell surface collagen type I 

receptor (Kirchhofer et al., 1990, Vihinen et al., 1996).  

Furthermore, incubating cortical bone disks with collagenase type 1 for 30 min at 37 

°C or polyclonal antiserum against bovine collagen type I also had a blocking effect on the 

attachment by over 40%. However, the much higher inhibition achieved by incubating 

cells with α2 and β1 integrin antibodies or soluble collagen type I may be explained by the 

fact that α2β1 and α3β1 collagen receptors are also able to attach to other bone matrix 

proteins, such as laminin and fibronectin. 

In animal models the collagen/laminin receptor a2β1 and the fibronectin receptor α4β1 

have been shown to be responsible for selective metastasis of cancer cells to the skeleton 

(Chan et al., 1991, Matsuura et al., 1996). Prostate cancer is another tumor that 

preferentially metastasizes to the skeleton. The attachment to bone of two pancreatic 

cancer cell lines LNCAPcol obtained by serial passage on type I collagen and C4-2B was 

observed to be dependent on the α2β1 integrin and its ability to stimulate RhoC GTPase 

activity (Hall et al., 2006, Hall et al., 2008). RhoC GTPase has been found to be 

associated with the progression of many cancers, including breast, melanoma and pancreas 

(Clark et al., 2000, Suwa et al., 1998, van Golen et al., 2002). RhoC GTPase is associated 

with poor prognosis in breast and lung cancers (Ikoma et al., 2004, Pille et al., 2005). 
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The mechanism for MDA-MB-231 cells‟ attachment to cortical bone (van der Pluijm 

et al., 1997), basement membrane (Morini et al., 2000) and vitronectin has been 

investigated in the past (Wong et al., 1998). In line with our results α3β1 was reported to 

be crucial for MDA-MB-231 cells‟ invasion and migration in in vitro cell migration assay. 

Furthermore, the expression of the α3β1 integrin was determined to be higher in breast 

cancer metastases than in primary tumors (Morini et al., 2000). In contrast to reports by 

Pluijm et al., where the cells were kept in contact with bone surface for 3h at 37 ˚C (van 

der Pluijm et al., 1997), we did not see any inhibition with antibodies against the 

vitronectin receptor αvβ3 integrin. Moreover, Wong et al. reported that the αvβ3 integrin 

did not support the binding of MDA-MB-231 cells to vitronectin (Wong et al., 1998). In 

their experiments they used a vitronectin cell adhesion assay, where cells were allowed to 

adhere for 30 min at 37 ˚C and a cell migration assay, where cells where allowed to 

traverse a vitronectin-coated membrane. In contrast, they suggested the αvβ1 integrin 

receptor to be crucial for MDA-MB-231 cells‟ attachment to vitronectin, since the binding 

was inhibited by both RGD peptide and antibody against β1 (Wong et al., 1998). In our 

experiments the cells were not allowed to be in contact with the bone surface for more 

than 5 min. Consequently, the short time did not allow the cells to spread and form 

adhesion sites, and microscopic examination of the attached cells clearly showed that they 

had a round morphology. However, if the cells were attached to bone surface for longer 

time, they began to spread and acquired a flattened morphology. During longer attachment 

periods, the cells themselves might secrete adhesion proteins, such as vitronectin, 

fibronectin and osteopontin, or upregulate new cell surface receptors. The cell spreading 

started about 30-45 min after their initial attachment (data not shown). This might explain 

why our results and the ones published by Wong et al. (Wong et al., 1998) are different 

from those published by Pluijm et al. (van der Pluijm et al., 1997). 

In conclusion, our results suggest an important role for the α2β1 and α3β1 integrin 

receptors in the initial anchoring of MDA-MB-231 breast cancer cells to cortical bone 

matrix. 

5.1.2 Correlation between surface expression of α2β1 and α3β1 integrins 
on tumor cells and their tendency to anchor to cortical bone matrix 

To further study the roles of α2β1 and α3β1 collagen receptors in cancer cell attachment to 

cortical bone, the integrin surface expression on three additional human cell lines that 

included a prostate cancer cell line PC-3, T-cell leukemia line Jurkat and the 

neuroblastoma cell line SH-SY5Y were studied. PC-3 cells have been reported to 

preferentially metastasize to the skeleton in nude mice models (Shevrin et al., 1988, 

Shevrin et al., 1991) and easily adhere to cortical bone disks (Nordström et al., 1999, van 
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der Pluijm et al., 1996a, van der Pluijm et al., 1996b). PC-3 expressed high levels of the 

α2β1 and α3β1 integrin receptors (I, table 1) and was also able to rapidly attach to cortical 

bone matrix.  

In contrast, the human Jurkat and SH-SY5Y cells, which only modestly attached to 

cortical bone, showed very low expression of these integrins (I, Table 1, Fig. 4). Surface 

expression of the α4 integrin on Jurkat cells did not support rapid attachment to bone 

matrix, although in a former study the α4β1 integrin has been suggested to be one 

candidate that specifically localizes cancer cells to the skeleton through adhesion to 

VCAM-1 (Matsuura et al., 1996). 

Together these results implicate a close connection between α2β1 and α3β1 integrin 

receptor expression and the ability of different cancer cell types to attach to cortical bone. 

5.2 VARIATION IN ENTEROVIRUS RECEPTOR GENES (II) 

Enteroviruses are believed to contribute to the pathogenesis of type 1 diabetes (T1D). 

Higher antibody levels against CBVs and precense of enterovirus RNA have been reported 

in individuals with recent onset of T1D (Andreoletti et al., 1997, Gamble et al., 1969) and 

in prediabetic children (Hiltunen et al., 1997, Hyöty et al., 1995). Moreover, in autopsy 

patients with recent-onset T1D showed higher prevalence for vp1 in pancreas compared 

with a control group (Richardson et al., 2009). 

It is possible that sensitivity to enterovirus infections might correlate with individual 

variation in enterovirus receptor genes. To investigate this possibility, sequence analysis 

of the domains known to be critical for virus binding in the major enterovirus receptors 

(CAR, DAF, ICAM-1, PVR, and α2- and β3 integrin subunits) were performed from 

human blood samples collected from healthy individuals and children with type 1 

diabetes. In parallel, virus-specific neutralizing antibodies and type 1 diabetes risk-

associated HLA-alleles were analyzed. 

5.2.1 Sequence analysis of enterovirus receptor genes and HLA types 

PCR and sequence analysis were carried out for the enterovirus receptor genes CAR, 

DAF, ICAM-1, PVR, and α2- and β3 integrin subunits for the regions reported to be 

important for virus binding. DNA samples were acquired from a group of children with 

T1D (21 individuals) and a control group of healthy adults (20 individuals). Ten additional 

samples from diabetic children and five samples of healthy children from Estonia were 

analyzed to clarify the frequency of the variation found in the PVR gene. These samples 

were also used as additional controls in serological studies. 
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A heterozygote single nucleotide polymorphism (SNP) was detected in the V-domain 

(exon 2) of the PVR at Ala 67(GCG)→Thr (ACG) in 4 individuals of the 31 children with 

T1D (12.5%), but it was not found in the healthy control group. This variation in the 

variable domain of PVR is placed in the virus binding region and may thus inhibit cellular 

binding of all three PV serotypes. Heterozygotic polymorphism of this gene was recently 

suggested to be a risk factor for the development of vaccine-associated or paralytic 

poliomyelitis associated with wild-type virus (Kindberg et al., 2009). Moreover, this 

variation has been found to be more frequent among individuals with the motor neuron 

disease Amyotrophic lateral sclerosis (ALS) than controls (Saunderson et al., 2004). In 

former studies enteroviruses have been suggested to be implicated in the development of 

this disease (Berger et al., 2000, Woodall & Graham, 2004). This variation in the PVR 

genome has been shown to reduce the infection rate of PV by 50%, increase resistance to 

cell lysis (Pavio et al., 2000) and reduce apoptosis (Gosselin et al., 2003) in human 

neuroblastoma cells. The delayed course of poliovirus-induced catalysis could therefore be 

connected to persistent infection in the CNS (Kindberg et al., 2009). Persistent infection 

has been suggested to be a possible mechanism in the development of T1D. This could be 

due to improper immune response to enterovirus infection, leading to viral persistence and 

increased pancreatic β-cell damage (Richer & Horwitz, 2009). Persistent CBV4 infection 

in pancreas has been associated with diabetic-like syndrome in mice (Zhou & Li, 2008), 

and association of persistent infection in gut mucosa and in pancreas has been reported in 

T1D (Richardson et al., 2009). Although former results indicate no relationship between 

vaccination and T1D (Hviid et al., 2004), one could still speculate that oral polio 

vaccination (OPV) could be a risk factor for T1D in those individuals possessing this 

genetic variation. However, since the OPV vaccinations have not been used for over a 

decade in Finland, this could not be the case for those diabetic children included in this 

study. Therefore, serum samples from Estonian children who had been vaccinated with 

live poliovirus vaccine were studied. One of the children had no serum antibodies for any 

of the PV serotypes and one did not have antibodies for the PV3. These children did not, 

however, have the SNP found in the first part of the study in diabetic children. Moreover, 

one could speculate that a possible mechanism in the pathogenesis of T1D for those 

possessing this variation in PVR could be connected with impaired immune response. In a 

number of studies, PVR has been shown to serve as an important ligand for cell surface 

receptors expressed on lymphocytes, monocytes and dendritic cells. PVR attaches to 

DNAX accessory molecule 1 (DNAM-1;CD226) (Bottino et al., 2003, Tahara-Hanaoka et 

al., 2004) and Tactile (CD96) (Fuchs et al., 2004, Seth et al., 2007), which are expressed 

on NK cells, CD8
+
 T cells and CD4

-
 T cells. DNAM-1 regulates monocyte extravasation 

via its interaction with PVR expressed at endothelial junctions (Reymond et al., 2004). In 

the tissue monocytes can differentiate into dendritic cells and macrophages to elicit an 

immune response. In addition a recent study showed a novel interaction between PVR and 
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a novel immunoreceptor, called T cell immunoreceptor with Ig and ITIM domains 

(TIGIT) (Boles et al., 2009), which is expressed on human follicular B helper T cells 

(TFH). 

A heterozygous SNP was also found in the first Ig-like domain (exon 2) of ICAM-1 at 

Lys56 (AAG)→Met (ATG) in one individual in both the control and the diabetes group. 

The individual from the diabetes group also had the heterozygous variation found in PVR. 

ICAM-1 is a receptor for the major receptor group human rhinovirus (Greve et al., 1989, 

Staunton et al., 1989) and has also been shown to be used by coxsackievirus A13, A15, 

A18, A20 and A21 (Colonno, 1986, Pulli et al., 1995, Shafren et al., 1997b). The SNP 

found in this study is in the sequence of the first 159 amino acids (domain 1) of ICAM-1 

required for human rhinovirus binding (Staunton et al., 1990). 

The same variation was earlier reported to be associated with increased risk of cerebral 

malaria and named ICAM-1
Kilifi

 (Fernandez-Reyes et al., 1997). However, a later study by 

A. E. Fry et al. using larger case groups did not support this association (Fry et al., 2008). 

In a later report ICAM-1
Kilifi

 was shown to reduce immune responsiveness since it 

decreases the avidity to lymphocyte function-associated antigen-1 (LFA-1) and abolishes 

binding to soluble fibrinogen (Craig et al., 2000). Furthermore, ICAM-1
Kilifi 

was observed 

to prevent HRV16 binding (Xiao et al., 2004), and in crystal structure studies the binding 

of CVA21 to ICAM-1
Kilifi 

was suggested to possibly be weaker than its binding to ICAM-

1 (Xiao et al., 2005). 

Silent SNP variations, both as homozygotic or heterozygotic, were frequently found in 

both groups from the α2 integrin I domain subunit at Phe43(TTT)→Phe(TTC), and a 

silent heterozygous SNP in the glutamine codon 111 (CAA→CAG) from CAR exon 2 

was also seen in one individual in the diabetes group. 

HLA-DR4-DQ8, which is associated with increased risk of type 1 diabetes, was found 

in 74% of children with type 1 diabetes and in 10 % of the adult control group. Three 

diabetic children with the SNP in the PVR gene, who were HLA typed, were all positive 

for HLA-DR4-DQ8. In general, no significant correlation between neutralizing antibodies 

and the HLA alleles could be seen. HLA genotypes among cases and controls were 

expected. HLA-DR4-DQ8 was significantly increased and DR2-DQ6 decreased among 

the children with type 1 diabetes (data not shown).  

Taken together, the study shows individual variation in some genes coding for 

enterovirus receptors. In the PVR, SNP causing amino acid change in a region critical for 

efficient binding and infection of PV were detected in the first group of individuals with 

T1D. Interestingly, three of the diabetic children with the SNP in PVR gene, who were 

HLA typed, were all positive for HLA-DR4-DQ8. However, its direct connection to T1D 

should be analyzed with a larger number of individuals to obtain statistically sustainable 

results. Genetic variation was found in ICAM-1 in one individual in both the diabetic and 

the control group. In contrast, no variation leading to amino acid change occurred in genes 
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coding for the CAR and DAF, which are the receptors for coxsackie B viruses and 

echoviruses, showing most frequent association with T1D. However, since only the virus-

binding regions of the receptor sequence were studied, it is still possible that other parts of 

the receptor molecules (e.g. the ones involved in endocytosis and signaling events) may 

enclose genetic variation that could influence enterovirus infection. 

5.2.2 Serological markers of enterovirus infection  

Serum antibody levels against a collection of human enteroviruses and human 

parechovirus 1 were measured by microneutralization assay from the plasma of 21 

children with type 1 diabetes, 20 matched control children, and 20 healthy adults. In 

addition, serum antibodies against poliovirus 1-3 were studied in a group of 43 OPV-

vaccinated children from Estonia to search for seronegative individuals possessing the 

genetic variation found in PVR. 

Several enteroviruses have been suspected to be involved as environmental triggers of 

T1D. Especially the involvement of CBVs and echoviruses has been implicated in the 

onset of T1D (Roivainen, 2006). In our study, the levels of neutralizing antibody titers 

against the enteroviruses were higher in the adults than in the children, except for 

poliovirus 1-3 and human parechovirus 1. In general, no clear difference was detected 

between serum antibody levels against most of the enteroviruses between the groups of 

diabetic and control children. Low levels of serum antibodies against EV 1, 6, 7 and 11 

were seen in both adults and children, while the vast majority of the children lacked 

antibodies against CBV 1-6, and no significant differences between the groups of children 

were observed. These results can partly be explained by the relatively low level of CBV 

and echovirus infections during the years 1998-2001 compared with the previous three-

year period (Register of the Public Health Institute, Finland). Furthermore, CAV18, A21, 

and HRV2 and 14 antibodies, studied to correlate the findings to the variation in the 

ICAM-1 gene, were generally low, and no direct conclusions could be made (data not 

shown). 

Seropositivity for CAV9 was found in only two healthy control children, but high 

individual antibody levels against CAV9 were observed in six diabetic children. However, 

the difference was not statistically significant (II, Fig. 3). CAV9 infection has been 

associated with increased production of islet cell autoantibodies in prediabetic children 

(Roivainen et al., 1998). In in vitro studies, the virus was observed to cause persistent 

infection in human pancreatic islet cells, occasionally accompanied by minor 

morphological changes associated
 

with impaired functional properties of insulin-

producing β-cells (Roivainen et al., 2000).  
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The levels of neutralizing antibodies against EV30 were significantly lower in the 

children with newly diagnosed T1D when compared with healthy children (P<0.0003) (II, 

Fig. 2 and 3). EV30 has been shown to be islet cell destructive in in vitro studies 

(Paananen et al., 2007, Roivainen et al., 2002) and to sometimes generate a humoral 

response to homologous regions in islet cell autoantigenes such as IA-2/IA-2beta and 

HSP-60 (Härkönen et al., 2003). However, in a recent study with a group of 100 diabetic 

children and non-diabetic controls did not support our finding of lower antibody levels in 

diabetic children, as no difference in antibody levels against EV30 was observed 

(Paananen et al., 2007). EV30, which binds to the SCR1 domain of DAF, was reduced by 

21% in rhabdomyosarcoma (RD) cells (data not shown) with monoclonal antibodies 

against this domain, while monoclonal antibodies recognizing domains two and three had 

no effect (data not shown). This incomplete inhibition of virus binding could be explained 

by a result in a recent report by Ylipaasto  et al., suggesting that αvβ3 integrin functions as 

a cellular receptor for EV30 (Ylipaasto et al., 2009). 

No significant difference in the levels of neutralization antibodies to PV1-3, induced 

by the inactivated vaccine used in Finland, was found among patients with T1D and 

healthy children, although slightly higher levels of antibodies to PV2 were observed in 

healthy children (P=0-056) (II, Fig. 2 and 3). In both groups, a small group of children had 

low neutralization antibody levels or no antibodies against PV3. Interestingly, three of 

these children with T1D carried the heterozygotic SNP in the V-domain region of PVR (II, 

Fig. 2, Table 2). Of the serum samples obtained from Estonia, one was seronegative for all 

three poliovirus serotypes and one lacked antibodies against PV3. However, the samples 

in question did not contain the SNP in PVR found in the first group of diabetic children. 

In conclusion, the results showed no remarkable difference in the levels of neutralizing 

antibodies against enteroviruses and rhinoviruses among the groups studied. Higher 

antibody levels against CAV9 were observed in the T1D group, although the difference 

was not statistically significant. Interestingly, the level of neutralization antibody against 

EV30 was significantly lower in the group of diabetic children compared with the group of 

healthy children.  

5.3 ALTERED TARGETING OF EV1 TO CLATHRIN-DEPENDENT 
PATHWAY (III)  

Some picornavirus serotypes, including CBV3, FMDV and EV6, have been shown to be 

able to use both lipid raft/caveolin- and clathrin-dependent host cell endocytosis, 

depending on cell type or genetic differences in the virus genome (Chung et al., 2005, 

Coyne et al., 2007b, Leveque et al., 2007, Wang et al., 1993). Echovirus (EV1) has been 

reported to enter host cells from lipid rafts, through caveolae (Marjomäki et al., 2002, 
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Pietiäinen et al., 2004) or by macropinocytosis (Karjalainen et al., 2008). The aim of the 

study was to investigate if EV1 could be directed to the clathrin-dependent entry pathway 

by a chimeric receptor and would be able to initiate productive infection in host cell. 

5.3.1 Colocalization of EV1 and α2I with human transferrin in cells 
expressing a chimeric TfR-α2I receptor 

In order to study whether attachment of EV1 to a receptor mediating clathrin-dependent 

pathway could lead to successful internalization of the virus, a chimeric molecule was 

constructed: The 2I domain from human 2 integrin subunit, known to bind EV1, was 

inserted into the extracellular terminus of human TfR, which normally transports 

transferrin-bound iron through clathrin-dependent endocytosis (III, Fig. 2). Some animal 

parvoviruses, including CPV, use TfR as a receptor in clathrin-directed endocytosis 

(Hueffer et al., 2003, Palermo et al., 2003). The chimeric TfR-α2I and human TfR were 

transiently expressed in NIH3T3 and CHO cells. Normally, EV1 does not bind to mouse 

NIH3T3 cells or hamster CHO cells due to dissimilarities between mouse, hamster and 

human 2 integrin sequences.  

The expression of the receptors in transiently transfected NIH3T3 and CHO cells was 

analyzed by IF microscopy and flow cytometry (FACS). In IF microscopy using 

antibodies against α2I and fluorescent Tf, the receptors were seen to be expressed in both 

cell lines. In flow cytometry (FACS) analysis, CHO cells were first incubated with human 

Tf at 4 °C, and the receptors were detected by antibodies against α2I and Tf. Both TfR- 

and TfR-α2I-transfected cells bound human Tf (III, Fig. 2A and B). In addition, 

nontransfected cells also bound Tf, but more efficient binding was seen in the transfected 

cell lines (data not shown). Double-labeled cells showed that the same population of TfR-

α2I transfected cells was positive for both Tf and α2I (III, Fig. 2 C). This data indicated 

that the chimeric receptor can function as a receptor for Tf.  

To identify whether EV1 could enter by clathrin-directed endocytosis into NIH3T3 

cells, transiently transfected with the TfR-α2I and TfR receptor constructs, colocalization 

between Tf, α2I and EV1 was analyzed by confocal microscopy (III, Fig. 3). EV1 was first 

attached to the cells for 1 h at 4°C (indicated as 0 h p.i.). Then the cells were incubated 

with Tf at 37°C or, alternatively, the cells were first incubated with Tf for 15 min at 37°C 

before attaching of virus to the cells. Colocalization between Tf and α2I (III, Fig. 3A) and 

partial colocalization of Tf and EV1 was seen from 15 min (III, Fig. 3 B) to 2 h p.i.  

These results showed that both the TfR and the chimeric receptor are functional Tf 

receptors and the chimeric construct can act as an internalization receptor for EV1. In 

addition, these results indicate that EV1 is endocytosed through a clathrin-directed 

pathway and colocalizes with Tf in recycling endosomes. 
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5.3.2 EV1 attaches and enters host cells expressing TfR-α2I chimeric 
receptor 

To further study the interaction between EV1 with the TfR-α2I chimeric receptor, EV1 

was attached to TfR-α2I-transfected NIH3T3 cells. The virus and the receptor were 

detected by antibodies against α2I and EV1 and studied by confocal microscopy.  EV1 

bound to the TfR-α2I chimeric receptor on the cell surface, and 30 min p.i., colocalization 

between α2I and EV1 in vesicular structures was detected near the cell membrane (III, 

Fig. 4A). EV1 mainly remained in intracellular structures 2 h p.i., while the receptor was 

recycled to the plasma membrane, typical for TfR. This differs from canine parvovirus 

(CPV) entry, where the virus remains attached to TFR for several hours (Parker et al., 

2001). EV1 could not attach to or enter NIH3T3 cells, transfected with TfR (III, Fig. 4B). 

Furthermore, the colocalization of the virus and chimeric receptor was studied by 

quantitative confocal microscopy. Z-sections were obtained from EV1-infected NIH3T3 

cells, transfected with the chimeric receptor and analysed with BioimageXD software. The 

colocalization between α2I and EV1 diminished during a time period spanning from 0 h 

p.i. to 30 min p.i., indicating gradual detaching of the virus from the receptor.   

 

5.3.3 Colocalization of EV1 and the chimera receptor with cellular 
markers 

 

Clathrin-mediated transport is crucial for several cellular processes, including nutrient 

uptake, uptake of iron-loaded transferrin that binds to TfR, synaptic vesicle recycling and 

selective endocytosis of receptor-bound ligands (Conner & Schmid, 2003, Simonsen et al., 

2001). Receptor-bound ligands are transported from clathrin-coated vesicles to early 

endosomes (EEs), which possess a slightly acidic milieu, causing dissociation of some 

viruses from the receptor and release of the genome to cytoplasm (Mukherjee et al., 1999). 

The endocytic pathway of EV1 in TfR-α2I-transfected cells was studied using different 

antibodies against intracellular organelle markers in confocal microscopy. Cellular 

markers for EE included the early endosome antigen 1 (EEA-1) and Rab4, a small 

GTPase. EV1- infected BHK-21 cells, double-stained for EV1 and EEA-1, showed partial 

colocalization 2 min p.i. (III, Fig. 5A) that disappeared already 5 min p.i. The BHK-21 

cells that are normally not infected by EV1 were used because of a stronger fluorescence 

signal of EEA-1 compared with the NIH3T3 cells. In EV1-infected, TfR-α2I-transfected 

NIH3T3 cells, clear colocalization between α2I and Rab4 was seen 2 min p.i. (III, Fig. 

5B). 

The cargo from EE can be transported to RE. The iron-Tf-TfR complex is rapidly 

endocytosed into clathrin-coated pits (Mellman, 1996) and further transported to early or 

sorting endosome. In the endosomal acidic mileu, iron is released from Tf and the 

resultant apo-Tf-TfR is recycled to the plasma membrane by fast endosome-directed 
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transport dependent on Rab4 or through a slower process via perinuclear recycling 

compartments, dependent on Rab11 (Hao & Maxfield, 2000, Morgan, 1996, Qian et al., 

1997, Sheff et al., 1999). Furthermore, the ligand-receptor complex can be transported 

from EE to LE, possessing a more acidic milieu for instance during endocytosis of the 

CPV-TfR complex (Parker et al., 2001). Alternatively, CPV is transported from EE 

shortly after cell entry to perinuclar recycling endosomes (PNRE) where the virus has 

been shown to colocalize with endocytosed transferrin, suggesting a similar recycling 

pathway as in Tf transport (Parker & Parrish, 2000, Suikkanen et al., 2002). CPV is 

released into the cytosol through a mechanism that has been suggested to be transient or to 

include limited pore formation of the endosomal membrane (Harbison et al., 2008). In 

EV1-infected cells, partial colocalization between EV1 and Rab11, a marker for RE, was 

seen from 5 min to 30 min p.i. This result suggested that EV1 is transported in TfR-α2I-

transfected NIH3T3 cells from EE to RE in a process resembling that of iron transport and 

also partly in a manner similar to the early infection steps in CPV endocytosis, although 

CPV remains bound to TfR for several hours (Parker et al., 2001). 

Other markers used for endocytotic cellular organelles (caveolae/caveosomes and 

LE/lysosomes) showed no colocalization between either α2I or EV1 in infected cells 

transfected with a TfR-α2I construct. The markers included caveolin-1, the endoplasmic 

reticulum marker (PDI) and a Golgi marker (Gm130). For some markers, BHK-21 cells 

were used because a better fluorescence signal was obtained. CI-MPR, a LE marker, 

Lamp1, a late endosome and lysosome marker, detected by 1D4B antibody, and and 

another LE marker 6C4 (30 min to 1 h p.i.) showed no colocalization with α2I or EV1. 

These results suggested that EV1 probably remains in the early and recycling 

endosomes and is not transported further to the late endosomes, lysosomes, Golgi or 

endoplasmic reticulum. 

5.3.4 EV1 replication is initiated in TfR-α2I-transfected NIH3T3 cells 

After showing that EV1 was able to enter transiently transfected NIH3T3-TfR-α2I cells, 

the next focus of interest was to investigate if the virus would be able to initiate productive 

infection in those cells. In EV1-infected host cells the viral genomic (+)RNA is copied by 

viral 3D into complementary (-)RNAs, which serve as template for the synthesis of new 

genomes. RNA replication was measured in infected, TfR-α2I-transfected NIH3T3 cells 

and Saos-α2 cells by quantitative RT-PCR detecting positive (III, Fig 6 A) or negative (III, 

Fig. 6 B) strand of viral RNA. In Saos-α2 a considerable increase in (-)RNA copy number 

was detected (III, Fig. 6 A), as well as a minor increase of (+)RNA (III, Fig. 7 B). This 

was in line with former studies, where the EV1 RNA synthesis was detected 3 h p.i. and 

production of new virus started 4h p.i. in the cells (e.g. CV-1 cell line), susceptible to EV1 
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infection (Pietiäinen et al., 2004). In the TfR-α2I-transfected NIH3T3 cells, the increase of 

both viral (+)RNA and (-)RNA was seen later, first 6 h p.i., thus indicating a slower 

initiation of replication compared with cells possessing the human α2β1 integrin. The 

increase of copy number of both (+)RNA and (-)RNA in Saos-α2 cells 12 h p.i, compared 

with 2 h p.i., was significantly higher compared with TfR-α2I-transfected NIH3T3 cells. 

Furthermore, in plaque assay experiments, infected TfR-α2I-transfected NIH3T3 cells 

were shown to produce infectious virus, although in low quantity. Enterovirus replication 

starts upon release of viral genomic RNA into the cytoplasm, and since the EV1 infection 

in TfR-α2I-transfected NIH3T3 cells caused production of new viruses, the virus was 

released from the vesicular structures in the cell. A low pH step is crucial for replication of 

CPV. In CV-1 cells, EV1 is found in caveosomes 30 min p.i., and viral capsid proteins and 

RNA can be detected in these structures for 4 h p.i. (Pietiäinen et al., 2004). Moreover, in 

a recent study with Saos-α2β1 cells, caveolin-1 negative tubulovesicular endosomes, 

containing EV1, were found to fuse with internalized caveolae or caveosomal structure 

maturating into multivesicular structures, a process that started 15 min p.i and continued 

for 3 h (Karjalainen et al., 2008). Genome release of picornaviruses from intracellular 

vesicles includes rupture of endosomes by the major rhinovirus receptor group (Schober et 

al., 1998) and pore formation in endosomes by the minor rhinovirus receptor group 

(Brabec et al., 2005). Release of the EV1 genome in transfected NIH3T3-TfR-α2I cells 

could proceed by rupture of vesicles containing viruses, or alternatively more specific 

mechanisms could be involved. 

Some chimeric receptors have earlier been used in picornavirus studies. For instance, a 

chimera made of PVR and ICAM-1 or CD4 receptor (Selinka et al., 1991) has been shown 

to be a functional poliovirus receptor (Selinka et al., 1992), and expression of a single-

chain antibody, recognizing FMDV and inserted to ICAM-1, made cells susceptible to 

infection (Rieder et al., 1996). Together these results show that EV1 initiates productive 

infection in TfR-α2I-transfected NIH3T3 cells, although the efficiency is reduced. 

5.4 HOST GENE EXPRESSION DURING EV1 INFECTION 

Previous studies have shown that certain immediate early genes (IEGs) are activated in 

response to 5-10 h of EV1 infection. The aim was to use cDNA array technique to clarify 

how the EV1 and α2β1 integrin interaction, signaling and virus endocytosis influence on 

cellular host gene expression. Host gene RNA expression was studied in human A549 

lung carcinoma cells at 30 min, 2 h and 6 h post infection (p.i.).  

Picornaviruses may regulate the cells‟ transcriptional machinery to gain advantage 

over the host cell in the competition for translational components and ribosomes. At a late 

stage of enterovirus replication, the infection can be detected by CPE that is characterized 
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by morphology changes in cell, such as cell rounding and detachment and finally cell lyses 

(Racaniello, 2001). Picornaviruses lack a 5´-cap structure in their mRNA (Belsham & 

Sonenberg, 1996, Sachs et al., 1997) needed for normal cellular gene expression. Some 

picornaviruses can inhibit cellular transcription and protein synthesis (shut-off) by 

preventing the translation of 5´-capped mRNAs (Knipe et al., 2001, Lamphear & Rhoads, 

1996). The translation of viral genes is not affected due to the internal ribosome entry site 

(IRES) in the picornavirus genome (Dorner et al., 1984, Pelletier & Sonenberg, 1989) that 

can also be found in some cellular mRNAs.  

Confluent A549 (ATCC) cells were infected with EV1 (Farouk strain; ATCC) and the 

multiplication of the virus was studied by plaque titration (Fig. 1). For RNA purification, 

the cells were collected after 30 min, 2 h, and 6 h incubation in a guanidinium lysis buffer 

and frozen at -70°C. Total RNA was purified by ultracentrifugation in CsCl gradients, 

followed by ethanol precipitation. The preparations were then treated with DNase 

(Sigma). Alternatively, total RNA was purified according to the manufacturer‟s 

instructions using RNeasy Mini kit (Qiagen), supplemented with QIAshredder (Qiagen) 

for homogenization of cells and RNase-FreeDNase Set (Qiagen) to remove DNA 

completely during RNA purification. Activation and downregulation of cellular genes was 

studied by using the Affymetrix Human Genome U133A Array (Affymetrix), that 

contains 22 215 human cDNA probe sets, representing approximately 19 000 genes. The 

arrays were scanned, and the fluorescence intensities were measured by Microarray Suite 

5.0 software (Affymetrix). The data was transferred to DNA-Chip Analyzer software 

(Affymetrix) for normalization and model-based analysis (Li et al., 2001). For each probe 

set, a detection p-value was calculated and sets with p <0.04 were considered to be 

present, indicating that the gene transcript was reliably detected. Each microarray 

experiment was repeated. Differently expressed genes were identified by Affymetrix 

dCHIP software (www.dCHIP.org). Alterations exceeding 1.5 were considered significant 

in genes where either of the values was greater than 40. To analyze the networks of 

protein-protein interactions, the STRING 8.2 database was used (Jensen at al., 2009). 

In EV1-infected A549 cells, no difference in the amount of RNA in EV1-infected 

cells, compared with mock-infected cells, was observed at 6 h p.i., although a clear CPE 

effect in the cells was detected (result not shown). However, at 10 h p.i. the RNA content 

was significantly decreased in the EV1-infected sample, compared with the mock-infected 

sample. This could be due to the fact that the CPE in cells decrease the number of viable 

cells, and/or to virally caused shut-off, although former studies have shown that EV1 

causes CPE but does not cause shut-off (Zhang & Racaniello, 1997), or the shut-off is 

inefficient (Pietiäinen et al., 2000). During early stages of EV1 infection at 30 min p.i. and 

2 h p.i., only a few host gene expressions were altered. At 6h EV1 p.i., the virus 

replication had already started and one hundred genes were found to be differently 

expressed. At this time about 50 % the genes showed decreased expression. 
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In the early phase of EV1 infection (30 min and 2 h p.i.), the virus is first bound to its 

cellular receptor, the 21 integrin, and subsequently found in vesicular structures. It is 

possible that the events occurring during virus endocytosis do not require specific 

alteration of host cell gene expression to enhance initiation of infection. This could explain 

why only a few genes were differently expressed during these early infection events.  

Differently expressed genes at 30 min p.i. in EV1 infected cells possessed functional 

features, such as actin cytoskeleton, transcription, catalytic activity, cell surface receptors, 

cell communication and others, including genes with unknown function. Six genes were 

induced and nine were downregulated. Three of the induced genes in infected cells, 

including phosphatidylinositol-4-phosphate 5-kinase, type 1C (PIP5K1C), integrin α6 

subunit (ITGA6) and receptor-associated coactivator 3 (RAC3) were all shown to be 

involved in the entry processes of virus. However, their role in EV1 infection requires 

further studies. STRING 8.2 interactions of the genes did not shown connections between 

the differently expressed genes, except for a strong acetyl-Coenzyme A acetyltransferase 2 

(ACAT2)-acetyl-Coenzyme A acyltransferase 1 (ACAA1) association. 

 

 

Figure 1. A. The replication cycle of EV1 in A549 cells. The amount of virus was determined by a 

plaque titration assay. B. IF labelling of EV1 by rabbit antiserum against EV1 in A549 cells at 0 h, 

30 min, 2h and 6h p.i. 
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At 2h EV1 p.i., altered expressed genes included genes involved in cell 

communication, GTPase activity, JNK cascade, peptidase activity, transcription, anti-

apoptosis and others. STRING 8.2 did not show a connection between these genes, but 

some of these genes, including MAP2K4, CAPN1, IL13RA1 and BCL2A1, could 

potentially have a role in early infection events and possibly have a role in defense against 

the virus. However, further investigation into the matter is required.   

At 30 min and 2h EV1 p.i., the proteasome subunit beta type 2 (PSMB2) was induced 

twofold in infected cells, compared to mock-infected cells. PSMB2 is a part of the 20 S 

proteasome, which is a multicatalytic complex. The 20S proteasome forms a catalytic core 

in 26S proteasomes. The catalytic core is capped at one or both ends by 19S regulatory 

particle(s) (Rechsteiner et al., 1993, Voges et al., 1999). 19S caps structures recognize 

ubiquitinated proteins, and the substrate is further processed in the catalytic site of the 20S 

proteasome (Schlax et al., 2007). The proteasome is involved in several cellular processes, 

including stress response (Finley et al., 1987) and coordinated protein synthesis 

regulation, and it generally has an inhibititory effect on translation of cellular mRNA. 

Proteasome ubiquitination has been shown to be important in the pathogenesis of the 

enteroviruses CBV3 and PV. CBV3 infection enhances protein ubiquitination, and the 

ubiquitin-proteasome pathway is needed for optimal replication of the virus (Si et al., 

2008). The proteasome activity could possibly be involved in host cell stress response to 

the virus or be part of virus regulation of cellular translation. 

In conclusion, the fact that only few genes expression were altered indicate that the 

virus attachment to receptor and endocytosis cause only minor effects on host cell 

transcriptional machinery. These results are in line with previous results showing no effect 

on EV1 expression in HOSpα2AW cells at 1h or 3h p.i. in a human cDNA array 

containing almost 600 genes (Pietiäinen et al., 2000). 

At 6h EV1 p.i, the differently expressed genes included several different functional 

classes, such as genes involved in transcription, regulation of translation, apoptosis, 

defend respond, cell-cell adhesion, cell cytoskeleton, motility, catalytic activity, cell 

signaling, IEGs and others, including several genes whose function is not known yet. 

Analysis of the interactions of the differently expressed genes by STRING 8.2 database 

(Jensen et al., 2009) showed a main cluster of IEGs connected to several other functional 

genes (Fig 2.). IEGs are a class of genes that show rapid and usually transient activation in 

the absence of the novo protein synthesis (Platenik et al., 2000), in response to a wide 

variety of cellular stimuli. 
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Figure 2. Altered gene products associated with IEGs 6 h after EV1 infection. Induced genes are 

marked with a grey sphere, decreased genes with a white sphere and associated genes, added based 

on the STRING 8.2 database, are marked with a black sphere. 

No difference in IEG gene expression was observed before 6 h EV1 p.i. Although 

α2β1 integrin-mediated cell adhesion to type I collagen is known to induce certain IEGs, 

the activation of IEGs transcription in EV1 infected cells has been shown to require viral 

replication (Huttunen et al., 1997).  EV1 6h p.i. in A549 cells induced the expression of 

several IEGs, including cysteine-rich, angiogenic inducer, 61 (CYR61), JUNB, JUN, 

immediate early response 2 (IER2), pim-1 oncogene (pim-1), Krueppel-like factor 10 

(KLF10), connective tissue growth factor (CTGF) and Polo-like kinase 2 (PLK2) (Table 

1). Furthermore, two additional IEGS, early growth response 1 (EGR1) and FOS, were 

induced during EV1 infection, though they were expressed at low expression values that 

were slightly under the chosen cut-off level. In former studies many of these IEGs have 

been reported to be differently expressed during enterovirus infection (Huttunen et al., 

1997, Huttunen et al., 1998, Johannes et al., 1999, Kim et al., 2004, Lang et al., 2008, 

Pietiäinen et al., 2000).  
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Table 1. Examples of significantly altered gene expression in EV1-infected cells 6 h p.i. The ratios 

represent values of infected cells (EV1)/uninfected cells (C). 

Induced/downregulated gene Accession No. EV1  C Ratio  

Murine osteosarcoma viral oncogene homolog (FOS) NM_005252.2 33   7 +4,8 

Early growth response 1 (EGR1) NM_001964.1  38 11 +3,5 

Hairy and enhancer of split 1 (Drosophila) (HES-1) NM_005524.2  57 19 +3,0 

Meningioma expressed antigen 5 (hyaluronidase) (MGEA5) NM_012215 112 41 +2,7 

Protein phosphatase 1, regulatory subunit 15A (PPP1R15A)  NM_014330.2 92 38 +2,4 

PIM1 oncogene NM_002648.1 95 41 +2,3 

Actin-like 6A (ACTL6A)  NM_004301.1 55 23 +2,3 

Growth arrest and DNA-damage-inducible, beta (GADD45B) NM_015675.1 82 37 +2,2 

Dual specificity phosphatase 6 (DUSP6) BC003143.1 85 40 +2,1 

RNA binding motif protein 5 (RBM5) NM_005778.1  77 37 +2,1 

CDC-like kinase1 (CLK1) AI251890 45 21 +2,1 

Rab geranylgeranyltransferase, beta subunit (RABGGTB) U49245.1 305 151 +2,0 

JUN  NM_002228.2 86 43 +2,0 

Vacuolar protein sorting 13 homolog C (S. cerevisiae) (VPS13C)  NM_017684.1 21 57 -2,7 

LEM domain containing 3 (LEMD3) NM_014319.2 18 48 -2,7 

Quinoid dihydropteridine reductase (QDPR) NM_000320.1 57 151 -2,6 

Clone RP5-1121G12 on chromosome 20; C20orf104  

and SCAND1 AL109965 35 80 -2,2 

Chromosome 8 open reading frame 4 (C8ORF4) NM_020130.1 47 98 -2,1 

cDNA DKFZp566I043 AA160522 40 84 -2,1 

Chromosome 8 open reading frame 4 (C8ORF4)  NM_020130.1 47 98 -2,0 

Cadherin 2, type 1, N-cadherin (neuronal) (CDH2) NM_001792.1 38 76 -2,0 

 

Cysteine-rich, angiogenic inducer, 61 (CYR61) and connective tissue growth factor 

(CTGF) both belong to the CCN family of integrin-binding matrix signaling modulators 

(Moussad & Brigstock, 2000). CYR61 regulates cell proliferation, differentiation, 

apoptosis, adhesion, migration, apoptosis and extracellular matrix production. Cyr61 

expression has been shown to increase during PV infection and CBV3 infection (Johannes 

et al., 1999). Cyr61 could potentially enhance EV1 replication in host cell, since it has 

been shown to have a positive effect on both CBV3 (Kim et al., 2004) and herpes simplex 

virus 1 (HSV-1) replication (Kurozumi et al., 2008), and CYR61 siRNA introduced into 

Hela cells was able to reduce the CBV3 infection titer (Kim et al., 2004). Furthermore, 

CYR61 is suggested to trigger apoptosis in CBV3-infected Hela cells (Kim et al., 2004). 

CTGF promotes endothelial cell growth, migration, adhesion, and cell survival (Moussad 

& Brigstock, 2000). In a murine model of chronic CBV3 myocarditis, CTGF was found to 

be strongly induced (Lang et al., 2008). Moreover, in a signaling cascade that has been 

implicated to be part of diabetic neuropathy, CTGF enhanced the TGFβ/Smad signaling 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=23645
http://www.genecards.org/cgi-bin/carddisp.pl?gene=ACTL6A&search=ACTL6&suff=txt
http://www.genecards.org/cgi-bin/carddisp.pl?gene=VPS13C&search=FLJ20136&suff=txt
http://www.genecards.org/cgi-bin/carddisp.pl?gene=LEMD3&search=MAN1&suff=txt
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pathway by transcriptional suppression of Smad7, an antagonist for TGFβ. This was 

followed by an induction of the transcriptional factor Krueppel-like factor 10 (KLF10) 

(Wahab et al., 2005), an IEG found to be induced in this study. KLF10 was reported to be 

crucial for the CTGF-mediated downregulation of Smad 7 (Wahab et al., 2005). 

Overexpression of KLF10 has been shown to induce p53 mitochondrial apoptosis, and the 

level of suppression of this gene is associated with the invasive pattern of breast cancer 

(Subramaniam et al., 1998). Moreover, the expression of KLF10 has been reported to be 

induced during CBV3 infection in Hela cells (Kim et al., 2004) and in EV1 infection 10h 

p.i. in HOS pα2AW cells (Pietiäinen et al., 2000).  

Furthermore, CTGF has also been described to be activated by JUN/AP-1 (Yu et al., 

2009). JUN and JUNB genes are components of the dimeric AP-1 transcription factor that 

regulates a wide range of cellular processes, such as cell proliferation, death survival and 

differentiation (Shaulian & Karin, 2002). The transcription of both JUN and JUNB, 

increased during EV1 replication in this study, and has previously been shown to increase 

during EV1 and EV7 infection 5-10 h p.i. (Huttunen et al., 1997, Huttunen et al., 1998, 

Pietiäinen et al., 2000). The EV1 activated stress-related p38 mitogen activated protein 

kinase (MAPK) and increased the expression of JUNB (Huttunen et al., 1998). All or 

some of the IEGs CYR61, CTGF, KLF10, JUN and JUNB could possibly be involved in 

the signaling pathway induced by EV1 infection as described above. Some of these genes 

could also be involved in virus regulation of host genome replication and/or cell survival. 

PV infections have been shown to induce both Pim-1 (Johannes et al., 1999, Pietiäinen 

et al., 2000) and Polo-like kinase 2 (PLK2) (Johannes et al., 1999) expression in host cell. 

Both PLK2 and Pim-1 could facilitate cell survival in EV1 infection, since they have been 

shown to activate antiapoptotic pathways in cells (Matsumoto et al., 2009), although 

PLK2 can also function as a tumor suppressor inducing apotosis (Syed et al., 2006). 

The only IEG induced by EV1 infection in this study that to our knowledge has not 

previously been reported to be differently expressed during enterovirus infection was the 

immediate early response 2 (IER2) gene. IER2 is suggested to act as a putative 

transcriptional factor. A possible link to IER2 cell death-inducing potential represents the 

gene of protein phosphatase 1 and the regulatory (inhibitor) subunit 15A (PPP1R15A) 

(Kruger et al., 2006), the expression of which induced over 2-fold in EV1-infected cells. 

PPP1R15A is a DNA damage-response gene able to induce apoptosis (Grishin et al., 

2001). ETR2 has also been found to increase the expression of early growth response 1 

(EGR1) in rat fibroblast (Shin et al., 2002). EGR1 induced by genotoxic stress was 

reported to stimulate the expression of growth arrest and DNA-damage-inducible, alpha 

(GADD45A) and GADD45B and mediate epidermal cell death (Thyss et al., 2005). 

 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=23645
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=23645
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Table 2. IEG-associated genes listed by function altered during EV1-infetion used in the analysis 

by the STRING 8.2- database (see Fig.2). 

Induced/downregulated gene Accession No. EV1  C Ratio  

Transcription     

Murine osteosarcoma viral oncogene homolog (FOS) NM_005252.2 33   7 +4,8 

Early growth response 1 (EGR1) NM_001964.1  38 11 +3,5 

JUN  NM_002228.2 86 43 +2,0 

Immediate early response 2 (IER2) NM_004907.1 566 299 +1,9 

Period homolog 2 (Drosophila) (PER2) NM_022817.1 86 48 +1,8 

Homeobox protein TGIF1 (5'-TG-3'-interacting factor 1) 

(TGIF1) NM_003244.1 314 194 +1,6 

jun B proto-oncogene (JUNB) NM_002229.1 103 62 +1,6 

MMS19-like (MET18 homolog, S. cerevisiae) (MMS19L) NM_022362.1 76 46 +1,6 

Krueppel-like factor 10 (KLF10) NM_005655.1 201 134 +1,5 

Zinc finger protein 148 (ZNF148) NM_021964.1 28 47 -1,6 

TROVE domain family, member 2 (TROVE2)  M25077.1 129 217 -1,7 

nuclear receptor subfamily 3, group C, member 1 (NR3C1 ) X03348.1 115 188 -1,6 

THRAP1 - Thyroid hormone receptor-associated protein 

complex  NM_005121.1 66 102 -1,5 

Apoptosis     

Protein phosphatase 1, regulatory (inhibitor) subunit 15A 

(PPP1R15A)  NM_014330.2 92 38 +2,4 

TNF receptor-associated factor 4 (TRAF4) NM_004295.1 65 39 +1,7 

Growth arrest and DNA-damage-inducible, beta (GADD45B) NM_015675.1 82 37 +2,2 

Dual specificity phosphatase 6 (DUSP6) BC003143.1 85 40 +2,1 

Defence respond     

FOS - FBJ murine osteosarcoma viral oncogene homolog NM_005252.2 33    7 +4,8 

Nuclear receptor subfamily 3, group C, member 1 (NR3C1)  X03348.1 115 187  -1,6 

Zinc finger protein 148 (ZNF148) NM_021964.1 28   47  -1,6 

Catalytic activity  

Protein kinase activity     

Pim-1 oncogene NM_002648.1 95 41 +2,3 

Polo-like kinase 2 (Drosophila) (PLK2) NM_006622.1 209 116 +1,8 

MMS19-like (MET18 homolog, S. cerevisiae) (MMS19L) NM_022362.1 76 46 +1,6 

Met proto-oncogene (MET) (hepatocyte growth factor 

receptor)  U19348.1 77 132 -1,7 

Protein kinase, DNA-activated, catalytic 

polypeptide(PRKDC) NM_006904.5 115 184 -1,6 

Other genes possessing catalytic activity      

Dual specificity phosphatase 6 (DUSP6) BC003143.1 85 40 +2,1 

Platelet-activating factor acetylhydrolase, isoform 

Ib, subunit 1 (45kDa) (PAFAH1B1) NM_000430 71 129 -1,8 

cytoskeleton/motility    

 

 
Actin-like 6A (ACTL6A)   NM_004301.1 55 23  +2,3 

Connective tissue growth factor (CTGF) M92934.1 66 34  +1,9 

Platelet-activating factor acetylhydrolase, isoform Ib, alpha 

subunit 45kDa (PAFAH1B1) NM_000430 71 130  -1,8 

Filamin A, alpha (actin-binding protein-280) (FLNA) NM_001456 139 252  -1,8 

IEGs     

FOS - FBJ murine osteosarcoma viral oncogene homolog NM_005252.2 33   7 +4,8 

Early growth response 1 (EGR1) NM_001964.1  38 11  +3,5 

Pim-1 oncogene (Pim-1) NM_002648.1 95 41  +2,3 

JUN  NM_002228.2 86 43  +2,0 

Immediate early response 2 (IER2) NM_004907.1 566 299  +1,9 

http://www.genecards.org/cgi-bin/carddisp.pl?gene=TROVE2&search=SS-A/Ro+ribonucleoprotein+autoantigen
http://www.genecards.org/cgi-bin/carddisp.pl?gene=NR3C1&search=Nr3c1&suff=txt
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=23645
http://www.genecards.org/cgi-bin/carddisp.pl?gene=ACTL6A&search=ACTL6&suff=txt
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Connective tissue growth factor (CTGF) M92934.1 66 34 +1,9 

Polo-like kinase 2  (PLK2) NM_006622.1 209 116 +1,8 

Cysteine-rich, angiogenic inducer, 61 (CYR61) NM_001554.1  125 79 +1,6 

jun B proto-oncogene (JUNB) NM_002229.1 103 62 +1,6 

Krueppel-like factor 10 (KLF10) NM_005655.1 201 134 +1,5 

Other     

Adrenomedullin  (ADM) NM_001124.1 583 

 

346 +1,7 

Ribosomal RNA processing 7 homolog A  

(S. cerevisiae) (RRP7A)  NM_015703.1 128 82 +1,6 

LEM domain containing 3 (LEMD3)   NM_014319.2 18 48 -2,7 

Synaptosomal-associated protein, 25kD (SNAP25) NM_003081.1 60 

 

109109 -1,8 

 

GADD45B was induced by EV1-infected A549 cells, and both GADD45A and 

GADD45B genes activate cell death in cells failing in DNA repair. In a former study, 

EGR1 expression increased at 6 h p.i. in EV1-infected HOS pα2AW, and the induction 

was increased over two-fold at 10h p.i. Furthermore, at this time point the GADD45A 

gene was also induced (Pietiäinen et al., 2000). This represents two possible pathways by 

which EV1 could regulate cell survival by activating the ETR2 gene. In addition, further 

examples of mechanisms by which EV1 could possibly control cell survival included cell 

regulation mechanisms of some altered genes reported to either suppress or induce 

apoptosis. In EV1-infected cells the expression of the genes RNA binding motif protein 5 

(RBM5) and dual specificity phosphatase 6 (DUSP6), of which both have been reported to 

activate apoptosis, were over 2-fold increased (Table 2). In a former study, upregulation of 

cellular expression of RBM5 in A549 cells was shown to suppress cell proliferation by 

increasing apoptosis and inducing the cell cycle arrest in G1 (Oh et al., 2006). Together 

these implicated some possible mechanisms by which EV1 could regulate the host cell 

survival of A549 cells. However, this needs to be analyzed in further studies. A study by 

Huttunen et al. suggested that a minor part of the HOS pα2AW cells undergo apoptosis 

during infection by EV1 at 12 h p.i. or by Semliki Forrest virus at 24 h p.i. (Huttunen et 

al., 1998), a virus shown to induce apoptosis in several cell lines (Glasgow et al., 1997, 

Scallan et al., 1997).  

Our study also suggested possible roles for genes involved in cytoskeleton and motility 

during EV1 infection in A549 cells. This involved platelet-activating factor 

acetylhydrolase, isoform Ib, alpha subunit 45kDa (PAFAH1B1), and filamin A (FLNA) 

linked to IEGs by predicted interaction pathway by STRING 8.2 database (Jensen et al., 

2009) (Fig. 2). 

In a study by Kondratova et al, PV 3A protein was described to inhibit the action of 

PAFAH1B1 by blocking PAFAH1B1-containing complexes on the cytoplasmic surface of 

the ER and the Golgi, thereby blocking the vesicular transport from ER to Golgi. This 

event leads to prompt disappearance of short-living receptors from plasma membrane and 

loss of cell sensitivity to TNF and interferon (Kondratova et al., 2005). A possible role of 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=133
http://www.genecards.org/cgi-bin/carddisp.pl?gene=RRP7A&search=CGI-96&suff=txt
http://www.genecards.org/cgi-bin/carddisp.pl?gene=LEMD3&search=MAN1&suff=txt
http://string-db.org/)%20(V1,%20Fig
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PAFAH1B1 in neuronal disease caused by PV infection has also been suggested, since 

neurons are most sensitive to defiance of PAFAH1B1 protein activity and decrease of 

PAFAH1B1 concentration (Fogli et al., 1999). PAFAH1B1 may also protect EV1 from 

host defence by a mechanism similar to the one reported for PV, and it could be 

speculated whether this gene could also play a role in EV1 neuronal infections.  

In conclusion, several IEGs were expressed in a similar pattern in EV1 infected A549 

cells as reported in earlier studies for EV1 and also for other enteroviruses (Huttunen et 

al., 1997, Huttunen et al., 1998, Johannes et al., 1999, Kim et al., 2004, Lang et al., 2008, 

Pietiäinen et al., 2000). Together these results suggest a central role for certain IEGs in 

signaling pathways induced by EV1 replication. During the EV1 replication pattern 

several differently expressed genes, known to play a role in apoptosis, seemed to favor 

apoptosis over cell survival, although some specific gene expressions also suggested the 

possibility of antiapoptotic events in the cell.  Furthermore, differently expressed genes 

involved in cytoskeleton and motility could possibly affect the host cell by negatively 

affecting the structural integrity of the cell, and thus lead to growth arrest and hamper host 

cell defense. However, further studies are needed to clarify the role of these genes in EV1 

replication. 
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6 CONCLUSIONS 

Integrins are a family of cell adhesion receptors that mainly recognize ECM ligands and 

cell-surface ligands, but some soluble ligands have also been reported. Integrins have been 

implicated in various diseases and disease processes, including inflammation, 

atherosclerosis and cancer. Moreover, several viral pathogens, including enteroviruses, use 

integrins as cellular receptors. Enteroviruses have also been suggested to be involved in 

the etiopathogenesis of type 1 diabetes. The thesis focused on studying the role of 

integrins in the pathogenesis of metastasis to cortical bone, type 1 diabetes and echovirus 

1 infection.  

Favored adherence of breast cancer cells to bone-specific factors may facilitate 

preferential metastasis to the skeleton. The most important integrins in the initial 

attachment of breast cancer cells to bone were studied in an in vitro microplate attachment 

assay, measuring the binding of MDA-MD-231 breast cancer cells to bovine cortical bone 

disks. The results suggest α2β1 and α3β1 to be the key receptors in the initial anchoring of 

breast cancer cells to cortical bone matrix. 

Enterovirus infection has been suggested to be associated with the pathogenesis of 

T1D. Increased prevalence and higher enterovirus antibody levels, as well as presence of 

enterovirus RNA in blood, have been reported in individuals with recent onset T1D. The 

possibility that sensitivity to enterovirus infections could correlate with individual 

variation in enterovirus receptor genes, including some integrins, was investigated by 

sequence analysis. The predicted polypeptide domains known to be critical for virus 

binding in the major enterovirus receptors were determined. In the PVR, an SNP causing 

an amino acid change was detected in four individuals with T1D. The patients also had a 

lower level of neutralizing antibody against echovirus 30, compared to healthy children. 

However, the findings of direct connection to T1D should be analyzed in a larger cohort to 

obtain statistically sustainable results. 

Echovirus 1 (EV1) binds to the 2 I domain (2I) of the human 21 integrin. EV1 

has been reported to enter a host cell either via lipid rafts, by macropinocytosis or, through 

caveolae. To determine if EV1 could initiate productive infection by using chlathrin-

directed entry, a chimeric receptor was constructed by inserting 2I into the extracellular 

terminus of transferrin receptor (TfR), responsible for transport of transferrin-bound iron 

through clathrin-dependent endocytosis. In immunofluorescence and confocal microscopy 

studies, the TfR-2I chimeric receptor when transfected into non-permissive cells, was 

localized to the cell surface and also in vesicular structures in the cytoplasm. EV1 was 

able to bind the chimeric receptor and, consequently, the chimeric virus receptor complex 

was internalized through the clathrin-mediated endocytosis to the early endosomes and 

recycling endosomes. After 1 h, the chimeric receptor was completely separated from the 
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virus as it was recycled to the plasma membrane, whereas the virus remained in 

intracellular vesicles. Based on quantitative RT-PCR detecting both positive and negative 

strand viral RNA, the replication cycle of EV1 was initiated in the cells carrying the 

chimeric receptor. Furthermore, in plaque assay experiments infected TfR-α2I-transfected 

NIH3T3 cells were shown to produce infectious virus, although in low quantities. The 

results indicate that the natural entry route is not an absolute requirement for EV1 

replication; instead, the virus can adapt to use alternative internalization mechanisms.  

Previous studies have shown that certain immediate early genes (IEGs) are activated in 

response to EV1 infection. To elucidate the effect of EV1 and α2β1 integrin interaction, 

virus endocytosis and replication in human A549 lung carcinoma cells, cDNA microarray 

analysis was performed. In samples collected during virus endocytosis (30 min and 2h 

p.i.) only a few genes were differently expressed. Six hours after initiation of the infection, 

a cytopathic effect was observed in the cells and approximately 100 genes (0.53%) of 

those investigated were differently expressed, including IEGs, genes affecting the host cell 

immune response and apoptosis. Several of the induced IEGs, such as CYR61, JUNB, 

JUN, PIM1, KLF10, CTGF and PLK2, have been reported to be expressed during 

infection of other enteroviruses.  STRING-analysis of this gene pattern detected cluster, 

consisting mainly of IEGs, suggested IEGs to be primarily associated with EV1 

replication in host cell. 
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